THE EXPERT’S VOICE® IN SQL SERVER

Beginning

SQL Server Modeling

Model-Driven Application Development in
SQL Server 2008

SQL Server Modeling and the “Oslo”
Framework Revealed

Bart Weller

Apress-

Beginning SQL Server
Modeling

Model-Driven Application Development in
SQL Server 2008

Bart Weller
Apress

Beginning SQL Server Modeling: Model-Driven Application Development in SQL Server 2008
Copyright © 2010 by Bart Weller

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Image copyright notices and permissions:

Page 1: ©iStockphoto.com/tompics

Page 13: ©iStockphoto.com/tiridifilm

Page 33: ©iStockphoto.com/EricHood

Page 81: ©iStockphoto.com/seamartini

Page 115: @iStockphoto.com/Leadinglights

Page 137: By permission of the Master and Fellows of St John's College, Cambridge, UK, and Ned Lee
Fielden

Page 163: ©iStockphoto.com/pavlen

ISBN-13 (pbk): 978-1-4302-2751-9
ISBN-13 (electronic): 978-1-4302-2752-6
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Python and the Python logos are trademarks or registered trademarks of the Python Software Foundation.

Publisher and President: Paul Manning

Lead Editor: Mark Beckner

Development Editor: Ewan Buckingham

Technical Reviewer: Fabio Claudio Ferrachiatti

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan
Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editors: Candace English and Debra Kelly

Copy Editor: Kim Benbow

Compositor: Bytheway Publishing Services

Indexer: Brenda Miller

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm. com, or visit
www, springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www. apress..com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales—
eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at www. apress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

To: Kathie— wife and companion
Riley, Grady, Sallie, and Brook—the future
Future generations, with sincere apologies from the present
Willy—a great llama and herd jester; may he rest in peace

iv

Contents at a Glance

Contents at @ GIANCE ... —————— iv
Contents ... ————"—"———— v
About the AUthor ... ————— X
About the Technical REVIBWETcsmssmsmsssssmsssssmssmssmssssssssssssssssssssssssssssssssssssnsns Xi
Acknowledgmentsccummnmmmmmmmmm——————————"— Xii
INtroduction ... ————— Xiii
Chapter 1: Installing and Setting Up SQL Server Modelinguussmmssssssssssssssessens 1
Chapter 2: Introduction to Intellipad.........cusmmmnmnmmmmmmmnmmss————m 13
Chapter 3: Domain-Specific Languages 101: Lola’s Lunch Counter.........ccuussssessns 33
Chapter 4: Introduction to Quadrantcummmnmmmmm———— 81
Chapter 5: M - The Modeling Language.........usuummmsmsmsmmssssssssssssssssssssssasssssnss 115
Chapter 6: SQL Server Modeling Services - The Folder Patternccuuusesseasns 137
Chapter 7: SQL Server Modeling Services — SECUNitY ..uuummmsmsssmssmsssssssssssssenss 163
Appendix A: Intellipad Primer ... 207
Appendix B: Intellipad Mini-Buffer Commandscouemsmmsmmsmssssssssssssssssessessens 215
Appendix C: Intellipad Commands and GeStUrescnenmsmmsmmsmssessesssssssssssssesens 217
Appendix D: The Quadrant Menu Tree.....ummmmmmmmmsmsmmssmssmsssssssssssssssss 225
Appendix E: Generated T-SQL for the Car Model Exampleuumusmsmsssssaseses 229
INAEX .o ———— 235

Contents

Contents at a GIANCE ... ————————————— iv
CONENES ..o —————=———=———,_—,, v
About the AUhOL........smsmmmmmmmmmss s —————— X
About the Technical REVIEWEcuussmmssmsmssmssssssssmsssssssssssssssssssssssssssssssssssassasses Xi
AcKnowledgments ... ————————— Xii
INtroduction ... ———-——-—=—=, Xiii
Chapter 1: Installing and Setting Up SQL Server Modeling........cuuesessessns w1
SOTtWAre Pre-REQUISIEES ...vuurrvscrssssssesssanes 1
Hardware and Operating System ReqQUIrEMENtScccccuvmeernmmmsmssssnmssssmsssssssssssssssessns 2
Configuring SAL SEIVERvverrrsinsssnssans 2
Downloading and INSTAIlINGccurrnmrrrssss——————————— 4

Checking the Installation 7
If Something GOES WIONG.... .c.ouerrerrrrssnssessans 8

The Repair Option 9

The Uninstall Option 9
SUMMAY «.cvvovcrssss s R s 12
Chapter 2: Introduction to Intellipadcouvmnmmmmnmmmmnm s ——— 13
Getting Started with INTEllipad.........ccconerrrrnmeressssessre s 13

The File Menu 14

The Edit Menu 16
THE VIEW MEBNUcvvvrrrrcrisssess 20

Full Screen 21

CONTENTS

Zoom 23
Split Windows 23
The Mini-Buffer 24
THE HEIP MENU.....cvctrerreersssrsssrsse s sesseees 25
Commands List 25
Intellipad Primer 26
View Title BaNNer FUNCHONSrceemrrernsesssnaes 26
View Modes 27

Chapter 3: Domain-Specific Languages 101: Lola’s Lunch Countercouusueienns 33

SOME CAVEALSovceersssresssssssssssssssssssss s ssssssssssssans 33
A Simple Exercise: The Sandwich LANGUAGE.........ccurrmmermmssmmsssmsssssmsssssssssssssssssssens 34
Where You Want to End Up 34
Getting Started with the Intellipad DSL Grammar Mode Interface 36
Broadening the Choices 39
Interleaving (Ignoring) Whitespace 40
Defining Tokens 4
Enabling Multiple DSL Statements 42
Tightening Up the Syntax 45
Moving Toward Structured Data 45
Testing the Syntax 48
Making the Syntax More Flexible 52
Extending SandwichOrders to More Than One Main Ingredient 54
Deployment 56
Thinking Ahead 78
ConClUding TROUGNESvvvvvverrresessses 79
Chapter 4: Introduction to Quadrant............cmmmmmmm————8
My Car: Creating a Simple Model in Quadrant..........c.crmmmmssssssssssssens 81
Building the Car Model in Quadrant 82

CONTENTS

Deploying the Model to SQL Server 85
Viewing the Model and Adding Data in the Explorer 87
Customizing Column Views in Quadrant 93
Viewing and Editing the Model in SQL Server 95
Managing Changes to the Data in Quadrant..... 97
Managing Conflicts in Quadrant 99
Using the Quadrant Explorer Query Bar 102
More on Customizing the View 105
SUMMAY «.cvvorvtrressss s s s 114
Chapter 5: M - The Modeling Language 115
WHY M7.ccocesrsssss s sssssssssssssasnns 115
Getting Started With M.........crssssssssssssss s ssssssssssssees 115
Modules 116
Types 17
Intrinsic and Derived Types 118
Modules Revisited: Import and EXport DIreCtIVEScccurrermmmsmmmssssssssmssssssssssssssanns 127
EXEBNS c.cvvvcvrsersssssssssss s 129
COMPULEH VAIUEScorvrrrrrsesssanes 133
Overloading 135
LANGUAGES ...vovvvrrerrserssessssssssssssssssssssssssssssssssessessssssssssas 136
SUMMAY «.ovorrrrrsssrsss s ————————— 136
Chapter 6: SQL Server Modeling Services — The Folder Pattern........cousussssssnns 137
The Modeling Services Folder Pattern........cocreesmsssmsssssssssmsssssssssssssssssssnens 138
Example: A Quality Control System for CarModel 139
Chapter 7: SQL Server Modeling Services = SECUNitYummsmmsmmsessessesssssssessenes 163
Using Security to Limit Data ViSiDIlIYccccreermmesmmmsssssssssssssssssssssssssenes 164
Setting Up - Installing the PatternApplication SAMPIE..........ccoerenmrrnmeersmeersmssssssssenes 164

vii

CONTENTS

Building on the CarMOTEeeerrrrmermesssssssssssssssssssssssssssssssssssenes 165
Building the MfgComponentModel Project in Visual StUdi0............reesssssreesssssssseenss 167
Refining the Model t0 INClUdE SECUTILY........vverrerrrrnmerssressssssssssssssssssssssssssssanes 170
HasFolderAndAutold 175
Adding the PatternApplication Module 176
Building the Project 181
Deploying to the Database.. 182
Creating the QC Folders 187
Building the Sample Data 189
Setting Up the QC Manager Test Users 195
SUMMAIY 1ooveecvreressss s s s s ssss s assssssssas 205
Appendix A: Intellipad Primer 207
INEEIIPAA BASICS ..vvvversvrrsseersmesessssessses 207
Buffers 207
Views 208
Modes 208
The Mini-Buffer 208
Working with M in INtellipad...........cccommermmmmrsmmssmsmssmsssssssssssssssssssssssssssssssssssssssess 209
SQL Preview 209
Basic DSL Authoring Configuration 209
Customizing INTEIIPAAcvevereerneerressessseses 209
Changing the Menus 210
Changing the Colors 210
Adding New Modes 210
Customizing Commands 211
Intellipad COMPONENTScvvurrsrerssrssssssssssssssssssssss s sssssssssssssssssssssssssssssanes 211
Compiled Components 211
Declarative Components 212

viii

CONTENTS

Script Components 212
List of AVaIIADIE MOUES..........cveeuusreerssrressssesssmsssess 212
Command-Ling OPHONSverrrrreerreesmssseses 213
Appendix B: Intellipad Mini-Buffer Commands.........ousummmssmmssssssssssssssssssssenss 215
Appendix C: Intellipad Commands and GeStUreSuummnmsmsmmsssssssssssssesssssnsenss 217
Appendix D: The Quadrant Menu Tree ... 225
Appendix E: Generated T-SQL for the Car Model Example.........couuusmmssssssssssssnsss 229
INAEX e —————————————————_—; 235

ix

About the Author

Bart Weller is a software developer and consultant specializing
in object-oriented software development. Over the years he has
worked on a system simulation of a satellite command and control
system, a laser remote sensing system for measuring trace
amounts of atmospheric pollutants, and scientific
instrumentation systems for NASA's Apollo Skylab. Enterprise
business applications he has worked on include an online
commodities trading system, several insurance applications, and a
telecommunications network. He currently divides his time
between working part-time at Colorado Mountain College and
writing. He lives in the central Rockies of Colorado with his wife, his dog Duffey (named in honor of the
late John Duffey, former lead tenor and mandolin player with The Seldom Scene), two country cats, and
seven llamas, some of whom are happy to hike with him. He is a volunteer DJ at the local community
radio station, and his hobbies are clearing deadfall and fixing things. Among the people he admires are
Albert Einstein, Abraham Lincoln, Alan Kay, Patch Adams, and J.J. Cale.

About the Technical Reviewer

Fabio Claudio Ferrachiatti is a senior consultant and a senior analyst/developer of Microsoft
technologies. He works for Brain Force at its Italian branch (www.brainforce.it). He is a Microsoft
Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, and a
Microsoft Certified Professional, as well as a prolific author and technical reviewer. Over the past ten
years, he’s written articles for Italian and international magazines and coauthored more than ten books
on a variety of computer topics.

xii

Acknowledgments

I'would like to acknowledge the patience, hard work, and great advice of my coordinating editors,
Candace English and Debra Kelly. Mark Beckner, member of the Apress editorial board, served as Lead
Editor on this project, and first suggested the book, lo so many months ago, back in the days when the
project was still known by the code name "Oslo." Both Mark and Ewan Buckingham, Development
Editor with Apress and also a member of the editorial board, provided technical comments and
suggestions on how to improve the drafts. Fabio Ferracchiati and Roy Brandt provided technical reviews
of the early chapter drafts.

Kraig Brockschmidt and David Matson with the Microsoft SQL Server Modeling team provided
outstanding technical help when the need arose. Lars Corneliussen also provided helpful feedback.
Thank you all, gentlemen.

I'would also like to thank my wife, Kathie, for her constant support and for enduring long hours with
me closeted in a dim and cluttered office, sipping old coffee and glowering at my laptop.

And finally, many thanks to Dr. Meeta Goel and my co-workers at Colorado Mountain College—
Barb Johnson, Ashiyana Regmi, Vee Kinion, Jonathan Hansen, and Melissa DeHaan—for their
unflagging patience with bad moods and long absences from the office.

The making of a book always involves a surprising number of people, most of whose names remain
unknown to the author. T hope at least some of them might see these words and accept my appreciation.

Bart Weller

Introduction

SQL Server Modeling is Microsoft's new model-driven .NET framework for rapidly designing and
building software applications. In the past, software has traditionally been developed from static models
or requirements—the data (e.g., inventory, customer data, or financial) can change over time, but the
model structure and logic remain fixed in code that may have been developed and compiled years ago.

Model-driven development, as reflected in the SQL Server Modeling .NET framework, supports the
design and creation of more dynamic applications where the model can change over time. This form of
agile development, with much shorter release cycles, is ideal for businesses operating in rapidly
changing technological, regulatory, and competitive environments: The list covers a broad gamut of IT-
intensive enterprises. Examples might include financial services, insurance, telephony, and high-tech
manufacturing. Shorter release cycles enabled by model-driven development can significantly enhance
the competitiveness and agility of these kinds of enterprises.

Another advantage of SQL Server Modeling is that it enables stakeholders not trained as
programmers to create a business or process model using a modeling tool (called Quadrant), and
immediately generate executable code based on their model. This enables business owners, managers,
and others to become involved in a quick, iterative refinement process for designing and testing the
model and application over a much shorter release cycle than would be possible with more traditional
approaches.

As Bob Muglia, President of Microsoft Server & Tools Business, said,

“The benefits of modeling have always been clear, but traditionally only large enterprises have
been able to take advantage of it and on a limited scale. We are making great strides in
extending these benefits to a broader audience by focusing on three areas. First, we are deeply
integrating modeling into our core .NET platform; second, on top of the platform, we then build
a very rich set of perspectives that help specific personas in the lifecycle get involved; and finally,
we are collaborating with partners and organizations like OMG [Object Management Group] to
ensure we are offering customers the level of choice and flexibility they need.”

SQL Server Modeling includes the following components, all of which are covered in this book:

¢ SQL Server Modeling Services—Where the specifics of the model entities and
relationships all reside, and which provides the Base Domain Library consisting of
pre-built patterns and services ready to be leveraged to your modeling needs.

¢ Quadrant—A modeling tool for creating and modifying the model.

o Intellipad—Short for Intellisense Workpad,, this is a text-based code editor
incorporating Microsoft’s implementation of code-autocompletion. It also the
basis of the code-editing part of Quadrant.

xiii

INTRODUCTION

¢ The M Programming Language—Microsoft’s new modeling language for quickly
defining and managing the metadata inherent in a specific model, and for
developing domain-specific languages (DSLs).

Xiv

CHAPTER1

Installing and Setting Up
SQL Server Modeling

This chapter will walk you through the procedures of downloading, installing,
repairing, and uninstalling SQL Server Modeling, as well as what'’s required for
getting software pre-requisites in place. These pre-requisite applications should, of
course, be up and running before you install SQL Server Modeling. I will take this
step by step, and if you follow the procedures outlined in this chapter, you should
have a working installation of SQL Server Modeling by the time you finish.

But before downloading or installing anything, take a look at the current
version of the SQL Server Modeling release notes. As of this writing, these can be
found at the following MSDN URL:

http://msdn.microsoft.com/en-us/data/dd823315.aspx

The release notes provide links for downloading the SQL Server Modeling setup file as well as links
for downloading the software pre-requisites listed in the next section. They also provide important
information affecting how you should go about installing SQL Server Modeling and what needs to be in
place for a successful setup. Once you have run the setup file, there should be a Readme file installed
under Program Files/Microsoft Oslo/1.0 /Readme.htm. (This is the installation path for the CTP R3
release. The path may be different for subsequent releases.) The Readme file provides much of the same
information as that provided in the release notes and can be viewed by loading it in your web browser
using the browser’s File > Open menu.

The procedures that follow are based on the November, 2009 CTP Release 3. (CTP is the acronym for
Community Technology Preview.)

Software Pre-Requisites

Several software systems must be in place before you begin the actual installation of SQL Server
Modeling:

o Windows Installer 4.5 or later (search for “Windows Installer 4.5 Redistributable”
on www.Micorosoft.com]

¢ To run setup, Windows Installer 4.5 is required.

¢ IfWindows Installer is not installed, a system restart will be requested after
its installation completes.

CHAPTER 1 ' INSTALLING AND SETTING UP SQL SERVER MODELING

.NET Framework 4
SQL Server 2008 SP1 Express (or higher edition)

Visual Studio 2010 (any edition): Visual Studio is not required for SQL Server
Modeling CTP Release 3, but for full functionality with Visual Studio and M Tools
integration, Visual Studio 2010, Visual C#, and Visual Web Developer are required.

Hardware and Operating System Requirements

SQL Server Modeling must be installed on a computer with any combination of the following CPU

architecture and operating systems. Note the SP (Service Pack) for some of the listed operating systems.

If the Service Pack listed is not installed, it should be downloaded and installed before proceeding.
Supported CPU Architectures:

X86
X64 (Windows-on-Windows)

Hardware Requirements:

Minimum: 1.6 GHz CPU, 1GB RAM
Recommended: 2.2 GHz CPU, 2GB RAM

Supported Operating Systems:

Windows XP SP3 or later

Windows Vista (SP1, SP2, or later)
Windows Server 2003 R2 (SP2 or later)
Windows Server 2008 SP2

Windows 7

Configuring SQL Server

Before running the installation executable, be sure SQL Server is running. Bring up the SQL Server
Configuration Manager as shown in Figure 1-1. Here’s the sequence for bringing up this tool:

1.
2,
3.

Click the Start button on your Windows Taskbar.
Click All Programs.

Go to Microsoft SQL Server 2008 (if, for example, you are running the 2008
SKU).

Click Configuration Tools.

CHAPTER 1 © INSTALLING AND SETTING UP SQL SERVER MODELING

5. Click SQL Server Configuration Manager.

[& Microsaft SQL Server 2008 [§i Configuration Tools b ‘F{n SQL Server Configuration Manager
@ Micrasoft Sync Framework 3 Iﬂ SQL Server 2008 Upgrade Advisar |_=1 S0L Server Error and Usage Reporting
@ Wicrosoft Visual Studio 2008 3 \@ Analysis Services 4 ‘.ﬁ' SQL Server Installation Center
@ Microsoft Visual Studio 2010 M| 5y Importand Export Data (32-bit) ny Reporting Services Configuration Manager
@ Integration Services 3
@ Performance Tools 3
% SQL Server Business Inteligence Development Studia
L% 5QL Server Management Studia

Figure 1-1. Opening the SQL Server Configuration Manager

Once you have the Configuration Manager running, navigate to Configuration Tools, then to SQL
Native Client XX.X Configuration/Client Protocols, (where XX.X will correspond to the version number of
your SQL Server installation, such as 10.0), as shown in Figure 1-2. Which client protocols are enabled
will depend on whether the database is running on the same computer on which you're installing SQL
Server Modeling, or remotely. If it's running on your local machine, all you should need is the Shared
Memory protocol. I it’s running on a server on your network, Named Pipes and/or TCP/IP should be
enabled.

It doesn’t hurt to have Shared Memory, Named Pipes, and TCP/IP all enabled, but their specified
order may affect performance. If SQL Server is running on a local server, your network administrator
should be able to tell you whether TCP/IP or Named Pipes will provide better performance. On most
large networks, TCP/IP would be the preferred protocol.

VIA (Virtual Interface Adapter) would normally be disabled unless your hardware environment
supports this protocol, in which case the other protocols can be disabled. The order can be changed in
the Configuration Manager by right-clicking in the right frame on any of the enabled protocols. You will
see a popup menu where Order will be one of the possible selections.

{“ﬁl Sql Server Configuration Manager g@

& =

er Configuration Manager (Local) || Mame Order 7 Enabled

rvices | §nared Memary 1 Enabled

F Protocols for SQLEX 7 G Named Pines 3 Enabled
Protocols for MSSQLSERVER i Disabled
= Protocols for EXPRESS ; 5

= % SQL Native Client 10.0 Configuration
%; Client Protocols

% Alases

Figure 1-2. Setting the SQL native client protocols

CHAPTER 1 ' INSTALLING AND SETTING UP SQL SERVER MODELING

Downloading and Installing

Once the software pre-requisites previously listed are in place, you're ready to download the SQL Server
Modeling installation file from the SQL Server Modeling download website. The file size is around 40
MB, so it can take a few minutes if you have a slow Internet connection. After it has downloaded, you
should be able to open it in your browser’s download facility. Another option would be to open Windows
Explorer and navigate to the folder where you have saved the downloaded file. Open the file by right-
clicking on the filename and then clicking the Open option. You may see a security warning like the one
shown in Figure 1-3.

Open File - Security Warning

Do you want to run this file?

Name; 30LServerModelingCTRHov0S-Released evs
Publisher: Microsoft Corporation

Type: Application

From: G:\Downloads

[] Mways ask before opening this fils

i While files from the Intemist can be useful, this file type can
0 patentially ham your computer. Only run seftware from publishers
you trust, What's the niskc?

Figure 1-3. Open File - Security Warning dialog when running the installation file

Click the Run button to start the installation process. The next dialog window to appear (shown in
Figure 1-4) will be the initial SQL Server Modeling installation window. This gives you two choices:
Install Now or Customize. If you are running the SQL Server Modeling install for the first time, click the
Install Now option.

Microsoft SQL Server Modeling CTP @ax

CUSTOMIZE

Figure 1-4. SQL Server Modeling initial installation window

After clicking Install Now, you should next see the Usage Reporting window, as shown in Figure 1-5.

CHAPTER 1

Micresoft SQL Server Modeling CTP @ax

Help Improve Microsoft Software

0

Participation in the Customer Expenience Impravement Program will help improve the quality of Microsoft
software, If you accept, we will collect anonymous information about your hardware configuration, and
your use of our software,

|«|Yes Tam willing to participate anony mer BExpenence Improvement P

Read more about the Customer Expenence Improvement Program

([}[Conﬁnue%{ Ganeel |

Figure 1-5. Usage Reporting window

INSTALLING AND SETTING UP SQL SERVER MODELING

Check or uncheck the box, according to whether you would like to participate in the Customer

Experience Improvement Program, then click the Continue button.

The next step is to accept the End User License Agreement (shown in Figure 1-6). Read the

agreement and (if you agree) click the I Accept button.

‘ Microsoft 5QL Server Modeling CTP B X ‘
| 1
i} 8o |

MICROSOFT PRE-RELEASE SOFTWARE LICENSE TERMS
MICROSOFT SQL SERVER MODELING CTP

These license terms are an agreement between Microsoft Corporation (or based on where
you live, one of its affiliates) and you. Please read them, They apply to the pre-release
software named ahove, which includes the media on which you received it, if any. The
terms also apply to any Microsoft

» Llpdates,

» supplements,

v Internet-based services, and

» support services
for this software, unless other terms accomipany those fiems. I so, those tafms apply.

By using the software, you accept these termis. If you do not accept them, do
not use the software.

{ Back] [IAcceth { LDecline J

Figure 1-6. Accepting the End User License Agreement

This will start the third step in the installation process, which should present the Installation

Progress window similar to the one shown in Figure 1-7.

CHAPTER 1 ' INSTALLING AND SETTING UP SQL SERVER MODELING

Microsoft SQL Server Modeling CTP @-x

08 tion Frogress
Installing Modeling Services

N

Figure 1-7. Step 3: Installing SQL Server Modeling Services, Quadrant, and other components

This portion of the installation process can take ten minutes or more, depending on your
computer’s speed. Once this part of the installation has completed, the process will move on to the
fourth and final step, which configures and deploys the Repository to SQL Server (see Figure 1-8). Again,
this may take several minutes to complete.

Micresoft SQL Server Modeling CTP @ax

Walidating SQL Server configuration...

Figure 1-8. Step 4: Configuration and deployment

Once step 4 has completed, you should see a window similar to that shown in Figure 1-9, notifying
you that setup has completed successfully.

CHAPTER 1 © INSTALLING AND SETTING UP SQL SERVER MODELING

Microsaft SQL Server Mode(ing TP) = X

¢
% .

Microsoft SQL Server Modehing CTP Setup has completed successfully

Figure 1-9. Successful setup completion

At this point, simply click on the close button to finish the installation.

Checking the Installation

After the installation is completed, click the Start button on the Windows Taskbar, then click All
Programs to see if the Microsoft SQL Server Modeling CTP program group appears in the All Programs
list. If you click on this program group, you should see Intellipad, Quadrant, and other options listed, as
shown in Figure 1-10. The order of the items may not be the same as shown in the figure, but you can
rearrange the items by clicking and dragging each to the position you want.

&) Quadrant

B8 Microsaft SQL Server Modeling CTP Command Promot
Developer Center Cnline

|@] Readme

Figure 1-10. The SQL Server Modeling CTP program group

If you don't see the Microsoft SQL Server Modeling CTP group in the All Programs list, go to the
Windows Control Panel, bring up Add or Remove Programs, and check to see if it appears in the list of
installed programs. Make sure the list is sorted by name, then scroll down in the list to the Microsoft
programs. You should see the SQL Server Modeling CTP application listed, as shown in Figure 1-11.

CHAPTER 1 ' INSTALLING AND SETTING UP SQL SERVER MODELING

J Microsoft SQL Server Database Publishing Wizard 1.4 Size 10.21MB
© Microsoft SQL Server Modeling CTP Size 42.00MB
Click here for support information. Used rarely | =

LastUsed On 5/28/2010

To change this program or remove it from your computer, dick Change/Remove. Change/Remave

[Microsoft SQL Server Native Client © Size 4.20MB

Figure 1-11. SQL Server Modeling CTP listed in Add or Remove Programs

In the Start button All Programs list, double-click on Intellipad. As it is loading, the Intellipad
“splash screen” should display more or less as it appears in Figure 1-12.

4
Microsoft” Codename "Intellipad"

Figure 1-12. Intellipad splash screen

Bring up Quadrant and each of the other three options in turn, just to familiarize yourself with them.
Irecommend taking a close look at the Readme file, which has some tips on troubleshooting in case you
run into problems, as well as links to other resources, including release notes and the online Help page.
It’s good to keep these resources in mind as you start working with the software, in case any issues or
questions should come up.

If Something Goes Wrong...

If you run into problems with the installation, there are several things you can do:

1. The Readme file includes a troubleshooting section that discusses what to do if
you run into several different kinds of problems.

2. The release notes list a number of breaking changes and known issues in
detail. If you don't find what you need in the Readme file, you may find some
useful tips in the release notes. The Readme file provides a link to online
release notes.

3. Youcan run the Repair option by clicking the Change/Remove button in the
Add or Remove Programs section of the Control Panel (refer to Figure 1-11).
This option is discussed briefly in the following section.

4. You can uninstall and then re-install with the hope of resolving the problem on
the second go-around.

CHAPTER 1 © INSTALLING AND SETTING UP SQL SERVER MODELING

The Repair Option

Clicking the Change/Remove option for Microsoft SQL Server Modeling CTP in the Add or Remove
Programs list (refer to Figure 1-11) will present a window with three selections (shown in Figure 1-13):

1. Add or Remove Features

2. Repair
3. Uninstall
Micresoft SQL Server Modeling CTP D =X
ADD OR REMOVE FEATURES
UNINSTALL

Figure 1-13. Selections after clicking the Change/Remove button

Iwon't cover Add or Remove Features here, since that option isn’t relevant to what I will be
discussing in the rest of the book, nor is it relevant to recovering from a faulty installation.

To invoke the Repair option, simply click on the option or cursor down one line and press Enter.
The repair process will display a progress bar as it's executing (similar to the window shown in Figure
1-7). After the process is finished, you should see a completion window similar to what was shown in
Figure 1-9. Click the Close button and re-test the installation to see if running the Repair process has
resolved the problem.

If the problem persists, the next step would be to uninstall and then re-install, as described in the
next section.

The Uninstall Option

To uninstall SQL Server Modeling, bring up the Control Panel, click on Add or Remove Programs, and
scroll down to Microsoft SQL Server Modeling CTP (refer once again to Figure 1-11). Click on SQL Server

CHAPTER 1 ' INSTALLING AND SETTING UP SQL SERVER MODELING

10

Modeling CTP, and then click on the Change/Remove button. Leave Add or Remove Programs window
open so you can later check that the uninstall ran successfully.

You should see the Uninstall window, as was shown in Figure 1-13. Click on Uninstall. Next, you
should see an Uninstall confirmation window (shown in Figure 1-14).

IM\L‘TC:ZOﬁ SQL Server Modeling CTP il = ¥

Uninstall Microsoft SQL Server Medeling CTP

Are you sure yau want ta ramove Microsaft SQL Server Madeling CTPY

[Drop the SOL Server Madeling Senices database and all of its data,

Uninstall Cancel

Figure 1-14. Uninstall confirmation window

Note that this window includes a checkbox to drop the SQL Server Modeling Services database and
all its data. If you want to perform a complete uninstall, check this box, but understand that all data in
the Repository will be lost. If you are uninstalling with the intent of re-installing because of problems
with your current installation, and you know there is data in the Repository you would like to retain (say
from going through one or more of the exercises later in the book), then leave this box unchecked. If on
the other hand, there is no data you want to keep, there would be no reason to leave this box unchecked.

If you are uninstalling because you believe you have a damaged or corrupt installation, you may
want to try the Repair option first. There is always a chance that the Repair option will take care of
certain issues without having to go through a complete uninstall and re-install.

To proceed with the uninstall, click the Uninstall button. Once it starts, you should see a progress
window similar to that shown in Figure 1-15.

CHAPTER 1 © INSTALLING AND SETTING UP SQL SERVER MODELING

Microsoft SQL Server Modeling CTP HIR

Uninstall Micrasoft SOL Server Medsling CTP

Remaving Modzling Services

b

Figure 1-15. Uninstall progress window

After the process finishes, you will see a successful completion notification window like that shown
in Figure 1-16.

Microsoft 5QL Server Modeling CTP D=x

oo

Microsoft SQL Server Modeling CTP Uninstall has completed successfully,

Figure 1-16. Successful completion of the uninstall

Click the close button to complete the process. If you would like to confirm that the uninstall was
successful, go back to the Add or Remove Programs window, and hit the F5 function key to refresh the
list of installed applications, and scroll down to where SQL Server Modeling CTP previously appeared in
the list. If the uninstall was successful, it should no longer be show in the list.

11

CHAPTER 1 ' INSTALLING AND SETTING UP SQL SERVER MODELING

12

Summary

In this chapter, I've covered the procedures for installing, repairing, and uninstalling SQL Server
Modeling. The last part of the installation process should be invoking all items in the SQL Server
Modeling CTP program group, not only to check that they are working properly, but also to see what
happens and what the interface looks like when you invoke each one. The Readme file and release notes
are important resources; it's a good idea to take a look at these, especially if you run into problems with
the installation or with running any of the development tools.

In the next chapter, I'll cover the ins and outs of using Intellipad, one of the development tools
provided with SQL Server Modeling.

CHAPTER 2

Introduction to Intellipad

We've used text editors to write code from the beginning—at least as far

back as assembler and COBOL. Everything from Notepad to Emacs to

Eclipse, and all flavors in between.

This chapter introduces Intellipad, SQL Server Modeling’s code
editor. Intellipad is a lightweight but talented text editor for building and
; editing models and domain-specific languages (DSLs) in M code. It can be

- used for coding or editing a wide range of programming languages, like
the editor included with Visual Studio. In fact, the Intellipad core is a close
relative to Microsoft’s Visual Studio code editor. It contains a built-in
Python interpreter, and can be configured and enhanced using Python scripts. Most of its functionality
is implemented through named components that can be modified or removed. Some developers have
taken to calling it “Emacs.NET” because of its flexibility and configurability.

Getting Started with Intellipad

Intellipad is the text editing tool used for editing M. It can also be used to write and edit other kinds of
languages, such as Python and T-SQL. Like Emacs, it can be extended and configured to support
development in a wide array of languages. It has even been configured to behave as an IM chat or
Twitter client. In its most basic incarnation, it is a small and simple application kernel, but is easily
enhanced with plug-ins or add-ons that enable it to support syntactic colorizing, indenting, or
“Intellisense,” similar to that provided in the Visual Studio text editor.

There is one exercise at the end of this chapter, but you can use what follows as one big exercise.
Bring up Intellipad and see if you can invoke each feature more or less in the same way as it’s discussed
in what follows. The interface may appear a little differently on your computer, depending on which
version of Windows and Intellipad you are running. But if you follow along by invoking each feature as
it's discussed, you should have a much better feel for the capabilities of this tool by the time you finish
this chapter.

So let’s start up Intellipad and have a look. Click on the Start button on the Taskbar, then click on All
Programs and find Microsoft SQL Server Modeling > Intellipad, as shown in Figure 2-1.

13

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

14

fii Microsoft SQL Server Modeling CTP »

\@ Microsaft Sync Framework 40 Quadrant

@ Microsaft Yisual Studio 2008 » || B¥ Microsoft SQL Server Modeling CTP Command Prampt
[Microsoft Visual Stud 2010 4 Developer Center Online

[Mobipockst.com *|| @] Readme

Figure 2-1. Starting Intellipad from Start/All Programs

This should bring up an empty Intellipad window with a default text buffer named “untitled1,”
similar to what is shown in Figure 2-2. As soon as you type anything in the pane (more properly called
buffer view), an asterisk will appear next to the buffer name to indicate that the contents of the buffer
have changed but have not yet been saved to afile.

40 Fle Edit View Help -Ox
untitled1* 100% Standard Mode

Write something amazing here...

Figure 2-2. Initial Intellipad window with some sample text

Look at the top banner of the window, and you'll see four top-level menus:

o File
o Edit
o View
o Help

I'll talk about each of these in turn, but I won't go through the entire menu tree in every detail. I'll
also cover the remaining parts of the text buffer view interface appearing below the menu banner—what
you see displayed as “untitled1*,” “100%,” and “Standard mode.”

The File Menu

To start with, it helps to keep in mind that Intellipad works with one or more buffers. A buffer is simply
an area of memory where the text being created or edited is stored. The buffer being edited in the single
Intellipad buffer view shown in Figure 2-2 is named untitled1*, with the asterisk indicating that the
buffer has been changed from its original state. When a new buffer view is opened, it will automatically
be named untitledX, where X will be an integer between 1 and some arbitrary number, according to how
many previous untitled buffers have been opened during the Intellipad session. As you get a little farther
into the chapter, you'll see how multiple buffers are displayed in the Intellipad interface. Only one
buffer, or pane, will be active at a time, and this is the pane where the editing cursor will appear. When
menu actions are invoked, the target of the action will be the active pane. The one exception to this is the

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

Find in Buffers command under the Edit menu, which applies to all buffers. As with most Windows-
based text editors, you can open multiple instances of Intellipad.

Figure 2-3 shows the Intellipad File menu. As you can see, most of the options have keyboard
shortcuts, and this is also the case with the other top-level menus in Intellipad.

The New option, of course, opens a new, empty buffer, ready for typing in new code. New M Project
opens a new M project and changes the buffer view to Project mode. This mode provides a display of
errors in the error list if the content is not a syntactically valid MSBuild file. (This is a more advanced
subject and is beyond the scope of this book.)

40 File | Edit View Help -oOx
un Ne Ctrl+N 100% Standard Mode
Mew Project.. Ctrl+Shift+N
Open.. Ctrl+0
Save Cirl+S
Save As..
Save A Copy..
Save All.. Ctrl+Shift+5
Encoding 4
Close Ctrl+F4
Recent 3
Exit Alt+F4

Figure 2-3. The Intellipad File menu

Save, Save As, and Save a Copy are all self-explanatory. (As usual in the Windows environment, the
underlined character of a menu option indicates the single-character keyboard shortcut for invoking
that option.)

The Encoding option allows you to save the current buffer in three encoding standards: ASCII,
Unicode, or UTF8, which is the default. If you change the encoding, it changes the setting only for the
active buffer view, leaving the encoding unchanged for files saved from other buffers. If a file with an
encoding other than ASCII, Unicode or UTF8 is opened, no item is checked in the encoding submenu. If
you mistakenly check one of these, close the file without saving, or choose Save As and save the buffer to
a different filename to avoid changing the encoding of the original file.

Close closes the active buffer view pane. If there is only one active buffer view, this option is
disabled.

Recent displays a list of the most recently used (MRU) files you've worked with in Intellipad,
whether these were used in the current session or past sessions.

Exit will close the current Intellipad session. If one or more buffers haven’t been saved, you'll be
prompted whether you want to save any unsaved buffers, as shown in Figure 2-4. You have the option to
Save All (the default if you press the Enter key), Discard All, or Cancel, which will return you to the
Intellipad window with no action taken.

15

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

16

40 Fle Edit View Help -Ox
untitled1* 100% Standard Mode X | untitled2* 100% Standard Mode X
This buffer is unsaved... and so is this one.

& Intellipad -Ox
The following files have unsaved changes. Would you like to save them bef&e exiting
Intellipad?
untitledl
filez//Untitledl
untitled2
filex//Untitled2

‘ Save All || Don't Save Any H Cancel

Figure 2-4. Prompt to save unsaved buffers on exit

The Edit Menu

Figure 2-5 shows the Intellipad Edit Menu. As you can see, some of the options (Undo, Redo, Cut, and
Copy) are disabled (grayed out) because, in the current state of the buffer view, there’s nothing these
options can do. These options are self-explanatory, and behave as one might expect. The same goes for
the next two options: Paste and Delete.

40 e g‘w View Help -Ox
untitled1 Undo Alt+Backspace Hard Mode
Copy Ctrl+Insert
find.. Cirl+F
Find in Buffers... Ctrl+Shift+F
Replace... Ctrl+H
Go To Line... Ctrl+G
Behaviors 4
Disable External Changes Ctrl+WN

Figure 2-5. The Intellipad Edit menu

The Find Commands

CHAPTER 2

INTRODUCTION TO INTELLIPAD

When you try the Find option, however, you see some new behavior. Here Intellipad shows its colors
more as a code editor rather than a simple Notepad-like text editor. Let's try doing a Find with two
different buffers, as shown in Figure 2-6. I've written some sample text in both buffers, with the word

“amazing” in both views.

L < File

untitled1*

Edit View Help

100% Standard Mode

Write something amazing here...

mini-buffer

»»> Find (')

=0X

¥ || untitled2* 100% Standard Mode

Amazing Grace

100% MiniBuffer Interactive Mode

*

X

Figure 2-6. The Intellipad Find command

Clicking on Find (or using the Ctrl-F keyboard shortcut) brings up something called the mini-bujfer
as a third buffer view, with a command prompt, indicated by the three angle brackets (>>>) followed by
Find('l"). The mini-buffer is a special buffer that allows you to execute Intellipad command functions
directly. I'll discuss use of the mini-buffer at more length in the section called “The View Menu” later in

the chapter.

But for now, let’s see what happens when you enter the word “amazing” between the single quotes.
In Figure 2-7 the untitled1* buffer view shows what happens after you've done this: The word “amazing”
is highlighted in the first (active) buffer view, but not in the second (inactive) one. Also note that the
bottom (mini-buffer) buffer view is not in Standard mode, but in MiniBuffer Interactive mode.

90 Fle Edit Vew Help

=-0X

‘ untitledl* 100% Standard Mode

Write something amazing here...

mini-buffer
>»» Find('amazing')
533

% | untitled?” 100% Standard Mode

| .
| Amazing Grace

100% MiniBuifer Interactive Mode

x

X

Figure 2-7. Find function highlighting the target word

Figure 2-8 shows the Find in Buffers (Ctrl-Shift-F) function. This will find the target string in all of
the displayed panes or buffers. This option invokes the FindInBuffers() function in the mini-buffer, and

17

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

18

when the string “amazing” is entered as the target pattern, you get an additional findresults buffer with
the line/column location of each found pattern location in each buffer where it occurs—including

previous strings already in the mini-buffer.

4 Fle Edit Vew Help

»#» FindInBuffers('amazing”)
335

untitledl® 100% Standard Mode % | untitled2™ 100% Standard Mod
Write something amazing here... Amazing Grace
mini-buffer 100% MimBuffer Interactive Mad

Lmtitladl(Z,l?—ld—) : Write something amazing here..
untitled2(2,1-3) : Amazing Grace

mini-buffer(1,20-37) : »»» FindInBuffers('amazing')
mini-buffer(2,20-27) : »»» FindInBuffers('amazing’)

=0x
e R
E L4
& X_|

Figure 2-8. Find in Buffers command

The Replace Command

The next option under the Edit menu, Replace (Ctrl-H), uses the mini-buffer facility in the same way,
except that the Replace('<searchPattern>', '<replacePattern>') function, with two arguments, is used.
Figure 2-9 shows an example, with two different buffers containing the same target word, after the
replacement function has been invoked from the first (untitled1) buffer view. This example makes it
clear that the function works only in the context of the active buffer view. The replaced string remains

highlighted.

40 Fle Edit View Help

»»» Replace('amazing', "interesting')
bo 5

‘ untitledi* 100% Standard Mode X | untitled2* 100% Standard Mode
Write something interestingi here. .. 1 Amazing Grace
mini-buffer 100% MiniBuffer Interactive Mode

=0x

x

X

Figure 2-9. Replace command example

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

The Go to Line Command

The Go to Line option again uses the mini-buffer to enter the target line number and execute the
command, using the Goto(<line number>) function, where line number is an integer.

Behaviors

The Behaviors option allows you to control some specific behaviors of any particular buffer view, as
shown in Figure 2-10. Enabled behaviors are indicated with a check mark after the name.

Selection Highlight is useful for highlighting strings with the Find and Replace functions. Error
squiggles will flag syntax errors or other errors when working with the various programming modes (e.g.,
M or MGrammar, or Python) where Intellipad has built-in syntax awareness.

4! He | Edit | View Help e _Ox
untitled, Undo Alt+Batkspace Jintitled2* 100% Standard Mode X
Write s Amazing Grace
Interes

Paste Shift+Insert

Delete Delete

Eind... Cirl+F

Find in Buffers... Cirl+Shift+F

Replace., Ctrith

Go To Line.., Cirl+G

Behaviors » Selection Highlight

i v

Disable Extzrnal Changes Ctri+WN Error Squiggles

- — ColumnIndicator [%
Link Navigation
Word Wrap s
Line Numbers <

Figure 2-10. Turning behaviors on or off

Turning the column indicator on demarcates columns higher than column 80 with a grayed
background, enabling you to see when a line exceeds 80 characters. This can be useful in some coding or
data contexts, and is illustrated in Figure 2-11.

Link Navigation, turned on by default, supports the use of hyperlinks in modes supporting this
functionality. However, enabling this feature to work requires adding some configuration data that
defines a NavigationSource and other settings, which is beyond the scope of this book.

19

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

20

4 He Edit View Help ! —O%
The Column Indicator. bet 100% Standard Mode
>#30 column indicator --»

1 2 3 4 5 & 7 8
1234567890123456789012345678901234567899123456789812345678%91234567890123456789@

Figure 2-11. Line numbers and the column indicator turned on

Turning Word Wrap on will wrap a line too long to otherwise display within the buffer view. Figure
2-12 shows two buffer views addressing the same buffer (that is, displaying exactly the same data). Line
numbering has been turned on in both buffer views, but Word Wrap is turned off in the left one and
turned on in the right.

40 He Edit View Help 5 PP
Words to Live By.tet 100% Standard Mode x| Words to Live By.txt 100% Standard Mode X
"The most likely way the world will be destroyed, mo |“T$‘.E most likely way the world will be |
Nzthaniel Borenstein destroyed, most experts agree, is by accident.
That's where we come in; we're computer
This is line 4. professionals. We cause accidents,”
This iz line 5: Nathaniel Borenstein

This is line 4.
This is line 5.

Figure 2-12. Word Wrap off (left pane) vs. Word Wrap on (right pane)

Disable External Changes

This behavior, if enabled, will disable external changes to all buffers belonging to the Intellipad session.
For example, if you are editing metadata in the M Graph mode that has been persisted in the Repository,
and this metadata is changed through an external interface, changes to the buffer will not occur. If
multiple Intellipad sessions are running, each session has its own setting for this behavior.

The View Menu

The View menu provides options for switching to the Full Screen view, zooming, splitting the current
pane horizontally or vertically, or viewing special buffers such as the mini-buffer, errors, and
notifications. The View menu options are shown in Figure 2-13.

CHAPTER 2

&0 Fle Edit Miew% Help
untitled1 Full Screen Alt+Shift+Enter Gndard Made

Zoom... Cirl+W.Z

Split Horizontally Ctrl+W -

Split Vertically Cirl+W\

Toggle Mini-buffer Cirl+/

Show Errors Ctrl+Shift+E

Show Notifications

Show Interactive SQL

-0OX

Figure 2-13. Intellipad View menu

Full Screen

The Full Screen option switches to a view where the current Intellipad window fills the entire display,
and the title/menu bar at the top is removed. This provides as much real estate as possible on the display
for reading, editing, or typing new content in the window. Besides dispensing with the menu bar, the
buffer name (normally displayed under the menu bar in the upper left) and the zoom level and mode in

the upper right disappear.

Figure 2-14 shows a three-pane Intellipad window before being put into the Full Screen format,
while Figure 2-15 shows the same window in Full Screen format, but at a reduced scale, in order to fit on

the page.
4" He Edit View Help =
untitledi® 150% Standard Mode % : untitled2* 130%

Vertical Slit Pane at 158% zoom.

Standard Mode X%

Upper Horizontal Split at 138% zoom
and with word wrap & line numbers
turned on.

untitled3™ 110% Stendard Mode

I

Lower Horizontal Split Pane at 110% zoom.

Figure 2-14. Sample three-pane window before being put in Full Screen mode

INTRODUCTION TO INTELLIPAD

21

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

22

= mser
Upper Horizontel Split =t 138X zoom and with word wesp B line
Vertical 5lit Pane &t 150% z00m. SN el
Lower Hoelzanzal Selit Pano ac 1185 zooe,

Figure 2-15. Window from Figure 2-14, but in Full Screen mode (reduced scale)

Figures 2-16 and 2-17 show a closeup view of the window control icons for full-screen and restored
size windows in this view mode.

While the text and upper right of the window in Figure 2-15 are difficult to read because of the
reduced scale, you can see that the display behaviors of each pane remain the same. The primary
difference is that the menu bar, zoom setting display, and mode display are gone. If you click on the icon
to the left of the Close icon 4, this will restore the window to its previous size, but will retain the Full
Screen format without the menu bar and other items.

ad 1020037 Qe0X |

Figure 2-16. Detail of Intellipad Full Screen icons: Full Screen view

020037 +@-0X ”
Figure 2-17. Detail of Intellipad Full Screen icons: restored size and position

Here’s a description of the action performed by clicking each of these control icons:

o = Latches and drags the window to a new position. This icon is displayed only
when the Intellipad window is restored to its previous (not full display) size, but
disappears when the window is actually at full-screen size. Cursoring over it will

cause the cursor to change to a “grab and drag” cursor . Left-clicking while this
cursor is displayed allows you to grab and drag the window to a different position
on the screen.

o @ Restores the default Intellipad view format, with menu bar and pane titles.
¢ -/Minimizes the window.

. Restores window to its previous size and position (prior to setting to Full Screen
view). After this function is executed, this icon will change to a Full Screen icon: .

o “Closes the Intellipad window. If any buffers are unsaved, you will be prompted
whether you want to save them.

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

Zo00m

Any Intellipad pane can be zoomed in or out. There are several ways to do this, but the easiest way is to
press the Ctrl key while moving the scroll wheel on your mouse. Pressing the Ctrl key while scrolling
forward will zoom the active pane in (increasing the scale, or effective size of the font), while scrolling
back will have the opposite effect. (This also works in Quadrant, which I'll be talking about in the next
chapter.) The zoom level, which defaults to 100%, is displayed on the right of the title line of the pane.
The location is to the left of the mode name on the pane’s title line, indicated by the cursor in Figure
2-18.

Executing the Zoom function under the View menu causes the mini-buffer pane to appear at the
bottom of the Intellipad window. (I wrote about this feature in the earlier section titled “The Find
Commands”) The Zoom() function is automatically invoked in the mini-buffer, with the argument set to
the active pane’s current zoom setting. The current zoom setting is highlighted, as shown in Figure 2-18,
so that you can easily change it to a different level by typing the new value. Note that you can also zoom
by clicking the Zoom setting, displayed as a percentage. Clicking this will invoke the mini-buffer with the
Zoom function in exactly the same way as zoom can be invoked from the View menu.

¢ He Edit View Help el 0%
untitledl k Standard Mode X
mini-buffer 100% MiniBuffer Interactive Mode X

‘ ¥ me(l.d)

Figure 2-18. Intellipad Zoom function

Split Windows

You've already seen examples of how the Intellipad window can be split horizontally and/or vertically
into multiple panes, addressing the same or different buffers. Splitting the current pane (the pane with
focus) is accomplished using the View - Split Horizontally (Ctrl-W,-) or View - Split Vertically (Ctrl-W,\)
menu options. Initially, the new pane created by the split action will address the same buffer as the
active pane in which the split action was invoked, so you should see exactly the same content in the new
pane as you did in the original, and at the same zoom level. However, other behaviors set in the original
pane, such as line numbers or Word Wrap will be defaulted.

You can set the new pane to a new or different buffer, and whatever other properties you want. In
Figure 2-19, there are two views of the same unsaved buffer, the left one at 100% zoom with no line wrap
and no line numbers, and the right one at 80% zoom with line wrap on and line numbers displayed.

23

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

24

9 Fe Edit View Help _Ox
untitledi* 100% Standard MJ&& X | untitledl* B0% Swndard Mode X

Hrite sumething amazing here. .. write something zmazing here,..

| “Beware of bugs in the above codej I have only
"Beware of bugs in the above code; I have onl| praved it correct, not tried it.” // Don knuth

Figure 2-19. Vertical split views addressing the same buffer (unsaved)

In Figure 2-20, the untitled1 buffer shown in Figure 2-19 has been saved to the file My First
Buffer.txt, and a horizontal split pane has been created (using the Split Horizontally menu option or the
Ctrl-W,- key combination) at the bottom of the window with a new unsaved buffer. The name of this new
buffer defaults to the name untitled2, since the default] name was used in creating the first new buffer
and then renamed to My First Buffer.txt when it was saved to a file. As soon as you type a single character
in the untitled2 pane/buffer, the buffer has new content, and an asterisk is appended to the name to
indicate the buffer has changed. The zoom level in this buffer has been increased to 120%.

40 Fle Edit View Help s _ox
My First Buffer.txt 100% Standard Mode % | My First Buffer.brt B0% Standard Mode X
Write something amazing here... Brite stuething 2uacie herew)
“Bewars of bugs in the above code; I mave only praved
"Beware of bugs in the above code; I have only ps it correct, not tried it.”
Don Knuth Oon Knuth

untitled2* 120% Standard Mode X |
|

"The most likely way the world will be destroyed, most experts agree, is by
accident. That's where we come in; we're computer professionals. We cause
accidents. "iI

Nathaniel Borenstein

4

Figure 2-20. Vertical and horizontal split buffer views with different saved and unsaved bujfers

The Mini-Buffer

The mini-buffer is a special-purpose, interactive buffer enabling you to invoke a wide range of functions
or behaviors in Intellipad. Think of it as a way of interacting or controlling your editor in command-line
mode. I touched on it briefly in the sections titled “The Find Commands” and “The Replace Command.”

You can see some of the available mini-buffer commands in Figure 2-22 below, and the entire set of
mini-buffer commands is provided in Appendix B at the end of the book. You can also see this list by
pressing the F1 key in any buffer view or clicking on the Help menu at the top of the window, then
selecting the Commands option.

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

The Help Menu

The Help menu, shown in Figure 2-21, provides two options: Commands and Intellipad Primer. The
latter option can also be invoked with the F1 function key.

4 He Edit View Help | S A (e 0%

untitled1 Commands 53 100% Standard Made
Intellipad Primer

i

Figure 2-21. Intellipad Help menu

Commands List

Invoking the Commands option will display a list of functions in the current active pane in Rich Text
mode. These functions must be executed in the mini-buffer (previously discussed), but also can be used
in a script file. Figure 2-22 shows some of the functions listed in the Commands view.

40 He Edit View Help =07

helpcommands | Rich Text 100% Rich Text Mode |

| l

| Mini Buffer Commands |
To use the minibuffer commands, you must first open up the minibuffer, Use View |Minibuffer or [Ctrl+/)

Call(commandName, erguments=None) |

Executes an "Intellipad” command by name. |

ClearMru(}
Clears tha list of most recently used files.

CloseBuffer{buferIndex)
Closes an open buffer,

Exit()
Exits "Intellipad".

Find(pattern)
Find & string.

FindinBuffers(pattern)
Find a string in all open buffers.

Goto[LineNumber)
Goes to a line in the currently active buffer:

Figure 2-22. Intellipad MiniBuffer Commands list (note the Rich Text mode, upper right)

25

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

Intellipad Primer

Invoking the Intellipad Primer option of the Help menu displays a useful overview of the Intellipad
interface and features, including a discussion of what is involved in customizing and configuring the

editor. Like the Commands list, this is displayed in the currently active pane in Rich Text mode. Figure
2-23 shows the top part of the Primer text.

40 He Edit View Help i b

IntellipadPrimer.ipadhelp | Rich Text 1007 Rich Text Mode

e Intellipad Primer
p

May 15, 2009

1 Introduction

2 Intellipad Basics

2.4 Buffers

22 Views

23 Modes

2.4 The Mini-Buffer

9 Working with M in Intellipad
31 SQL Preview

3.2 Basic DSL Authoring Configuration
4 Costomizing Infellipad

41 Changing the Menus

4.2 Changing the Colors

5 Intellipad Components

51 Compiled Components

=4 Neclarative Comnonents.

Figure 2-23. The Intellipad Primer

View Title Banner Functions

You've probably noticed each pane has a title banner with the name of the view or buffer on the left and
the zoom level and mode on the right. Each of these three parts provides some functionality if you click
on it. Clicking on the title, as shown in Figure 2-24, reveals a drop-down menu allowing you to select any
of the currently active buffers. Clicking on one of these will switch the view to the selected buffer.

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

$' FHe Edit View Help -Ox
‘ helpcommands [Rich Text | 100% RichTextMode X
helpcommands

helpcammands | Rich Text ds

IntellipadPrimeripadhelp
IntellipadPrimer.ipachelp | Rich Text
| mini-buffer

untitled1*

nds, you must first open up tha minibuffer, Use View| Minibuffer or (Ctri+/)
ments=None)

mmand by name

IntellipadPrim... 1% RichTextMode ¥ | untitledi® 100% Standard Mode %

The Intellipad Primer

May 13, ze09 You tollerday donsk? N. You tolkatiff scowegian? Nm.
You spigotty anglease? Nnn. You phonio saxo? Hnnn.

A Inmui":g“ ' Clear all so! 'Tis a Jute....

:.’m;ufirsnmcs (Finnegans Wake 16.5)

22 Views

23 Modes

PR TS .

Figure 2-24. Current buffers drop-down menu

Clicking the zoom level, as discussed in the upcoming “Zoom” section, will bring up the mini-buffer
with the Zoom(<zoomLevel») function, allowing you to enter a different zoom level setting.

View Modes

Clicking the current mode setting at the right of the title banner (see the cursor position in Figure 2-25)
will display a drop-down of available modes. I'll give a brief overview of these in this section. Some of

this will be covered in more detail in later chapters, since I'll be using them to show how domain-specific
languages and models are developed.

4 Fie Edit View Help

alX .
100% | Standard Mode § |

D5L Grammar Mede
List Mode

M Graph Mode

M Mods

Project Mode

Python Mode

Standard Mode

T-50L 11 Mede
Table Mode

Figure 2-25. Intellipad view modes

‘ untitledl
|

Some of the extended modes, such as DSL Grammar and M Graph, will add an additional menu
option to provide additional functionality specific to that mode.

Standard mode is the basis on which the other modes are developed. It provides straight-ahead text
editing functionality, more or less along the lines of any simple text editor, like Notepad. The other
modes are provided by components that build functionality on top of the Standard mode.

27

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

28

DSL Grammar mode provides the functionality for writing domain-specific languages, or DSL
grammars. This includes features such as syntax colorization, error marking (if this behavior is enabled),
and the ability to see the parsing output for your grammar with DSL input. In this mode, a fifth menu
option, DSL, is added to the Standard mode menu items. One of the choices under this menu option,
Split New Input and Output Views, will split the window into three views, as shown in Figure 2-26. In this
figure, you can see that the titles of the left and right panes both start with untitled2. This doesn’t mean
that the left and right panes are the same buffer, however. The left view displays the text of the DSL
input, while the right view, which is read-only, displays the resulting M Graph output generated by the
DSL grammar (contained in the center view).

o fe EM Yew DSl Hep =0X
untitled?* 100% untithed] Mode X wntitied 1" 100" 5L Gramenar Mode x \ﬂlMll)‘(‘ﬂllmﬂMl} W Gragh Mode

Your Domsin-Specific Language (DSL)

goes In Khls pive. um-—-yuw.u-‘w ezl Bsb=fle [furtiody |

+

Figure 2-26. DSL Grammar mode with DSL input and M Graph output views

List mode is used internally by some Intellipad features to display a buffer showing a list whose
items can be clicked to navigate to the selected destination buffer.

I have already briefly touched on the M Graph mode, used in conjunction with the DSL Grammar
mode.

M mode is used for developing M code. As with the DSL Grammar mode, M mode provides syntax
colorization, error marking of syntax errors, and the T-SQL preview mode.

Project mode provides support for developing projects. These projects will normally consist of
multiple M or DSL grammar (.mg) files and can be managed and edited in Visual Studio with the Visual
Studio M language plug-in.

Python mode supports development of Python code. As with M mode, Python mode provides
syntax colorization and error flagging for syntactically incorrect Python. For test metric purposes, code
coverage is provided if you launch Intellipad from the command line with the /coverage option.

Table mode is used primarily in the Errors pane (when the Errors pane is enabled) to display a list of
errors. Using this mode to display errors enables the errors to be sorted on any column.

T-SQL 1.1 mode provides a view of the T-SQL code generated by M code. To show how this works,
let’s try a small exercise.

Demonstrating the Intellipad T-SQL Preview Mode

In this exercise, you will create some very simple M code to demonstrate how the SQL Server Modeling
framework is able to generate T-SQL output code from M input code. The exercise involves creating an
extent of entities | will call SandwichOrders. An extent is a concept in M that maps to data storage (a
table) in SQL Server. For the time being, | would recommend not being concerned about the syntax of the
M code used in this example. | will get into this in future chapters. The primary objective here is to
demonstrate how T-SQL code can be generated from M code.

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

Here is the procedure:

1. Open Intellipad and save the empty buffer as a file with the name
LunchCounter.m. Do this from the File > Save As menu option. This will switch

the mode to M mode. Create an empty module called LunchCounter, as shown in
Figure 2-27.

4% Fle Edit View MMade Help = TR+

LunchCounter.m* 100% M Mode
module LunchCounter |

HI

Figure 2-27. Creating an empty LunchCounter module in M

2. Click on the M Mode menu and select T-SQL Preview (shown in Figure 2-28).

4" He Edit View MMode | Help Tl I O
LunchCounter.m* AST Preview Crrl+M A 100% M Mode
module LunchCounter Semantic Graph Preview Cri+M.G

T-SQL Preview h Cirl+M35
b Ay

Figure 2-28. Selecting the T-SQL Preview for the M code

3. This will present a split screen view, with the generated T-SQL code shown in the
right pane. The reason you don't see any code generated yet is that there is
nothing to generate until you define an extent in your M code. Defining an extent
will cause a table to be created in SQL Server.

29

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

o

LunchCounter.m*

Hle Edit View DSL Help

module LunchCounter {

100% MMode x l LunchCounter.m | M to 5ql

-0Ox

100% T-5QL11Mode

*

1
i)

I /¥ Mo SOL wos generated ¥/

|

Figure 2-29. No code is generated yet because you only have an empty module with no extent (SQL Server
table) defined.

4. Now let's add the following line within the scope of the LunchCounter module to
create a SandwichOrders extent:

SandwichOrders : {Text*};

This simple line of code can be interpreted to say that the SandwichOrders extent
(table) is defined as a collection of text strings. This is enough to cause the T-SQL
code generator to spring into action and generate the code shown in the right
pane of Figure 2-30. This pane is intended as a preview pane for the generated
code, and as such, is read-only. However, you can do a File > Save As to save
this code to a text file.

4

File

Edit View M Mode

Help Sl 0%

1
i

| LunchCounter.m*

module LunchCounter {
SandwichOrders : {Text®};

100% MMade | LunchCounterm | M fa Sqi 100% T-50L11Mode X
|

set xact_abort on;
go

begin transaction;
g0

set ansi nulls on;
go

I if not exists
{
select *
from [sys].[schemas]
where [name] = N'LunchCounter'
)
execute [sp executesgl] N'create schema [LunchCounter]';
go

create table [LunchCounter].[Sandwichorders]
{

[Ttem] nvarchar(max) not null
)i

go

commit transaction;
g0

Figure 2-30. The T-SQL preview pane (right) now shows the T-SQL code generated by adding the extent

definition.

30

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

5. Tocarry the example a little further, you can add a couple of sample
SandwichOrders instances to the M code and see how this affects the generated
T-SQL code. Lets add @ "Pastrami on Rye" order and @ "Ham on Sourdough”
order. You can do this by simply adding the collection of the two text strings,
represented between braces and with the two items of the collection separated by
a comma;

{"Pastrami on Rye", "Ham on Sourdough"}

You place this code for the collection immediately after the extent definition
(Figure 2-31). Note that carriage returns and new lines are regarded as white
space by the compiler, which is what is generating the T-SQL code in the preview

pane on the right.

40 FHe Edt Vew DSL Hep 1 -0X
LunchCounter.m* 100% MMode ¥ || LunchCounter.m | M to 5ql 100% T-SQL11Mode X
module LunchCounter { set xact_abort on;

SandwichOrders : {Text™] go

{
"Pastrami on Rye". begin transaction;
"Ham an Sourdough” go

set ansi_nulls on;
go

if not exists
(
select ©
from [sys].[schemas]
where [name] = N'LunchCounter’
)
execute [sp_executesql] N'create schems [LunchCounter]';

g0 1,

create table [LunchCounter].[SandwichOrders]
(
[Ttem] nvarchar{max) not null
i+
go

insert dinto [LunchCounter].[SandwichOrders] ([Ttem])
values (N'Pastrami on Rye'),
i (N'Ham on Sourdough'});
g0

commit transaction;
go

Figure 2-31. Adding two SandwichOrders instances to the extent

Let's walk through the generated T-SQL code in the right pane of Figure 2-31 to see what’s happening:

Lines 1-8: This does some initial configuration stuff and begins a transaction for code sequence
to follow. This transaction will be committed at the end of the sequence.

31

CHAPTER 2 © INTRODUCTION TO INTELLIPAD

32

Lines 10-17: This tests whether a LunchCounter (the name of the module) schema already
exists in the database. If it doesn't, the schema is created.

Lines 19-23: This section creates the SandwichOrders table with a single text field to contain the
text of the order.

Lines 25-28: This inserts the two sample SandwichOrders instances into the table.
Lines 30-31: This commits the transaction that was initiated at the top of the code.
And all of this from just a few lines of M code! It looks like the advantage provided by the SQL Server

Modeling framework—in terms of enabling a developer to create, refine, and maintain a domain model—
is significant.

In the next chapter, I will walk you through a much more extended exercise showing how to use
Intellipad to create and refine a domain-specific language.

CHAPTER 3

Domain-Specific Languages 101:
Lola’s Lunch Counter

In this chapter, I'll talk about domain-specific languages (DSLs), and you'll
build a very simple DSL using Intellipad. As one might guess, the descriptive
term domain-specific means using the language to define a model or do
something useful in a specific area of activity or knowledge. In the context of
software development, the term domain normally applies to a business
operation, process, or workflow, such as micro-brewing or creating insurance
products. The term could apply to areas as diverse as risk management,
modeling traffic flows, or creating a just-in-time inventory system. Most DSLSs,
however, are not so ambitious and address more narrowly constrained
domains.

Not unlike a map (the kind on paper showing highways and towns), a DSL is a way of abstracting
away the conceptual “chaff” of a domain or process so that you have a cleaner and simpler way of
representing and analyzing the problem at hand. The benefit is greater ease of analysis and
development; the risk is that some of the conceptual chaff that's removed might include a few grains
that you really could use later on. Usually (but not always), it's easy to add these kinds of things back in if
you need them.

Martin Fowler’s definition of a DSL is, “a computer programming language of limited
expressiveness focused on a particular domain” (DSLDevCon 2009 talk: http://msdn.microsoft.com/en-
us/data/dd727707.aspx). The phrase “limited expressiveness” is key here, and it is what differentiates a
DSL from a general programming language like C# or Java. But why would you want limited
expressiveness? Isn't expressiveness a good thing in a programming language? Well. . .yes and no.
Usually, there’s a strong correlation of expressiveness with complexity, and if you can remove some of
the complexity to gain clarity and ease of use in a domain, that could be a good thing.

DSLs are especially useful as a means of communication between the technical people and
stakeholders. If the stakeholders have a relatively simple tool, like a clear and well-designed DSL, it
makes it that much easier to communicate their intent to the software architect, designer, or developer.

In this chapter, you'll develop a very simple example of a DSL, the code to process the language
(sometimes called Mgrammar, or DSL Grammar, in the context of SQL Server Modeling), and deploy the
resulting model with instances to SQL Server. If all goes according to plan, you should see a direct
mapping from the DSL model and the structure of the data model reflected in the database.

Some Caveats

Before I get into the details of the example, however, I should say a few words about the development
approach used in the LunchCounter example in the next section. The approach used could be

33

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

34

characterized as a rudimentary form of test-driven development. What I mean by this is that I start with
some very simple sample data (e.g., some simple sandwich order expressions for the DSL); then you
build some code with this sample data, and see if it works. If it does, you move to the next level of
refinement in terms of the DSL syntax, and modify the sample DSL statements to reflect this new level of
complexity. This will nearly always break the existing grammar definition used for parsing the DSL, so
you modify the grammar to correct the errors. This turns into an iterative process where you can go
through many of these refinement cycles and build up a reasonably sophisticated system. I don’t want to
call the end product in this example sophisticated, by any means. The point is that some readers may
find this approach frustrating at times because things keep breaking as the example unfolds. If you
haven'’t done test-driven development before, it may take a little getting used to. If you have, it shouldn’t
be an issue.

On a separate note, I will be introducing some new and possibly unfamiliar terms (like extent, which
you will see shortly) that have a very specific meaning within the M language and the SQL Server
Modeling framework. If you haven't run across some of these terms before in your travels or reading,
they may take some getting used to. I know they sometimes caused me a little uncertainty in the course
of getting up to speed with this new framework. I have found the best approach is to forge ahead through
the code samples and the explanations, and things will usually become clear in due course. Often things
will become even clearer on a second or third reading and as you become more conversant in the
language.

And one more thing—please don't feel that, once you've finished this chapter, you will walk away
knowing how to construct a DSL or write a grammar in M to process DSLs. My intent here is to unpack a
very simple use case, but at a somewhat higher level than the coding basics: what a DSL and a grammar
look like and some of the thinking that goes into building these things from the ground up. That's why I
decided to use a narrative-based approach in the exercise—to show how the thinking and analysis might
unfold, as well as provide a taste of how working with a nontechnical (but intelligent) stakeholder might
happen. If you don't like storytelling in computer books, be patient. It's the only place in the book where
[tryit.

The bottom line: Don't be too concerned when reading the code if you don’t understand every
nuance of what you're seeing. That’s not the intended purpose of this chapter. Otherwise, it would have
been called “Domain-Specific Languages 201.”

A Simple Exercise: The Sandwich Language

So—let’s pick a simple domain to work with. As domains go, the sandwich is as simple as you can get.
Let’s say you're the owner of <Your Name Here>"s Lunch Counter. Perhaps your name is Lola, but if not,
feel free to substitute your name for Lola anytime Lola occurs in what follows.

The name of your business is, naturally, Lola’s Lunch Counter. Your specialty is pretty good
sandwiches (apologies to Garrison Keillor), and the business has grown to the point you're thinking
about automating your order and kitchen workflow, maybe with an eye to franchising the business. Your
nephew is a hotshot .NET developer, and says he will help. So let’s follow along as you, Lola <or your
name here>, and your nephew (whose name shall be Norm) work together in the process of developing a
model for tracking and processing sandwich orders. Norm says the problem is amenable to developing a
DSL, and (not knowing any better) you say this sounds like a good plan.

Where You Want to End Up

You'll want to have an idea of where this is heading so that you might have a better sense of how things
are falling into place as you watch over Lola’s and Norm’s shoulders. You want to end up with a working

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

DSL and grammar that allows Lola’s business to track and record sandwich orders, and which supports
the representation of sandwich order data in a database.

A sandwich order is pretty much what you might think. It describes the sandwich a customer wants
for lunch, consisting of three types of ingredients:

¢ Some kind of stuff (lunchmeat or some other non-meat stuff, like portabella)
¢ Some kind of bread (rye, French, etc.)

¢ Some combination of condiments (lettuce, tomato, mayo, etc.)

There are no constraints as to how these three kinds of ingredients might make up a sandwich,
except that a sandwich can have one and only one kind of bread. You may add some business rules
down the road, like you can’t have more than two kinds of stuff (main ingredient) in a sandwich or more
than five condiments. (Let’s be reasonable folks—no Dagwoods allowed.)

Figure 3-1 is a preview of where you’d like to end up. It shows some sample DSL sandwich orders in
the left pane, the grammar that processes and parses the DSL statements in the center pane, and the
output M Graph that results in the right pane.

[#6 fe ot Yew D5t Hee -0x

Sandwichlang... 1Countermg Mode LunchCounter.mg 100% DSL Gramemar Mode Sandwichlang... % M Gragh Mode
Pastrami on Rye wodule LunchCounter sanduichOrders
with Lettuce and Tomato. Language SandwichOrders
Hem on 9-Grais Wheat syntax Main = 3:SandwichOrder® Stuff =>
with Mayo asd Hustard. =3 SandwlchOrders { valuesef(s)
Spam on Mhite with Sala. syntax SanduichOrder = Mame = “Pastrami”
Grilled Tofw & Portabella in Pita st:Stuffintitys (“on® | “ia®
with Lettuce, br:Breadintity .
“with®? co:Condinentintity*"." = Bread = |
Mame =) “Rys”
Stuff = [valuesod (st b
Bread = br Condiment =>
Condiment => (valuessf ca))
i Name => “Lottuce™
syntax Stuffintity = stiStuff = [Mame =5 st
syntax Breadintity = briBread =» [lame = br
syntax Condimentintity = co:Condlment = [Name => co); Name => “Tomato™
token Stuff =
Hoa®
“Pastragl”
“Span®
"Roast Beef” Stuff =>
“Pepperoni”
“Portabella” Name =) “Ham"
"Grilled Tofu";
token Eread = ’
"Rye” Bread =)
"9-Grain Wheat"™ Mame =) "5-Graln Mheat”
“Freneh” »
“Baguette” Condiment =»
*Pita"
“white”; Name = “Mayo™
token Condiment -
*Catiup®
Tustard” Name => “Mustard”
“Moyo®
“Lettuce”
“Tomato™
"Salsa™
interleave Whitespace = ° ° | “\r" | "W0" |)" | “and® | 87 Stufé =
Mame =) “Span”

Figure 3-1. Where you're headed: the final Intellipad view of the SandwichOrders DSL (left pane), DSL
Grammar (center pane), and M Graph of the orders data (right pane)

35

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

36

The SandwichOrders DSL in the left pane is very easy to understand and requires no explanation. The
DSL Grammar code in the center pane is not easy to understand, unless you've been working with M for
awhile. Some of what appears in this pane will become clearer as you work through this exercise. The
text in the right pane is what is called an M Graph, which is an M code representation of the DSL,
generated through the DSL Grammar.

The M Graph is essentially a big named collection. The name of the collection is SandwichOrders
(line 1). Collections are represented in M within curly braces,

{"this", "is", "a", "collection", "of", "words"}

and collections can have other collections as members, which is what you are seeing in the right pane.
(This is why there are so many curly braces in this pane.) The first SandwichOrder in the graph, generated
by the first order in the DSL (Pastrami on Rye with Lettuce and Tomato.) isa collection of three entities
(lines 2 - 19). An entity is simply a collection of named values, so the first entity is a Stuff entity with the
name "Pastrami”, the second entity is a Bread entity with the name "Rye", and the third entity is a two-
element collection of Condiment entities with the names "Lettuce" and "Tomato". You could read on
down the M Graph and parse out the entities for the other orders.

With those preliminaries in mind, let’s get on with Lola and Norm’s conversation.

Getting Started with the Intellipad DSL Grammar Mode Interface

You'll watch over Norm's shoulder, along with Lola, as he brings up Intellipad to start developing what
you might call the LunchCounter DSL. The first thing you see, of course, is an empty and untitled view in
the Standard mode (see Figure 3-2).

40 Fle Edit View Help -oXx
untitledl 1005 Standard Mode
|

4

Figure 3-2. The initial view of Intellipad after opening

Norm clicks on the Mode selection menu (see Figure 3-3), and selects DSL Grammar Mode, since
you're going to be developing the DSL grammar for your new language.

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

40 He Edit Mew Help gt e _Ox

Cunttedt 100% | Standard Mode ||

‘ DSL Gramimar Mode
List Mode %

M Graph Mode

M Mede

Project Made

Python Mode

Standard Mode

T-50L 11 Mode

Table Mode

[
Figure 3-3. Changing to the DSL Grammar mode

Once you're in the DSL Grammar mode, you see a new DSL menu on the main title bar (between
View and Help), as shown in Figure 3-4. Norm clicks the DSL menu and selects Split New Input and
Output Views. (Another way to invoke this mode is the Ctrl-Shift-T key combo.)

4 He Edit View DSL | Help
untitledl Open File As Input and Show Output.,
Split New Input View
Split Mew Input and Dutput V'lewsh

mar Mode

=-ax

Figure 3-4. Selecting the three-way Split view from the DSL menu

Now you see three views (shown in Figure 3-5), but they only address two new buffers: untitled1 and
untitled2. (See Chapter 2 for an explanation of buffers.) The left pane is where you will start entering
your DSL statements. The view in this pane is essentially in Standard mode, but it shows untitled1 Mode
in the pane title banner. This means that the input DSL statements in the left pane will be processed
using the DSL Grammar module you'll be creating in the untitled1 (center pane) buffer. The right pane,
in M Graph mode, is read-only and will show the M code generated by the DSL Grammar module you
will be creating in the untitled1 pane. Going from left to right in this Intellipad window then, the left
pane contains the input DSL statements, the center pane contains your DSL Grammar definition for
processing these DSL statements, and the right pane shows the resulting (read-only) output M Graph.

37

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

44 Fle Edit View DSL Help

-0Ox

‘nn{iﬂedl 100% untitled Mode xi untitledl DSLGrammar Mode 3 | untitled2 | MGraph(untitied1) 100% M GraphMode X

Figure 3-5. Initial Intellipad window after selecting Split New Input and Output Views

Norm: “Let’s start by writing an order for your most popular sandwich in the left pane.”

Lola: “Okay—that would be pastrami on rye.”

And she enters the order Pastrami on Rye. in the left untitled2 pane. (Intellipad appends an asterisk
to the buffer name as soon as she types the first character, since the buffer has been changed but not
saved.) Figure 3-6 shows the results of Lola’s typing.

4% Fle Edit View DSL Help
‘untilledZ‘ 100% untitled] Mode X| untitledl DSLGrammar Mode X | untitled2 | MGraph(untitled1) 100% M Graph Mode

Pastrami on Rye. |

-

- 0%

*

Figure 3-6. The first line of the SandwichOrders DSL

Nothing happens in the other two panes, since you haven’t defined any grammar to process Lola’s
sample order. To get started, Norm sets up a bare-bones DSL Grammar definition in the center pane to
see if it will generate some M language output in the right pane (see Figure 3-7).

4 FHe Edit View DSL Help el -
untitled2* untitled] Made % ‘ upftitled1® [00% DSLGrammarMeode X | untitled? |MG... % M GraphMode X
|
Pastrami on Rye. | module LunchCounter { Main]
language SandwichOrders { "Pastrami on Rye."
syntax Main = "Pastrami on Rye."; 1
}]: |
1

Figure 3-7. The simplest possible DSL Grammar definition that works...

Let’s review what you are seeing in the center (grammar definition) and right (M graph output)
panes. The center pain contains a complete (if impractical) DSL Grammar definition. All DSL Grammar
definitions—in fact all M language programs—must be contained in one or more modules. In M, a
module is a namespace or unit of compilation. (In reality, an M file is the unit of compilation. But I will
try to follow the convention of defining only one module per file.)

I'll name this module LunchCounter to correspond with the domain you're addressing. Within this
module, you have defined a DSL language called SandwichOrders, containing one simple rule. A
requirement in DSL grammar definitions is that there must always be a Main syntax rule. A DSL module

38

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

can contain any number of syntax rules, but the required Main rule is the top-level rule to which all input
statements or documents must conform in order to be valid within the grammar definition of the
language.

So far, you've set up a language that will accept only the statement "Pastrami on Rye." If this is your
system, then as long as a customer orders only pastrami on rye, you're good. Anything else will generate
an error.

Norm has made sure that Lola’s sample order includes a period at the end, and he’s included the
period as part of his Main syntax rule definition. In the present context, this isn’t important because the
system will be well defined, even if it is nonsense to a human reader, as long as the input DSL sequence
of characters (string) matches the string expected by the grammar definition. But later on, Norm expects
to use a period to tell the system it has reached the end of a SandwichOrders statement.

In the right pane of Figure 3-7, you see that the input DSL and the simple-minded DSL Grammar
definition have generated an M language program (termed an M Graph).

Broadening the Choices

Lola: “This is all well and good, but what if someone is tired of pastrami on rye and orders pastrami on
wheat?”

Norm: “Well. . .let’s see what happens.” He changes Rye to Wheat in the left pane DSL view. After
this change, the red squiggles will underline the entire order statement. These indicate an error, and the
generated M code in the right pane is null, indicating the system is no longer well-defined and is unable
to generate code for the given DSL statement or order.

To see the errors generated, Norm clicks on the View menu and selects Show Errors. Figure 3-8
shows the Error List pane at the bottom of the window.

€ Ble B Vuw -OX

|| wntitled2* 130% unttiedl Mode X | ustithed]® W% DSLGramewr Mode X uatithed? | MGeaphiu... 100% M Gaph Mode
Pastraei op Wheat. |_module LunchCounter { mull
[Wuntittect2(] 1} ervor SO17: "Pastraes om W™ cloes not match taken "Paitraes on Rye.”. Character "W wis not expected, 'R' was expected|

syntax Main = "Pastrami on Rye.";

| Exvor List 1% Tabls Mode
Buffer Location Category | Sub-Category Code A Deseription
untitled2 1,19 Error 5819 \\wntitled2(1,19): error 5919: The token “Pastrami on Rye.” was expected.
untitled? 1 Error se17 \\untitled2(1,1): error 5817: “Pastrami on W™ does not match token “Pastrasi or
untitled? 1,14-1,15 Error 5817 \\entitled2(1,14): error 5817: “h" does not match token “Pastrasi on Rye.”. (A
untitled? 1,15-1,16 Error sa17 \\entitled2(1,15): error 5817: "¢ does not match token “Pastrami on Rye.”. (i
untitled? 1,16-1,17 Errer 5817 \\wntitled2(1,16): error 5017: "a" does not match token “Pastrami on Rye.”. Chi
untitled? 1,17-1,18 Error 5817 \\entitled2(1,17): error 5917: “t" does not match token “Pastrasi on Rye.™. Chy
uvntitled? 1,18-1,19 Error se17 \\untitled2(1,18): error 5817: ", does not match token “Pastrasmi on Rye.”. Chi

Figure 3-8. Errors generated by changing the bread

That the entire string Pastrami on Wheat. (and not just the word Wheat) is underlined with red
squiggles, indicating the error is generated by the entire string. Reviewing the error list makes this
clearer. The first error in the list indicates the processor accepts the presented string up to the character
“W” in Wheat, but after that, it keeps checking for the first character of a valid string, which is the first
character of the only acceptable statement.

39

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

40

Interleaving (Ignoring) Whitespace

Norm: “Let’s break the syntax rule in the grammar definition into its component words: "Pastrami" "on"
"Rye."

Lola says: “Fine—go for it.”

Figure 3-9 shows the result. You see errors (again, the red squiggles) at the two spaces, but the
processor, based on the new grammar definition in the center pane, generates the new M Graph code
anyway—so at least it’s not a fatal error this time. It looks as though "PastramionRye. " would have been
acceptable, but nothing with spaces in it. The first definition had the two spaces between the three
words included, but the new one doesn't.

Note that when you click on one of the two error descriptions in the Error List pane, the associated
place in the DSL where the error occurs is highlighted. This is a handy troubleshooting aid when you
need to track down exactly where a specific error is occurring.

4% Fle Edit View DS Help el
[untitled2™ 1% unfitiedl Made)<7 | untitled1” 130% DSLGrammar Mode X | unlitled2 |M... = MGrphMode %
Pastrami_on_Rye. module LunchCounter { Main]
language SandwichOrders { "Pastrami”,
syntax Main = "Pastrami” "on" "Rye."; "on”;
} "Rye."
}]
Error List 100% Table Mode %
Buffer Location Category Sub-Category Code & Description
Error) 7\’\unt’i’tle?12(”l,§): ecrar 5p13: * " does not mstch any token. Character ° " was nt
untitled? 1,12-1,13 Error I 5213 \\untitled2(1,12): error 5813: " " does not match any token. Character " " mas 1

Figure 3-9. Breaking the syntax rule definition into separate words

Norm: “Aha! T haven't allowed for whitespace in the grammar definition code.”

Lola: “What’s whitespace?”

Norm: “Whitespace is mostly spaces and formatting characters like tabs, carriage returns, and line
feeds. These don’t have any meaning as far as what the processor needs to do, so I need to tell the
grammar definition to ignore, or interleave, these characters.”

Norm adds an interleave rule in the grammar definition. An interleave rule tells the processor
what kind of content, such as comments, can be interleaved, and ignored, with the main content, which
must be processed.

Figure 3-10 shows how adding a single space as an ignorable character resolves the problem: No
error squiggles occur.

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

¢" Fe Edt Vew DSL Help TR
untitled2* 30% untitledl Mode X | untitled1* 130% DSLGrammar Mode X [untitled? | M... & M C:laphMade- -><.
Pastrami on Rye. module LunchCounter { Main[‘
language SandwichOrders | "Pastrami”, |
syntax Main = "Pastrami” "on" "Rye."; "on®;
interleave Whitespace = " "; "Rye." I

}]

Figure 3-10. Interleaving whitespace

Lola: “So, you're pretty much back to where you started. I need something that’s going to work with
more than pastrami on rye! How are you going to get there from here?”

Norm: “Right. So how do you define a sandwich, anyway? At the simplest level, it's some kind of
lunchmeat on some kind of bread. So let’s change the main syntax definition to something like that.”

Norm changes the DSL Grammar code to reflect his thinking, along the lines shown in Figure 3-11.
Of course, the grammar processor (center pane) has no idea what the terms Lunchmeat and Bread are
because they are undefined.

Defining Tokens
4" He Edt Vew DSl Help -oX
untitled2” B untitledl Made ¥ || untitled1® 130% DSLGrammarMode X | untitled2 |M.. & MGraphMeode X
Pastrami on Rye. module LunchCounter { I Main[
language SandwichOrders | "Pastrami”,
syntax Main = Lunchmeat "on" Bread "."; "on",
interleave whi‘tannmése\ve the reference to 'Lunchmeat"‘ "Rye. "
1]
i
Error List 130% Table Mode X
Buffer Location Category Sub-Category Code A Viiie_ic:rjpitj.on . [
untitledl 3,23-3,32 Error M@118 Cannot resclve the reference to 'Lunchmeat’.
untitledl 3,38-3,43 Error Ma118 Cannot resolve the reference to 'Bread'.

Figure 3-11. First cut at making the SandwichOrders syntax rule more general

Norm has redefined the Main syntax, but now he needs to define Lunchmeat and Bread as fokens. To
get started, he’d like the processor to accept any string for Lunchmeat, followed by the preposition "on",
and any string for Bread, with a period at the end. Right now, anything from “foo on bar” to “Brecht on
Brecht” would mean some progress in Lola’s eyes. So Norm adds a couple of token statements to the
grammar definition to define Lunchmeat and Bread as tokens within the grammar that can contain any
sequence of characters.

Figure 3-12 shows the result. Again, the grammar works with this and shows no error. The two token
statements define Lunchmeat and Bread in exactly the same way: They can be a single contiguous string of

41

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

42

one or more characters, a through z or A through Z. But I've introduced a number of new M language
forms:

"a".."z"” means a single alpha character anywhere in the range from a to z. Similarly, "A".."Z"
means a single capitalized alpha character anywhere in the range from A to Z.

A pipe character (]) is the logical OR operator.

A plus sign (+) is a postfix Kleene operator, meaning “one or more of this entity.”

So given this syntax, ("a".."z" | "A".."Z")+means “any sequence of one or more alpha
characters, upper- or lowercase.” So Rye and rAzzLeDaZZle both qualify, and rAzzLeDaZZle on Rye
would be a valid sandwich order, according to the newly defined DSL Grammar code. This removes one
of the constraints of the extremely limited Pastrami on Rye straight jacket, but you're still a long way

from anything resembling a useful sandwich order system.

4" He Edit View DSL Help L e
untitle... fledl Mode x| untitledi® 10& D5LGrammar Mode % | untitled... GrphMode X
Pastrami on Rye. module LunchCounter { Main|

language SandwichOrders | "Pastrami",
syntax Main = Lunchmeat "on™ Bread "."; “on",
token Lunchmeat = ("a".."z" | "A".."Z")+; "Rye",
token Bread = ("a".,"z" | "A". "I "
interleave Whitespace = " "; I

Figure 3-12. Defining the Lunchmeat and Bread tokens as arbitrary strings

Enabling Multiple DSL Statements

Lola: “Okay, say I just had another customer order a ham on 9-grain wheat sandwich. Will your
system handle that?”

Norm: “I don’t think so, but let’s try it and see where it breaks.”

Figure 3-13 shows the results of adding the ham on 9-grain order.

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

4% fle Edit View DSL Help i - K
untitled2* B untitled Mode ¥ || untitledl® 130% DSLGrammarMode 3 | untitled2 |M.. ¢ MGraphMode X
Pastrami on Rye.]| || module LunchCounter { null

Ham on 9-Grain. ‘\\untiﬂedZ(l,l?J: error 5011: "' does not match any token, Character "y" was not expedad“

syntax Main = Lunchmeat "on" Bread ".";
token Lunchmeat = ("a".."z" | "A".."7")+;
token Bread = ("a".."z" | "A".."I")+;

interleave Whitespace = :

Error List 92% TableMode X
Buffer Location Category Sub-Category Code ¥ Description

untitled? 2 Error 5087 \\untitled2(3,1): error 5887: Token Lunchmeat with text "Ham" unexpected.
untitled2 1,17-1,18 Error Sl \\untitledl(l,l?]i error 5011: "\r" does not match any token. Character "\r" was not expected.
untitled? 1,18-2,1 Error 5811 \wntitled2(2,1): error 5811: “\n" does not match any token. Character "\n" was not expected.

Figure 3-13. Errors generated by adding a second sandwich order in the DSL

The Error List pane indicates that a carriage return and line feed were unexpected, so you need to
add these to the Whitespace rule.

Lola: “But why the first error in the list? Doesn’t that order conform to the syntax you've defined?”

Norm: “In a sense, yes. The new statement itself conforms to the grammar, but the syntax really is
valid for only one statement.”

§' Fle Edit View DSL Help i -0%
wntitled2* o untitled] Mode X || untitled]® 130% DSLGremmarMode % | untitled].. M GraphMode X
4 |
Pastrami on Rye. module LunchCounter { null
Ham on 9-Grain. language SandwichOrders {

syntax Main = Lunchmeat "on" Bread ".";
token Lunchmeat = ("a"
token Bread = ("a"..

[A" "7
interleave Whitespace = " " | "\r" | "\n";

Ervor List 9% TableModz X
Buffer location Category Sub-Category Code ¥ Description

"untitledz 2 Errar {5 5087 \\unﬁﬁeu’z(:i!i): Error 5@(&7: Token Lunchmeat w:ish text “Ham" ung:gge;ne}z.

Figure 3-14. One remaining error after carriage return, and new-line are added to ignorable whitespace

In Figure 3-14, Norm has added the carriage return (the UTF8 encoding for this is written as "\r")
and new line (written as "\n") to the interleave rule. After this, the only remaining error is the
unexpected Lunchmeat token, which is really caused by the unexpected second order statement. To fix
this problem, Norm encloses the Main syntax phrase on the right side of the equals sign (=) in
parentheses and adds a postfix + to indicate that one or more instances of the conforming statement are
expected (Figure 3-15). [Similar operators, called Kleene operators, are an asterisk (*) to indicate zero or
more occurrences, and question mark (?) to indicate zero or one occurrence.]

43

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

4 Hle Edt View DSL Help -
wntitled2™ ¥ untitled] Mode X | untitledT® 130% DSLGrammarMode 3 | unfitled?|.. M GraphMode ¥
Pastrami on Rye. module LunchCounter { Main|
Ham on 8-Grain. language SandwichOrders { [

syntax Main = (Lunchmeat "on" Bread "."h{; [
token Lunchmeat = ("a".."z" | "A".."I")+; "Pastrami”,
token Bread — ("a".."z" | "A".."7")+; "on”,
interleave Whitespace = " " ["\r" | "\n"; "Rye",
i won
| &
} Is
"Ham®,
"on",
"Grain”,
]

Error List 2% TableMode X
Buffer Location Categary Sub-Category Code ¥ Description
[untitledz 2,5-2,9 Error 5011 \\untitled2(2,8): error 59113 "67 does not match any token, Character "8" Was not expected.
untitled? 2,9-2,18 Error {}_v 5011 \\untitled2(2,9): error 5811: "-" does not match any token. Character “-" was not expected.

Figure 3-15. Testing for unanticipated characters in the Bread token definition

Modifying the Main rule to allow for multiple orders still leaves you with two errors in the Error List
pane: the 9 and hyphen (-)characters are unexpected. So for the time being, Norm adds the numeric
characters 0 through 9 and the hyphen character to the Bread token definition, as shown in Figure 3-16.

4" FHe Edit View DSL Help

untitled... itledl Mode || untitied1”

Pastrami on Rye. || module LunchCounter |
Ham on 9-Grain. language SandwichOrders {
T syntax Main =

130% DSLGrammar Mode X

(Lunchmeat "on" Bread “.")+;
token Lunchmeat = ("a".."z" | "A".."Z")+; -
token Bread = ("a". ."z" | "A".."Z" ‘l LT T o
interleave Whitespace = " " | "\r" | "\n";

1

=%
untitled?...
Main|
[
[

A Graph Mode X

"Pastrami”,

on",

"Rye”,

].l
[

nHamn’

on",
"0-Grain”,

Figure 3-16. Multiple orders now valid after modifying the Main syntax rule

44

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

Tightening Up the Syntax

No errors here, so you're good so far. It looks like the processor will accept, generally speaking, any kind
of sandwich order that conforms to the pattern <some alpha string> "on" <some alpha string>.The
two strings can even be the same, like

Blue on Blue.

This would be valid under the current syntax definition.

Lola: “So, Norm, let’s cut to the chase here. I'm not impressed with this system so far. Some wing
nut could walk in and order “blue on blue,” and the server wouldn’t know whether to go to the jukebox
or the order screen.

Lola types in “Blue on Blue.” as a new sandwich order (Figure 3-17).

40 He Edit View OSL Help -0%
untit.. :dIMode X | untifledl® 100% DSLGrammarMode ¥ | umti.. phMade X
Pastrami on Rye. module LunchCounter | Main|
Ham on 3-Grain. language SandwichOrders { I
Blue on Blue. syntax Main = (Lunchmeat "on™ Bread ".")4; [

token Lunchmeat = ("a".."z" | "&".."I")+; "Pastrami”,
token Bread = ("a".."z" | "A".."Z" | "@".."8" | "-")4 "an,
interleave Whitespace =" ™ | "\r" | "\n"; "Rye",
b Is
[
"Han",
"on”,
"8-Grain"”,
1 T
[
"Blue",
"on®,
"Blue",
1
1
1

Figure 3-17. A syntax too ill-defined

Norm: “Exactly right, Lola—you catch on fast. Let’s see if I can tighten up the language definition to
do two things: 1) Provide a way of syntactically identifying which is the Lunchmeat and which is the Bread
in a SandwichOrders statement, and 2) Provide a mapping of the components of a SandwichOrders
statement to a database table. You want the system to allow an order for pastrami on rye, but reject an
order for rye on pastrami. And, of course, the Blue on Blue problem should no longer happen.

Lola: “Fine.”

Moving Toward Structured Data

The first thing Norm does is to change the Main syntax rule to define it as a collection of one or more
SandwichOrders. This will result in creating a collection in the M Graph code, which would map to what
is called an extent. Extents correspond to tables within the database, once the model is deployed to SQL

45

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

46

Server. When the image file generated by the M compiler is installed in the Repository database, this
would result in a table of SandwichOrders. (For now, think of repository as a fancy word for database.)
Figure 3-18 shows the results of the first of these changes.

§) e Edit View DSl Help ~HX

untitl... ediMode X | untitledl” ['\\&5 100% DSLGrammerMode % | untitled? [M... & MGraphMode X
Pastrami on Rye. module LunchCounter | Main|
Ham on 3-Grain. language SandwichOrders { [
Blue on Blue. syntax Main = SandwichOrder®; {
syntax SandwichOrder = lm:Lunchmest "on” br:Bread "." Lunchmeat => "Pastrami”,
=+ {Lunchmeat == Im, Bread =» br}; Bread => "Rye"
token Lunchmeat = ("a".."z" | "A".."Z")#; ts
token Bread = {"a”.."z" | "A"..7Z" | "@".."9" | P-"lay f
interleave Whitespace = " " | "\r" | "\n"; Lunchmeat => "Ham",

| Bread =+ "3-Grain”
| L
i
Lunchmeat => "Blue",
Bread =» "Blus"
i
|

Figure 3-18. Changing the Main syntax role and adding the SandwichOrder syntax rule

You still have the Blue on Blue problem, but in the generated M Graph you are identifying the
Lunchmeat and Bread data components, even if there are no semantic constraints on these.

Let’s walk through the structure of the code of the DSL Grammar definition (center panel). At the
highest level (outermost curly braces), you have the LunchCounter module, which defines your
namespace. Within the module, you have a single language definition, named SandwichOrdexrs. The
language definition (contained within the next set of curly braces) consists of a collection of syntax rules,
token rules, and an interleave rule (discussed in the section titled “Defining Tokens”).

The Main syntax rule:

syntax Main = SandwichOrder*

sets the Main syntax rule to be a collection of zero or more SandwichOrders. (Recall that the asterisk * is a
multiplicity operator designating a collection of zero or more instances.)
The SandwichOrder syntax rule:

syntax SandwichOrder = Im:Lunchmeat "on" br:Bread "."
=> {Lunchmeat => 1lm, Bread => br}

is really the heart of the SandwichOrders language definition. This construction says two things. A
SandwichOrder consists of a Lunchmeat token, given the identifier 1m, followed by the literal "on", followed
by a Bread token given the identifier br, followed by the period character ".". =» is the binding operator,
so the second line of the preceding code syntax rule statement means that the construction results in an
entity with two members: a Lunchmeat token with the value Im and a Bread token with the value br.
Entities are simply collections with named values, so here you're defining an entity with two values: a

Lunchmeat value (bound to the identifier 1m) and a Bread value (bound to the identifier br).

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

Next, Norm again refines the Main syntax rule to store the collection of SandwichOrders in an extent

named SandwichOrders. You see the results in Figure 3-19. What you see in the M Graph pane shows that

you're getting a little closer to what you might call structured data.

= 0%

M Greph Made X

40 Fle Edit View OSL Hep
untitle,,, ZmgMode X | untitled2* 100% DSLGrammarMode x| untitledl |...
{F Grommar Definition with orbitrary string tokens SandwichOrders{
i

Pastrami on Rye.
Ham on 3-Grain.
Blue on Blue.

module Lunchcounter |
language SandwichOrders | :[
syntax Main = s:SandwichOrder™
== SandwichOrders [valuesof(s) }|_;
syntax SandwichOrder = lm:Lunchmeat "on" briBread "."

{Lunchmeat => 1m, Bread => brj;

token Lunchmeat = ("a".."z" | "A".."Z")}4;
token Bread = ("a".."z" | "A".."Z" | "@".."8" | "-")4, t;
interleave Whitespace = " " | "\r" | "\n"; | {
Lunchmeat => "Blue",
Bread =» "Blue”

Lunchmeat => "Pastrami”,
Bread =» "Rye"

Is

{
Lunchmeat => "Ham",
Bread =» "%-Grain”

Figure 3-19. Generating the SandwichOrders collection with restructured syntax rules

Lola: “Okay Norm—one step forward, and one back. I can see you're making some progress in
getting to where the system knows its lunchmeat from its bread. Not to complicate things too much, but

do you think you could add in condiments, like mayo or mustard?”
Norm: “Sure thing. As usual, I'll add an order with a condiment and see how this breaks the DSL

grammar definition. Type an order with a condiment, and I'll see what kind of error you get.”

Lola types: “Ham on Baguette with Mayo.” Figure 3-20 shows the results.
¢ Hle Edt Vew DSL Help L
untitled2* 7% untitledl Mode ¥ || untitledl” 12% DSLGrammar Mode X unfitled... Graph Mode %
Pastrami on Rye. module LunchCounter { null
Ham on 9-Grain. language SandwichOrders {
Blue on Blue. syntax Main = s:SandwichOrder®
Ham on Baguette with| Mayo. => SandwichOrders {valuesof(s) |;
syntax SandwichOrder = Im:Lunchmeat "on" br:Bread "."
=> {Lunchmeat => Im, Bread => br};
token Lunchmeat = ("a".."z" | "A".."Z")+;
tiken Bread = (ua«”uZ uph wzw | g, ugw | w_wyy.
interleave Whitespace = " " | "\r" | AR
}
Error List 106% Table Mode >-<
Buffer Location Cstegory Sub-Category Code v Description
untitled2 4,17-4,21 Error ‘S@e7 \\untitled2(4,17): error 5687: Token Lunchmeat with text "with” unexpected,

Figure 3-20. Testing a condiment addition

Norm has clicked on the single error description in the Error List pane, and this has highlighted the

DSL segment "with" after the Bread token, the cause of this particular error.

47

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

48

Norm: “Well, clearly you've broken the grammar definition in at least a couple of ways, since it is no
longer generating M Graph output in the right pane. From what you see in the error list, it thinks the
word “with” is a Lunchmeat token. Here’s what I'd suggest. Let’s not add condiments into the system for
the time being, and instead focus on refining the Lunchmeat and Bread syntax so that you get rid of the
Blue on Blue problem, and the system is smart enough to exclude nonsense orders like ham on
pastrami, even though ham and pastrami are both valid token values.

Lola: “Makes sense. One thing at a time.”

Norm changes the token definitions for Lunchmeat and Bread to be collections of a few of the
sandwich makings that comprise some sandwiches on Lola’s menu. And he removes the condiment
fragment from the last order to keep things simple. Figure 3-21 shows the result.

token Lunchmeat =
“Ham"

| "Pastrami"

| "Roast Beef":
token Bread =
"Rye"
"9-Grain"
"French"
"Baguatte" |
interleave Whitespace

Error List

Buffer Location Category Sub-Category Code ¥ I_J_g_scmpt:l__og___ ——

40 He Edit View DSL Help -0
untitled2* 7% untitled] Mode X || untitled]” l% 123% DSLGrammarMode X untitle.. raphMode X
|

Pastrami on Rye. | medule LunchCounter { null

Ham on 9-Grain. | language SandwichOrders {

Eébe on Blue. syntax Main = s:SandwichOrder*

s o0
Ham on Baguette. => SandwichOrders {valuesof(s) |;

syntax SandwichOrder = lm:Lunchmeat "on" br:Bread "."
=» {Lunchmeat => 1lm, Bread => br};

R | | ¥

106% TableMode X

untitled? 3,6-3,8 Errar 5ea7 V\untitled2(3,8)

(
untitled2 3,3-3,4 Error Sell \\untitled2(3,3):
untitled2 3,4-3,5 Error 511 V\untitled2(3,4):
untitledz 3 Error 5017 \\untitled2(3,1):

error 5887: Token "on" with text “on" unexpected

errar 5811: "u" does not match any token. Character "u" was
error 5@11 " does not match any token. Character "e" was |
error 5817; "B1" does not match token Bread. Character "1" w

Figure 3-21. Redefining the Lunchmeat and Bread tokens

Redefining the syntax in this way, where only valid names are given for the Lunchmeat and Bread
tokens in the grammar definition, has trapped nonsense orders like Blue on Blue.

Testing the Syntax

Lola: “Good—this is looking much more specific now. But let’s check something. What will it do with an

order like ham on pastrami?”
Norm: “Okay, here it is.”

Norm enters the order “Ham on Pastrami.” in the DSL pane, with the resulting error shown in

Figure 3-22.

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

4 He Edt View DSL Help] -0x
[untitled?2* 7% unttledl Mode X | untitledl® 123% DSLGrammarMode X | untitle.. raphMode X
Pastrami on Rye. [module LunchCounter { null
Ham on 9-Grain. language SandwichOrders {

Ham on Pastrami_ | syntax Main = s:SandwichOrder*
\J}Annﬂedz(iﬁ): error 3007: Token Lunchmeat with text *Pastrami” unexpeched‘br'ders [valuesuf(sJ 13
syntax SandwichOrder = lm:Lunchmeat "on" br:Bread ".
=> {Lunchmeat => lm, Bread =3 br};
token Lunchmeat =
"Ham"
| "Pastrami”
| "Roast Beef";

token Bread -

"Rye"
| "9-Grain"
| "French"
| "Baguette";

interleave Whitespace = " " | "\r" | "\n";

Error List 106% TebleMade X

Buffer Location Category ;ﬂ}-tqugq[y Code v Description

untitled2 3,8-3,16 Error 58e7 Vuntitled2(3,8): error 5887: Token Lunchmeat with text "Pastrami” unexpected.

Figure 3-22. Testing a syntactically nonconforming sandwich order

Norm: “Clearly, that's not accepted. It breaks the syntax rules of the grammar definition. And look at
the error description: the processor knows Pastrami is a Lunchmeat token, but it occurs in an unexpected
part of the order. See what happens when I highlight the error list line in the Error List pane? It highlights
the offending word in the DSL view, along with underlining the word with red squiggles.”

Lola: “Great, it seems to be getting a little smarter, and you've clearly gotten rid of the Blue on Blue
issue. Let’s do a different test. I have a good Wall Street customer who loves Spam on white bread. He
always comes in with big take-out orders, so even though it offends my sense of nutritional aesthetics,
I'm going to have to stock some Spam and white bread. I'll just have to keep it off-menu. I know you
don’t have this in your test orders, but let’s see what the system does with a Spam on white order.”

Norm: “You got it. As usual, let’s try the new order statement before I change the grammar and see
what kind of error is generated.”

He types in the order “Spam on White.” raising the errors shown in the Error List pane at the bottom
of Figure 3-23.

49

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

=> SandwichOrders {valuesof(s) |;
syntax SandwichOrder = lm:Lunchmeat "on" br:Bread "."
=» {Lunchmeat => Im, Bread =% br}

Spam on White.

token Lunchmeat =
"Ham"
| "Pastrami”
| "Roast Beef";
| token Bread =
"Rye"
"9-Grain"

"French"
"Baguette";
interleave Whitespace = " " | "\p" | "\n";

Error List 97% Table Mode

Buffer Location Cstegory Sub-Category Code ¥ Description

4 fle Edit Vew DSL Help - B K
untitled2* 7% untited] Mode X || untitledl* 123% DSLGrammarMode X | untitle.. raphMode X
4 |
Pastrani on Rye. module LunchCounter { null
Ham on 9-Grain. language SandwichOrders {
Roast Beef on Erench. syntax Main = s:SandwichOrder*

wo

untitled? 4,6-4,8 Error 5887 \untitled2(4,6): error 5607: Token “on" with text "on" unexpected.

wntitled2 @ Eer g sell \untieled2(4,1); errar 5611 "S" doss ot match any token, Character 'S” uss ot expected.
untitled? 4,2-4,3 Error 5811 \\untitled2(4,2): does rot match any token. Character "p" not expected.
untitled? 4,3-4,4 Error 5011 Y\untitled2(4,3): error 5811: "s" does not match any token. Character "a" was not expected.

untitled? 4,4-4,5 Error 5611 \\untitled2(4,4): error 5811: "m" does not match any token. Character "m" was not expected

Figure 3-23. Error output from an undefined token

Norm: “So as soon as I type the first character S of the word Spam, the processor recognizes that
there’s no Lunchmeat token starting with S, and indicates an error. The next character, a lowercase p,
doesn’t occur as the first of a Lunchmeat token either, and so on. The prepositional word "on" is a
required part of an order statement, but it still results in an error because it’s not occurring after a valid
Lunchmeat token.

Lola: “And what happens if you change the lowercase p to an uppercase P? The Pa matches the first
two characters in Pastrami.”

Norm: “Excellent! I'll try it.”

He changes the word “Spam” to “Spam” in the last order, raising the error shown in Figure 3-24.

50

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

untitled?*

Pastrami on Rye.

T% untitledi Mode X ||

40 Fle Edit View DSL Helo

untitled1”

module LunchCounter {

173% DSLGrammar Made

x

-ox
untitle... raph Mode X
null

Ham on 9-Grain. language SandwichOrders {
Roast Beef on French.
Sian] on White.

‘\\unhﬂedz(ﬂﬂll: ermror 5017; "Pam” doe:

syntax Main = s:SandwichOrder®
=» SendwichOrders {valuesof(s) |,
< not match token Lunchmeat. Character "m” was not expected, 's” was Expected“t "on" br:Bread "."
=> {Lunchmeat => Im, Bread => br};
token Lunchmeat =
"Ham"
| "Pastrami®
| "Roast Beaf";
token Bread =

"Rye"
| "9-Grain"
| "French"
| "Baguette";
interleave Whitespace = " " | "\r" | "\n",
i
1
| 1
Error List 89% TableMode X
Buffer Locstion Catesory Sub-Category Code ¥ [De == —
untitled? 4,6-4,8 Error 5667 \\untitled2(4,6): error 5687: Token "on" with text "on" unexpected.
untitled2 4 Error 5611 \\untitled2(4,1): error 5011: "S" does not match any token. Character "5" was not expected,
untitled2 4,2-4,5 Error 5817 Viuntitled2{4,2): error 5817: "Pam” does not match token Lunchmeat. Character "m" was not expected, "s" wi

Figure 3-24. More syntax testing

Norm: “It takes the Pa fragment with no problem. It's looking for an s next, since that'’s the only
character that matches with a valid Lunchmeat token. But when you type the m, it throws an error
because it’s looking for an s. Let’s go ahead and add Spam as a lunchmeat and White as one of your
breads, even though they’ll be off-menu.”

Lola: “Right.”

Spam on White.

=» SandwichOrders { values

syntax SandwichOrder = lm:Lunchmeat™ "on” briBread "."
Im, Bread = brj;

=# {Lunchweat =
token Lunchmeat =
"Ham"
“Pastrami”
"5pam".
| "Roast Beef";
token Bread =

“French"

interleave Whitespace = " " | "\r" | "\n"}

Bread => "Rys"
b
Lunchmeat => "Ham',

Bread => "9-Grain"

Lunchmeat

Bread =» "French”

Lunchmeat =2 "Spam",

.-Baguett:"/——% Bread => "White"
| " "White™

]

}

=» "Roast Beef"

% Fle Edit View DSL Help 0%
untitled?” titied] Mode ¥ | untitled1® 100% DSLGrammar Mode % 1 untitled? [M... = M Graph Mode %
Pastrami on Rye. module LunchCounter | I SandwichOrders|
Ham on 9-Grain. ichorders | {

Roast Bel syntax Main = s:SandwT Lunchmeat = "Pastrami”,

Figure 3-25. Adding the “Spam” Lunchmeat and “White” Bread tokens

51

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

52

Norm adds “Spam” to the Lunchmeat token list, and “White” to the Bread token list. Figure 3-25
shows the result, with the callout arrows tracing how the grammar processes each token to produce the
last node shown in the M Graph pane at the right of the figure.

Making the Syntax More Flexible

Norm: “So it looks like you're back on firm ground.”

Lola: “Affirmative. So let’s add Portobello and grilled tofu as lunchmeat ingredients, and pita as a
bread choice. And I want the system to accept an order for grilled tofu in pita, not on pita.

Norm: “Easily done. I'll simply redefine the SandwichOxder to accept either “"on" or "in" as the
prepositional connector between the Lunchmeat and Bread tokens.”

In terms of the grammar, this is written as ("on" | "in") in the syntax rule, as shown in Figure 3-26.
This code segment means either “on” or “in” is valid.

wtithed) | MG,
sandwichOrders
Lunchmeat =» “Pastrami”

Bread -

Lunchmeat <> “Ham

Bread => “3-Gral

Lunchmeat -
Bread -

Lunchmeat =; “Spam
Bread => “white

Luncheeat = “Grilled Tofu®,
imterleave Whitespace | \n —Dtread = Pita”

Figure 3-26. Providing options in the syntax definition

Norm: “But notice you've added a couple of main ingredients that aren’t considered to be in the
Lunchmeat category. Maybe you should broaden the name to something like Stuff for lack of something
more scientific. Pastrami and Spam and grilled tofu could all be considered the primary stuff of a
sandwich, right? The grammar definition doesn't really care about these kinds of lexical or naming
questions, but it affects human readability. And that’s one of the important benefits of DSLs.”

Lola: “Makes sense to me.”

Norm: “And now that you have things tightened up in terms of separating the lunchmeats. . .er,
stuffs. . .from the breads, maybe it’s time to get back to including the condiments. Unlike the stuff and
the bread, which are the essential components, the condiments are optional, and you could possibly
have more than one condiment, like mustard and relish together.

Lola: “Can you do that?”

Norm: “Piece of cake.”

Norm adds a new token definition for Condiment, not unlike the previous definitions for Stuff and
Bread. And he modifies the SandwichOrder syntax rule to include an optional "with" preposition and zero
or more condiments. The "with"? in the modified rule definition means that "with" can occur at the
place in the SandwichOrder zero or one times, and the asterisk in co:Condiment* means you can have zero

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

or any number of condiments. Finally, he adds the conjunctions "and" and "&" as ignorable tokens in the
Whitespace interleave definition so that these can be used in the condiments fragment of an order
statement without affecting the syntax validity of the order.

Lola takes the keyboard and adds a condiment or two to each of the sample sandwich orders she
previously entered in the left pane. Figure 3-27 shows the results.

¢ e i b

untithed * i Mode untithed } | MG.

Stuff =» *

interleave whitespace

Figure 3-27. Adding syntax and tokens for condiments

The SandwichLanguage DSL MGraph

The right pane in Figure 3-27 shows what is called an M Graph. This is similar to what is usually called an
abstract syntax tree (AST), but not quite the same, and is a representation of the DSL statements in the
left pane after being processed through the grammar defined in the center pane. The trace lines show
how the condiment components of the DSL statements in the left pane result in one value of the nodes
in the M Graph on the right. If you look at the bottom SandwichOrder node of the M Graph shown in this
figure, the expression within the innermost curly braces is an entity with three named values:

o AStuffvaluebound to "Grilled Tofu". (Remember that =» is the binding
operator.)

o ABread value bound to "Pita".

53

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

54

¢ ACondiment value bound to an ordered collection, or list, (indicated by the square
brackets) with two members: "Lettuce" and "Tomato". If this were an unordered
collection, the square brackets [] would be replaced with curly braces {}.

So, looking again at the M Graph in the right pane of Figure 3-27, you can view it simply as a named
collection, with the name SandwichOrders (first line) of SandwichOrder entities, and with each entity of
the collection having three named values: Stuff, Bread, and Condiment. According to the way the
grammar has been defined, the Condiment value can be null (as with the Roast Beef on French
SandwichOrder), have a single value (as with Spam on White with Salsa), or have a list of values (as with
Grilled Tofu in Pita with Lettuce & Tomato).

In the next section, you'll see how you can modify the grammar to support more than one main
ingredient, or Stuff.

Extending SandwichOrders to More Than One Main Ingredient

Lola: “This is starting to look a little more realistic now, Norm. But I have one more request: I need a way
of adding an additional main ingredient. For instance, someone might order grilled tofu and Portabella
in pita, or ham and pepperoni on French. What would it take to do that?”

Norm: “One character.”

Lola: “Surely you jest, mon neveu.”

Norm: “No, I'm serious. Let’s add Portabella to the grilled tofu in the last order, and see if it breaks
as you expect it to.

Figure 3-28 shows the resulting error.

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

€F Fle B Yew Hep =
untitled?" % unttied] Mode X untithed]® 100 DSLGawmarbods > | waiiadd. 4 CGaphMods
Pastrami on Rye module LunchCounter mall
with Lettuce & Tomato. language SanduichOrders

sytax Main = 5:SandwlchOrder”
=» SenduichOrders [valvesof(s));
syntax Sandwichlrder -

Hal on 9-Grain Wheat
with Mayo & Mustard,

Roast Beef on French. st:5tuff ("on” | “in"
Spam on White with Salsa. br:Bread
Grilled Tofu & Portabella Celth™

in Pits [T guthed207 163 mror S007: Tokem St et tent "Postabell” smespecid
with Lettuce & Tomato, = TS5 57 3%, Braad = br , Condiaant. =3 co)f
token Stuff =
=t
"Pastrani”
——
“Roast Beat"
“orilled Tofu*
“Portabaella®;
token Braad =

"8-Grain Wheat”
“French®
“Baguette”
“uhite™
“Pita”;
token Condimnt =
“Ketchup™
| "Mustand”
“Naye®
“Lettuce”
“Salsa”
“Tomata"
interleave Whitespace = * " | “\r" | "\n" | "and" | "8";

Error List 100% Tabie Mode
Buffer locaties Category Sub-Category (Code | Description

untitledd 7,18-7,28 Error Sea7 \mtitled2(7,16): error S007: Token Stuff with text “Portabella” unexpected.

Figure 3-28. Testing the error caused by adding a second main ingredient

Norm: “Just as I thought: The processor complains about the second Stuff component added in the
order. But if you add a + operator after st:Stuff fragment of the SandwichOrder syntax definition, this
fixes the grammar to handle one or more primary ingredients. This is exactly what the + operator means:
one or more. And it’s the single character I said you would need. Without it, the st: Stuff fragment in the
rule is interpreted to mean one and only one Stuff token.”

Figure 3-29 shows the results after adding the + postfix operator after the Stuff token in the
SandwichOrder syntax rule.

55

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

wntitled? | MG
Condinent =
My

Figure 3-29. Changing the syntax to allow additional ingredients

Deployment

Now you will take your leave Lola and Norm and their lively investigations of the LunchCounter domain
because it’s time to think about how to deploy this model to SQL Server. Lola and Norm have developed
areasonable sandwich model here, but as you shall find shortly, it’s not yet in a configuration that can
be deployed to the database. The problem has to do with one-to-many relationships in the model; how
to represent these relationships in a way that enables deployment remains an issue.
Looking back at Figure 3-29, you have the following:

¢ ADSLrepresentation of four sandwich orders, represented in a language about as

close to natural English as you can get (left pane).

A DSL Grammar program for processing these DSL statements in the middle pane.

An M Graph parse of the DSL statements in the right pane, created by processing
the DSL through the DSL Grammar machinery.

Your mission (should you wish to accept it) is to compile the DSL Grammar code into an image

(mx) file and use it to deploy the model (schema), with SandwichOrder instances represented by the DSL
into SQL Server.

56

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

Schema vs. Model

Think of the word schema as meaning a complete description of a database in a formal language
supported by the database management system. A schema will include a formal description of all tables
included in the database, their relationships and constraints, and other information needed for creating or
reconstructing the database. A schema should be a complete description of the structure of the database,
but will say nothing about the actual data contained in it. | introduce the term here because, in the context
of SQL Server Modeling, it can often be used more or less synonymously with the word model. Schemais
more appropriately used in the database context, whereas mode/is used in the modeling context. But the
two terms are closely linked in the context of the SQL Server Modeling framework.

Getting back to the exercise, before you go any further, you should save your code. Save the DSL
Grammar code by clicking in the center pane so that it has focus, then click the File > Save As menu
option. Click the Create New Folder icon in the Save As dialog box and rename New Folder to
LunchCounter, as shown in Figure 3-30. Save the code in the untitled1* DSL Grammar Mode pane as
LunchCounter.mg in the new LunchCounter folder. (The “mg” file extension is short for Mgrammar,
another term for DSL Grammar.)

Click in the left pane, then follow a similar procedure (except for creating the new folder), and save
the DSL sandwich code as SandwichLanguage.dsl in the LunchCounter folder.

<% Ele Edit View DSL Hep =O%
untitled2” Y% unfitledl Mode X | untitled]® 100% DSLGrammar Mode X | wntitled? |M... . MGraphMode X
Pastrami on Rye module LunchCounter { SandwichOrders{
with Lettuce and Tomato. language SandwichOrders { i
Ham on 9-Grain Wheat syntax Main = s:SandwichOrder® Stuff =» |
with Mayo and Mustard. => SandwichOrders { valuesof(s) }; {
Spam on White with Salse - chudchiad Name => "Pastrami"
Grilled Tofu & Portabell ﬁunﬁ‘f@ As w }
1
= = = Iy
Save : !HjLunchCounter LI L ﬁ_i' Bread => |
Name =: "Rye"
J Create New Folder I
Rcent Cnr:dlment =» {
!
Name => "Lettuce”
@ b
Desttop L
Name =» "Tomato"
I
| 1
Iy Documerts 1
i
Stuff =» {
! {
My Computer Name => "Ham"
1
N — — Bread =» |
WP:MWN‘K Fie name: |[ireicotermg ki Save | Name => "9-Grain Wheat"
laces
Save as type |NI Files ("%} j Cancel I
/| Condiment => {
A 1
| "Pita” {
| "White"; Name => "Mayo"
token Condiment = kL

Figure 3-30. Creating the C:\LunchCounter folder and saving the DSL Grammar code as

LunchCounter.mg

57

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

58

You should now have the DSL file (SandwichLanguage.dsl), and the DSL Grammar definition file
(LunchCounter.mg) in your new working folder (C:\LunchCounter). But you can’t yet deploy this code.
The problem is with the generated M Graph tree, displayed in the right pane of Intellipad. This is not yet
in a form that can be used by the command-line tools to build the SQL Server tables.

Since this is an introductory level book, I will avoid going through all of the diagnostics necessary to
arrive at a version of the DSL Grammar code that allows you to deploy the model, with instances, to the
database. (Pay no attention to the man behind the curtain.) The primary fix is to reset the Stuff, Bread,
and Condiment types to named entities rather than text types. The Bread component will be set as a
collection, even though it will always be a collection of one for a particular instance of SandwichOrder.
This will also require three new syntax definitions for the new entity types: BreadEntity,
CondimentEntity, and StuffEntity. These changes appear in the gray portion of Figure 3-31, and the
right pane shows the new M Graph.

40 Ee Edt Vew DSL Hep s Sh
Sandwichlang... hCountermg Made X | LunchCounter.mg 100% DSLGrammarMede % | Sandwichlang.. % MW Graph Mode %
Pastrami on Rye module LunchCounter | SandwichOrders |

with Lettuce and Tomato, language SandwichOrders | {

Ham on 9-Grain Wheat
with Mayo and Mustard.

Spam on White with Salsa.

Grilled Tofu & Portabella in Pita
with Lettuce|

Py
I

I

syntax Main = s:SandwichOrder™
=» SandwichOrders { valuesof(s) };
syntax SandwichOrder =
st:StuffEntity+ ("on" | "in")
br:BreadEntity
"With"? co;CondimentEntity*"."” =>

1

Stuff == [valuesof(st)},

Bread =» br,

Condiment = {valuesof{co)}

i
syntax StuffEntity = stiStuff =& {Name <> st};
syntax BreadEntity = briBread => {Mame =» br};

syntax CandimentEntity = co:Condiment = {Name => co};

token Stuff =
"Ham"
| "Pastrami”
| "Spam®
| "Roast Beef”
| "Pepperoni”
| "Portabella”
| "Grilled Tofu";
token Bread =
"aye"
| "9-Grain Wheat™
| “French"
| "Baguette”
| “pita™
| "White";
token Condiment =
"Catsup”
| "Mustard"
| “Mayo"
| "Lettuce"
| "Tomato"
| "salsa";

interleave Whitespace = ™ " | "\r" | "\n" | ", | "and" | "&";

Stuff = [
1
Name =3 "Pastrami”
Bread =» {
Name => "Ry="
s
Condiment =» |
{
Name =3 "Lettuce”
b
{
Name => "Tomato"

I
is

1
Stuff =5 |
I

Name => “Ham"
¥
I
Bread => |
Name => "9-Grain Wheat"
i
Condiment =5 {
{
Name => "Mayo™
1
b
¢
{

Name = "Mustard”

Stuff =» |
{
Name => "Spam”

Figure 3-31. The final LunchCounter DSL Grammar definition (center pane) and generated M Graph

(right pane)

The other component you need for a successful deployment to the database is a schema definition.
Here again, I won't get into the details of how this is constructed, but the code, which is shown in Figure

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

3-32, should be reasonably self-evident, based on what you've already seen in this exercise. I've added
some constraints to show how business rules might be expressed directly within the code in terms of the
allowed number of Stuff and Condiments values in a sandwich and the fact that only one kind of bread
can be used in a sandwich.

The grayed area shows the important part of the schema code, particularly in terms of creating the
database. This expresses the relationship constraints in the schema. Remember that 84 is the logical
AND operator, and the <= operator means that the left operand collection is constrained to be a
subcollection of the right operand collection. This where constraint is the core logic that determines how
the tables are built in the database.

4" Fle Edit View MMode Help ~E%

LunchCounter.Schema.m 86% M Mode

/1 schemo for tmchcounter
module LunchCounter {
type sandwichorder
{
Id ; Integer32 =» Autohumber().
I/ business rule: minimum of 1 and mox of 2 Rimds of stuff
Stuff © [Stuffsel..2) |
¢f busimess rule; one end only 1 kipd of bread in o sandwich
Bread ¢ {Breads=l};
/4 Busifess rile: B to £ kinds of condimenis ollowed
Condiment ; {Condiments#e..5};

where
identity 1d B2
value. Stuff <= Stuffs &
value.Candinent <= copdiments &8
valye Stuff == stuffs.order(value) A&
value,Condiment = Condiments.Order(value) 22
value.Bread == Breads.Order(value);

Sandwichorders | {Sahdwichorder®};
type stuff

Id : Integer3z = AutoNumber();

Name @ Text{28);

order : SandwichOrder where value in SanduichOrders,
} where identity 1d;

stuffs : [stuffi);

type Bread
i

Id ; Integer32 =- Autchumber();

Name : Text(ze);

order : sandwichOrder where value in SandwichOrders
} where identity 1d;

Breads @ {Bread);
type tondiment
Id : Integer32 =» Autchumber();
Name : Text(2e);
order : SandwichOrder where value in SandwichOrgers,

} where identity Id;

Condiments : {Condiment*}:

Figure 3-32. The LunchCounter MSchema definition

59

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

60

If you're following along with this example on your computer, open a new M file in Intellipad,
change the Standard mode to M mode, key in the schema code or download it from the Apress website,
and save it as LunchCounter.Schema.m in your new working directory, C:\LunchCounter.

Now that you have the DSL, DSL Grammar, and schema code saved, you can begin to work with the
SQL Server Modeling command-line tools to attempt to deploy the model to SQL Server. Deployment
means that you have a representation of the model in SQL Server in terms of a schema and tables,
constraints on the data derived from any business rules, and sample data in the tables.

Bring up the SQL Server Modeling command prompt by clicking on the Start button > All Programs
and navigating to Microsoft SQL Server Modeling CTP - Microsoft SQL Server Modeling CTP Command
Prompt. The verbiage might be a little different on your machine, depending on when you are reading
this and whether you are running the CTP, Beta, or commercial release. Figure 3-33 shows a screen
capture of this step.

| M Micosoft SQL Server Modeling CTP # @ Developer Center Online

i |'@ Microsoft Sync Framework H|| 4 Intelipad
| uj Microsoft Visual Studio 2008 3l o }Pl'licmsoﬂSQL Server Modeling CTP Command Prompt
70 Microsoft Visual Studio 2010 ’

@ Mobipocket,com *|| @ Readme

(Ls r

Figure 3-33. Invoking the Microsoft SQL Server Modeling Command Prompt

This will bring up the command prompt window, as shown in Figure 3-34.

Microsoft SQL Server Modeling CTP Command Prompt -|ofx|
C:sProgram Files“\Microsoft Osloi.Bvhind_ E’

7|

4| | My

Figure 3-34. SQL Server Modeling Command Prompt in its default directory
Change the current directory to C:\LunchCounter by entering the following command:
cd \LunchCounter

Execute the dir command to verify that your DSL Grammar, DSL, and schema files exist in this
directory, and then compile the DSL Grammar code by entering the following command:

m.exe LunchCounter.mg

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

and execute another dir command to be sure the compiler created the LunchCounter.mx image file (see

Figure 3-35).

B Microsoft SOL Server Modeling CTP Command Prompt

SRNILLY TS _exe LunchCounter.mg
Microsoft (R> Codename onpller version 1.08.2083.7
Copyright (c> Microsoft Corporation.

C:\LunchCounter>dir
VUolume in drive C is ACER
Volume Serial Mumber is 78D@-DYCF

Directory of C:\LunchCounter

B6/84/2818 B85:28 PM <DIR>

P6/04,2018 ©@5:28 PH <DIR> -

B5,18/,2018 12:35 AM 1,256 LunchCounter ma

B6/84/2818 B85:28 PH 28 B?? LunchCuunten mx
2 File{s)

2 Dirds> 17,563, 312 128 bytes free

C:\LunchCounter>

All rights reserved.

H

Figure 3-35. SQL compiling the LunchCounter.mg file

to create the LuncCounter.mx image file

Next, you want to use the DSL Grammar executor command-line tool to generate an M code version
of the SandwichLanguage.dsl file. (The executable was formerly called the Mgrammar executor, which is
where it got its mgx.exe name.) With any executable command-line tool, you can normally enter the
name of the command followed by /? to get a listing of the parameters that can be used to pass
information to the tool when it executes. Figure 3-36 shows a list of these parameters. The two you're
interested in are reference and MModuleName. (Note that most, but not all, have shorthand aliases, like /r:
for /reference:, to save you time when you're using the tool frequently.)

61

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

& Micrasoft SOL Sarvar Modeling CTR Gomriand Prompt -|E x|

C:\LunchCounterM
Microsoft (R) Codename rammar'' Executor version 1.0.2000.06
Copyright (c) Microsoft Corporation. A1l rights reserved.

Usage: mgx dataFile(s)> ...

Positional Parameters:
dataFile{s> ... input file names. wildcards allowed. e.g. *.ext.

.mgx reference file name. {Alias: /r>
Include all files in the current directory and
subdirectories according to the wildcard

specifications

starget :{mgxtarget> Target type. Legal values: M, Raml. (Alias: /t)

Jout :{string> Specify output directory or file prefix (default: no
prefix. files generated in current directoryd.
{Alias: /o)

#language :{string> If multiple language parsers exist in the referenced

.mgx file. specifies which language to use to parse
input data. (Alias: /1>

R T L CT e s S liled MName of the M module created. Only walid when the
target type iz M. (Alias: /m}

77 Display this usage message. (Alias: shelp. <h)

/nologo Suppress progran logo.

B{file> Read {file> for more parameters.

C:\LunchCounter>

Figure 3-36. Displaying the MGX tool parameters
At the command prompt, enter and execute the command as follows:
Mgx.exe SandwichLanguage.dsl /reference:LunchCounter.mx /MModuleName: LunchCounter
Figure 3-37 shows this, except that I've used aliases for setting the parameters to keep the command

from wrapping in the command window. You can try it either way. If you do a dir directory listing, you
can see that this command created the SandwichLanguage.m file.

62

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

&Y Mierasoft SOL Server Mogellng CTP Gommand Promps -9

Usage: mgx dataFile{s) ...

Positional Parameters:
dataFileds) ... input File names. wildcards allowved. e.g. *.ext.

Parameters:
sreference :{string? .mgx reference file name. M
specurse!{string’,... Include all files in the current directory and
subdirectories according to the wildcard

specifications

starget :{mgxtargetr Target type. Legal values: M, Haml. {Alias: /t)

Jout:{string> Specify output directory or file prefix {default: no
prefix. files generated in current directoryl.
{Alias: /o)

/language :<{string’ If multiple language parsers exist in the referenced

.mgx file. specifies which language to use to parse
input data. (Alias: /1>

MModuleName :{string> MName of the M module created. Only valid when the
target type iz M. %

77 Display this usage nessage‘ (Alias: shelp. /h)
/nologo Suppress program logo.
B{file> Read {file’ for more paraneters.

IC - \LunchCount er Y pep swndu1rhb1nuuw gl . /m: LunchCounter
Microsoft (R) Codename rammart Executor version

Copyright ¢c) Microsoft Corporation. A1l rights rese;ued

C:\LunchCounter)ﬁF

Uolume in drive C is ACER

Uolume Serial Number is 78DB-DYCP
Directory of C:izLunchCounter

W4/83,2018 B2:26 PM <DIR>
B4-83,2018 B2:26 PH <DIR>

B4,03-201@ B1:42 AH 1,244 LunchCounter.ng
@4,83,2018 01:16 PH 27,976 LunchCounter.mx
B4-83-2018 11:42 AH 1.484 LunchCounter.Schena.m
B4/83,2018 BE:41 AM 176 ich 1

@4-83,201@ 02:26 PM
2 DIP(S) 15,962, 378 848 hytes free
IC:5sLunchCounter>_

b

Figure 3-37. Running the MGX MGrammar executor tool to generate the SandwichLanguage.m file

Loading this file into Intellipad (see Figure 3-38), you can see that it is an M Graph almost exactly
the same as the one generated earlier when you made the final revisions to the DSL Grammar code prior
to setting up for the deployment phase. The one difference is that the graph is now defined within the

LunchCounter module.

63

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

64

4% Fe Edit View DSL Hep nein -ox%
| SandwichLanguage.m 100% M Graph Mode

jrodule LunchCounter |
SandwichOrders {
{
Stuff =» |
i
Name => "Pastrami”

el
Bread => |
{
Name =»> "Rye"
t
b

Condiment =» |
i
Name => "lettuce"
Is
1

Name =» “Tomata"

Stuff = |

Name => "Ham"

|

Figure 3-38. Displaying SandwichLanguage.m in Intellipad M Graph mode

You should be ready for the last step of installing the schema and instances to the database. You can
do this with the mx.exe executor tool.

The MSchema file, LunchCounter.Schema.m, defines the four types and extents that the M Graph
uses: SandwichOrders, Breads, Stuff, and Condiments. The MSchema file tells the SQL Server Modeling
framework how to store the instances of the data represented in the M Graph in a data store. With your
MSchema defined, you can use both the M Graph created by the MExecutor (mgx.exe) and the
MSchema (LunchCounter.Schema.m, as shown in Figure 3-32) to compile your M files for use in a SQL
Server data store by using the M compiler:

m.exe SandwichLanguage.m LunchCounter.Schema.m /t:TSql10
The /t: target flag specifies that the output will be used for deploying the schema and instances.

The result of executing this command is the image file SandwichLanguage.mx. (See the listing generated
by the dir command in Figure 3-39.)

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

& Micrasoft SOL Servar Modeling CTR Gomriand Prompt -z

xe ,nnduiuhLmnguuqr -n LunchCounter.Schema.m ~t:T5gl1@

icrosoft (R) Codename

h SLunchCount er S
omp1
opyright (c) Microsoft Corporation. A1l rlghts Peserued

:\LunchCounter>dir
Uplume in drive C is ACER
Volume Serial Nunmber is Y8DB-DICF

Directory of C:\LunchCounter

4/84/2018 B8:54 AM {DIR>
4/84/2018 B8:54 AN {DIR>

4/03,2018 B1:42 AH 1,244 LunchCounter.ng
4/83/2018 B1:16 PH 27,976 LunchCounter.mx
4/03,2018 11:4%2 AN 1.484 LunchGounter.Schema.m
4/83,2018 B3:48 PN 26.826 LunchCounter.Schema.mx
4/03,2018 B3:21 PH 4,380 mx-help-install.txt

4/03/,2018 B8:41 AM 176 SandwichLanguage.dsl
4/03,2018 B2:26 PM 1 ?
4/B84/2018 B7:36 AN

2 DIP(S) 15,888, 471 E4B hytes free

:sLunchCounter?

Figure 3-39. Generating the SandwichLanguage.mx image file

You can also add a package flag (/p) to specify that instead of an image file, you want a SQL script:
m.exe SandwichLanguage.m LunchCounter.Schema.m /t:TSql10 /p:Script

This generates the SQL script file SandwichLanguage.sql (see Figure 3-40).

Micrrsoft SOL Server Modeling CTR Gomrmand Prompt 3 D{ﬂ

2 -
sLunchCountern.exe SandvichLanguage.m LunchCounter.Schema.m ~t:T8glifA fp:&cri—J

FAicroso odename 'M" Lompiler wersion i
opyright (c) Microsoft Corporation. A1l rlghts Peserued

C:sLunchCounter>dip
Uolume in drive C is
Uolume Serial Number 1s 7803 DICF

Directory of CiNLunchCounter

4/84-2018 B7:56 AM <DIR>
4/84/2018 B9:56 AN <DIR>

4/83/2018 B1:42 AN 1,244 LunchCounter.ng
4/83-2018 B81:16 PH 27,976 LunchCounter.mx
4,083,201 11:4% AN 1,484 LunchGounter.Schema.m
4/83,2018 B3:48 PN 26.826 LunchCounter.Schema.mx
4-83,2018 B3:21 PM 4,380 mx-help-install.txt
4/83-2018 B3:41 AN 176 SandwichLanguage.dsl

4/03-2018 B2:26 PH 1,801 SandwichLanguage ..m
4/04/2018 B9:36 AM i x
4/84-2018 B9:56 AN !

2 DIP(S) i5.8@7. 639 552 hytes free

G:\LunchCounter> hdl

Figure 3-40. Generating the SandwichLanguage.sql script file with the m.exe compiler

You can run this script as a query in SQL Server Management Studio (SSMS) to load the database.
Bring up SSMS, click on the File menu, then Open - File (see Figure 3-41).

65

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

(File | Edit Wiew Tools Window Community Help

Connect Object Explorer... =
; Disconnect Chiect Explorer = a

New 3

[e] | momaisobeon.. coishiig
Close 5 Fle... Cii+Q

Close Solution s File with Mew Connection...

Save Selected Tiems Ciri+S 34 File Disconnected...

Save Selected Ttems As., Palicy

m
j Save Al Chri45hift+5

Page Setup..

A print., ctrl4p
Recent Fles 3
Recent Projects 3

Exit

lﬁﬁeg‘stﬂed Servers IB Obiect Explorer J

Il Ready

Figure 3-41. Opening the generated SQL script file in SQL Server Management Studio

When the Open File dialog box appears, browse to the C:\LunchCounter folder and select the
SandwichLanguage.sqgl. To open it, either double-click the file or click the Open button. This will display
the contents of the T-SQL script file. Click the Execute button on the SSMS toolbar, as shown in Figure
3-42.

| HgvCTP3 2| Exeae| p B \’w
Object Explorer 2y + 1 X || “sandwichtangu.. (54))| - X
- T 3et xact abort on ~
- - o
= | foce) (0L Server 10.0,1600 - - .
1=/ [Databases e s
- in tr iom:
@ [System Databases S BREERArk LT
) [Database Snapshots oo
i | J Contacts
& | § NewCTR3 set ansi nulls ony
@ | § PDCO9A 9o
] Repositary
@ | SetupApplication Bdeclare @serd Language Catalpg Declarations bigint = ident current
i | setupApplication1a
@ |) SetupApplication20 declare @increment Language Catalog Declarations biginc = idert in
¥ [Security
& _D Server Cbjects declare @seed Language Catalog Modules bigint = ident L
& [Replication
3 Mangement declare Gincrement Language Catalog Modules bigint = ident imexr(N'
% SQL Server Agent = A = e
| derlare Rsted Tanmame Cataloq Fields himink = idprt murreofil! 'T_BE
< I J
B3 5
TAreastered servers| I object Exporer 2 connected. (1/1) focal) (10.0RTH) | (5 NovCTP3. | 00:00:00 Dromis
Ready lni Col 1 chi NS

Figure 3-42. SQL Server Management Studio after opening the SandwichLanguage.sql T-SQL script file

66

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

An alternative approach to deploying the database is to use the mx.exe command-line utility. Figure
3-43 displays the syntax for using the mx. exe tool to deploy to the database, along with the output
generated.

& Micrasoft SOL Server Madeling CTE Gammiand Prompt _‘.UEJ |

\LunchCounter?mx install SandwichLanguage.mx LunchCounter.Schema.mx /d:LunchCo:J
nter /c

icrosoft (R) Cod “M" G d-line Utility version 1.8.2080.86
opyright {(c) Microsoft Corporation. All rights reserved.

reating database: LunchCounter...

reated database: LunchCounter

Installing: Catalog;Version=1.8;Locale=neutral...
Installed: Catalog;Version=1.8;Locale=neutral

Installing: SandwichLanguage ;Uersion=1.8;Locale=neutral...
Installed: SandwichLanguage ;Uersion=1.8;Locale=neutral {
Installing: LunchCounter.Schema;Uersion=1.@;Locale=neutral... |

Figure 3-43. SQL installing the LunchCounter database using the MX executor

Regardless of which way you decide to deploy the LunchCounter module, you can check the
installation by bringing up SQL Server Management Studio. If it is already up, simply click the server
connection and press the F5 key to refresh the display. You should now see LunchCounter displayed as
one of the databases under the Databases list. Expand LunchCounter, then click on Tables. (Figure 3-44
shows a partial view of the LunchCounter database Tables list.) Scroll down the list until you get to
where the LunchCounter tables should appear. You should see four tables listed:

¢ LunchCounter.Breads
¢ LunchCounter.Condiments
¢ LunchCounter.SandwichOrders

¢ LunchCounter.Stuffs

You can examine the data in each of these tables by right-clicking on the table name and selecting
Edit Top 200 Rows.

67

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

2 Microsoft SQL Server fanagement Studio

Fle Edit Vew Tools Window Community Help

{0 hewouey (38 % B D (2) 2

OsectExclore 3%
ETEE |
& [focal) (SQL Server 10.0.1500 - [

= [[J Databases
® [System Databases
@ [Database Snapshots
] |J Contacts

= |J LunchCounter

) [Database Diagrams

® 3 sMRuntime LunchCaunter.Breads_Labels
#® = sMRuntime.LunchCounter,Condiments_Labels =
@ 3 sMRuntime LunchCounter.SandwichOrders_Labels
® 3 sMRuntime LunchCounter. Stuffs_Labels

® 3 Language.Catalog, Arguments

@ [Language.Catalog. CollectiorTypes

(3 Language.Catalog. ComputedyalueGroups

[Language. Catalog Computedialues

5 Language.Catalag Constants

3 Language.Catzlog Dedarations

3 Lenguage.Catalog EntityTypes

.1 | annuane. Catalnn Froressinns

Figure 3-44. Checking the LunchCounter database Tables list in SSMS

Before reviewing the data in the tables, let’s recall the four sample orders you set up in your
SandwichLanguage.dsl file. The final Intellipad split-pane view (refer to Figure 3-31) shows these. They
consisted of the following:

¢ Order 1: Pastrami on Rye with Lettuce & Tomato.

¢ Order 2: Ham on 9-Grain Wheat with Mayo and Mustard.
¢ Order 3: Spam on White with Salsa.

o Order 4: Grilled Tofu & Portabella in Pita with Lettuce.

These should be reflected in the four LunchCounter database tables. Note that there are three
many-to-one relationships in these orders: two condiments in Orders 1 and 2, and two stuffs in Order 4.
The tables should reflect these.

Figure 3-45 shows the four instances of SandwichOrder in the SandwichOrders table. This table
contains the order keys only, since all the remaining data of an order (the Bread, Stuffs, and Condiments
values) are reflected in the three other tables. If Lola and Norm get into further design iterations and
refinements, the SandwichOrders table might contain other data, such as an Order timestamp. But for
now, each instance in the table has only a key, reflected as a foreign key in each of the Breads,
Condiments, and Stuffs tables.

68

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

(T Wicrasott SOL Server Nanagemant

RN v

Fle Edit View Project Debug QueryDesigner Tools Window Community Help

1 BEEE ._andwichDrdersL

L views

® 3 Language.Edm.EdmMappings
@ B LunchCounter.Breads

Mew Table. ..

& 3 system. ComponentMadel.Displa Design
& 3 System, Componentiadel Disply Select Top 1000 Rows

d
|j_\| » 1
2z
3
e L0
_ék e

@ =1 System, ComponentModel. Displ
3 System.ComponentMadel.Data

Edit Top 200 Rows

Scrint Table as

b

Figure 3-45. The SandwichOrders table, which contains only the order key

Figure 3-46 shows the Breads table. Note that there is only one Bread value for each order, which is
what you would expect, since this is how the orders were set up in the sample DSL file. Besides, one
Bread per SandwichOrder is a business rule that was reflected in the LunchCounter.Schema.m file.

'—Se Microsoft ﬁl Server | nfStuglLu

| =| o J ChangaTﬁe

Fle Edit View Project Debug QueryDesigner Tools Window Community Help

Connect ¥ gg aﬁ

Figure 3-46. The Breads table

alialnal
— N gl X || e d— ounter.Breads |
Id | Name | Order

el Languaga Edm. Edmlﬂapnngs |A| 14 1 Rye 1

MNew Table... 2 9-Grain Wheat |2
=] LunchCaunter. Candm s & i 7
® [LunchCounter.Sandni{ | Design -1- =
& 3 LunchCounter.Stuffs Select Tap 1000 Ropis = Pita 4
1 System, Componenti — * ML AL MLLL
[System, Componenth Edt Top 200 Rous B
51 Sustem. ComnonentM Serint Tahle s 3

Figure 3-47 shows the Condiments table, and you can see there are two one-to-many relationships:
Order! has two condiments (Lettuce and Tomato) and Order 2 also has two condiments (Mayo and
Mustard). This is as you would expect, given the sample orders in the DSL file.

69

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

= P R S e
12 Microsoft SOL Server Management Studio
Ble Edit View Project Debug QueryDesigner Tools Window Community Help
il ten oy | |5 0 5| O 05 ol 4 (LD
el [rmeereer | 8 (2 =1 61
Object Explorer > 2| . ~ ..er.Condiments|
Connect = | E? Al = _; d Hame Order
® [Language.Edm.EdmMappings |/_~| 14 [} Lettuce [% 1
@ = LunchCounter Breads 2 Tomato 1
& [LunchCounter.Condiments
& : 3 Mayo 2
@ & LunchCounter.SandwichOrders
B LunchCounter.Stuffs 4 Mustard z
[# O System,ComponentMadel. DisplayiameExtentannatations 5 Salsz 3
3 System, ComponentModel. DisplayNameFieldAnnotations 5 et 4
[System ComponentModel. DisplayNameTypeAnnotations
@ 3 system, ComponentModel. DataAnnotations.RangeAnnotations |ék ALLL ALLL ALLL

Figure 3-47. The Condiments table

Finally, Figure 3-48 shows the values in the Stuffs table, which includes a single many-to-one
relationship: Order 4 has two Stuff values (Grilled Tofu and Portabella). Again, this is confirmed by the
expression of the fourth order in the list: Grilled Tofu & Portabella in Pita with Lettuce. So the database
instances appear to be entirely consistent with the model.

e — e —————
42 Microsoft SQL Server Management Studio
Fle Edit View Project Debug QueryDesigner Tools Window Communmity Help

Object Explorer

"~ _ounterStuffs|
- 0o JF.§ IV Qrd
Connect * | ¥ 22 L 3 L L . s —
® 3 Language.Edm.EdmMappings Pastrami 1
@ 3 LunchCounter Breads 2 Ham 2
3 LunchCounter.Condiments # ke 5 %
3 LunchCounter.SandwichOrders . 8 -
= LunchCounter.Stuffs 4 Griled Tofu 4
@ = system, ComponentModel DisplayiameExtentAnnatations 5 Portabella 4
5 System,ComponentModel. DisplayhameFieldannotations * ALl AL ML
AL MLLL AL

[System, ComponentMadel.DisplayiameTypeAnnatations :

Figure 3-48. The Stuffs table

You may have notice that under the LunchCounter database item in the Object Explorer pane of
SSMS is an item called Database Diagrams. Let's see if you can generate a diagram of the five tables.
Click on the Database Diagrams item, and you will more than likely get a message window like that
shown in Figure 3-49, asking if you would like to generate the support objects required to use database
diagramming. Click the Yes button to generate the support objects.

70

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

[- - " .
! Ua Microsoft SQL Server Management Studio

Fle Edt Vies Project Debug Tools Window Community Help

New Query | [y | By 3 5 | [|05 [
| Object Explorer
il ca a9 g ¥ 7

B | focal) (5QL Server 10,0, 1500 -
(= [Databases
[System Datzbases
[Datshase Snapshots
[Contacts
2 | LunchCounter
[Database Diagrams
=1 [Tables [
[System Tables

I # 3 shRuntine Lur #) | This database does not have one or mare of the support objects required to use database diagramming.

| ® & sMRuntime,Lun Do vau wish to create them?
® [sMRuntime.Lur
@ B $MRuntime Lur
[Lenguage.Catd a %

[Lenguage.Catd
3 Language.Catalog. ComputedValustroups

Figure 3-49. Setting up to generate a database diagram

Once this happens, you can right-click on Database Diagrams and select New Database Diagram
(see Figure 3-50).

Ale Edit View Project Debug Table Designer DatabaseDisgram Tools Window Community Help
= = 2 Al E
“AE L 'iHY
- ~ ..r- Diagram_0 - X
Connect~ | B 3 [T -
OONECLT | e %]
& [foce) (SOL Server 10,0, 1600 - T T) [
= [Datahases 1
1# [System Databases =
=2} [‘g Database Snapshots
& |) Contacts
= | Lunch
=
Bl Tables Mew Datsbase Diagram
[System Tables Fiter v
B sMRuntime.Lun TR S |
B sMRuntime.Lun Reparts r
3 sMRuntime.Lun e 1 =1
E Runtime.Lun Refresh
[Language. Catzlog, Arguments -
i F | anniane Catalna CallarfinaTunes [il %
@Régistered SeryErs {@ Object Explorer ﬁ | 3
Ready

Figure 3-50. Creating a new a database diagram

A multi-select Add Table dialog box will pop up to allow you to select the database tables you want
to appear in the diagram. Use the Ctrl key to multi-select the Breads, Condiments, SandwichOrders, and
Stuffs tables, click the Add button, and then the Close button.

71

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

erver Management Studio

s

Fle Edit Wew Project Debug TableDesigner DatabaseDiagram Tools Window Community Help

it | (0| B B Sl 2 S

:Lﬁ s ‘ .;ul -?‘HTEHEW;EW' Aﬂw ‘;-Fﬂ @J L= 0| 100% L LL e
IOhJect Explarer Aﬁﬁébl: i —— — ‘ -Dmgm_-:

| annact_'J ‘!3_%_' ?‘_g

= [B (local) {(SQL Server 10.0.1600 - Afl | Tables |

= [Databases Arguments ﬂ.:angu_ag_e.Catalog) {A-
@ (3@ System Databases Breads (Luncht § I
i [[Datshase Snapshots Breads_Labels (sMRuntime, LunchCounter) ‘ =

| & U ot C\n:«rh'ihutEExlEnts {Language.Catalog.Clr)
(ClrattributeFields (Languaqe.Catalog.Clr)
g \:.un:hCounter ClrattributeTypes (Langukije. Catalog.Clr)
[Database Diagrams CallectionTypes (Language, Catalog)
E [Tables Columns {Language.Catalog. SQL)
[[System Tables CamputedValueGroups (Language. Catalog)
® 3 @Runtime.Lunch{ | ComputedValues {Language.Catalog)
® & sMRuntime.Lunch nents L
® 3 $MRuntime.Lunch
® E @Runtime.Lunch
® 3 Language.Catalog
@ & Language Catalog
[Language Catalog Refiesh] [T I [s
3 Language Catalog = # =
[Language Catalog m
1

m &

Condiments_Labels {SMRuntime.LunchCounter)
Constants {Language Catalog)
Declzrations (Language. Catalog) W.

#1_= | annuane Catalnn Neclaratione

Figure 3-51. Selecting the LunchCounter database tables to display in the diagram

Figure 3-52 shows the diagram of the four tables and their relationships. Diagramming is a powerful
tool in SQL Server, and there is a lot of functionality provided in the diagramming tools. Covering these
features is beyond the scope of this book, but I hope I've provided at least a taste of how the SQL Server
Modeling tools can be used in conjunction with the traditional SQL Server tools (such as SSMS and
Visual Studio) to create and deploy your own data models and model-based applications.

72

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

Tt S Servis Vanagement St 2]

Fle Edit View Project Debug TableDesigner DatsbaseDiagram Toolks Window Commurity Help

: 3 New Query | [J | Ly ' E =
F a8 Razd [0]ab |Teve e 13 AR50
Ohject Explorer v & X || /ST - Diagram_3%| - X

Connect = gi gﬂ T ‘§ =

5 |8 foca) {5GL Server 10.0.1600 - AC A
(= [Databases T
[# [System Datahases
[+ [Database Snapshats
[Contacts
=] |j LunchCounter
[Database Diagrams,
= [Tables
1 [System Tables
® B sMRuntime.LunchC
® B sMRuntime.LunchC
@ B SMRuntime.LunchC
i# 3 VRuntime.LunchC
[Language.Catalog. ¥ FOBQ'IL@E(E‘EMI)_
® [Language. Catalog. SandwichOrders (LunchCounter) §I
@ & Language.Catzlog, P Fame
@ & Language.Catzlog,
& Language.Catalog, et
3 Language.Catalog,
® [Language. Catalog,
w [Language. Catalog.,
w3 Language.Catalog.
® [Language.Catalog.
@ 3 Language.Catalog.
@ & Language.Catzlog.
@ & Language.Catzlog.
3 Language.Catalog,
3 Language.Catalog,
o= LaﬂguagE.Catalug.Iﬂ

&l R B i
EREleb&red Eervers m{ Object Explorer |_ J Lﬂ—;l

Breads (LunchCounter)
g -
Name
[Order]

Ready

Figure 3-52. LunchCounter database diagram displayed in SSMS

You could also use a JOIN select statement to create a consolidated view of the sandwich orders. To
do this, close the Object Explorer pane by clicking the X in the upper-right corner of the Object Explorer
pane. Click “New Query” on the tool ribbon (Figure 3-53). Click the Query menu item, then choose the
Design Query in Editor option (see Figure 3-53).

73

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

y byt ;
Fle Edt Yiew M Project Debug Tools Window Community Help
: Connection 3
Open Server in Chject Explarer os e =
AL Specify Values for Template Parameters. ., - X
Execute F5 :'
W Canrel Executing Query Alt+Break m
4 Parse Cirl4F5
1 f:: Display Estimated Execution Plan Cri4l
_, InteliSense Enabled
oy Trace Queryin SOL Server Profiler Cirl+Alt4P
Analyze Query in Database Enaine Tuning Advisor
: Design Query in Editor... N Cirl+5hift+Q i
Y Indude Actusl Execution ;I\\an Cirl+M
| Include Client Statistics
Reset Client Statistics
SOLEMD Mode
ResultsTo 3 |
= b b
o & Query Options.., , ‘ Lﬂ
i?ﬂommted.‘(l,ﬂ] i flocal) (1.0 RTM) | i S (54) | LunchCounter | 00:00:00 Orows
Rezdy ln1 Colt tht NS,

Figure 3-53. Setting up to design the query in the Query editor

74

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

|
v
[a]
D * (Al Columns) D * (Al Columns) u * (Al Columns)
d o= | [u
[Iname [IMame
Condiments ... —|[[order =eo|[_lorder
* (Al Columns)
[rd
i Dr-lame
w6 DOrder
Add Table

Tables |vens |

Arguments {Lanquage. Catalog] |A|

Breads (LunchCounter) I

Breads_Labels {SMRuntime.LunchCounter) = 4

ClrattributeExtents {Language. Catalog, CIr) |:’__i

CIrattributeFields (Lanquage. Catalog.Clr) o _)_I

ClrattributeTypes (Language.Catalog.Clr) e ——roto

CallectionTypes (Language.Catalog) Filter O'L_'

Columns {Language. Catalog. SQL) | .?|

ComputedValueGroups (Language. Catalog) -

ComputedValues (Language. Catalog)

Condiments (LunchCounter)

Condiments_Labels {SMRuntime, LunchCounter) !‘_’|
< ! | Constants (Language.Catalog) [
= Deistan Lon). bl | —

FROM LunchCou
LunchC IMER JOIN
Luncht [Refesn [add [dose | |miERIom
LunchC . [Order]

Figure 3-54. Selecting the LunchCounter tables for the JOIN query

This will bring up an empty Query Designer window, with an Add Table dialog box (Figure 3-54).
Select the four LunchCounter tables in the following order, clicking the Add button after each selection:

¢ SandwichOrders (LunchCounter)
o Stuffs (LunchCounter)
¢ Breads (LunchCounter)

¢ Condiments (LunchCounter)
This should result in a table diagram similar to that shown in the upper pane of the Query Designer

(see Figure 3-55). Click the Close button on the Add Table dialog box and rearrange the tables to make
the diagram more readable.

75

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

e i |
Query Desigrer W
Al
El
Breads (Lun... -|
* (&l Columns) i
||
L_{MName
| |Order
(an ents Stuffs (Lunc...]
[T (&l Colomrs) 1= a calumns)
id [
4 [Ihame [IName
[lorder [lorder
||
<) (2]
Column Alizs Table Quiput | Sort Type | Sort Order Filter Or[ﬁ
» i ol =
@ 4
®
[se]
< |)
fSELECT
FROM LunchCounter.SanduwichOrders IMNER. JOIN
LunchCounter.Stuffs ON LunchCounter. SandwichOrders.Id = LunchCounter. Stuffs, [Order] INMER JOIN
LunchCounter.Breads ON LunchCounter,SandwichOrders.Id = LunchCounter.Breads. [Order] INNER JOIN
LunchCounter.Condiments ON LunchCounter,SandwichOrders.Id = LunchCounter, Condiments, [Order]
Py :

Figure 3-55. After rearranging the table diagram and preparing to select the display columns

Now you're ready to select the display columns for the query. Click in the topmost cell of the left
column, and you should see a drop-down menu from which you can select the first display column (see
Figure 3-56, which shows the drop-down menu for the fourth column after setting up the first three
column definitions).

76

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

———————

r{-i.uer; Designer

eS| E

* (All Columns)

[vlmd

Condir

o B Sets {Lunce.. B
Ll" (Al Columns) U * (Al Columns)
Id d
A [|ame [|ame
[lorder [lorder
#
Bm 2]
Column Alizs Table Qutput | Sort Type |
d Crder= Sandwichrders (... =
Name Stuffs Stuffs (LunchCotn... —
Name Bread Breads (LunchCou...
Bl |y = [
{_l_ LunchCounter Breads,® [2 |__>_|
GELECT | LunchCournter Breads.Id inchCounter Stuffs. Name AS Sufs, LunchCounter Breads, Name |
FROM | LunchCounter.Breads.Name
LunchCounter,Breads. [Order] iichOrders.Id = LunchCounter.Stuffs, [Order] INNER JOIN
LurchColter Condimertis.* wichOrders.Id = LunchCounter.Breads. [Order] INNER JOIM
_Lunn_jﬁn_unre_r.Cnndiments.Ic! = |SandwichOrders.Id = LunchCounter, Condiments, [Order]
LunchCounter. Condiments. [Order] |
&l 1 | |

Figure 3-56. Selecting the display columns for the JOIN query
Set up the display columns according to the column, aliases, and table names shown in Table 3-1.

Table 3-1. Display Column Configuration for the Query

Column Alias Table

Id Order# SandwichOrders (LunchCounter)
Name Stuffs Stuffs (LunchCounter)

Name Bread Breads (LunchCounter)

Name Condiments Condiments (LunchCounter)

77

CHAPTER 3 ' DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

78

After completing the display column configuration for the query, click the OK button of the Query

Designer window. The generated query text is shown in the upper pane of Figure 3-57. Press F5 or click
the button on the toolbar to run the query.

Microsolt SOL Server Management Studio ;EW

Be B4t Yen Oury Pomct Detug Toos Windos

.
i Quary | [1

‘um_-: -.

o Query eoncuted seccensfilly

Figure 3-57. Displaying the view of the query results

The results of the query are shown in the table displayed in the lower pane. As you can see, you have
four sandwich orders: Pastrami on Rye with Lettuce and Tomato, Ham on 9-Grain Wheat with Mayo and
Mustard, Spam on White with Salsa, and Grilled Tofu and Portabella in Pita with Lettuce. This
corresponds exactly with the original DSL sample.

Thinking Ahead

You could continue refining your model for SandwichOrders, and more generally the functionality of your
system. Here are a few possibilities:

o Tageach order with a timestamp, the server’s name, and the table number.

¢ Track inventory effects by decrementing the respective quantities in inventory for
each order served.

¢ Extend the DSL to a broader range of orders, like drinks, salads, and soups.
¢ Have the system compute the total price of each order.
¢ Track whether an order is for take-out or not.

¢ Provide nutritional data to each customer based on his or her order. (Some
restaurants provide this kind of information on their menus.)

CHAPTER 3 DOMAIN-SPECIFIC LANGUAGES 101: LOLA'S LUNCH COUNTER

Concluding Thoughts

This concludes your excursion through the domain of the LunchCounter. The chapter provides only a
cursory overview of how one might go about creating a DSL to model a single process or workflow.

How might you sum up what you've learned from this LunchCounter exercise? This fictional
exchange between a user (i.e., domain expert) and a developer (i.e., technology expert) illustrates the
kind of collaboration that can begin with a rudimentary and hypothetical single line in the DSL. Over
time, the DSL and its DSL Grammar definition can be gradually refined and extended until it approaches
the fundamentals of a useful system.

The style used by Norm in working with Lola, the user, is a somewhat simplified version of test-
driven development. Working with Lola, extensions and refinements to the DSL are written first, then he
codes against the errors raised because of the fact that the grammar doesn’t support these extensions. As
the developer refines the grammar, these errors are removed, and the DSL and grammar definitions are
validated by seeing the resulting M Graph code generated in a way that makes sense.

Knowledge of the M language specification is important to the developer, but not to the user. This
knowledge can only be gained by a careful reading of the Microsoft M Language Specification, or of
some other source, that provides this information in all its detail. Because this book approaches the
subject at the beginner’s level, I've skirted over some of the more technical aspects of developing a DSL
using MGrammar and the M language tools. If you're determined to get up to speed with this
technology, time invested in becoming familiar with these important sources is time well spent.

DSLs have at least three important attributes:

¢ Readability: This is perhaps the most important, because a well-designed DSL provides the
context and the platform for communication between the domain expert and the technology
expert. The clarity and ease of this communication is crucial in developing a system that
provides real value to the user.

o Write-ability: This means statements written in the Domain-Specific Language are
easily written, in an intuitive way, by both the domain expert and the technology
expert. There is a minimum of, if any, arcane rules of syntax to learn and remember.

¢ Simplicity (remember the lack of expressiveness I mentioned at the beginning?): This
goes hand-in-hand with the first two attributes. Readability and write-ability won’t
be attained without simplicity.

79

CHAPTER 4

Introduction to Quadrant

In Chapter 3, you saw how to create a domain-specific language (DSL) for
a very simple domain using Intellipad, the M-aware text editor. In this
chapter, you'll look at Quadrant, a modeling tool that addresses a wide
range of tasks, including creating, maintaining, and editing models and
data in the Repository or in other SQL database tables, as well as writing
and editing M code.

Quadrant is a powerful tool in terms of its functionality, and it has an
extensive feature set. I could begin with a walkthrough each of the
features in its menu tree, but that may not be the most interesting or
productive way of getting the first-time user up to speed. A tool with an
extensive feature set can be a bit overwhelming for the new user, so this
chapter will approach its subject at a somewhat higher level. The intent
here is to give you an overview of Quadrant without immersing you in too many of the details.

Appendix D shows the Quadrant menu tree, so feel free to refer to that any time you would like to
see where a particular feature fits.

My Car: Creating a Simple Model in Quadrant

You'll start putting Quadrant through its paces by creating a simple systems model of a car. As you know,
you can analyze many complex systems (like planes, trains, and automobiles) as a composition of
different levels of subsystems and components. In addition, the subsystems themselves can be further
analyzed into lower level subsystems. This is a partitioning design pattern usually referred to as the
composite pattern.

To open Quadrant, click on the Windows Start button, then All Programs, then Microsoft SQL Server
Modeling CTP - Quadrant, as shown in Figure 4-1.

fi Miosoft SQL Server Modeling TP » | SIS W=t

@ Maosoft Sync Framenork
l—@ Microsoft Visual Studio 2008

B Microsoft SQL Server Modeling CTP Command Prompt
Ilﬂ Microsoft Visual Studie 2010 b Developer Center Online

I:@ Mobipocket.com || || Readme

Figure 4-1. Opening Quadrant from the Windows Start button - All Programs menu

81

CHAPTER 4 = INTRODUCTION TO QUADRANT

Building the Car Model in Quadrant

The initial Quadrant window, after opening, appears as shown in Figure 4-2, with much of the same look
and feel as Intellipad. The lower-right corner of the status bar shows the current database name and

zoom level.

%0 FHle Edit View Workpad Data Help - O

Quadrant 88%

Figure 4-2. The empty Quadrant window after opening

To build the code for the car model, you'll start by opening a text pane for writing the M code for the
model. Click File - New, and then select M File, as shown in Figure 4-3.

.y

* Hle | Edit View Workpad Data Help

New ¥ MFile

Dpen File.. Cil+0 | Workpad % Cirl+N
Ctrl+5Shift+N

Session...

T-SQL Console

Delete Session

Drop Database..

Resolve All Conflicts b

Exit Aji+F4

=0

Repository 119%

Figure 4-3. Opening a new M file

Figure 4-4 shows the M code (in its entirety) for the composition-based car model. Note that the
double slashes (//) at the start of any line denotes a comment; comments are ignored by the M compiler,
as they are with other programming languages. Block (multi-line) comments can also be embedded in
the code by starting the first line of the comment with a slash and asterisk (/*) and ending the last line of
the comment with the opposite (*/), as shown on lines 16 and 17 in Figure 4-4.

82

CHAPTER 4 © INTRODUCTION TO QUADRANT

&0 Fle Edt View Workpad Datz Help =X

module Car.Model

export CarComponent, CarComponents:

! define the CarComponent type

type CarComponent

Id | Integers4 =) AutoNumber(); // used for the Id, or Rey for eachr camponent
Name : Text;

Lavel : Integer32; [/ the syste

Description ; Text?; 7 aperata ing 6 or I pccurrences
PartOfComponent ; CarComponent’ where value in CarComponents;

Quantity @ Integer32 =+ 1. // haw many needed for top-level s)

| where identity (Id),

Quadrant 105%

Figure 4-4. M code for a simple car model

Let’s walk through the code line by line:

Line I: module Car.Model—All M code must be contained within a named module,
which is the top-level namespace in the M language. It helps to give a meaningful
name to the module that more or less conveys its intent.

Line 3: export CarComponent, CarComponents—This makes the CaxComponent and
CarComponents entities visible and available to other modules. These are the only
two declarations in this particular module: the type CarComponent and the extent (or
table, in SQL-speak) CarComponents, which is a collection of the CarComponent
entities. You could also import declarations from other modules, but this isn’t
necessary in this particular example, since the module stands by itself.

Line 6: type CarComponent—Here you are declaring that the type definition for
CarComponent follows inside the braces. A CarComponent type is defined with the
following named structure:

o Id: An Integer64 (64-bit integer) that is set by the AutoNumber () function.
AutoNumber () is normally used for defining the Id (or key) of a new entity. It is
a system-provided function that automatically assigns a unique incremental
number to the Id, or key, each time a new entity is instantiated.

o Name: Defined as unrestricted text. Name is an important attribute when
defining a new type or entity, since it is, by convention, used as the tag for
the entity.

o Level: An Integer32. This is the system level of the component. The top
system level is 1 and defines the level of the entire system, named “My Car.”

83

CHAPTER 4 = INTRODUCTION TO QUADRANT

Level 2 corresponds to the highest level subsystems of the car, such as the
drive train or suspension or body. Level 3 corresponds to subsystems of the
Level 2 systems, and so on down the tree, until you reach the atomic level (in
the system perspective) of nuts, bolts, washers, and other things that can’t be
deconstructed any further.

o Description: Text indicates unrestricted text, as with the name, and the
appended Kleene operator (?) indicates either 0 or 1 occurrence. In other
words, the Description text is optional, or in database parlance, nullable.

o PartOfComponent: CarComponent? where value in CarComponents means
that the type instance can be null (the Kleene operator ? again), or can be
part of another CarComponent instance. If a component is part of another
subsystem, the parent system must be in the CarComponents collection. In
fewer words, the parent component must exist in the extent. This illuminates
a “self-referential” aspect to the model: One entity in the model can be a
parent or child entity of another entity in themodel, and the Part0fComponent
Id will be a foreign key referring to another entity existing in the scope of the
same model and (in the database perspective) table.

o Quantity: This indicates the number of components needed to complete the
system or parent subsystem. For example, eight pistons are required for a V-
8 engine, and four wheels are required for a car.

Note that the terminating semicolon (;) after the ending right brace in the code
indicates the end of the type definition.

Line 14: Where identity (Id);—This line of code assigns the identity (primary key
in the context of the database) to the value of Id.

Line 17: CarComponents: {CarComponent*};—This declares the CarComponents
extent (which results in creating a table of the same name in the database). Think
of an extent in the model context as mapping directly to a table in the database
context, with each entity within the extent corresponding to a record in the
database table. In the present context, the extent is declared to be the collection of
all CarComponents. The curly braces indicate a collection, and the asterisk is a
Kleene operator indicating 0 or more occurrences of CarComponent instances within
the collection.

Kleene operators are also called repetition operators in the M language specification, and there are
three of these:

e *means zero or more occurrences of an item (as previously described).
¢ +means one or more occurrences of an item.

e ?means zero or one occurrence of an item. This essentially means the item is
nullable, or optional.

This is the complete code for the simple car model. It allows you to model the car as a composite of
subsystems and components in any number of different system levels. You could, if you wanted to, take
this down to the level of nuts, bolts, O-rings, grommets, and gaskets, with thousands of records for these
subsystems and components in the table.

84

CHAPTER 4 © INTRODUCTION TO QUADRANT

To save this code as an M file, click File - Save File As in the Quadrant menu bar (see Figure 4-5),
and save the file as CarModel.m.

&0 Flz it View Werkpad Dats Help _EI'/.|
|t ‘B
W Open File... 0

Drop Database.,,

Save Gile nent, CarComponents:

Save File fs...

[}g {L’c-u-p-:.'»:nt type!

nt
Resalve All Conflicts ’ r
per64 =» AutoNumber(); // vsed forr the Id, or Rey for each camponent
Eat 4‘,1&#'4 t::1:t=_ger'32; [/ the
Description | Text?; /" is @ "Kleene pperata
PartOfComponent : CarComponent? where value in CarComponents:
Quantity : Integer32 = 1. // how many needed for top-level system; default to 1
| where identity (Id);

ming @ or 1o

or extent, of atl C

CarComponents: {CarComponent®};

Quadrant 105%

Figure 4-5. Saving the Car.Model code as Car.Model.m

Deploying the Model to SQL Server

Once the M file is saved, you're ready to deploy the model as a schema to SQL Server. In Quadrant, you
are able to deploy the model directly to the SQL Server database without having to use the command-
line tool set as you did in the last chapter. To use this procedure for deploying the model, click Data >
Deploy in the menu bar (see Figure 4-6). (As the menu indicates, Ctrl+F5 will also work.)

85

CHAPTER 4 © INTRODUCTION TO QUADRANT

40 He Edt View Worpad Daiz i Help = - =
- Error Squiggles -—‘—-q
Column Indicator _-l

module Car.Mode Lnk Navigation
f Word Wrap

Line Number

Deploy... h Cr4Fs
[/ define the C Install Addin.

type CarComp Show QL

——

Carblodeim

export CarCo

i Export Database To M...
Id | In // used jor the Id, op Rey for each campopent
Name :
Level : istem Level of the component
Descrip 5 0 “Kleene operator” meaning @ or I occurrences

PartOfComponent | Cartomponent. where value in CarComponents;
Quantity : Integer32 = 1, // how many needed for top-level system; default to 1
| where identity Id),
/= daclogre “CarCompanents”™ a5 the collection,
or extent, of all CarComponents:
CarComponents; {CarComponent®:,

Quadrant 105%

Figure 4-6. Deploying CarModel.m to SQL Server
A dialog box will pop up, as shown in Figure 4-7, giving you the option to deploy to the existing

database session, to replace an existing database (this would replace the database, including schema
and data), or create a new database.

86

CHAPTER 4 = INTRODUCTION TO QUADRANT

4+ Deploy %

[®) Use existing database session

|Quadient LOZ00BTACER . (Quadvant Repostory]
(O Replace ewisting database

I

(0 Create new datat

| —

Figure 4-7. Designating the database for deployment

Select the Create New Database option, and name the new database “CarModel.” Once the model is
deployed, you can use the Quadrant Explorer to view, add, and edit data (see Figure 4-8).

s TR N

Figure 4-8. Bringing up the CarModel Explorer

Viewing the Model and Adding Data in the Explorer

Click View > Explorer in the menu bar, and select CarModel. This should display an Explorer pane, as
shown in Figure 4-9.

87

CHAPTER 4 © INTRODUCTION TO QUADRANT

88

% Fle Edit View Workpad Data Help Quadem LOE96024 O X

b Database

CarModel 100%

Figure 4-9. Initial CarModel database Explorer pane

Note that the session name in the Quadrant status bar (lower-right corner of the window) has
changed to the name of the current database session: CarModel. Click on the Database arrowhead icon
to expand the schemas. Car.Model should be the first item displayed, as shown in Figure 4-10. Click on
the CarComponents table icon and drag this to the right onto the Quadrant canvas. Double-clicking the
square icon will have the same effect.

%% Fle Edit View Workpad Data Help U= LALE -0x

| Ddabase
4 O CarModel
CarCompanents
¥ & fanguage Catalog
+ & Language Catalog.Clr
¥ & Language Catalog.Runtime
+ ¢ language Catalog.SQL
¥ & LanguageEdm
*+ & SystemComponentModel
¥ ¢ SystemComponentModel.Datadnnotations

CarMaodel 100%

Figure 4-10. Double-clicking on the CarComponents icon to bring up its Explorer

CHAPTER 4 © INTRODUCTION TO QUADRANT

At this point, you should see an Explorer window showing the CarComponents table (shown in
Figure 4-11). The table is empty, of course, because you haven'’t yet created any data.

W Fle Edit View Workpad Data Help Clpirar A0 105138 0¥

W CarComporients ¥
4 Database Car.Model.CarComponents

40 CorModel _Id Name Level Description Quantity PertOfConiponent
] o
b & language.Catalog
» & Language.Catalog.Clr %
} ¢ language.Catalog.Runtime
¥ { Language.Catalog.SQL
b <& Language.Edm
b & System.ComponentMadel
¥ & Sctei Model DataAnnotati

==
CarModel 103%

Figure 4-11. Empty CarComponents Explorer (right window)

Close the CarModel Explorer window. To add your first item to the model, click Data - Insert Item

in the menu bar (see Figure 4-12).

#% He Edit View Worpad Data | Help _ Quadrori L0 T X
Gaomprnrs -
Column Settings ’
Car.Model CarCompaonents — A,
Id Name Level nponent
| Install Addin..
Export Database To M...
‘ Insert Item Ctri+l
s %
— —
CarModel 100%

Figure 4-12. Inserting the first item into the CarComponents table

89

CHAPTER 4 © INTRODUCTION TO QUADRANT

This will result in a detail pane for adding a new CarComponent entity, as shown in Figure 4-13. The
red squiggles indicate the parts of the record that can’t be null, so these must have values entered before
the item can be saved. The values without squiggles are nullable (except for Id), and entering these
values is optional.

The first record entered for the model should be the top-level item, which is My Car.

%% Fe Edit View Workpad Data Help Niadiari 10186020 =0°%
CarCompanents > %
Car.Model.CarComponents 0
d Name Llevel Descption GQuanbty PartOfCompanent Name <qul>
Leve| 0
Descnption <oull>
Quantity Q
PartOfComponent O <pull: -
¥ References

0 b

CarModel Emors (3) Changes (1) 100%

Figure 4-13. Detail window (right) for creating the first item

Enter the following data for the top-level record:
e Name: My Car

o Level: 1 (This is the highest system level, so it will have the lowest possible
number; zero is equivalent to a null and would not be accepted.)

o Description: 1954 Buick Wildcat IT
o Quantity. 1

o PartOfComponent: Leave this as null, since this is the top-level system.

Save the item by pressing Ctrl+S or select the File - Save Changes menu. The result is shown in
Figure 4-14.

90

CHAPTER 4 © INTRODUCTION TO QUADRANT
¢ Fle Edit View Workpad -0X
Car.Model.CarComponents Car.Model.CarComponents(1)
o Name lewel W1
01 MyCar 1 Name My Car
Level 1
Descnption 1954 Buick Wildcat I
Quantity |1
PartOfComponent O epuill> -
b References
CarModel 100%

Figure 4-14. After saving the top-level component

If you click between the Description and Quantity column headings, you will be able to drag the
right border for the Description column to the right until the entire description shows. You can also
double-click the right column divider to resize the column automatically. As you work with Explorer
panes in Quadrant, you will find that views are very amenable to reformatting and other Ul

customization.

Next, you will insert the Drive Train subsystem as a new item by pressing Ctrl+1. Enter the data
shown in the new detail pane shown in Figure 4-15. This figure shows that I have added and saved the
Drive Train item, and then clicked the drop-down arrow in the PartOfComponent column to set this
value to My Car. Note that the asterisk in the Drive Train* title of the detail window indicates that the
data has been changed but not saved. The asterisk at the far left of the corresponding line in the
CarComponents pane indicates the same thing. You can also see that the Quadrant window is displaying
Changes(1) in the status bar. Save the pending changes with Ctrl+S, and all indications that changes are

pending should disappear.

91

CHAPTER 4 © INTRODUCTION TO QUADRANT

4% Fle [dit View Workpad Data Help

CarComponents
Car.Model.CarComponents
. Name Level Description Quantity PartOfComponent , Car.Model.CarComponents{2)
o1 My Car 1 1954 Buick WildcatT 1 0 <null> - | 2
. — :
Mame Drive Train

I i ; Level 2

| O Drive Train Description Makes the car go

| 4k Insert New PartOfComponent Quantity 1

|~ % " PartOfComponent* © My Car hd

4 References
CarComponents_... o

e]
CarModel Changes (1) 103%

Figure 4-15. Adding the Drive Train subsystem

Next, you'll add the Suspension subsystem. Click the title bar of the CarComponents table pane to
make sure it is active , and then press Ctrl+I to bring up a new detail window. (In Quadrant, the active
window will have a colored title bar, as shown in Figure 4-16, while the others will have grayed out title
bars.) Enter the data for the new item, and press Ctrl+S to save the item. You can readjust the column
widths in the table pane as you go along so that the descriptions and other items are always readable.

4% He Edit View Workpad Data Help JuademlDIg96ldd 0K
—_ — —

T ITe—
SS—

Id Name Level Description Quantity PartOfCompanent

Q ick Wil 0 =null» -
1 My Car b 10954 Buick WildeatD 1 nul e 2

W3

oz DriveTrain 2 Makes the cargo 1 O My Car -

03 Suspension 2 Makes the rde sm... 1 O My Car i ;
Name Suspension

Level 2

n
Description - Makes the ride smoot...

Quantity 1
PartOfCompanent ‘Q_My_ Ca_r -

e

P References

CarModel 103%

Figure 4-16. Adding the Suspension subsystem

92

CHAPTER 4

Continue to use this procedure to build the CarComponents table, adding each item or subsystem
in a separate detail pane until you have all nine items shown in the table in Figure 4-17. Remember to
press Ctrl+S to save each item. If you prefer, you can accumulate changes as you continue to add or edit
data and save the changes less frequently, or you can save the changes after you've finished entering all
items. Figure 4-17 shows all but the last component (Shock Absorbers) saved, as indicated by the asterisk
to the left of the Id in the CarComponents table and to the right of PartOfComponent in the Shock

Absorbers detail pane.
4% Fle Edt View Workpad Data Help g 22| -0X
Crcomps &
Cor e Crcamponens
Id Mame Level Description Quantity PartCf€omponent
01 My Car 1 1954 Buick Wildcat T 1 0 <qnull» - ¢ Ll
0 2 Drive Train 2 Makes the car go 1 O My Car r . ng =5
0 3 Suspension 2 Makes the ride sm... 1 O My Car b .
04 Body 2 Metallic blue, nor.. 1 O My Car - &_
B0 a3 k3 owe -
. i 5 LAl
06 Engine 3 220hp VB 1 © DriveTrain =
-9 : P : i s Car.Model.CarComponents(9)
o7 Pictans 4 Drive the crankshaft 8 O Engine - Gy g W9
o 8 Valves 4 Bintake, B exhaust 16 O Engine - 'R Maitie: Shotk Absorbers
=0 3 Shock Absorbers 3 One for each wheel 4 O Suspension (3] level 3
Ll Desciption One for each whesl
b Quaniity 4
V| PartOfCamponent® O Suspension *
b Referances
CarModel Changes (1) 100%

Figure 4-17. Adding more subsystems and components

Customizing Column Views in Quadrant

You can customize views in Quadrant in a number of ways. You can choose which columns or properties
will or won't be displayed in the Explorer view of an extent/table, which is the most useful way of
displaying the data in each column. Figure 4-18 shows the options available for displaying values in the
PartOfComponent column. Usually, one of these options will make more sense than the others, but you
can try each one to see which displays the data in the most informative way.

INTRODUCTION TO QUADRANT

93

CHAPTER 4 © INTRODUCTION TO QUADRANT

94

%% File Edit View Workpad Datz Help el (160 <A%K
Garlomponents -
Car.Model. CarComponents
i I;j Name‘ Level Déscnphun Quantty Isarrgof_@w‘”“' -
01 MyGer 1 1954 Buick Wildat T~ 1 6 o) Ve CokmeAs. (B loonath Display Test
0 2 Drive Train 2 Makes the car go 1 O Myl Eolupi Selings.] Toie Medtai/Petal
03 Suspension 2 Makes the ride smoother 1 O My Car - e .
0 4 Body 2 Metalll'c_blue‘ nomst 1 o M‘y Car_' R?ferenm Vit y
Diagram
03 Steering 2 Makes it tum 1 O My Car b Fmpﬂﬁesh
0§ Engine 3 220hp VB 1 O DriveTrain =
a7 Pistons 4 Drive the crankshaft B o Engine—'
o] Valves 4 Bintake, § exhaust 16 O Engine -
a3 Shock Absorbers 3 One for each whesl 4 O Suspension *

CarModel 100%

Figure 4-18. Options for displaying the PartOfComponent data

As an example, Figure 4-19 shows how the last column is displayed when you choose the diagram
view. The options available for displaying a column’s data depend on the type of data included for that
particular field or column. Hence the PartOfComponent field has the diagram option available, since
components have parent/child relationships to other components or subsystems. Using the diagram
option for, say, the Description field wouldn’t be a good choice, and, in fact, isn’t available in the context
menu for this column.

%% Fle Edit View Workpad Data Help Wiadpm 105H0 0%
== - |
CarComponents -
Car.Model CarCamponents |

Id Name Level Description Quantity PartOfComponent
0 1 MyCer 1 1954 Buick Wildeat T~ 1 No resuits
0 2 Drive Train 2 Makes the car go 1
R —— i —— |
‘ (0] Body QO Drive Train
|
O MyGar
b= |
(0] Steering ‘ o] Suspension
2
CarMode| 100%

Figure 4-19. Diagram view for the PartOfComponent item of the Drive Train

CHAPTER 4 © INTRODUCTION TO QUADRANT

Viewing and Editing the Model in SQL Server

Now that you've deployed the model to SQL Server and added some data, you should be able to view
your work in the database. Before doing this, you need to determine which instance of SQL Server the
model was deployed to. You can see the properties of the SQL Server connection for the Quadrant
session you have been working in by going to the Quadrant Help - Quadrant Repository Connection
menu. Figure 4-20 shows an example of the properties displayed for the connection to the database. In
this case, you can see that the connection is to a SQLEXPRESS instance of the database.

Quadrant Repository Connection

Connection Timeout=300;Data Source =, \SQLEXPRESS; Initial Catalog=Quadrant. 1.0, 1960,24, \Bart:Integrated Security=True

Figure 4-20. Quadrant Repository connection properties display from the help menu

To open SQL Server Management Studio, bring up All Programs from the Windows Start button,
select the Microsoft SQL Server 2008 (or whatever the current release for SQL Server might be on your
computer), and click the SQL Server Management Studio option, as shown in Figure 4-21.

‘ M Microsoft SQL Server 2008 4 @ Configuration Tools 3
S0L Server 2008 Lpgrade Advisor

l-@ Analysis Services]
|': Impart and Export Data {32-hit)

@ Integration Services 3
i@ Performance Toals 13

‘ﬁ S0L Server Business Inteligence Development Studio

":..f 50L Server Management Studio

Figure 4-21. Starting SQL Server Management Studio

Once SQL Server Management Studio is open, be sure you are connected to the proper instance of
the database corresponding to the connection properties you just brought up. Under Databases, expand
the CarModel - Tables group and right-click the Car.Model.CarComponents table, as shown in Figure
4-22. Click the Edit Top 200 Rows option.

95

CHAPTER 4 © INTRODUCTION TO QUADRANT

Ble Edt VYew Took Window Commurity Help

o

(=) [Databases
i [System Databases
= [cartiocel

(¥ [Database Diagrams
& [Tables
® [System Tables
#

[Language.Catalog, Argume lev Table. ..
=1 Language.Catalog. Collecti Desian

® [Language Catalog, Computs
® £ Language.Catalog.Compu SelectTap 1000 Rops

=1 Language.Catalog. Canstar| Edit Top 200 Rows

i# O Language.Catalog. Dedara [%

® [Language.Catalog. EntityTy
5 Language.Catalog,Express View Dependendie:
i O Language.Catalog. Express
® [Language Catalog Express Polices

Seript Table as »

[— | Facets
Regstered 5 Object Expi

E egsared Servers [Object Explorer Start Pouershel

|| Ready

P .

Figure 4-22. Setting up to edit the CarComponents table in SQL Server

Figure 4-23 shows how SQL Server Management Studio presents the Car.Model.CarComponents
table in editing mode. You are able to edit data (at least the top 200 rows) in this mode.

Fle Edit View Project Debug QueryDesgner Tooks Window Community Help
e HEWQW]I nnﬁ nuﬁ E"‘n E i d 4 @ !
2 g o sl | [= | 4
/. (arC | - %
one 1] =_ B = d | Name | Level | Description | PartOfComponent | Quantity |
=] EB - \5QLEXPRESS (SQL Server mE 1 Iy Car 1 1954 Buick Wikdcat 11 UL 1
) [Databases [2 Drive Train 2 Makes the car go 1 1
Tl B ety 3 Suspension 2 NeleS e st |1 1
& [Carodel =
& [Datahase Disgrams Ik 4 Bady 2 Metalic blue, no rust 1 1
B [Tables _ |5 Steering 2 Makes it turn 1 1
@ [Setenables B Engire 3 2000 18 2 1
3 sMRuntime. Car Model. CarCompot
1 Car Mode, CarCompanents - Pistans 4 Drive the crankshaft 6 8
[Language.Catzlog. Arguments = Valves 4 8intake, 8 exhaust [16
& Lorapige Catdou CalectorTipe [y Shock Absorbers 3 Onefureathuhed 3 4
[Language.Catalog.C L
LanguagE.Cata\og‘CumquEdVa\uM iﬁ_ ML ML Ll AL AL ML
<] il J 5
lﬁﬁeg@t&mdSﬂvarslgobjedhp\wevI H 4|9 afg | b bj b |(E) |
“ Ready

Figure 4-23. View of the CarComponents table in SQL Server Management Studio

If you compare this table with what you see in the Quadrant Explorer from Figure 4-17, you see an
important difference. In the database table, the PartOfComponent column shows the integer Id (or
foreign key) for a component’s PartOf relationship, whereas in the Explorer you see the actual name of
the PartOfComponent. You didn’t do any coding or modifications to make Quadrant display its view of
the model this way, but you know it’s easier to interpret, rather than having to look up the

96

CHAPTER 4 © INTRODUCTION TO QUADRANT

PartOfComponent name by the key value. It turns out that Quadrant defaults to displaying the name of
an item rather than the key, as long as a Name field exists. This is usually more informative, as compared
to seeing only the numeric key.

Managing Changes to the Data in Quadrant

As you've seen, Quadrant flags changes to the data (additions or edits) with an asterisk and by displaying
a count of changes at the right of the status bar. Figure 4-24 shows that I've mistakenly changed the
PartOfComponent value for the Valves item from Engine to Steering, but I haven’t yet committed this
change. This, of course, would be an error, so I would like to reverse this change without saving it. I've
brought up the detail window for the Valves item, and it shows that only the PartOfComponent value has
been altered (as indicated by the asterisk next to this property name), and nothing else. Note also that
the title of the detail window also has an asterisk indicator.

If you cursor over an asterisk (edited), exclamation point (conflict), or question mark (stale)
indicator, the cursor will change momentarily to an annotation that states the meaning of the indicator.
(The next several figures show this feature.)

40 He Edit View \Workpad Datz Help ST 5
Car Model.CarCompanents
ot ¥
Id Name Level Description Quantity PartOfComponent
g1 My Car 1 1954 Buick Wildcat IT 1 0 <myll v Car.Model.CarComponents(8)
0 2 Dnve Train 2 Makes the car go i Q My Car v Id 8
o 3 Suspension 2 Makes the ride smoother 1 O My Car v Name Valves
0 4 Body 2 Metallic blue, norust 1 o MyCar + Level 4
05 Steering 7 Makes it 1 0 My Car - Descnption 8 intake, 8 exhaust
Quantity 16
0 6 Engine 3 220hp V8 1 O DriveTrain e 3
= — . o = ; 5 PartOfComponents| O Steering -
o7 Pistons 4 Drive the crankshaft 8 O Engine v
b References
"0 8 Valves 4 & intake, 8 exhaust 16 O Stesring =
Shock Absorbers 3 One for each wheel 4 O Suspension =
CarModel Changes (1) 112%

Figure 4-24. Indicators for an editing change (*)

There are four ways to revert changes:

¢ Click the View > Changes menu in the Quadrant menu bar to bring up a Changes
view window, as shown in Figure 4-25. (See the name in the right side of the
window’s title bar.)

¢ Double-click Changes (1) displayed on the status bar. This will bring up the same
Changes view invoked through the menu. The number of changes (in
parentheses) shown in the status bar will, of course, vary according to the number
of changes pending.

97

CHAPTER 4 © INTRODUCTION TO QUADRANT

98

o Select the File > Revert All Changes menu option in the Quadrant menu bar. This
is the easiest way of reverting a batch of changes if you're not interested in saving
any.

¢ Change the value of the item back to its original value, and then save the change.

#0 Fle Edit View Workpad Data Help Duadmnt 1010502 o OX

o A Proposed Original Databa
§ FartOfCamponient| O Steeing = ¢ O Engine N/A
Q
o]
Q
o]
o
=0
Q

CarModel Changes (1) 112%

Figure 4-25. Reverting the change to the Valves PartOfComponent

I've selected the Valves item in this Changes view in order to display the nature of the change. This
shows you the pending (Proposed) change to the PartOfComponent value (Steering), which is in error
(for the purposes of this discussion), and the original value (Engine), which I'd like to revert back to.
Right-click in the right frame of the window (shown in Figure 4-26), then select Revert Changes in the
resulting context menu.

CHAPTER 4 © INTRODUCTION TO QUADRANT

¢ Fle Edit View Workpad Data Help Dugdrnt 101956027 o 0%

o &Q Valves | Proposed Original Databa
0 PartOfComponent| O Steering * ' O Engine N/A
Q
Q
a Revert Changes
o]
o]
0
o]

CarModel Changes (1) 117%

Figure 4-26. Reverting the change after right-clicking in the right frame of the Changes view

Managing Conflicts in Quadrant

As you know by now, SQL Server Modeling uses SQL Server as the Repository for persisting models. It
can be used in a multi-user or team environment, as can the Repository. This means it is possible for
more than one user to post conflicting changes to an entity or record in the database. Quadrant has a
facility for resolving such conflicts. In this section, I'll show an example of how such a conflict can occur,
and then how it can be resolved.

Say, for example, User A changes the description for the Shock Absorbers entity from One for Each
Wheel to Two for Each Wheel, and User B changes this to Three for Each Wheel by editing the table in
SQL Server Management Studio. By doing this, the different users have introduced a discrepancy, or
conflict, between the change made in Quadrant and the change made in SQL Server Management
Studio. This could also happen if two are more team members are working with Quadrant on the same
data but on two different computers. It could even happen if you have a second Quadrant session open
to the same database.

Figure 4-27 shows how such a conflict is indicated in Quadrant. Here again, the cursor shows an
annotation as you hover over the indicator.

99

CHAPTER 4 © INTRODUCTION TO QUADRANT

100

4% He Edit View Workpad Data Help

Id Narme Level Description Quantity PartOfCompanent
o1 My Car 1 1854 Buick Wildcat I 1 Q <l *
o2 Drive Train 2 Makes the car go ;! Q My Car *
o 3 Suspension 2 Makes the ride smoother 1 O My Car -
o4 Body 2 Metallic blue, no rust 1 Q My Car *
o5 Steering 2 Makes it turn 1 Q My Car *
o5 Engine 3 220hp VB ;! O Drive Train =~
o7 Pistons 4 Drive the crankshaft: 8 O Engine i

T0 8 Valves 4 8 intake, & exhaust 16 O Steering v
![ft? 9 Shack Absarbers 3 One for each wheel 4 O Suspension ¥
CarModel Changes (2] 100%

Figure 4-27. A red exclamation point (!) indicates a concurrency conflict in the data.

To resolve the conflict, bring up the Changes view (as shown in Figure 4-28) by double-clicking on
Changes (1) in the status bar (or by using one of the other procedures described in the previous section).
Right-click in the right frame of the window, and you will see you have three options: 1) saving the value
of the description as proposed (in Quadrant), 2) saving the original value, or 3) saving the value as it is in
the database.

& Fle Edit View Workpad Data Help Cuadani 10196024 ~OX

CarComponents -
o
3 Froposed Originial Database

a =

Desaiption Two for each wheel One for each wheel Three for each wheel
a
a - =
Resolve All ¥ | As Proposed

g RevertChanges | As Original

(o] As Database

a

a

a
Ia

CarModel Changes (1) 112%

Figure 4-28. Resolving the conflict after right-clicking in the right frame of the Changes view

CHAPTER 4 © INTRODUCTION TO QUADRANT

In this case, I'll click the As Original option, and a check mark will appear next to the value in the
Original column, indicating this is the selected value for resolving the conflict (see Figure 4-29).

4& Fle Edit View Workpad Data Help Cuadrant 10197024 - OX%

Chang= X
5 ‘}\?MA&BMI Proposed Original Database
& Description Two for each wheel One for each wheel ¥ Three for each wheel
Q
o]
Q
(o]
0.
(o]
+*0

CarModel Changes (1) 112%

Figure 4-29. After selecting As Original to resolve the conflict

The exclamation point (!) next to the Shock Absorbers entity has now changed to an asterisk (*), and
if you close the Changes view, you will see the same indication in the CarComponents Explorer. The data
conflict has been resolved, but the change has not yet been committed. You can take this last step of
committing this change by using Ctrl+S or the File > Save Changes menu option, which will make the
data consistent again.

Finally, there can be situations where the local copy of the data can become stale because
something has changed in the database, but the local copy of the data hasn't refreshed since the
database change. Suppose the suspension engineering team has decided to go with two shock absorbers
per wheel rather than one, and they have just changed the Description value for Shock Absorbers to Two
for Each Wheel and the corresponding Quantity value from 4 to 8 in the database. This would mean the
local copy of the data displayed by Quadrant is stale and no longer matches what is in the database.
Figure 4-30 shows the resulting Quadrant view.

101

CHAPTER 4 = INTRODUCTION TO QUADRANT
%" Fle Edit View Workpad Data Help S O
CarComponenis L
|CarMadel.CarCompanents
I Mame Level Descriptian Quantty PartOftomponent
o1 My Car 1 1954 Buick Wildcat IT 1 Q <null> uid ||
o2 Drive Train 2 Makes the car go i 0 My Car v
o 3 Suspensian 2 Makes the ride more comforiable 1 O My Car -
04 Body 2 Metallic blug, na rust 1 O My Car -
05 Steering 2 Makes the car tum 1 O My Car -
L Engine 3 220hp V8 1 O Drive Train =
o 7 Pistans 4 Drive the crankshaft 8 Q Engine -
o 8 Vahves 4 1 exhaust, 1 intake per cylinder 16 O Engine b
i? o' g Shock Absorbers 3 1 per wheel 4 O Suspension *
[Stale
CarModel 102%

Figure 4-30. Stale data in Quadrant after a recent change in the database

This situation is resolved by simply refreshing the data from the data store using the F5 refresh key.
Figure 4-31 shows the result.

#¢ Fle Edit View Workpad Dats Help Nizdmet 108602 00X
CarComponeats > A
CarModel.CarComponents

4 Name Level Description Quantity PatOfCompanent |
e 1 My Car 1 1954 Buick Wildeat I 4 O <null» -
o 2 Drive Train 2 Makes the car go 1 O My Car v
0 3 Suspension 2 Makes the ride more comfortable 1 O My Car -
0 1 Body 2 Metallic blug, na rust 1 O My Car v
0 5 Steering 2 Makes the car tum 1 O My Car v
0 5 Engine 3 220hp VB 1 O DriveTrain =
0 Pistans 4 Drive the crankshaft 2 O Engine -
o g Valves 4 1exhaust, L intake per cylinder 16 O Engine b 4
[Tols shodeapeirben 3 2 per wheel 8 O Suspension
W — S— —
CarModel 102%

Figure 4-31. After using F5 to refresh stale data

Using the Quadrant Explorer Query Bar

The area immediately above the column titles and below the menu bar in the Explorer window is called
the Query Bar. The default entry normally displayed in the Query Bar is the name of the extent, or table,
that is displayed in the Explorer window; in the case of this example, it is Car.Model.CarComponents.

102

CHAPTER 4 © INTRODUCTION TO QUADRANT

You can enter any SQL query in this bar to filter what is being displayed in the Explorer pane. For
instance, if you wanted to see the top-level subsystem in the model, you could enter the following query
in the Query Bar:

Car.Model.CarComponents where value.PartOfComponent.Name == "My Car"
The query is executed by pressing the Enter key with the cursor in the Query Bar. Figure 4-32 shows

the result of this query, which is exactly what you would expect: The query returns all of the top-level
subsystems. SQL keywords such as where and value are automatically bolded as the query is entered.

¢ FHe Edit View Workpad Data Help JaianE A0 10E02E 0%
CarComponents - X
:tir.Model.CarCumPonents where value PartOfComponent Name == "My C_ar'i_ 3 == |

i _Id_ N:n-e_ o 4 L_E-\lél_ Bescli{;imn‘ i Quantity PartOfCompornent i
o 2 Drive Train 2 Makes the car go i O My Car -
o 3 Suspension 2 Makes the ride smoother 1 O My Car »
o4 Body 2 Metallic blue, no rust 1 O My Car w;
a3 Steering 2 Makes it tum 1 Q My Car -

CarModel 100%

Figure 4-32. Using the Query Bar to find the top-level subsystems

Another example of a query you could perform would be to find all subsystems that have a quantity
greater than 1. Figure 4-33 shows the results of such a query. To make the display more useful, you can
click the Quantity column label to sort by ascending or descending quantities, as indicated by an up or
down arrow to the right of the column label.

103

CHAPTER 4 © INTRODUCTION TO QUADRANT

W Hle Edit View Workpad Dats Help Ciogarg A0JORIX . OX
A —— e —,

GarCompaonents -
Car Model.CarComponents where value.Quantity = 1
i} Namé Level Desciption Quanhtﬂ Part0fComponent
o9 Shack Absorbers 3 One for each wheel 4 O Suspensian ~
o3 Pistons 4 Drive the crankshaft 8 O Engine "
LA} Valves 4 Sintake, 8 exhaust 16 O Engine]

PRNa——
CarModel 100%

Figure 4-33. Using the Query Bar to find the components with a quantity greater than 1

As a last example, you can add . Count to any query to return the number of records found by the
query. This is useful with very large tables with hundreds or thousands of records. Figures 4-34 and 4-35
show two examples.

%% Fle FEdit View Workpad Data Hefgedemilol96020 -OX

3 -
(CarModel CarComponents where value Quantity > 1) Count

lem 3

Carhodel 100%

Figure 4-34. Getting a count of records for a query

%% FHe Edit View Workpad Data Hejgedimn: 10195070 O X

Car Model.CarComponents Count

Item 9

CarModel 100%

Figure 4-35. Getting a count of all items in the extent

104

CHAPTER 4 © INTRODUCTION TO QUADRANT

To return to the normal table display after executing a query, click on the title bar of the Query pane
to make sure the pane is active, press the Esc key to restore the default query, and then press the Enter
key.

If you are not using the Query Bar in an Explorer workpad, you can remove it by right-clicking the
title bar of the workpad, and clicking the Query Bar option in the context menu.

More on Customizing the View

“Know Your Audience” is an important credo in designing user interfaces, and it is just as important
when designing a simple table view as it is for developing an entire application interface. A database
administrator or a power user (one who is experienced in SQL and generating ad hoc queries) is usually
going to want to see the data in a different format than a manager or an end user who is not conversant
in SQL.

You can customize Explorer workpad views in a number of ways to give the user a more productive
and convenient viewing experience. Here are a number of ways you could improve the table view of the
car model for a user who is primarily interested in the domain data rather than running queries or other
more technical aspects:

¢ Remove the Id column, since this is typically not meaningful information to the
user.

¢ Move the PartOfComponent column to the right of the Name column, since this is
probably the most significant data after the Name.

¢ Change the PartOfComponent label to Part Of, since this is a little more user
friendly.

¢ Move the Level column to the right of the Description column.

¢ Remove the Query Bar, since this is a feature only power users would need.

Based on these requirements, the sequence of visible columns would be as follows:
e Name
o PartOf
o Description
o Level
¢ Quantity

To remove the Id column, right-click on any column heading, select the Column Settings option,
and uncheck the Id column by clicking that menu item (see Figure 4-36). (You could also make this
column visible by modifying the generated source for the view, as you will see shortly.)

105

CHAPTER 4 © INTRODUCTION TO QUADRANT

4% He FEdit View Workpad Data Help B4 ~HX
CarCompunents -x
‘-Cd(MuaEI.Car{Zompunems

Id Nam= LauelDeccription Quantity PartOfCompaneant
01 wy| VewComnds fosipicewiderr 1 0 s v
o 7 Driv Column Seitings * 1d % ¥ My Car &
. © Name ¥l
o 3 Suspension 2 My Car -
T — Lewl g
0 4 Body 2 s My Car -
Descrption o
05 Steer 2 My C: s
o Quantity 1 kel
2 6 Engme _3 _ PartOfComponent S)’_"'CE’LT =
27 Pistans 4 CarComponents_PartOfComponent ngine =
o 3 Valves. 4 intake, 8 exhaus Engine .
o3 Shock Absorbers 3 One for each wheel 4 O Suspension
CarModel 100%

Figure 4-36. Hiding the Id column

Making the other changes you've decided on will require some simple modifications to the
generated M source code for the view. To do this, bring up the source by invoking the context-sensitive
menu: Right-click in the title bar of the Explorer window, and click the View Source option, as shown in
Figure 4-37.

%0 Fle Edit View Workpad Data Help Clindmni 10196024 o OX
CarComponents -
CarModel.CarComponents Duery Bar %

_ Mame Level Description Hegt prpanent |
O My Car 1 1854 Buick ' View Source = hd
O Drive Train 2 Makes the ¢ % Lar ¥
O Suspension 2 Malcesther”SaveVEewAs.‘. Lar ¥
0 Body 2 Metalicbly SetDefault View b 5r —
O Steering 2 Makes it turClase Workpad Ctrl+F4 far ~
o Engine 3 200pvE 1 O DweTmin *
O Pistons 4 Drive the crankshaft g O Engine =
O Valves 4 8 intake, 8 exhaust 16 O Engine -
O Shack Absarbers 3 One for each wheel 4 O Suspension
CarMadel 100%

Figure 4-37. Setting up to view the source code for the table view

Figure 4-38 shows the portion of the source code you're interested in—the part where the positions
and other properties of the data columns are defined. Note that you are in a Quadrant session now (as
shown in the lower-right corner of the window), rather than the CarModel session, because you are

106

CHAPTER 4 © INTRODUCTION TO QUADRANT

changing the source code for several Quadrant modules. Once the modified source for the workpad view
is deployed, you will be back in the CarModel session.

module Microsoft.Quadrant.Viewers
r
1

import Microsoft.Quadrant.Templates;

TableConfigurations

1
Table 2

{
Invocation =» Invocations.Table 2 Root,
TableColumns =>
1

PrapertyName => "Id",
Position => @,
IsVisible =» false,
DisplayName =» “Id",

PropertyName = "Name”,
Position =>» 1,
IsVisible =» true,
DisplayName => "Name",

PropertyName =» “"Level®,
Position =» 2,
Isvisible =» true,
DisplayName =» "Level®,

PropertyName =» "Description”,
Position =2 3,

IsVisible =» true,
DisplayName => "Description”,

PrapertyName—=>-"Quantity”
Figure 4-38. Viewing the source code for the Table view

Looking at this code, you can see there is a collection named TableColumns. Each item in this
collection corresponds to the properties of a column in the table and has the following four attributes:
DisplayName, IsVisible, Position, and PropertyName.It's a simple matter to modify these four attributes
to provide the view you're after. The IsVisible property of the Id column is set to false because of the
earlier Column Settings change, as you would expect.

To get the table as you would like it to appear, you will need to change the column positions for each
of the column properties, as well as the DisplayName property for two of the columns: Part0fComponent
and Quantity. The code fragment in Listing 4-1 reflects the code changes:

107

CHAPTER 4

108

INTRODUCTION TO QUADRANT

Listing 4-1. Modified Column Properties to Customize the Table View

M

TableColumns =>

{

{

b

DisplayName => "Id",
IsVisible =» false,
Position =» 0,
PropertyName => "Id",

DisplayName => "Name",
IsVisible => true,
Position =» 1,
PropertyName => "Name",

DisplayName => "Level",
IsVisible => true,
Position =» 5,
PropertyName => "Level",

DisplayName => "Description”,
IsVisible => true,

Position =» 3,

PropertyName => "Description”,

DisplayName => "Quantity",
IsVisible => true,
Position =» 4,
PropertyName => "No.",

DisplayName => "CarComponents_PartOfComponent”,
IsVisible => false,

Position =» 5,

PropertyName => "CarComponents_PartOfComponent",

DisplayName => "PartOfComponent”,
IsVisible => true,

Position =» 2,

PropertyName => "Part0f",

CHAPTER 4 © INTRODUCTION TO QUADRANT

To change the name of the view, locate the portion of the code in the Microsoft.Quadrant module
where the table is defined, and change the DisplayName property from "Table" to "System Designer
Table", as Figure 4-39 illustrates. If you are doing this exercise on your own computet, note that the Name
property of the table (shown in the figure as "Table_0", may be different in the generated code on your
computer. These are system-assigned names, so don’t be concerned if you see these kinds of differences
between your system and what is shown here in the text.

% Fle Edit View Workpad Data Help Cheder A0 30006 — AX

e e ———————

module Microsoft.Quadrant

I3

C i
" CatalogReferences
{
c CarModel CarComponents_@
b 2 {

ModuleName => "CarModel”,
¢ Name => "CarComponents”,
C b

e !
Lo
I
e
a - module Microsoft.Quadrant.Templates

I
1

import Microsoft.Quadrant;

Templates
1
Table &
{
Name <> "Table 8",
| DisplayName => "System Designer Table",
Pattern =» ;'Calla-ctianviewer",
InputDataType =» CatalogReferences.CarModel CarComponents @,
InitialMaxiidth => 60a,

Invocations

{ 1
Table @ Root
i

DeclaringTemplate =» Templates.Table 8,

Quadrant 100%

Figure 4-39. Changing the Table view name

To deploy your customized code for the CarModel view, right click in the source code window and
select the Deploy option, as shown in Figure 4-40. An alternative way of doing this is to press Ctrl+F5.

109

CHAPTER 4 © INTRODUCTION TO QUADRANT

% He Edit View Workpad = Data | Help Chadmar 000006 <OX
CarConiponesits
Column Indicator
o E
Link Navigation
module Microsoft.Q
1 Word Wrap

i

Error Squiggles

CatalogReferen Line Number
[e
Carttodel_¢ 2P N fuikts
{ Install Addin...
Module Show SQL

e, S Export Database To M.,

b '
r

module Microsoft.Q

E
1

nnmlnnnlnnn

import MicrosofE.Quadrants
Templates

Table &
{
Hame => "Table @",
DisplayName =»> "System Designer Table",
Pattern =» ‘I'[allactiunviewer",
InputDataType =- CatalogReferences.CarModel CarComponents @,
InitialMaxiidth => 6@a,

Invocations
r

i
Table @ Root
1
DeclaringTemplate =» Templates.Table @,

Quadrant 100%

Figure 4-40. Deploying the source for the modified view

This will bring up a Deploy dialog box (see Figure 4-41) to allow you to select which database
session to use for deployment. Accept the default Use Existing Database Session and click the Deploy

button.
4" Deploy %
® Use existing database session

| quadrant 10200006, [Quadrant Repositor |
O Replace existing database

Ciatioitel x |
O){reate new database

| Deplys || Cance

Figure 4-41. Select the existing database session to deploy.

110

After you've deployed the code changes, if everything goes as planned, you should see a notification

CHAPTER 4 © INTRODUCTION TO QUADRANT

dialog saying the deployment was successful (shown in Figure 4-42).

4% Success

Quadrant.1.0.2000.06.

Contents have been successfully deployed ta the

X

database,

0

Figure 4-42. Successful deployment of the modified source

You'll likely notice that nothing has changed in the Explorer view (shown in Figure 4-43) after the
customized code has been successfully deployed. This is because the customized view was saved under
its new name: System Designer Table. To see the new custom view, click on the down arrow at the right

of the view’s title bar and select the new name.

%* Fe Edit View Workpad Data Help

Level Descnption

CarComponents
CarModel.CarComponents
" Name
o1 My Car
o2 Drive Train
0 3 Suspension
© 4 oy
o35 Steering
0_] Engine

1 1954 Buick Wildcat T
2 Makes the cargo

2 Makes the ride more comfortable

Quanfity PartOfCompone Master/Detail

"k

List

O« Table (Default) v

Tree Master/Detail

<nul
O My Car
O My Car Tree

Metallic blue, no rust
Makes the car tum
220hp VB

System Designer Table

O My Car
O Wy Car v

O DriveTrain *

o 7 Pistons
o g Valves
O g Shock Absarbers.

2

2

3

4 Drive the crankshaft
4 1 exhaust, 1 intzke per cylinder
3

1 perwheel

16

O Engine -
O Engine hd

'ﬂ"}ilm' 15100 v‘

CarModel 100%

Figure 4-43. Selecting the customized view: System Designer Table

Figure 4-44 shows your customized view, with the name at the right in the title bar. To show another
way of renaming the view, this time without having to modify the code, let’s change the name from

System Designer Table to System Design Table.

1

CHAPTER 4 © INTRODUCTION TO QUADRANT

4% He Edit View Workpad Data Help QuadEee L0960 o @'
CarModel.CarComponents
Name Part Of Description No. Level

O My<Car Q cpull> + 1954 Buick WildcatT 1 1
O Drive Train O MyCar = Makesthe car go 1 2
O Suspension O MyCar = Makesthe ride more,.. 1 2
O Body C MyCar = Metallicblue, norust 1 2
O Steening O MyCar = Makes the car turn i 2
O Engine C Drive Train™ 220hp VB i 3
O Pistons © Engine +* Drivethe crankshaft 8 4
O Valves 0 Engine = lexhaust lintakep.. 16 4
© Shock Absorbers © Suspensio™ 1 per wheel 4 3

CarModel 102%,

Figure 4-44. Customized Table view

Right-click in the title bar of the Table view and select the Save View As option, as shown in Figure
4-45.

%t Fle Edit View Workpad Data Help ugdEn LOJEA02Y o OX
CarComponents System Design Table « %
Query Bar &
CarModel.CarCompon
Float
Name - ~in No. Level
O MyCar View Source Wideatl 1 1
O Drive Train Hick Ecapiato car go 1 Z
O Suspension Sae N . fide more.. 1 2
" Set Defatilt Vi |
O Body o i ue, norust 1 2
O Steering i Close Workpad IR car turn 1 2
O Engine O Drive Trainw 220hp V8 1 3
O Pistons O Engine + Drve the crankshaft 8 4
O Valves O Engine ~ lexhaust lintakep. 16 4
O Shock Absorbers O Suspension® 1 per wheel 4 3
I N
CarModel 102%

Figure 4-45. Changing the view name from the title bar context menu

A dialog box will prompt you for the viewer name. Enter System Design Table and click the Save
button. Figure 4-46 shows the new title.

112

CHAPTER 4

INTRODUCTION TO QUADRANT

As the last requirement of the customization, you'll remove the Query Bar. Right-click on the
CarComponents title bar and click the Query Bar option to uncheck this feature. The Query Bar can be
restored at any time a particular user my want to execute a query by using the same procedure.

% Fe

Edit View Workpad Data

Help

System Design Table = »

Query Bar <
CarModel.CarCompanents ¥ k
Hloat
Name Part Of De,
o MyCar Q <nul: v o) VEwSaurce
View Configuration
O Drive Train O MyCar * Me g
O Suspension O MyCar = Me i
= v * Set Default View =
© Body O MyCar ~ Me
O Steering O Mybsw v g Ot Wotped Gl
O Engine O Drive Train® 220hp VB 1 3
0 Pistons Q Engine v Drive the crankshaft 8 4
0 Valves O Engine * Llexhaust lintakep.. 16 4
O Shock Absorbers © Suspension™ 2 per wheel g 3
- e—
CarModel 1023

Figure 4-46. Removing the Query Bar

Finally, you'd like to save this customized view as the default view for the CarComponents table so
that the user will normally see this view any time she brings up an Explorer view of the table. To do this,
right-click on the window’s title bar and select Set Default View, as shown in Figure 4-47. The name of
the view in the title bar will disappear once it becomes the default view. You can always bring the

standard table view back by clicking the Table option on the right side of the title bar.

4 FHle Edit View Workpad Datz Help CugtEnr L0003 o X
CarComponents ystem Desigr Table «
CarModel,CarComponents ~ 2usry Bar Y

Name P _ﬂoat MNo. Leval
O My Car C View Source tatl 1 1
O Drive Train ¢ View Configuration 1. 57
O Suspension C Save View As.. ore.. 1 2
o Bm‘iy @ Set Default View st 1 2
O Steering C Close Workpad Cirl+F4 | 1 2
O Engine O DriveTrain* 220hp VB 1 3
0 Pistons © Engine = Drive the crankshaft & 4
O Valves O Engine = lexhaust 1intakep. 16 4
O Shock Absorbers O Suspensior® 1 per wheel 4 3
CarModel 102%

Figure 4-47. Setting the table view to be the default view.

113

CHAPTER 4

114

INTRODUCTION TO QUADRANT

Summary

In this chapter, I have covered some, but certainly not all, of Quadrant’s functionality; I've also shown
how to build and edit a model using Quadrant’s Explorer windows. You used the composite design
pattern to build a self-referential design model for a car. This approach could be used to build any model
that is amenable to analysis using subsystems and components. Mechanical systems, such as cars or
other kinds of machines, can be modeled with this approach, but the composite pattern can be applied
to a wide range of other types of entities. I reviewed the facilities for managing and reverting changes to
data in the model, reconciling concurrency conflicts, and refreshing data from the database any time
you see indications of stale data. I also touched on the use of the Query Bar in the Explorer window and
customizing Explorer views to make them more useful to end users, using both source M code for views
and menu functions.

In sum, here’s a list of what I've covered in this chapter:

Writing and saving model code in an M file
Creating types and extents (tables) of types
Deploying your model to the database

Viewing and editing the model in SQL Server using SQL Server Management
Studio

Adding new entities and records using Quadrant Explorer views
Using Quadrant Explorer views to view and edit the model
Customizing an Explorer view

Managing changes, concurrency conflicts, and stale data

Using the Query Bar

CHAPTER S

M - The Modeling Language

Having covered domain-specific languages and the Intellipad and Quadrant tools in
previous chapters, you can turn your attention now to M, the modeling language. M
is all about creating, deploying, populating, and using models. It isn’t an object-
oriented language, like C# or C++ or Java. It is also not a language with procedural
constructs (e.g., for/next or do/while or if/else) that you're used to seeing in other
languages.

You've already seen some M code in previous chapters, but in this chapter I'll
cover the structure and syntax of M in greater detail. I'll start by covering some of the
basics you'll need to know in order to write and compile simple M programs. Of
course, if you've read and worked through the sample code in previous chapters,
you've already done some of this. I'll start off by covering the four basic constructs provided within the
M syntax.

Why M?

You probably wouldn't be reading this book if you weren't interested in learning something about the M
language. But what, exactly, are the benefits of using M, and why invest the time in learning another
language?

M is an integrated part of Microsoft SQL Server Modeling, and is the language “glue” of this
framework. If you're going to undertake data modeling using this environment, then developing a
knowledge of M is essential. The primary tools of the framework—Quadrant and Intellipad—are “M-
aware.” M and, more broadly, the SQL Server Modeling framework, provide an environment for creating
and deploying domain-specific languages, or DSLs.

M is a more congenial language for developing, maintaining, and deploying data models than T-
SQL. By “congenial,” I mean that M is more user-friendly and less error prone. You'll have an
opportunity to compare the expressiveness and brevity of M for the purpose of building and maintaining
model-driven applications in the sections to follow.

Getting Started with M

I'll talk briefly about modules, the fundamental namespaces of the M language. Then I'll cover each of
the four basic constructs in M: types, extents (which define storage locations—ultimately, these map to
SQL Server tables), computed values, and languages (used for building DSLs). Finally, I'll return to
modules in the context of import and export directives. The latter have to do with making certain aspects
of amodule’s definitions visible to other modules.

115

CHAPTER 5 ' M — THE MODELING LANGUAGE

116

Please don’t consider this an exhaustive treatment of the M language—it isn’t. It's not my intent to
cover every aspect of M here, but rather to provide a flavor of the language’s capabilities, and perhaps
enough of an introduction for you to feel comfortable moving on to studying Microsoft's “M” Language
Specification [http://msdn.microsoft.com/en-us/1library/ee730868(VS.85).aspx], the “M”
Programming Guide [http://msdn.microsoft.com/en-us/library/dd129568%28VS.85%29.aspx], and other
source materials on Microsoft's MSDN website.

Modules

When it comes time to be compiled, all M code must be contained within a module declaration. A
module can contain any or all of the type declarations, extent declarations and initializations, computed
values (aka functions), or language declarations. I've already touched on types, extents (storage or SQL
tables), and languages (i.e., domain-specific languages) in the previous chapters. I haven't yet talked
about computed values, but will do so in this chapter.

The simplest possible module declaration would be the empty declaration with no content, shown
in Figure 5-1.

module EmptyModule

{
[/ Nothing to see here, folks...

}

Figure 5-1. An EmptyModule declaration

(Remember, the double-forward slash designates a comment line in the code, and is ignored by the
compiler.) This module declaration would be accepted by the M compiler, but it would result in no SQL
being generated by the compiler because there is absolutely nothing to compile within the scope of the
module.

In M, the module is a top-level namespace containing some M code. Modules cannot be nested or
hierarchical (i.e., you can’t have modules declared within modules). But several modules can be
declared within a single M code file, which is considered a compilation unit.

You can generalize the syntax for a module declaration from the example declaration shown in
Figure 5-1, consisting of the following:

¢ Themodule keyword. Note that this must be lowercase: Module is not legal.

¢ The name of the module. This can be up to 400 characters long under the current
M language specification, and can contain a dot character (.). If a dot is used in the
name, it has no defining syntactic or scoping significance.

o Aleft brace ({) character.
¢ Some M code.

o Arightbrace (}) character below or after the M code.

CHAPTER 5 M - THE MODELING LANGUAGE

This is the core of a module definition, but it is not everything. There are times when you may want
to use types or computed values (functions) that may be defined in other modules, outside the scope of
the module you are working in. You may also want to make types or computed values defined in your
current module available elsewhere. This brings me to the concept of import and export directives. But
before I talk about this particular subject, I want to cover the four basic constructs of M. Import and
export directives will be more meaningful once you've covered that ground.

The Four Basic Constructs of M
There are four basic constructs in M:

o Types: These specify the kinds of entities that can occur and the constraints over
the sets of values that comprise the type.

o Extents: These specify storage locations, usually for instances of types. They
typically map to tables in SQL Server.

o Computed values: These specify parameterized queries and can be thought of as
functions with zero or more parameters.

o Languages: These define the tokens and syntax rules for domain-specific
languages.

The first three of these constructs are covered in the following sections. The syntax for defining a
language in the context of M will be briefly reviewed here, but for a more detailed discussion of domain-
specific languages, refer to Chapter 2.

Types

In developing a model, you often want to categorize values that may occur within the context of the
model in certain ways. Numbers and text strings are of different value categories because the manner in
which you test, combine, or work with them is different in each case. The idea of multiplying two
numbers makes sense, but multiplying two text strings doesn’t. Concatenating two text strings makes
sense, but concatenating two numbers doesn't.

In M, you use the concept of a type to define a category of values, so a type describes a collection of
acceptable or conformantvalues. Collection and conformant are the operative words here: With a few
notable exceptions, a type defines a constrained collection. For example, you can use the in operator to
test whether a value conforms to a particular type:

9 in Integer
and
"amazing" in Text
both evaluate to true.
You know that certain operations or tests can be applied to any or all values of a type, as long as
those operations or tests are defined for that type. Any number can be added to any other number. Any

text string can be uppercased, concatenated to another text string, or tested whether its length exceeds
20 characters.

117

CHAPTER 5 ' M — THE MODELING LANGUAGE

118

Employees, for example, are in a different category than Cars. In the context of the M language, you
use types for defining or expressing these categories.

Intrinsic and Derived Types

There are two type categories in M: intrinsic types and derived types. Intrinsic types, like Integer, Text,
or Logical (true/false), are pre-defined in M and are understood by the M compiler. Derived types must
be explicitly defined somewhere in M code, and a derived type definition will invoke one or more
intrinsic types and/or other derived types.

Let’s start with a very simple example of what I mean by a derived type. I'll stick with the subject
matter used in the last chapter for the time being: Cars. Figure 5-2 shows what you might have for a very
simple definition of a Car type.

module CarTypeExample

{
type Car

I
L

Mfr : Text; // Manufacturer
Model : Text;
Year : Integerl6;

i

Figure 5-2. CarType module—an example of a type definition

The Car type definition in Figure 5-2 starts with the type keyword, followed by the name of the type.
The type definition then follows, scoped within braces. In this example, I've named the type Car—no
surprise there. And I've given the type three values: Mfr, Model, and Year. Mfr and Model must both
conform to the intrinsic type Text, and Year must conform to the intrinsic type Integer16. The colon ()
operator following Mfr, Model, and Year in the type definition is called the ascription operator. It
designates the ascribed type for the value. So Mfr and Model have the ascribed intrinsic type of Text,
while Year has the ascribed intrinsic type of Integer16.

The attributes, or values, of a given type are not necessarily constrained to be of an intrinsic type,
like Text or Integer. Other derived types may be part of a new type definition. These other derived types
may be defined within the module (namespace) of the type that requires it, or they may be defined
within the scope of another module if they are made visible through import/export directives. (I'll talk
about import/export in the section titled “Modules Revisited: Import and Export Directives.”)

So let’s take this to the next step by adding a value that has a derived, or non-intrinsic, type: Engine.
I'll add a new derived type for Engine within the scope of the module shown in the last code snippet, and
add an Engine value to the Car type definition (see Figure 5-3).

CHAPTER 5 M - THE MODELING LANGUAGE

CarWitl . .

module CarTypeExample

{
type Car

{

Id : Integer64 => AutoNumber();

Mfr @ Text; // Manufacturer

Model : Text;

Year : Unsignedl6 where (value >= 1769 && value <= 2028);
Engine : Engine;

} where identity Id;

type Engine
{
Id : Integer32 => AutoNumber();
Cylinders : Unsignedd where (value »>= 1 &2 value <= 12);
Horsepower : Unsignedlé where value < 1@0@;
Fuel : Text where value in {"gas", "diesel", “propane"};
Description : Text; // e.g., "v8"
} where identity Id;

Figure 5-3. CarType module with an Engine type added

If you compare this code with that shown in Figure 5-2, you'll notice I've changed some of the value
definitions (Integer to Unsigned) and added some constraints. Rather than defining the Year of the Car
type to be an Integer16 (which could be of any reasonable or unreasonable value, and which would
allow the year to be negative), I've reset it to be an Unsigned16 integer in the range 1769 (when the first
steam-powered car was made) to 2020. There are similar reality-based constraints on the value
definitions for the Engine type: no less than 1 and no more than 12 cylinders and no more than 1,000
horsepower.

I've added an identity, or Id value for both the Car and Engine types. There are several reasons for
doing this:

¢ You might have two distinct cars with the same manufacturer, model, year, and
engine type, and no definitive way of distinguishing these two instances without
having unique identities.

o The M language specification requires that if a derived type (Car in this context)
includes another derived type as a value (such as Engine), the included type must
have a unique identity.

o Ifthe type is used to define an extent (— SQL table), the type should provide a
unique identity that can map to the primary key of the table.

The AutoNumber () function provides a way of establishing a unique identity for any type instance.

With this example in hand, let’s look at types from a more abstract level. Types are simply a way of
defining a collection of values. The M language is structurally typed rather than nominally typed. This is
a fancy way of saying that if a collection of values conforms to two types, even though the types have
different names, the types are equivalent as far as the M compiler is concerned. If you were to define a
type named Boat that had the same structure as defined in Figure 5-3 for Car, the M compiler would be
indifferent between the two types.

119

CHAPTER 5 ' M — THE MODELING LANGUAGE

Types do not necessarily need to be named in M. You could define an anonymous type by simply
enumerating a collection. For instance, the unnamed collection in Listing 5-1 could be treated as a
perfectly valid type in M, since it is an expression that returns a set of values.

Listing 5-1. An Anonymous Type

"Red",
"Green",
"Blue"

One might ask, “Could you have an instance of Car and an instance of Boat (if defined with the same
structure as that of the Car type) that are equivalent?” The answer is yes.
If you refined the two types, say by adding a

WheelBase : Decimal19
attribute to the Car type definition and a
PropType : Text

to the Boat type definition, then the two types would no longer have the same structure, and the answer
would be no.

M’s Built-Ins: The Intrinsic Types

Table 5-1 lists all of the intrinsic types included in the M language. If you've used typed programming
languages, nearly all of these types (numbers, dates, times, text, logical, and binary) and their operators
should be familiar to you. The last two types listed in this table, Collection and Entity, are particularly
important in M because of its modeling orientation, and will be given further treatment throughout this
chapter.

Table 5-1. M Intrinsic Types

Intrinsic Name Description

Any All possible values.

General All possible values except the Entity and Collection types.
Number Any numeric value.

Decimal Afixed point or exact number.

Decimal9 Afixed point or exact number.

Decimall9 A fixed point or exact number.

120

CHAPTER 5 M - THE MODELING LANGUAGE

Decimal28
Decimal38
Integer
Integer8
Integer16
Integer32
Integer64
Scientific
Single
Double
Unsigned
Unsigned8
Unsigned16
Unsigned32
Unsigned64
Date
DateTime
DateTimeOffset
Time

Text
Logical
Binary

Guid

Afixed point or exact number.

Afixed point or exact number.

Asigned integer.

A signed integer with fewer than 9 bits of precision.

A signed integer with fewer than 17 bits of precision.

A signed integer with fewer than 33 bits of precision.

A signed integer with fewer than 65 bits of precision.
Afloating-point or exact number.

A 32-bit floating-point or exact number.

A 64-bit floating-point or exact number.

An unsigned integer.

An unsigned integer with fewer than 9 bits of precision.
An unsigned integer with fewer than 17 bits of precision.
An unsigned integer with fewer than 33 bits of precision.
An unsigned integer with fewer than 65 bits of precision.
A calendar date.

A calendar date and time of day independent of time zone.
A calendar date and time of day within a specific time zone.
Atime of day and time zone.

A sequence of characters.

Alogical flag.

A sequence of binary octets.

A globally unique identifier

121

CHAPTER 5 ' M — THE MODELING LANGUAGE

122

Byte A single binary octet.
Collection An unordered group of potentially duplicate values.
Entity A collection of labeled values.

The Collection Type

The collection type is an unordered group of potentially duplicate values. A collection can be
constructed as an expression with a beginning brace ({), a type reference, an optional multiplicity
(described shortly), and an ending brace (}). So the following examples are all valid collections:

o {“NPR”, “ABC”, “CBS”, “NBC”} // a collection of four broadcast network
names

o {“Red”, “White,” “Blue”} // a collection of three color names

o {“Baseball”, “Basketball”, “Soccer”} // a collection of three ball
game names

o {3.141, 2.718} // the collection of the two transcendental
numbers m and e, expressed to a 3-decimal precision

o {Integer#8} /1 a collection of any eight integers

o {Unsigned16#1..8} // a collection of one to eight Unsigned16 integers

o {Datets..} // a collection of four or more Date types

o {Single*} // a collection of zero or more 32-bit floating point numbers
o {Double+} // a collection of one or more 64-bit floating point numbers

o (ars : {Car*} // defines the Cars extent as the collection of all
values of the Car derived type

o {“Red”, 32, { }, “NPR”} // defines a collection with two text values, an
integer value, and an empty collection value

The last example in the preceding list shows that the elements of a collection do not necessarily
have to be of the same type, and that collections can contain other collections.

The next to last expression uses the ascription operator (:), (as in, “ascribe this identifier to this
type”) to define the Cars extent. I'll talk about this in the section titled “Extents.”

Note that the definition of the collection type said that the collections can have duplicate values. So
the collection {1, 2,3, 1, 1, 3, 4, 98} would conform to an {Integer }#8 definition because it is a collection
of eight integers, though with some duplicates. Collections also have no positional or sequential
information (unlike lists), so the following expression would be true:

{1) 2, 3, 4} == {4) 1, 3, 2}'

CHAPTER 5 M - THE MODELING LANGUAGE

Multiplicity Constraints

Table 5-2 shows the different kinds of multiplicity operators that can be used in defining or constraining
a collection. Since types are simply collections of conforming values, multiplicity operators are
important in type definitions.

Table 5-2. Multiplicity Operators

Multiplicity Operator ~Constraint

* Requires zero or more values (allows an empty
collection).
+ Requires one or more values.
? Requires zero or one value.
#N Requires the collection to have exactly N values,

(have a size of N). N must be a positive integer.

M. N Requires the collection to have at least M values,
and at most N values. M and N must be positive
integers, and M must be less than N.

#M.. Requires the collection to have M or more values.
M must be a positive integer.

The first three multiplicity operators listed in this table (*, +, and ?) are sometimes called Kleene
operators. (The term comes from generative grammar theory).

Lists are ordered collections, and are denoted with brackets ([]) rather than braces. The collection
{1,2, 3, 4} is identical to the collection {4, 3, 2, 1} because order is immaterial for collections. This would
not be the case for the lists [1, 2, 3, 4] and [4, 3, 2, 1].

Collection Operators

Some intrinsic types have one or more operators defined for manipulating or testing instances of the
type. In the case of collections, the following operators are defined in Table 5-3.

Table 5-3. Collection Operators

Operator Right Operand Returns Description

#1is a unary postfix operator that returns the size (or count) of

Not Applicable Integer the collection.

< Collection Logical A<B~B>A

123

CHAPTER 5 ' M — THE MODELING LANGUAGE

124

> Collection
<= Collection
>= Collection
== Collection
= Collection

Where Logical

Select Any
& Collection
Collection

Logical

Logical

Logical

Logical

Logical

Collection

Collection

Collection

Collection

A>B~A>=B&&A!=B
A<=B~B>=A

A>=Breturns true if collection A has every element of
collection B with equal or greater multiplicity.

A==B~A>=B&&B>=A
Al=B-~!(A==B)

Returns a new collection containing only the elements from the
left operand that satisfy the predicate on the right when
evaluated on the iteration variable value. If the type of the left
operand is {T*} the type of the result will be {T*}.

Returns a new collection containing an equal number of
elements as the left operand that is the result of evaluating the
expression on the right over the iteration variable value. If the
type of the left operand is {T*} and the result of evaluating the
expression on the right is R, then the type of the result is {R*}.

Intersect operator. Converts the right and left operands to sets
and returns the set intersection.

Union operator. Converts the right and left operands to sets
and returns the set union.

If you are unused to reading logical expressions, like those in the right column of the first few rows
of Table 5-3, here’s the key to reading the descriptive statements for the relational operators (<, >, <=, >=,
==, 1=) in rows 2 through 6 in plain English:

~ (tilde) is the equivalence operator: A ~ B, means “A is equivalent to B.”

&& is the logical AND operator.

!is the logical negation operator: !true == falseand !false == true.

The shaded description cell in the right column of Table 5-3 for the >= operator is the key to
understanding the semantics of the logical statements in the right column, from which the meaning of
the logical descriptions for the other relational operators can be derived.

Relational Operators

Here are some examples of expressions using the relational operators described in Table 5-3 with small
integer or text collections as the operands. All expressions in this list evaluate to true:

. {Ial’ Ibl,

ICI}# == 3

o {"three", "text types", "here"}# == 3

CHAPTER 5 M - THE MODELING LANGUAGE

o {1,2,1} < {1,2,3,1}

o {}<{s}y //{} is the empty collection

2,3, 4 > {1, 2,3}

o {2,3,4} < {2,3, 4,5}

o {2,3, 4} »= {2, 3}

o {2,3,4} == {3,4, 2}

o {4,5 6} != {4,5 6, 7}

o {1,2,3,4,1,2}8{3, 4,56, 3} = {3, 4}

o {1,2,3,4,1,2}|{3,4,5 6,3} ={1,2,3,4,5, 6}

° {1

-

N

-

Where and Select

The Where and Select operators are generally used in constructing query expressions. Listings 5-2 and
5-3 show some examples. An evaluation of the expression in Listing 5-2 will return true.

Listing 5-2. An example of the use of the where and select operators (returns true)

from n in {1, 2, 3, 4, 5}
where n%2 ==
select n

) == {2) 4}

The % operator is the binary infix modulo operator, so n%2 returns n modulo 2, and n%2 should return
0 for any even number.

Listing 5-3. An example using where and select to return members of the collection named People older
than 17

from p in People
where p.Age > 17
select p

If People is a collection of persons with Age as one of the values, then this query should return the
collection of people with age greater than 17.

The Entity Type

Like the collection type, the entity is an intrinsic type. It is a set of zero or more named values, or fields.
The Car type I defined earlier (refer to Figure 5-3) is an example of an entity type, often called simply an
entity. Any field of an entity can be accessed by the name of the field. An entity can have an identity,
which makes it distinct from all other instances of the type, as shown in Figure 5-3. Any or all fields of an
entity can be assigned default values when the entity is initialized, and the values of any field can be
constrained by an expression, just as I constrained the year of manufacture in the Car type in Figure 5-3.

125

CHAPTER 5 ' M — THE MODELING LANGUAGE

The field names of an entity must be distinct. (That’s why in entities named values must be a set: Sets do
not allow duplicate values.)

Entity Value Initializers

Entity values can be assigned default values when the entity is constructed and initialized. M does not
provide for altering an entity’s member values once it is constructed. Changes in an entity’s values will
normally occur through data store (SQL Server) operations, or through operations that occur in an
application using the data store.

Member Names

An entity member name can be arbitrary Unicode text, meaning it can contain spaces or dots or
symbols. As such, when the name violates the requirements of M restrictions on identifiers (say, by
containing spaces or dots), the name can be escaped with square brackets. For example:

{ [QC Passed] => true, [Assembly Date] =>System.Date.Today] } ;
Developers would normally want to avoid using escaped identifiers, but there may be situations

where they may be needed.

Entity Values

There are no restrictions on the kinds of values that can be defined for an entity. For example, you could
have an entity with an Integer8 value, a list value, and another Integer8 value, as shown in Figure 5-4.

mpdule RaceData {
[/ example of antity type where o member is g List or collection
type RaceResult {
RaceNo : Integerd:
CarNumbers : [Integer8#3..15]; // track rules say min of 3, max of 15 cars
WinningCar : Integers;
¥
RaceResults : {(RaceResult where value.CarNumbers <= [Integer8#3..15])*};

RaceResults {
Racelo =>» 1,

CarNumbers [3, 9, 12, 14, 37, 48, 52],
WinningCar =» 37

RaceNo =>» 2,
CarNumbers [5, 16, 28, 32, 44, 53, 68],
WinningCar =» 32,

1

Figure 5-4. Example of an entity type where one of the members is a list

126

CHAPTER 5 M - THE MODELING LANGUAGE

In the case of the Car example discussed earlier, the Engine value of the Car entity is itself set to a
derived type.

Entity Value Operators

Entity values can be accessed using the dot (.) operator. To provide an example of the use of the dot
operator to access entity values, let’s define Car and Engine entities with the values shown in Listing 5-4

Listing 5-4. Car and Engine Entities

Car => {
{Id =1,
Mfr => "Acme",
Model => "Runabout",
Year => 1954,
Engine => 100}

b
Engine => {

{Id => 100,

Cylinders => 4,
Horespower => 98,

Fuel => "gas",
Description => "42 mpg"}

b
The following statements will be true for these Car and Engine entities:

Car .Mfr == "Acme"
Car.Engine.Cylinders ==

Modules Revisited: Import and Export Directives

In talking about modules earlier in the chapter, mentioned the subject of scoping (i.e., visibility) and
import/export directives. Normally, a module is entirely self-contained in terms of its scope—code that
is defined other than within the module is not visible to types or other constructs within the module, and
vice versa. Intrinsic types are, of course, an exception: They are built into M, and can be invoked within
any module. But if a derived type or extent or computed value is defined in a different module, it will be
unavailable for use outside of the module it is defined in.

Let’s go back to the earlier Car example shown in Figure 5-3, but this time introduce the convention
that you want to define only one type per module. (This can often be a good idea, especially with large
projects.) Figure 5-5 shows how the code from this example might change, with the Engine type
definition moved to its own module (but still within the same M file, or compilation unit).

127

CHAPTER 5 ' M — THE MODELING LANGUAGE

CarTypeExampleWithoutimportExport.m X
module CarTypeExample
{
type Car
{

Id : Integer64 => AutoNumber();

wfr : Text; // Manufacturer

Model : Text;

Year : Unsignedl6 where (value »= 1769 && value <= 2020);

i \ve the reference to 'Engine’,|

module EngineModule {
type Engine

{
Id : Integer32 => AutoNumber();
Cylinders : Unsignedd where (value »= 1 &% value <= 12);
Horsepawer : Unsignedlé where value < 1008;
Fuel : Text where value in {"gas", "diesel", "propane"};
Description : Text; // e.g., "v8"
} where identity Id;

Figure

As

5-5. The Car example with Engine type moved to its own module without importfexport

you can see, there is an error indication (red squiggles) under the Engine type ascription and an

annotation that the Engine reference can’t be resolved. This shows that the Engine type definition is not
visible and is outside the scope of the CarTypeExample module. You can fix this problem by adding an

import

directive for EngineModule within the CarTypeExample module, and an export directive for the

Engine type in EngineModule. The resulting code is shown in Figure 5-6.

CarTypeExampleWithimportExport.m X

jodule CarTypeExample

{

}

import EngineModule;
type Car
{
Id : Integeréd => AutoNumber();
Mfr : Text; // Manufacturer
Model : Text;
Year : Unsignedl6 where (value >= 1769 && value <= 2020);
Engine : Engine;
} where identity Id;

module EngineModule {

export Engine;
type Engine
{
Id : Integer32 =» AutoNumber();
Cylinders : Unsignedd where (value >= 1 &% value <= 12);
Horsepower : Unsignedlé where value < 1000;
Fuel : Text where value in {"gas", "diesel", “propane"};
Description : Text; // e.g., "V&"
} where identity Id;

Figure 5-6. The Car example with Engine type moved to its own module with import/export

128

CHAPTER 5 M - THE MODELING LANGUAGE

The Engine type is now resolved within the CarTypeExample module. The import and export
directives provide the means for managing modules more logically and keeping them trim. Note that the
import directive refers to one or more module names. Several modules can be imported under a single
directive, with the module names separated by commas, or they can be imported by separate import
directives, one line for each. This is a matter of style. export directives must refer to type definitions,
extents, or computed values defined within the module where the export directive is invoked.

Labeled entity instances can be referenced across modules contained in separate M files and
compiled in separate compilation episodes, as long as the proper export/import directives are defined.
For instance, the Engine type definition shown in Figure 5-6 could have been defined in a separate M file
and compiled at a different time (again, with the necessary import/export directives in the respective M
files).

Figure 5-10 in the following section shows the extent definitions for Cars and Engines added in the
respective modules.

Extents

Extents in M specify storage locations. In the context of SQL Server, extents correspond to SQL tables.
Types in M will map to table definitions in T-SQL, but do not result in actually creating the tables in SQL
Server. Code that results in a T-SQL table creation requires an extent definition.

Listing 5-5 shows an example of how an extent is defined in M.

Listing 5-5. Defining an Extent
Cars : {Car*};

So an extent is simply defined as a collection of zero or more type instances. If a type is to provide
the basis of a SQL table definition, there must be a unique identity for each instance of the type that
maps to a primary key in the SQL world. This is why you used the AutoNumber () function to define the Id
of each instance of Car and Engine in the Car example (see Figure 5-7). Extents, as a matter of
convention, are normally given the plural name of their contained type. Cars would be the usual name of
the extent for the Car type, and Persons or People would be the usual name for a Person type, if you
defined such a type.

So let’s expand the Car example to provide the extents needed for creating the actual Cars and
Engines tables of the domain values in SQL. I'll add the extent definitions for Cars and Engines shown in
Figure 5-7 (grayed lines).

129

CHAPTER 5 ' M — THE MODELING LANGUAGE

ule CarTypeExample
frod ypeExanp

1

import EngineModule;

type Car
{
Id : Integerfd =» AutoNumber():
Wfr : Text; // Manufacturer
Model : Text;
Year : Unsignedl6 where (value >= 1769 &% value <= 2020);

Engine : Engine;
ﬁ‘lﬁ entity field 'Engine’ requires a membership constraint (i or ‘<:'J.‘

Cars : {Car*}; /4 extent definition for Cars
s

module EngineModule

export Engine;

type Engine
i
Id : Integer32 =- AutoNumber();
Cylinders : Unsignedd where (value := 1 && value <= 12);
Horsepower @ Unsignedlé where value < 1800;
Fuel : Text where value in {"gas", "diesel", "propane”};
Description : Text; // e.g., "V&8"
| where identity Id;

Engines ! {Engine*}; // extent definition for Engines

Figure 5-7. The Car example with Cars and Engines extents (— SQL tables) added.

Itisn’t correct, however, because the error annotation on the Engine value of the Car type definition
indicates that there must be a membership constraint. This means, since there is an Engines extent
defined in EngineModule, the Engine value of Car type (line 10) must be constrained to be in the Engines
extent. The EngineModule code also needs to be changed to export the Engines extent, along with the
Engine type (line 17), since there is now a reference to the Engines extent in the CarTypeExample module.
Finally, it's generally a good idea to export types and extents defined in a module if there is a prospect
that these should be exposed to other modules as you continue to refine your model. So you still add a
declaration to export the Car type and Cars extent, as shown in line 4 of Figure 5-8 (which shows the
corrected code).

130

CHAPTER 5 M - THE MODELING LANGUAGE

module CarTypeExample

1
import EngineModule; I
export Car, Cars;
type Car

i

Id : Integers4 =» Autobumber();

Mfr ; Text; // Manufocturer

Hodel : Text;

Year : Unsignedl6 where (value >= 1768 &2 value <= 2620);
Engine : Engine where value in Engines;

i where identity Id:

Cars : {Car*}; // extent definition for Cors

'},

module EngineModule {
export Engine, Engines;
type Engine
i

Id : Integer3Z =» Autobumber();

Cylinders : Unsignedd where (value »= 1 && value <= 12);
Horsepower : Unsignedlé where value < 160@;

Fuel : Text where value in {"gas", "diesel”, “propane”};
Description : Text; // e.g., "V&8"

} where identity Id;

Engines : {Engine®}; // extent definition for Engines

Figure 5-8. The Car example with the membership constraint for the Engine value in Car added

You no longer have any error indications for the two modules in this code. This means that this code
should successfully create the T-SQL code for generating the schema and table definition on the SQL
Server side of the house.

Generating T-SQL Code for the Car Model

To generate the T-SQL code for this model, you will need to switch to Intellipad. Save your code in
Quadrant as Car&EngineModel.m, and then exit Quadrant. Next bring up Intellipad and open this file.
When the file is loaded, Intellipad will switch to M mode, which you will see in the menu bar. Select the
M Mode - T-SQL Preview menu option (as shown in Figure 5-9).

131

CHAPTER 5 ' M — THE MODELING LANGUAGE

40 Fle Edit View MMode | Help -0x
CarTypeExampleWithIm AST Preview Cirl+MA 121% M Mode
module CarTypeE Semantic Graph Preview Ctrl+MG
I T-80L Preview h Ctrl+M,S
import EngineModule;
type Car
{

Id : Integer64 => AutoNumber();

Mfr : Text; // Manufacturer

Model : Text;

Year : Unsigned16 where (value >= 1769 && value <= 2020);
Engine : Engine where value in Engines;

} where identity Id;

Cars : {Car*}; // extent definition for Cars

module EngineModule {

export Engine, Engines;

type Engine
{
Id : Integer32 => AutoNumber();
Cylinders : Unsigned8 where (value >= 1 && value <= 12);
Horsepower : Unsignedl6 where value < 1000;
Fuel : Text where value in {"gas", "diesel", "propane"};
Description : Text; // e.g., "V8"
} where identity Id;
Engines : {Engine*}; // extent definition for Engines

Figure 5-9. Setting up to generate a T-SQL code preview

Figure 5-10 shows the generated T-SQL in the Intellipad right pane.

132

CHAPTER 5 M - THE MODELING LANGUAGE

4 He Edit

Car&EngineModel.m

VMiew DSL Help

module CarTypeExample
{
import EngineModule;
export Car, Cars;
type Car

i
Id : Integer64 =: Autobiumber();
Mfr @ Text; // Manufacturer
Model @ Text;

Year ; Unsignedl6 where (value
Engine :
1} where identity Id;

{Car

Cars : {

1

module Enginetodule |
export Engine, Engines;
type Engine
Id . Integer32 =+ Autobumber();
Cylinders
Horsepower :

Description :
| where identity Id:

100 M Mode

»= 1769 &4 value <= 2028);
Engine where value in Engines;

*}i // extent definition for Cars

Unsignedd where [value »= 1 R value <= 12};
Unsignedl6 where value < 1008;

Fuel : Text where value in {"gas", “diesel”, "propane”™};
Text; /7 e.g., "VB"

Engines @ {Engine®}; // extent definition for Engines

X

{Car&EngineModel.m | M to Sql

set xact_sbort on;
go

begin transaction;
go

set ansi_nulls on;
go

if not exists
(
select ©
from [sys].[schemas]
where [name] = H'CarTypeExanple’

NE - DX

100% TSQLLLMode % |

execute [sp_executesql] N'create schems [CarTypeExsmple]';

go

if not exists
(

select

from [sys].[schemas]

where [name] = 'Enginshindule’
i

execute [sp_executesql] N'create schems [EngineModule]’;

go

if not exists
{

select

Figure 5-10. CarTypeExample with generated T-SQL

Appendix E shows the complete listing for the generated T-SQL. You can see that the generated T-
SQL is substantially more complex than the M code used to define this simple two-type model. (There
are a total of 254 lines in the generated T-SQL, including blank lines.) Defining a model in T-SQL from
the ground up can be complex, error prone, and difficult to debug.

This illustrates an important advantage of the M language and the SQL Server Modeling framework,
which is the relative ease of defining a model quickly. The generated T-SQL could be used to deploy this
model directly to SQL Server by creating the tables and schema, but this could also be done directly
using the deployment facility in Quadrant.

Computed Values

M provides two ways in which values can be created:

o Stored values: You've already seen stored values defined in type definitions—for
example, Mfr is a stored value of type Text for the manufacturer in a Car type
definition. Stored values are also called fields, and translate to columns in a SQL

table definition.

o Computed values: Computed values are derived by evaluating an expression and
always occur within a module declaration, just as do type and extent definitions.
Computed values can be considered equivalent to functions and can have zero or

more arguments.

CHAPTER 5 ' M — THE MODELING LANGUAGE

An example of a computed value definition might be one that returns the sum of two numbers:

Add(x : Integer32, y : Integer32) {x +y};

Here’s an example of a computed value definition for the square of a number:

Square(x : Integer32) {x*x};

In the instance of the CarTypeExample, you could add a HorsepowerPerCylinder computed value in

EngineModule with the following line:

HorsepowerPerCylinder(Eng : Engine) {Eng.Horsepower / Eng.Cylinders}

Figure 5-11 shows the code in Intellipad with this computed value definition added, but the return
value and arguments are ascribed to a Decimal19 so that a reasonable precision can be returned from

dividing the two integers.

100% M Mode

¢ ----- —

Fle Edit View MMode Help Tl
| CarWithEngine&HorsepowerPerCylinder...
module CarTypeExample
{
import EngineModule;
export Car, (ars;
type Car
{
Id : Integertd =: AutoNumber{);
Wfr @ Textj // Manufacturer
Model : Text;

Year : Unsigned16 where (value := 1769 && value <= 2820);
Engine : Engine where value in Engines;
} where identity Td;

Cars 7 {Car*}; // extent definition for Cars

1

I

module Enginettodule |
export Engine, Engines;

type Engine
i
Id : Integer32 =+ AutoNumber{);
Cylinders : Unsignedd where (value := 1 &% value <= 132);
Horsepower : Unsignedlé where value < 180@;
Fuel : Text where value in {"gas”, "diesel”, "propane”};
Description : Text; /4 e.g.. "v8"

T where identity Id;

Engines : [Engine®}; J// extent definition for Engines

[/ Example of o computed value:

HorsepowerPerCylinder (Eng : Engine) : Decimall®
+(Eng.Horsepower | Decimalis) / (Eng.Cylinders : Decimalld)]

{ -0X

Figure 5-11. The Car example with a computed value definition.

134

CHAPTER 5 M - THE MODELING LANGUAGE

M generates a T-SQL function definition for this computed value definition, as shown in the
Intellipad T-SQL preview pane in Figure 5-12.

%' He Edt Wew DSL Help =T 7
CarWithEngine&:HorsepowerPerCylinder.m | M to... 100% T-50L 11 Mode

then 1
else @
end
end;
0

create function [Engineflodule].[HorsepawerPerCylinder]
(
fiEng as xml
)
returns decimal (19,6)
as
begin
return convert(decimal(19,6}, I
(
select (@Eng).value(N'(/entity/Hopsepower)[1]", N'int') as [Ttem]
1) { convert(decimal(19,6),

select (@Eng).valus(N'(/entity/Cylinders)[1]", N'tinyint') as [Item]
n
end;
o

create function [EngineModule].[Check Engines_Func]
(
@Cylinders as tinyint
)
_ceturns his

Figure 5-12. T-SQL code generated for the HorsepowerPerCylinder computed value in the M code.

You might have noticed that this definition for the computed value could potentially have resulted
in a divide-by-zero error in certain situations had you not constrained the number of cylinders to be an
integer between 1 and 12 (line 15 back in Figure 5-3).

The generated T-SQL code for this example, including the computed value, is shown in Appendix E.

Overloading

Overloading of computed value definitions is supported in M. This means that multiple computed
values with the same name can be defined, as long as each definition has a different number of
arguments. Selection of which definition is used by the compiler is determined by the number of
arguments in the invocation. For example, the formula for the volume of a sphere, given the radius r is:

V(r) =4/3nr’ (where n = 3.14159)
and would translate into the following expression for a computed value in M:
Volume(R : Decimal19) {((4/3) : Decimal19) * 3.14159 * (R*R*R)}.

You could have another computed value with the same name (Volume) for a rectangular cuboid with
sides of length A, B and C:

135

CHAPTER 5 ' M — THE MODELING LANGUAGE

136

Volume(A : Decimal19, B : Decimal19, C : Decimali9) {A*B*(}.

Both computed values have the same identifiers (or names), but overloading allows you to define
both within a given module, since they have a different number of arguments. In this case, you could
avoid some possible confusion by renaming the computed values to SphereVolume and CuboidVolume, but
there may be stylistic reasons in certain domains to take advantage of overloading and retain the same
computed value identifier across several different implementations, each with differing argument
counts.

Two computed value definitions with the same name and the same number of arguments will result
in an error.

Languages

Languages are the fourth basic construct included in the M language. Language constructs were
provided in M with the primary intent of enabling the development of domain-specific languages, or
DSLs, which can be a useful tool in model-driven development. This subject was covered in Chapter 3.

Summary

In this chapter I've provided a quick overview of the M language. M is a central component of the SQL
Server Modeling framework, and is intended primarily as a language for defining and managing models
and domain-specific languages. It can be used for transforming and deploying models defined in the
language into SQL Server schemas in SQL Server via T-SQL code generation.

Four central elements are important in developing an understanding of M:

o Types
o Extents, which map to SQL Server tables
¢ Computed values

o Languages

The first three of these are covered in this chapter, while Chapter 3 discusses languages from the
perspective of Domain-Specific Languages (DSLs).

T also covered modules and how type, extent, and computed value declarations in one module can
be made visible to other modules via Import/Export declarations.

For further reading on the M language, please refer to Microsoft’s “M” Language Reference
(http://msdn.microsoft.com/en-us/library/ee730868(VS.85).aspx), and the “M” Programming Guide
(http://msdn.microsoft.com/en-us/library/dd129568%28VS.85%29.aspx).

«

CHAPTER 6

SQL Server Modeling Services -
The Folder Pattern

SQL Server Modeling Services is the name of what, at one
time, was termed the Repository. This was back in the days
of Code Name Oslo. In November 2009, Microsoft held its
annual Professional Developers Conference, and
announced a number of name changes. Oslo became SQL
Server Modeling, and the Repository became SQL Server
Modeling Services. (I will sometimes use SSMod as a short
form for the longer name.) SSMod Services, née
Repository, was developed with two goals in mind: 1) to
provide a database geared to storing application models,
and 2) to provide for common model database schemas.

Enterprise application models can come with a large
amount of associated metadata: database schemas representing the models, design requirements,
config files, application binaries, team documentation, and versioning information are some examples.
Using an optimized central repository for storing and managing this metadata can make the application
life cycle significantly more productive and efficient.

Schemas or domain models are often found in common across a wide range of applications. SQL
Server Modeling Services provides a set of these common schemas or domain models for use wherever
they might be appropriate in developing a model-based application. These can be provided either by
Microsoft or by third parties.

The SSMod Services are built on the SQL Server platform, but they are enhanced and optimized for
supporting model-based development. These enhancements mean that a Modeling Services database
will

¢ Contain each application model in its own SQL Server schema
¢ Support fine-grained (i.e., row-level) security
¢ Support localized strings and resources

¢ Support hierarchical (i.e., folder-structured) data organization across all types or
tables, as needed

¢ Support change tracking and auditing

137

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

o Still provide a natural database structure that supports standard access
technologies and ad hoc queries

Put another way, the Modeling Services component of SQL Server Modeling encompasses features
that embody the enterprise capabilities of the new .NET framework.

So to sum up, when an IT manager contemplates the use of a new technology for mission-critical
software, he or she will usually be thinking about at least some combination of the following issues:

o Security

o Scalability

o Availability

¢ Auditing

¢ Change tracking

¢ Version management

¢ Localization

Woven together, the capabilities represented in this list provide the components of a system that
might qualify the modeling framework as enterprise-ready. All of these capabilities are provided within
the framework of SSMod Services. Covered in any depth, each would require a book in itself. This
chapter and the next one will provide an overview of two important facets of SQL Server Modeling
Services: the Folder Pattern and security.

The Modeling Services Folder Pattern

Modeling Services uses a folder pattern as the foundation of several of its services, including claims-
based Security, Versioning and Change Management, as well as Auditing. Any table can be given a folder
field, so Modeling Services support organizing data into logical folders. In other words, any row from any
table can belong to a given folder, and, like file system folders in DOS, Windows, or UNIX, repository
folders can be organized in a hierarchical structure.

The folder structure in Modeling Services is very simple and is illustrated in Table 6-1. Each folder
has three values:

¢ Aninteger Id, which corresponds to its primary key in the folders table
¢ Atextname

¢ Aninteger folder field, which is null if it is a top-level folder, or the Id of a higher
level folder if it is a child folder of the higher level folder.

Table 6-1 is an example of a folder structure for a very simple quality control (QC) system that you
will apply to the CarComponents model discussed in Chapter 4.

138

CH APTER 6 * SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

Table 6-1. QC Folders for CarComponents

d Name Parent Folder
1 Repository NULL
500QC Level NULL
510QC Critical 500

520 QC High 500

530 QC Standard 500

Example: A Quality Control System for CarModel

Following along the lines of Table 6-1, you will name three QC levels of Critical, High, and Standard. A
QClevel of Critical might be applied to components that have an important impact on safety-related
aspects of the car, such as brakes, air bags, seat belts, suspension, and so forth. A QC level of High might
be required for components that affect the mechanical performance of the car, such as the drive train
components. A QC level of Standard would be required of the parts not classified in the first two
categories, and could include items such as carpeting, dome lights, and so on. QC ratings and criteria
apply to all components of the system, so this is a natural area where a horizontal partitioning of the
data (across a number of tables or types) works very well. Table 6-2 shows the earlier car components
table (cf. Chapter 4), with a QCFolder column added, and a QC Folder Id corresponding to one of those
enumerated in Table 6-1 assigned for each component.

Table 6-2. CarComponents Model with QC Folders Added

Id Name Level Description Quantity Part Of QC Folder
1C ar 1 Top Level 1 NULL 520
2 Drive Train 2 Makes the car go 1 Car 520
3 Suspension 2 Makes the ride smoother 1 Car 520
4Bo dy 2 Metallic Blue 1 Car 520
5 Interior 3 Seats, carpeting, etc. 1 Body 530
58St eering 2 Makes it turn 1 Car 510
6 Engine 3 220hp V8 1 Drive Train 520

139

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

140

7 Pistons 4 Drive the crankshaft 8 Engine 520
8 Valves 4 8 intake, 8 exhaust 16 Engine 520
9 Shock Absorbers 3 One for each wheel 4 Suspension 520
10 Wheel Assembly 3 One for each wheel 4 Drive Train 510
11 Disk Brake 4 One for each wheel 4 Wheel Assembly 510
12 Floor Covering 4 Carpeting and Mats 1 Interior 530

A note to the reader: This very simple QC system is just an example intended to illustrate a possible
use of the folder pattern provided by the SQL Server Modeling Services. It isn’t intended to emulate the
design for a real-world manufacturing QC system, which would be considerably more complex. I could
just as easily have said that all parts are painted one of three colors (red, green, or blue) for the purpose
of this example. Also, for the purpose of illustrating the folder model, I've added a few more components
than what you saw in the CarModel example used in Chapter 4. Finally, the term “CarModel” refers to the
name of the overall model in that example, which is also the name of the M module. (To be entirely
accurate, the module name was “Car.Model”, but I've dropped the period for the purposes of this
discussion.) CarComponent is the type that is defined in that module, and CarComponents is the name
of the extent for the CarComponent type.

Here is where I can talk about how Repository folders are created, organized, and managed using
the SSMod tool set (Intellipad, Quadrant, and the command-line tools) and Visual Studio. Let’s open
Intellipad and reload (or re-enter) the code for Chapter 4's CarModel example. It should look something
like that shown in Intellipad Figure 6-1.

40 He Edit View MMede Help 0%
CarModelWithoutFolder.m 123% M Mode
module CarModel

export CarComponent, CarComponents;

type CarComponent
{ 1
Id ! IntegerB4 = Autohumber();
Name - Text;:
Level : Integer32,
Description : Text?;
PartOfComponent : CarComponent? where value in CarComponents;
Quantity : Integer3d2 => 1;
| where idenmtity (Id);

CarComponents: {CarComponent®};

Figure 6-1. Original CarModel type definition from Chapter 4

CH

APTER 6 * SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

How do you modify this code to add a folder value? Folders are provided by the Repository.Item
model, so you'll add an import directive for Repository.Item. Next you'll add a Folder value to the
CarComponent type definition, ascribed to the FoldersTable type: This is shown in Figure 6-2.

40 He Edit View MMcde Help
CarModelWithFolder.m
module CarModel

import Repository.Item;

export |Cannof. resolve the reference to 'Repositoryliem’,

type CarComponent

I
Id : Integerbd =:

Name : Text;
Level : Integer32;

PartOfComponent :

} where identity (Id);

Autolumber() ;

Description @ Text?,

CarComponent? where value in CarComponents;
Quantity : Integer32 = 1;

Folder : FoldersTable:

CarComponents: {CarComponent®};

=03

123% ™ Mode

Figure 6-2. Adding the Folder value, showing two reference errors

But there’s a hitch: The M compiler is unable to resolve the Repository.Item model and
FoldersTable type references. You need to specifically add a reference to the Repository.Item model,
which, as it turns out, is contained in the Repository.dll file. Adding a reference to the Repository.dll file
must be done in the context of a Visual Studio project, and Intellipad provides a way of doing this:

1. Expand the Intellipad window horizontally to make room for a split window by
dragging the right edge of the window to the right (see Figure 6-3).

2. Click on the View tab of the Intellipad window.

3. Select the Split Vertically option. This will split the Intellipad window vertically
into two M mode panes, each with the same M code as appeared before the

split.

141

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

142

4% Fle Edit View | MMode Help =%
CarModelWighF(Full Screen Alt+Shift+Enter 0% M Mode
module Carfioe Z99T: Cuitwz
{ y S Split Horizantally Corl+W,-

::;:t é’f Split Vertically Cirl+W,
Toagle Mini-buffer Ciris/
fwe Fad Shaw Errors Cirl+Shift+E
A 1d : Show Noiffications
Name Show Interactive SQL
Level ==rrregeryzy=
Description @ Text?;
PartOfComponent : CarComponent? where value in CarComponents;
Quantity : Integer3z =: 1;
Folder . FoldersTable:
+ where identity (Id);
CarComponents: [CarComponent™};
Figure 6-3. Splitting the Intellipad window vertically to allow room for opening a new project
Now you can add the new project:
1. Click the File tab of the Intellipad window.
2. Select the New Project option (as shown in Figure 6-4).
3. ASave Project As dialog box will pop up to allow you to name the new project
file to be saved. Enter a project filename of CarModelWithFolder (see Figure
6-5). This will display a new project template in the right pane (see Figure 6-6).

4% Fe | Edit View MMode Help - 0%
Ca Mew Ctrl+N 100% MMode % CarModelWithFolder.m 100 MMode X
ma Mew Eroject, [%CN‘S"-‘H'N medule Carifodel
{ Open. G+ {

Save Ciries import Repository. Ttem:
3, omponents; export CarComponent, CarComponents;
Save As..
Save A Copy. type CarComponent
Save Al Ctrl+ Shifi+5 (
Ereced , feotlumber(}; Id : Integerbd =5 Autolumber(),
Ry Name : Text:
Close Cirl+F4 Level : Integer3Z;
Hecerit Description @ Text?;
- rComponent where value in CarComponents; PartOfComponent | CarComponent! where value in CarComponents;
Exit Alt+F4 =+ 1; Quantity : Integer32 = 1j
— romer TR Folder = FaldersTables
I where identity (Id}; | where identity [1d);
CarComponents: {CarCompanent™}; CarComponents: {CarComponent®]:
i I}

Figure 6-4. Adding a new project. (Right pane has focus.)

CH

APTER 6 * SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

Save Project As

Savein] (23 Car Model

| =B Er

L

Recent

Fi-.

Desitop

My Documents |

o7

Iy Computer

€ |

B
My Netwarle
Places

Filz name:

Save as ype

QCarrv'!adel‘.’v'nh Folder

|

|CSham Froject Fies [cspro)

&

Save

Cancel

%

Figure 6-5. Saving the new project file as CarModelWithFolder.csproj

export CarComponent, CarComponents;
type CarComponent

Id
Hame |

Integersd =) Autolumber(|
Text;
Level : Integer3l;
Description @ Text®;
PartOfComponent : CarComponent: where value in CarComponents;
Quantity : Integer3z =* 1
Folder © Folde:
¢ where identity (Id);

CarComponents: {CarComponent™};

System.Care]
System.Xml.Ling]
System.Data.DataSetExtensions]
Microsoft.Csharp]
System.Data]
System. Xml]
System.Configuration]
System.Data.Entity]
System.Componentiodel.Datadnnotations]
C:\Program Files\Microsoft 0slo\1.@\Bin\Microzoft.M.dll]
[System.Runtime,Serialization]
MCompile
[Model.m]

% Fle Edit View Plojed Help = HK
CarModelWithFolder.m 100 MMade < | file///C:/Documents and Setting... 100% ProjectMode ¥ |
module CarModel CarModelWithFolder, csproj [
£ Reference

dnpiort Reprizitany, Thes; [Systen]

Figure 6-6. New project (right pane)

The new project file is based on a generic template, and includes a single generic M file (Model.m
under the MCompile section) and a number of models under the Reference section. These are all models
provided in the SSMod Services Base Domain Library (BDL). I'll say more about the BDL in the next

chapter.

Note that the Reference section doesn't include a reference to Repository, and the
CarModelWithFolder.m file is not included in the MCompile section. So the project is initialized as a
generic project from a template, and has nothing to do with the model you are working with. Model.m is
a placeholder code file, which could be used to flesh out the code you actually want for the domain

143

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

model definition file. Figure 6-7 shows the generic Model.m code after being created as a result of setting

up the new project.
%0 He Edit View MMode Heio o= 0%
Model.m 100%: M Mode

module CarModeliithFolder

I
i

type Model
Id : Integer3Z =3 Autolumber():
Field : Integer32;

i

Modelsamples : {Model”| where identity Id:

Figure 6-7. Generic Model.m file created with the new project file

Note that the module is named the same as the M code file that was loaded in Intellipad at the time
you created the project, but it doesn't reflect the code in that file. If you had started by creating the
project file first, then using the Model.m file as the starting point for building the model code, this would
have worked just as well. Intellipad, however, currently provides no facility for renaming the M file
within the project file.

If you've been following along with this example by executing the steps in Intellipad, you may have
noticed that the configuration text in the project file is read-only and can’t be modified in this view. You
can, however, add the CarModelWithFolder.m file to the project file by clicking the Project menu and
selecting the Add Project File option, as shown in Figure 6-8.

@0 FHe Edt View Brojsct | Help - o

CarMode/WithFoldar.m Build Project CirlShift=8 | 2005 MMode « files///Ci/Documents and Setting... 100% ProjectMode X

module Carllodel Toggle Project View CarModelWithFolder.csproj

f Reference
[System]
[System.Care]
[System.Xml.Ling]
[System.Data,DatasetExtensions]
[Microsoft. C5harp]

Add Praject Elle.
I%CE. .

import Repositor
SIport REROSiLA Add Project Refe

export CarCompar

type CarComponent

Id : Integert4 =» Autohumber(),
Mame | Text;
Level : Integer32;
Description @ Text®;
PartOfComponent : CarComponent! where value in CarComponents;
Quantity : Integer32 = 1
Folder © Fol able;
| where identity (Id);

CarComponents: |CarComponent™};

[System.Data]

[System.Xm1]

[System.Configuration]

[System.Data.Entity]
[System.CompanentHodel . Datadnnotations]

[C:\Program Files\Microsoft Oslo\l.@\Bin\Microsoft.M.dll]
[5ystem.Runtime.Serialization]

MCompile

[Model.m]

Figure 6-8. Setting up to add the CarModelWithFolder.m file to the MCompile section of the project file

This will bring up an Open file dialog box, as shown in Figure 6-9. Select CarModelWithFolder.m

and click the Open button.

144

CH

APTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

Open
Leok i1 [29 Car Model s -AEckE
=
',J @
Recent @ pgdelm
c
Desitop
My Documents
39
Iy Computer
prz»letwod(File name 1Carfv'!adel‘.’\fnhFoldarm l] Open
\aces
Fissofgps: [M Fiss ('m) E Cancsl

Figure 6-9. Selecting the CarModelWithFolder.m file to add to the MCompile section of the project file

This will add the M file under the MCompile section of the project (see Figure 6-10).

export CarComponent, CarComponenis;

type CarComponent

L

Quantity : Integer32 =» 1;

PartOfComponent : CarCompanent? where value in CarComponents;

[System.Core]

[System.Xml.Ling]
[System.Data.DatasetExtensions]
[Microsoft.CSharp]

Id : Integersd =» AutoNumber(); [System.Data]

Wame © Text; [System.Xml]

Level : Integer3i; [system.Configuration]
Description ¢ Text?; [system.Data.Entity]

[System. ComponentModel .DataAnnotations]

40 Ee Edit View Projsct Help ‘| -0%
CarMode!WithFolder.m 100% MMode % | file///C/Documents and Settin... 100% ProjectMode ¥
module Carflodel : CarModelwWithFolder.csprod 1
1 Reference

import Repository.Item; [Systen]

[€:\Program Files\Microsoft Oslo\1.8\Bin\Microsoft.M.d11] |

Folder : FoldersTable: [System.Runtime.Serialization]
| where identity (Id); MCompile
[Cartiodelwithfolder.m]
CarComponents: {CarComponent®}; [Model.m] I

Figure 6-10. CarModelWithFolder.m file added to the MCompile section of the project file

Although you now have the desired CarModelWithFolder.m included in the project, you also still
have the unwanted baggage of the Model.m file in this section. Here are the steps you can take to
remove it:

1. Click on the Project menu and select Toggle Project View.

2. This displays the project file in XML format. Unlike the read-only Project view,
the XML view can be edited.

145

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

146

3. Figure 6-11 is the result. I've highlighted the line for Model. m under the

<ItemGroup> tag.

4. Highlight and delete this line.

5. Toggle again to the normal Project Mode view.

6. Save the project file with Ctrl+S, or by using the File - Save menu option.

41 He Edit View Project kel

|
module Carflodel ‘I
i
inport Repuzitory, Ttes;
export CarComponent, CarCompanents|

type CarComponent

Id : Integers4 = AutoNumber(|

Name | Text;

Level : Integer32;

Description @ Text:);

PartOfComponent : CarComponent: where value in CarComponer |

Quantity : Integer32 = 1;

Folder © Fol
| where identity (1d);

CarComparents: {CarCompanent™};

CarModelWithFolder.m 100% MMode x| CarModelWithFolder.csproj 100% Project Mode x‘

~0Ox

<Reference Include="System.Data" />
<Reference Include="System.Xml" />
<Reference Include="System.Configuration™ />
4Reference Include="System.Data, Entity" />
<Reference Include="System.ComponzntModel.DataAnnotations” />
<Reference Include="$(MDLL)" />
<Reference Include="System.Runtime.Serislization” />
</ItemGroups
<«TtemGroup>
<MCompile Include="CarModelWithFolder.m" /%
<MCompile Include="todel.n" /> T
</TtemGroup>
<Target Name="Build": |
<Error Condition="!Exists('§(MTargetsPath)\Microsoft . Enbedded. targets')" Tex|
«/Target>
<Import Project="§(MsBuildBinPath)\Microsoft.CSharp.targets" />
<Import Condition="Exists('${MTargetsPath)\Microsoft.M.Embedded.targets')" Projey

{/Project>

Figure 6-11. Project mode in XML with Model.m line highlighted

Figure 6-12 shows the result.

40 Fe Edt View Pt elp

module CarModel

¢
i

import Repository. Item:
export CarComponent, CarComponents:

type CarComponent

Id ; Integertd = AutoNumber!
Neme | Text;

Level : Integer3a;

Description @ Text®;

Quantity : Integer3: =: 1
Folder © Fal
i where identity (Id);

CarComponents: {CarComponent™};

(CarModelWithFolder.m 100% M Mode

PartOfComponent : CarComponent! where walue in CarComponents; [System, ComponentModel. DataAnnotations]

-0Ox
¥ | filex///C/Documents and Setting... 100% ProjectMode ¥
CartiodelWithFolder.csproj |
Reference
[Systenm]

[System,Core]

[System.Xml.Ling]
[System,Data.DataSetExtansions]
[Microsoft.CSharp]

System,Data]

System.Xml]
System,Configuration]
System.Data. Entity]

[
[
[
[
[€:\Program Files\Microsoft Dsloh\l.@\Bin\Microsoft.M,d11]
[System.Runtime.Serialization]

MCompile
[CartlodelliithFolder.m]

Figure 6-12. CarModelWithFolder project with the updated MCompile section (bottom of right pane)

You can see that the resolution errors for Repository.Itemand Folders.Table are still occurring, so
what's been done so far hasn'’t fixed this situation. You want to add a reference for the Repository.Item

CH APTER 6 * SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

model under the Reference section of the project definition. Repository.Item (and other SSMod Services
models) is defined in the Repository.dll file. This file resides in the bin folder where the SQL Server
Modeling framework is installed on your computer. The default path for this file, assuming a standard
installation for the SSMod software, is normally C:\Program Files\Microsoft Oslo\1.0\bin\Repository.dIl.
(If your instance of SQL Server Modeling was installed to a different path, you will need to make the
appropriate adjustment in what follows to point to the folder where Repository.dll resides.)

To add this reference, click again on the Project menu, and select the Add Project Reference option
(see Figure 6-13).

export CarCompor System,Core]

System.Xml.Ling]
System,Data.DataSetExtansions]
Microsoft.CSharp]

System.Data]

System.Xml]
System,Configuration]
System.Dats. Entity]

Add Project Reference; P

type CarComponent

Id | Integert4 =) AutoNumber: |
Neme | Text;
Level : Integer32;
Description @ Text®
PartOfComponent : CarComponent! where walue in CarComponents; System,Componentiodel . DataAnnotations]
Quantity : Integer3dz =» 1 C:\Program Files\Microsoft Dslo\l.8\Bin\Microsoft.M.d11]
Folder : FoldersTable; [System.Runtime.Serialization]
i where identity (Id); ICompile
[CartodelliithFolder.m]

[
[
[
[
[
[
[
[
[
[

CarComponents: [CarComponent™};

40 Fe Edt View Poisct | Help ; ~0O%
CarModelWithFolder.m Build Project CofeShift=2 | 1008 MMede filey///C/Documents and Setting... W00% ProjectMode
module Carflodel Toggle Project View CartiodellithFolder csproj
{ Add Project Eie, Reference

import Repositor [System]

Figure 6-13. Adding the project reference for Repository.dll

Navigate to the location of the Repository.dll file, select that file, and click the Open button (shown
in Figure 6-14).

Figure 6-14. Adding the reference to C:\Program Files\Microsoft Oslo\1.0\bin\Repository.dll in the Open
dialog box

147

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

The result is shown in Figure 6-15: Repository.dll has been added in the Reference section of the

project listing, and the resolution errors have disappeared in the M Mode view of the model M file (left
pane).

40 Fle Edit View Piojsd Help ~OK
CarModelWithFolder.m 100% MMoae X ‘ files///C:/Documents and Setting... 100% PrgjectMode X

module Carftodel ‘ tar*’!udalhithFoldEr.csproj

{ Reference
import Repository. Item; [C:\Program Files\Microsoft 0slo\1.8\bin\Repository.dll]
export CarComponent, CarComponents; [System]
[System.Core]
[System.Xml.Ling]
[System.Data.DataSetExtensions]
[Microsoft,(Sharp]
[System.Data]
[system.xml]
[System.Configuration]
PartOfCompanent | CarComponent! where value in CarComponents; [System.Data, Entity]
Quantity : Integer3z =: 1
Folder . FoldersTable;
i where identity (Id);

type CarComponent
Id : Integert4 =) AutoNumber: |
Name Text:
Level : Integer3z;
Description @ TeMt®;

[System.Componenthodel.Datafnnotations]
[C:\Program Files\Microsoft Oslo\1.9\Bin\lWicrosoft,M,.d11]
[System.Runtime,Serialization]

I MCompile

Carlomponents: [CarComponent™}; [CarMadelkithFolder.m]

L =

Figure 6-15. Adding Repository.dll as a reference in the project file fixes the resolution errors.

Now that Repository.Item and FoldersTable can be resolved in the M code, make sure the cursor is
in the right pane and use Ctrl+S to save the project file again. (This should save it as the
CarModelWithFolder.csproj in the same folder where the CarModelWithFolder.m M code file is located.)

The next step is to deploy the model to SQL Server. This time you'll use Visual Studio 2010, rather
than Quadrant, to deploy. Start by opening SQL Server, and select Open Project (see Figure 6-16).

8 Start Bage - Microsoht Visual Studie BE %]
e (% e Qom Tem O Tem lek griow
iglcdd| A . Al 4 QI NxBE D,

Start Page X

e .
!ﬂvﬁml Studio 2010 Professiona

B e

@

b - roatm
o page afier gropect bed -

o page en star o Se——

Figure 6-16. Opening the project in Visual Studio 2010

148

CH APTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

Browse to the folder where CarModelWithFolder.csproj was just saved, and select this file (shown in
Figure 6-17). Select the file in the Open Project dialog box.

Cbwct oo P E v

o

Obvicts of oo N Bngst Bl " i " S vew " S e W e

Figure 6-17. Opening the project file in Visual Studio 2010

The title bar of the Visual Studio window should indicate the name of the project. In case the
Solution Explorer is not already open in Visual Studio, select the View - Solution Explorer menu option
to open it (see Figure 6-18).

@ CarModetWithF lder - Wcrosot Visual Studio JoE|
Be B e B Qg Tem O T Do b e
217 T Sokon brglarer K Criil SAEAxBE O,

Nl Oes el

Snftedt shnter

Figure 6-18. Opening the Solution Explorer in Visual Studio

Figure 6-19 shows the Visual Studio window with the Solutions Explorer pane.

149

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

2 CarklodelWithF older - Ikcrosaft Visual Studio
B D pew Pomc Qo Qg Teim Dga Tept Tooh Wndow e
P b2 A9 omg SR RED .

Figure 6-19. Visual Studio with Solution Explorer open

After the Solution Explorer is opened, expand the References section to make sure everything is in
order (you want to see that the reference to Repository.dll is still there), and double-click
CarModelWithFolder.m to display the M code (as shown in Figure 6-20). Verify that no error indications
appear in the M code pane.

o CarModelWithFolder - Microsoft Visual Studio BE)
File Edit View Project Buid Debug Team Data Test Tools Window Help

-l kB DF G RED-.
P e] =l MG &S00

CarModelWithFolder,m X - Solution Explorer X

Elodule Cartodel Bl ‘ B
(25 . AN 3 carModelWithFolder
import Repository.Item; S- B Properties

| export CarComponent, CarComponents; I ._J Settings settings

2 |G References
+3 Ct\Program Files\Microsoft Oslo}1,048in'Microsoft.M.dl
+3 C:\Program Files\Microsoft Oslo\1.0%in'Repositary.di
1 Microsoft.CSharp
+2 System
2 System.ComponentModel DataAnnotations
2 System.Configuration
<2 System.Core
<2 System.Data
<3 System.Data.DataSetExtensions
«3 System.Data.Entity
+3 System.Runtme. Serializaton
| CarComponents: {CarComponent™}; 43 System i
LI 42 System.¥ml.Ling
\j app.config
] W@ carmodelwithFolder.m

=] type CarComponent

| Id @ IntegerG4 => AutoNumber();
Name : Text;
Level : Integer32;
Description : Text?; |
Part0OfComponent : CarComponent? wher'—|
Quantity : Integer32 =3 1;

| Folder : FoldersTable;

} where identity (Id);

W% €] I | 2]

Figure 6-20. CarModelWithFolder.m code (left pane)

150

CH

Now you should be ready to use the M Deployment facility in Visual studio to deploy the model to

APTER 6 = SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

SQL Server. Right-click on the project name in the Solution Explorer pane (top line), and select
Properties from the context menu that appears (see Figure 6-21).

| o8 CarModelWithF older - Micresolt Visual Studia
Be Bt gew Boet DAd Qebg Tesm g T Jook Wndow beb
P d @b 28090] oo

hoaoflmE SidW s ddd A,

isport Repositery.ltes;
t CarCompanent, CarComposmnts;

type CarComponent

in CarCosponeats;

RIE i P g0] i

[e—— ol B A
module Carvode] Halag

|
|
Add Geference |
Add Serice Rebernce ‘
£\ ow Clons Diagrws [
Doy v |
Add Propict o Source Contral.

UL OOUUUOLR

= G

a 0]

oy
8

e
J o Faiter in idons Explorsr

|
- Aot |

Figure 6-21. Opening the project properties pane in Solution Explorer

Select the M Deployment section in the project Properties pane on the left (see Figure 6-22).

| 80 CarModelWithF older - Microsoft Visual Studio
Bk Gt den Prowt BAd Qe Telm Oga Te Jock Dindow beb
Pl b 289 em)b o

Cavoanivieface O EELERIETEEEY

NI XBE .

« Sokuon Exglorer

aladl4g
7 Carttodeliiitht older

L

L
tbogobooLbooLIES

%)

.

Figure 6-22. Selecting the M Deployment section in project properties

151

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

152

Verify that everything is in order in the Database Connection String. It should look exactly the same

as displayed in Figure 6-22, unless you are connecting to a remote database or running with other than
Windows security.

Now right-click again on the Project name in Solution Explorer and select Deploy, as shown in
Figure 6.23.

©6 CarlodelWithF older - Microsoft Visual Studio

SE1)
|G Gt Yew Bromct B Db Tenm Dgs Tegt ook e b
idl-dd b - o el bloee IS REIRO,
]
aicator
Bl
Sebug
Datatane Cormacten Stang
oo
Sarvichs @ S i]
g
Sefmrerce Py
Sy ot
M Deloy=wnt B
J Owen Peider in Windons Explorer
= Proowte 2 sbrie

Figure 6-23. Selecting the Deploy option for the CarModelWithFolderProject

Once the deployment has executed, you should see a Deploy Succeeded indication in the lower left
of the Visual Studio window (shown in Figure 6-24). If you get a Deploy Failed indication, check the
Database Connection String field in the M Deployment pane.

CH

APTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

0 CarlodelWithFolder - Microsoft Visual Studio
Ge it Bew Bowc BAd Qe Tom Dga Tet ook edow b
JRF G EED .

i ddl s

*| b |Debg

Seterence Peme
S

M Deioyeent

P 1|
]|
=

Figure 6-24. Deploy Succeeded indication (lower-left corner)

If everything is correct, you're finished with Visual Studio, and you can go ahead and close it.
To verify that the model has been deployed to SQL Server, open Quadrant and click on View >

Explorer - Repository on the menu (see Figure 6-25).

-

% FHe Edit View | Workpad Data Help

Euplorer » Repository
Changes Quadrant
Errors]

Details

Zoom r

Set Preferred Zoom r

Refresh F5

Repository 100%

Figure 6-25. Opening an Explorer on the Repository in Quadrant

In the Repository Explorer, expand the CarModel database by clicking the triangle icon to the left of
the label, then left-click and drag the CarComponents table onto the Quadrant canvas, as shown in

Figure 6-26.

153

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

%0 Hle Edt View Workpad Dats Help Quadran = 01

O CarComponents

4§ Cgfiodel
0" CarComponents
+ { Language.Catalog
+ & Language.Catalog.Cir
* & Language.Catalog.Runtime
+ O Language Catalog.SQL
+ & Language.Edm
+ & MigComponenthodel
v & pattemnApplication
+ & Repository
+ & Repositoryltem
b & System
*+ & System.CompenentModel
+ O System.ComponentModel DataAnnotations
+ O System.Globalization
v qc
Repository

Repasitory 105%

Figure 6-26. Dragging the CarModel.CarComponents table onto the Quadrant canvas

This should open a view of the empty CarComponents table, as shown in Figure 6-27. The
important thing to check here is that there is a Folder column included in the table column headings.

+ & LanguageCatalog

b+ & Language.Catalog.Clr

+ ¢ Language Catalog.Runtime

¥+ ¢ languageCatalogSQL

» & LlanguageEdm

» ¢ MfgComponentiviodel

+ & patternApplication

v & Repository

+ & Repositoryltem

b+ & System

+ & System.CamponeniModel

+ ¢ System.ComponentModel.DataAnnotations

+ & System.Globalization
vlac

| Repository

#¢ HAle Edit View Workpad Data Help .20 =0X
CrCompanents -
4 Database Carbodel.CarComponents

4 & Carviodel I[d Name level Description Quantity PartOfComponent (Folder)
O CarComponents

Repository 105%

Figure 6-27. Checking that a Folder column is included in the CarComponents table

154

CH APTER 6 = SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

Next, you need to set up the QC folders in the Repository, since these have not been created yet. To
do this, start by opening SQL Server Management Studio. Connect to the database where the Repository
is defined. This should be the default (local) connection, unless you have been working with a different
database connection.

Expand the Databases section (click on the + sign) in the Object Explorer pane, then the Repository,
then the Views section (as shown in Figure 6-28). Always use the Views section of the Repository to
create and manage folders, not the Tables section. This is important because using the Tables section to
create or manage folders can cause inconsistencies or integrity problems within the Repository’s folders
setup. Correcting such problems can be difficult.

Query | [| i i) "
= S ’ : :
Covect | 33 3 =" 7] 4
Bld 5 0 (5QLServer 10.0.1600 - & Bart)
(= 3 Databases

[[System Datshases
[[Database Snapshats
® Contacts
® [4 LunchCounter
] MNevCTP3
® |) Pocosa
=AT |
[_j Datahasa Diagrams
® 3 Tables
& 3 Views
[Synanyms
@ [Programmabilty
® 3 Service Broker
® 3 Storage
® 3 Security
® | J setpApplcationDB
@ [Security
[Server Objects
[Replication
[Management
® [sQL server agent

Heis o B oogoe |
Ready

Figure 6-28. Expanding the Repository database and preparing to expand the Views section

After expanding Views, scroll down through the Views listing and right-click on the
Repository.Item.Folders view (see Figure 6-29). Select the Edit Top 200 Rows option.

155

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

156

Ax]

|DHW!’UWMWMM

@ [Mowofusd Valioecteatons Al
® [Momofuusiz vnstinacsors
@ [0 Mot usil. vinsties
@ [0 Moo sl vt
[Mermsofusi2. Visteuriicaens

i [3) Mamioh o e P eAeng
@ [Meressfusil Wistevrabiecteny

[Reomrry = Gt Sermsers
- [Ny
[Colees 1N e v
® L Trgges
[indees | Duie
[Sutes |)| Seect Top 900 R
[0 Revowtory TP
@ [Repawtory . t}‘_

O Resary emaeme] [OtV

[Reesry e Secud || v Depncences
[Ay wm S P
[0 Rumenry Jm e P Toct '
@ [Resemtory Stee Secud
® [Revewory T Securd
[Aoy JemSecun] | e

Figure 6-29. Right-click the Repository.Item.Folders view and select Edit Top 200 Rows in the context
menu.

This should bring up a table view of Repository.Item.Folders in the right pane of SQL Server
Management Studio, as shown in Figure 6-30. The view will show all folders defined under the
Repository and is updatable. New folders are added simply by entering the Id, folder name, and parent
folder Id in the bottom row of the view (the one with all NULL entries). If the folder is to be a top-level
folder, leave the Folder value as NULL. The red exclamation point icon ®/indicates that the row has
been changed, but not yet committed.

CH APTER 6 = SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

(g e ——
2 Microsoft SOL Server Management Studio M=%
Fle Edit WVew Project Debug QueryDesigner Tools Window Community Help

_I 5 _4 J__h Change Tupe - |

Ohject Explorer

’ © .Item.Folders| - X

Connect ~ | 2 &J 5T ‘-E _‘ d Hame Folder

el |Z|J Language Catalog. TypeReferancesExprassions |A| 1 Repository ML
|:U MfgCamponentModel, MfaComponents 4 7 500 O qclEE| ML
=] BJ I_lepositor\,"Item.CurremFerm\ssions % NUL UL NULL
@ 3 Columns - | %
[[Triggers
& [Indexes
[[Statistics
= |Z|J Repository. Item. Folders
[Columns
[Triggers
@ [Indexes
[[Statistics
E2} |Z|J Repository. Item.PermissionRules
#E Repository. Item.ReadableFoldersView |
Repository. Item.RemaovalPalides
Repository. Item. SecuredOperatians
Repository, Item, SecuredResourcerinds

|
2] Repository. Item. SecuredResourcePermissions [
%] Filfe2 il £ I i)|_ 4 412 afz| b Bl b | | cellis Modified. :

Ready

Figure 6-30. Adding the parent QC Level folder in the Repository.Item.Folder table view

Clicking in the left cell of the bottom row (the one with all NULL entries) commits the changes just
made to the QC Level folder row above. In this bottom row, enter 510 for the next Id, QC Critical for the
Name value, and 500 for the parent Folder Id value. Figure 6-31 shows these changes before the row has
been committed. After this row is committed, enter and commit the next two folders, with the following
values:

¢ 1d: 520; Name: QC High; Folder: 500
o Id: 530; Name: QC Standard; Folder: 500

157

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

158

Tools

Windaw

Community Help

Object Explarer
. la T

@ MfgCamponentModel, MfaComponents
=] @ Repository, Item. CurrentPermissions

[Columns

® [J Triggers

[[Indexes

® [J Statistics
i 3] Repository.lem Folders

& [Columns

[Triggers

[Indexes

[Statistics
@ Repository, Item, PermissionRules
Repository, [tem,ReadableFoldersView
@ Repasitory, Item.RemovaPalides
@ Repository. Item. SecuredOperations
[JT] Repasitory, [tem. SecuredResourcekinds
] r-'j Repository. ltem. SecuredResurcePermissions

rr— m

@ Languzge. Catalog, TypeReferencesExpressions @

S ..ItemFolders|

d

| Name

| Folder

1
500
510
TNULL

* |
il

4 43

i
3]

Repository
QC LEVEL

O G Critical
WULL

of 3| b Bl b | (%) | celisModiied,

ML

ML
! 2

NULL

Ready

Figure 6-31. Adding a new Folder row in the Repository.Item.Folders table view

Figure 6-32 shows the four QC folders in the Repository.ltem.Folders table after adding and

committing.

Tools

Fle Edit Miew Project Debug QueryDesigner

Windaw

Community Help

S0 ..FoldersTable|

- 4l 5 ; b} | Name | Folder |
E Patternapplication,PatternScopes E] — Repasitory ML
® 1 Repository, IdSequenceAlizsesTable 500 QCLEVEL AL
3 Repository. [dSequencesTable
3 510 500
= =] Repository. Item. FoldersTable - Qe cites!
& [Columns = QC High 500
® [Keys 53 QC Standard 500
[Constraints Ll *_
e ML NEL ML
@ A Triggers (=
& [Indexes
& [Statistics
] Repository. Item. Internal FolderPermissionRules
= Repository. Item.PermissionRulesTzble
1# [Repository. Item.RemovaPaliciesTable El
e i e b L= [| " i
& BN s es[h b @ |
Ready

Figure 6-32. Repository.Item.Folders table view after the QC Level folders have been added and committed

CH APTER 6 = SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

Returning to the CarComponents Explorer in Quadrant (see Figure 6-33), you can begin filling out
your model by entering new component instances (just as you did in Chapter 4, using Data - Insert
Item or Ctrl+I), but this time specifying the QC Level of each component by selecting the QC Folder
name.

40 He Edt View Workpsd Data lelp

e fRT OX
ol CarCatporas
1! Name Level Description Quaritity PartQfCompanent Folder \mm Lay |
o1 Car 1 Top Level 1 Q <pull - QCHigh =
o 2 Drive Train 2 Makes the car go i Q Car » || QCHigh = CarModel.CarComponents(4)
e 3 Wheel Assembly 3 One for each wheel 4 O Drive Train v ||| QCCrtical » Id 4
o 4 Disk Brake 4 One for each wheel assembly 4 O Wheel Assemblyr | | QC Critical = MName Disk Brake
Pz Level 4
Pi Description One for each wheel as...
LS Quantity 4
r PartCfComponent © Wheel Assembly =
, foider || QC Gitics
¥ References | Repasitory
QC LEVEL
| kel
e (_1{_: }—I.;h_ L
QC Standard

ol Insert New Folder

Repository 100%

Figure 6-33. Adding new CarComponents values and specifying the QC Level for each

In Figure 6-33, I've defined four CarComponent values with their associated QC Level values. You
can see that there are two components with a QC Level of High (the Top Level Car system, and the Drive
Train), and two with a QC Level of Critical (Wheel Assembly and Disk Brake). So, theoretically, you
should be able to take a look in the QC Level folders and see if the contained component values
correspond to this model as it’s been configured so far.

If you go back to the Repository Explorer, you can see the top QC Level folder. Expanding the parent
QC Level folder (by clicking on the triangle icon on the left), you see the three QC Level child folders:
Critical, High, and Standard (shown in Figure 6-34).

159

CHAPTER 6 SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

#4 Fle Edit View Workpad Data Help adeam LOZ0ET OX

¥ ' Database
4| | QCLEVEL
QC Critical
QC High
QC Standard
Repository

Repository 100%

Figure 6-34. Repository Explorer with the QC Level folder expanded

If you drag the QC Level folder onto the Quadrant canvas, this will open a separate Explorer just on
the QC folders. Figure 6-35 shows this explorer, and you see exactly what you might have anticipated:
two CarComponents with a QC Critical level, and two with a QC High level. The QC Standard folder is
showing null, since you haven't yet assigned any CarComponents to that QC level.

Alz Edit View Workpad Data Help Ouadrant LOSMET O X

i f Repository.[tem. FoldersTable{500)
4 7QC LEVEL 4 || FoldersTable
QC Critical 4 ||| QCLEVEL
|| QC High ¢ O FoldersTable
||| QC Standard 4 0 Folders
|| Repositary 4 || QC Critical

4 O CarComponents
» O Wheel Assembly
b O Disk Brake
4 |1 QC High
4 O CarCompaonents
» O Car
» O Drive Train
4 || QC Standard
[null)

Repository 100%

Figure 6-35. Quadrant Explorer showing the QC Level folders and their contained values

If you had defined other types (and their extents) in the application that you wanted to include in
the QC system, then those extents (tables) could also be reflected within the QC Level folders. Say that

160

CH APTER 6 * SQL SERVER MODELING SERVICES — THE FOLDER PATTERN

your manufacturer not only made cars, but also toasters and lawnmowers. Then you could also define a
ToasterComponent type and a LawnMowerComponent type, with corresponding ToasterComponents and
LawnMowerComponents tables. If the manufacturer had a single QC department that covered all
manufacturing lines, then you would have the seed for developing a QC model and application that this
department could use for managing its operations across different lines. If the manufacturer decided
that each line should have its own QC department (say, for instance, they were made in different plants),
then the folder pattern of SSMod could be applied to allow each QC department to view and manage the
QC data of its respective line, but not be distracted with data for the other lines. Corporate headquarters
would, of course, have access to all QC data if that was how the IT department was asked to structure the
system.

In the next chapter, which covers the security services provided by SQL Server Modeling Services,
you'll use this basic scenario as the basis of an exercise to illustrate how security can be used to expose
or hide data.

161

CHAPTER 7

SQL Server Modeling
Services - Security

Security is an essential component of enterprise applications. Since
SQL Server Modeling (SSMod) is part of the broader .NET
framework, developers have access to a wide range of services and
technologies, some of which provide their own security options.
Applications and users can query a SQL Server database through
Entity Data Modeling (EDM), LINQ, ADO.NET, ODBC, and other
systems, including non-Microsoft platforms.

The Modeling Services framework supports granular (row-
level) and claims-based security, built on the folder pattern
discussed in the previous chapter. It should be clear, however, that
awide range of other security facilities is available, depending on
which platforms you involve in creating an application.

Modeling Services uses updatable views in conjunction with
the folder pattern to protect the base tables and provide row-level
security. A SQL Server view is essentially a named read-only query of one or more tables that you or an
application can use with subsequent queries as if it were a table. These queries can result in updating,
inserting or deleting actions in the base table (and consequently the view) if the user has been granted
the appropriate authority.

Aview becomes updatable by using what are called INSTEAD OF triggers. Triggers are a special kind
of stored procedure that execute on the database server when a user or application attempts to modify
data through a DML (data-manipulation language) event. (There are also data-definition language
(DDL) and LOGON events that can be addressed by triggers, but I won'’t go into these here.)

There are only three categories of DML events, created by INSERT, DELETE, or UPDATE statements. An
INSTEAD OF trigger substitutes execution of the trigger code for execution of the statement triggering the
DML event. The trigger can implement the security criteria established by the developer or the database
administrator. An event can initiate a single trigger, or a specified sequence of triggers, to perform tasks
to check user privileges and preserve the data and relational integrity.

How triggers are coded and implemented is a topic beyond the level of this book. In any event, SQL
Server Modeling Services already provides the infrastructure, based on the folder pattern and pre-
installed INSTEAD OF triggers, to support row-level security.

In this chapter, you will extend the CarComponent model introduced in Chapter 4 to a more general
manufacturing component model. I will use this more general model to introduce the idea of using the
folder pattern to provide security in a way that manufacturing line managers will be able to see or
modify data relating only to components made on the manufacturing lines for which they are
responsible.

163

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

164

Using Security to Limit Data Visibility

Consider the following scenario. Your car manufacturer has decided to diversify and has recently
purchased a company that manufactures small appliances, like toasters and coffee makers. The two
lines of businesses will be kept separate in terms of engineering and management. However, corporate is
quite happy with the operations of the QC department, and wants to extend their QC procedures and
standards into their newly acquired small appliance manufacturing operations.

For the sake of simplicity, I'll call the original manufacturing line, the one that makes cars, the
CarLine. The newly acquired plant, the one that makes toasters, I'll call the ToasterLine. Corporate
headquarters has promoted the original QC manager to manage QC standards and procedures across
both plants, so I will call her TopQC. She promoted her former deputy to manage QC for the car plant, so
he will be known as CarQC. As you might expect, the QC manager at the toaster plant will be ToasterQC.

In terms of IT operations then, you have three users, each needing access to the QC data she or he is
responsible for managing:

o TopQC: Access to all QC data across both manufacturing lines.
o (CarQC: Access only QC data for the car line.
o Toaster(C: Access only to QC data for the toaster line.

These will be user names created as part of this exercise, with TopQC given read/write privileges to
all QC data across the board, and the remaining two QC users given read/write privileges only to the data
pertaining to their respective manufacturing domains.

Setting Up - Installing the PatternApplication Sample

Before getting started with this exercise, you will need to install the PatternApplication sample in the
Repository. This code is required to enable the use of three patterns that this exercise depends on. One
of these patterns, named AddViewsInsteadOfTriggers, supports the use of the INSTEAD OF triggers I just
discussed. Another pattern, named AlterSchemaPermissions, supports the security features you will need
in this example. Finally, you will use a pattern, named AddFolderForeignKey, that supports adding a
folder and key more efficiently than explicitly coding it.

The instructions for downloading and installing this sample are available on the MSDN web page:
“How to Install the PatternApplication Sample.” The URL for this page (as of the Nov. 2009 CTP release)
is

http://msdn.microsoft.com/en-us/library/ee713117(VS.85).aspx
The download file is a Zip file, so you will need to extract the files to a folder such as
C:\Temp\PatternApplication.

Be sure to allow Winzip (or whatever extraction tool you use) to create the embedded directory tree.
Make a note of where this sample is installed because you will need this path later on in the exercise.

In case you are reading this after a more recent CTP or beta release has become available, you
should be able to find the page with an Internet search on “PatternApplication Sample.” Follow the
directions on this web page, but also have alook at the readme.htm file that's included in the
downloaded Zip file, since the readme page contains additional code and information.

Building on the CarModel

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

The model for this example is similar to the CarModel code you developed in Chapter 4, so let’s look at

the M code for that model (see Figure 7-1).

} where identity Id:

CarCompanents: [CarComponent™};

4" He Edit Vew MMode Help -O%
CarComponentModel.m 100% M Maode
module CarModel
I
i

export CarComponent, CarComponenis;

type Car(umpoLent

i
Id : Integerf4 =: AutoNumber{); // used for the Id, or key for sach component
Name : Text;
Level : Integer32; { tfie system level of the component
Description : Text?; // "?" is a@ "Kleene gperator” meaning 8 or 1 accurrences
PartOfComponent : CarComponent? where value in CarComponents:

Quantity : Integer32 = 1; // how many needed in top-level system; default to 1

Figure 7-1. M code for the original car component model from Chapter 4

To extend this to a more general model for manufacturing components, remove the string Car from
the code. This is only a lexical change, so the logic doesn’t change at all. However, you now need to track
which manufacturing line makes a particular component, so I'll add a MfgLine text value to the
Component type. Figure 7-2 shows the revised code. I've also changed the model name to

MfgComponentModel.

Open Intellipad on your computer. If you saved the CarComponentModel.m file when working
through the example in Chapter 4, open this file in Intellipad and modify the code to be the same as that
shown in Figure 7-2. If you don’t have the code from Chapter 4 saved, it should take only a minute to key
in this code. Alternatively, you can download it from the Apress website.

165

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

%' He Edit View MMode Help f i

MfgComponentModel.m 100% M Mode

module MfgComponentModel
¥

[§
export Component, Components;

type Companent
{
Id : Integerf4 => Autolumber();
Name : Text;
Level : Integer32;
Description : Text?;
PartOfComponent : Component? where value in Components;
Quantity : Integer32 =: 1;
Mfgline ¢ Te)d:jl
1 where identity Id;

Compenents: {Camponent™};

Figure 7-2. Changing the code for MfgComponentModel, and adding MfgLine value to the type

Create a new working directory to save the code and project files to, like C:\MfgComponentModel,
and save the M file as MfgComponentModel.m in that directory.

Now, let’s jump ahead to a preview of where you're going with this model. I'll switch tools here,
from Intellipad to Visual Studio, because you'll be working in Visual Studio from here on. Figure 7-3
shows the M code for the model in the left pane of Visual Studio, once you've added in the code
supporting the folder pattern and security.

e MiComponentiodel - Microsoft Visual Studio
He Eft wew Bud Qebg Team D Tsch Tt Window i
e LN A - I R, L RS R L Y N | oy G

Loflzal o9 |0sldsidelhd,

Text?;
Conponent © MfgConponent? where value in MgCompoasntsTable;

Tategerd2 = 1;
MigLine | Text;

Kfge able : [(Masfolde 14 § #igComponent)* };

Q
2
2
2
-]
a
Q%
3%
3%
a

[) ¢ [(Hasrel § megCosponent)” } {
MfgtomponentsTable where value.Folder.1d in ReadablefoldersView().Folder
select value

Figure 7-3. A preview of the final MfgComponentModel code and project solution in Visual Studio

166

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

The grayed areas in the left pane of Figure 7-3 are the important changes from the original CarModel
code that enable the security features in this model (lines 17 and 19-21). I'll talk about these more as you
go through this exercise, but here’s a quick overview:

o Line 14: This is the new text value that references the manufacturing line you
added to the MfgComponent type. It identifies which manufacturing line produces
the component.

o Line 17 MfgComponentsTable: This was formerly the MfgComponents extent and
mapped to the MfgComponents table in the database. It has been renamed to
MfgComponentsTable so that an updatable view called MfgComponents can be
created that provides the actual user view into the table. The MfgComponentsTable
extent is created as a “mix-in” of two types: HasFolderAndAutoId and
MfgComponent. HasFolderAndAutoId actually provides the Folder and Id values of
the extent, without having to add these explicitly in the MfgComponent type, as you
did before. Note these are no longer included in the MfgComponent type
declaration, as they were in the CarModel code.

o Lines 19-21: MfgComponents(): This is an important part of the model code
providing the security capability. It is essentially a query that creates a view of the
records in the MfgComponentsTable extent constrained to be in the
ReadableFoldersView().Folder collection. This collection contains only the folder
Id’s to which the logged-on user has access.

The grayed items (PatternApplication and Repository) under the References section of the Solution
Explorer (right pane) of Figure 7-3 are references you must add in order for certain parts of the code to
work.

Note also, there’s a new PatternApplication.m code file at the bottom of the Solution Explorer pane.
This file is required to make the code work, specifically, line 17 and lines 19-21 discussed in the second
and third items of the preceding list.

167

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

Building the MfgComponentModel Project in Visual Studio

Open Visual Studio 2010 and select the File - New - Project From Existing Code menu item (see
Figure 7-4).

o0 Microsoft Visual Studio BE=]
E\Ie Edt View Debug Team Data Tools Test Window Help
Hew 4 Eﬂ Project... Ctrl+5hift+N | ||§;
Open P @ WebSie.. Shift+AltH i
Cose (g TeamProject...
| Close Solution) Fe.. i+
g Save Selected Ttems Chrl+s Praject From Existing Code...

Save Selected Ttems As...
@ saedl Crl+shift+5

Export Template...

Source Control 3
{] PageSetup...
3 Print... Cirl+P
Recent Files 3
Recent Projects and Solutions 3

Exit Alt+F4

Figure 7-4. Opening a new project from existing code in Visual Studio

This will bring up the Create Project from Existing Code Files Wizard (shown in Figure 7-5).

Create Mew Praject from Existing (W“ﬂ— :’:U
|
Welcome to the Create Project from
| Existing Code Files Wizard

o0

What typs of project would you bke 1o create?

v

Figure 7-5. Create Project from Existing Code Files Wizard

168

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

Select Visual C# for the project type, and click the Next button. This should bring up the Specify

Project Details panel of the wizard (see Figure 7-6).

%]

Create New Project from Existing Code Files

Specify Project Details

All files in the folder will be added to the project. The new project will be created in the same folder
as the existing codefiles,

Wihere are the files?
|Ct\MifgComponentiodel

(-]

Indude subfolders

Specify the detalls for your new project:
Name:
MfgComponenthiode|
O I
| Console Application ||

I(Erewuus I [Enish H Cancel I

Figure 7-6. Specifying the project details as the last step in the wizard

Enter the path for the Where Are the Files? prompt. This should be C:\MfgComponentModel or
whatever path you used to store the MfgComponentModel.m file from Intellipad earlier in the exercise.
Under Specify the Details for Your New Project, enter MfgComponentModel for the project name, and
select Console Application as the output type. You should wind up with a Visual Studio window similar

to what appears in Figure 7-7.

169

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

170

| ©a MfgComponentModel - Microsoft Visual Studio " g@
File Edit Qew Project Build Debug Team Date Tools Test Window debk?
e = I IR e e S T | o -u

Solution Explorer *iX

Elfeie)

; Solution MfgComponentivodel’ {1 project)

5} E MfgComponenttodel
- [References

- @ MfgCnmwﬂmh")odeme

Figure 7-7. After opening the new project from the existing MfgComponentModel.m file

In the Solution Explorer pane, expand the References section by clicking the plus sign (+) sign to the
left, and then double-click MfgComponentModel.m to bring up a view of the file (see Figure 7-8).

'rwmmmumwmm
Be £t wow Bolt DM Debg Tesm D¢t Took Tegt Dndew beb
Gl A~ Sdd & 44 o e S| D | Ovbg | ey 20 || 8| epornsey

T

Jbbdodoooadd 5

Figure 7-8. Visual Studio view of the new MfgComponentModel project, showing References and
MfgComponentModel.m

Refining the Model to Include Security

How do you get from the model code shown in Figure 7-8 to the desired end shown in Figure 7-32 Let’s
work from the top down and add the two import declarations for Repository. Item and System (see Figure
7-9).

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

|0 MigCommponentilodet - Microsoft Visual Studie g
Be £t v Bowt BN Qg Tem O ok Te D teb |

el Sl s B0 L0 owg -amin | pesca A |

iducneT®@(T 200 sl

wodule MigComponentiiode]

isport Repository, Item;

g

T | Cannot resolve the reference to Spiter.

type MigCesponant (
Integered = Autolimber();

Migtoaponant? whire valus in WgConpoaents;
tegerdd = 1

Figure 7-9. Adding the import declarations for Repository.Item and System results in a “Cannot resolve...”
error for both

As you found in Chapter 6, resolving Repository. Item requires adding a reference to the Repository
schema, contained in Repository.dll. Let’s go ahead and add that reference by right-clicking on
References in the right pane, and selecting Add Reference (see Figure 7-10).

|2 MgComponentilodel - iicrosoft Visual Studie =od|
Be Bt W Dowt BM Do Tl Dgb ook Te G beb]
L= e B = dery CPU = {13 | Fepostery ,‘

|

Jwlld o Bl 4]

Figure 7-10. Preparing to add a reference to the Repository schema

This will bring up an Add Reference dialog box, as shown in Figure 7-11. Click the Browse tab, and
browse to the folder containing the Repository.dll file. This will typically be in the Bin folder where
Microsoft SQL Server was installed, which for the November CTP is normally

171

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

C:\Program Files\Microsoft 0slo\1.0\bin\

' Add Reference k
|| com_| Projects | Browse |Regent |

Look: | 9 bn o2 e
|:£] Quadrant. YEHostedULdl [ﬁ] QuadrantGraphChject.dl
|}] QuadrantDataAccess,di 2 Ty
Ijj QuadrantDiagramming.dl \}] SmokeStyles.dl
Iﬁ QuadrantDiagramming, Generic,dll @ SgmApi.dl
L_ﬂ_.] QuadrantFramework.dl i_ﬁ StringTemplate.dl
|_$] QuadrantFramework. Generic.dl L’ﬂSyslem‘Cumpunenﬁdudel.CUmpU‘
[}] QuadrantFramework Resources.dl 1}] System, Datafiow.dl
Iﬂ QuadrantFrameworkFutures, dl @ System, Identity.dl
% [| [
File pame: ‘Repository.d\l ‘V!
Files of type: iComponem Files {".dl™tib;” olb:".ocx;” sxe;" manifest) “'j

Figure 7-11. Browsing to Repository.dll to add the Repository reference

If you installed SQL Server Modeling to a different location, you will need to make the appropriate
adjustment in locating the Repository.dl! file.

| oo NipCompontntilonel - Wicroson Visual Studto Lok
|G ot yew Pomc A Deag Tewm O Dok Tew Diw D

iG-S @ a9 F-5(p omns | dey P (18 zmom e F
(AT AL T R AT |

Figure 7-12. Resolution errors for the import declarations are resolved after adding the Repository
reference

Figure 7-12 shows the two resolution errors are no longer there.
Next, you want to remove the references to Id and identity (lines 8 and 15), since the
HasFolderAndAutoId type you will be adding provides the identity constraint required for creating a table

172

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

in the database. Making these changes in the code results in the error shown in Figure 7-13—an error
that is fully expected. (You won’t be doing anything with the Solution Explorer for the time being, so you
can close it.)

[ifgComponenthadel - Microsoft Visual Stusia -Jo&d
Fle Edit View Project Buid Debug Team Data Tools Test Window Help
Aeniatian A i RN RIE A = e T | [any P -z

iGhbefEles|E2|DWEaBdm N

Vol MfgComponenthodel.m® %

1 Emodule MfgComponentModel
2

import Repository.Item;
4 import System;
export MfgComponent, MfgComponents;

type MfgComponent {
Name : Text;
Level : Integer3z;
Description : Text?;
PartOfComponent : MfgComponent?Twhere value in MfgComponents;
| The referenced extent ‘MfgComponents' does not define an identity constraint. |

saunos ejeq gy XoqiooL

‘};
MfgComponents : {MfgComponent*};

1
I

Figure 7-13. Error after removing the Id value in the MfgComponent type, and the identity constraint

This error will be resolved in a moment, after you add the HasFolderAndAutolId type, which provides
Folder and Id values without having to code these explicitly. This is an example of one of the services
provided by the Base Domain Library (BDL), which is part of SQL Server Modeling Services.

A BRIEF SIDEBAR ON THE VISUAL STUDIO INTERFACE

Before continuing with the exercise, let’s take a brief pause to note a few things about the Visual Studio
interface. If you're already familiar with Visual Studio, you might want to jump ahead to the next section. If
not, please read on.

First, you might have noticed the yellow vertical marker bands to the right of the line numbers. These flag
lines that have been modified since the file was loaded or last saved. The asterisk (*) appended to the
filename on the top tab of the code pane also indicates the file has been modified but not saved. If the file
is saved (use Ctrl-S to save the active pane, and Ctrl-Shift-S to save all files in the project), the color of the
vertical marker bands will change from yellow to green. This way, you don't lose the information about
changes that have occurred during the current session, even if you save as you go along.

Next, Visual Studio 2010 is “M-aware,” which means it has the Intellisense facility for colorizing keywords
in the code and for providing suggestions or choices of values or entities that fit in the context of the code.
As you've already seen, it flags reference or syntactic problems in the code with red-squiggle underlining,

173

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

174

and it will present an error annotation if you cursor over one of these error flags in the code. As you've
seen in earlier chapters, Intellisense and this error-flagging facility also show up in Intellipad and Quadrant.

Finally, Visual Studio provides an outlining facility that can be helpful when working with large code files.
The vertical lines to the right of the change bands with the minus (-) signs (lines 1 and 7 in Figure 7-13)
allow you to collapse or expand the designated sections of code as you need to.

Figure 7-14 shows the left pane before saving the file, so the vertical bands are yellow, indicating unsaved
changes. The section of code defining the MfgComponent type (line 7) has been collapsed by clicking the
minus sign. Now an ellipsis (. . .) appears immediately to the right of the collapsed code section. If you
need to have a quick look at the code contained in a collapsed section, you can cursor over the ellipsis,
and a pop-up text box will show the code until you move the cursor elsewhere. Note, however, that error
indications are not provided in this pop-up text, so if you're looking for code that needs fixing, you will have
to expand any collapsed sections. Clicking the plus sign at line 7 would again expand that section of the
code.

| oo MfgComponentModel - Microsoft Visual Studio E]@

Fle Edit View Project Buld Debug Team Data Tools Test Window Help

ilrlr G 8 S - S E R by [avou E:

P e o=

s=unos eled gy XoqooL

ERE A E G

1 Emodule MfgComponentModel
21 {
3 import Repository.Item;

import System;

export MfgComponent, MfgComponents;

type f-ﬁg(nmpnnsnt@;

Mfglompanents : {f7

I Name ; Text;

Level : Integer32;

Description : Text?;

PartOfComponent : MfgComponent? where value in MfgComponents;
Quantity : Integer32 => §;

Mfgline : Text;

Figure 7-14. Cursoring over the ellipsis for a collapsed section shows the contained code.

Visual Studio is a rich development environment, and can be customized with add-ons and tools. Investing
the time to become familiar with its interfaces and features will pay off in greatly improved productivity.

It doesn’t hurt to be aware of the info displayed at the bottom of the main window, which can include the
status of the last action, the current cursor location, and whether you are in Insert or Overwrite mode. The
kind of information can vary, according to what type of pane is active.

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

HasFolderAndAutold

I've already mentioned the built-in type HasFolderAndAutoId, provided in the Base Domain Library.
Consider line 16 in Figure 7-15. The extent declaration in the earlier version of the code was

MfgComponents : {MfgComponent*}

This was dependent on the identity constraint in the earlier MfgComponent type declaration, so it
broke when you removed that identity constraint. Since you are getting ready to add an updatable view
called MfgComponents, you must rename the actual extent to MfgComponentsTable. This is (usually) the
convention whenever the folder pattern is retrofitted into a model. So the new line of code becomes

MfgComponentsTable : { (HasFolderAndAutoId & MfgComponent)* }

The new name of the extent becomes MfgComponentsTable, and the collection becomes
(HasFolderAndAutoId & MfgComponent)*. HasFolderAndAutoId is essentially a type that has a Folder value
and an auto-incremented identity, and nothing else in terms of attributes. As [mentioned in the first
section of the chapter, (HasFolderAndAutoId & MfgComponent) is called a mix-in type: It combines the
values of both types. It's like saying “I'm a MfgComponent type, and, by the way, I have a Folder and an
AutoNumber Id.”

Figure 7-15 shows the model code with the new extent definition added.

| o MfgComponentModel - Microsoft Visual Studio N g@

Ble Edit view Project Buld Debug Team Data Tools Test Window = Help

=1 1 sz CR = I
403 & 345y &

1 Hmedule MfgComponentModel
4
import Repositery.Item;
import System;
export MfgComponent, MfgComponents;

type MfgComponent {
Name : Text;
Level : Integer32;
Description : Text?;
PartofComponent : MfgComponent? where wvalue in MfgComponents;
Quantity : Integer32 =: 1;
Mfgline : Text;

MfgComponentsTable @ { (HasFolderAndAutoId & MfgComponent)* };

Item(s) Saved

Figure 7-15. Renaming the MfgComponents extent to MfgComponentsTable, and adding in
HasFolderAndAutold

Note that by reconfiguring the extent declaration in this way, you have removed the previous
identity constraint error (shown in Figure 7-13), but you now have a resolution error on the
MfgComponents identifier. Of course, this happened because you just renamed it to MfgComponentsTable.
So let’s rename the old extent name MfgComponents on lines 5 and 11 to MfgComponentsTable. But you are

175

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

176

about to define a declaration for an updatable view called MfgComponents, so is this really what you want
to do? Yes, in the case of the MfgComponent type declaration, you want the PartOfComponent value
constrained to be in MfgComponentsTable extent, not in the MfgComponents updatable view. Making these
changes fixes the two resolution errors, and the compiler is happy.

Next, you need to add the code creating the MfgComponents updatable view (see Figure 7-16). This is
akey part of the code because it’s the part that provides the security functionality.

5 MigComponentiodel - Microsoft Visual Studio |G %
B Bt yew Bowct BAf Qe Tem D Tock Te Window b ‘
A A Odd 62|90 LI P Oy «| Ly O U

Jutbtenzez20VEu4ds

snres ee gy xoqee)).

Figure 7-16. Code for the MfgComponents updatable view declaration (lines 18-20)

So what was formerly the MfgComponents extent has now become MfgComponentsTable, and you have
added the MfgComponents updatable view, which exposes only the data the user should see.
ReadableFoldersView() is a built-in function provided in the Repository. Item module that returns the
list of folder identifiers the user has permission to read. Lines 19-20 of this new code are responsible for
providing the security constraint to what the user can view or update.

Adding the PatternApplication Module

You're not finished yet, because you don’t have code to hook into the part of the BDL that provides the
infrastructure of INSTEAD OF triggers and other machinery necessary to implement the desired security
capability. Use the Ctrl-Alt-L shortcut key combo to bring up the Solution Explorer (shown in the right
pane of Figure 7-17).

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

[Be e gen pome bl Do Tem Ops Dok Tem pndon teo
T PR I

- [y U

wodule Miglomponentiiode]
{

isport Repository.Ites;
inport System;
anport nfgConp) MigC 3Table, MPp iH

15 type MfgComponent |
3 Hane ; Text)
wvel : Integerd2;
Description : Text?;
PartOfConponent | Miglenpanint? where valee n MigCompenentsTable;
Quantity : Integerd? => 1;
Mfgiine : Text;

e

2§t CompuaarMson Deusvainoe
O Syvtee Cordigraten

3 S o

|

1 | mfgCospenentsTable | ((Mastelderandautold & MfgCesponant)” };

D T

| *fgConponents() 1 { (MasFolderindautold & "'.(c-pomnl)
| #gComponentsTable where value, Folder . d in Readsbleroldersyies(). Folder
select value
}

Figure 7-17. Use the Ctrl-Alt-L shortcut to bring up the Solution Explorer (right pane)

You need to add a new M code file for a module called PatternApplication. To do this, right-click on
the MfgComponentModel project name at the top of the Solution Explorer, and select Add - New Item.
As the pop-up menu indicates, you can also use the Ctrl-Shift-A shortcut to do this (see Figure 7-18).

,&Hhmﬂmhhhhhn
LR

4
= u il

1 Emodule M gCorponentiiode]

t Repesitery. Itew;

t Systes; 5 o
expert Wiglonponest, WigCemponentsTable, MigCompanents; s
Rabudd
type MigCoapenent (Ol

] Name : Text;

avel : Integerdd; {m
Drscription ; Textl; o B heshes, Culothited s £
e 4 4 i, B gt | rens
MigLine : Text; i Mew Feiter A0 jerue et et
1|] 3 Vindowa farm.. £, e Class Diagyam
15 MigComponemtalable : ((Masfolderandautold b nigton i UserCanial. Setaa Srtlp Project
@] Component. Oetng .

i | mfglompenenta() i [(HesFolderandautold & MfgCompon
| MigConpenentsTable where value.felder.Td in Rea %5 G
|

slect value

Figure 7-18. Right-click on the MfgComponentModel project name and select Add - New Item

177

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

This will bring up an Add New Item dialog, as shown in Figure 7-19. Select the “M” Model option.

| A4 Mew o - MigComponentadel o)
i Sortby: Detadr v 2l
Voual Co Jteme = . |
Code |, Language Vi CF i Type: sl Co Baom
[B eepty model deferten
Data a
gy Whedd Vol €0 Thems
™ %
Windtug Formd W Madel Dot i C# Tame
e
o -
s o vt € e
T i

Criee Templatrs ::_,; Inwrface Viedl T [
-
| Vimdows Form el Co [wen
=
a
e coto Vimsal C# Tine
I —
- ey Coonty o meal 8 [y | W

Figure 7-19. Selecting “M” Model as the type of new item to add

This will bring up the Entity Data Model Wizard (shown in Figure 7-20). Select Default Model and
click the Finish button.

Ertty Dte e Wizord x|

; # Choose Model Contents

What should the mode! contain?

3

Generate from D
database

Creates a default model 2= a starting point for visually designing a conceptugl made from the
toolhox. Classes are generated fram the model when the praject is compiled. You can specfy &
database connection later to map the conceptual madel to the storage model,

Figure 7-20. Select Default Model in the Data Entity Model Wizard, then Finish

178

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

This will add a new M code file template under the previous MfgComponentMode.m file, as shown
in Figure 7-21. To rename this file to the desired name of PatternApplication.m, right-click on the name,
select the Rename option, then type in the name PatternApplication.m. As soon as you press the Enter
key to accept the new file name, the tab on the left code editor pane should change accordingly.

o0 MigComponentModel - Microsoft Visual Studio J_gﬁ.
.mwwammwxummwww Il
)'J'Jf“ld 3 . * - 4 P |Detng o| | e By . 3_
% = EE T . Jdelid
.
g
!
§
A alntey

Figure 7-21. Renaming Modell.m to PatternApplication.m

Now you need to replace the generic template code with the M code for the PatternApplication
module, shown in Figure 7-22. If the resolution error indications shown in the figure do not appear after
you've finished entering this code, save all files in the project with Ctrl-Shift-S, close the project, then
reload it, and the error indications should appear.

The Patterns identifier is not being resolved because, as you might again expect, you need to add a
reference to a new schema, or model. In this case, it is called PatternApplication (discussed earlier in
the chapter), and it is contained in the PatternApplication.dll file. This should be installed on your
computer if you followed the instructions in the previous section called “Setting Up - Installing the
PatternApplication Sample.” If not, you will need to go back and do that now. If it is, you can add the
reference to this schema using the same procedure you went through before.

179

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

| om ifgCompanentitodel - Microsoft Visual Studle okl
Be Gt g powa Dl Qe Tom G Do T peow ow
B b ows oy 18 fee, 2S5 E%;

alld ol il b g

W gComponentiedel . M glosponent sTable) .Declaration, DefinedIn,
fglompenentriede] M glosponentsTable) .Dec laration,

Figure 7-22. M code for the PatternApplication module (left pane)

In the Solution Explorer, right-click on References under MfgComponentModel, and select Add
Reference. This will bring up the Add Reference dialog box. Click the Browse tab and navigate to the
location of the PatternApplication.dll file (as shown in Figure 7-23). If you installed the sample to the
following path
My Documents\Oslo\PatternApplication\

Then the path of the DLL file should be

My Documents\Oslo\PatternApplication\bin\Debug\PatternApplication.dll.

180

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

MET_| com |[Projects | Bronse |Regent|

Lunk_n-‘k'jDebug |;I el A
Sty
B

Flopame: [patienAgpicatin di ¥l
Files cf type: ‘Cumpanem Files (b olb:” oo exe;”manfest) {1]

Figure 7-23. Browsing to the PatternApplication.dll location

If this resolves the error, then save all files (Ctrl-Shift-S), and you should be ready to build and
deploy to the database.

Building the Project

Right-click the project name and select the Build option (see Figure 7-24).

oy

nodule Mfgomponentiodel al2ala
2 |{ AN 73 souten Mot smoorenie! (1 oroe:
- 7 WiaComponentiedel

iaport Repoasitory, Ites;
isgort System; Py %
export WipConpoaant, Wi pCoaponentsTable, WigConpoments; L [‘

Level ¢ Integerd2; Coag
Description : Textl;)
PartofComponent 1 Mfglemponent? where value in Miglol
Quantity : Integerd2 = 1; Add Brrance..
Migline 1 Text; dd e Reference..

£, Yew Ouss Dagrem
nfgrosponentsTable : { (HasFelderandasteld & MfgCoaponest)” Set i Sigrip Projet
MigComponents() ¢ { (MasFolderandiutold I MigConponent)* } { om

wfgConpontatsTable where value.Falder.Td in Readablefeld (S ad sabton o Seurca Contrl...
selact valee (4 ot

Figure 7-24. Executing the build

181

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

182

If the build is successtul, you should see results similar to that shown in the Output window in
Figure 7-25.

CQutput X
Show output from: ‘Eu\ld 'H J] | ;‘J —“l %li’]
------ Build started: Project: MfgComponentMadel, ConFiguration: Debug Any CPU ------ [a

WfgComponentModel -> C:\MfgCompenentModel\MFgComponenttedel\MFgComponentModel \bin\Debugh WFgComponenttodel. d1l |
==zz====== Build: 1 succeeded or up-to-date, @ failed, @ skipped ======zz== ‘

I =

Figure 7-25. Successful build results shown in the Output window

Deploying to the Database

Once the build is accomplished, you should be ready to deploy the model to SQL Server. First, however,
you need to make sure you have a valid connection string to the database.

Right-click again on the project name and select Properties, which should be at the bottom of the
context menu (Figure 7-26).

0 MigComponentiodel . Microsoft Visual Studio o3
He £t pen Bont OAf Do Tem Os Dok T findon thd
Grdrddd b e Je 1D ey «| ey OU || | Aoty 8k H

Add Referance.

Addd Servce Reference.

", Yew Coss Dagrim

St o Sugyp Promct

Debug "

At Sokutien 1 Source Contral.

§ Gpen Folder in Viledows Explorer

3 Popertes

Figure 7-26. Selecting the project Properties window in the drop-down context menu

Select the M Deployment at the bottom-left of the Properties pane (see Figure 7-27).

CHAPTER 7

SQL SERVER MODELING SERVICES — SECURITY

| 08 MigComponentModel - Microsoft Visual Studio
Be Cit yew Bt QM Qubug Team Ogta Took Tep findow G
jalsd~Fd @ 42 AD - N

T

tamrgh
Seteroon Fete
Signing ['S

e et

sl S| P Dy « Ay OV

Figure 7-27. Preparing to configure the database connection string in the Properties pane

Click the ellipsis button L to the right of the connection string prompt. This will bring up the

Connection Properties dialog (see Figure 7-28).

.Connel:{‘ion Properties

Enter information to connect to the selected data source o dick
“Change" to choose & different data source and/or provider,

Data source:
|Microsoft SQL Server (SaiClient)

Server name:
[foca)] [pefiesn |

Lag on to the server

{3) Use Windows Authentication
O Lse SQL Server Authentication

Connect tn 5 database

(%) Select or enter a database name;

Repository ™
| |

() Attach 2 catabase fle:

£ Test Connection R [0K] [Cancel I

Figure 7-28. Connection Properties dialog box

183

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

184

Enter (local) for the server name, enter Repository for the database name, and click the OK button.
You should see the connection string displayed in the M Deployment area of the Properties pane (shown
in Figure 7-29). Look at this connection string to make sure everything makes sense. If you need to
change something, it can be directly edited in the prompt.

o WfgComponentilodel - Microsoft Visual Studie M1 %
|Ge fdt dew Bopct Bid Qe Tean O [ook Tegt Wedow bop
v~ Jde 4 b 9 -y Y

f
’
:
]
i

Figure 7-29. M Deployment area showing the connection string for the newly created
MfgComponentModel database

If you want to make sure everything is in order after setting up the connection string, click again on
the ellipsis button to the right of the connection string prompt to bring up the Connection Properties
dialog, and then click the Test Connection button in the lower-left corner. You should get a notification
that the “Test connection succeeded” (see Figure 7-30). Click OK in the notification window, then the
Cancel button in the Connection Properties dialog to return to the M Deployment area in the Properties
pane.

Cannection Properties

[%]

Enter information to connect to the selected data source or didk
"Change” to choose & different data source and/for provider.

[Diata source;

[Mierosoft 50L Server (Sqiclint)

Server name:

|Uocah

] (s]

Log on to the server

(%) Use Windows Authentication
O UUse 5QL Server Authentication

User name: |

Password) |

Connect to a database

(%) Select or enter a datzhase name:
—

‘Reposimry Microsoft Visual Studio m]

(O Attach 3 database fi

Logical riame:

e
A) Test connection succeeded,

Figure 7-30. Testing the database connection string

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

At this point, you should be ready to deploy the model to the Repository database. Make sure you've

saved all files by using the Ctrl-Shift-S Save All action. (No asterisk should appear on any tab.) Right-click
again on the MfgComponentModel project in the Solution Explorer, then select Deploy (as shown in

Figure 7-31).

185

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

| ©a MfgComponentModel - Microsoft Visual Studio g
File Edit View Project Buld Debug Team Data Tools Test Window Help
e SeaEan ™ - N I R e = L N e | Any cou -| | 8 | Reposicary -
W MfgComponentiodel* 3 gl Solution Explorer B X
o ™ |
8 2l8E A
2 Application [Soluton MfgComponenthodel (1 project)
e g @ Fmanananthadal
Buid | Buld
g
i Rebuild
o Debug
% Deploy [%
b A Database Connection String Cean
Data Source={ocal); ntial Catélng:F‘{epnsnnr}"\magmtad Security=True Add ¥
Services iy
Add Reference...
Settings Add Service Reference...
Reference Paths &, View Class Diagram
Set as StartUp Project
Signing
Debug 3
1 Depioyment* ;_5} Add Solution to Source Contral...
% ot Cirl4X
4 Paste Ciri+Y
¥ Remove Del
Rename
Unload Project
\j‘ Open Folder in Windows Explorer

|.|_5| Properties Alt+Enter

Figure 7-31. Selecting the Deploy option in the project context menu

The deployment process writes a log to the Visual Studio Output window. If the deployment is
successful, you'll see an indication in the last line of this window, as shown in Figure 7-32.

Figure 7-32. Visual Studio Output window, showing the deployment succeeded

If, for some reason, the deployment is unsuccessful, you may get a partial deployment of the
database, with the SQL Server system tables, but without the MfgComponentModel schema. You may be
able to delete the database by right-clicking on the MfgComponentModel database name in the SSMS
Object Explorer, and start over. If that doesn’t work, follow the recovery procedure described in the
sidebar.

186

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

REFRESHING THE COMPONENTMODEL DATABASE

A corrupted or nonworking ComponentModel database can be restored using the mx.exe command-ling
tool. This involves entering three mx.exe commands:

1.

mx.exe create /database:ComponentModel /force. This forces a re-creation
of the ComponentModel database. Existing data will be overwritten.

mx.exe install Repository.mx /database:ComponentModel
/server:(local) /property:rct=+ /property:ra=+. (The command should
be entered in the command-prompt window as all one line.) This installs the
Repository schema in the database, enables change tracking (rct=+), and enables
auditing (ra=+).

mx.exe install
C:\Oslo\PatternApplication\bin\Debug\PatternApplication.mx
/database:ComponentModel. (Again, all one line.) This installs the
PatternApplication code for supporting the pattern hooks. The path used in this
command assumes you downloaded and installed the pattern application image to
C:\Oslo\PatternApplication. If this was installed to a different location, make
the appropriate adjustment in the path.

If you find yourself using this restore procedure more than once, it may be easier to create a
refreshdb.bat batch file containing these three commands, using a text editor. This batch file should be

located in the same folder as the mx.exe executable, which would normally be C:\Program
Files\Microsoft Oslo\1.0\bin

It can be executed from the SQL Server Modeling CTP command prompt.

Creating the QC Folders

Recall that you have two manufacturing lines at two different plants: Cars at one plant, and toasters at
another plant. You want to design your QC system so that the CarQC manager can manage his data, the
ToasterQC manager can manage her data, and the top-level QC manager has access to all QC data.

You will set up the QC folders to reflect this, so the folder hierarchy should look like the following
(numbers in parentheses are the assigned folder Id):

QC (100)

QC-Cars (110)

e QC-Cars-Critical (111)
¢ QC-Cars-High (112)
o QC-Cars-Std (113)

QC-Toasters (120)

o QC-Toasters-Critical (121)

187

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

188

¢ QC-Toasters-High (122)
o QC-Toasters-Std (123)

To create this folder structure, bring up SQL Server Management Studio, select the Repository
database in the Databases section, and expand the Views section of the Repository (see Figure 7-33). Hit
the R key to home in on the view names starting with Repository, and select Repository.Item.Folders.
Right-click on the view name, and select Edit Top 200 Rows. Since any user has rights to view the top-
level Repository folder, this view (and its table) should have only one row for the Repository folder and
nothing else, unless folders have been previously created because of other activities. This is shown in
Figure 7-33.

"2 Microsoft SQL Server Management Studio E]@
Fle £dt liew Progct Debug QueryDesgrer Took Mindow Community Help

o0 R A D s

el ol ot | 1 o [[2] 4781 8

Obgect Explorer xAX 7 .FoldersTable| v X
I sbbmtibiiapg — - eveilad
Connect ~ i | d Name Falder
g igfa :3 I |
8 (3 MfgComponentModel MfgComponentsTal| | | 14 Repository ML
[PatternApplication EntityPatterndpplicat ‘ ¥ Ima MLL ML

[3 Patternapplication EntityPatterndpplicat
i# 3 Patternapplication.ModulePatterndpplica
5 Patternapplication. ModulePatternapplica
3 PatternApplication.Patterns

5 PatternApplication. PatternScopes

1# = Repository. IdSequencedliasesTable

[Repository.IdSequencesTable

[Repository.fien FoldersTane |

i 3 Repostory.tem.l | pew Table,..
® [Repository.Item.P|
@ 5 Repository. Ttem Rl
@ [Repository.Item. 5| | Select Top 1000 Rows

@ 5 Repository.ltem.§ Edit Top 200 Raws
T Ponastbns Toom c] = &
4l . T 1 of L W

Script Table as 3

Design

Ready View Dependencies

Figure 7-33. Editing Repository.ItemFolders view in the Repository database

Click in the Id column of the second row and enter 100 for the Folder Id, and QC for the Name.
Leave the Folder value as NULL, since you want the QC folder to be a top-level folder, with no parent
folder (see Figure 7-34). The exclamation points in the red circles indicate that the cells have changed,
but the data is not committed. As soon as you click on the next row, the data in this row will be
committed.

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

Object Explorer
nect ~

File Edit View Project Debug QueryDesigner Tools

m T\

Windaw

Community Help

/0 L FoldersTable |

d

| Name |

Folder

= PatternApplication.EntityPatternApplicati
3 PatternApplication.EntityPatternApplicati
(3 PatternApplication.ModulePatternApplica
3 PatternApplication.ModulePatternApplica
(3 PatternApplication.Patterns

3 PatternApplication.PatternScopes

= Repository IdSequenceAlasesTable
= Repositary IdSequencesTable

[Repository,Ttzm.FoldersTable

= Repositary Ttem. Internal FolderPermissi
= Repositary Item.PermissiorRulesTable
= Repositary Ttem.RemovalPolicesTable
= Repositary. Item. SecuredCOperationsTable
= Reposlmry Item. SacuradRasouroeKlndsTr |

& & E

& &

=]

HEHIBHEIEIEI

Ea

&l

= MfgComponenIModeI.MfgCamponentsTaI@ L

7
£

4

1
100
MULL

|2

Repository

MULL

of 2| b K b |08

AL
0 oc [}
NULL

Figure 7-34. Adding the top-level QC folder to Repository.ItemFolders view

Continue to add new folder rows according to the plan laid out at the start of this section. When you're
finished, the Repository.Item.Folders data should look like the right pane shown in Figure 7-35.

Ele Edit

View Project Debug Query Designer Tools

Window

Community Help

S0 L FoldersTable | - X
1d | Name: | Folder |

| MfgCnmpnnEnIMndEl.MfgCnmpnnEntsTal@ S Repasitory ML
3 Patternapplication EntityPatternApnlicat 100 oc AL

3| PatternApplication EntityPatternapplicat 3

110 C-C 10
PatternApplication ModulePatternApplica — % i

[# 3 PatternApplication ModulePatternipnlica 11 QC-Cars-Critcal 110
3 PatternApplication Patterns 112 QC-Cars-High 110
2 PatternApplication PatternScopes 113 QC-Cars-std 1

= Repository IdSequenceAliasesTable
[Repository IdSequencesTable Ny QC-Tozsters 100
=] Repository.Item.FoldersTable =1 OQC-Toasters-Cri,,. 120
B8 E Reposwmrv‘ltem.lnher!'la! FolderPermissio— 12 QC-TosstersHigh 120
(= Repository,Item.PermissionRulesTable | =|| | ——
2 Repository Item.RemovaPaliciesTable 1B QC-ToastersStd 120
(#@ = Repository.Item, SecuredOperationsTable e e L ALL
= Repository Item, SecuredResourcekindsT
3 Repository.Item. SecuredResourcePermis

2 Reposwtory‘Item.SecuredResour:esTab\em

| —— {5, I [of i1 | Bl e |(m) | I
Ready

Figure 7-35. Adding the child QC folders to Repository.Item.Folders

189

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

190

Building the Sample Data

Now you're ready to build some sample manufacturing component data to test your security sample
design. You can use Quadrant to do this, so open Quadrant. If any sessions or workpads were left open in
the interface when you exited the last time Quadrant was being used, close these so that you have a fresh
canvas with nothing on it. Also, use the File > Delete Session menu option to delete any existing sessions
(named other than Quadrant) left over from the last time you closed Quadrant. Quadrant is the name of
the default session, which can’t be deleted.

On the top menu, select File > New - Session (or use the Ctrl-Shift-N shortcut) to open a new
database session (see Figure 7-36). The default in the Server prompt of the resulting New Database
Session dialog should be a period (), which is the equivalent of the (local) instance of SQL Server. Accept
the default for the server instance, or change it to whatever server instance you have been using for this
exercise. (Remember: You need to be working with SQL Server 2008 or newer in order to have the
features that work with M and SQL Server Modeling.) In the Database prompt, select Repository from
the drop-down menu, or simply enter Repository. For the session name, enter Loading MfgComponent
Data. Click the Create button to open the session.

¥4 New Database Session

Server|‘

Database | Repositary

Session Name Loading MfgComponent Data

b More

Create | Cancel |

Figure 7-36. Creating a new Quadrant session on Repository to load MfgComponentsTable

This should bring up a database Explorer pane on the canvas, showing three items: Database, QC,
and Repository. Note the icons associated with each item: The QC and Repository items each show a
folder symbol, while the Database item shows (of course!) a database symbol (see Figure 7-37).

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

4¢ Fle Edit View Workpad Data Help 3t } - 0%

» | | Database
rllQC
Repository

Loading MfgComponent Data 100%

Figure 7-37. Initial Quadrant Explorer pane after opening the new Repository database session

Just to assure yourself everything is good as far as the folder setup us concerned, expand the QC
item by clicking the triangle to its left, and then expand the two items at the next level: QC-Cars and QC-
Toasters. You should see something very close to what’s shown in Figure 7-38.

0 Fle Edit View Workpad Data Help I 027 <OX

oad g Mt owoooent Datd

b [1 Database
4 Qc
4 | QC-Cars
QC-Cars-Crtical
QC-Cars-High
QC-Cars-5td
4 |1 QC-Toasters
(JC-Toasters-Critical
QC-Toasters-High
QC-Toasters-Std
Repository

Loading MfgComponent Data 100%

Figure 7-38. MfgComponentModel database Explorer with QC folders expanded

The folder structure looks good—at least if it looks like Figure 7-38—so let’s expand the Database
item by clicking in the triangle symbol (see Figure 7-39). Click and drag the square symbol for
MfgComponentsTable onto the Quadrant canvas (as shown by the arrow in the figure). This will open an
Explorer pane for MfgComponentsTable, which will be empty, since you haven'’t created the sample data.

191

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

192

¢ Fle Edit View Workpad Data Help

\(gComponenisTable

=0

4 ™| Database
b & Carblodel
¥ ¢ LanguageCatalo

7
A MfgComponentModel. MigComponentsTable

Id Name Level

b O LanguageCaighg Cir
¥ ¢ Language/fatalog Runtime

¥ & LangugfeCatalog.SQL

MfgCompanents
MfgCompanentsTable
¥ O PattemApplication

¥ & Repository

e o =)

Descnption

o

PartOfCompanent

Loading M‘E‘gf:ompunent Eata 100":

Figure 7-39. Dragging the MfgComponentsTable onto the Quadrant canvas to open a new Explorer pane

Click on an empty part of the grayed background canvas (you should see a hand cursor v appear),

and drag the canvas with the two explorer panes to the left until only the MfgComponentsTable Explorer
pane is visible in the main window (as shown in Figure 7-40).

4% Fle Edit View Worpad Data Help

MfgComponentModal.MfgComponentsTable

Id Name level Description Quantity Mfgline Folder

PartOfCamponent

Loading MfgCamponent Data 100%

Figure 7-40. After dragging the canvas to the left to isolate the MfgComponentsTable Explorer pane

To load the sample data, use the same procedure you used in Chapter 4 for creating the sample

records for the car example. Click in the Explorer pane, then use the Ctrl-I shortcut to bring up a form for
adding a new record (see Figure 7-41). (This is equivalent to using the Data - Insert Item menu option.)

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

& File Edit View Workpad Data Help - TR
——— [l New MigComponentstable Record - + |
MfgComponentMadal MigComponentsTable o0

ld Name level Description Quantity Migline Folder PartOfComponent Mame* Car
Level 1
Description* Acme RunAbout
Quantity= 1
Mfgline* Cars
Folder ¥
PartOfComponent N Repository
¥ References ac
QC-Cars
QC-Cars-Critical
|| QC-Cars-High
QC-Cars-5td
Loading MfgComponent g J ﬁ

Figure 7-41. Adding the top-level instance of Car to the MfgComponentsTable

Note that in the prompt for the Folder value, you have a drop-down list that allows you to choose
the appropriate QC folder. Even the top-level instance (in this case, named Car) must pass QC
certification, so let’s assign it a QC level of High. Leave the PartOfComponent prompt as Null, since the
Car value is a top-level item and has no parent component. Once you've entered all the values for the
new record, press Ctrl-S to save it. It should immediately appear in the table.

Table 7-1 shows the sample data to enter into the MfgComponentsTable in Quadrant. There are four
Car component rows and three Toaster component rows. The CarQC manager should only see the four
Car rows, and the ToasterQC manager should see only the three Toaster rows when they query the table.

Table 7-1. Sample Data for the MfgComponentsTable

Name Level Description Qty MfgLine Folder PartOfComponent

Car 1 Acme Runabout 1 Cars QC-Cars-High <null>

Drive Train 2 Makesthecargo 1 Cars QC-Cars-High Car

Rear Wheel Includes brake " . .

Assembly 3 Assembly 2 Cars QC-Cars-Critical ~ Drive Train

Brake Assembly 4 Disk Brakes 4 Cars QC-Cars-Critical ~ Rear Wheel Assembly

Toaster 1 Acme Bunmaster 1 Toasters QC-Toaster-High <null>

Heater Assembly 2 1 per slot 4 Toasters QC-Toaster-Critical Toaster

Heater Element 3 2 per heater 8 Toasters QC-Toaster-Critical Heater Assembly
Assembly

193

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

194

After entering this data for the seven sample records, the MfgComponentsTable Explorer in Quadrant
should look similar to that shown in Figure 7-42.

% He Edit View Workpad Data Help MeEs LOZIDIDE = 0%
MfgCompanentModel. MfgComponentsTable
la Name Level Description Quanty Mfgline Folder PartOfComponent
o1 Car 1 Acme RunAbout 1 Cars || QC-Cars-High * O el -
0z Drive Train 2 Makes the car go 1 Cars QC-Cars-High * 0Gr -
O 10 RearWheel Assembly 3 Includes Brakes 2 Cars QC-Cars-Critical ~ O DnveTrain -
(=R _Bra;e Assemh?y_ 4 [;SF(SIEKE —11 _Cars QC-Cars-Critical v _0 Rear Wheel Ass-emb\y '_
0 12 Toaster 1 Acme Bunmaster 1 Toasters || QC-Toasters-High + O <qul> v
O 13 Heater Assembly 2 1 perslot 4 Toasters QC-Toasters-Crtical + O Toaster -
=} 14_Hea;;n;(3 _Zpr:rheaterassembly & Toasters || QC-Toasters-Critical = O Heater Assembly ~
Loading MigCamponent Data 1008

Figure 7-42. Sample ComponentsTable data loaded for Car and Toaster

Now that you've set up the sample data, take a peek in your QC folders and see if those make sense.
To do this, click and drag the Quadrant canvas back to where the MfgComponentModel Explorer pane is
visible. Drag the top-level QC folder onto an empty part of the canvas (see Figure 7-43). Expand the
FoldersTable in this pane, and drill down (expand) on the Folders items, then the MfgComponents items,
until the individual Car component names are visible. Check which item is in which QC folder to make
sure everything makes sense, according to the model and folder hierarchy. Since you assigned the wheel
assemblies and the brakes a QC level of Critical, you would expect these items to be included in the QC-
Cars-Critical folder. The two remaining car components, the car itself and the drive train, have QC levels
of High, so these two components should be in the QC-Cars-High folder. Looking at Figure 7-43, this is
indeed what you see, so things appear to be going according to plan. Looking at the QC-Toasters set of
folders also confirms you're on track.

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

4 Fle Edit View Workpad Data Help -0

MfgCompenentModel, MigComponentsTable

b | Database
«[{QC Id lame
v\ QC-Cars 0 15 Car) Acme Runabout
4 || \QC-Toasters 0 16 Drive Train 2 Makes the car go
(- Teasters-Lobical O 17 Rear Wheel Assembly 3 Includes brakes 2
QC-Toasters-High %
= 0 18 Brake Assembly 4 Disk Brakes 2
QC-Toasters-Std
epository 0 19 Toaster 1L Acme Bunmaster
o 20 Heater Assembly 2z 1 perslot 4
O 21 Heater Element 3 2 perheater assembly 8

Repasitory.Tkem. FoldersTable(100)
4 ||| FoldersTable
PYIRR
» O FoldersTable
4 O Folders
+ ||| QC-Cars
» O FoldersTable
« O Folders
4 ||| QC-Cars-Crtical
v 0 MfgComponentsTable
4 &1 MfgComponents
¥ O Rear Wheel Assembly
¥ O Brake Assembly
.)C-Cars-High
» O MfgComponentsTable
4 & MfgComponents
» O Car
¥ O Drive Train
||| QC-Cars-5td
(rutl)

v ||| QC-Toasters

Loading MfgCamponent Data 100%

Figure 7-43. Drilling into the QC folder hierarchy to see where the components are

Setting Up the QC Manager Test Users

The fastest way of setting up your test users is to utilize the SQL Server Modeling command prompt. Go

to the Windows Start button - All Programs, and select the Microsoft SQL Server Modeling group. One

of the options in this group should be the Microsoft SQL Server Modeling Command Prompt. If you

want, you can right-click on this item to create a shortcut, and then drag the shortcut to your desktop for

quicker access. Click on the Command Prompt item, or execute the new shortcut from your desktop.
Use the net command to create each of the three users by entering the command

net user <user name> <password> /add

for each user: CarQC, ToasterQC, and TopQC. Since these are short-lived test users, use a password that
is easy to remember for the purpose of this exercise. Setting the password to be the same as the user

195

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

196

name should work, as long as you remember to go back after you're finished and delete these three user
accounts in Windows. You should see the message “The command completed successfully” each time
you execute the command to create one of the user accounts. Figure 7-44 shows a screen shot of the
Command Prompt window after this operation is completed.

& Microsaft SOL Server Modeling CTP Command Prompt - || x|
Setting environment for using Microsoft Uisual Studio 2810 x86 tools. :{
C:\Program Files\Microsoft Osloh\l.BNhin jiaaiery o e Bt el

The command completed successfully.

CisProgram Files\Microsoft Osloni.Bshin it GGt G GRSy et I
The command completed successfully.

GisProgram Files\Microsoft Osloni.BNhin fisiiets Sy F e Gy Hpe Tl
The command completed successfully.

C:zProgram Files\Microsoft Osloni.BNhin>

=]

Figure 7-44. Creating the QC manager users in the SQL Server Modeling Command Prompt window

Since these are created as Windows user accounts, you will see these users on your logon window
the next time you log on to Windows. You can remove these users by going to User Accounts in the
Windows Control Panel and deleting them.

You should also add these as SQL Server users, since you want to test their security access in the SQL
Server Modeling environment. To do this, bring up SQL Server Management Studio, and click on the
New Query button in the upper-left corner (under the File menu option). You can close the Object
Explorer pane (if it'’s open) to give you more real estate to work with.

Enter the SQL code shown in Figure 7-45. For <your domain here>, substitute the host domain name
of your computer. Normally this will be the Windows domain name of your computer, which might be
something like ACME-638AC9C5AC. In SQL Server Management Studio, the domain name will appear at
the bottom of a query window followed by a forward slash and your Windows user account name. (It's in
the same location I've obscured for security reasons at the center bottom of Figure 7-45.)

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

(T Wicrosoft SQL Server Management Studio mE

File Edit View Query Project Debug Tools Window Community Help

usersetupgu. . (56))
use Repository
ao

3i -—— Create database user for the CarQC

pal, and assign Carf to

BepositoryReaderWriter DB role.

1o W RS
e
()
g

[exec [Repository

@principal =

ik @role = '"Reposit

-— Grant Car)€ user read & ';fde:e access to the

. [GrantPrincipalFolderdccess]

14 @ i ex\CazQC',

i5 L QC/QL-Caza’y

16 @GmayRead = 1, GmayUpdate = 1, @mayGrantOrRevoke = 0

; .
| T ——— (2]
i#Connected.(Ul) focal) (10.0RTM) % S 0 (56) | master | 00:00:00 Orows
Ready ln1 Col 1 ch1 S

Figure 7-45. SQL code to set up the CarQC user and grant access

You can select code in an SSMS query pane and then execute it with the F5 key. This is equivalent to
pressing the Execute button at the top-center of the window, next to the exclamation point (!). Highlight
lines 1-2 at the top and press F5. This sets any following actions to run against the Repository database.
Then highlight lines 7-9 and press F5. This runs the [Repository].[AddPrincipal] stored procedure with
the parameters shown on lines 8 and 9. Be sure to put in the proper domain name before executing the
action, however. Finally, highlight lines 13-16 and press F5 to execute. This will run the
[Repository.Item].[GrantPrincipalFolderAccess] stored procedure to give read and update privileges
for data in the QC/QC-Cars folder path to the <domain»\CarQC user.

Repeat this procedure for the QC-Toasters and QC-Top users, making the necessary changes in lines
8, 14, and 15 of the T-SQL code shown in Figure 7-45. After you've done this for each of the three users,
the folder access paths should be the same as those shown in Table 7-2.

Table 7-2. Test User Folder Access Paths

User Name Folder Path
TopQC QC
CarQC QC/QC-Cars

ToasterQC QC/QC-Toasters

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

198

Configuring Test-User Permissions in SQL Server Management Studio

So far, you've created the test users and granted read permissions to their principal folder paths. In order
for the users to see the QC data associated with their respective roles, they also need to have read/write
access to two views:

The MfgComponentModel MfgComponents updatable view. (Remember you
defined this view via the M code shown in Figure 7-16 in the previous

“HasFolderAndAutold” section.)

The Repository.Item.ReadableFolders view.

Here’s the procedure for establishing the appropriate permissions:

1. InSSMS, open the Object Explorer pane, and select and expand the Repository
database.
2. Under Repository, select and expand the Views section.
3. Under Views, select and expand the MfgComponentModel.MfgComponents view
(see Figure 7-46).
"ES Microsoft SOL Server Management Studio [_:JLQ‘N

Fle Edt VMew Project Debug Toos Mindow Community Help

S - M;Fﬂ

Connect » | % s i @é
=] IJ Repository |1|

@ [Database Diagrams
) [Tables
B [Viens

® [3 System Yiews
[l Language, Catalog, CallectionTypeDeclarations

Eﬂ Language. Catalog. ComputedvalueDedarations

2] |:|j Language. Catalog. ComputedValueGroupDedarations
® |:|] Language, Catalog. CamputedyaluesndParameters

® |:|] Language, Catalog. CanstantExpressions

" Eﬂ Language. Catalog.EntityTypeDedarations

® |:|j Language. Catalog, EntityTypesAndFields

® [Language. Catalog.ExpressionsAndArguments
Language, Catalog. ExpressionsyiithNameExpressions
Language, Catalog. ExpressionsyiithVariableExpressians
* Language, Catalog.ExtentDeclarations

|:|] Language. Catalog. IntrinsicTypeledlarations

] |:|j Language. Catalog. InvocationExpressions

® |:|] Language, Catalog, TypeDeclrations

Catalog. TypeRe
e b

[Triggers
® [Indexes
) [Statistics

|Z|j Repository. Item. CurrentPermissions

® |:T_| Repository. Item.Falders

® |j_| Repository. Item.PermissionRules

® |:|] Repository. Item.ReadzbleFoldersView

Ready

Figure 7-46. Right-click Repository/Views/MfgComponentModel. MfgComponents

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

4. Right-click this item and select Properties. This should bring up the View

Properties dialogue box for the MfgComponents updatable view (see Figure
7-47).

Selecta page

2 Generl L E e

ﬁ en led Properties Schema: |Mfngnp0nemModel ‘

View schema permissions:

View pame: |quCmnpuneﬂ(s ‘

LUsers or foles: | Search.
| Nate, L Ty '
Conneclion Pemissians; WL:!IE; F’;r":w;a‘;:;si
Server: Explict |
ACER-47CBEBASED Permission | Grantor | Grant | With Grart | Deny
Connection:
ACER-47CBESASED"Bart

ag View connection properties

Progress

Ready

Cance

Figure 7-47. Select the Permissions properties (left pane), then click the Search button.

5. Select the Permissions item in the left pane, click the Search button in the right

pane, then enter QC as the partial name you want to search on (as shown in
Figure 7-48). This will bring up the list of your three QC test users.

199

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

200

| OK %‘_J [Cancel I [Help

r:ﬂv Select Users or Roles
Select these object types:
Users, Database mles, Application roles
Enter the ohject names to select (examples):
a

-

Figure 7-48. Preparing to search on QC user names

6. Select each of the three user names, as shown in Figure 7-49, so that the green
check mark appears to the left of the user name, then click the OK button.

No object was found with the name “[AC]", but objects with names containing “[AC] " were found.
Select onie or mare names from this list or click Cancel to re-enfer the name.

Matching objects:
[Name Tee A
= A \CarC) ser F
| “ToasterQC] User
S\ ToplC] User ll
I | [3']_}

(% Hultiple Objects Found (%]

Figure 7-49. Selecting the test-users to modify permissions

7. Foreach of the three test users, check the Grant selection box for the Select
permission, then click the OK button (shown in Figure 7-50).

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

gi’ Extended Properties

Connection

Server:
ACER-47CBEBASED

Connection:
ACER-47CBEBASED"Bart

!Q View connection properties

Progress

Ready

Selecta pa P -
= Genemlﬂge Ssant - Dited
2 Pemissions

Schema: iMfgCompunern Madel

View schema permissions.

Vigw name: iMfgCompuneﬂ(s

LUsers or roles:
| Name | Type |
& T ! User &
&] - \ToasterQC User 3
A - TopQC User .§
Pemissions for ACER-47CEEBAREDNCarQC: [LColumn Pemmissions...]
Biplict | Bfective|
Ferrnission | Grantor | Grant | With Grant Deny &
Delete dbo O O Fl
Insert dbo O Fl B [
References dbo O El 0 |
bo T
Take ownzrship dbo O E | e |
Update dbo O O Fl.]
View changetracking dbo IFl il M
N s ; sl 1 _||_’.)]

Coigy o=

Figure 7-50. Granting the Select permission for each QC user

Testing

Now you should be in a position to test what data is exposed to each user. You can do this in the SQL
Server Modeling Command Prompt window by impersonating a user with the runas command. Bring up
the SQL Server Command Prompt window, and execute the following code:

runas /user:CarQC "sqlcmd.exe /y25"

The /y25 switch on the sqlcmd.exe command is required, and sets the display width for the
SQLCMD prompt window. The system will prompt for the CarQC user’s password, which should be the
same as the user name (see Figure 7-51). After that is accepted, a separate SQLCMD window will appear,
where you can run SQL queries as the CarQC user against the MfgComponents view.

201

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

202

B3 Microsoft SQL Server Modeling CTP Command Prompt - runas /user:CarQC "sqlcmd.exe (y25" - |2 11
Setting environment for using Microsoft Uisual Studio 2810 x86 tools. fJ

'

CixProgram Files\Microsoft Osloni.Bnhin 3SlUEEERGTETSoH EEE G ITN Tt - TP

Enter the password for CarQC:

Figure 7-51. Using the runas command to impersonate the CarQC user opening a SQLCMD window

In the SQLCMD window that comes up, you're now running as the CarQC user. Enter the following
SQL code (see Figure 7-52):

use Repository
go

The system should present the following message: Changed database context to 'Repository’.
Next, enter the following SQL commands:

select Name, Level, Folder from [MfgComponentModel].[MfgComponents]
go

Now you might expect to see a listing of only the Car line components, since it is the CarQC user
who entered the query. But instead, you get this: The SELECT permission was denied on the object
'ReadableFoldersView', database ' Repository', schema 'Repository.Item'. (shown in Figure 7-52).

@ S0LEND b . ﬂ‘

1> use repository &
> go

Changed datahase context to 'Repository’.
d> select Mame, Level, Folder from [MfgComponentModell.[MfgComponents]
2% go

4 RS LD ine
ohject 'ReadableFoldersUiew', database

enied on the
tory.Item’.

bl
epos i

Figure 7-52. Permission denied to ReadableFoldersView

[forgot (intentionally) to set up user access to ReadableFoldersView. I wanted you to see the type of
error message that occurs in this situation. SQL Server gives detailed error messages when a permissions
error occurs, so instead of seeing something like “Access denied - error code 229,” you see exactly what
permission is being denied, and what object, database, and schema are involved. Detailed error
messages can be helpful in diagnosing and fixing these kinds of problems, so it’s always good to take a
close look. (If you're an experienced programmer, this hardly needs to be said.)

In this case, the user needs SELECT access to ReadableFoldersView because the code that defines the
MfgComponents updatable view used the system-provided ReadableFoldersView (refer to Figure 7-3, line
20) to determine which rows of the view can be exposed to the user.

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

Let’s return to SSMS to fix this problem. In the Views section of the Repository database, right-click
on Repository/Views/Repository.Item.ReadableFoldersView and select the Properties option (see Figure
7-53).

file Edit ¥ew Tools Window Community Help

= | Repository a

[Database Diagrams

[Tables

= 3 viens

@ [System Views
Language.Catalog. CollectionTypeDedarations
Language, Catalog, ComputedValueDeclarations
Language, Catalog, ComputedValueGroupDeclarations
Language, Catalog, ComputedyaluesAndParameters
Language, Catalog, ConstantExpressions
Language, Catalog, EntityTypeDedarations
Ll Language, Catalog, EntityTypesAndFiglds
* Language. Catalog. ExpressionsAndArguments
] Language, Catalog, Expressions\ithNameExpressions
il Language, Catalog, ExpressionsViithVariableExpressions
Language, Catalog. ExtentDedarations
Language, Catalog, IntrinsicTypeDedarations
Language, Catalog, InvocationExpressions
Language, Catalog. TypeDedarations
Language. Catalog. TypeReferencesty
MfgComponentiviadel MfgComponents|
Repositary.Item, CurrentPermissions
® [Repository.Item,Falders Select Top 1000 Rows
R.EDOSW'EM'PE”W”‘ Edlit Top 200 Rows

New View,,.

Design

® [Repos T RenaaRciass Seript View as 2
& Repasitary. Item. SecuredOperations View Dependencies
(! Repasitory. Item, SecuredResaurcerin _
[Repository.Item,SecuredResourcePern Full-Text index 3
L Repository. [tem,SecuredResources ————
@ [Repository.Item, SecurityClaimkinds Plices |
& Repository.Item,SecurityClaims Facets
& Repository.[tem,SessionsPermissions
] Repasitary. Item. SessionsSecurityClai Start PowerShel
& [Repository.Item, TheSessionsSecurity T 1]
_ ; Reports 3
& [Repository.Item,UpdatableFoldersViey
7] System,Globalzation.Locales Rename
7] System,Globalization. Resources
[[System.Globalization,Strings Delete
<32 Refesn
Ready | Properties h

Figure 7-53. Setting up to grant the QC users SELECT access to ReadableFoldersView

Use the same procedure you used previously (refer to Figure 7-50) to grant SELECT access to
ReadableFoldersView for the three QC users. Return to the SQLCMD window and hit the Up arrow twice
to bring back the SQL SELECT statement, and press Enter, then enter the go command. This time you
should see the data that’s available to the CarQC user (shown in Figure 7-54).

203

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

¥ S0LCMD [% -3

> use repository

2> go

[Changed database context to 'Repository’.

> select Mame, Level, Folder from [MEgComponentModell. [MfgComponents]

Msg 229 Level 14, State 5, Server ACER—47CBE8ASED, Line 1
[The SELECT DEPNISSIDH yas denled on the ohject 'ReadahleFoldersliew’, database '

[

[Rear Wheel Hssemhly
Brake Assemhly

Figure 7-54. Data returned by the SELECT query entered by the CarQC user

The data returned is as you would expect, so let’s test to see if the permissions for the other two
users, ToasterQC and TopQC, are working. Close the SQLCMD window (since that window is running as
CarQC) and return to the SQL Command Prompt window. Press the Up arrow twice to return to the
previously entered runas command and change CarQC to ToasterQC, then press Enter to execute the
command (see Figure 7-55).

[Microsoft SOL Server Modeling CTP Command Prompt -|ol x|
etting environment for using Microsoft Uiswal Studio 2818 x86 tools. <
o
= |

N\Progran Files\Microsoft Osloni.BvhinZrunas suser:CarQC “sqlemd ~y25"
nter the password For CarQC:
ttempting to start sqlemd /y25 as user “ACER-47CBESASEDNCarQC" ...

\Progran Files\Microsoft Oslond.B\hin ERiDECRPATEITH FEESAFIEIALTE DT BT

Figure 7-55. Setting up to run a SQLCMD window as theToasterQC user

When prompted for the password, enter ToasterQC (or whatever password you used for setting up
the ToasterQC login). In the new SQLCMD window, enter the usual preliminary lines to switch to the
Repository database, then the same query you used as the CarQC user (see Figure 7-56). This time,
running as the ToasterQC user, you should see only the MfgComponent entities for the Toaster
manufacturing line.

@ SoLCMD -9

|) use pepository
gu
hanged database context to ' Repository’ .

Heater Assemhly
Heater Element

Figure 7-56. Data returned for theToasterQC user

204

CHAPTER 7 = SQL SERVER MODELING SERVICES — SECURITY

Finally, go through the same procedure for the TopQC user. Running as the TopQC user, you should
see the data for both the Car and the Toaster manufacturing lines (shown in Figure 7-57).

B SOLCND (0] x|
B

nlex 0 'Regositopu’

el, Folder from [MfgComponentModell.[MfgComponents]
> go
lame Level Folder

ar
rive Train

ear Wheel Assembly
rake Assembly

oaster
heater Assemhly
eateér Element

<7 rvows affected’
>

Figure 7-57. Data returned when running as theTopQC user

Summary

In this chapter, I've presented an exercise to illustrate how SQL Server Modeling Services provided by
the Repository and the BDL can be applied to provide fine-grained (row-level) security features in the
context of the SQL Server Modeling framework. One intent of this particular example was to show how
security services, using the folder pattern, could be used to constrain the visibility of certain data sets to
certain users. I also wanted to familiarize you with a range of tools (SSMS, several facets of Visual Studio,
Quadrant, the command prompt), services, and patterns that are available for building an application.

I applied several patterns, provided by the framework, to set up security features needed for a
hypothetical QC application. I used the folder pattern (introduced in Chapter 6) to partition the data
among a hierarchical set of folders according to manufacturing line and QC attributes, and then
restricted the exposure of this data to three test QC manager users in accordance with their respective
roles.

Besides the folder pattern, several other patterns were used in the course of implementing this
example:

o AddViewsInstead0fTriggers: This pattern applies system-provided INSTEAD OF
triggers to intercept certain actions in a way that enforces constraints on what a
particular user can see or do.

¢ AddFolderForeignKey: This pattern facilitates the use of folders in types and
extents, and defines the foreign key of the folder attribute used in the
MfgComponent type.

o HasFolderAndAutoId: The MfgComponentsTable extent was redefined as a mix-in of
the system-defined HasFolderAndAutoId type and the MfgComponent domain type. I
also used HasFolderAndAutold to help set up the use of folders in defining the
MfgComponent type and the MfgComponents updatable view.

The PatternApplication code was installed and used to set up the hooks enabling the use of these
patterns.

205

APPENDIX A

Intellipad Primer

Intellipad is a text editor created to support, in particular, developers writing models and languages
using Microsoft Oslo's M, and it's great for other text as well. It includes language services for M,
including syntax highlighting, error checking, semantic completions, and project compilation.

Intellipad is also designed to be customized by users and extended by developers. Extensibility is
achieved using named components. Features can easily be added or modified, giving an editing
experience that ranges from the simplicity of notepad to the power of rich language support. Intellipad
uses components defined in declarative markup to customize the user experience.

Intellipad contains a built-in Python interpreter. Users can customize, extend, and automate the
editor by writing Python scripts.

Intellipad Basics

This section covers the basic components and design features of Intellipad: buffers, views, modes, and
the mini-buffer. Understanding these aspects will make it easier to customize Intellipad or invoke
features that make it easier to perform certain tasks.

Buffers

Fundamentally, Intellipad is an editor for Unicode text. A buffer represents the data model for the text
being edited. Multiple buffers can be open in Intellipad simultaneously. Buffers can come from different
sources (such as a file system, debugger, the Web, and so on). The source of the buffer determines some
of the editing capabilities available. For example, some parts of a buffer may be read-only, preventing
the user from editing text in that location. Some buffers might be auto-generated, like a buffer
containing a list of compilation errors or a buffer reporting the results of a command.

Intellipad buffers can represent Unicode text from any source. Each buffer in Intellipad is identified
by its URI (Universal Resource Identified). When Intellipad is opening a buffer, it uses the URI scheme
(file://, transient://, etc.) to locate the appropriate buffer source to open the buffer and initialize its
data. To load Unicode text from a new URI scheme (e.g., http:// or ftp://), a developer would write a
buffer source component that provides support for that URI scheme.

Intellipad also provides buffer transforms that take as input a source buffer and render the output in
a different way. For example, if you opened this document in Intellipad using the Help menu, you will
see that the URI is IntellipadPrimer.ipadhelp | Rich Text. This indicates that a Rich Text transform
was applied to the source buffer, IntellipadPrimer.ipadhelp. This transform processes the text markup
and displays the text using different font faces, sizes, and weights. Note that the original buffer,
IntellipadPrimer.ipadhelp, is also open and displays the text in its raw form. Closing the source of a
transform closes the transform buffer as well.

207

APPENDIX A = INTELLIPAD PRIMER

208

Views

Intellipad supports splitting the editor window into multiple views to display multiple buffers at the
same time. Each view is capable of displaying any of the currently available buffers through a menu at
the top left of the view. Different views can also show the same buffer in different modes. The view that is
active determines which set of menu options appear at the top of Intellipad; different modes often have
different menu options.

You can create additional views by activating the view to be split, then choosing Split Vertically or
Split Horizontally from the View menu. You can also use CTRL+W,\ to create the vertical split and
CTRL+W,- to create the horizontal split. Some Intellipad commands also create new views.

Pull-down menus in the upper-left and upper-right corners of each view allow you to set the active
buffer and mode, respectively. If you have multiple views, changing the mode or the buffer of one view
does not affect the other views.

Modes

Intellipad enables language-specific support for buffers through modes. Modes isolate extension
components, allowing different behaviors when editing buffers that have different content types.

When a buffer is opened, Intellipad attempts to associate the file with a mode to provide features
like syntax highlighting, additional menu items, semantic completion, and other features. The way this
default mode is determined depends on the buffer and its source. For example, when loading file
buffers, the file extension is used. An http buffer source might use the mime type to determine the mode.

A pull-down menu in the upper-right corner of each buffer view indicates the current mode and can
be used to change the mode.

The same buffer can be opened in different views and have different modes applied in each view.
However, not all modes will be meaningful in every context.

The Mini-Buffer

Intellipad provides a way to execute quick, one-line functions through a special buffer called the mini-
buffer. It can be accessed by pressing CTRL+/ or choosing Toggle Mini-Buffer on the View menu. The
mini-buffer opens in a new split, in MiniBuffer Interactive mode. You can type Intellipad commands in
this editor, which stays open until you dismiss it. Use function key F1 or the Commands item on the
Help menu to view a list of the available mini-buffer commands.

Text typed into the mini-buffer is executed in the context of the Python script engine after first
loading a setup script that makes various Intellipad-related variables and modules available. The mini-
buffer setup script is located at

Components\Microsoft.Intellipad.Scripting\PrivateScripts\MiniBufferCommandSetup.py.

The script is executed automatically when Intellipad initializes the mini-buffer.
A user could type the following into the mini-buffer:

for x in range(1, 10): Test('")
This would run all unit tests 10 times (see Settings\CommandTests.py).

Some commands, such as Zoom and Find, operate on the view that was active prior to clicking in
the mini-buffer view. The active view is indicated by a blue highlight outline.

APPENDIX A INTELLIPAD PRIMER

The mini-buffer can also be used to batch commands and issue them. These commands are
currently stored only for the Intellipad session; they will not be reloaded the next time Intellipad starts.
Take the following for example:

»>> def MyNewCommand():
Open('c:/foo.txt")
Zoom(2.0)
Find('<summary>")

»>> MyNewCommand ()
5>

Working with M in Intellipad

Intellipad has two major features that can help you develop M code: SQL Preview and the domain-
specific language (DSL) authoring configuration.

SQL Preview

Intellipad's SQL Preview allows you to easily see the SQL equivalent of M code as you create the code. To
access the SQL Preview feature, change the active view to M mode, click the M Mode menu entry, and
select T-SQL Preview. SQL Preview splits your active view into two views. The left view contains your M
code, while the right view displays the equivalent SQL.

Basic DSL Authoring Configuration

Intellipad's basic DSL authoring configuration allows you to create test input and see the output for a
domain-specific language grammar that you are developing, as you develop it. To create the basic DSL
authoring configuration, change your active view to DSL Grammar mode, click the DSL menu entry, and
select Split New Input and Output Views. Intellipad splits your active view vertically into three views.

The left view displays a new buffer whose mode is set to the name of your original DSL grammar buffer.
The middle view displays your DSL grammar. The right view displays the same buffer as the left view, but
its mode is set to M Graph mode. The left view acts as input data; you can edit text in the left view, and
its contents will be parsed in real time according to the grammar rules specified by your DSL grammar.
The results of the parsing are displayed in the right view. The displayed output is a textual representation
of an in-memory .NET Framework object model.

Customizing Intellipad

This section covers how Intellipad can be customized by changing or adding menus, colors, modes, and
commands.

209

APPENDIX A = INTELLIPAD PRIMER

210

Changing the Menus

Intellipad is designed so that you can add or remove menu options from the menu bar, as well as add or
remove items within each option. The file that controls Intellipad's menu settings is MenuBar.xcml,
installed in Microsoft Oslo\1.0\bin\Settings\VisualStudio. The top-level MenuItem Headers set the
options on the menu bar, while the children MenuItem Headers set the commands within each menu
option. The list of available commands can be found by pressing F1.

For example, to add the Zoom Down and Zoom Up commands to the menu under their own menu
option, you would add the following XML to MenuBar.xcml.

<MenuItem Header= ' Zoom Options'>
<MenuItem Header= 'Zoom _In" Command="'{mis:NamedCommand Name =
Microsoft.Intellipad.ZoomUp}" />
<MenuItem Header= 'Zoom Out' Command='{mis:NamedCommand Name =
Microsoft.Intellipad.ZoomDown}' />
</MenuItem>

Changing the Colors

The color scheme that Intellipad uses to display text can be customized as well. The file that controls
how Intellipad displays text is ClassificationFormats.xcml file, installed in Microsoft
Oslo\1.0\bin\Settings. Each ClassificationFormat controls the appearance of a different text type. The
text type's color is set by the Foreground attribute and is written in hexadecimal ARGB (Alpha-Red-
Green-Blue) notation. Not all color entries have an Alpha component; they are not required. To change
the color, change the RGB values that the text type uses.

For example, if you wanted to make all keywords appear in purple, you would change the Keyword
entry so it looks like this:

<act:Export Name='{}Microsoft.Intellipad.ClassificationFormat's
<Is:ClassificationFormat Name='Keyword'
FontFamily="Consolas'
FontWeight="Bold’
Foreground="#FF800080" />
</act:Export>

Adding New Modes

You can create language modes for your custom DSL by compiling the grammars and placing the MX
files in the Intellipad Settings directory (installed in Microsoft Oslo\1.0\bin). To compile your grammar,
run the following from a command window:

<path to>\Microsoft 0slo\1.0\bin\m.exe <path to .mg file> [/o:<path to .mx output file>]
When you restart Intellipad, your new modes will appear in the mode selection drop-down list. To

automatically associate your mode with a file extension, add it to FileExtensions.xcml in the Settings
directory.

APPENDIX A INTELLIPAD PRIMER

Customizing Commands

Almost all commands available in Intellipad have been written in Python using the object model
exposed by the application. The Python files are installed in the Settings directory.

Commands.py contains most of the commands for Intellipad. Configuration-specific commands
can be placed in configuration-specific subdirectories (e.g., VisualStudio).

A command definition consists of the following:

o AnExecuted function definition, which acts as the command handler and provides
the logic for the command.

* Anoptional CanExecute function definition, which determines when the
command is enabled (use if you are making your command available using menu
items).

To reload the Settings and have changes take effect, you must restart Intellipad.

Intellipad Components

The Intellipad customization and extensibility model is based on named components. Some
components are just data, providing configuration information like what color and font to use when
displaying keywords, mapping file extensions to modes, and the contents of the menu bar. Most
components of that nature are expressed declaratively. Other components provide more complex
functionality like commands, buffer modes, or editor behaviors. These components are either exposed
in script or compiled .NET assemblies.

Intellipad uses a catalog for locating and activating components. A catalogis a list of components
and associated metadata. Components can be located in compiled assemblies, Python scripts, and
declarative markup files.

At startup, a configuration file with a list of catalog sources is loaded and used to build the catalog.
By default, Intellipad looks for a file called ipad.m in the same directory as ipad.exe. See the “Command-
Line Options” section later in this Appendix for information on how to specify an alternative startup
configuration file. After it is first built, the catalog is cached to speed startup time and is updated when
sources change.

Commands are one of the most widely used components in Intellipad. Intellipad uses an input
system based on Windows Presentation Foundation (WPF) Commanding. Commands are delegates
exported as components that can then be executed when a menu item is selected or a key sequence is
pressed. Commands can also be run from script. Metadata attached to command components provides
information to the command system like the command's name, its default keystroke, and the editor
component the command is targeting (such as buffer, view, window, and so forth).

Compiled Components

Some Intellipad components are complex and benefit from being implemented in a .NET programming
language like C# or VB.NET. Classes, properties, and methods in an assembly are marked with custom
attributes to indicate what components they are exporting and also what components they depend on
(imports).

211

APPENDIX A = INTELLIPAD PRIMER

212

Declarative Components

XCML files provide a way of defining components declaratively using XAML markup.
Some example uses of XCML components are

¢ Define additional keyboard bindings and the command that they execute.

o Define the Intellipad menu bar and the command that each menu item invokes.
¢ Define syntax coloring and fonts for various text classifications.

¢ Define the set of text classifications and inheritance relationships.

¢ Map file extensions to Intellipad modes.

Script Components

The following code is an example of a command written in Python for copying the path of the current
file to the clipboard:

@Metadata. CommandExecuted('Microsoft.Intellipad.BufferView',
‘Microsoft.Intellipad.CopyCurrentPathToClipboard', 'Ctrl+Shift+C')
def CopyCurrentPathToClipboard(target, sender, args):
path = sender.Buffer.Uri
data = path
if path.IsFile:
data = path.LocalPath
System.Windows.Clipboard.SetData(System.Windows.DataFormats.Text, data)

The preceding function has a Python decorator applied to it that exports it as a command
component. The parameters to the decorator define it to be a command called
"Microsoft.Intellipad.CopyCurrentPathToClipboard', targeting the currently active view, with
"Ctrl+Shift+C" as its shortcut key binding.

List of Available Modes

Each pane in Intellipad runs in a given mode. The default mode is called the standard mode, and works
more or less as a standard text editor. The other modes are specializations or enhancements built on top
of the standard mode to support a particular purpose or task, and are listed here:

o DSL Grammar mode: Provides support for authoring MGrammar. This includes
colorization, error marks for syntactically incorrect MGrammar, and the ability to
see how your grammar parses sample input.

o List mode: Used internally by certain Intellipad features to create a buffer showing
alist of items that can be clicked to navigate to the destination buffer.

¢ Mmode: Provides support for developing M code. This includes colorization, error
marks for syntactically incorrect M, and the SQL Preview feature.

APPENDIX A

Output mode: Used in conjunction with the DSL Grammar mode. It shows the
textual representation of a .NET Framework object model that is created when a
DSL grammar is used to parse sample input.

Project mode: Provides support for project development and configuration. This
includes displaying errors in the error list if the content is not a syntactically valid
MSBuild file. A project can be displayed in its text (XML) form or in an overview
list. You can use the Project - Toggle Project View menu item to switch back and
forth (or choose the desired buffer in the buffer list drop-down).

Python mode: Provides support for Python development. This includes
colorization and error marks for syntactically incorrect Python. Code coverage is
also available if Intellipad is launched with the /coverage option.

Rich Text mode: Used to display Intellipad help and the Intellipad primer. It is a
read-only mode that allows markup to drive classifications rather than language
services.

SQL mode: Used in conjunction with M mode. It allows you to see the SQL
generated by M code.

Standard mode: Enables basic text editing features. All other modes add to and
extend Standard mode capabilities.

Command-Line Options

The Intellipad executable (ipad.exe) can be invoked from the command prompt with a number of

optional command switches or flags. These are enumerated in the following list. Each switch is

INTELLIPAD PRIMER

designated with a forward slash (/) followed immediately by the name of the switch. The vertical bar ())
or pipe symbol should be treated as an OR operator, so [/help|h|?] means that /help, /h, and /? will all
work for displaying the command line help text. In those cases where the flag is followed by a postfix + or
-, + turns the feature on, and - turns the feature off. Defaults are indicated for these switches in the list.

Usage:

ipad.exe [@argfile] [/help|h|?] [/script:value] [file] [/configuration|config|c:value]
[/buildcache[+|-]] [/coverage:[+|-]] [/crashrecovery[+|-]]

@argfile: Instructs Intellipad to read command line arguments from the given file.
When used, it must be the first argument and subsequent arguments are ignored.

/help[+|-]: Displays a message box with Intellipad's command line help text.
Default: False.

/script:<filename>: Launches the specified script file after startup.

file(s): Opens the listed file(s) when Intellipad launches. Filenames are not
prefixed with a forward slash (/).

/configuration:file (or /config: or /c:): Specifies the startup configuration,
controlling which controls are loaded into Intellipad. Default: ipad.m.

213

APPENDIX A

214

INTELLIPAD PRIMER

/buildcache[+|-]: Creates Intellipad cache files and exits. Adding, changing, or
removing component files invalidates the cache. Subsequent launches of
Intellipad are faster if the cache is still valid. Default: False.

/coverage[+|-]: Enables the collection of statistics on what functions are called
during the execution of scripts in Intellipad. Default: False.

/crashrecovery[+|-]: Attempts to allow user to save changed buffers when
Intellipad crashes. Default: True.

APPENDIX B

Intellipad Mini-Buffer Commands

To use the mini-buffer commands, you must first open up the mini-buffer. Use View - Minibuffer (or

Ctrl+/).

Call(commandName, arguments=None): Executes an Intellipad command by
name.

ClearMru(): Clears the list of most recently used files.
CloseBuffer(bufferIndex): Closes an open buffer.

Exit(): Exits Intellipad.

Find(pattern): Find a string.

FindInBuffers(pattern): Find a string in all open buffers.

Goto(lineNumber): Goes to a line in the currently active buffer.
Open(fileName): Opens a buffer in the active view.

Replace(searchPattern, replacePattern): Replaces text in the active buffer.
SetEncoding(encoding): Sets the encoding.

SetMode (modeName): Changes the mode of the active view.

SetTransform(transformName, parameters=None): Sets the transform for the
active view.

Test(testName, repeat count=1, fail fast=False): Runs all tests with
names that start with the given test name.

Zoom(scale): Changes the zoom level of the active view.

215

APPENDIX C

Intellipad Commands and Gestures

Command Key Combination Description
Microsoft.Intellipad ActivateErrorListBuffer Ctrl+Shift+E Shows the error list buffer.
Microsoft.Intellipad ActivateMiniBuffer None Shows the mini-buffer
and makes it active.
Microsoft.Intellipad.ActivateOrOpenBuffer None If the buffer is visible in a
view, this command
makes the view active.

Otherwise, it opens the
buffer in the currently

active view.

Microsoft.Intellipad.Backspace Shift+Backspace |
Backspace

Microsoft.Intellipad.BuildProject Ctrl+Shift+B Builds the current project.
Microsoft.Intellipad.CallTestCommand None Test command
WithArg
Microsoft.Intellipad.CallTestCommand None Test command
WithoutArg
Microsoft.Intellipad.CloseBuffer Ctrl+F4 Closes a buffer.
Microsoft.Intellipad.CloseBufferView Ctrl+Shift+W Closes a view. The buffer

remains open.
Microsoft.Intellipad.CopySelection Ctrl+C | Ctrl+Insert
Microsoft.Intellipad.CutSelection Ctrl+X | Shift+Delete
Microsoft.Intellipad. DebuggerContinue Ctrl+F5
Microsoft.Intellipad. DebuggerStart F5

217

APPENDIX C INTELLIPAD COMMANDS AND GESTURES

Command Key Combination Description
Microsoft.Intellipad. DebuggerStepToken F10

Microsoft.Intellipad. DebuggerStop Shift+F5

Microsoft.Intellipad. DebuggerToggleInput F9

Breakpoint

Microsoft.Intellipad.Delete Delete

Microsoft.Intellipad.DeleteWordToLeft Ctrl+Backspace
Microsoft.Intellipad.DeleteWordToRight Ctrl+Delete

Microsoft.Intellipad. DragDrop None Handles files dragged into

Microsoft.Intellipad.Escape
Microsoft.Intellipad.Exit

Microsoft.Intellipad . ExpandBufferView
Horizontal

Microsoft.Intellipad. ExpandBufferView
Vertical

Microsoft.Intellipad.Find

Microsoft.Intellipad. FindInBuffers

Microsoft.Intellipad. FindNext

Microsoft.Intellipad.FindPrevious

Microsoft.Intellipad.FindSelectedNext

Microsoft.Intellipad. FindSelectedPrevious

218

Shift+Esc | Esc

Alt+F4

Ctrl+.

Ctrl+Shift+.

Ctrl+F

Ctrl+Shift+F

F3

Shift+F3

Ctrl+F3

Ctrl+Shift+F3

Intellipad.

Exits Intellipad.

Expands the width of the
active view.

Expands the height of the
active view.

Opens the mini-buffer
and calls the Find
function.

Find in all open buffers

Finds the next instance of
astring.

Finds the previous
instance of a string.

Finds the next instance of
the selected string.

Finds the previous
instance of the selected
string.

APPENDIX C = INTELLIPAD COMMANDS AND GESTURES
Command Key Combination Description
Microsoft.Intellipad. FocusBufferMenu Ctrl+Alt+B Sets keyboard focus on
the active view's Open
Buffers drop-down menu.
Microsoft.Intellipad.FocusBufferViewDown Alt+Down Moves the view focus
down.
Microsoft.Intellipad. FocusBufferViewLeft Alt+Left Moves the view focus to
the left.
Microsoft.Intellipad. FocusBufferViewNext F6 Moves the view focus to
the next view in the list of
open views (regardless of
position on screen).
Microsoft.Intellipad. FocusBufferViewPrevious Shift+F6 Moves the view focus to
the prior view in the list of
open views (regardless of
position on screen).
Microsoft.Intellipad.FocusBufferViewRight Alt+Right Moves the view focus to
the right.
Microsoft.Intellipad.FocusBufferViewUp Alt+Up Moves the view focus up.
Microsoft.Intellipad. FocusModeMenu Ctrl+Alt+M Sets keyboard focus on
the active view's Modes
drop-down menu.
Microsoft.Intellipad.Goto Ctul+G Opens the mini-buffer
and calls the Goto
function.
Microsoft.Intellipad. GrammarEditing Ctrl+Shift+T Opens a MGfile in the
Environment basic DSL authoring
configuration.
Microsoft.Intellipad. HelpCommands F1 Displays Intellipad help.
Microsoft.Intellipad.Indent Tab

Microsoft.Intellipad.InsertNewline
Microsoft.Intellipad.MakeLowercase

Microsoft.Intellipad. MakeUppercase

Shift+Enter | Enter

Ctrl+U

Ctrl+Shift+U

219

APPENDIX C INTELLIPAD COMMANDS AND GESTURES

Command Key Combination Description

Microsoft.Intellipad. MoveCurrentLineTo Alt+Home

BottomOfView

Microsoft.Intellipad. MoveLineDown Down

Microsoft.Intellipad.MoveLineUp Up

Microsoft.Intellipad.MoveToEndOfDocument Ctrl+End

Microsoft.Intellipad.MoveToEndOfLine End

Microsoft.Intellipad.MoveToNextCharacter Right

Microsoft.Intellipad. MoveToNextWord Ctrl+Right

Microsoft.Intellipad.MoveToPreviousCharacter Left

Microsoft.Intellipad.MoveToPreviousWord Ctrl+Left

Microsoft.Intellipad. MoveToStartOfDocument Ctrl+Home

Microsoft.Intellipad. MoveToStartOfLine Home

Microsoft.Intellipad.NavigateToUri None Opens the Uri given in
args, leaving the current
buffer visible.

Microsoft.Intellipad. New Ctul+N Opens a new untitled
buffer in the active view.

Microsoft.Intellipad NewGrammarEditing None Opens a new MG file in

Environment the basic DSL authoring
configuration.

Microsoft.Intellipad. NewProject Ctrl+Shift+N Create a new CSharp
modeling project.

Microsoft.Intellipad.Open Ctrl+O Opens a file in the active
view.

Microsoft.Intellipad.OpenMru None Opens a buffer listed in
the most recently used
list.

Microsoft.Intellipad.OpenStartFiles None Opens buffers specified
on the command line.

220

APPENDIX C

INTELLIPAD COMMANDS AND GESTURES

Command Key Combination Description

Microsoft.Intellipad.PageDown Page Down

Microsoft.Intellipad.PageUp Page Up

Microsoft.Intellipad.Paste Ctrl+V | Shift+Insert

Microsoft.Intellipad.Primer None Opens the Intellipad
primer.

Microsoft.Intellipad.Redo Ctrl+Y |

Alt+Shift+Backspace

Microsoft.Intellipad.ReformatDocument Ctrl+E,D Reformats the document
by changing the
indentation of each line.

Microsoft.Intellipad.ReloadSettings Ctrl+Alt+F5 Reload the configuration
settings of Intellipad.

Microsoft.Intellipad.Replace Ctrl+H Opens the mini-buffer
and calls the Replace
function.

Microsoft.Intellipad.ReplaceNext F4 Finds and replaces the
next instance of a string
with another string.

Microsoft.Intellipad ReplacePrevious Shift+F4 Finds and replaces the
previous instance of a
string with another string.

Microsoft.Intellipad.ResetSelection Esc

Microsoft.Intellipad. RunTests Ctl+R,A Runs Intellipad's built-in
self tests.

Microsoft.Intellipad.Save Ctrl+S Saves the contents of the
buffer in the active view to
their current file location.

Microsoft.Intellipad.SaveACopy None Saves a copy of the buffer
in the active view to the
specified file location.

Microsoft.Intellipad.SaveAll Ctrl+Shift+S Saves the contents of all

buffers currently opened
by Intellipad.

221

APPENDIX C INTELLIPAD COMMANDS AND GESTURES

Command Key Combination Description

Microsoft.Intellipad.SaveAs None Saves the contents of the
buffer in the active view to
the specified file location.
The original buffer is
closed, discarding any
changes.

Microsoft.Intellipad.ScrollDownAndMove Ctrl+Down

CaretIfNecessary

Microsoft.Intellipad.ScrollUpAndMove Ctrl+Up

CaretIfNecessary

Microsoft.Intellipad.SelectAll Ctrl+A

Microsoft.Intellipad.SelectCurrentWord None

Microsoft.Intellipad.SelectEnclosing None

Microsoft.Intellipad.SelectFirstChild None

Microsoft.Intellipad.SelectLineDown Shift+Down

Microsoft.Intellipad.SelectLineUp Shift+Up

Microsoft.Intellipad.SelectNextSibling None

Microsoft.Intellipad.SelectNextSiblingExtend Alt+Shift+Down

Selection

Microsoft.Intellipad.SelectPageDown Shift+Page Down

Microsoft.Intellipad.SelectPageUp Shift+Page Up

Microsoft.Intellipad.SelectPreviousSibling None

Microsoft.Intellipad.SelectPreviousSiblingExtend Alt+Shift+Up

Selection

Microsoft.Intellipad.SelectToEndOfDocument Ctrl+Shift+End

Microsoft.Intellipad.SelectToEndOfLine Shift+End

Microsoft.Intellipad.SelectToNextCharacter Shift+Right

Microsoft.Intellipad.SelectToNextWord

Ctrl+Shift+Right

APPENDIX C ** INTELLIPAD COMMANDS AND GESTURES

Command Key Combination Description
Microsoft.Intellipad.SelectToPreviousCharacter Shift+Left
Microsoft.Intellipad.SelectToPreviousWord Ctrl+Shift+Left
Microsoft.Intellipad.SelectToStartOfDocument Ctrl+Shift+Home
Microsoft.Intellipad.SelectToStartOfLine Shift+Home
Microsoft.Intellipad.SetEncoding None Sets the file encoding of
the buffer in the view.
Microsoft.Intellipad. ShowCompletions Ctrl+Space Shows possible
completions of a token.
Microsoft.Intellipad.ShowDefinitionList F12 Shows a list of definitions.
Microsoft.Intellipad.ShowNotifications None Shows the notification
buffer.
Microsoft.Intellipad. ShowReferencesList Shift+F12 Shows a list of all things
that reference the
highlighted item.
Microsoft.Intellipad.ShowScriptBuffer None Opens the interactive
Python script buffer in the
current view.
Microsoft.Intellipad.ShowSqlBuffer None Opens the interactive SQL
buffer in the current view.
Microsoft.Intellipad.ShrinkBufferViewHorizontal Ctrl+, Shrinks the width of the
active view.
Microsoft.Intellipad.ShrinkBufferViewVertical Ctrl+Shift+, Shrinks the height of the
active view.
Microsoft.Intellipad.Space Space
Microsoft.Intellipad.SplitHorizontal Ctrl+W,- Splits the active view into
two views, one above the
other.
Microsoft.Intellipad.SplitVertical Ctrl+W,\ Splits the active view into
two views, side by side.
Microsoft.Intellipad.ToggleBehavior None Toggles the specified
behavior on or off.

223

APPENDIX C INTELLIPAD COMMANDS AND GESTURES

Command Key Combination Description
Microsoft.Intellipad. ToggleFileChanges Ctl+W,N Toggles if you want
Notification notification that an open
file is changed outside of
Intellipad.
Microsoft.Intellipad. ToggleFullScreen Alt+Shift+Enter Toggles full-screen
operation of Intellipad on
or off.
Microsoft.Intellipad. ToggleLineNumber Ctrl+Shift+L

Microsoft.Intellipad.ToggleMiniBuffer

Microsoft.Intellipad. ToggleOverwriteMode
Microsoft.Intellipad. ToggleWordWrap
Microsoft.Intellipad. TransposeCharacter
Microsoft.Intellipad. TransposeLine

Microsoft.Intellipad.Undo

Microsoft.Intellipad.Unindent

Microsoft.Intellipad.YankLine

Microsoft.Intellipad.ZoomCommand

Microsoft.Intellipad.ZoomDown

Microsoft.Intellipad.ZoomUp

Ctrl+Shift+D | Ctrl+/

Insert
Ctrl+W,W
Cul+T
Alt+Shift+T

Ctrl+Z|
Alt+Backspace

Shift+Tab

Ctrl+L

Ctrl+W,Z

Ctrl+-

Ctrl+=

Toggles the mini-buffer
view on or off.

Copies the line(s) where
the cursor is.

Opens the mini-buffer
and calls the Zoom
function.

224

APPENDIX D

The Quadrant Menu Tree

File
—» New

» M File
> Workpad (Ctrl+N)
———————— Session (Ctrl+Shift+N)
L——— T-SQL Console
— Open File (Ctrl+0)

— Delete Session

— Drop Database

— Save File

— Save File As

— Save Changes (Ctrl+S)

— Revert All Changes

— Resolve All Conflicts

» As Proposed

v

As Original

v

As Database
— Print

——» Exit

Edit

— Redo (Ctrl+Y)
— Undo (Ctrl+2)
—» Cut (Ctrl+X)
— Copy (Ctrl+C)
— Paste (Ctrl+V)
— Delete

—— Select All (Ctrl+A)

(Continued)

225

APPENDIX D = THE QUADRANT MENU TREE

226

View

— Explorer

N

— Changes
— Errors

e

—» Workpads

I

—— Details
—» Zoom

>
—»

v

>
—
-

———- Set Preferred Zoom

>
—
—
—

—»
—»

>

—— Refresh (F5

<List of Sessions Submenu>

<List of Sessions Submenu>

<List of open workpads Submenu>

To Active Workpad (F10)
To All Workpads (F12)
25%

50%

100%

200%

400%

Current (Ctrl+Shift+O)
50%

75%

100% (Ctrl+Shift+Z7)
125%

150%

200%

(Continued)

APPENDIX D * THE QUADRANT MENU TREE

Workpad

— Save View As
— Set As Default View
— View Source
— Configure
— Float

— Show Query Bar
— Close (Ctrl+F4)
— Close All Workpads
Data

— Deploy (Ctrl+F5)
— Install Addin
—»Show SQL

— Export Database To M
> Import Assembly
— Import Uml
—— Insert [tem (Ctrl+])
—» Delete Item

Help

—Quadrant Help
— Quadrant Repository Connection
L—— About Quadrant

227

APPENDIXE

Generated T-SQL
for the Car Model Example

The following listing is the generated T-SQL code for the CarTypeExample M code shown in Figure 5-10 in
Chapter 5.

set xact_abort on;

go
begin transaction;
go
set ansi_nulls on;
go
if not exists
(
select *
from [sys].[schemas]
where [name] = N'CarTypeExample'
)
execute [sp_executesql] N'create schema [CarTypeExample]';
go
if not exists
(
select *
from [sys].[schemas]
where [name] = N'EngineModule'
)
execute [sp_executesql] N'create schema [EngineModule]';
go
if not exists
(
select *
from [sys].[schemas]
where [name] = N'$MRuntime.CarTypeExample'
)

229

APPENDIX E ' GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

230

execute [sp_executesql] N'create schema [$MRuntime.CarTypeExample]';
go

if not exists
(
select *
from [sys].[schemas]
where [name] = N'$MRuntime.EngineModule'

)

execute [sp_executesql] N'create schema [$MRuntime.EngineModule]';
go

create function [CarTypeExample].[Check Cars Func]

@Year as int
)
returns bit
as
begin
return case
when @Year »= 1769
then 1
else 0
end
end;
go

create function [CarTypeExample].[Check Cars Funci]
@Year as int

returns bit
as
begin
return case
when @Year <= 2020
then 1
else 0
end
end;
go

create function [EngineModule].[HorsepowerPerCylinder]

@Eng as xml
)
returns decimal(19,6)
as
begin
return convert(decimal(19,6),

select (@Eng).value(N'(/entity/Horsepower)[1]', N'int') as [Item]

APPENDIX E GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

)) / convert(decimal(19,6),
select (@Eng).value(N'(/entity/Cylinders)[1]', N'tinyint") as [Item]

end;
go

create function [EngineModule].[Check Engines Func]

@Cylinders as tinyint
)
returns bit
as
begin
return case
when @Cylinders »= 1
then 1
else 0
end
end;
go

create function [EngineModule].[Check Engines Funci]

@Cylinders as tinyint
)
returns bit
as
begin
return case
when @Cylinders <= 12
then 1
else 0
end
end;
go

create function [EngineModule].[Check Engines Func2]
@Horsepower as int

returns bit
as
begin
return case
when @Horsepower < 1000
then 1
else 0
end
end;
go

231

APPENDIX E ' GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

create function [EngineModule].[Check Engines Func3]
@Fuel as nvarchar(max)

returns bit
as
begin
return case
when @Fuel in

N'gas’,
N'diesel',
N'propane’

then 1
else 0
end
end;

go

create table [EngineModule].[Engines]
(
[Id] int not null identity,
[Cylinders] tinyint not null,
[Horsepower] int not null,
[Fuel] nvarchar(max) not null,
[Description] nvarchar(max) not null,
constraint [PK_Engines] primary key clustered ([Id]),
check ([Horsepower] between 0 and 65535),
constraint [Check Engines] check ([EngineModule].[Check Engines Func]([Cylinders]) = 1),
constraint [Check_Engines1] check ([EngineModule].[Check Engines Func1]([Cylinders])«

= 1),
constraint [Check_Engines2] check ([EngineModule].[Check Engines Func2]([Horsepower])«
=1)
canstraint [Check Engines3] check ([EngineModule].[Check Engines Func3]([Fuel]) = 1)
);
go

create table [CarTypeExample].[Cars]
(
[Id] bigint not null identity,
[Mfr] nvarchar(max) not null,
[Model] nvarchar(max) not null,
[Year] int not null,
[Engine] int not null,
constraint [PK Cars] primary key clustered ([Id]),
check ([Year] between 0 and 65535),
constraint [FK Cars_Engine EngineModule Engines] foreign key ([Engine]) references«
[EngineModule].[Engines] ([Id]),
constraint [Check Cars] check ([CarTypeExample].[Check Cars Func]([Year]) =
constraint [Check Cars1] check ([CarTypeExample].[Check Cars Func1]([Year])

);

1),
= 1)

232

APPENDIX E GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

go
create table [$MRuntime.EngineModule].[Engines Labels]

[Label] nvarchar(444) not null,

[Value] int not null,

constraint [PK_Engines Labels] primary key clustered ([Label]),

constraint [FK_Engines Labels Value EngineModule Engines] foreign key ([Value])«
references [EngineModule].[Engines] ([Id]) on delete cascade
);
go

create index [IR Engine] on [CarTypeExample].[Cars] ([Engine]);
go

create table [$MRuntime.CarTypeExample].[Cars Labels]

[Label] nvarchar(444) not null,

[Value] bigint not null,

constraint [PK Cars Labels] primary key clustered ([Label]),

constraint [FK Cars_Labels Value CarTypeExample Cars] foreign key ([Value]) references«
[CarTypeExample].[Cars] ([Id]) on delete cascade

g0

create index [IR Value] on [$MRuntime.EngineModule].[Engines Labels] ([Value]);
go

create function [$MRuntime.EngineModule].[LookupInEngines Labels]

(

@name as nvarchar (max)

returns table
as
return
select top (1)
[t3].[1d] as [Id],
[t3].[Cylinders] as [Cylinders],
[t3].[Horsepower] as [Horsepower],
[t3].[Fuel] as [Fuel],
[t3].[Description] as [Description]
from [$MRuntime.EngineModule].[Engines Labels] as [p]
cross apply

select [$Engines3].[Id] as [Id],
[$Engines3].[Cylinders] as [Cylinders],
[$Engines3].[Horsepower] as [Horsepower],
[$Engines3].[Fuel] as [Fuel],
[$Engines3].[Description] as [Description]

from [EngineModule].[Engines] as [$Engines3]

where [$Engines3].[Id] = [p].[Value]
) as [t3]

233

APPENDIX E ' GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

where [p].[Label] = @name;
go

create index [IR Value] on [$MRuntime.CarTypeExample].[Cars Labels] ([Value]);
go

create function [$MRuntime.CarTypeExample].[LookupInCars_Labels]
@name as nvarchar (max)

returns table
as
return
select top (1)
[t3].[1d] as [Id],
[t3].[Mfr] as [Mfr],
[t3].[Model] as [Model],
[t3].[Year] as [Year],
[t3].[Engine] as [Engine]
from [$MRuntime.CaxTypeExample].[Cars_Labels] as [p]
cross apply

select [$Cars2].[Id] as [Id],
[$Cars2].[Mfr] as [Mfr],
[$Cars2].[Model] as [Model],
[$Cars2].[Year] as [Year],
[$Cars2].[Engine] as [Engine]

from [CarTypeExample].[Cars] as [$Cars2]

where [$Cars2].[Id] = [p].[Value]

) as [t3]
where [p].[Label] = @name;
go

commit transaction;
go

234

Index

Symbols

I exclamation point, indicating conflict, 97, 101
% binary infix modulo operator, 125
>>> Find('l') Intellipad mini-buffer command
prompt, 17
* asterisk
indicating data changed but not saved, 91,
97,101
as Kleene operator, 43, 84
next to buffer name, 14
with slash (/*...*/), indicating block
comments, 82
. dot operator, 127
| forward slash, 82, 213
/1 double slashes, 82, 116
2 question mark
indicating stale data, 97, 102
as Kleene operator, 43, 84
:ascription operator, 118, 122
[] brackets, 123
{} curly braces, 36, 122
| pipe, 42,213
+plus sign, 42, 84

A

abstract syntax trees (ASTs), vs. M Graph, 53
alpha characters, 42
ascription operator (), 118, 122
asterisk (*)
indicating data changed but not saved, 91,
97,101
as Kleene operator, 43, 84
next to buffer name, 14
with slash (/*...*/), indicating block
comments, 82
ASTSs (abstract syntax trees), vs. M Graph, 53

BDL (Base Domain Library), 173, 176
Behaviors option (Intellipad Edit menu), 19
block (multi-line) comments (/*... */), 82
brackets ([]), indicating lists, 123

buffer transforms, 207

buffer view, 14

buffers, 14, 207

C

Call() command (Intellipad mini-buffer), 25, 215
CarComponents (sample) model, 81-113
CarModel file and, 85-89
CarTypeExample module and, 118, 128-133,
229-234
deploying, 85-87
derived types and, 118
Drive Train subsystem and, 91
editing in SQL Server, 95
extents for, 129
MfgComponentModel and. See
MfgComponentModel
My Car sample record and, 90
quality control system for, 139-161
Suspension subsystem and, 92
T-SQL code for, generating, 131
viewing/adding data to, 87-93
catalogs (list of components), 211
claims-based security, 163
ClearMru() command (Intellipad mini-buffer), 25,
215
CloseBuffer() command (Intellipad mini-buffer),
25,215
collection operators, 123
collection type (M language construct), 120, 122-
125

235

INDEX

collections, 36, 123
colors, customizing in Intellipad , 210
command components (Intellipad), 211
command prompt
for Intellipad mini-buffer command, 17
SQL Server Modeling and, 60, 195
command-line options, Intellipad and, 213
commands
Intellipad mini-buffer, 25, 215
Intellipad, 217-224
Commands option (Intellipad Help menuy), 25
comments, 82, 116
compiled components (Intellipad), 211
composite pattern, 81
computed values (M language construct), 117,
133-136
defining, 133
overloading, 135
conflicting data, managing in Quadrant, 99-102
curly braces ({})
collection type and, 122
representing collections, 36
customizing
Intellipad, 209
views, in Quadrant, 93, 105-113

D

declarative components (Intellipad), 212
derived types (M language construct), 118-119,
122
diagramming, 72
dir command (SQL Server Modeling), 60
Disable External Changes option (Intellipad Edit
menu), 20
domains, 33
domain-specific languages. See DSLs
dot operator (), entity values and, 127
double slashes (//), indicating comments, 82, 116
downloads
PatternApplication sample, 164
SQL Server Modeling, 1, 4
.dsl files, 58
DSL Grammar executor command-line tool
(formerly Mgrammar executor), 61
DSL Grammar mode (Intellipad), 28, 36, 212
DSL grammars, customizing language modes in
Intellipad, 210

DSL statements, enabling multiple, 42-44
DSL syntax, 38-54

making more flexible, 52-54

testing, 48-51
DSLs, 33-79

attributes of, 79

checking installation of, 67

deploying, 56-78

DSL authoring configuration feature, in

Intellipad, 209

E

Edit menu (Intellipad), 16-20
Encoding option (Intellipad File menuy), 15
entity type (M language construct), 36, 58, 120, 125
Errors pane, Table mode and, 28
exclamation point (!), indicating conflict, 97, 101
exercises
LunchCounter DSL, 34-79
T-SQL code generated from M code, 28-32
using Intellipad, 13-32
Exit() command (Intellipad mini-buffer), 25, 215
Explorer pane (Quadrant), 87-93, 102-105
export directives, modules and, 127
extents (M language construct), 28, 45,117
defining, 129
naming conventions and, 129

F

File menu (Intellipad), 14
Find in Buffers option (Intellipad Edit menu), 15,
17
Find option (Intellipad Edit menu), 17
Find() command (Intellipad mini-buffer), 25, 215
FindInBuffers() command (Intellipad mini-buffer),
25,215
folder pattern, SQL Server Modeling Services and,
138-161
creating/managing folders and, 155-161
model deployment and, 148-154
sample quality control system illustrating,
139-161
security and, 163
forward slash (/), designating command-line
switches, 213
Full Screen option (Intellipad View menu), 21

G

Go to Line option (Intellipad Edit menuy), 19
Goto() command (Intellipad mini-buffer), 25,
215

H

HasFolderAndAutold type, 167,172, 175

Help menu (Intellipad), 25

horizontally split windows, Intellipad View menu
option for, 23

import directives, modules and, 127
INSTEAD OF triggers, security and, 163
Intellipad, 13-32,207-214
checking for in All Programs list (via
Windows Start button), 7
command-line options and, 213
commands and, 217-224
components of, 207, 211
customizing, 209
design features of, 207
DSL deployment and, 56-78
DSLs created via, 33, 36-79
folders and, 140
interface of, 13-32
M programming language and, 115, 209
mini-buffer commands and, 25, 215
overview of, via Intellipad Help menu
Intellipad Primer option, 26
Visual Studio and, 13
Intellipad Primer option (Intellipad Help menu),
26
interleave rule, 40
intrinsic types (M language construct), 118-127
ipad.exe, 213
ipad.m file, catalogs and, 211

K

keyboard shortcuts, for Intellipad, 217-224
Kleene operators, 42, 43

list of, 84

multiplicity operators and, 123

L

language modes, customizing
in Intellipad, 210
languages (M language construct), 117, 136
List mode (Intellipad), 28, 212
lists, 123
LunchCounter (sample) DSL, 34-79
checking installation of, 67
deploying, 56-78
SandwichOrders DSL and. See
SandwichOrders (sample) DSL,
36
LunchCounter (sample) module, 38, 46, 63

M Graph, 35,53
M mode (Intellipad), 28, 209, 212
M programming language, 115-136
basic constructs of, 117
customizing views, in Quadrant, 106~
11
Intellipad for. See Intellipad
Quadrant for. See Quadrant
Main syntax rule, 38, 41, 45
menus, customizing in Intellipad, 210
metadata associated with commands, 211
MfgComponent type, 172-176
MfgComponentModel (sample), 165-205
building in Visual Basic, 168-170
database deployment and, 182-187
PatternApplication Module for, 176~
181
patterns for, 164
project build and, 181
QC data and, 164, 187-195
refining for security, 170-205
test users for, setting up, 195-205
testing data and, 201-205
MfgComponents updatable view, 167, 175
.mg files, 57
Mgrammar executor, 61
mini-buffer (Intellipad), 17, 208
Intellipad View menu Minibuffer option for,
24
Intellipad Zoom option and, 23
mini-buffer commands and, 25, 215

INDEX

237

INDEX

mix-in types, 167, 175
models, 33

deploying, 85-87

vs. schemas, 57
modes (Intellipad), 27-32, 208, 212
modules, 38

declaring, 116

import/export directives and, 127
multi-line (block) comments (/*...*/), 82
multiplicity operators, 123
mx.exe command-line utility

LunchCounter sample DSL deployment and,

67

refreshing/restoring databases via, 187

naming conventions, for extents, 129

N

net command, creating test users via, 195
New M Project option (Intellipad File menuy),
15

0]

Open() command (Intellipad mini-buffer),
215
operators
binary infix modulo (%), 125
dot (.), 127
collection, 123
Kleene. SeeKleene operators
multiplicity, 123
relational, 124
Select, 125
Where, 125
Output mode (Intellipad), 213

P

panes, 14
PatternApplication Module, 176-181
PatternApplication sample
adding references and, 179
downloading/installing, 164
pipe (1), as OR operator, 42, 213
plus sign (+), as Kleene operator, 42, 84
Project mode (Intellipad), 28, 213
Python mode (Intellipad), 28, 213

Q

Quadrant, 81-114
changes to data in, reversing, 97-99
checking for in All Programs list (via
Windows Start button), 7
contflicts in, managing, 99-102
Explorer pane of, 87-93
folders and, 140
M language awareness and, 115
mentu tree of, 225
model deployment and, 85-87
opening, 82
Query Bar of, 102-105
saving code in, 85
views in, 87-97, 105-113
quality control system (sample), for
CarComponents sample model, 139-161
queries
CarComponents sample model and, 102-
105
LunchCounter sample and, 73-78
Query Bar (Quadrant), 102-105
query expressions, 125
question mark (?)
indicating stale data, 97, 102
as Kleene operator, 43, 84

R

Recent option (Intellipad File menu), 15
relational operators, 124

repetition operators. See Kleene operators
Replace option (Intellipad Edit menu), 18
Replace() command (Intellipad mini-buffer), 215
Repository. See SQL Server Modeling Services
Rich Text mode (Intellipad) , 25, 213

row-level security, 163

runas command, testing data and, 201, 204

S

samples
CarComponents model. See
CarComponents (sample) model
LunchCounter DSL, 34-79

SandwichOrders (sample) DSL, 36, 38
collection of, 46, 47
extending, 54, 78
syntax flexibility and, 52
SandwichOrders (sample) extent, 28-32
schemas
LunchCounter sample DSL deployment and,
58
vs. models, 57
script components (Intellipad), 212
security, 163-205
limiting data visibility and, 164
MfgComponentModel sample illustrating,
165-205
Select operator, 125
SetEncoding() command (Intellipad mini-buffer),
215
SetMode() command (Intellipad mini-buffer),
215
SetTransform() command (Intellipad mini-buffer),
215
slashes
double (//), indicating comments, 82, 116
single, with asterisk (/*...*/), indicating
block comments, 82, 213
Split Windows options (Intellipad View menuy),
23
SQL mode (Intellipad), 213
SQL Preview (Intellipad), 209
SQL queries. See queries
SQL scripts, LunchCounter sample DSL
deployment and, 65
SQL Server
CarComponents sample model and, 85-87,
95
configuring, SQL Server Modeling
installation and, 2
LunchCounter sample DSL deployment and,
36-78
MfgComponentModel sample deployment
and, 182-187
refreshing/restoring databases and, 187
SQL Server Management Studio (SSMS)
configuring test-user permissions in,
198
opening generated SQL script files in,
65

SQL Server Modeling, 1-12
command prompt and, 60
downloading/installing, 4-8

INDEX

Readme file for, 8
release notes for, 1, 8
repairing/uninstalling, 9
software/hardware pre-requisites for, 1
SQL Server Modeling Services, 137
folders and. Seefolder pattern, SQL Server
Modeling Services and
SQL Server Modeling uninstall and, 10
SSMod. See SQL Server Modeling
SSMS (SQL Server Management Studio)
configuring test-user permissions in,
198
opening generated SQL script files in,

Standard mode (Intellipad), 27, 213

stored values, 133

systems car model. See CarComponents (sample)
model

T

Table mode (Intellipad), 28
terminology, 34
Test() command (Intellipad mini-buffer),
215
test-driven development, 34
text editors. SeeIntellipad
title banners, 26-32
tokens, 41
T-SQL
CarTypeExample module, code generated
for, 131, 229-234
extent definitions and, 129
T-SQL 1.1 mode (Intellipad), 28-32
type keyword, 118
types (M language construct), 117-127
derived types and, 118-119, 122
intrinsic types and, 118-127

U

Unicode text, Intellipad for. SeeIntellipad
updatable views, security and, 163
Uri scheme, buffers and, 207

'

values, collections of. See types (M language
construct)

239

INDEX

vertically split windows, Intellipad View menu w
option for, 23

View menu (Intellipad), 20-24 Where operator, 125
views, 208 whitespace, interleaving (ignoring), 40
Visual Studio

Intellipad and, 13 X

M language awareness and, 173

MfgComponentModel sample and, 168-170, XCML components, 212

186
notes about interface of, 173 Z

SQL Server Modeling installation and, 2
SQL Server Modeling Services, model
deployment and, 148-154

Zoom() command (Intellipad mini-buffer), 215
Zoom option (Intellipad View menuy), 23, 27

240

	Title Page

	Copyright Page

	Contents at a Glance
	Table of Contents

	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	CHAPTER 1 Installing and Setting Up SQL Server Modeling
	Software Pre-Requisites
	Hardware and Operating System Requirements
	Configuring SQL Server
	Downloading and Installing
	Checking the Installation

	If Something Goes Wrong…
	The Repair Option
	The Uninstall Option

	Summary

	CHAPTER 2 Introduction to Intellipad
	Getting Started with Intellipad
	The File Menu
	The Edit Menu
	The Find Commands
	The Replace Command
	The Go to Line Command
	Behaviors
	Disable External Changes

	The View Menu
	Full Screen
	Zoom
	Split Windows
	The Mini-Buffer

	The Help Menu
	Commands List
	Intellipad Primer

	View Title Banner Functions
	View Modes

	CHAPTER 3 Domain-Specific Languages 101: Lola’s Lunch Counter
	Some Caveats
	A Simple Exercise: The Sandwich Language
	Where You Want to End Up
	Getting Started with the Intellipad DSL Grammar Mode Interface
	Broadening the Choices
	Interleaving (Ignoring) Whitespace
	Defining Tokens
	Enabling Multiple DSL Statements
	Tightening Up the Syntax
	Moving Toward Structured Data
	Testing the Syntax
	Making the Syntax More Flexible
	The SandwichLanguage DSL MGraph

	Extending SandwichOrders to More Than One Main Ingredient
	Deployment
	Thinking Ahead

	Concluding Thoughts

	CHAPTER 4 Introduction to Quadrant
	My Car: Creating a Simple Model in Quadrant
	Building the Car Model in Quadrant
	Deploying the Model to SQL Server
	Viewing the Model and Adding Data in the Explorer
	Customizing Column Views in Quadrant
	Viewing and Editing the Model in SQL Server
	Managing Changes to the Data in Quadrant
	Managing Conflicts in Quadrant
	Using the Quadrant Explorer Query Bar
	More on Customizing the View

	Summary

	CHAPTER 5 M – The Modeling Language
	Why M?
	Getting Started with M
	Modules
	The Four Basic Constructs of M

	Types
	Intrinsic and Derived Types
	M’s Built-Ins: The Intrinsic Types
	The Collection Type
	Multiplicity Constraints
	Collection Operators

	The Entity Type
	Entity Value Initializers
	Member Names
	Entity Values
	Entity Value Operators

	Modules Revisited: Import and Export Directives
	Extents
	Generating T-SQL Code for the Car Model

	Computed Values
	Overloading

	Languages
	Summary

	CHAPTER 6 SQL Server Modeling Services – The Folder Pattern
	The Modeling Services Folder Pattern
	Example: A Quality Control System for CarModel

	CHAPTER 7 SQL Server Modeling Services – Security
	Using Security to Limit Data Visibility
	Setting Up – Installing the PatternApplication Sample
	Building on the CarModel
	Building the MfgComponentModel Project in Visual Studio
	Refining the Model to Include Security
	HasFolderAndAutoId
	Adding the PatternApplication Module
	Building the Project
	Deploying to the Database
	Creating the QC Folders
	Building the Sample Data
	Setting Up the QC Manager Test Users
	Configuring Test-User Permissions in SQL Server Management Studio
	Testing

	Summary

	APPENDIX A Intellipad Primer
	Intellipad Basics
	Buffers
	Views
	Modes
	The Mini-Buffer

	Working with M in Intellipad
	SQL Preview
	Basic DSL Authoring Configuration

	Customizing Intellipad
	Changing the Menus
	Changing the Colors
	Adding New Modes
	Customizing Commands

	Intellipad Components
	Compiled Components
	Declarative Components
	Script Components

	List of Available Modes
	Command-Line Options

	APPENDIX B Intellipad Mini-Buffer Commands
	APPENDIX C Intellipad Commands and Gestures
	APPENDIX D The Quadrant Menu Tree
	APPENDIX E Generated T-SQL for the Car Model Example
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

