

Beginning SQL Server
Modeling

Model-Driven Application Development in
SQL Server 2008

� � �

Bart Weller

Beginning SQL Server Modeling: Model-Driven Application Development in SQL Server 2008

Copyright © 2010 by Bart Weller

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

Image copyright notices and permissions:

Page 1: ©iStockphoto.com/tompics
Page 13: ©iStockphoto.com/tiridifilm
Page 33: ©iStockphoto.com/EricHood
Page 81: ©iStockphoto.com/seamartini
Page 115: ©iStockphoto.com/Leadinglights
Page 137: By permission of the Master and Fellows of St John's College, Cambridge, UK, and Ned Lee

Fielden
Page 163: ©iStockphoto.com/pavlen

ISBN-13 (pbk): 978-1-4302-2751-9

ISBN-13 (electronic): 978-1-4302-2752-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Python and the Python logos are trademarks or registered trademarks of the Python Software Foundation.

Publisher and President: Paul Manning
Lead Editor: Mark Beckner
Development Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferrachiatti
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan

Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank
Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editors: Candace English and Debra Kelly
Copy Editor: Kim Benbow
Compositor: Bytheway Publishing Services
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

To: Kathie — wife and companion
Riley, Grady, Sallie, and Brook —the future

Future generations, with sincere apologies from the present
Willy —a great llama and herd jester; may he rest in peace

iv

Contents at a Glance

� Contents at a Glance ..iv
� Contents ..v
� About the Author...x
� About the Technical Reviewer ...xi
� Acknowledgments ..xii
� Introduction ...xiii
� Chapter 1: Installing and Setting Up SQL Server Modeling.....................................1

� Chapter 2: Introduction to Intellipad...13

� Chapter 3: Domain-Specific Languages 101: Lola’s Lunch Counter......................33

� Chapter 4: Introduction to Quadrant ...81

� Chapter 5: M – The Modeling Language..115

� Chapter 6: SQL Server Modeling Services – The Folder Pattern137

� Chapter 7: SQL Server Modeling Services – Security ..163

� Appendix A: Intellipad Primer ...207

� Appendix B: Intellipad Mini-Buffer Commands...215

� Appendix C: Intellipad Commands and Gestures ..217

� Appendix D: The Quadrant Menu Tree...225

� Appendix E: Generated T-SQL for the Car Model Example229

� Index ...235

� CONTENTS

v

Contents

� Contents at a Glance.. iv
� Contents.. v

� About the Author... x

� About the Technical Reviewer ... xi

� Acknowledgments .. xii

� Introduction ... xiii

� Chapter 1: Installing and Setting Up SQL Server Modeling.....................................1

Software Pre-Requisites..1

Hardware and Operating System Requirements ...2

Configuring SQL Server ...2

Downloading and Installing ...4
Checking the Installation .. 7

If Something Goes Wrong…..8
The Repair Option ... 9
The Uninstall Option ... 9

Summary ...12

� Chapter 2: Introduction to Intellipad ..13

Getting Started with Intellipad...13
The File Menu ... 14
The Edit Menu... 16

The View Menu ..20
Full Screen.. 21

� CONTENTS

vi

Zoom... 23
Split Windows... 23
The Mini-Buffer... 24

The Help Menu...25
Commands List... 25
Intellipad Primer ... 26

View Title Banner Functions ..26
View Modes .. 27

� Chapter 3: Domain-Specific Languages 101: Lola’s Lunch Counter33

Some Caveats ..33

A Simple Exercise: The Sandwich Language...34
Where You Want to End Up... 34
Getting Started with the Intellipad DSL Grammar Mode Interface ... 36
Broadening the Choices.. 39
Interleaving (Ignoring) Whitespace... 40
Defining Tokens.. 41
Enabling Multiple DSL Statements ... 42
Tightening Up the Syntax.. 45
Moving Toward Structured Data... 45
Testing the Syntax.. 48
Making the Syntax More Flexible ... 52
Extending SandwichOrders to More Than One Main Ingredient... 54
Deployment .. 56
Thinking Ahead... 78

Concluding Thoughts ...79

� Chapter 4: Introduction to Quadrant...81

My Car: Creating a Simple Model in Quadrant...81
Building the Car Model in Quadrant.. 82

� CONTENTS

vii

Deploying the Model to SQL Server .. 85
Viewing the Model and Adding Data in the Explorer .. 87
Customizing Column Views in Quadrant... 93
Viewing and Editing the Model in SQL Server .. 95
Managing Changes to the Data in Quadrant... 97
Managing Conflicts in Quadrant ... 99
Using the Quadrant Explorer Query Bar.. 102
More on Customizing the View... 105

Summary ...114

� Chapter 5: M – The Modeling Language ...115

Why M?..115

Getting Started with M...115
Modules .. 116
Types .. 117
Intrinsic and Derived Types .. 118

Modules Revisited: Import and Export Directives ..127

Extents...129

Computed Values...133
Overloading .. 135

Languages ...136

Summary ...136

� Chapter 6: SQL Server Modeling Services – The Folder Pattern.........................137

The Modeling Services Folder Pattern...138
Example: A Quality Control System for CarModel... 139

� Chapter 7: SQL Server Modeling Services – Security ..163

Using Security to Limit Data Visibility ..164

Setting Up – Installing the PatternApplication Sample..164

� CONTENTS

viii

Building on the CarModel ..165

Building the MfgComponentModel Project in Visual Studio...167

Refining the Model to Include Security..170
HasFolderAndAutoId ... 175
Adding the PatternApplication Module ... 176
Building the Project .. 181
Deploying to the Database.. 182
Creating the QC Folders.. 187
Building the Sample Data ... 189
Setting Up the QC Manager Test Users .. 195

Summary ...205

� Appendix A: Intellipad Primer...207

Intellipad Basics ..207
Buffers .. 207
Views .. 208
Modes... 208
The Mini-Buffer... 208

Working with M in Intellipad..209
SQL Preview ... 209
Basic DSL Authoring Configuration... 209

Customizing Intellipad ...209
Changing the Menus... 210
Changing the Colors ... 210
Adding New Modes... 210
Customizing Commands... 211

Intellipad Components ...211
Compiled Components.. 211
Declarative Components... 212

� CONTENTS

ix

Script Components ... 212
List of Available Modes..212

Command-Line Options ...213

� Appendix B: Intellipad Mini-Buffer Commands...215

� Appendix C: Intellipad Commands and Gestures ..217

� Appendix D: The Quadrant Menu Tree ..225

� Appendix E: Generated T-SQL for the Car Model Example229

� Index...235

x

 About the Author

� Bart Weller is a software developer and consultant specializing
in object-oriented software development. Over the years he has
worked on a system simulation of a satellite command and control
system, a laser remote sensing system for measuring trace
amounts of atmospheric pollutants, and scientific
instrumentation systems for NASA's Apollo Skylab. Enterprise
business applications he has worked on include an online
commodities trading system, several insurance applications, and a
telecommunications network. He currently divides his time
between working part-time at Colorado Mountain College and

writing. He lives in the central Rockies of Colorado with his wife, his dog Duffey (named in honor of the
late John Duffey, former lead tenor and mandolin player with The Seldom Scene), two country cats, and
seven llamas, some of whom are happy to hike with him. He is a volunteer DJ at the local community
radio station, and his hobbies are clearing deadfall and fixing things. Among the people he admires are
Albert Einstein, Abraham Lincoln, Alan Kay, Patch Adams, and J.J. Cale.

�

xi

About the Technical Reviewer

� Fabio Claudio Ferrachiatti is a senior consultant and a senior analyst/developer of Microsoft
technologies. He works for Brain Force at its Italian branch (www.brainforce.it). He is a Microsoft
Certified Solution Developer for .NET, a Microsoft Certified Application Developer for .NET, and a
Microsoft Certified Professional, as well as a prolific author and technical reviewer. Over the past ten
years, he’s written articles for Italian and international magazines and coauthored more than ten books
on a variety of computer topics.

� INTRODUCTION

xii

Acknowledgments

I would like to acknowledge the patience, hard work, and great advice of my coordinating editors,
Candace English and Debra Kelly. Mark Beckner, member of the Apress editorial board, served as Lead
Editor on this project, and first suggested the book, lo so many months ago, back in the days when the
project was still known by the code name "Oslo." Both Mark and Ewan Buckingham, Development
Editor with Apress and also a member of the editorial board, provided technical comments and
suggestions on how to improve the drafts. Fabio Ferracchiati and Roy Brandt provided technical reviews
of the early chapter drafts.

Kraig Brockschmidt and David Matson with the Microsoft SQL Server Modeling team provided
outstanding technical help when the need arose. Lars Corneliussen also provided helpful feedback.
Thank you all, gentlemen.

I would also like to thank my wife, Kathie, for her constant support and for enduring long hours with
me closeted in a dim and cluttered office, sipping old coffee and glowering at my laptop.

And finally, many thanks to Dr. Meeta Goel and my co-workers at Colorado Mountain College—
Barb Johnson, Ashiyana Regmi, Vee Kinion, Jonathan Hansen, and Melissa DeHaan—for their
unflagging patience with bad moods and long absences from the office.

The making of a book always involves a surprising number of people, most of whose names remain
unknown to the author. I hope at least some of them might see these words and accept my appreciation.

Bart Weller

�

xiii

Introduction

SQL Server Modeling is Microsoft’s new model-driven .NET framework for rapidly designing and
building software applications. In the past, software has traditionally been developed from static models
or requirements—the data (e.g., inventory, customer data, or financial) can change over time, but the
model structure and logic remain fixed in code that may have been developed and compiled years ago.

Model-driven development, as reflected in the SQL Server Modeling .NET framework, supports the
design and creation of more dynamic applications where the model can change over time. This form of
agile development, with much shorter release cycles, is ideal for businesses operating in rapidly
changing technological, regulatory, and competitive environments: The list covers a broad gamut of IT-
intensive enterprises. Examples might include financial services, insurance, telephony, and high-tech
manufacturing. Shorter release cycles enabled by model-driven development can significantly enhance
the competitiveness and agility of these kinds of enterprises.

Another advantage of SQL Server Modeling is that it enables stakeholders not trained as
programmers to create a business or process model using a modeling tool (called Quadrant), and
immediately generate executable code based on their model. This enables business owners, managers,
and others to become involved in a quick, iterative refinement process for designing and testing the
model and application over a much shorter release cycle than would be possible with more traditional
approaches.

As Bob Muglia, President of Microsoft Server & Tools Business, said,

“The benefits of modeling have always been clear, but traditionally only large enterprises have
been able to take advantage of it and on a limited scale. We are making great strides in
extending these benefits to a broader audience by focusing on three areas. First, we are deeply
integrating modeling into our core .NET platform; second, on top of the platform, we then build
a very rich set of perspectives that help specific personas in the lifecycle get involved; and finally,
we are collaborating with partners and organizations like OMG [Object Management Group] to
ensure we are offering customers the level of choice and flexibility they need.”

SQL Server Modeling includes the following components, all of which are covered in this book:

• SQL Server Modeling Services—Where the specifics of the model entities and

relationships all reside, and which provides the Base Domain Library consisting of

pre-built patterns and services ready to be leveraged to your modeling needs.

• Quadrant—A modeling tool for creating and modifying the model.
• Intellipad—Short for Intellisense Workpad , this is a text-based code editor

incorporating Microsoft’s implementation of code-autocompletion. It also the

basis of the code-editing part of Quadrant.

� INTRODUCTION

xiv

• The M Programming Language—Microsoft’s new modeling language for quickly

defining and managing the metadata inherent in a specific model, and for

developing domain-specific languages (DSLs).

C H A P T E R 1

� � �

1

Installing and Setting Up
SQL Server Modeling

This chapter will walk you through the procedures of downloading, installing,
repairing, and uninstalling SQL Server Modeling, as well as what’s required for
getting software pre-requisites in place. These pre-requisite applications should, of
course, be up and running before you install SQL Server Modeling. I will take this
step by step, and if you follow the procedures outlined in this chapter, you should
have a working installation of SQL Server Modeling by the time you finish.

But before downloading or installing anything, take a look at the current
version of the SQL Server Modeling release notes. As of this writing, these can be
found at the following MSDN URL:

http://msdn.microsoft.com/en-us/data/dd823315.aspx

The release notes provide links for downloading the SQL Server Modeling setup file as well as links

for downloading the software pre-requisites listed in the next section. They also provide important
information affecting how you should go about installing SQL Server Modeling and what needs to be in
place for a successful setup. Once you have run the setup file, there should be a Readme file installed
under Program Files/Microsoft Oslo/1.0 /Readme.htm. (This is the installation path for the CTP R3
release. The path may be different for subsequent releases.) The Readme file provides much of the same
information as that provided in the release notes and can be viewed by loading it in your web browser
using the browser’s File � Open menu.

The procedures that follow are based on the November, 2009 CTP Release 3. (CTP is the acronym for
Community Technology Preview.)

Software Pre-Requisites
Several software systems must be in place before you begin the actual installation of SQL Server
Modeling:

• Windows Installer 4.5 or later (search for “Windows Installer 4.5 Redistributable”
on www.Micorosoft.com]

• To run setup, Windows Installer 4.5 is required.

• If Windows Installer is not installed, a system restart will be requested after
its installation completes.

CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

2

• .NET Framework 4

• SQL Server 2008 SP1 Express (or higher edition)

• Visual Studio 2010 (any edition): Visual Studio is not required for SQL Server
Modeling CTP Release 3, but for full functionality with Visual Studio and M Tools
integration, Visual Studio 2010, Visual C#, and Visual Web Developer are required.

Hardware and Operating System Requirements
SQL Server Modeling must be installed on a computer with any combination of the following CPU
architecture and operating systems. Note the SP (Service Pack) for some of the listed operating systems.
If the Service Pack listed is not installed, it should be downloaded and installed before proceeding.

Supported CPU Architectures:

• X86

• X64 (Windows-on-Windows)

Hardware Requirements:

• Minimum: 1.6 GHz CPU, 1GB RAM

• Recommended: 2.2 GHz CPU, 2GB RAM

Supported Operating Systems:

• Windows XP SP3 or later

• Windows Vista (SP1, SP2, or later)

• Windows Server 2003 R2 (SP2 or later)

• Windows Server 2008 SP2

• Windows 7

Configuring SQL Server
Before running the installation executable, be sure SQL Server is running. Bring up the SQL Server
Configuration Manager as shown in Figure 1-1. Here’s the sequence for bringing up this tool:

1. Click the Start button on your Windows Taskbar.

2. Click All Programs.

3. Go to Microsoft SQL Server 2008 (if, for example, you are running the 2008
SKU).

4. Click Configuration Tools.

 CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

3

5. Click SQL Server Configuration Manager.

Figure 1-1. Opening the SQL Server Configuration Manager

Once you have the Configuration Manager running, navigate to Configuration Tools, then to SQL
Native Client XX.X Configuration/Client Protocols, (where XX.X will correspond to the version number of
your SQL Server installation, such as 10.0), as shown in Figure 1-2. Which client protocols are enabled
will depend on whether the database is running on the same computer on which you’re installing SQL
Server Modeling, or remotely. If it’s running on your local machine, all you should need is the Shared
Memory protocol. If it’s running on a server on your network, Named Pipes and/or TCP/IP should be
enabled.

It doesn’t hurt to have Shared Memory, Named Pipes, and TCP/IP all enabled, but their specified
order may affect performance. If SQL Server is running on a local server, your network administrator
should be able to tell you whether TCP/IP or Named Pipes will provide better performance. On most
large networks, TCP/IP would be the preferred protocol.

VIA (Virtual Interface Adapter) would normally be disabled unless your hardware environment
supports this protocol, in which case the other protocols can be disabled. The order can be changed in
the Configuration Manager by right-clicking in the right frame on any of the enabled protocols. You will
see a popup menu where Order will be one of the possible selections.

Figure 1-2. Setting the SQL native client protocols

CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

4

Downloading and Installing
Once the software pre-requisites previously listed are in place, you’re ready to download the SQL Server
Modeling installation file from the SQL Server Modeling download website. The file size is around 40
MB, so it can take a few minutes if you have a slow Internet connection. After it has downloaded, you
should be able to open it in your browser’s download facility. Another option would be to open Windows
Explorer and navigate to the folder where you have saved the downloaded file. Open the file by right-
clicking on the filename and then clicking the Open option. You may see a security warning like the one
shown in Figure 1-3.

Figure 1-3. Open File – Security Warning dialog when running the installation file

Click the Run button to start the installation process. The next dialog window to appear (shown in
Figure 1-4) will be the initial SQL Server Modeling installation window. This gives you two choices:
Install Now or Customize. If you are running the SQL Server Modeling install for the first time, click the
Install Now option.

Figure 1-4. SQL Server Modeling initial installation window

After clicking Install Now, you should next see the Usage Reporting window, as shown in Figure 1-5.

 CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

5

Figure 1-5. Usage Reporting window

Check or uncheck the box, according to whether you would like to participate in the Customer
Experience Improvement Program, then click the Continue button.

The next step is to accept the End User License Agreement (shown in Figure 1-6). Read the
agreement and (if you agree) click the I Accept button.

Figure 1-6. Accepting the End User License Agreement

This will start the third step in the installation process, which should present the Installation
Progress window similar to the one shown in Figure 1-7.

CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

6

Figure 1-7. Step 3: Installing SQL Server Modeling Services, Quadrant, and other components

This portion of the installation process can take ten minutes or more, depending on your
computer’s speed. Once this part of the installation has completed, the process will move on to the
fourth and final step, which configures and deploys the Repository to SQL Server (see Figure 1-8). Again,
this may take several minutes to complete.

Figure 1-8. Step 4: Configuration and deployment

Once step 4 has completed, you should see a window similar to that shown in Figure 1-9, notifying
you that setup has completed successfully.

 CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

7

Figure 1-9. Successful setup completion

At this point, simply click on the close button to finish the installation.

Checking the Installation
After the installation is completed, click the Start button on the Windows Taskbar, then click All
Programs to see if the Microsoft SQL Server Modeling CTP program group appears in the All Programs
list. If you click on this program group, you should see Intellipad, Quadrant, and other options listed, as
shown in Figure 1-10. The order of the items may not be the same as shown in the figure, but you can
rearrange the items by clicking and dragging each to the position you want.

Figure 1-10. The SQL Server Modeling CTP program group

If you don’t see the Microsoft SQL Server Modeling CTP group in the All Programs list, go to the
Windows Control Panel, bring up Add or Remove Programs, and check to see if it appears in the list of
installed programs. Make sure the list is sorted by name, then scroll down in the list to the Microsoft
programs. You should see the SQL Server Modeling CTP application listed, as shown in Figure 1-11.

CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

8

Figure 1-11. SQL Server Modeling CTP listed in Add or Remove Programs

In the Start button All Programs list, double-click on Intellipad. As it is loading, the Intellipad
“splash screen” should display more or less as it appears in Figure 1-12.

Figure 1-12. Intellipad splash screen

Bring up Quadrant and each of the other three options in turn, just to familiarize yourself with them.
I recommend taking a close look at the Readme file, which has some tips on troubleshooting in case you
run into problems, as well as links to other resources, including release notes and the online Help page.
It’s good to keep these resources in mind as you start working with the software, in case any issues or
questions should come up.

If Something Goes Wrong…
If you run into problems with the installation, there are several things you can do:

1. The Readme file includes a troubleshooting section that discusses what to do if
you run into several different kinds of problems.

2. The release notes list a number of breaking changes and known issues in
detail. If you don’t find what you need in the Readme file, you may find some
useful tips in the release notes. The Readme file provides a link to online
release notes.

3. You can run the Repair option by clicking the Change/Remove button in the
Add or Remove Programs section of the Control Panel (refer to Figure 1-11).
This option is discussed briefly in the following section.

4. You can uninstall and then re-install with the hope of resolving the problem on
the second go-around.

 CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

9

The Repair Option
Clicking the Change/Remove option for Microsoft SQL Server Modeling CTP in the Add or Remove
Programs list (refer to Figure 1-11) will present a window with three selections (shown in Figure 1-13):

1. Add or Remove Features

2. Repair

3. Uninstall

Figure 1-13. Selections after clicking the Change/Remove button

I won’t cover Add or Remove Features here, since that option isn’t relevant to what I will be
discussing in the rest of the book, nor is it relevant to recovering from a faulty installation.

To invoke the Repair option, simply click on the option or cursor down one line and press Enter.
The repair process will display a progress bar as it’s executing (similar to the window shown in Figure
1-7). After the process is finished, you should see a completion window similar to what was shown in
Figure 1-9. Click the Close button and re-test the installation to see if running the Repair process has
resolved the problem.

If the problem persists, the next step would be to uninstall and then re-install, as described in the
next section.

The Uninstall Option
To uninstall SQL Server Modeling, bring up the Control Panel, click on Add or Remove Programs, and
scroll down to Microsoft SQL Server Modeling CTP (refer once again to Figure 1-11). Click on SQL Server

CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

10

Modeling CTP, and then click on the Change/Remove button. Leave Add or Remove Programs window
open so you can later check that the uninstall ran successfully.

You should see the Uninstall window, as was shown in Figure 1-13. Click on Uninstall. Next, you
should see an Uninstall confirmation window (shown in Figure 1-14).

Figure 1-14. Uninstall confirmation window

Note that this window includes a checkbox to drop the SQL Server Modeling Services database and
all its data. If you want to perform a complete uninstall, check this box, but understand that all data in
the Repository will be lost. If you are uninstalling with the intent of re-installing because of problems
with your current installation, and you know there is data in the Repository you would like to retain (say
from going through one or more of the exercises later in the book), then leave this box unchecked. If on
the other hand, there is no data you want to keep, there would be no reason to leave this box unchecked.

If you are uninstalling because you believe you have a damaged or corrupt installation, you may
want to try the Repair option first. There is always a chance that the Repair option will take care of
certain issues without having to go through a complete uninstall and re-install.

To proceed with the uninstall, click the Uninstall button. Once it starts, you should see a progress
window similar to that shown in Figure 1-15.

 CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

11

Figure 1-15. Uninstall progress window

After the process finishes, you will see a successful completion notification window like that shown
in Figure 1-16.

Figure 1-16. Successful completion of the uninstall

Click the close button to complete the process. If you would like to confirm that the uninstall was
successful, go back to the Add or Remove Programs window, and hit the F5 function key to refresh the
list of installed applications, and scroll down to where SQL Server Modeling CTP previously appeared in
the list. If the uninstall was successful, it should no longer be show in the list.

CHAPTER 1 � INSTALLING AND SETTING UP SQL SERVER MODELING

12

Summary
In this chapter, I’ve covered the procedures for installing, repairing, and uninstalling SQL Server
Modeling. The last part of the installation process should be invoking all items in the SQL Server
Modeling CTP program group, not only to check that they are working properly, but also to see what
happens and what the interface looks like when you invoke each one. The Readme file and release notes
are important resources; it’s a good idea to take a look at these, especially if you run into problems with
the installation or with running any of the development tools.

In the next chapter, I’ll cover the ins and outs of using Intellipad, one of the development tools
provided with SQL Server Modeling.

C H A P T E R 2

� � �

13

Introduction to Intellipad

We’ve used text editors to write code from the beginning—at least as far
back as assembler and COBOL. Everything from Notepad to Emacs to
Eclipse, and all flavors in between.

This chapter introduces Intellipad, SQL Server Modeling’s code
editor. Intellipad is a lightweight but talented text editor for building and
editing models and domain-specific languages (DSLs) in M code. It can be
used for coding or editing a wide range of programming languages, like
the editor included with Visual Studio. In fact, the Intellipad core is a close
relative to Microsoft’s Visual Studio code editor. It contains a built-in

Python interpreter, and can be configured and enhanced using Python scripts. Most of its functionality
is implemented through named components that can be modified or removed. Some developers have
taken to calling it “Emacs.NET” because of its flexibility and configurability.

Getting Started with Intellipad
Intellipad is the text editing tool used for editing M. It can also be used to write and edit other kinds of
languages, such as Python and T-SQL. Like Emacs, it can be extended and configured to support
development in a wide array of languages. It has even been configured to behave as an IM chat or
Twitter client. In its most basic incarnation, it is a small and simple application kernel, but is easily
enhanced with plug-ins or add-ons that enable it to support syntactic colorizing, indenting, or
“Intellisense,” similar to that provided in the Visual Studio text editor.

There is one exercise at the end of this chapter, but you can use what follows as one big exercise.
Bring up Intellipad and see if you can invoke each feature more or less in the same way as it’s discussed
in what follows. The interface may appear a little differently on your computer, depending on which
version of Windows and Intellipad you are running. But if you follow along by invoking each feature as
it’s discussed, you should have a much better feel for the capabilities of this tool by the time you finish
this chapter.

So let’s start up Intellipad and have a look. Click on the Start button on the Taskbar, then click on All
Programs and find Microsoft SQL Server Modeling � Intellipad, as shown in Figure 2-1.

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

14

Figure 2-1. Starting Intellipad from Start/All Programs

This should bring up an empty Intellipad window with a default text buffer named “untitled1,”
similar to what is shown in Figure 2-2. As soon as you type anything in the pane (more properly called
buffer view), an asterisk will appear next to the buffer name to indicate that the contents of the buffer
have changed but have not yet been saved to a file.

Figure 2-2. Initial Intellipad window with some sample text

Look at the top banner of the window, and you’ll see four top-level menus:

• File

• Edit

• View

• Help

I’ll talk about each of these in turn, but I won’t go through the entire menu tree in every detail. I’ll

also cover the remaining parts of the text buffer view interface appearing below the menu banner—what
you see displayed as “untitled1*,” “100%,” and “Standard mode.”

The File Menu
To start with, it helps to keep in mind that Intellipad works with one or more buffers. A buffer is simply
an area of memory where the text being created or edited is stored. The buffer being edited in the single
Intellipad buffer view shown in Figure 2-2 is named untitled1*, with the asterisk indicating that the
buffer has been changed from its original state. When a new buffer view is opened, it will automatically
be named untitledX, where X will be an integer between 1 and some arbitrary number, according to how
many previous untitled buffers have been opened during the Intellipad session. As you get a little farther
into the chapter, you’ll see how multiple buffers are displayed in the Intellipad interface. Only one
buffer, or pane, will be active at a time, and this is the pane where the editing cursor will appear. When
menu actions are invoked, the target of the action will be the active pane. The one exception to this is the

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

15

Find in Buffers command under the Edit menu, which applies to all buffers. As with most Windows-
based text editors, you can open multiple instances of Intellipad.

Figure 2-3 shows the Intellipad File menu. As you can see, most of the options have keyboard
shortcuts, and this is also the case with the other top-level menus in Intellipad.

The New option, of course, opens a new, empty buffer, ready for typing in new code. New M Project
opens a new M project and changes the buffer view to Project mode. This mode provides a display of
errors in the error list if the content is not a syntactically valid MSBuild file. (This is a more advanced
subject and is beyond the scope of this book.)

Figure 2-3. The Intellipad File menu

Save, Save As, and Save a Copy are all self-explanatory. (As usual in the Windows environment, the
underlined character of a menu option indicates the single-character keyboard shortcut for invoking
that option.)

The Encoding option allows you to save the current buffer in three encoding standards: ASCII,
Unicode, or UTF8, which is the default. If you change the encoding, it changes the setting only for the
active buffer view, leaving the encoding unchanged for files saved from other buffers. If a file with an
encoding other than ASCII, Unicode or UTF8 is opened, no item is checked in the encoding submenu. If
you mistakenly check one of these, close the file without saving, or choose Save As and save the buffer to
a different filename to avoid changing the encoding of the original file.

Close closes the active buffer view pane. If there is only one active buffer view, this option is
disabled.

Recent displays a list of the most recently used (MRU) files you’ve worked with in Intellipad,
whether these were used in the current session or past sessions.

Exit will close the current Intellipad session. If one or more buffers haven’t been saved, you’ll be
prompted whether you want to save any unsaved buffers, as shown in Figure 2-4. You have the option to
Save All (the default if you press the Enter key), Discard All, or Cancel, which will return you to the
Intellipad window with no action taken.

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

16

Figure 2-4. Prompt to save unsaved buffers on exit

The Edit Menu
Figure 2-5 shows the Intellipad Edit Menu. As you can see, some of the options (Undo, Redo, Cut, and
Copy) are disabled (grayed out) because, in the current state of the buffer view, there’s nothing these
options can do. These options are self-explanatory, and behave as one might expect. The same goes for
the next two options: Paste and Delete.

Figure 2-5. The Intellipad Edit menu

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

17

The Find Commands
When you try the Find option, however, you see some new behavior. Here Intellipad shows its colors
more as a code editor rather than a simple Notepad-like text editor. Let’s try doing a Find with two
different buffers, as shown in Figure 2-6. I’ve written some sample text in both buffers, with the word
“amazing” in both views.

Figure 2-6. The Intellipad Find command

Clicking on Find (or using the Ctrl-F keyboard shortcut) brings up something called the mini-buffer
as a third buffer view, with a command prompt, indicated by the three angle brackets (>>>) followed by
Find('|'). The mini-buffer is a special buffer that allows you to execute Intellipad command functions
directly. I’ll discuss use of the mini-buffer at more length in the section called “The View Menu” later in
the chapter.

But for now, let’s see what happens when you enter the word “amazing” between the single quotes.
In Figure 2-7 the untitled1* buffer view shows what happens after you’ve done this: The word “amazing”
is highlighted in the first (active) buffer view, but not in the second (inactive) one. Also note that the
bottom (mini-buffer) buffer view is not in Standard mode, but in MiniBuffer Interactive mode.

Figure 2-7. Find function highlighting the target word

Figure 2-8 shows the Find in Buffers (Ctrl-Shift-F) function. This will find the target string in all of
the displayed panes or buffers. This option invokes the FindInBuffers() function in the mini-buffer, and

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

18

when the string “amazing” is entered as the target pattern, you get an additional findresults buffer with
the line/column location of each found pattern location in each buffer where it occurs—including
previous strings already in the mini-buffer.

Figure 2-8. Find in Buffers command

The Replace Command
The next option under the Edit menu, Replace (Ctrl-H), uses the mini-buffer facility in the same way,
except that the Replace('<searchPattern>','<replacePattern>') function, with two arguments, is used.
Figure 2-9 shows an example, with two different buffers containing the same target word, after the
replacement function has been invoked from the first (untitled1) buffer view. This example makes it
clear that the function works only in the context of the active buffer view. The replaced string remains
highlighted.

Figure 2-9. Replace command example

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

19

The Go to Line Command
The Go to Line option again uses the mini-buffer to enter the target line number and execute the
command, using the Goto(<line number>) function, where line number is an integer.

Behaviors
The Behaviors option allows you to control some specific behaviors of any particular buffer view, as
shown in Figure 2-10. Enabled behaviors are indicated with a check mark after the name.

Selection Highlight is useful for highlighting strings with the Find and Replace functions. Error
squiggles will flag syntax errors or other errors when working with the various programming modes (e.g.,
M or MGrammar, or Python) where Intellipad has built-in syntax awareness.

Figure 2-10. Turning behaviors on or off

Turning the column indicator on demarcates columns higher than column 80 with a grayed
background, enabling you to see when a line exceeds 80 characters. This can be useful in some coding or
data contexts, and is illustrated in Figure 2-11.

Link Navigation, turned on by default, supports the use of hyperlinks in modes supporting this
functionality. However, enabling this feature to work requires adding some configuration data that
defines a NavigationSource and other settings, which is beyond the scope of this book.

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

20

Figure 2-11. Line numbers and the column indicator turned on

Turning Word Wrap on will wrap a line too long to otherwise display within the buffer view. Figure
2-12 shows two buffer views addressing the same buffer (that is, displaying exactly the same data). Line
numbering has been turned on in both buffer views, but Word Wrap is turned off in the left one and
turned on in the right.

Figure 2-12. Word Wrap off (left pane) vs. Word Wrap on (right pane)

Disable External Changes
This behavior, if enabled, will disable external changes to all buffers belonging to the Intellipad session.
For example, if you are editing metadata in the M Graph mode that has been persisted in the Repository,
and this metadata is changed through an external interface, changes to the buffer will not occur. If
multiple Intellipad sessions are running, each session has its own setting for this behavior.

The View Menu
The View menu provides options for switching to the Full Screen view, zooming, splitting the current
pane horizontally or vertically, or viewing special buffers such as the mini-buffer, errors, and
notifications. The View menu options are shown in Figure 2-13.

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

21

Figure 2-13. Intellipad View menu

Full Screen
The Full Screen option switches to a view where the current Intellipad window fills the entire display,
and the title/menu bar at the top is removed. This provides as much real estate as possible on the display
for reading, editing, or typing new content in the window. Besides dispensing with the menu bar, the
buffer name (normally displayed under the menu bar in the upper left) and the zoom level and mode in
the upper right disappear.

Figure 2-14 shows a three-pane Intellipad window before being put into the Full Screen format,
while Figure 2-15 shows the same window in Full Screen format, but at a reduced scale, in order to fit on
the page.

Figure 2-14. Sample three-pane window before being put in Full Screen mode

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

22

Figure 2-15. Window from Figure 2-14, but in Full Screen mode (reduced scale)

Figures 2-16 and 2-17 show a closeup view of the window control icons for full-screen and restored
size windows in this view mode.

While the text and upper right of the window in Figure 2-15 are difficult to read because of the
reduced scale, you can see that the display behaviors of each pane remain the same. The primary
difference is that the menu bar, zoom setting display, and mode display are gone. If you click on the icon
to the left of the Close icon , this will restore the window to its previous size, but will retain the Full
Screen format without the menu bar and other items.

Figure 2-16. Detail of Intellipad Full Screen icons: Full Screen view

Figure 2-17. Detail of Intellipad Full Screen icons: restored size and position

Here’s a description of the action performed by clicking each of these control icons:

• Latches and drags the window to a new position. This icon is displayed only
when the Intellipad window is restored to its previous (not full display) size, but
disappears when the window is actually at full-screen size. Cursoring over it will

cause the cursor to change to a “grab and drag” cursor . Left-clicking while this
cursor is displayed allows you to grab and drag the window to a different position
on the screen.

• Restores the default Intellipad view format, with menu bar and pane titles.

• Minimizes the window.

• Restores window to its previous size and position (prior to setting to Full Screen
view). After this function is executed, this icon will change to a Full Screen icon: .

• Closes the Intellipad window. If any buffers are unsaved, you will be prompted
whether you want to save them.

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

23

Zoom
Any Intellipad pane can be zoomed in or out. There are several ways to do this, but the easiest way is to
press the Ctrl key while moving the scroll wheel on your mouse. Pressing the Ctrl key while scrolling
forward will zoom the active pane in (increasing the scale, or effective size of the font), while scrolling
back will have the opposite effect. (This also works in Quadrant, which I’ll be talking about in the next
chapter.) The zoom level, which defaults to 100%, is displayed on the right of the title line of the pane.
The location is to the left of the mode name on the pane’s title line, indicated by the cursor in Figure
2-18.

Executing the Zoom function under the View menu causes the mini-buffer pane to appear at the
bottom of the Intellipad window. (I wrote about this feature in the earlier section titled “The Find
Commands”) The Zoom() function is automatically invoked in the mini-buffer, with the argument set to
the active pane’s current zoom setting. The current zoom setting is highlighted, as shown in Figure 2-18,
so that you can easily change it to a different level by typing the new value. Note that you can also zoom
by clicking the Zoom setting, displayed as a percentage. Clicking this will invoke the mini-buffer with the
Zoom function in exactly the same way as zoom can be invoked from the View menu.

Figure 2-18. Intellipad Zoom function

Split Windows
You’ve already seen examples of how the Intellipad window can be split horizontally and/or vertically
into multiple panes, addressing the same or different buffers. Splitting the current pane (the pane with
focus) is accomplished using the View � Split Horizontally (Ctrl-W,-) or View � Split Vertically (Ctrl-W,\)
menu options. Initially, the new pane created by the split action will address the same buffer as the
active pane in which the split action was invoked, so you should see exactly the same content in the new
pane as you did in the original, and at the same zoom level. However, other behaviors set in the original
pane, such as line numbers or Word Wrap will be defaulted.

You can set the new pane to a new or different buffer, and whatever other properties you want. In
Figure 2-19, there are two views of the same unsaved buffer, the left one at 100% zoom with no line wrap
and no line numbers, and the right one at 80% zoom with line wrap on and line numbers displayed.

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

24

Figure 2-19. Vertical split views addressing the same buffer (unsaved)

In Figure 2-20, the untitled1 buffer shown in Figure 2-19 has been saved to the file My First
Buffer.txt, and a horizontal split pane has been created (using the Split Horizontally menu option or the
Ctrl-W,- key combination) at the bottom of the window with a new unsaved buffer. The name of this new
buffer defaults to the name untitled2, since the default1 name was used in creating the first new buffer
and then renamed to My First Buffer.txt when it was saved to a file. As soon as you type a single character
in the untitled2 pane/buffer, the buffer has new content, and an asterisk is appended to the name to
indicate the buffer has changed. The zoom level in this buffer has been increased to 120%.

Figure 2-20. Vertical and horizontal split buffer views with different saved and unsaved buffers

The Mini-Buffer
The mini-buffer is a special-purpose, interactive buffer enabling you to invoke a wide range of functions
or behaviors in Intellipad. Think of it as a way of interacting or controlling your editor in command-line
mode. I touched on it briefly in the sections titled “The Find Commands” and “The Replace Command.”

You can see some of the available mini-buffer commands in Figure 2-22 below, and the entire set of
mini-buffer commands is provided in Appendix B at the end of the book. You can also see this list by
pressing the F1 key in any buffer view or clicking on the Help menu at the top of the window, then
selecting the Commands option.

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

25

The Help Menu
The Help menu, shown in Figure 2-21, provides two options: Commands and Intellipad Primer. The
latter option can also be invoked with the F1 function key.

Figure 2-21. Intellipad Help menu

Commands List
Invoking the Commands option will display a list of functions in the current active pane in Rich Text
mode. These functions must be executed in the mini-buffer (previously discussed), but also can be used
in a script file. Figure 2-22 shows some of the functions listed in the Commands view.

Figure 2-22. Intellipad MiniBuffer Commands list (note the Rich Text mode, upper right)

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

26

Intellipad Primer
Invoking the Intellipad Primer option of the Help menu displays a useful overview of the Intellipad
interface and features, including a discussion of what is involved in customizing and configuring the
editor. Like the Commands list, this is displayed in the currently active pane in Rich Text mode. Figure
2-23 shows the top part of the Primer text.

Figure 2-23. The Intellipad Primer

View Title Banner Functions
You’ve probably noticed each pane has a title banner with the name of the view or buffer on the left and
the zoom level and mode on the right. Each of these three parts provides some functionality if you click
on it. Clicking on the title, as shown in Figure 2-24, reveals a drop-down menu allowing you to select any
of the currently active buffers. Clicking on one of these will switch the view to the selected buffer.

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

27

Figure 2-24. Current buffers drop-down menu

Clicking the zoom level, as discussed in the upcoming “Zoom” section, will bring up the mini-buffer
with the Zoom(<zoomLevel>) function, allowing you to enter a different zoom level setting.

View Modes
Clicking the current mode setting at the right of the title banner (see the cursor position in Figure 2-25)
will display a drop-down of available modes. I’ll give a brief overview of these in this section. Some of
this will be covered in more detail in later chapters, since I’ll be using them to show how domain-specific
languages and models are developed.

Figure 2-25. Intellipad view modes

Some of the extended modes, such as DSL Grammar and M Graph, will add an additional menu
option to provide additional functionality specific to that mode.

Standard mode is the basis on which the other modes are developed. It provides straight-ahead text
editing functionality, more or less along the lines of any simple text editor, like Notepad. The other
modes are provided by components that build functionality on top of the Standard mode.

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

28

DSL Grammar mode provides the functionality for writing domain-specific languages, or DSL
grammars. This includes features such as syntax colorization, error marking (if this behavior is enabled),
and the ability to see the parsing output for your grammar with DSL input. In this mode, a fifth menu
option, DSL, is added to the Standard mode menu items. One of the choices under this menu option,
Split New Input and Output Views, will split the window into three views, as shown in Figure 2-26. In this
figure, you can see that the titles of the left and right panes both start with untitled2. This doesn’t mean
that the left and right panes are the same buffer, however. The left view displays the text of the DSL
input, while the right view, which is read-only, displays the resulting M Graph output generated by the
DSL grammar (contained in the center view).

Figure 2-26. DSL Grammar mode with DSL input and M Graph output views

List mode is used internally by some Intellipad features to display a buffer showing a list whose
items can be clicked to navigate to the selected destination buffer.

I have already briefly touched on the M Graph mode, used in conjunction with the DSL Grammar
mode.

M mode is used for developing M code. As with the DSL Grammar mode, M mode provides syntax
colorization, error marking of syntax errors, and the T-SQL preview mode.

Project mode provides support for developing projects. These projects will normally consist of
multiple M or DSL grammar (.mg) files and can be managed and edited in Visual Studio with the Visual
Studio M language plug-in.

Python mode supports development of Python code. As with M mode, Python mode provides
syntax colorization and error flagging for syntactically incorrect Python. For test metric purposes, code
coverage is provided if you launch Intellipad from the command line with the /coverage option.

Table mode is used primarily in the Errors pane (when the Errors pane is enabled) to display a list of
errors. Using this mode to display errors enables the errors to be sorted on any column.

T-SQL 1.1 mode provides a view of the T-SQL code generated by M code. To show how this works,
let’s try a small exercise.

Demonstrating the Intellipad T-SQL Preview Mode

In this exercise, you will create some very simple M code to demonstrate how the SQL Server Modeling
framework is able to generate T-SQL output code from M input code. The exercise involves creating an
extent of entities I will call SandwichOrders. An extent is a concept in M that maps to data storage (a
table) in SQL Server. For the time being, I would recommend not being concerned about the syntax of the
M code used in this example. I will get into this in future chapters. The primary objective here is to
demonstrate how T-SQL code can be generated from M code.

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

29

Here is the procedure:

1. Open Intellipad and save the empty buffer as a file with the name
LunchCounter.m. Do this from the File � Save As menu option. This will switch
the mode to M mode. Create an empty module called LunchCounter, as shown in
Figure 2-27.

Figure 2-27. Creating an empty LunchCounter module in M

2. Click on the M Mode menu and select T-SQL Preview (shown in Figure 2-28).

Figure 2-28. Selecting the T-SQL Preview for the M code

3. This will present a split screen view, with the generated T-SQL code shown in the
right pane. The reason you don’t see any code generated yet is that there is
nothing to generate until you define an extent in your M code. Defining an extent
will cause a table to be created in SQL Server.

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

30

Figure 2-29. No code is generated yet because you only have an empty module with no extent (SQL Server

table) defined.

4. Now let’s add the following line within the scope of the LunchCounter module to
create a SandwichOrders extent:

SandwichOrders : {Text*};

This simple line of code can be interpreted to say that the SandwichOrders extent
(table) is defined as a collection of text strings. This is enough to cause the T-SQL
code generator to spring into action and generate the code shown in the right
pane of Figure 2-30. This pane is intended as a preview pane for the generated
code, and as such, is read-only. However, you can do a File � Save As to save
this code to a text file.

Figure 2-30. The T-SQL preview pane (right) now shows the T-SQL code generated by adding the extent

definition.

 CHAPTER 2 � INTRODUCTION TO INTELLIPAD

31

5. To carry the example a little further, you can add a couple of sample
SandwichOrders instances to the M code and see how this affects the generated
T-SQL code. Lets add a "Pastrami on Rye" order and a "Ham on Sourdough"
order. You can do this by simply adding the collection of the two text strings,
represented between braces and with the two items of the collection separated by
a comma:

{"Pastrami on Rye", "Ham on Sourdough"}

You place this code for the collection immediately after the extent definition
(Figure 2-31). Note that carriage returns and new lines are regarded as white
space by the compiler, which is what is generating the T-SQL code in the preview
pane on the right.

Figure 2-31. Adding two SandwichOrders instances to the extent

Let’s walk through the generated T-SQL code in the right pane of Figure 2-31 to see what’s happening:

Lines 1-8: This does some initial configuration stuff and begins a transaction for code sequence
to follow. This transaction will be committed at the end of the sequence.

CHAPTER 2 � INTRODUCTION TO INTELLIPAD

32

Lines 10-17: This tests whether a LunchCounter (the name of the module) schema already
exists in the database. If it doesn’t, the schema is created.

Lines 19-23: This section creates the SandwichOrders table with a single text field to contain the
text of the order.

Lines 25-28: This inserts the two sample SandwichOrders instances into the table.

Lines 30-31: This commits the transaction that was initiated at the top of the code.

And all of this from just a few lines of M code! It looks like the advantage provided by the SQL Server
Modeling framework—in terms of enabling a developer to create, refine, and maintain a domain model—
is significant.

In the next chapter, I will walk you through a much more extended exercise showing how to use
Intellipad to create and refine a domain-specific language.

C H A P T E R 3

� � �

33

Domain-Specific Languages 101:
Lola’s Lunch Counter

In this chapter, I’ll talk about domain-specific languages (DSLs), and you’ll
build a very simple DSL using Intellipad. As one might guess, the descriptive
term domain-specific means using the language to define a model or do
something useful in a specific area of activity or knowledge. In the context of
software development, the term domain normally applies to a business
operation, process, or workflow, such as micro-brewing or creating insurance
products. The term could apply to areas as diverse as risk management,
modeling traffic flows, or creating a just-in-time inventory system. Most DSLs,
however, are not so ambitious and address more narrowly constrained
domains.

Not unlike a map (the kind on paper showing highways and towns), a DSL is a way of abstracting
away the conceptual “chaff” of a domain or process so that you have a cleaner and simpler way of
representing and analyzing the problem at hand. The benefit is greater ease of analysis and
development; the risk is that some of the conceptual chaff that’s removed might include a few grains
that you really could use later on. Usually (but not always), it’s easy to add these kinds of things back in if
you need them.

Martin Fowler’s definition of a DSL is, “a computer programming language of limited
expressiveness focused on a particular domain” (DSLDevCon 2009 talk: http://msdn.microsoft.com/en-
us/data/dd727707.aspx). The phrase “limited expressiveness” is key here, and it is what differentiates a
DSL from a general programming language like C# or Java. But why would you want limited
expressiveness? Isn’t expressiveness a good thing in a programming language? Well. . .yes and no.
Usually, there’s a strong correlation of expressiveness with complexity, and if you can remove some of
the complexity to gain clarity and ease of use in a domain, that could be a good thing.

DSLs are especially useful as a means of communication between the technical people and
stakeholders. If the stakeholders have a relatively simple tool, like a clear and well-designed DSL, it
makes it that much easier to communicate their intent to the software architect, designer, or developer.

In this chapter, you’ll develop a very simple example of a DSL, the code to process the language
(sometimes called Mgrammar, or DSL Grammar, in the context of SQL Server Modeling), and deploy the
resulting model with instances to SQL Server. If all goes according to plan, you should see a direct
mapping from the DSL model and the structure of the data model reflected in the database.

Some Caveats
Before I get into the details of the example, however, I should say a few words about the development
approach used in the LunchCounter example in the next section. The approach used could be

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

34

characterized as a rudimentary form of test-driven development. What I mean by this is that I start with
some very simple sample data (e.g., some simple sandwich order expressions for the DSL); then you
build some code with this sample data, and see if it works. If it does, you move to the next level of
refinement in terms of the DSL syntax, and modify the sample DSL statements to reflect this new level of
complexity. This will nearly always break the existing grammar definition used for parsing the DSL, so
you modify the grammar to correct the errors. This turns into an iterative process where you can go
through many of these refinement cycles and build up a reasonably sophisticated system. I don’t want to
call the end product in this example sophisticated, by any means. The point is that some readers may
find this approach frustrating at times because things keep breaking as the example unfolds. If you
haven’t done test-driven development before, it may take a little getting used to. If you have, it shouldn’t
be an issue.

On a separate note, I will be introducing some new and possibly unfamiliar terms (like extent, which
you will see shortly) that have a very specific meaning within the M language and the SQL Server
Modeling framework. If you haven’t run across some of these terms before in your travels or reading,
they may take some getting used to. I know they sometimes caused me a little uncertainty in the course
of getting up to speed with this new framework. I have found the best approach is to forge ahead through
the code samples and the explanations, and things will usually become clear in due course. Often things
will become even clearer on a second or third reading and as you become more conversant in the
language.

And one more thing—please don’t feel that, once you’ve finished this chapter, you will walk away
knowing how to construct a DSL or write a grammar in M to process DSLs. My intent here is to unpack a
very simple use case, but at a somewhat higher level than the coding basics: what a DSL and a grammar
look like and some of the thinking that goes into building these things from the ground up. That’s why I
decided to use a narrative-based approach in the exercise—to show how the thinking and analysis might
unfold, as well as provide a taste of how working with a nontechnical (but intelligent) stakeholder might
happen. If you don’t like storytelling in computer books, be patient. It’s the only place in the book where
I try it.

The bottom line: Don’t be too concerned when reading the code if you don’t understand every
nuance of what you’re seeing. That’s not the intended purpose of this chapter. Otherwise, it would have
been called “Domain-Specific Languages 201.”

A Simple Exercise: The Sandwich Language
So—let’s pick a simple domain to work with. As domains go, the sandwich is as simple as you can get.
Let’s say you’re the owner of <Your Name Here>’s Lunch Counter. Perhaps your name is Lola, but if not,
feel free to substitute your name for Lola anytime Lola occurs in what follows.

The name of your business is, naturally, Lola’s Lunch Counter. Your specialty is pretty good
sandwiches (apologies to Garrison Keillor), and the business has grown to the point you’re thinking
about automating your order and kitchen workflow, maybe with an eye to franchising the business. Your
nephew is a hotshot .NET developer, and says he will help. So let’s follow along as you, Lola <or your
name here>, and your nephew (whose name shall be Norm) work together in the process of developing a
model for tracking and processing sandwich orders. Norm says the problem is amenable to developing a
DSL, and (not knowing any better) you say this sounds like a good plan.

Where You Want to End Up
You’ll want to have an idea of where this is heading so that you might have a better sense of how things
are falling into place as you watch over Lola’s and Norm’s shoulders. You want to end up with a working

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

35

DSL and grammar that allows Lola’s business to track and record sandwich orders, and which supports
the representation of sandwich order data in a database.

A sandwich order is pretty much what you might think. It describes the sandwich a customer wants
for lunch, consisting of three types of ingredients:

• Some kind of stuff (lunchmeat or some other non-meat stuff, like portabella)

• Some kind of bread (rye, French, etc.)

• Some combination of condiments (lettuce, tomato, mayo, etc.)

There are no constraints as to how these three kinds of ingredients might make up a sandwich,
except that a sandwich can have one and only one kind of bread. You may add some business rules
down the road, like you can’t have more than two kinds of stuff (main ingredient) in a sandwich or more
than five condiments. (Let’s be reasonable folks—no Dagwoods allowed.)

Figure 3-1 is a preview of where you’d like to end up. It shows some sample DSL sandwich orders in
the left pane, the grammar that processes and parses the DSL statements in the center pane, and the
output M Graph that results in the right pane.

Figure 3-1. Where you’re headed: the final Intellipad view of the SandwichOrders DSL (left pane), DSL

Grammar (center pane), and M Graph of the orders data (right pane)

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

36

The SandwichOrders DSL in the left pane is very easy to understand and requires no explanation. The
DSL Grammar code in the center pane is not easy to understand, unless you’ve been working with M for
a while. Some of what appears in this pane will become clearer as you work through this exercise. The
text in the right pane is what is called an M Graph, which is an M code representation of the DSL,
generated through the DSL Grammar.

The M Graph is essentially a big named collection. The name of the collection is SandwichOrders
(line 1). Collections are represented in M within curly braces,

{"this", "is", "a", "collection", "of", "words"}

and collections can have other collections as members, which is what you are seeing in the right pane.
(This is why there are so many curly braces in this pane.) The first SandwichOrder in the graph, generated
by the first order in the DSL (Pastrami on Rye with Lettuce and Tomato.) is a collection of three entities
(lines 2 – 19). An entity is simply a collection of named values, so the first entity is a Stuff entity with the
name "Pastrami", the second entity is a Bread entity with the name "Rye", and the third entity is a two-
element collection of Condiment entities with the names "Lettuce" and "Tomato". You could read on
down the M Graph and parse out the entities for the other orders.

With those preliminaries in mind, let’s get on with Lola and Norm’s conversation.

Getting Started with the Intellipad DSL Grammar Mode Interface
You’ll watch over Norm’s shoulder, along with Lola, as he brings up Intellipad to start developing what
you might call the LunchCounter DSL. The first thing you see, of course, is an empty and untitled view in
the Standard mode (see Figure 3-2).

Figure 3-2. The initial view of Intellipad after opening

Norm clicks on the Mode selection menu (see Figure 3-3), and selects DSL Grammar Mode, since
you’re going to be developing the DSL grammar for your new language.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

37

Figure 3-3. Changing to the DSL Grammar mode

Once you’re in the DSL Grammar mode, you see a new DSL menu on the main title bar (between
View and Help), as shown in Figure 3-4. Norm clicks the DSL menu and selects Split New Input and
Output Views. (Another way to invoke this mode is the Ctrl-Shift-T key combo.)

Figure 3-4. Selecting the three-way Split view from the DSL menu

Now you see three views (shown in Figure 3-5), but they only address two new buffers: untitled1 and
untitled2. (See Chapter 2 for an explanation of buffers.) The left pane is where you will start entering
your DSL statements. The view in this pane is essentially in Standard mode, but it shows untitled1 Mode
in the pane title banner. This means that the input DSL statements in the left pane will be processed
using the DSL Grammar module you’ll be creating in the untitled1 (center pane) buffer. The right pane,
in M Graph mode, is read-only and will show the M code generated by the DSL Grammar module you
will be creating in the untitled1 pane. Going from left to right in this Intellipad window then, the left
pane contains the input DSL statements, the center pane contains your DSL Grammar definition for
processing these DSL statements, and the right pane shows the resulting (read-only) output M Graph.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

38

Figure 3-5. Initial Intellipad window after selecting Split New Input and Output Views

Norm: “Let’s start by writing an order for your most popular sandwich in the left pane.”
Lola: “Okay—that would be pastrami on rye.”
And she enters the order Pastrami on Rye. in the left untitled2 pane. (Intellipad appends an asterisk

to the buffer name as soon as she types the first character, since the buffer has been changed but not
saved.) Figure 3-6 shows the results of Lola’s typing.

Figure 3-6. The first line of the SandwichOrders DSL

Nothing happens in the other two panes, since you haven’t defined any grammar to process Lola’s
sample order. To get started, Norm sets up a bare-bones DSL Grammar definition in the center pane to
see if it will generate some M language output in the right pane (see Figure 3-7).

Figure 3-7. The simplest possible DSL Grammar definition that works…

Let’s review what you are seeing in the center (grammar definition) and right (M graph output)
panes. The center pain contains a complete (if impractical) DSL Grammar definition. All DSL Grammar
definitions—in fact all M language programs—must be contained in one or more modules. In M, a
module is a namespace or unit of compilation. (In reality, an M file is the unit of compilation. But I will
try to follow the convention of defining only one module per file.)

I’ll name this module LunchCounter to correspond with the domain you’re addressing. Within this
module, you have defined a DSL language called SandwichOrders, containing one simple rule. A
requirement in DSL grammar definitions is that there must always be a Main syntax rule. A DSL module

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

39

can contain any number of syntax rules, but the required Main rule is the top-level rule to which all input
statements or documents must conform in order to be valid within the grammar definition of the
language.

So far, you’ve set up a language that will accept only the statement "Pastrami on Rye." If this is your
system, then as long as a customer orders only pastrami on rye, you’re good. Anything else will generate
an error.

Norm has made sure that Lola’s sample order includes a period at the end, and he’s included the
period as part of his Main syntax rule definition. In the present context, this isn’t important because the
system will be well defined, even if it is nonsense to a human reader, as long as the input DSL sequence
of characters (string) matches the string expected by the grammar definition. But later on, Norm expects
to use a period to tell the system it has reached the end of a SandwichOrders statement.

In the right pane of Figure 3-7, you see that the input DSL and the simple-minded DSL Grammar
definition have generated an M language program (termed an M Graph).

Broadening the Choices
Lola: “This is all well and good, but what if someone is tired of pastrami on rye and orders pastrami on
wheat?”

Norm: “Well. . .let’s see what happens.” He changes Rye to Wheat in the left pane DSL view. After
this change, the red squiggles will underline the entire order statement. These indicate an error, and the
generated M code in the right pane is null, indicating the system is no longer well-defined and is unable
to generate code for the given DSL statement or order.

To see the errors generated, Norm clicks on the View menu and selects Show Errors. Figure 3-8
shows the Error List pane at the bottom of the window.

Figure 3-8. Errors generated by changing the bread

That the entire string Pastrami on Wheat. (and not just the word Wheat) is underlined with red
squiggles, indicating the error is generated by the entire string. Reviewing the error list makes this
clearer. The first error in the list indicates the processor accepts the presented string up to the character
“W” in Wheat, but after that, it keeps checking for the first character of a valid string, which is the first
character of the only acceptable statement.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

40

Interleaving (Ignoring) Whitespace
Norm: “Let’s break the syntax rule in the grammar definition into its component words: "Pastrami" "on"
"Rye."

Lola says: “Fine—go for it.”
Figure 3-9 shows the result. You see errors (again, the red squiggles) at the two spaces, but the

processor, based on the new grammar definition in the center pane, generates the new M Graph code
anyway—so at least it’s not a fatal error this time. It looks as though "PastramionRye." would have been
acceptable, but nothing with spaces in it. The first definition had the two spaces between the three
words included, but the new one doesn’t.

Note that when you click on one of the two error descriptions in the Error List pane, the associated
place in the DSL where the error occurs is highlighted. This is a handy troubleshooting aid when you
need to track down exactly where a specific error is occurring.

Figure 3-9. Breaking the syntax rule definition into separate words

Norm: “Aha! I haven’t allowed for whitespace in the grammar definition code.”
Lola: “What’s whitespace?”
Norm: “Whitespace is mostly spaces and formatting characters like tabs, carriage returns, and line

feeds. These don’t have any meaning as far as what the processor needs to do, so I need to tell the
grammar definition to ignore, or interleave, these characters.”

Norm adds an interleave rule in the grammar definition. An interleave rule tells the processor
what kind of content, such as comments, can be interleaved, and ignored, with the main content, which
must be processed.

Figure 3-10 shows how adding a single space as an ignorable character resolves the problem: No
error squiggles occur.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

41

Figure 3-10. Interleaving whitespace

Lola: “So, you’re pretty much back to where you started. I need something that’s going to work with
more than pastrami on rye! How are you going to get there from here?”

Norm: “Right. So how do you define a sandwich, anyway? At the simplest level, it’s some kind of
lunchmeat on some kind of bread. So let’s change the main syntax definition to something like that.”

Norm changes the DSL Grammar code to reflect his thinking, along the lines shown in Figure 3-11.
Of course, the grammar processor (center pane) has no idea what the terms Lunchmeat and Bread are
because they are undefined.

Defining Tokens

Figure 3-11. First cut at making the SandwichOrders syntax rule more general

Norm has redefined the Main syntax, but now he needs to define Lunchmeat and Bread as tokens. To
get started, he’d like the processor to accept any string for Lunchmeat, followed by the preposition "on",
and any string for Bread, with a period at the end. Right now, anything from “foo on bar” to “Brecht on
Brecht” would mean some progress in Lola’s eyes. So Norm adds a couple of token statements to the
grammar definition to define Lunchmeat and Bread as tokens within the grammar that can contain any
sequence of characters.

Figure 3-12 shows the result. Again, the grammar works with this and shows no error. The two token
statements define Lunchmeat and Bread in exactly the same way: They can be a single contiguous string of

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

42

one or more characters, a through z or A through Z. But I’ve introduced a number of new M language
forms:

"a".."z"” means a single alpha character anywhere in the range from a to z. Similarly, "A".."Z"
means a single capitalized alpha character anywhere in the range from A to Z.

A pipe character (|) is the logical OR operator.
A plus sign (+) is a postfix Kleene operator, meaning “one or more of this entity.”
So given this syntax, ("a".."z" | "A".."Z")+ means “any sequence of one or more alpha

characters, upper- or lowercase.” So Rye and rAzzLeDaZZle both qualify, and rAzzLeDaZZle on Rye
would be a valid sandwich order, according to the newly defined DSL Grammar code. This removes one
of the constraints of the extremely limited Pastrami on Rye straight jacket, but you’re still a long way
from anything resembling a useful sandwich order system.

Figure 3-12. Defining the Lunchmeat and Bread tokens as arbitrary strings

Enabling Multiple DSL Statements
Lola: “Okay, say I just had another customer order a ham on 9-grain wheat sandwich. Will your

system handle that?”
Norm: “I don’t think so, but let’s try it and see where it breaks.”
Figure 3-13 shows the results of adding the ham on 9-grain order.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

43

Figure 3-13. Errors generated by adding a second sandwich order in the DSL

The Error List pane indicates that a carriage return and line feed were unexpected, so you need to
add these to the Whitespace rule.

Lola: “But why the first error in the list? Doesn’t that order conform to the syntax you’ve defined?”
Norm: “In a sense, yes. The new statement itself conforms to the grammar, but the syntax really is

valid for only one statement.”

Figure 3-14. One remaining error after carriage return, and new-line are added to ignorable whitespace

In Figure 3-14, Norm has added the carriage return (the UTF8 encoding for this is written as "\r")
and new line (written as "\n") to the interleave rule. After this, the only remaining error is the
unexpected Lunchmeat token, which is really caused by the unexpected second order statement. To fix
this problem, Norm encloses the Main syntax phrase on the right side of the equals sign (=) in
parentheses and adds a postfix + to indicate that one or more instances of the conforming statement are
expected (Figure 3-15). [Similar operators, called Kleene operators, are an asterisk (*) to indicate zero or
more occurrences, and question mark (?) to indicate zero or one occurrence.]

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

44

Figure 3-15. Testing for unanticipated characters in the Bread token definition

Modifying the Main rule to allow for multiple orders still leaves you with two errors in the Error List
pane: the 9 and hyphen (-)characters are unexpected. So for the time being, Norm adds the numeric
characters 0 through 9 and the hyphen character to the Bread token definition, as shown in Figure 3-16.

Figure 3-16. Multiple orders now valid after modifying the Main syntax rule

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

45

Tightening Up the Syntax
No errors here, so you’re good so far. It looks like the processor will accept, generally speaking, any kind
of sandwich order that conforms to the pattern <some alpha string> "on" <some alpha string>. The
two strings can even be the same, like

Blue on Blue.

This would be valid under the current syntax definition.
Lola: “So, Norm, let’s cut to the chase here. I’m not impressed with this system so far. Some wing

nut could walk in and order “blue on blue,” and the server wouldn’t know whether to go to the jukebox
or the order screen.

Lola types in “Blue on Blue.” as a new sandwich order (Figure 3-17).

Figure 3-17. A syntax too ill-defined

Norm: “Exactly right, Lola—you catch on fast. Let’s see if I can tighten up the language definition to
do two things: 1) Provide a way of syntactically identifying which is the Lunchmeat and which is the Bread
in a SandwichOrders statement, and 2) Provide a mapping of the components of a SandwichOrders
statement to a database table. You want the system to allow an order for pastrami on rye, but reject an
order for rye on pastrami. And, of course, the Blue on Blue problem should no longer happen.

Lola: “Fine.”

Moving Toward Structured Data
The first thing Norm does is to change the Main syntax rule to define it as a collection of one or more
SandwichOrders. This will result in creating a collection in the M Graph code, which would map to what
is called an extent. Extents correspond to tables within the database, once the model is deployed to SQL

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

46

Server. When the image file generated by the M compiler is installed in the Repository database, this
would result in a table of SandwichOrders. (For now, think of repository as a fancy word for database.)

Figure 3-18 shows the results of the first of these changes.

Figure 3-18. Changing the Main syntax role and adding the SandwichOrder syntax rule

You still have the Blue on Blue problem, but in the generated M Graph you are identifying the
Lunchmeat and Bread data components, even if there are no semantic constraints on these.

Let’s walk through the structure of the code of the DSL Grammar definition (center panel). At the
highest level (outermost curly braces), you have the LunchCounter module, which defines your
namespace. Within the module, you have a single language definition, named SandwichOrders. The
language definition (contained within the next set of curly braces) consists of a collection of syntax rules,
token rules, and an interleave rule (discussed in the section titled “Defining Tokens”).

The Main syntax rule:

syntax Main = SandwichOrder*

sets the Main syntax rule to be a collection of zero or more SandwichOrders. (Recall that the asterisk * is a
multiplicity operator designating a collection of zero or more instances.)

The SandwichOrder syntax rule:

syntax SandwichOrder = lm:Lunchmeat "on" br:Bread "."
 => {Lunchmeat => lm, Bread => br}

is really the heart of the SandwichOrders language definition. This construction says two things. A
SandwichOrder consists of a Lunchmeat token, given the identifier lm, followed by the literal "on", followed
by a Bread token given the identifier br, followed by the period character ".". => is the binding operator,
so the second line of the preceding code syntax rule statement means that the construction results in an
entity with two members: a Lunchmeat token with the value lm and a Bread token with the value br.
Entities are simply collections with named values, so here you’re defining an entity with two values: a
Lunchmeat value (bound to the identifier lm) and a Bread value (bound to the identifier br).

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

47

Next, Norm again refines the Main syntax rule to store the collection of SandwichOrders in an extent
named SandwichOrders. You see the results in Figure 3-19. What you see in the M Graph pane shows that
you’re getting a little closer to what you might call structured data.

Figure 3-19. Generating the SandwichOrders collection with restructured syntax rules

Lola: “Okay Norm—one step forward, and one back. I can see you’re making some progress in
getting to where the system knows its lunchmeat from its bread. Not to complicate things too much, but
do you think you could add in condiments, like mayo or mustard?”

Norm: “Sure thing. As usual, I’ll add an order with a condiment and see how this breaks the DSL
grammar definition. Type an order with a condiment, and I’ll see what kind of error you get.”

Lola types: “Ham on Baguette with Mayo.” Figure 3-20 shows the results.

Figure 3-20. Testing a condiment addition

Norm has clicked on the single error description in the Error List pane, and this has highlighted the
DSL segment "with" after the Bread token, the cause of this particular error.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

48

Norm: “Well, clearly you’ve broken the grammar definition in at least a couple of ways, since it is no
longer generating M Graph output in the right pane. From what you see in the error list, it thinks the
word “with” is a Lunchmeat token. Here’s what I’d suggest. Let’s not add condiments into the system for
the time being, and instead focus on refining the Lunchmeat and Bread syntax so that you get rid of the
Blue on Blue problem, and the system is smart enough to exclude nonsense orders like ham on
pastrami, even though ham and pastrami are both valid token values.

Lola: “Makes sense. One thing at a time.”
Norm changes the token definitions for Lunchmeat and Bread to be collections of a few of the

sandwich makings that comprise some sandwiches on Lola’s menu. And he removes the condiment
fragment from the last order to keep things simple. Figure 3-21 shows the result.

Figure 3-21. Redefining the Lunchmeat and Bread tokens

Redefining the syntax in this way, where only valid names are given for the Lunchmeat and Bread
tokens in the grammar definition, has trapped nonsense orders like Blue on Blue.

Testing the Syntax
Lola: “Good—this is looking much more specific now. But let’s check something. What will it do with an
order like ham on pastrami?”

Norm: “Okay, here it is.”
Norm enters the order “Ham on Pastrami.” in the DSL pane, with the resulting error shown in

Figure 3-22.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

49

Figure 3-22. Testing a syntactically nonconforming sandwich order

Norm: “Clearly, that’s not accepted. It breaks the syntax rules of the grammar definition. And look at
the error description: the processor knows Pastrami is a Lunchmeat token, but it occurs in an unexpected
part of the order. See what happens when I highlight the error list line in the Error List pane? It highlights
the offending word in the DSL view, along with underlining the word with red squiggles.”

Lola: “Great, it seems to be getting a little smarter, and you’ve clearly gotten rid of the Blue on Blue
issue. Let’s do a different test. I have a good Wall Street customer who loves Spam on white bread. He
always comes in with big take-out orders, so even though it offends my sense of nutritional aesthetics,
I’m going to have to stock some Spam and white bread. I’ll just have to keep it off-menu. I know you
don’t have this in your test orders, but let’s see what the system does with a Spam on white order.”

Norm: “You got it. As usual, let’s try the new order statement before I change the grammar and see
what kind of error is generated.”

He types in the order “Spam on White.” raising the errors shown in the Error List pane at the bottom
of Figure 3-23.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

50

Figure 3-23. Error output from an undefined token

Norm: “So as soon as I type the first character S of the word Spam, the processor recognizes that
there’s no Lunchmeat token starting with S, and indicates an error. The next character, a lowercase p,
doesn’t occur as the first of a Lunchmeat token either, and so on. The prepositional word "on" is a
required part of an order statement, but it still results in an error because it’s not occurring after a valid
Lunchmeat token.

Lola: “And what happens if you change the lowercase p to an uppercase P? The Pa matches the first
two characters in Pastrami.”

Norm: “Excellent! I’ll try it.”
He changes the word “Spam” to “Spam” in the last order, raising the error shown in Figure 3-24.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

51

Figure 3-24. More syntax testing

Norm: “It takes the Pa fragment with no problem. It’s looking for an s next, since that’s the only
character that matches with a valid Lunchmeat token. But when you type the m, it throws an error
because it’s looking for an s. Let’s go ahead and add Spam as a lunchmeat and White as one of your
breads, even though they’ll be off-menu.”

Lola: “Right.”

Figure 3-25. Adding the “Spam” Lunchmeat and “White” Bread tokens

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

52

Norm adds “Spam” to the Lunchmeat token list, and “White” to the Bread token list. Figure 3-25
shows the result, with the callout arrows tracing how the grammar processes each token to produce the
last node shown in the M Graph pane at the right of the figure.

Making the Syntax More Flexible
Norm: “So it looks like you’re back on firm ground.”

Lola: “Affirmative. So let’s add Portobello and grilled tofu as lunchmeat ingredients, and pita as a
bread choice. And I want the system to accept an order for grilled tofu in pita, not on pita.

Norm: “Easily done. I’ll simply redefine the SandwichOrder to accept either “"on" or "in" as the
prepositional connector between the Lunchmeat and Bread tokens.”

 In terms of the grammar, this is written as ("on" | "in") in the syntax rule, as shown in Figure 3-26.
This code segment means either “on” or “in” is valid.

Figure 3-26. Providing options in the syntax definition

Norm: “But notice you’ve added a couple of main ingredients that aren’t considered to be in the
Lunchmeat category. Maybe you should broaden the name to something like Stuff for lack of something
more scientific. Pastrami and Spam and grilled tofu could all be considered the primary stuff of a
sandwich, right? The grammar definition doesn’t really care about these kinds of lexical or naming
questions, but it affects human readability. And that’s one of the important benefits of DSLs.”

Lola: “Makes sense to me.”
Norm: “And now that you have things tightened up in terms of separating the lunchmeats. . .er,

stuffs. . .from the breads, maybe it’s time to get back to including the condiments. Unlike the stuff and
the bread, which are the essential components, the condiments are optional, and you could possibly
have more than one condiment, like mustard and relish together.

Lola: “Can you do that?”
Norm: “Piece of cake.”
Norm adds a new token definition for Condiment, not unlike the previous definitions for Stuff and

Bread. And he modifies the SandwichOrder syntax rule to include an optional "with" preposition and zero
or more condiments. The "with"? in the modified rule definition means that "with" can occur at the
place in the SandwichOrder zero or one times, and the asterisk in co:Condiment* means you can have zero

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

53

or any number of condiments. Finally, he adds the conjunctions "and" and "&" as ignorable tokens in the
Whitespace interleave definition so that these can be used in the condiments fragment of an order
statement without affecting the syntax validity of the order.

Lola takes the keyboard and adds a condiment or two to each of the sample sandwich orders she
previously entered in the left pane. Figure 3-27 shows the results.

Figure 3-27. Adding syntax and tokens for condiments

The SandwichLanguage DSL MGraph
The right pane in Figure 3-27 shows what is called an M Graph. This is similar to what is usually called an
abstract syntax tree (AST), but not quite the same, and is a representation of the DSL statements in the
left pane after being processed through the grammar defined in the center pane. The trace lines show
how the condiment components of the DSL statements in the left pane result in one value of the nodes
in the M Graph on the right. If you look at the bottom SandwichOrder node of the M Graph shown in this
figure, the expression within the innermost curly braces is an entity with three named values:

• A Stuff value bound to "Grilled Tofu". (Remember that => is the binding
operator.)

• A Bread value bound to "Pita".

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

54

• A Condiment value bound to an ordered collection, or list, (indicated by the square
brackets) with two members: "Lettuce" and "Tomato". If this were an unordered
collection, the square brackets [] would be replaced with curly braces { }.

So, looking again at the M Graph in the right pane of Figure 3-27, you can view it simply as a named
collection, with the name SandwichOrders (first line) of SandwichOrder entities, and with each entity of
the collection having three named values: Stuff, Bread, and Condiment. According to the way the
grammar has been defined, the Condiment value can be null (as with the Roast Beef on French
SandwichOrder), have a single value (as with Spam on White with Salsa), or have a list of values (as with
Grilled Tofu in Pita with Lettuce & Tomato).

In the next section, you’ll see how you can modify the grammar to support more than one main
ingredient, or Stuff.

Extending SandwichOrders to More Than One Main Ingredient
Lola: “This is starting to look a little more realistic now, Norm. But I have one more request: I need a way
of adding an additional main ingredient. For instance, someone might order grilled tofu and Portabella
in pita, or ham and pepperoni on French. What would it take to do that?”

Norm: “One character.”
Lola: “Surely you jest, mon neveu.”
Norm: “No, I’m serious. Let’s add Portabella to the grilled tofu in the last order, and see if it breaks

as you expect it to.
Figure 3-28 shows the resulting error.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

55

Figure 3-28. Testing the error caused by adding a second main ingredient

Norm: “Just as I thought: The processor complains about the second Stuff component added in the
order. But if you add a + operator after st:Stuff fragment of the SandwichOrder syntax definition, this
fixes the grammar to handle one or more primary ingredients. This is exactly what the + operator means:
one or more. And it’s the single character I said you would need. Without it, the st:Stuff fragment in the
rule is interpreted to mean one and only one Stuff token.”

Figure 3-29 shows the results after adding the + postfix operator after the Stuff token in the
SandwichOrder syntax rule.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

56

Figure 3-29. Changing the syntax to allow additional ingredients

Deployment
Now you will take your leave Lola and Norm and their lively investigations of the LunchCounter domain
because it’s time to think about how to deploy this model to SQL Server. Lola and Norm have developed
a reasonable sandwich model here, but as you shall find shortly, it’s not yet in a configuration that can
be deployed to the database. The problem has to do with one-to-many relationships in the model; how
to represent these relationships in a way that enables deployment remains an issue.

Looking back at Figure 3-29, you have the following:

• A DSL representation of four sandwich orders, represented in a language about as
close to natural English as you can get (left pane).

• A DSL Grammar program for processing these DSL statements in the middle pane.

• An M Graph parse of the DSL statements in the right pane, created by processing
the DSL through the DSL Grammar machinery.

Your mission (should you wish to accept it) is to compile the DSL Grammar code into an image
(.mx) file and use it to deploy the model (schema), with SandwichOrder instances represented by the DSL
into SQL Server.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

57

Schema vs. Model

Think of the word schema as meaning a complete description of a database in a formal language
supported by the database management system. A schema will include a formal description of all tables
included in the database, their relationships and constraints, and other information needed for creating or
reconstructing the database. A schema should be a complete description of the structure of the database,
but will say nothing about the actual data contained in it. I introduce the term here because, in the context
of SQL Server Modeling, it can often be used more or less synonymously with the word model. Schema is
more appropriately used in the database context, whereas model is used in the modeling context. But the
two terms are closely linked in the context of the SQL Server Modeling framework.

Getting back to the exercise, before you go any further, you should save your code. Save the DSL
Grammar code by clicking in the center pane so that it has focus, then click the File � Save As menu
option. Click the Create New Folder icon in the Save As dialog box and rename New Folder to
LunchCounter, as shown in Figure 3-30. Save the code in the untitled1* DSL Grammar Mode pane as
LunchCounter.mg in the new LunchCounter folder. (The “mg” file extension is short for Mgrammar,
another term for DSL Grammar.)

Click in the left pane, then follow a similar procedure (except for creating the new folder), and save
the DSL sandwich code as SandwichLanguage.dsl in the LunchCounter folder.

Figure 3-30. Creating the C:\LunchCounter folder and saving the DSL Grammar code as

LunchCounter.mg

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

58

You should now have the DSL file (SandwichLanguage.dsl), and the DSL Grammar definition file
(LunchCounter.mg) in your new working folder (C:\LunchCounter). But you can’t yet deploy this code.
The problem is with the generated M Graph tree, displayed in the right pane of Intellipad. This is not yet
in a form that can be used by the command-line tools to build the SQL Server tables.

Since this is an introductory level book, I will avoid going through all of the diagnostics necessary to
arrive at a version of the DSL Grammar code that allows you to deploy the model, with instances, to the
database. (Pay no attention to the man behind the curtain.) The primary fix is to reset the Stuff, Bread,
and Condiment types to named entities rather than text types. The Bread component will be set as a
collection, even though it will always be a collection of one for a particular instance of SandwichOrder.
This will also require three new syntax definitions for the new entity types: BreadEntity,
CondimentEntity, and StuffEntity. These changes appear in the gray portion of Figure 3-31, and the
right pane shows the new M Graph.

Figure 3-31. The final LunchCounter DSL Grammar definition (center pane) and generated M Graph

(right pane)

The other component you need for a successful deployment to the database is a schema definition.
Here again, I won’t get into the details of how this is constructed, but the code, which is shown in Figure

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

59

3-32, should be reasonably self-evident, based on what you’ve already seen in this exercise. I’ve added
some constraints to show how business rules might be expressed directly within the code in terms of the
allowed number of Stuff and Condiments values in a sandwich and the fact that only one kind of bread
can be used in a sandwich.

The grayed area shows the important part of the schema code, particularly in terms of creating the
database. This expresses the relationship constraints in the schema. Remember that && is the logical
AND operator, and the <= operator means that the left operand collection is constrained to be a
subcollection of the right operand collection. This where constraint is the core logic that determines how
the tables are built in the database.

Figure 3-32. The LunchCounter MSchema definition

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

60

If you’re following along with this example on your computer, open a new M file in Intellipad,
change the Standard mode to M mode, key in the schema code or download it from the Apress website,
and save it as LunchCounter.Schema.m in your new working directory, C:\LunchCounter.

Now that you have the DSL, DSL Grammar, and schema code saved, you can begin to work with the
SQL Server Modeling command-line tools to attempt to deploy the model to SQL Server. Deployment
means that you have a representation of the model in SQL Server in terms of a schema and tables,
constraints on the data derived from any business rules, and sample data in the tables.

Bring up the SQL Server Modeling command prompt by clicking on the Start button � All Programs
and navigating to Microsoft SQL Server Modeling CTP � Microsoft SQL Server Modeling CTP Command
Prompt. The verbiage might be a little different on your machine, depending on when you are reading
this and whether you are running the CTP, Beta, or commercial release. Figure 3-33 shows a screen
capture of this step.

Figure 3-33. Invoking the Microsoft SQL Server Modeling Command Prompt

This will bring up the command prompt window, as shown in Figure 3-34.

Figure 3-34. SQL Server Modeling Command Prompt in its default directory

Change the current directory to C:\LunchCounter by entering the following command:

cd \LunchCounter

Execute the dir command to verify that your DSL Grammar, DSL, and schema files exist in this

directory, and then compile the DSL Grammar code by entering the following command:

m.exe LunchCounter.mg

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

61

and execute another dir command to be sure the compiler created the LunchCounter.mx image file (see
Figure 3-35).

Figure 3-35. SQL compiling the LunchCounter.mg file to create the LuncCounter.mx image file

Next, you want to use the DSL Grammar executor command-line tool to generate an M code version
of the SandwichLanguage.dsl file. (The executable was formerly called the Mgrammar executor, which is
where it got its mgx.exe name.) With any executable command-line tool, you can normally enter the
name of the command followed by /? to get a listing of the parameters that can be used to pass
information to the tool when it executes. Figure 3-36 shows a list of these parameters. The two you’re
interested in are reference and MModuleName. (Note that most, but not all, have shorthand aliases, like /r:
for /reference:, to save you time when you’re using the tool frequently.)

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

62

Figure 3-36. Displaying the MGX tool parameters

At the command prompt, enter and execute the command as follows:

Mgx.exe SandwichLanguage.dsl /reference:LunchCounter.mx /MModuleName: LunchCounter

Figure 3-37 shows this, except that I’ve used aliases for setting the parameters to keep the command

from wrapping in the command window. You can try it either way. If you do a dir directory listing, you
can see that this command created the SandwichLanguage.m file.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

63

Figure 3-37. Running the MGX MGrammar executor tool to generate the SandwichLanguage.m file

Loading this file into Intellipad (see Figure 3-38), you can see that it is an M Graph almost exactly
the same as the one generated earlier when you made the final revisions to the DSL Grammar code prior
to setting up for the deployment phase. The one difference is that the graph is now defined within the
LunchCounter module.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

64

Figure 3-38. Displaying SandwichLanguage.m in Intellipad M Graph mode

You should be ready for the last step of installing the schema and instances to the database. You can
do this with the mx.exe executor tool.

The MSchema file, LunchCounter.Schema.m, defines the four types and extents that the M Graph
uses: SandwichOrders, Breads, Stuff, and Condiments. The MSchema file tells the SQL Server Modeling
framework how to store the instances of the data represented in the M Graph in a data store. With your
MSchema defined, you can use both the M Graph created by the MExecutor (mgx.exe) and the
MSchema (LunchCounter.Schema.m, as shown in Figure 3-32) to compile your M files for use in a SQL
Server data store by using the M compiler:

m.exe SandwichLanguage.m LunchCounter.Schema.m /t:TSql10

The /t: target flag specifies that the output will be used for deploying the schema and instances.

The result of executing this command is the image file SandwichLanguage.mx. (See the listing generated
by the dir command in Figure 3-39.)

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

65

Figure 3-39. Generating the SandwichLanguage.mx image file

You can also add a package flag (/p) to specify that instead of an image file, you want a SQL script:

m.exe SandwichLanguage.m LunchCounter.Schema.m /t:TSql10 /p:Script

This generates the SQL script file SandwichLanguage.sql (see Figure 3-40).

Figure 3-40. Generating the SandwichLanguage.sql script file with the m.exe compiler

You can run this script as a query in SQL Server Management Studio (SSMS) to load the database.
Bring up SSMS, click on the File menu, then Open � File (see Figure 3-41).

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

66

Figure 3-41. Opening the generated SQL script file in SQL Server Management Studio

When the Open File dialog box appears, browse to the C:\LunchCounter folder and select the
SandwichLanguage.sql. To open it, either double-click the file or click the Open button. This will display
the contents of the T-SQL script file. Click the Execute button on the SSMS toolbar, as shown in Figure
3-42.

Figure 3-42. SQL Server Management Studio after opening the SandwichLanguage.sql T-SQL script file

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

67

An alternative approach to deploying the database is to use the mx.exe command-line utility. Figure
3-43 displays the syntax for using the mx.exe tool to deploy to the database, along with the output
generated.

Figure 3-43. SQL installing the LunchCounter database using the MX executor

Regardless of which way you decide to deploy the LunchCounter module, you can check the
installation by bringing up SQL Server Management Studio. If it is already up, simply click the server
connection and press the F5 key to refresh the display. You should now see LunchCounter displayed as
one of the databases under the Databases list. Expand LunchCounter, then click on Tables. (Figure 3-44
shows a partial view of the LunchCounter database Tables list.) Scroll down the list until you get to
where the LunchCounter tables should appear. You should see four tables listed:

• LunchCounter.Breads

• LunchCounter.Condiments

• LunchCounter.SandwichOrders

• LunchCounter.Stuffs

You can examine the data in each of these tables by right-clicking on the table name and selecting
Edit Top 200 Rows.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

68

Figure 3-44. Checking the LunchCounter database Tables list in SSMS

Before reviewing the data in the tables, let’s recall the four sample orders you set up in your
SandwichLanguage.dsl file. The final Intellipad split-pane view (refer to Figure 3-31) shows these. They
consisted of the following:

• Order 1: Pastrami on Rye with Lettuce & Tomato.

• Order 2: Ham on 9-Grain Wheat with Mayo and Mustard.

• Order 3: Spam on White with Salsa.

• Order 4: Grilled Tofu & Portabella in Pita with Lettuce.

These should be reflected in the four LunchCounter database tables. Note that there are three
many-to-one relationships in these orders: two condiments in Orders 1 and 2, and two stuffs in Order 4.
The tables should reflect these.

Figure 3-45 shows the four instances of SandwichOrder in the SandwichOrders table. This table
contains the order keys only, since all the remaining data of an order (the Bread, Stuffs, and Condiments
values) are reflected in the three other tables. If Lola and Norm get into further design iterations and
refinements, the SandwichOrders table might contain other data, such as an Order timestamp. But for
now, each instance in the table has only a key, reflected as a foreign key in each of the Breads,
Condiments, and Stuffs tables.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

69

Figure 3-45. The SandwichOrders table, which contains only the order key

Figure 3-46 shows the Breads table. Note that there is only one Bread value for each order, which is
what you would expect, since this is how the orders were set up in the sample DSL file. Besides, one
Bread per SandwichOrder is a business rule that was reflected in the LunchCounter.Schema.m file.

Figure 3-46. The Breads table

Figure 3-47 shows the Condiments table, and you can see there are two one-to-many relationships:
Order1 has two condiments (Lettuce and Tomato) and Order 2 also has two condiments (Mayo and
Mustard). This is as you would expect, given the sample orders in the DSL file.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

70

Figure 3-47. The Condiments table

Finally, Figure 3-48 shows the values in the Stuffs table, which includes a single many-to-one
relationship: Order 4 has two Stuff values (Grilled Tofu and Portabella). Again, this is confirmed by the
expression of the fourth order in the list: Grilled Tofu & Portabella in Pita with Lettuce. So the database
instances appear to be entirely consistent with the model.

Figure 3-48. The Stuffs table

You may have notice that under the LunchCounter database item in the Object Explorer pane of
SSMS is an item called Database Diagrams. Let’s see if you can generate a diagram of the five tables.
Click on the Database Diagrams item, and you will more than likely get a message window like that
shown in Figure 3-49, asking if you would like to generate the support objects required to use database
diagramming. Click the Yes button to generate the support objects.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

71

Figure 3-49. Setting up to generate a database diagram

Once this happens, you can right-click on Database Diagrams and select New Database Diagram
(see Figure 3-50).

Figure 3-50. Creating a new a database diagram

A multi-select Add Table dialog box will pop up to allow you to select the database tables you want
to appear in the diagram. Use the Ctrl key to multi-select the Breads, Condiments, SandwichOrders, and
Stuffs tables, click the Add button, and then the Close button.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

72

Figure 3-51. Selecting the LunchCounter database tables to display in the diagram

Figure 3-52 shows the diagram of the four tables and their relationships. Diagramming is a powerful
tool in SQL Server, and there is a lot of functionality provided in the diagramming tools. Covering these
features is beyond the scope of this book, but I hope I’ve provided at least a taste of how the SQL Server
Modeling tools can be used in conjunction with the traditional SQL Server tools (such as SSMS and
Visual Studio) to create and deploy your own data models and model-based applications.

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

73

Figure 3-52. LunchCounter database diagram displayed in SSMS

You could also use a JOIN select statement to create a consolidated view of the sandwich orders. To
do this, close the Object Explorer pane by clicking the X in the upper-right corner of the Object Explorer
pane. Click “New Query” on the tool ribbon (Figure 3-53). Click the Query menu item, then choose the
Design Query in Editor option (see Figure 3-53).

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

74

Figure 3-53. Setting up to design the query in the Query editor

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

75

Figure 3-54. Selecting the LunchCounter tables for the JOIN query

This will bring up an empty Query Designer window, with an Add Table dialog box (Figure 3-54).
Select the four LunchCounter tables in the following order, clicking the Add button after each selection:

• SandwichOrders (LunchCounter)

• Stuffs (LunchCounter)

• Breads (LunchCounter)

• Condiments (LunchCounter)

This should result in a table diagram similar to that shown in the upper pane of the Query Designer
(see Figure 3-55). Click the Close button on the Add Table dialog box and rearrange the tables to make
the diagram more readable.

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

76

Figure 3-55. After rearranging the table diagram and preparing to select the display columns

Now you’re ready to select the display columns for the query. Click in the topmost cell of the left
column, and you should see a drop-down menu from which you can select the first display column (see
Figure 3-56, which shows the drop-down menu for the fourth column after setting up the first three
column definitions).

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

77

Figure 3-56. Selecting the display columns for the JOIN query

Set up the display columns according to the column, aliases, and table names shown in Table 3-1.

Table 3-1. Display Column Configuration for the Query

Column Alias Table

Id Order# SandwichOrders (LunchCounter)

Name Stuffs Stuffs (LunchCounter)

Name Bread Breads (LunchCounter)

Name Condiments Condiments (LunchCounter)

CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

78

After completing the display column configuration for the query, click the OK button of the Query
Designer window. The generated query text is shown in the upper pane of Figure 3-57. Press F5 or click

the button on the toolbar to run the query.

Figure 3-57. Displaying the view of the query results

The results of the query are shown in the table displayed in the lower pane. As you can see, you have
four sandwich orders: Pastrami on Rye with Lettuce and Tomato, Ham on 9-Grain Wheat with Mayo and
Mustard, Spam on White with Salsa, and Grilled Tofu and Portabella in Pita with Lettuce. This
corresponds exactly with the original DSL sample.

Thinking Ahead
You could continue refining your model for SandwichOrders, and more generally the functionality of your
system. Here are a few possibilities:

• Tag each order with a timestamp, the server’s name, and the table number.

• Track inventory effects by decrementing the respective quantities in inventory for
each order served.

• Extend the DSL to a broader range of orders, like drinks, salads, and soups.

• Have the system compute the total price of each order.

• Track whether an order is for take-out or not.

• Provide nutritional data to each customer based on his or her order. (Some
restaurants provide this kind of information on their menus.)

 CHAPTER 3 � DOMAIN-SPECIFIC LANGUAGES 101: LOLA’S LUNCH COUNTER

79

Concluding Thoughts
This concludes your excursion through the domain of the LunchCounter. The chapter provides only a
cursory overview of how one might go about creating a DSL to model a single process or workflow.

How might you sum up what you’ve learned from this LunchCounter exercise? This fictional
exchange between a user (i.e., domain expert) and a developer (i.e., technology expert) illustrates the
kind of collaboration that can begin with a rudimentary and hypothetical single line in the DSL. Over
time, the DSL and its DSL Grammar definition can be gradually refined and extended until it approaches
the fundamentals of a useful system.

The style used by Norm in working with Lola, the user, is a somewhat simplified version of test-
driven development. Working with Lola, extensions and refinements to the DSL are written first, then he
codes against the errors raised because of the fact that the grammar doesn’t support these extensions. As
the developer refines the grammar, these errors are removed, and the DSL and grammar definitions are
validated by seeing the resulting M Graph code generated in a way that makes sense.

Knowledge of the M language specification is important to the developer, but not to the user. This
knowledge can only be gained by a careful reading of the Microsoft M Language Specification, or of
some other source, that provides this information in all its detail. Because this book approaches the
subject at the beginner’s level, I’ve skirted over some of the more technical aspects of developing a DSL
using MGrammar and the M language tools. If you’re determined to get up to speed with this
technology, time invested in becoming familiar with these important sources is time well spent.

DSLs have at least three important attributes:

• Readability: This is perhaps the most important, because a well-designed DSL provides the

context and the platform for communication between the domain expert and the technology
expert. The clarity and ease of this communication is crucial in developing a system that
provides real value to the user.

• Write-ability: This means statements written in the Domain-Specific Language are
easily written, in an intuitive way, by both the domain expert and the technology
expert. There is a minimum of, if any, arcane rules of syntax to learn and remember.

• Simplicity (remember the lack of expressiveness I mentioned at the beginning?): This
goes hand-in-hand with the first two attributes. Readability and write-ability won’t
be attained without simplicity.

C H A P T E R 4

� � �

81

Introduction to Quadrant

In Chapter 3, you saw how to create a domain-specific language (DSL) for
a very simple domain using Intellipad, the M-aware text editor. In this
chapter, you’ll look at Quadrant, a modeling tool that addresses a wide
range of tasks, including creating, maintaining, and editing models and
data in the Repository or in other SQL database tables, as well as writing
and editing M code.

Quadrant is a powerful tool in terms of its functionality, and it has an
extensive feature set. I could begin with a walkthrough each of the
features in its menu tree, but that may not be the most interesting or
productive way of getting the first-time user up to speed. A tool with an
extensive feature set can be a bit overwhelming for the new user, so this
chapter will approach its subject at a somewhat higher level. The intent

here is to give you an overview of Quadrant without immersing you in too many of the details.
Appendix D shows the Quadrant menu tree, so feel free to refer to that any time you would like to

see where a particular feature fits.

My Car: Creating a Simple Model in Quadrant
You’ll start putting Quadrant through its paces by creating a simple systems model of a car. As you know,
you can analyze many complex systems (like planes, trains, and automobiles) as a composition of
different levels of subsystems and components. In addition, the subsystems themselves can be further
analyzed into lower level subsystems. This is a partitioning design pattern usually referred to as the
composite pattern.

To open Quadrant, click on the Windows Start button, then All Programs, then Microsoft SQL Server
Modeling CTP � Quadrant, as shown in Figure 4-1.

Figure 4-1. Opening Quadrant from the Windows Start button � All Programs menu

CHAPTER 4 � INTRODUCTION TO QUADRANT

82

Building the Car Model in Quadrant
The initial Quadrant window, after opening, appears as shown in Figure 4-2, with much of the same look
and feel as Intellipad. The lower-right corner of the status bar shows the current database name and
zoom level.

Figure 4-2. The empty Quadrant window after opening

To build the code for the car model, you’ll start by opening a text pane for writing the M code for the
model. Click File � New, and then select M File, as shown in Figure 4-3.

Figure 4-3. Opening a new M file

Figure 4-4 shows the M code (in its entirety) for the composition-based car model. Note that the
double slashes (//) at the start of any line denotes a comment; comments are ignored by the M compiler,
as they are with other programming languages. Block (multi-line) comments can also be embedded in
the code by starting the first line of the comment with a slash and asterisk (/*) and ending the last line of
the comment with the opposite (*/), as shown on lines 16 and 17 in Figure 4-4.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

83

Figure 4-4. M code for a simple car model

Let’s walk through the code line by line:

Line 1: module Car.Model—All M code must be contained within a named module,
which is the top-level namespace in the M language. It helps to give a meaningful
name to the module that more or less conveys its intent.

Line 3: export CarComponent, CarComponents—This makes the CarComponent and
CarComponents entities visible and available to other modules. These are the only
two declarations in this particular module: the type CarComponent and the extent (or
table, in SQL-speak) CarComponents, which is a collection of the CarComponent
entities. You could also import declarations from other modules, but this isn’t
necessary in this particular example, since the module stands by itself.

Line 6: type CarComponent—Here you are declaring that the type definition for
CarComponent follows inside the braces. A CarComponent type is defined with the
following named structure:

• Id: An Integer64 (64-bit integer) that is set by the AutoNumber() function.
AutoNumber() is normally used for defining the Id (or key) of a new entity. It is
a system-provided function that automatically assigns a unique incremental
number to the Id, or key, each time a new entity is instantiated.

• Name: Defined as unrestricted text. Name is an important attribute when
defining a new type or entity, since it is, by convention, used as the tag for
the entity.

• Level: An Integer32. This is the system level of the component. The top
system level is 1 and defines the level of the entire system, named “My Car.”

CHAPTER 4 � INTRODUCTION TO QUADRANT

84

Level 2 corresponds to the highest level subsystems of the car, such as the
drive train or suspension or body. Level 3 corresponds to subsystems of the
Level 2 systems, and so on down the tree, until you reach the atomic level (in
the system perspective) of nuts, bolts, washers, and other things that can’t be
deconstructed any further.

• Description: Text indicates unrestricted text, as with the name, and the
appended Kleene operator (?) indicates either 0 or 1 occurrence. In other
words, the Description text is optional, or in database parlance, nullable.

• PartOfComponent: CarComponent? where value in CarComponents means
that the type instance can be null (the Kleene operator ? again), or can be
part of another CarComponent instance. If a component is part of another
subsystem, the parent system must be in the CarComponents collection. In
fewer words, the parent component must exist in the extent. This illuminates
a “self-referential” aspect to the model: One entity in the model can be a
parent or child entity of another entity in themodel, and the PartOfComponent
Id will be a foreign key referring to another entity existing in the scope of the
same model and (in the database perspective) table.

• Quantity: This indicates the number of components needed to complete the
system or parent subsystem. For example, eight pistons are required for a V-
8 engine, and four wheels are required for a car.

Note that the terminating semicolon (;) after the ending right brace in the code
indicates the end of the type definition.

Line 14: Where identity (Id);—This line of code assigns the identity (primary key
in the context of the database) to the value of Id.

Line 17: CarComponents: {CarComponent*};—This declares the CarComponents
extent (which results in creating a table of the same name in the database). Think
of an extent in the model context as mapping directly to a table in the database
context, with each entity within the extent corresponding to a record in the
database table. In the present context, the extent is declared to be the collection of
all CarComponents. The curly braces indicate a collection, and the asterisk is a
Kleene operator indicating 0 or more occurrences of CarComponent instances within
the collection.

Kleene operators are also called repetition operators in the M language specification, and there are
three of these:

• * means zero or more occurrences of an item (as previously described).

• + means one or more occurrences of an item.

• ? means zero or one occurrence of an item. This essentially means the item is
nullable, or optional.

This is the complete code for the simple car model. It allows you to model the car as a composite of
subsystems and components in any number of different system levels. You could, if you wanted to, take
this down to the level of nuts, bolts, O-rings, grommets, and gaskets, with thousands of records for these
subsystems and components in the table.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

85

To save this code as an M file, click File � Save File As in the Quadrant menu bar (see Figure 4-5),
and save the file as CarModel.m.

Figure 4-5. Saving the Car.Model code as Car.Model.m

Deploying the Model to SQL Server
Once the M file is saved, you’re ready to deploy the model as a schema to SQL Server. In Quadrant, you
are able to deploy the model directly to the SQL Server database without having to use the command-
line tool set as you did in the last chapter. To use this procedure for deploying the model, click Data �
Deploy in the menu bar (see Figure 4-6). (As the menu indicates, Ctrl+F5 will also work.)

CHAPTER 4 � INTRODUCTION TO QUADRANT

86

Figure 4-6. Deploying CarModel.m to SQL Server

A dialog box will pop up, as shown in Figure 4-7, giving you the option to deploy to the existing
database session, to replace an existing database (this would replace the database, including schema
and data), or create a new database.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

87

Figure 4-7. Designating the database for deployment

Select the Create New Database option, and name the new database “CarModel.” Once the model is
deployed, you can use the Quadrant Explorer to view, add, and edit data (see Figure 4-8).

Figure 4-8. Bringing up the CarModel Explorer

Viewing the Model and Adding Data in the Explorer
Click View � Explorer in the menu bar, and select CarModel. This should display an Explorer pane, as
shown in Figure 4-9.

CHAPTER 4 � INTRODUCTION TO QUADRANT

88

Figure 4-9. Initial CarModel database Explorer pane

Note that the session name in the Quadrant status bar (lower-right corner of the window) has
changed to the name of the current database session: CarModel. Click on the Database arrowhead icon
to expand the schemas. Car.Model should be the first item displayed, as shown in Figure 4-10. Click on
the CarComponents table icon and drag this to the right onto the Quadrant canvas. Double-clicking the
square icon will have the same effect.

Figure 4-10. Double-clicking on the CarComponents icon to bring up its Explorer

 CHAPTER 4 � INTRODUCTION TO QUADRANT

89

At this point, you should see an Explorer window showing the CarComponents table (shown in
Figure 4-11). The table is empty, of course, because you haven’t yet created any data.

Figure 4-11. Empty CarComponents Explorer (right window)

Close the CarModel Explorer window. To add your first item to the model, click Data � Insert Item
in the menu bar (see Figure 4-12).

Figure 4-12. Inserting the first item into the CarComponents table

CHAPTER 4 � INTRODUCTION TO QUADRANT

90

This will result in a detail pane for adding a new CarComponent entity, as shown in Figure 4-13. The
red squiggles indicate the parts of the record that can’t be null, so these must have values entered before
the item can be saved. The values without squiggles are nullable (except for Id), and entering these
values is optional.

The first record entered for the model should be the top-level item, which is My Car.

Figure 4-13. Detail window (right) for creating the first item

Enter the following data for the top-level record:

• Name: My Car

• Level: 1 (This is the highest system level, so it will have the lowest possible
number; zero is equivalent to a null and would not be accepted.)

• Description: 1954 Buick Wildcat II

• Quantity: 1

• PartOfComponent: Leave this as null, since this is the top-level system.

Save the item by pressing Ctrl+S or select the File � Save Changes menu. The result is shown in
Figure 4-14.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

91

Figure 4-14. After saving the top-level component

If you click between the Description and Quantity column headings, you will be able to drag the
right border for the Description column to the right until the entire description shows. You can also
double-click the right column divider to resize the column automatically. As you work with Explorer
panes in Quadrant, you will find that views are very amenable to reformatting and other UI
customization.

Next, you will insert the Drive Train subsystem as a new item by pressing Ctrl+I. Enter the data
shown in the new detail pane shown in Figure 4-15. This figure shows that I have added and saved the
Drive Train item, and then clicked the drop-down arrow in the PartOfComponent column to set this
value to My Car. Note that the asterisk in the Drive Train* title of the detail window indicates that the
data has been changed but not saved. The asterisk at the far left of the corresponding line in the
CarComponents pane indicates the same thing. You can also see that the Quadrant window is displaying
Changes(1) in the status bar. Save the pending changes with Ctrl+S, and all indications that changes are
pending should disappear.

CHAPTER 4 � INTRODUCTION TO QUADRANT

92

Figure 4-15. Adding the Drive Train subsystem

Next, you’ll add the Suspension subsystem. Click the title bar of the CarComponents table pane to
make sure it is active , and then press Ctrl+I to bring up a new detail window. (In Quadrant, the active
window will have a colored title bar, as shown in Figure 4-16, while the others will have grayed out title
bars.) Enter the data for the new item, and press Ctrl+S to save the item. You can readjust the column
widths in the table pane as you go along so that the descriptions and other items are always readable.

Figure 4-16. Adding the Suspension subsystem

 CHAPTER 4 � INTRODUCTION TO QUADRANT

93

Continue to use this procedure to build the CarComponents table, adding each item or subsystem
in a separate detail pane until you have all nine items shown in the table in Figure 4-17. Remember to
press Ctrl+S to save each item. If you prefer, you can accumulate changes as you continue to add or edit
data and save the changes less frequently, or you can save the changes after you’ve finished entering all
items. Figure 4-17 shows all but the last component (Shock Absorbers) saved, as indicated by the asterisk
to the left of the Id in the CarComponents table and to the right of PartOfComponent in the Shock
Absorbers detail pane.

Figure 4-17. Adding more subsystems and components

Customizing Column Views in Quadrant
You can customize views in Quadrant in a number of ways. You can choose which columns or properties
will or won’t be displayed in the Explorer view of an extent/table, which is the most useful way of
displaying the data in each column. Figure 4-18 shows the options available for displaying values in the
PartOfComponent column. Usually, one of these options will make more sense than the others, but you
can try each one to see which displays the data in the most informative way.

CHAPTER 4 � INTRODUCTION TO QUADRANT

94

Figure 4-18. Options for displaying the PartOfComponent data

As an example, Figure 4-19 shows how the last column is displayed when you choose the diagram
view. The options available for displaying a column’s data depend on the type of data included for that
particular field or column. Hence the PartOfComponent field has the diagram option available, since
components have parent/child relationships to other components or subsystems. Using the diagram
option for, say, the Description field wouldn’t be a good choice, and, in fact, isn’t available in the context
menu for this column.

Figure 4-19. Diagram view for the PartOfComponent item of the Drive Train

 CHAPTER 4 � INTRODUCTION TO QUADRANT

95

Viewing and Editing the Model in SQL Server
Now that you’ve deployed the model to SQL Server and added some data, you should be able to view
your work in the database. Before doing this, you need to determine which instance of SQL Server the
model was deployed to. You can see the properties of the SQL Server connection for the Quadrant
session you have been working in by going to the Quadrant Help � Quadrant Repository Connection
menu. Figure 4-20 shows an example of the properties displayed for the connection to the database. In
this case, you can see that the connection is to a SQLEXPRESS instance of the database.

Figure 4-20. Quadrant Repository connection properties display from the help menu

To open SQL Server Management Studio, bring up All Programs from the Windows Start button,
select the Microsoft SQL Server 2008 (or whatever the current release for SQL Server might be on your
computer), and click the SQL Server Management Studio option, as shown in Figure 4-21.

Figure 4-21. Starting SQL Server Management Studio

Once SQL Server Management Studio is open, be sure you are connected to the proper instance of
the database corresponding to the connection properties you just brought up. Under Databases, expand
the CarModel � Tables group and right-click the Car.Model.CarComponents table, as shown in Figure
4-22. Click the Edit Top 200 Rows option.

CHAPTER 4 � INTRODUCTION TO QUADRANT

96

Figure 4-22. Setting up to edit the CarComponents table in SQL Server

Figure 4-23 shows how SQL Server Management Studio presents the Car.Model.CarComponents
table in editing mode. You are able to edit data (at least the top 200 rows) in this mode.

Figure 4-23. View of the CarComponents table in SQL Server Management Studio

If you compare this table with what you see in the Quadrant Explorer from Figure 4-17, you see an
important difference. In the database table, the PartOfComponent column shows the integer Id (or
foreign key) for a component’s PartOf relationship, whereas in the Explorer you see the actual name of
the PartOfComponent. You didn’t do any coding or modifications to make Quadrant display its view of
the model this way, but you know it’s easier to interpret, rather than having to look up the

 CHAPTER 4 � INTRODUCTION TO QUADRANT

97

PartOfComponent name by the key value. It turns out that Quadrant defaults to displaying the name of
an item rather than the key, as long as a Name field exists. This is usually more informative, as compared
to seeing only the numeric key.

Managing Changes to the Data in Quadrant
As you’ve seen, Quadrant flags changes to the data (additions or edits) with an asterisk and by displaying
a count of changes at the right of the status bar. Figure 4-24 shows that I’ve mistakenly changed the
PartOfComponent value for the Valves item from Engine to Steering, but I haven’t yet committed this
change. This, of course, would be an error, so I would like to reverse this change without saving it. I’ve
brought up the detail window for the Valves item, and it shows that only the PartOfComponent value has
been altered (as indicated by the asterisk next to this property name), and nothing else. Note also that
the title of the detail window also has an asterisk indicator.

If you cursor over an asterisk (edited), exclamation point (conflict), or question mark (stale)
indicator, the cursor will change momentarily to an annotation that states the meaning of the indicator.
(The next several figures show this feature.)

Figure 4-24. Indicators for an editing change (*)

There are four ways to revert changes:

• Click the View � Changes menu in the Quadrant menu bar to bring up a Changes
view window, as shown in Figure 4-25. (See the name in the right side of the
window’s title bar.)

• Double-click Changes (1) displayed on the status bar. This will bring up the same
Changes view invoked through the menu. The number of changes (in
parentheses) shown in the status bar will, of course, vary according to the number
of changes pending.

CHAPTER 4 � INTRODUCTION TO QUADRANT

98

• Select the File � Revert All Changes menu option in the Quadrant menu bar. This
is the easiest way of reverting a batch of changes if you’re not interested in saving
any.

• Change the value of the item back to its original value, and then save the change.

Figure 4-25. Reverting the change to the Valves PartOfComponent

I’ve selected the Valves item in this Changes view in order to display the nature of the change. This
shows you the pending (Proposed) change to the PartOfComponent value (Steering), which is in error
(for the purposes of this discussion), and the original value (Engine), which I’d like to revert back to.
Right-click in the right frame of the window (shown in Figure 4-26), then select Revert Changes in the
resulting context menu.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

99

Figure 4-26. Reverting the change after right-clicking in the right frame of the Changes view

Managing Conflicts in Quadrant
As you know by now, SQL Server Modeling uses SQL Server as the Repository for persisting models. It
can be used in a multi-user or team environment, as can the Repository. This means it is possible for
more than one user to post conflicting changes to an entity or record in the database. Quadrant has a
facility for resolving such conflicts. In this section, I’ll show an example of how such a conflict can occur,
and then how it can be resolved.

Say, for example, User A changes the description for the Shock Absorbers entity from One for Each
Wheel to Two for Each Wheel, and User B changes this to Three for Each Wheel by editing the table in
SQL Server Management Studio. By doing this, the different users have introduced a discrepancy, or
conflict, between the change made in Quadrant and the change made in SQL Server Management
Studio. This could also happen if two are more team members are working with Quadrant on the same
data but on two different computers. It could even happen if you have a second Quadrant session open
to the same database.

Figure 4-27 shows how such a conflict is indicated in Quadrant. Here again, the cursor shows an
annotation as you hover over the indicator.

CHAPTER 4 � INTRODUCTION TO QUADRANT

100

Figure 4-27. A red exclamation point (!) indicates a concurrency conflict in the data.

To resolve the conflict, bring up the Changes view (as shown in Figure 4-28) by double-clicking on
Changes (1) in the status bar (or by using one of the other procedures described in the previous section).
Right-click in the right frame of the window, and you will see you have three options: 1) saving the value
of the description as proposed (in Quadrant), 2) saving the original value, or 3) saving the value as it is in
the database.

Figure 4-28. Resolving the conflict after right-clicking in the right frame of the Changes view

 CHAPTER 4 � INTRODUCTION TO QUADRANT

101

In this case, I’ll click the As Original option, and a check mark will appear next to the value in the
Original column, indicating this is the selected value for resolving the conflict (see Figure 4-29).

Figure 4-29. After selecting As Original to resolve the conflict

The exclamation point (!) next to the Shock Absorbers entity has now changed to an asterisk (*), and
if you close the Changes view, you will see the same indication in the CarComponents Explorer. The data
conflict has been resolved, but the change has not yet been committed. You can take this last step of
committing this change by using Ctrl+S or the File � Save Changes menu option, which will make the
data consistent again.

Finally, there can be situations where the local copy of the data can become stale because
something has changed in the database, but the local copy of the data hasn’t refreshed since the
database change. Suppose the suspension engineering team has decided to go with two shock absorbers
per wheel rather than one, and they have just changed the Description value for Shock Absorbers to Two
for Each Wheel and the corresponding Quantity value from 4 to 8 in the database. This would mean the
local copy of the data displayed by Quadrant is stale and no longer matches what is in the database.
Figure 4-30 shows the resulting Quadrant view.

CHAPTER 4 � INTRODUCTION TO QUADRANT

102

Figure 4-30. Stale data in Quadrant after a recent change in the database

This situation is resolved by simply refreshing the data from the data store using the F5 refresh key.
Figure 4-31 shows the result.

Figure 4-31. After using F5 to refresh stale data

Using the Quadrant Explorer Query Bar
The area immediately above the column titles and below the menu bar in the Explorer window is called
the Query Bar. The default entry normally displayed in the Query Bar is the name of the extent, or table,
that is displayed in the Explorer window; in the case of this example, it is Car.Model.CarComponents.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

103

You can enter any SQL query in this bar to filter what is being displayed in the Explorer pane. For
instance, if you wanted to see the top-level subsystem in the model, you could enter the following query
in the Query Bar:

Car.Model.CarComponents where value.PartOfComponent.Name == "My Car"

The query is executed by pressing the Enter key with the cursor in the Query Bar. Figure 4-32 shows

the result of this query, which is exactly what you would expect: The query returns all of the top-level
subsystems. SQL keywords such as where and value are automatically bolded as the query is entered.

Figure 4-32. Using the Query Bar to find the top-level subsystems

Another example of a query you could perform would be to find all subsystems that have a quantity
greater than 1. Figure 4-33 shows the results of such a query. To make the display more useful, you can
click the Quantity column label to sort by ascending or descending quantities, as indicated by an up or
down arrow to the right of the column label.

CHAPTER 4 � INTRODUCTION TO QUADRANT

104

Figure 4-33. Using the Query Bar to find the components with a quantity greater than 1

As a last example, you can add .Count to any query to return the number of records found by the
query. This is useful with very large tables with hundreds or thousands of records. Figures 4-34 and 4-35
show two examples.

Figure 4-34. Getting a count of records for a query

Figure 4-35. Getting a count of all items in the extent

 CHAPTER 4 � INTRODUCTION TO QUADRANT

105

To return to the normal table display after executing a query, click on the title bar of the Query pane
to make sure the pane is active, press the Esc key to restore the default query, and then press the Enter
key.

If you are not using the Query Bar in an Explorer workpad, you can remove it by right-clicking the
title bar of the workpad, and clicking the Query Bar option in the context menu.

More on Customizing the View
“Know Your Audience” is an important credo in designing user interfaces, and it is just as important
when designing a simple table view as it is for developing an entire application interface. A database
administrator or a power user (one who is experienced in SQL and generating ad hoc queries) is usually
going to want to see the data in a different format than a manager or an end user who is not conversant
in SQL.

You can customize Explorer workpad views in a number of ways to give the user a more productive
and convenient viewing experience. Here are a number of ways you could improve the table view of the
car model for a user who is primarily interested in the domain data rather than running queries or other
more technical aspects:

• Remove the Id column, since this is typically not meaningful information to the
user.

• Move the PartOfComponent column to the right of the Name column, since this is
probably the most significant data after the Name.

• Change the PartOfComponent label to Part Of, since this is a little more user
friendly.

• Move the Level column to the right of the Description column.

• Remove the Query Bar, since this is a feature only power users would need.

Based on these requirements, the sequence of visible columns would be as follows:

• Name

• Part Of

• Description

• Level

• Quantity

To remove the Id column, right-click on any column heading, select the Column Settings option,
and uncheck the Id column by clicking that menu item (see Figure 4-36). (You could also make this
column visible by modifying the generated source for the view, as you will see shortly.)

CHAPTER 4 � INTRODUCTION TO QUADRANT

106

Figure 4-36. Hiding the Id column

Making the other changes you’ve decided on will require some simple modifications to the
generated M source code for the view. To do this, bring up the source by invoking the context-sensitive
menu: Right-click in the title bar of the Explorer window, and click the View Source option, as shown in
Figure 4-37.

Figure 4-37. Setting up to view the source code for the table view

Figure 4-38 shows the portion of the source code you’re interested in—the part where the positions
and other properties of the data columns are defined. Note that you are in a Quadrant session now (as
shown in the lower-right corner of the window), rather than the CarModel session, because you are

 CHAPTER 4 � INTRODUCTION TO QUADRANT

107

changing the source code for several Quadrant modules. Once the modified source for the workpad view
is deployed, you will be back in the CarModel session.

Figure 4-38. Viewing the source code for the Table view

Looking at this code, you can see there is a collection named TableColumns. Each item in this
collection corresponds to the properties of a column in the table and has the following four attributes:
DisplayName, IsVisible, Position, and PropertyName. It’s a simple matter to modify these four attributes
to provide the view you’re after. The IsVisible property of the Id column is set to false because of the
earlier Column Settings change, as you would expect.

To get the table as you would like it to appear, you will need to change the column positions for each
of the column properties, as well as the DisplayName property for two of the columns: PartOfComponent
and Quantity. The code fragment in Listing 4-1 reflects the code changes:

CHAPTER 4 � INTRODUCTION TO QUADRANT

108

Listing 4-1. Modified Column Properties to Customize the Table View

M

TableColumns =>
 {
 {
 DisplayName => "Id",
 IsVisible => false,
 Position => 0,
 PropertyName => "Id",
 },
 {
 DisplayName => "Name",
 IsVisible => true,
 Position => 1,
 PropertyName => "Name",
 },
 {
 DisplayName => "Level",
 IsVisible => true,
 Position => 5,
 PropertyName => "Level",
 },
 {
 DisplayName => "Description",
 IsVisible => true,
 Position => 3,
 PropertyName => "Description",
 },
 {
 DisplayName => "Quantity",
 IsVisible => true,
 Position => 4,
 PropertyName => "No.",
 },
 {
 DisplayName => "CarComponents_PartOfComponent",
 IsVisible => false,
 Position => 5,
 PropertyName => "CarComponents_PartOfComponent",
 },
 {
 DisplayName => "PartOfComponent",
 IsVisible => true,
 Position => 2,
 PropertyName => "PartOf",
 },
 }

 CHAPTER 4 � INTRODUCTION TO QUADRANT

109

To change the name of the view, locate the portion of the code in the Microsoft.Quadrant module
where the table is defined, and change the DisplayName property from "Table" to "System Designer
Table", as Figure 4-39 illustrates. If you are doing this exercise on your own computer, note that the Name
property of the table (shown in the figure as "Table_0", may be different in the generated code on your
computer. These are system-assigned names, so don’t be concerned if you see these kinds of differences
between your system and what is shown here in the text.

Figure 4-39. Changing the Table view name

To deploy your customized code for the CarModel view, right click in the source code window and
select the Deploy option, as shown in Figure 4-40. An alternative way of doing this is to press Ctrl+F5.

CHAPTER 4 � INTRODUCTION TO QUADRANT

110

Figure 4-40. Deploying the source for the modified view

This will bring up a Deploy dialog box (see Figure 4-41) to allow you to select which database
session to use for deployment. Accept the default Use Existing Database Session and click the Deploy
button.

Figure 4-41. Select the existing database session to deploy.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

111

After you’ve deployed the code changes, if everything goes as planned, you should see a notification
dialog saying the deployment was successful (shown in Figure 4-42).

Figure 4-42. Successful deployment of the modified source

You’ll likely notice that nothing has changed in the Explorer view (shown in Figure 4-43) after the
customized code has been successfully deployed. This is because the customized view was saved under
its new name: System Designer Table. To see the new custom view, click on the down arrow at the right
of the view’s title bar and select the new name.

Figure 4-43. Selecting the customized view: System Designer Table

Figure 4-44 shows your customized view, with the name at the right in the title bar. To show another
way of renaming the view, this time without having to modify the code, let’s change the name from
System Designer Table to System Design Table.

CHAPTER 4 � INTRODUCTION TO QUADRANT

112

Figure 4-44. Customized Table view

Right-click in the title bar of the Table view and select the Save View As option, as shown in Figure
4-45.

Figure 4-45. Changing the view name from the title bar context menu

A dialog box will prompt you for the viewer name. Enter System Design Table and click the Save
button. Figure 4-46 shows the new title.

 CHAPTER 4 � INTRODUCTION TO QUADRANT

113

As the last requirement of the customization, you’ll remove the Query Bar. Right-click on the
CarComponents title bar and click the Query Bar option to uncheck this feature. The Query Bar can be
restored at any time a particular user my want to execute a query by using the same procedure.

Figure 4-46. Removing the Query Bar

Finally, you’d like to save this customized view as the default view for the CarComponents table so
that the user will normally see this view any time she brings up an Explorer view of the table. To do this,
right-click on the window’s title bar and select Set Default View, as shown in Figure 4-47. The name of
the view in the title bar will disappear once it becomes the default view. You can always bring the
standard table view back by clicking the Table option on the right side of the title bar.

Figure 4-47. Setting the table view to be the default view.

CHAPTER 4 � INTRODUCTION TO QUADRANT

114

Summary
In this chapter, I have covered some, but certainly not all, of Quadrant’s functionality; I’ve also shown
how to build and edit a model using Quadrant’s Explorer windows. You used the composite design
pattern to build a self-referential design model for a car. This approach could be used to build any model
that is amenable to analysis using subsystems and components. Mechanical systems, such as cars or
other kinds of machines, can be modeled with this approach, but the composite pattern can be applied
to a wide range of other types of entities. I reviewed the facilities for managing and reverting changes to
data in the model, reconciling concurrency conflicts, and refreshing data from the database any time
you see indications of stale data. I also touched on the use of the Query Bar in the Explorer window and
customizing Explorer views to make them more useful to end users, using both source M code for views
and menu functions.

In sum, here’s a list of what I’ve covered in this chapter:

• Writing and saving model code in an M file

• Creating types and extents (tables) of types

• Deploying your model to the database

• Viewing and editing the model in SQL Server using SQL Server Management
Studio

• Adding new entities and records using Quadrant Explorer views

• Using Quadrant Explorer views to view and edit the model

• Customizing an Explorer view

• Managing changes, concurrency conflicts, and stale data

• Using the Query Bar

C H A P T E R 5
�
� � �
�

115

M – The Modeling Language

Having covered domain-specific languages and the Intellipad and Quadrant tools in
previous chapters, you can turn your attention now to M, the modeling language. M
is all about creating, deploying, populating, and using models. It isn’t an object-
oriented language, like C# or C++ or Java. It is also not a language with procedural
constructs (e.g., for/next or do/while or if/else) that you’re used to seeing in other
languages.

You’ve already seen some M code in previous chapters, but in this chapter I’ll
cover the structure and syntax of M in greater detail. I’ll start by covering some of the
basics you’ll need to know in order to write and compile simple M programs. Of
course, if you’ve read and worked through the sample code in previous chapters,

you’ve already done some of this. I’ll start off by covering the four basic constructs provided within the
M syntax.

Why M?
You probably wouldn’t be reading this book if you weren’t interested in learning something about the M
language. But what, exactly, are the benefits of using M, and why invest the time in learning another
language?

M is an integrated part of Microsoft SQL Server Modeling, and is the language “glue” of this
framework. If you’re going to undertake data modeling using this environment, then developing a
knowledge of M is essential. The primary tools of the framework—Quadrant and Intellipad—are “M-
aware.” M and, more broadly, the SQL Server Modeling framework, provide an environment for creating
and deploying domain-specific languages, or DSLs.

M is a more congenial language for developing, maintaining, and deploying data models than T-
SQL. By “congenial,” I mean that M is more user-friendly and less error prone. You’ll have an
opportunity to compare the expressiveness and brevity of M for the purpose of building and maintaining
model-driven applications in the sections to follow.

Getting Started with M
I’ll talk briefly about modules, the fundamental namespaces of the M language. Then I’ll cover each of
the four basic constructs in M: types, extents (which define storage locations—ultimately, these map to
SQL Server tables), computed values, and languages (used for building DSLs). Finally, I’ll return to
modules in the context of import and export directives. The latter have to do with making certain aspects
of a module’s definitions visible to other modules.

CHAPTER 5 � M – THE MODELING LANGUAGE

116

Please don’t consider this an exhaustive treatment of the M language—it isn’t. It’s not my intent to
cover every aspect of M here, but rather to provide a flavor of the language’s capabilities, and perhaps
enough of an introduction for you to feel comfortable moving on to studying Microsoft’s “M” Language
Specification [http://msdn.microsoft.com/en-us/library/ee730868(VS.85).aspx], the “M”
Programming Guide [http://msdn.microsoft.com/en-us/library/dd129568%28VS.85%29.aspx], and other
source materials on Microsoft’s MSDN website.

Modules
When it comes time to be compiled, all M code must be contained within a module declaration. A
module can contain any or all of the type declarations, extent declarations and initializations, computed
values (aka functions), or language declarations. I’ve already touched on types, extents (storage or SQL
tables), and languages (i.e., domain-specific languages) in the previous chapters. I haven’t yet talked
about computed values, but will do so in this chapter.

The simplest possible module declaration would be the empty declaration with no content, shown
in Figure 5-1.

Figure 5-1. An EmptyModule declaration

(Remember, the double-forward slash designates a comment line in the code, and is ignored by the
compiler.) This module declaration would be accepted by the M compiler, but it would result in no SQL
being generated by the compiler because there is absolutely nothing to compile within the scope of the
module.

In M, the module is a top-level namespace containing some M code. Modules cannot be nested or
hierarchical (i.e., you can’t have modules declared within modules). But several modules can be
declared within a single M code file, which is considered a compilation unit.

You can generalize the syntax for a module declaration from the example declaration shown in
Figure 5-1, consisting of the following:

• The module keyword. Note that this must be lowercase: Module is not legal.

• The name of the module. This can be up to 400 characters long under the current
M language specification, and can contain a dot character (.). If a dot is used in the
name, it has no defining syntactic or scoping significance.

• A left brace ({) character.

• Some M code.

• A right brace (}) character below or after the M code.

 CHAPTER 5 � M – THE MODELING LANGUAGE

117

This is the core of a module definition, but it is not everything. There are times when you may want
to use types or computed values (functions) that may be defined in other modules, outside the scope of
the module you are working in. You may also want to make types or computed values defined in your
current module available elsewhere. This brings me to the concept of import and export directives. But
before I talk about this particular subject, I want to cover the four basic constructs of M. Import and
export directives will be more meaningful once you’ve covered that ground.

The Four Basic Constructs of M
There are four basic constructs in M:

• Types: These specify the kinds of entities that can occur and the constraints over
the sets of values that comprise the type.

• Extents: These specify storage locations, usually for instances of types. They
typically map to tables in SQL Server.

• Computed values: These specify parameterized queries and can be thought of as
functions with zero or more parameters.

• Languages: These define the tokens and syntax rules for domain-specific
languages.

The first three of these constructs are covered in the following sections. The syntax for defining a
language in the context of M will be briefly reviewed here, but for a more detailed discussion of domain-
specific languages, refer to Chapter 2.

Types
In developing a model, you often want to categorize values that may occur within the context of the
model in certain ways. Numbers and text strings are of different value categories because the manner in
which you test, combine, or work with them is different in each case. The idea of multiplying two
numbers makes sense, but multiplying two text strings doesn’t. Concatenating two text strings makes
sense, but concatenating two numbers doesn’t.

In M, you use the concept of a type to define a category of values, so a type describes a collection of
acceptable or conformant values. Collection and conformant are the operative words here: With a few
notable exceptions, a type defines a constrained collection. For example, you can use the in operator to
test whether a value conforms to a particular type:

9 in Integer

and

"amazing" in Text

both evaluate to true.

You know that certain operations or tests can be applied to any or all values of a type, as long as
those operations or tests are defined for that type. Any number can be added to any other number. Any
text string can be uppercased, concatenated to another text string, or tested whether its length exceeds
20 characters.

CHAPTER 5 � M – THE MODELING LANGUAGE

118

Employees, for example, are in a different category than Cars. In the context of the M language, you
use types for defining or expressing these categories.

Intrinsic and Derived Types
There are two type categories in M: intrinsic types and derived types. Intrinsic types, like Integer, Text,
or Logical (true/false), are pre-defined in M and are understood by the M compiler. Derived types must
be explicitly defined somewhere in M code, and a derived type definition will invoke one or more
intrinsic types and/or other derived types.

Let’s start with a very simple example of what I mean by a derived type. I’ll stick with the subject
matter used in the last chapter for the time being: Cars. Figure 5-2 shows what you might have for a very
simple definition of a Car type.

Figure 5-2. CarType module—an example of a type definition

The Car type definition in Figure 5-2 starts with the type keyword, followed by the name of the type.
The type definition then follows, scoped within braces. In this example, I’ve named the type Car—no
surprise there. And I’ve given the type three values: Mfr, Model, and Year. Mfr and Model must both
conform to the intrinsic type Text, and Year must conform to the intrinsic type Integer16. The colon (:)
operator following Mfr, Model, and Year in the type definition is called the ascription operator. It
designates the ascribed type for the value. So Mfr and Model have the ascribed intrinsic type of Text,
while Year has the ascribed intrinsic type of Integer16.

The attributes, or values, of a given type are not necessarily constrained to be of an intrinsic type,
like Text or Integer. Other derived types may be part of a new type definition. These other derived types
may be defined within the module (namespace) of the type that requires it, or they may be defined
within the scope of another module if they are made visible through import/export directives. (I’ll talk
about import/export in the section titled “Modules Revisited: Import and Export Directives.”)

So let’s take this to the next step by adding a value that has a derived, or non-intrinsic, type: Engine.
I’ll add a new derived type for Engine within the scope of the module shown in the last code snippet, and
add an Engine value to the Car type definition (see Figure 5-3).

 CHAPTER 5 � M – THE MODELING LANGUAGE

119

Figure 5-3. CarType module with an Engine type added

If you compare this code with that shown in Figure 5-2, you’ll notice I’ve changed some of the value
definitions (Integer to Unsigned) and added some constraints. Rather than defining the Year of the Car
type to be an Integer16 (which could be of any reasonable or unreasonable value, and which would
allow the year to be negative), I’ve reset it to be an Unsigned16 integer in the range 1769 (when the first
steam-powered car was made) to 2020. There are similar reality-based constraints on the value
definitions for the Engine type: no less than 1 and no more than 12 cylinders and no more than 1,000
horsepower.

I’ve added an identity, or Id value for both the Car and Engine types. There are several reasons for
doing this:

• You might have two distinct cars with the same manufacturer, model, year, and
engine type, and no definitive way of distinguishing these two instances without
having unique identities.

• The M language specification requires that if a derived type (Car in this context)
includes another derived type as a value (such as Engine), the included type must
have a unique identity.

• If the type is used to define an extent (� SQL table), the type should provide a
unique identity that can map to the primary key of the table.

The AutoNumber() function provides a way of establishing a unique identity for any type instance.
With this example in hand, let’s look at types from a more abstract level. Types are simply a way of

defining a collection of values. The M language is structurally typed rather than nominally typed. This is
a fancy way of saying that if a collection of values conforms to two types, even though the types have
different names, the types are equivalent as far as the M compiler is concerned. If you were to define a
type named Boat that had the same structure as defined in Figure 5-3 for Car, the M compiler would be
indifferent between the two types.

CHAPTER 5 � M – THE MODELING LANGUAGE

120

Types do not necessarily need to be named in M. You could define an anonymous type by simply
enumerating a collection. For instance, the unnamed collection in Listing 5-1 could be treated as a
perfectly valid type in M, since it is an expression that returns a set of values.

Listing 5-1. An Anonymous Type

{
 "Red",
 "Green",
 "Blue"
}

One might ask, “Could you have an instance of Car and an instance of Boat (if defined with the same

structure as that of the Car type) that are equivalent?” The answer is yes.
If you refined the two types, say by adding a

WheelBase : Decimal19

attribute to the Car type definition and a

PropType : Text

to the Boat type definition, then the two types would no longer have the same structure, and the answer
would be no.

M’s Built-Ins: The Intrinsic Types
Table 5-1 lists all of the intrinsic types included in the M language. If you’ve used typed programming
languages, nearly all of these types (numbers, dates, times, text, logical, and binary) and their operators
should be familiar to you. The last two types listed in this table, Collection and Entity, are particularly
important in M because of its modeling orientation, and will be given further treatment throughout this
chapter.

Table 5-1. M Intrinsic Types

Intrinsic Name Description

Any All possible values.

General All possible values except the Entity and Collection types.

Number Any numeric value.

Decimal A fixed point or exact number.

Decimal9 A fixed point or exact number.

Decimal19 A fixed point or exact number.

 CHAPTER 5 � M – THE MODELING LANGUAGE

121

Decimal28 A fixed point or exact number.

Decimal38 A fixed point or exact number.

Integer A signed integer.

Integer8 A signed integer with fewer than 9 bits of precision.

Integer16 A signed integer with fewer than 17 bits of precision.

Integer32 A signed integer with fewer than 33 bits of precision.

Integer64 A signed integer with fewer than 65 bits of precision.

Scientific A floating-point or exact number.

Single A 32-bit floating-point or exact number.

Double A 64-bit floating-point or exact number.

Unsigned An unsigned integer.

Unsigned8 An unsigned integer with fewer than 9 bits of precision.

Unsigned16 An unsigned integer with fewer than 17 bits of precision.

Unsigned32 An unsigned integer with fewer than 33 bits of precision.

Unsigned64 An unsigned integer with fewer than 65 bits of precision.

Date A calendar date.

DateTime A calendar date and time of day independent of time zone.

DateTimeOffset A calendar date and time of day within a specific time zone.

Time A time of day and time zone.

Text A sequence of characters.

Logical A logical flag.

Binary A sequence of binary octets.

Guid A globally unique identifier

CHAPTER 5 � M – THE MODELING LANGUAGE

122

Byte A single binary octet.

Collection An unordered group of potentially duplicate values.

Entity A collection of labeled values.

The Collection Type
The collection type is an unordered group of potentially duplicate values. A collection can be
constructed as an expression with a beginning brace ({), a type reference, an optional multiplicity
(described shortly), and an ending brace (}). So the following examples are all valid collections:

• {“NPR”, “ABC”, “CBS”, “NBC”} // a collection of four broadcast network
names

• {“Red”, “White,” “Blue”} // a collection of three color names

• {“Baseball”, “Basketball”, “Soccer”} // a collection of three ball
game names

• {3.141, 2.718} // the collection of the two transcendental
numbers π and e, expressed to a 3-decimal precision

• {Integer#8} // a collection of any eight integers

• {Unsigned16#1..8} // a collection of one to eight Unsigned16 integers

• {Date#4..} // a collection of four or more Date types

• {Single*} // a collection of zero or more 32-bit floating point numbers

• {Double+} // a collection of one or more 64-bit floating point numbers

• Cars : {Car*} // defines the Cars extent as the collection of all
values of the Car derived type

• {“Red”, 32, { }, “NPR”} // defines a collection with two text values, an
integer value, and an empty collection value

The last example in the preceding list shows that the elements of a collection do not necessarily
have to be of the same type, and that collections can contain other collections.

The next to last expression uses the ascription operator (:), (as in, “ascribe this identifier to this
type”) to define the Cars extent. I’ll talk about this in the section titled “Extents.”

Note that the definition of the collection type said that the collections can have duplicate values. So
the collection {1, 2, 3, 1, 1, 3, 4, 98} would conform to an {Integer}#8 definition because it is a collection
of eight integers, though with some duplicates. Collections also have no positional or sequential
information (unlike lists), so the following expression would be true:

{1, 2, 3, 4} == {4, 1, 3, 2}.

 CHAPTER 5 � M – THE MODELING LANGUAGE

123

Multiplicity Constraints

Table 5-2 shows the different kinds of multiplicity operators that can be used in defining or constraining
a collection. Since types are simply collections of conforming values, multiplicity operators are
important in type definitions.

Table 5-2. Multiplicity Operators

Multiplicity Operator Constraint

* Requires zero or more values (allows an empty
collection).

+ Requires one or more values.

? Requires zero or one value.

#N Requires the collection to have exactly N values,
(have a size of N). N must be a positive integer.

#M..N Requires the collection to have at least M values,
and at most N values. M and N must be positive
integers, and M must be less than N.

#M.. Requires the collection to have M or more values.
M must be a positive integer.

The first three multiplicity operators listed in this table (* , +, and ?) are sometimes called Kleene

operators. (The term comes from generative grammar theory).
Lists are ordered collections, and are denoted with brackets ([]) rather than braces. The collection

{1, 2, 3, 4} is identical to the collection {4, 3, 2, 1} because order is immaterial for collections. This would
not be the case for the lists [1, 2, 3, 4] and [4, 3, 2, 1].

Collection Operators

Some intrinsic types have one or more operators defined for manipulating or testing instances of the
type. In the case of collections, the following operators are defined in Table 5-3.

Table 5-3. Collection Operators

Operator Right Operand Returns Description

Not Applicable Integer # is a unary postfix operator that returns the size (or count) of
the collection.

< Collection Logical A < B ~ B > A

CHAPTER 5 � M – THE MODELING LANGUAGE

124

> Collection Logical A > B ~ A >= B && A != B

<= Collection Logical A <= B ~ B >= A

>= Collection Logical A >= B returns true if collection A has every element of
collection B with equal or greater multiplicity.

== Collection Logical A == B ~ A >= B && B >= A

!= Collection Logical A != B ~ !(A == B)

Where Logical Collection

Returns a new collection containing only the elements from the
left operand that satisfy the predicate on the right when
evaluated on the iteration variable value. If the type of the left
operand is {T*} the type of the result will be {T*}.

Select Any Collection

Returns a new collection containing an equal number of
elements as the left operand that is the result of evaluating the
expression on the right over the iteration variable value. If the
type of the left operand is {T*} and the result of evaluating the
expression on the right is R, then the type of the result is {R*}.

& Collection Collection Intersect operator. Converts the right and left operands to sets
and returns the set intersection.

| Collection Collection Union operator. Converts the right and left operands to sets
and returns the set union.

If you are unused to reading logical expressions, like those in the right column of the first few rows

of Table 5-3, here’s the key to reading the descriptive statements for the relational operators (<, >, <=, >=,
==, !=) in rows 2 through 6 in plain English:

~ (tilde) is the equivalence operator: A ~ B, means “A is equivalent to B.”

&& is the logical AND operator.

! is the logical negation operator: !true == false and !false == true.

The shaded description cell in the right column of Table 5-3 for the >= operator is the key to

understanding the semantics of the logical statements in the right column, from which the meaning of
the logical descriptions for the other relational operators can be derived.

Relational Operators
Here are some examples of expressions using the relational operators described in Table 5-3 with small
integer or text collections as the operands. All expressions in this list evaluate to true:

• {'a', 'b', 'c'}# == 3

• {"three", "text types", "here"}# == 3

 CHAPTER 5 � M – THE MODELING LANGUAGE

125

• {1, 2, 1} < {1,2,3,1}

• { } < {5} // { } is the empty collection

• {1, 2, 3, 4} > {1, 2, 3}

• {2, 3, 4} <= {2, 3, 4, 5}

• {2, 3, 4} >= {2, 3}

• {2, 3, 4} == {3, 4, 2}

• {4, 5, 6} != {4, 5, 6, 7}

• {1, 2, 3, 4, 1, 2} & {3, 4, 5, 6, 3} == {3, 4}

• {1, 2, 3, 4, 1, 2} | {3, 4, 5, 6, 3} == {1, 2, 3, 4, 5, 6}

Where and Select
The Where and Select operators are generally used in constructing query expressions. Listings 5-2 and
5-3 show some examples. An evaluation of the expression in Listing 5-2 will return true.

Listing 5-2. An example of the use of the where and select operators (returns true)

(
 from n in {1, 2, 3, 4, 5}
 where n%2 == 0
 select n
) == {2, 4}

The % operator is the binary infix modulo operator, so n%2 returns n modulo 2, and n%2 should return

0 for any even number.

Listing 5-3. An example using where and select to return members of the collection named People older

than 17

from p in People
where p.Age > 17
select p

If People is a collection of persons with Age as one of the values, then this query should return the

collection of people with age greater than 17.

The Entity Type
Like the collection type, the entity is an intrinsic type. It is a set of zero or more named values, or fields.
The Car type I defined earlier (refer to Figure 5-3) is an example of an entity type, often called simply an
entity. Any field of an entity can be accessed by the name of the field. An entity can have an identity,
which makes it distinct from all other instances of the type, as shown in Figure 5-3. Any or all fields of an
entity can be assigned default values when the entity is initialized, and the values of any field can be
constrained by an expression, just as I constrained the year of manufacture in the Car type in Figure 5-3.

CHAPTER 5 � M – THE MODELING LANGUAGE

126

The field names of an entity must be distinct. (That’s why in entities named values must be a set: Sets do
not allow duplicate values.)

Entity Value Initializers

Entity values can be assigned default values when the entity is constructed and initialized. M does not
provide for altering an entity’s member values once it is constructed. Changes in an entity’s values will
normally occur through data store (SQL Server) operations, or through operations that occur in an
application using the data store.

Member Names

An entity member name can be arbitrary Unicode text, meaning it can contain spaces or dots or
symbols. As such, when the name violates the requirements of M restrictions on identifiers (say, by
containing spaces or dots), the name can be escaped with square brackets. For example:

{ [QC Passed] => true, [Assembly Date] =>System.Date.Today] } ;

Developers would normally want to avoid using escaped identifiers, but there may be situations

where they may be needed.

Entity Values

There are no restrictions on the kinds of values that can be defined for an entity. For example, you could
have an entity with an Integer8 value, a list value, and another Integer8 value, as shown in Figure 5-4.

Figure 5-4. Example of an entity type where one of the members is a list

 CHAPTER 5 � M – THE MODELING LANGUAGE

127

In the case of the Car example discussed earlier, the Engine value of the Car entity is itself set to a
derived type.

Entity Value Operators

Entity values can be accessed using the dot (.) operator. To provide an example of the use of the dot
operator to access entity values, let’s define Car and Engine entities with the values shown in Listing 5-4

Listing 5-4. Car and Engine Entities

Car => {
 {Id => 1,
 Mfr => "Acme",
 Model => "Runabout",
 Year => 1954,
 Engine => 100}
 };
Engine => {
 {Id => 100,
 Cylinders => 4,
 Horespower => 98,
 Fuel => "gas",
 Description => "42 mpg"}
 };

The following statements will be true for these Car and Engine entities:

Car.Mfr == "Acme"
Car.Engine.Cylinders == 4

Modules Revisited: Import and Export Directives
In talking about modules earlier in the chapter, I mentioned the subject of scoping (i.e., visibility) and
import/export directives. Normally, a module is entirely self-contained in terms of its scope—code that
is defined other than within the module is not visible to types or other constructs within the module, and
vice versa. Intrinsic types are, of course, an exception: They are built into M, and can be invoked within
any module. But if a derived type or extent or computed value is defined in a different module, it will be
unavailable for use outside of the module it is defined in.

Let’s go back to the earlier Car example shown in Figure 5-3, but this time introduce the convention
that you want to define only one type per module. (This can often be a good idea, especially with large
projects.) Figure 5-5 shows how the code from this example might change, with the Engine type
definition moved to its own module (but still within the same M file, or compilation unit).

CHAPTER 5 � M – THE MODELING LANGUAGE

128

Figure 5-5. The Car example with Engine type moved to its own module without import/export

As you can see, there is an error indication (red squiggles) under the Engine type ascription and an
annotation that the Engine reference can’t be resolved. This shows that the Engine type definition is not
visible and is outside the scope of the CarTypeExample module. You can fix this problem by adding an
import directive for EngineModule within the CarTypeExample module, and an export directive for the
Engine type in EngineModule. The resulting code is shown in Figure 5-6.

Figure 5-6. The Car example with Engine type moved to its own module with import/export

 CHAPTER 5 � M – THE MODELING LANGUAGE

129

The Engine type is now resolved within the CarTypeExample module. The import and export
directives provide the means for managing modules more logically and keeping them trim. Note that the
import directive refers to one or more module names. Several modules can be imported under a single
directive, with the module names separated by commas, or they can be imported by separate import
directives, one line for each. This is a matter of style. export directives must refer to type definitions,
extents, or computed values defined within the module where the export directive is invoked.

Labeled entity instances can be referenced across modules contained in separate M files and
compiled in separate compilation episodes, as long as the proper export/import directives are defined.
For instance, the Engine type definition shown in Figure 5-6 could have been defined in a separate M file
and compiled at a different time (again, with the necessary import/export directives in the respective M
files).

Figure 5-10 in the following section shows the extent definitions for Cars and Engines added in the
respective modules.

Extents
Extents in M specify storage locations. In the context of SQL Server, extents correspond to SQL tables.
Types in M will map to table definitions in T-SQL, but do not result in actually creating the tables in SQL
Server. Code that results in a T-SQL table creation requires an extent definition.

Listing 5-5 shows an example of how an extent is defined in M.

Listing 5-5. Defining an Extent

Cars : {Car*};

So an extent is simply defined as a collection of zero or more type instances. If a type is to provide

the basis of a SQL table definition, there must be a unique identity for each instance of the type that
maps to a primary key in the SQL world. This is why you used the AutoNumber() function to define the Id
of each instance of Car and Engine in the Car example (see Figure 5-7). Extents, as a matter of
convention, are normally given the plural name of their contained type. Cars would be the usual name of
the extent for the Car type, and Persons or People would be the usual name for a Person type, if you
defined such a type.

So let’s expand the Car example to provide the extents needed for creating the actual Cars and
Engines tables of the domain values in SQL. I’ll add the extent definitions for Cars and Engines shown in
Figure 5-7 (grayed lines).

CHAPTER 5 � M – THE MODELING LANGUAGE

130

Figure 5-7. The Car example with Cars and Engines extents (� SQL tables) added.

It isn’t correct, however, because the error annotation on the Engine value of the Car type definition
indicates that there must be a membership constraint. This means, since there is an Engines extent
defined in EngineModule, the Engine value of Car type (line 10) must be constrained to be in the Engines
extent. The EngineModule code also needs to be changed to export the Engines extent, along with the
Engine type (line 17), since there is now a reference to the Engines extent in the CarTypeExample module.
Finally, it’s generally a good idea to export types and extents defined in a module if there is a prospect
that these should be exposed to other modules as you continue to refine your model. So you still add a
declaration to export the Car type and Cars extent, as shown in line 4 of Figure 5-8 (which shows the
corrected code).

 CHAPTER 5 � M – THE MODELING LANGUAGE

131

Figure 5-8. The Car example with the membership constraint for the Engine value in Car added

You no longer have any error indications for the two modules in this code. This means that this code
should successfully create the T-SQL code for generating the schema and table definition on the SQL
Server side of the house.

Generating T-SQL Code for the Car Model
To generate the T-SQL code for this model, you will need to switch to Intellipad. Save your code in
Quadrant as Car&EngineModel.m, and then exit Quadrant. Next bring up Intellipad and open this file.
When the file is loaded, Intellipad will switch to M mode, which you will see in the menu bar. Select the
M Mode � T-SQL Preview menu option (as shown in Figure 5-9).

CHAPTER 5 � M – THE MODELING LANGUAGE

132

Figure 5-9. Setting up to generate a T-SQL code preview

Figure 5-10 shows the generated T-SQL in the Intellipad right pane.

 CHAPTER 5 � M – THE MODELING LANGUAGE

133

Figure 5-10. CarTypeExample with generated T-SQL

Appendix E shows the complete listing for the generated T-SQL. You can see that the generated T-
SQL is substantially more complex than the M code used to define this simple two-type model. (There
are a total of 254 lines in the generated T-SQL, including blank lines.) Defining a model in T-SQL from
the ground up can be complex, error prone, and difficult to debug.

This illustrates an important advantage of the M language and the SQL Server Modeling framework,
which is the relative ease of defining a model quickly. The generated T-SQL could be used to deploy this
model directly to SQL Server by creating the tables and schema, but this could also be done directly
using the deployment facility in Quadrant.

Computed Values
M provides two ways in which values can be created:

• Stored values: You’ve already seen stored values defined in type definitions—for
example, Mfr is a stored value of type Text for the manufacturer in a Car type
definition. Stored values are also called fields, and translate to columns in a SQL
table definition.

• Computed values: Computed values are derived by evaluating an expression and
always occur within a module declaration, just as do type and extent definitions.
Computed values can be considered equivalent to functions and can have zero or
more arguments.

CHAPTER 5 � M – THE MODELING LANGUAGE

134

An example of a computed value definition might be one that returns the sum of two numbers:

Add(x : Integer32, y : Integer32) {x + y};

Here’s an example of a computed value definition for the square of a number:

Square(x : Integer32) {x*x};

In the instance of the CarTypeExample, you could add a HorsepowerPerCylinder computed value in

EngineModule with the following line:

HorsepowerPerCylinder(Eng : Engine) {Eng.Horsepower / Eng.Cylinders}

Figure 5-11 shows the code in Intellipad with this computed value definition added, but the return

value and arguments are ascribed to a Decimal19 so that a reasonable precision can be returned from
dividing the two integers.

Figure 5-11. The Car example with a computed value definition.

 CHAPTER 5 � M – THE MODELING LANGUAGE

135

M generates a T-SQL function definition for this computed value definition, as shown in the
Intellipad T-SQL preview pane in Figure 5-12.

Figure 5-12. T-SQL code generated for the HorsepowerPerCylinder computed value in the M code.

You might have noticed that this definition for the computed value could potentially have resulted
in a divide-by-zero error in certain situations had you not constrained the number of cylinders to be an
integer between 1 and 12 (line 15 back in Figure 5-3).

The generated T-SQL code for this example, including the computed value, is shown in Appendix E.

Overloading
Overloading of computed value definitions is supported in M. This means that multiple computed
values with the same name can be defined, as long as each definition has a different number of
arguments. Selection of which definition is used by the compiler is determined by the number of
arguments in the invocation. For example, the formula for the volume of a sphere, given the radius r is:

V(r) = 4/3 πr3 (where π ≈ 3.14159)

and would translate into the following expression for a computed value in M:

Volume(R : Decimal19) {((4/3) : Decimal19) * 3.14159 * (R*R*R)}.

You could have another computed value with the same name (Volume) for a rectangular cuboid with

sides of length A, B and C:

CHAPTER 5 � M – THE MODELING LANGUAGE

136

Volume(A : Decimal19, B : Decimal19, C : Decimal19) {A*B*C}.

Both computed values have the same identifiers (or names), but overloading allows you to define

both within a given module, since they have a different number of arguments. In this case, you could
avoid some possible confusion by renaming the computed values to SphereVolume and CuboidVolume, but
there may be stylistic reasons in certain domains to take advantage of overloading and retain the same
computed value identifier across several different implementations, each with differing argument
counts.

Two computed value definitions with the same name and the same number of arguments will result
in an error.

Languages
Languages are the fourth basic construct included in the M language. Language constructs were
provided in M with the primary intent of enabling the development of domain-specific languages, or
DSLs, which can be a useful tool in model-driven development. This subject was covered in Chapter 3.

Summary
In this chapter I’ve provided a quick overview of the M language. M is a central component of the SQL
Server Modeling framework, and is intended primarily as a language for defining and managing models
and domain-specific languages. It can be used for transforming and deploying models defined in the
language into SQL Server schemas in SQL Server via T-SQL code generation.

Four central elements are important in developing an understanding of M:

• Types

• Extents, which map to SQL Server tables

• Computed values

• Languages

The first three of these are covered in this chapter, while Chapter 3 discusses languages from the
perspective of Domain-Specific Languages (DSLs).

I also covered modules and how type, extent, and computed value declarations in one module can
be made visible to other modules via Import/Export declarations.

For further reading on the M language, please refer to Microsoft’s “M” Language Reference
(http://msdn.microsoft.com/en-us/library/ee730868(VS.85).aspx), and the “M” Programming Guide
(http://msdn.microsoft.com/en-us/library/dd129568%28VS.85%29.aspx).

C H A P T E R 6

� � �

SQL Server Modeling Services –
The Folder Pattern

, ,
, , ,

•

•

•

•

•

�

•

,

•

•

•

•

•

•

•

The Modeling Services Folder Pattern

•

•

•

CarComponents

�

Table 6-1. QC Folders for CarComponents

Id Name Parent Folder

Critical
. High

Standard
.

Table 6-2. CarComponents Model with QC Folders Added

Id Name Level Description Quantity Part Of QC Folder

�

CarModel .

,

CarModel .
.

Figure 6-1. Original CarModel type definition from Chapter 4

�

Repository.Item
Repository.Item. Folder

CarComponent FoldersTable

Figure 6-2. Adding the Folder value, showing two reference errors

Repository.Item
FoldersTable Repository.Item

1.

2. .

3.

.

�

Figure 6-3. Splitting the Intellipad window vertically to allow room for opening a new project

1.

2. .

3.
CarModelWithFolder

.

Figure 6-4. Adding a new project. (Right pane has focus.)

�

Figure 6-5. Saving the new project file as CarModelWithFolder.csproj

Figure 6-6. New project (right pane)

�

Figure 6-7. Generic Model.m file created with the new project file

Figure 6-8. Setting up to add the CarModelWithFolder.m file to the MCompile section of the project file

�

Figure 6-9. Selecting the CarModelWithFolder.m file to add to the MCompile section of the project file

Figure 6-10. CarModelWithFolder.m file added to the MCompile section of the project file

1. .

2.
.

�

3.
<ItemGroup> .

4. .

5.

6. �

Figure 6-11. Project mode in XML with Model.m line highlighted

Figure 6-12. CarModelWithFolder project with the updated MCompile section (bottom of right pane)

Repository.Item Folders.Table
Repository.Item

�

Repository.Item

Figure 6-13. Adding the project reference for Repository.dll

Figure 6-14. Adding the reference to C:\Program Files\Microsoft Oslo\1.0\bin\Repository.dll in the Open

dialog box

�

Figure 6-15. Adding Repository.dll as a reference in the project file fixes the resolution errors.

Repository.Item FoldersTable

Figure 6-16. Opening the project in Visual Studio 2010

�

.

Figure 6-17. Opening the project file in Visual Studio 2010

�

Figure 6-18. Opening the Solution Explorer in Visual Studio

�

Figure 6-19. Visual Studio with Solution Explorer open

Figure 6-20. CarModelWithFolder.m code (left pane)

�

Figure 6-21. Opening the project properties pane in Solution Explorer

Figure 6-22. Selecting the M Deployment section in project properties

�

Figure 6-23. Selecting the Deploy option for the CarModelWithFolderProject

�

Figure 6-24. Deploy Succeeded indication (lower-left corner)

�
�

Figure 6-25. Opening an Explorer on the Repository in Quadrant

.

�

Figure 6-26. Dragging the CarModel.CarComponents table onto the Quadrant canvas

.

Figure 6-27. Checking that a Folder column is included in the CarComponents table

�

Figure 6-28. Expanding the Repository database and preparing to expand the Views section

.

�

Figure 6-29. Right-click the Repository.Item.Folders view and select Edit Top 200 Rows in the context

menu.

.

�

Figure 6-30. Adding the parent QC Level folder in the Repository.Item.Folder table view

•

•

�

Figure 6-31. Adding a new Folder row in the Repository.Item.Folders table view

Figure 6-32. Repository.Item.Folders table view after the QC Level folders have been added and committed

�

�

Figure 6-33. Adding new CarComponents values and specifying the QC Level for each

.

.

�

Figure 6-34. Repository Explorer with the QC Level folder expanded

Figure 6-35. Quadrant Explorer showing the QC Level folders and their contained values

�

ToasterComponent LawnMowerComponent

C H A P T E R 7

� � �

163

SQL Server Modeling
Services – Security

Security is an essential component of enterprise applications. Since
SQL Server Modeling (SSMod) is part of the broader .NET
framework, developers have access to a wide range of services and
technologies, some of which provide their own security options.
Applications and users can query a SQL Server database through
Entity Data Modeling (EDM), LINQ, ADO.NET, ODBC, and other
systems, including non-Microsoft platforms.

The Modeling Services framework supports granular (row-
level) and claims-based security, built on the folder pattern
discussed in the previous chapter. It should be clear, however, that
a wide range of other security facilities is available, depending on
which platforms you involve in creating an application.

Modeling Services uses updatable views in conjunction with
the folder pattern to protect the base tables and provide row-level

security. A SQL Server view is essentially a named read-only query of one or more tables that you or an
application can use with subsequent queries as if it were a table. These queries can result in updating,
inserting or deleting actions in the base table (and consequently the view) if the user has been granted
the appropriate authority.

A view becomes updatable by using what are called INSTEAD OF triggers. Triggers are a special kind
of stored procedure that execute on the database server when a user or application attempts to modify
data through a DML (data-manipulation language) event. (There are also data-definition language
(DDL) and LOGON events that can be addressed by triggers, but I won’t go into these here.)

There are only three categories of DML events, created by INSERT, DELETE, or UPDATE statements. An
INSTEAD OF trigger substitutes execution of the trigger code for execution of the statement triggering the
DML event. The trigger can implement the security criteria established by the developer or the database
administrator. An event can initiate a single trigger, or a specified sequence of triggers, to perform tasks
to check user privileges and preserve the data and relational integrity.

How triggers are coded and implemented is a topic beyond the level of this book. In any event, SQL
Server Modeling Services already provides the infrastructure, based on the folder pattern and pre-
installed INSTEAD OF triggers, to support row-level security.

In this chapter, you will extend the CarComponent model introduced in Chapter 4 to a more general
manufacturing component model. I will use this more general model to introduce the idea of using the
folder pattern to provide security in a way that manufacturing line managers will be able to see or
modify data relating only to components made on the manufacturing lines for which they are
responsible.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

164

Using Security to Limit Data Visibility
Consider the following scenario. Your car manufacturer has decided to diversify and has recently
purchased a company that manufactures small appliances, like toasters and coffee makers. The two
lines of businesses will be kept separate in terms of engineering and management. However, corporate is
quite happy with the operations of the QC department, and wants to extend their QC procedures and
standards into their newly acquired small appliance manufacturing operations.

For the sake of simplicity, I’ll call the original manufacturing line, the one that makes cars, the
CarLine. The newly acquired plant, the one that makes toasters, I’ll call the ToasterLine. Corporate
headquarters has promoted the original QC manager to manage QC standards and procedures across
both plants, so I will call her TopQC. She promoted her former deputy to manage QC for the car plant, so
he will be known as CarQC. As you might expect, the QC manager at the toaster plant will be ToasterQC.

In terms of IT operations then, you have three users, each needing access to the QC data she or he is
responsible for managing:

• TopQC: Access to all QC data across both manufacturing lines.

• CarQC: Access only QC data for the car line.

• ToasterQC: Access only to QC data for the toaster line.

These will be user names created as part of this exercise, with TopQC given read/write privileges to
all QC data across the board, and the remaining two QC users given read/write privileges only to the data
pertaining to their respective manufacturing domains.

Setting Up – Installing the PatternApplication Sample
Before getting started with this exercise, you will need to install the PatternApplication sample in the
Repository. This code is required to enable the use of three patterns that this exercise depends on. One
of these patterns, named AddViewsInsteadOfTriggers, supports the use of the INSTEAD OF triggers I just
discussed. Another pattern, named AlterSchemaPermissions, supports the security features you will need
in this example. Finally, you will use a pattern, named AddFolderForeignKey, that supports adding a
folder and key more efficiently than explicitly coding it.

The instructions for downloading and installing this sample are available on the MSDN web page:
“How to Install the PatternApplication Sample.” The URL for this page (as of the Nov. 2009 CTP release)
is

http://msdn.microsoft.com/en-us/library/ee713117(VS.85).aspx

The download file is a Zip file, so you will need to extract the files to a folder such as

C:\Temp\PatternApplication.

Be sure to allow Winzip (or whatever extraction tool you use) to create the embedded directory tree.

Make a note of where this sample is installed because you will need this path later on in the exercise.
In case you are reading this after a more recent CTP or beta release has become available, you

should be able to find the page with an Internet search on “PatternApplication Sample.” Follow the
directions on this web page, but also have a look at the readme.htm file that’s included in the
downloaded Zip file, since the readme page contains additional code and information.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

165

Building on the CarModel
The model for this example is similar to the CarModel code you developed in Chapter 4, so let’s look at
the M code for that model (see Figure 7-1).

Figure 7-1. M code for the original car component model from Chapter 4

To extend this to a more general model for manufacturing components, remove the string Car from
the code. This is only a lexical change, so the logic doesn’t change at all. However, you now need to track
which manufacturing line makes a particular component, so I’ll add a MfgLine text value to the
Component type. Figure 7-2 shows the revised code. I’ve also changed the model name to
MfgComponentModel.

Open Intellipad on your computer. If you saved the CarComponentModel.m file when working
through the example in Chapter 4, open this file in Intellipad and modify the code to be the same as that
shown in Figure 7-2. If you don’t have the code from Chapter 4 saved, it should take only a minute to key
in this code. Alternatively, you can download it from the Apress website.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

166

Figure 7-2. Changing the code for MfgComponentModel, and adding MfgLine value to the type

Create a new working directory to save the code and project files to, like C:\MfgComponentModel,
and save the M file as MfgComponentModel.m in that directory.

Now, let’s jump ahead to a preview of where you’re going with this model. I’ll switch tools here,
from Intellipad to Visual Studio, because you’ll be working in Visual Studio from here on. Figure 7-3
shows the M code for the model in the left pane of Visual Studio, once you’ve added in the code
supporting the folder pattern and security.

Figure 7-3. A preview of the final MfgComponentModel code and project solution in Visual Studio

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

167

The grayed areas in the left pane of Figure 7-3 are the important changes from the original CarModel
code that enable the security features in this model (lines 17 and 19–21). I’ll talk about these more as you
go through this exercise, but here’s a quick overview:

• Line 14: This is the new text value that references the manufacturing line you
added to the MfgComponent type. It identifies which manufacturing line produces
the component.

• Line 17: MfgComponentsTable: This was formerly the MfgComponents extent and
mapped to the MfgComponents table in the database. It has been renamed to
MfgComponentsTable so that an updatable view called MfgComponents can be
created that provides the actual user view into the table. The MfgComponentsTable
extent is created as a “mix-in” of two types: HasFolderAndAutoId and
MfgComponent. HasFolderAndAutoId actually provides the Folder and Id values of
the extent, without having to add these explicitly in the MfgComponent type, as you
did before. Note these are no longer included in the MfgComponent type
declaration, as they were in the CarModel code.

• Lines 19–21: MfgComponents(): This is an important part of the model code
providing the security capability. It is essentially a query that creates a view of the
records in the MfgComponentsTable extent constrained to be in the
ReadableFoldersView().Folder collection. This collection contains only the folder
Id’s to which the logged-on user has access.

The grayed items (PatternApplication and Repository) under the References section of the Solution
Explorer (right pane) of Figure 7-3 are references you must add in order for certain parts of the code to
work.

Note also, there’s a new PatternApplication.m code file at the bottom of the Solution Explorer pane.
This file is required to make the code work, specifically, line 17 and lines 19–21 discussed in the second
and third items of the preceding list.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

168

Building the MfgComponentModel Project in Visual Studio
Open Visual Studio 2010 and select the File �� New �� Project From Existing Code menu item (see
Figure 7-4).

Figure 7-4. Opening a new project from existing code in Visual Studio

This will bring up the Create Project from Existing Code Files Wizard (shown in Figure 7-5).

Figure 7-5. Create Project from Existing Code Files Wizard

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

169

Select Visual C# for the project type, and click the Next button. This should bring up the Specify
Project Details panel of the wizard (see Figure 7-6).

Figure 7-6. Specifying the project details as the last step in the wizard

Enter the path for the Where Are the Files? prompt. This should be C:\MfgComponentModel or
whatever path you used to store the MfgComponentModel.m file from Intellipad earlier in the exercise.
Under Specify the Details for Your New Project, enter MfgComponentModel for the project name, and
select Console Application as the output type. You should wind up with a Visual Studio window similar
to what appears in Figure 7-7.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

170

Figure 7-7. After opening the new project from the existing MfgComponentModel.m file

In the Solution Explorer pane, expand the References section by clicking the plus sign (+) sign to the
left, and then double-click MfgComponentModel.m to bring up a view of the file (see Figure 7-8).

Figure 7-8. Visual Studio view of the new MfgComponentModel project, showing References and

MfgComponentModel.m

Refining the Model to Include Security
How do you get from the model code shown in Figure 7-8 to the desired end shown in Figure 7-3? Let’s
work from the top down and add the two import declarations for Repository.Item and System (see Figure
7-9).

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

171

Figure 7-9. Adding the import declarations for Repository.Item and System results in a “Cannot resolve…”

error for both

As you found in Chapter 6, resolving Repository.Item requires adding a reference to the Repository
schema, contained in Repository.dll. Let’s go ahead and add that reference by right-clicking on
References in the right pane, and selecting Add Reference (see Figure 7-10).

Figure 7-10. Preparing to add a reference to the Repository schema

This will bring up an Add Reference dialog box, as shown in Figure 7-11. Click the Browse tab, and
browse to the folder containing the Repository.dll file. This will typically be in the Bin folder where
Microsoft SQL Server was installed, which for the November CTP is normally

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

172

 C:\Program Files\Microsoft Oslo\1.0\bin\

Figure 7-11. Browsing to Repository.dll to add the Repository reference

If you installed SQL Server Modeling to a different location, you will need to make the appropriate
adjustment in locating the Repository.dll file.

Figure 7-12. Resolution errors for the import declarations are resolved after adding the Repository

reference

Figure 7-12 shows the two resolution errors are no longer there.
Next, you want to remove the references to Id and identity (lines 8 and 15), since the

HasFolderAndAutoId type you will be adding provides the identity constraint required for creating a table

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

173

in the database. Making these changes in the code results in the error shown in Figure 7-13—an error
that is fully expected. (You won’t be doing anything with the Solution Explorer for the time being, so you
can close it.)

Figure 7-13. Error after removing the Id value in the MfgComponent type, and the identity constraint

This error will be resolved in a moment, after you add the HasFolderAndAutoId type, which provides
Folder and Id values without having to code these explicitly. This is an example of one of the services
provided by the Base Domain Library (BDL), which is part of SQL Server Modeling Services.

A BRIEF SIDEBAR ON THE VISUAL STUDIO INTERFACE

Before continuing with the exercise, let’s take a brief pause to note a few things about the Visual Studio
interface. If you’re already familiar with Visual Studio, you might want to jump ahead to the next section. If
not, please read on.

First, you might have noticed the yellow vertical marker bands to the right of the line numbers. These flag
lines that have been modified since the file was loaded or last saved. The asterisk (*) appended to the
filename on the top tab of the code pane also indicates the file has been modified but not saved. If the file
is saved (use Ctrl-S to save the active pane, and Ctrl-Shift-S to save all files in the project), the color of the
vertical marker bands will change from yellow to green. This way, you don’t lose the information about
changes that have occurred during the current session, even if you save as you go along.

Next, Visual Studio 2010 is “M-aware,” which means it has the Intellisense facility for colorizing keywords
in the code and for providing suggestions or choices of values or entities that fit in the context of the code.
As you’ve already seen, it flags reference or syntactic problems in the code with red-squiggle underlining,

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

174

and it will present an error annotation if you cursor over one of these error flags in the code. As you’ve
seen in earlier chapters, Intellisense and this error-flagging facility also show up in Intellipad and Quadrant.

Finally, Visual Studio provides an outlining facility that can be helpful when working with large code files.
The vertical lines to the right of the change bands with the minus (–) signs (lines 1 and 7 in Figure 7-13)
allow you to collapse or expand the designated sections of code as you need to.

Figure 7-14 shows the left pane before saving the file, so the vertical bands are yellow, indicating unsaved
changes. The section of code defining the MfgComponent type (line 7) has been collapsed by clicking the
minus sign. Now an ellipsis (. . .) appears immediately to the right of the collapsed code section. If you
need to have a quick look at the code contained in a collapsed section, you can cursor over the ellipsis,
and a pop-up text box will show the code until you move the cursor elsewhere. Note, however, that error
indications are not provided in this pop-up text, so if you’re looking for code that needs fixing, you will have
to expand any collapsed sections. Clicking the plus sign at line 7 would again expand that section of the
code.

Figure 7-14. Cursoring over the ellipsis for a collapsed section shows the contained code.

Visual Studio is a rich development environment, and can be customized with add-ons and tools. Investing
the time to become familiar with its interfaces and features will pay off in greatly improved productivity.

It doesn’t hurt to be aware of the info displayed at the bottom of the main window, which can include the
status of the last action, the current cursor location, and whether you are in Insert or Overwrite mode. The
kind of information can vary, according to what type of pane is active.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

175

HasFolderAndAutoId
I’ve already mentioned the built-in type HasFolderAndAutoId, provided in the Base Domain Library.
Consider line 16 in Figure 7-15. The extent declaration in the earlier version of the code was

MfgComponents : {MfgComponent*}

This was dependent on the identity constraint in the earlier MfgComponent type declaration, so it

broke when you removed that identity constraint. Since you are getting ready to add an updatable view
called MfgComponents, you must rename the actual extent to MfgComponentsTable. This is (usually) the
convention whenever the folder pattern is retrofitted into a model. So the new line of code becomes

MfgComponentsTable : { (HasFolderAndAutoId & MfgComponent)* }

The new name of the extent becomes MfgComponentsTable, and the collection becomes
(HasFolderAndAutoId & MfgComponent)*. HasFolderAndAutoId is essentially a type that has a Folder value
and an auto-incremented identity, and nothing else in terms of attributes. As I mentioned in the first
section of the chapter, (HasFolderAndAutoId & MfgComponent) is called a mix-in type: It combines the
values of both types. It’s like saying “I’m a MfgComponent type, and, by the way, I have a Folder and an
AutoNumber Id.”

Figure 7-15 shows the model code with the new extent definition added.

Figure 7-15. Renaming the MfgComponents extent to MfgComponentsTable, and adding in

HasFolderAndAutoId

Note that by reconfiguring the extent declaration in this way, you have removed the previous
identity constraint error (shown in Figure 7-13), but you now have a resolution error on the
MfgComponents identifier. Of course, this happened because you just renamed it to MfgComponentsTable.
So let’s rename the old extent name MfgComponents on lines 5 and 11 to MfgComponentsTable. But you are

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

176

about to define a declaration for an updatable view called MfgComponents, so is this really what you want
to do? Yes, in the case of the MfgComponent type declaration, you want the PartOfComponent value
constrained to be in MfgComponentsTable extent, not in the MfgComponents updatable view. Making these
changes fixes the two resolution errors, and the compiler is happy.

Next, you need to add the code creating the MfgComponents updatable view (see Figure 7-16). This is
a key part of the code because it’s the part that provides the security functionality.

Figure 7-16. Code for the MfgComponents updatable view declaration (lines 18-20)

So what was formerly the MfgComponents extent has now become MfgComponentsTable, and you have
added the MfgComponents updatable view, which exposes only the data the user should see.
ReadableFoldersView() is a built-in function provided in the Repository.Item module that returns the
list of folder identifiers the user has permission to read. Lines 19-20 of this new code are responsible for
providing the security constraint to what the user can view or update.

Adding the PatternApplication Module
You’re not finished yet, because you don’t have code to hook into the part of the BDL that provides the
infrastructure of INSTEAD OF triggers and other machinery necessary to implement the desired security
capability. Use the Ctrl-Alt-L shortcut key combo to bring up the Solution Explorer (shown in the right
pane of Figure 7-17).

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

177

Figure 7-17. Use the Ctrl-Alt-L shortcut to bring up the Solution Explorer (right pane)

You need to add a new M code file for a module called PatternApplication. To do this, right-click on
the MfgComponentModel project name at the top of the Solution Explorer, and select Add � New Item.
As the pop-up menu indicates, you can also use the Ctrl-Shift-A shortcut to do this (see Figure 7-18).

Figure 7-18. Right-click on the MfgComponentModel project name and select Add � New Item

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

178

This will bring up an Add New Item dialog, as shown in Figure 7-19. Select the “M” Model option.

Figure 7-19. Selecting “M” Model as the type of new item to add

This will bring up the Entity Data Model Wizard (shown in Figure 7-20). Select Default Model and
click the Finish button.

Figure 7-20. Select Default Model in the Data Entity Model Wizard, then Finish

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

179

This will add a new M code file template under the previous MfgComponentMode.m file, as shown
in Figure 7-21. To rename this file to the desired name of PatternApplication.m, right-click on the name,
select the Rename option, then type in the name PatternApplication.m. As soon as you press the Enter
key to accept the new file name, the tab on the left code editor pane should change accordingly.

Figure 7-21. Renaming Model1.m to PatternApplication.m

Now you need to replace the generic template code with the M code for the PatternApplication

module, shown in Figure 7-22. If the resolution error indications shown in the figure do not appear after
you’ve finished entering this code, save all files in the project with Ctrl-Shift-S, close the project, then
reload it, and the error indications should appear.

The Patterns identifier is not being resolved because, as you might again expect, you need to add a
reference to a new schema, or model. In this case, it is called PatternApplication (discussed earlier in
the chapter), and it is contained in the PatternApplication.dll file. This should be installed on your
computer if you followed the instructions in the previous section called “Setting Up – Installing the
PatternApplication Sample.” If not, you will need to go back and do that now. If it is, you can add the
reference to this schema using the same procedure you went through before.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

180

Figure 7-22. M code for the PatternApplication module (left pane)

In the Solution Explorer, right-click on References under MfgComponentModel, and select Add
Reference. This will bring up the Add Reference dialog box. Click the Browse tab and navigate to the
location of the PatternApplication.dll file (as shown in Figure 7-23). If you installed the sample to the
following path

My Documents\Oslo\PatternApplication\

Then the path of the DLL file should be

My Documents\Oslo\PatternApplication\bin\Debug\PatternApplication.dll.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

181

Figure 7-23. Browsing to the PatternApplication.dll location

If this resolves the error, then save all files (Ctrl-Shift-S), and you should be ready to build and
deploy to the database.

Building the Project
Right-click the project name and select the Build option (see Figure 7-24).

Figure 7-24. Executing the build

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

182

If the build is successful, you should see results similar to that shown in the Output window in
Figure 7-25.

Figure 7-25. Successful build results shown in the Output window

Deploying to the Database
Once the build is accomplished, you should be ready to deploy the model to SQL Server. First, however,
you need to make sure you have a valid connection string to the database.

Right-click again on the project name and select Properties, which should be at the bottom of the
context menu (Figure 7-26).

Figure 7-26. Selecting the project Properties window in the drop-down context menu

Select the M Deployment at the bottom-left of the Properties pane (see Figure 7-27).

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

183

Figure 7-27. Preparing to configure the database connection string in the Properties pane

Click the ellipsis button to the right of the connection string prompt. This will bring up the
Connection Properties dialog (see Figure 7-28).

Figure 7-28. Connection Properties dialog box

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

184

Enter (local) for the server name, enter Repository for the database name, and click the OK button.
You should see the connection string displayed in the M Deployment area of the Properties pane (shown
in Figure 7-29). Look at this connection string to make sure everything makes sense. If you need to
change something, it can be directly edited in the prompt.

Figure 7-29. M Deployment area showing the connection string for the newly created

MfgComponentModel database

If you want to make sure everything is in order after setting up the connection string, click again on
the ellipsis button to the right of the connection string prompt to bring up the Connection Properties
dialog, and then click the Test Connection button in the lower-left corner. You should get a notification
that the “Test connection succeeded” (see Figure 7-30). Click OK in the notification window, then the
Cancel button in the Connection Properties dialog to return to the M Deployment area in the Properties
pane.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

185

Figure 7-30. Testing the database connection string

At this point, you should be ready to deploy the model to the Repository database. Make sure you’ve
saved all files by using the Ctrl-Shift-S Save All action. (No asterisk should appear on any tab.) Right-click
again on the MfgComponentModel project in the Solution Explorer, then select Deploy (as shown in
Figure 7-31).

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

186

Figure 7-31. Selecting the Deploy option in the project context menu

The deployment process writes a log to the Visual Studio Output window. If the deployment is
successful, you’ll see an indication in the last line of this window, as shown in Figure 7-32.

Figure 7-32. Visual Studio Output window, showing the deployment succeeded

If, for some reason, the deployment is unsuccessful, you may get a partial deployment of the
database, with the SQL Server system tables, but without the MfgComponentModel schema. You may be
able to delete the database by right-clicking on the MfgComponentModel database name in the SSMS
Object Explorer, and start over. If that doesn’t work, follow the recovery procedure described in the
sidebar.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

187

REFRESHING THE COMPONENTMODEL DATABASE

A corrupted or nonworking ComponentModel database can be restored using the mx.exe command-line
tool. This involves entering three mx.exe commands:

1. mx.exe create /database:ComponentModel /force. This forces a re-creation
of the ComponentModel database. Existing data will be overwritten.

2. mx.exe install Repository.mx /database:ComponentModel
/server:(local) /property:rct=+ /property:ra=+. (The command should
be entered in the command-prompt window as all one line.) This installs the
Repository schema in the database, enables change tracking (rct=+), and enables
auditing (ra=+).

3. mx.exe install
C:\Oslo\PatternApplication\bin\Debug\PatternApplication.mx
/database:ComponentModel. (Again, all one line.) This installs the
PatternApplication code for supporting the pattern hooks. The path used in this
command assumes you downloaded and installed the pattern application image to
C:\Oslo\PatternApplication. If this was installed to a different location, make
the appropriate adjustment in the path.

If you find yourself using this restore procedure more than once, it may be easier to create a
refreshdb.bat batch file containing these three commands, using a text editor. This batch file should be
located in the same folder as the mx.exe executable, which would normally be C:\Program
Files\Microsoft Oslo\1.0\bin

It can be executed from the SQL Server Modeling CTP command prompt.

Creating the QC Folders
Recall that you have two manufacturing lines at two different plants: Cars at one plant, and toasters at
another plant. You want to design your QC system so that the CarQC manager can manage his data, the
ToasterQC manager can manage her data, and the top-level QC manager has access to all QC data.

You will set up the QC folders to reflect this, so the folder hierarchy should look like the following
(numbers in parentheses are the assigned folder Id):

QC (100)

• QC-Cars (110)

• QC-Cars-Critical (111)

• QC-Cars-High (112)

• QC-Cars-Std (113)

• QC-Toasters (120)

• QC-Toasters-Critical (121)

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

188

• QC-Toasters-High (122)

• QC-Toasters-Std (123)

To create this folder structure, bring up SQL Server Management Studio, select the Repository
database in the Databases section, and expand the Views section of the Repository (see Figure 7-33). Hit
the R key to home in on the view names starting with Repository, and select Repository.Item.Folders.
Right-click on the view name, and select Edit Top 200 Rows. Since any user has rights to view the top-
level Repository folder, this view (and its table) should have only one row for the Repository folder and
nothing else, unless folders have been previously created because of other activities. This is shown in
Figure 7-33.

Figure 7-33. Editing Repository.ItemFolders view in the Repository database

Click in the Id column of the second row and enter 100 for the Folder Id, and QC for the Name.
Leave the Folder value as NULL, since you want the QC folder to be a top-level folder, with no parent
folder (see Figure 7-34). The exclamation points in the red circles indicate that the cells have changed,
but the data is not committed. As soon as you click on the next row, the data in this row will be
committed.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

189

Figure 7-34. Adding the top-level QC folder to Repository.ItemFolders view

Continue to add new folder rows according to the plan laid out at the start of this section. When you’re
finished, the Repository.Item.Folders data should look like the right pane shown in Figure 7-35.

Figure 7-35. Adding the child QC folders to Repository.Item.Folders

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

190

Building the Sample Data
Now you’re ready to build some sample manufacturing component data to test your security sample
design. You can use Quadrant to do this, so open Quadrant. If any sessions or workpads were left open in
the interface when you exited the last time Quadrant was being used, close these so that you have a fresh
canvas with nothing on it. Also, use the File � Delete Session menu option to delete any existing sessions
(named other than Quadrant) left over from the last time you closed Quadrant. Quadrant is the name of
the default session, which can’t be deleted.

On the top menu, select File � New � Session (or use the Ctrl-Shift-N shortcut) to open a new
database session (see Figure 7-36). The default in the Server prompt of the resulting New Database
Session dialog should be a period (.), which is the equivalent of the (local) instance of SQL Server. Accept
the default for the server instance, or change it to whatever server instance you have been using for this
exercise. (Remember: You need to be working with SQL Server 2008 or newer in order to have the
features that work with M and SQL Server Modeling.) In the Database prompt, select Repository from
the drop-down menu, or simply enter Repository. For the session name, enter Loading MfgComponent
Data. Click the Create button to open the session.

Figure 7-36. Creating a new Quadrant session on Repository to load MfgComponentsTable

This should bring up a database Explorer pane on the canvas, showing three items: Database, QC,
and Repository. Note the icons associated with each item: The QC and Repository items each show a
folder symbol, while the Database item shows (of course!) a database symbol (see Figure 7-37).

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

191

Figure 7-37. Initial Quadrant Explorer pane after opening the new Repository database session

Just to assure yourself everything is good as far as the folder setup us concerned, expand the QC
item by clicking the triangle to its left, and then expand the two items at the next level: QC-Cars and QC-
Toasters. You should see something very close to what’s shown in Figure 7-38.

Figure 7-38. MfgComponentModel database Explorer with QC folders expanded

The folder structure looks good—at least if it looks like Figure 7-38—so let’s expand the Database
item by clicking in the triangle symbol (see Figure 7-39). Click and drag the square symbol for
MfgComponentsTable onto the Quadrant canvas (as shown by the arrow in the figure). This will open an
Explorer pane for MfgComponentsTable, which will be empty, since you haven’t created the sample data.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

192

Figure 7-39. Dragging the MfgComponentsTable onto the Quadrant canvas to open a new Explorer pane

Click on an empty part of the grayed background canvas (you should see a hand cursor appear),
and drag the canvas with the two explorer panes to the left until only the MMfgComponentsTable Explorer
pane is visible in the main window (as shown in Figure 7-40).

Figure 7-40. After dragging the canvas to the left to isolate the MfgComponentsTable Explorer pane

To load the sample data, use the same procedure you used in Chapter 4 for creating the sample
records for the car example. Click in the Explorer pane, then use the Ctrl-I shortcut to bring up a form for
adding a new record (see Figure 7-41). (This is equivalent to using the Data � Insert Item menu option.)

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

193

Figure 7-41. Adding the top-level instance of Car to the MfgComponentsTable

Note that in the prompt for the Folder value, you have a drop-down list that allows you to choose
the appropriate QC folder. Even the top-level instance (in this case, named Car) must pass QC
certification, so let’s assign it a QC level of High. Leave the PartOfComponent prompt as Null, since the
Car value is a top-level item and has no parent component. Once you’ve entered all the values for the
new record, press Ctrl-S to save it. It should immediately appear in the table.

Table 7-1 shows the sample data to enter into the MfgComponentsTable in Quadrant. There are four
Car component rows and three Toaster component rows. The CarQC manager should only see the four
Car rows, and the ToasterQC manager should see only the three Toaster rows when they query the table.

Table 7-1. Sample Data for the MfgComponentsTable

Name Level Description Qty MfgLine Folder PartOfComponent

Car 1 Acme Runabout 1 Cars QC-Cars-High <null>

Drive Train 2 Makes the car go 1 Cars QC-Cars-High Car

Rear Wheel
Assembly

3 Includes brake
Assembly

2 Cars QC-Cars-Critical Drive Train

Brake Assembly 4 Disk Brakes 4 Cars QC-Cars-Critical Rear Wheel Assembly

Toaster 1 Acme Bunmaster 1 Toasters QC-Toaster-High <null>

Heater Assembly 2 1 per slot 4 Toasters QC-Toaster-Critical Toaster

Heater Element 3 2 per heater
Assembly

8 Toasters QC-Toaster-Critical Heater Assembly

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

194

After entering this data for the seven sample records, the MfgComponentsTable Explorer in Quadrant
should look similar to that shown in Figure 7-42.

Figure 7-42. Sample ComponentsTable data loaded for Car and Toaster

Now that you’ve set up the sample data, take a peek in your QC folders and see if those make sense.
To do this, click and drag the Quadrant canvas back to where the MfgComponentModel Explorer pane is
visible. Drag the top-level QC folder onto an empty part of the canvas (see Figure 7-43). Expand the
FoldersTable in this pane, and drill down (expand) on the Folders items, then the MfgComponents items,
until the individual Car component names are visible. Check which item is in which QC folder to make
sure everything makes sense, according to the model and folder hierarchy. Since you assigned the wheel
assemblies and the brakes a QC level of Critical, you would expect these items to be included in the QC-
Cars-Critical folder. The two remaining car components, the car itself and the drive train, have QC levels
of High, so these two components should be in the QC-Cars-High folder. Looking at Figure 7-43, this is
indeed what you see, so things appear to be going according to plan. Looking at the QC-Toasters set of
folders also confirms you’re on track.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

195

Figure 7-43. Drilling into the QC folder hierarchy to see where the components are

Setting Up the QC Manager Test Users
The fastest way of setting up your test users is to utilize the SQL Server Modeling command prompt. Go
to the Windows Start button � All Programs, and select the Microsoft SQL Server Modeling group. One
of the options in this group should be the Microsoft SQL Server Modeling Command Prompt. If you
want, you can right-click on this item to create a shortcut, and then drag the shortcut to your desktop for
quicker access. Click on the Command Prompt item, or execute the new shortcut from your desktop.

Use the nnet command to create each of the three users by entering the command

net user <user name> <password> /add

for each user: CarQC, ToasterQC, and TopQC. Since these are short-lived test users, use a password that
is easy to remember for the purpose of this exercise. Setting the password to be the same as the user

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

196

name should work, as long as you remember to go back after you’re finished and delete these three user
accounts in Windows. You should see the message “The command completed successfully” each time
you execute the command to create one of the user accounts. Figure 7-44 shows a screen shot of the
Command Prompt window after this operation is completed.

Figure 7-44. Creating the QC manager users in the SQL Server Modeling Command Prompt window

Since these are created as Windows user accounts, you will see these users on your logon window
the next time you log on to Windows. You can remove these users by going to User Accounts in the
Windows Control Panel and deleting them.

You should also add these as SQL Server users, since you want to test their security access in the SQL
Server Modeling environment. To do this, bring up SQL Server Management Studio, and click on the
New Query button in the upper-left corner (under the File menu option). You can close the Object
Explorer pane (if it’s open) to give you more real estate to work with.

Enter the SQL code shown in Figure 7-45. For <your domain here>, substitute the host domain name
of your computer. Normally this will be the Windows domain name of your computer, which might be
something like ACME-638AC9C5AC. In SQL Server Management Studio, the domain name will appear at
the bottom of a query window followed by a forward slash and your Windows user account name. (It’s in
the same location I’ve obscured for security reasons at the center bottom of Figure 7-45.)

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

197

Figure 7-45. SQL code to set up the CarQC user and grant access

You can select code in an SSMS query pane and then execute it with the F5 key. This is equivalent to
pressing the Execute button at the top-center of the window, next to the exclamation point (!). Highlight
lines 1–2 at the top and press F5. This sets any following actions to run against the Repository database.
Then highlight lines 7–9 and press F5. This runs the [Repository].[AddPrincipal] stored procedure with
the parameters shown on lines 8 and 9. Be sure to put in the proper domain name before executing the
action, however. Finally, highlight lines 13–16 and press F5 to execute. This will run the
[Repository.Item].[GrantPrincipalFolderAccess] stored procedure to give read and update privileges
for data in the QC/QC-Cars folder path to the <domain>\CarQC user.

Repeat this procedure for the QC-Toasters and QC-Top users, making the necessary changes in lines
8, 14, and 15 of the T-SQL code shown in Figure 7-45. After you’ve done this for each of the three users,
the folder access paths should be the same as those shown in Table 7-2.

Table 7-2. Test User Folder Access Paths

User Name Folder Path

TopQC QC

CarQC QC/QC-Cars

ToasterQC QC/QC-Toasters

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

198

Configuring Test-User Permissions in SQL Server Management Studio
So far, you’ve created the test users and granted read permissions to their principal folder paths. In order
for the users to see the QC data associated with their respective roles, they also need to have read/write
access to two views:

• The MfgComponentModel.MfgComponents updatable view. (Remember you
defined this view via the M code shown in Figure 7-16 in the previous
“HasFolderAndAutoId” section.)

• The Repository.Item.ReadableFolders view.

Here’s the procedure for establishing the appropriate permissions:

1. In SSMS, open the Object Explorer pane, and select and expand the Repository
database.

2. Under Repository, select and expand the Views section.

3. Under Views, select and expand the MfgComponentModel.MfgComponents view
(see Figure 7-46).

Figure 7-46. Right-click Repository/Views/MfgComponentModel.MfgComponents

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

199

4. Right-click this item and select Properties. This should bring up the View
Properties dialogue box for the MfgComponents updatable view (see Figure
7-47).

Figure 7-47. Select the Permissions properties (left pane), then click the Search button.

5. Select the Permissions item in the left pane, click the Search button in the right
pane, then enter QC as the partial name you want to search on (as shown in
Figure 7-48). This will bring up the list of your three QC test users.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

200

Figure 7-48. Preparing to search on QC user names

6. Select each of the three user names, as shown in Figure 7-49, so that the green
check mark appears to the left of the user name, then click the OK button.

Figure 7-49. Selecting the test-users to modify permissions

7. For each of the three test users, check the Grant selection box for the Select
permission, then click the OK button (shown in Figure 7-50).

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

201

Figure 7-50. Granting the Select permission for each QC user

Testing
Now you should be in a position to test what data is exposed to each user. You can do this in the SQL
Server Modeling Command Prompt window by impersonating a user with the runas command. Bring up
the SQL Server Command Prompt window, and execute the following code:

runas /user:CarQC "sqlcmd.exe /y25"

The /y25 switch on the sqlcmd.exe command is required, and sets the display width for the

SQLCMD prompt window. The system will prompt for the CarQC user’s password, which should be the
same as the user name (see Figure 7-51). After that is accepted, a separate SQLCMD window will appear,
where you can run SQL queries as the CarQC user against the MfgComponents view.

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

202

Figure 7-51. Using the runas command to impersonate the CarQC user opening a SQLCMD window

In the SQLCMD window that comes up, you’re now running as the CarQC user. Enter the following
SQL code (see Figure 7-52):

use Repository
go

The system should present the following message: Changed database context to 'Repository'.

Next, enter the following SQL commands:

select Name, Level, Folder from [MfgComponentModel].[MfgComponents]
go

Now you might expect to see a listing of only the Car line components, since it is the CarQC user

who entered the query. But instead, you get this: The SELECT permission was denied on the object
'ReadableFoldersView', database ' Repository', schema 'Repository.Item'. (shown in Figure 7-52).

Figure 7-52. Permission denied to ReadableFoldersView

I forgot (intentionally) to set up user access to ReadableFoldersView. I wanted you to see the type of
error message that occurs in this situation. SQL Server gives detailed error messages when a permissions
error occurs, so instead of seeing something like “Access denied – error code 229,” you see exactly what
permission is being denied, and what object, database, and schema are involved. Detailed error
messages can be helpful in diagnosing and fixing these kinds of problems, so it’s always good to take a
close look. (If you’re an experienced programmer, this hardly needs to be said.)

In this case, the user needs SELECT access to ReadableFoldersView because the code that defines the
MfgComponents updatable view used the system-provided ReadableFoldersView (refer to Figure 7-3, line
20) to determine which rows of the view can be exposed to the user.

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

203

Let’s return to SSMS to fix this problem. In the Views section of the Repository database, right-click
on Repository/Views/Repository.Item.ReadableFoldersView and select the Properties option (see Figure
7-53).

Figure 7-53. Setting up to grant the QC users SELECT access to ReadableFoldersView

Use the same procedure you used previously (refer to Figure 7-50) to grant SELECT access to
ReadableFoldersView for the three QC users. Return to the SQLCMD window and hit the Up arrow twice
to bring back the SQL SELECT statement, and press Enter, then enter the go command. This time you
should see the data that’s available to the CarQC user (shown in Figure 7-54).

CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

204

Figure 7-54. Data returned by the SELECT query entered by the CarQC user

The data returned is as you would expect, so let’s test to see if the permissions for the other two
users, ToasterQC and TopQC, are working. Close the SQLCMD window (since that window is running as
CarQC) and return to the SQL Command Prompt window. Press the Up arrow twice to return to the
previously entered runas command and change CarQC to ToasterQC, then press Enter to execute the
command (see Figure 7-55).

Figure 7-55. Setting up to run a SQLCMD window as theToasterQC user

When prompted for the password, enter ToasterQC (or whatever password you used for setting up
the ToasterQC login). In the new SQLCMD window, enter the usual preliminary lines to switch to the
Repository database, then the same query you used as the CarQC user (see Figure 7-56). This time,
running as the ToasterQC user, you should see only the MfgComponent entities for the Toaster
manufacturing line.

Figure 7-56. Data returned for theToasterQC user

 CHAPTER 7 � SQL SERVER MODELING SERVICES – SECURITY

205

Finally, go through the same procedure for the TopQC user. Running as the TopQC user, you should
see the data for both the Car and the Toaster manufacturing lines (shown in Figure 7-57).

Figure 7-57. Data returned when running as theTopQC user

Summary
In this chapter, I’ve presented an exercise to illustrate how SQL Server Modeling Services provided by
the Repository and the BDL can be applied to provide fine-grained (row-level) security features in the
context of the SQL Server Modeling framework. One intent of this particular example was to show how
security services, using the folder pattern, could be used to constrain the visibility of certain data sets to
certain users. I also wanted to familiarize you with a range of tools (SSMS, several facets of Visual Studio,
Quadrant, the command prompt), services, and patterns that are available for building an application.

I applied several patterns, provided by the framework, to set up security features needed for a
hypothetical QC application. I used the folder pattern (introduced in Chapter 6) to partition the data
among a hierarchical set of folders according to manufacturing line and QC attributes, and then
restricted the exposure of this data to three test QC manager users in accordance with their respective
roles.

Besides the folder pattern, several other patterns were used in the course of implementing this
example:

• AddViewsInsteadOfTriggers: This pattern applies system-provided INSTEAD OF
triggers to intercept certain actions in a way that enforces constraints on what a
particular user can see or do.

• AddFolderForeignKey: This pattern facilitates the use of folders in types and
extents, and defines the foreign key of the folder attribute used in the
MfgComponent type.

• HasFolderAndAutoId: The MfgComponentsTable extent was redefined as a mix-in of
the system-defined HasFolderAndAutoId type and the MfgComponent domain type. I
also used HasFolderAndAutoId to help set up the use of folders in defining the
MfgComponent type and the MfgComponents updatable view.

The PatternApplication code was installed and used to set up the hooks enabling the use of these
patterns.

A P P E N D I X A

� � �

207

Intellipad Primer

Intellipad is a text editor created to support, in particular, developers writing models and languages
using Microsoft Oslo's M, and it's great for other text as well. It includes language services for M,
including syntax highlighting, error checking, semantic completions, and project compilation.

Intellipad is also designed to be customized by users and extended by developers. Extensibility is
achieved using named components. Features can easily be added or modified, giving an editing
experience that ranges from the simplicity of notepad to the power of rich language support. Intellipad
uses components defined in declarative markup to customize the user experience.

Intellipad contains a built-in Python interpreter. Users can customize, extend, and automate the
editor by writing Python scripts.

Intellipad Basics
This section covers the basic components and design features of Intellipad: buffers, views, modes, and
the mini-buffer. Understanding these aspects will make it easier to customize Intellipad or invoke
features that make it easier to perform certain tasks.

Buffers
Fundamentally, Intellipad is an editor for Unicode text. A buffer represents the data model for the text
being edited. Multiple buffers can be open in Intellipad simultaneously. Buffers can come from different
sources (such as a file system, debugger, the Web, and so on). The source of the buffer determines some
of the editing capabilities available. For example, some parts of a buffer may be read-only, preventing
the user from editing text in that location. Some buffers might be auto-generated, like a buffer
containing a list of compilation errors or a buffer reporting the results of a command.

Intellipad buffers can represent Unicode text from any source. Each buffer in Intellipad is identified
by its URI (Universal Resource Identified). When Intellipad is opening a buffer, it uses the URI scheme
(file://, transient://, etc.) to locate the appropriate buffer source to open the buffer and initialize its
data. To load Unicode text from a new URI scheme (e.g., http:// or ftp://), a developer would write a
buffer source component that provides support for that URI scheme.

Intellipad also provides buffer transforms that take as input a source buffer and render the output in
a different way. For example, if you opened this document in Intellipad using the Help menu, you will
see that the URI is IntellipadPrimer.ipadhelp | Rich Text. This indicates that a Rich Text transform
was applied to the source buffer, IntellipadPrimer.ipadhelp. This transform processes the text markup
and displays the text using different font faces, sizes, and weights. Note that the original buffer,
IntellipadPrimer.ipadhelp, is also open and displays the text in its raw form. Closing the source of a
transform closes the transform buffer as well.

APPENDIX A � INTELLIPAD PRIMER

208

Views
Intellipad supports splitting the editor window into multiple views to display multiple buffers at the
same time. Each view is capable of displaying any of the currently available buffers through a menu at
the top left of the view. Different views can also show the same buffer in different modes. The view that is
active determines which set of menu options appear at the top of Intellipad; different modes often have
different menu options.

You can create additional views by activating the view to be split, then choosing Split Vertically or
Split Horizontally from the View menu. You can also use CTRL+W,\ to create the vertical split and
CTRL+W,- to create the horizontal split. Some Intellipad commands also create new views.

Pull-down menus in the upper-left and upper-right corners of each view allow you to set the active
buffer and mode, respectively. If you have multiple views, changing the mode or the buffer of one view
does not affect the other views.

Modes
Intellipad enables language-specific support for buffers through modes. Modes isolate extension
components, allowing different behaviors when editing buffers that have different content types.

When a buffer is opened, Intellipad attempts to associate the file with a mode to provide features
like syntax highlighting, additional menu items, semantic completion, and other features. The way this
default mode is determined depends on the buffer and its source. For example, when loading file
buffers, the file extension is used. An http buffer source might use the mime type to determine the mode.

A pull-down menu in the upper-right corner of each buffer view indicates the current mode and can
be used to change the mode.

The same buffer can be opened in different views and have different modes applied in each view.
However, not all modes will be meaningful in every context.

The Mini-Buffer
Intellipad provides a way to execute quick, one-line functions through a special buffer called the mini-
buffer. It can be accessed by pressing CTRL+/ or choosing Toggle Mini-Buffer on the View menu. The
mini-buffer opens in a new split, in MiniBuffer Interactive mode. You can type Intellipad commands in
this editor, which stays open until you dismiss it. Use function key F1 or the Commands item on the
Help menu to view a list of the available mini-buffer commands.

Text typed into the mini-buffer is executed in the context of the Python script engine after first
loading a setup script that makes various Intellipad-related variables and modules available. The mini-
buffer setup script is located at

Components\Microsoft.Intellipad.Scripting\PrivateScripts\MiniBufferCommandSetup.py.

The script is executed automatically when Intellipad initializes the mini-buffer.

A user could type the following into the mini-buffer:

for x in range(1, 10): Test('')

This would run all unit tests 10 times (see Settings\CommandTests.py).
Some commands, such as Zoom and Find, operate on the view that was active prior to clicking in

the mini-buffer view. The active view is indicated by a blue highlight outline.

 APPENDIX A � INTELLIPAD PRIMER

209

The mini-buffer can also be used to batch commands and issue them. These commands are
currently stored only for the Intellipad session; they will not be reloaded the next time Intellipad starts.
Take the following for example:

 >>> def MyNewCommand():
 ... Open('c:/foo.txt')
 ... Zoom(2.0)
 ... Find('<summary>')
 ...
 >>> MyNewCommand()
 >>>

Working with M in Intellipad
Intellipad has two major features that can help you develop M code: SQL Preview and the domain-

specific language (DSL) authoring configuration.

SQL Preview
Intellipad's SQL Preview allows you to easily see the SQL equivalent of M code as you create the code. To
access the SQL Preview feature, change the active view to M mode, click the M Mode menu entry, and
select T-SQL Preview. SQL Preview splits your active view into two views. The left view contains your M
code, while the right view displays the equivalent SQL.

Basic DSL Authoring Configuration
Intellipad's basic DSL authoring configuration allows you to create test input and see the output for a
domain-specific language grammar that you are developing, as you develop it. To create the basic DSL
authoring configuration, change your active view to DSL Grammar mode, click the DSL menu entry, and
select Split New Input and Output Views. Intellipad splits your active view vertically into three views.
The left view displays a new buffer whose mode is set to the name of your original DSL grammar buffer.
The middle view displays your DSL grammar. The right view displays the same buffer as the left view, but
its mode is set to M Graph mode. The left view acts as input data; you can edit text in the left view, and
its contents will be parsed in real time according to the grammar rules specified by your DSL grammar.
The results of the parsing are displayed in the right view. The displayed output is a textual representation
of an in-memory .NET Framework object model.

Customizing Intellipad
This section covers how Intellipad can be customized by changing or adding menus, colors, modes, and
commands.

APPENDIX A � INTELLIPAD PRIMER

210

Changing the Menus
Intellipad is designed so that you can add or remove menu options from the menu bar, as well as add or
remove items within each option. The file that controls Intellipad's menu settings is MenuBar.xcml,
installed in Microsoft Oslo\1.0\bin\Settings\VisualStudio. The top-level MenuItem Headers set the
options on the menu bar, while the children MenuItem Headers set the commands within each menu
option. The list of available commands can be found by pressing F1.

For example, to add the Zoom Down and Zoom Up commands to the menu under their own menu
option, you would add the following XML to MenuBar.xcml.

<MenuItem Header= '_Zoom Options'>
 <MenuItem Header= 'Zoom _In' Command='{mis:NamedCommand Name =
 Microsoft.Intellipad.ZoomUp}' />
 <MenuItem Header= 'Zoom _Out' Command='{mis:NamedCommand Name =
 Microsoft.Intellipad.ZoomDown}' />
 </MenuItem>

Changing the Colors
The color scheme that Intellipad uses to display text can be customized as well. The file that controls
how Intellipad displays text is ClassificationFormats.xcml file, installed in Microsoft
Oslo\1.0\bin\Settings. Each ClassificationFormat controls the appearance of a different text type. The
text type's color is set by the Foreground attribute and is written in hexadecimal ARGB (Alpha-Red-
Green-Blue) notation. Not all color entries have an Alpha component; they are not required. To change
the color, change the RGB values that the text type uses.

For example, if you wanted to make all keywords appear in purple, you would change the Keyword
entry so it looks like this:

 <act:Export Name='{}Microsoft.Intellipad.ClassificationFormat'>
 <ls:ClassificationFormat Name='Keyword'
 FontFamily='Consolas'
 FontWeight='Bold'
 Foreground='#FF800080' />
 </act:Export>

Adding New Modes
You can create language modes for your custom DSL by compiling the grammars and placing the MX
files in the Intellipad Settings directory (installed in Microsoft Oslo\1.0\bin). To compile your grammar,
run the following from a command window:

<path to>\Microsoft Oslo\1.0\bin\m.exe <path to .mg file> [/o:<path to .mx output file>]

When you restart Intellipad, your new modes will appear in the mode selection drop-down list. To
automatically associate your mode with a file extension, add it to FileExtensions.xcml in the Settings
directory.

 APPENDIX A � INTELLIPAD PRIMER

211

Customizing Commands
Almost all commands available in Intellipad have been written in Python using the object model
exposed by the application. The Python files are installed in the Settings directory.

Commands.py contains most of the commands for Intellipad. Configuration-specific commands
can be placed in configuration-specific subdirectories (e.g., VisualStudio).

A command definition consists of the following:

• An Executed function definition, which acts as the command handler and provides
the logic for the command.

• An optional CanExecute function definition, which determines when the
command is enabled (use if you are making your command available using menu
items).

To reload the Settings and have changes take effect, you must restart Intellipad.

Intellipad Components
The Intellipad customization and extensibility model is based on named components. Some
components are just data, providing configuration information like what color and font to use when
displaying keywords, mapping file extensions to modes, and the contents of the menu bar. Most
components of that nature are expressed declaratively. Other components provide more complex
functionality like commands, buffer modes, or editor behaviors. These components are either exposed
in script or compiled .NET assemblies.

Intellipad uses a catalog for locating and activating components. A catalog is a list of components
and associated metadata. Components can be located in compiled assemblies, Python scripts, and
declarative markup files.

At startup, a configuration file with a list of catalog sources is loaded and used to build the catalog.
By default, Intellipad looks for a file called ipad.m in the same directory as ipad.exe. See the “Command-
Line Options” section later in this Appendix for information on how to specify an alternative startup
configuration file. After it is first built, the catalog is cached to speed startup time and is updated when
sources change.

Commands are one of the most widely used components in Intellipad. Intellipad uses an input
system based on Windows Presentation Foundation (WPF) Commanding. Commands are delegates
exported as components that can then be executed when a menu item is selected or a key sequence is
pressed. Commands can also be run from script. Metadata attached to command components provides
information to the command system like the command's name, its default keystroke, and the editor
component the command is targeting (such as buffer, view, window, and so forth).

Compiled Components
Some Intellipad components are complex and benefit from being implemented in a .NET programming
language like C# or VB.NET. Classes, properties, and methods in an assembly are marked with custom
attributes to indicate what components they are exporting and also what components they depend on
(imports).

APPENDIX A � INTELLIPAD PRIMER

212

Declarative Components
XCML files provide a way of defining components declaratively using XAML markup.

Some example uses of XCML components are

• Define additional keyboard bindings and the command that they execute.

• Define the Intellipad menu bar and the command that each menu item invokes.

• Define syntax coloring and fonts for various text classifications.

• Define the set of text classifications and inheritance relationships.

• Map file extensions to Intellipad modes.

Script Components
The following code is an example of a command written in Python for copying the path of the current
file to the clipboard:

@Metadata.CommandExecuted('Microsoft.Intellipad.BufferView',
 'Microsoft.Intellipad.CopyCurrentPathToClipboard', 'Ctrl+Shift+C')
def CopyCurrentPathToClipboard(target, sender, args):
 path = sender.Buffer.Uri
 data = path
 if path.IsFile:
 data = path.LocalPath
 System.Windows.Clipboard.SetData(System.Windows.DataFormats.Text, data)

The preceding function has a Python decorator applied to it that exports it as a command
component. The parameters to the decorator define it to be a command called
'Microsoft.Intellipad.CopyCurrentPathToClipboard', targeting the currently active view, with
'Ctrl+Shift+C' as its shortcut key binding.

List of Available Modes
Each pane in Intellipad runs in a given mode. The default mode is called the standard mode, and works
more or less as a standard text editor. The other modes are specializations or enhancements built on top
of the standard mode to support a particular purpose or task, and are listed here:

• DSL Grammar mode: Provides support for authoring MGrammar. This includes
colorization, error marks for syntactically incorrect MGrammar, and the ability to
see how your grammar parses sample input.

• List mode: Used internally by certain Intellipad features to create a buffer showing
a list of items that can be clicked to navigate to the destination buffer.

• M mode: Provides support for developing M code. This includes colorization, error
marks for syntactically incorrect M, and the SQL Preview feature.

 APPENDIX A � INTELLIPAD PRIMER

213

• Output mode: Used in conjunction with the DSL Grammar mode. It shows the
textual representation of a .NET Framework object model that is created when a
DSL grammar is used to parse sample input.

• Project mode: Provides support for project development and configuration. This
includes displaying errors in the error list if the content is not a syntactically valid
MSBuild file. A project can be displayed in its text (XML) form or in an overview
list. You can use the Project � Toggle Project View menu item to switch back and
forth (or choose the desired buffer in the buffer list drop-down).

• Python mode: Provides support for Python development. This includes
colorization and error marks for syntactically incorrect Python. Code coverage is
also available if Intellipad is launched with the /coverage option.

• Rich Text mode: Used to display Intellipad help and the Intellipad primer. It is a
read-only mode that allows markup to drive classifications rather than language
services.

• SQL mode: Used in conjunction with M mode. It allows you to see the SQL
generated by M code.

• Standard mode: Enables basic text editing features. All other modes add to and
extend Standard mode capabilities.

Command-Line Options
The Intellipad executable (ipad.exe) can be invoked from the command prompt with a number of
optional command switches or flags. These are enumerated in the following list. Each switch is
designated with a forward slash (/) followed immediately by the name of the switch. The vertical bar (|)
or pipe symbol should be treated as an OR operator, so [/help|h|?] means that /help, /h, and /? will all
work for displaying the command line help text. In those cases where the flag is followed by a postfix + or
–, + turns the feature on, and – turns the feature off. Defaults are indicated for these switches in the list.

Usage:
ipad.exe [@argfile] [/help|h|?] [/script:value] [file] [/configuration|config|c:value]
 [/buildcache[+|-]] [/coverage:[+|-]] [/crashrecovery[+|-]]

• @argfile: Instructs Intellipad to read command line arguments from the given file.
When used, it must be the first argument and subsequent arguments are ignored.

• /help[+|-]: Displays a message box with Intellipad's command line help text.
Default: False.

• /script:<filename>: Launches the specified script file after startup.

• file(s): Opens the listed file(s) when Intellipad launches. Filenames are not
prefixed with a forward slash (/).

• /configuration:file (or /config: or /c:): Specifies the startup configuration,
controlling which controls are loaded into Intellipad. Default: ipad.m.

APPENDIX A � INTELLIPAD PRIMER

214

• /buildcache[+|-]: Creates Intellipad cache files and exits. Adding, changing, or
removing component files invalidates the cache. Subsequent launches of
Intellipad are faster if the cache is still valid. Default: False.

• /coverage[+|-]: Enables the collection of statistics on what functions are called
during the execution of scripts in Intellipad. Default: False.

• /crashrecovery[+|-]: Attempts to allow user to save changed buffers when
Intellipad crashes. Default: True.

A P P E N D I X B

� � �

Intellipad Mini-Buffer Commands

�

• Call(commandName, arguments=None)

• ClearMru()

• CloseBuffer(bufferIndex)

• Exit()

• Find(pattern)

• FindInBuffers(pattern)

• Goto(lineNumber)

• Open(fileName)

• Replace(searchPattern, replacePattern)

• SetEncoding(encoding)

• SetMode(modeName)

• SetTransform(transformName, parameters=None)

• Test(testName, repeat_count=1, fail_fast=False)

• Zoom(scale)

A P P E N D I X C

� � �

217

Intellipad Commands and Gestures

Command Key Combination Description

Microsoft.Intellipad.ActivateErrorListBuffer Ctrl+Shift+E Shows the error list buffer.

Microsoft.Intellipad.ActivateMiniBuffer None Shows the mini-buffer
and makes it active.

Microsoft.Intellipad.ActivateOrOpenBuffer None If the buffer is visible in a
view, this command
makes the view active.
Otherwise, it opens the
buffer in the currently
active view.

Microsoft.Intellipad.Backspace Shift+Backspace |
Backspace

Microsoft.Intellipad.BuildProject Ctrl+Shift+B Builds the current project.

Microsoft.Intellipad.CallTestCommand
WithArg

None Test command

Microsoft.Intellipad.CallTestCommand
WithoutArg

None Test command

Microsoft.Intellipad.CloseBuffer Ctrl+F4 Closes a buffer.

Microsoft.Intellipad.CloseBufferView Ctrl+Shift+W Closes a view. The buffer
remains open.

Microsoft.Intellipad.CopySelection Ctrl+C | Ctrl+Insert

Microsoft.Intellipad.CutSelection Ctrl+X | Shift+Delete

Microsoft.Intellipad.DebuggerContinue Ctrl+F5

Microsoft.Intellipad.DebuggerStart F5

APPENDIX C � INTELLIPAD COMMANDS AND GESTURES

218

Command Key Combination Description

Microsoft.Intellipad.DebuggerStepToken F10

Microsoft.Intellipad.DebuggerStop Shift+F5

Microsoft.Intellipad.DebuggerToggleInput
Breakpoint

F9

Microsoft.Intellipad.Delete Delete

Microsoft.Intellipad.DeleteWordToLeft Ctrl+Backspace

Microsoft.Intellipad.DeleteWordToRight Ctrl+Delete

Microsoft.Intellipad.DragDrop None Handles files dragged into
Intellipad.

Microsoft.Intellipad.Escape Shift+Esc | Esc

Microsoft.Intellipad.Exit Alt+F4 Exits Intellipad.

Microsoft.Intellipad.ExpandBufferView
Horizontal

Ctrl+. Expands the width of the
active view.

Microsoft.Intellipad.ExpandBufferView
Vertical

Ctrl+Shift+. Expands the height of the
active view.

Microsoft.Intellipad.Find Ctrl+F Opens the mini-buffer
and calls the Find
function.

Microsoft.Intellipad.FindInBuffers Ctrl+Shift+F Find in all open buffers

Microsoft.Intellipad.FindNext F3 Finds the next instance of
a string.

Microsoft.Intellipad.FindPrevious Shift+F3 Finds the previous
instance of a string.

Microsoft.Intellipad.FindSelectedNext Ctrl+F3 Finds the next instance of
the selected string.

Microsoft.Intellipad.FindSelectedPrevious Ctrl+Shift+F3 Finds the previous
instance of the selected
string.

 APPENDIX C � INTELLIPAD COMMANDS AND GESTURES

219

Command Key Combination Description

Microsoft.Intellipad.FocusBufferMenu Ctrl+Alt+B Sets keyboard focus on
the active view's Open
Buffers drop-down menu.

Microsoft.Intellipad.FocusBufferViewDown Alt+Down Moves the view focus
down.

Microsoft.Intellipad.FocusBufferViewLeft Alt+Left Moves the view focus to
the left.

Microsoft.Intellipad.FocusBufferViewNext F6 Moves the view focus to
the next view in the list of
open views (regardless of
position on screen).

Microsoft.Intellipad.FocusBufferViewPrevious Shift+F6 Moves the view focus to
the prior view in the list of
open views (regardless of
position on screen).

Microsoft.Intellipad.FocusBufferViewRight Alt+Right Moves the view focus to
the right.

Microsoft.Intellipad.FocusBufferViewUp Alt+Up Moves the view focus up.

Microsoft.Intellipad.FocusModeMenu Ctrl+Alt+M Sets keyboard focus on
the active view's Modes
drop-down menu.

Microsoft.Intellipad.Goto Ctrl+G Opens the mini-buffer
and calls the Goto
function.

Microsoft.Intellipad.GrammarEditing
Environment

Ctrl+Shift+T Opens a MG file in the
basic DSL authoring
configuration.

Microsoft.Intellipad.HelpCommands F1 Displays Intellipad help.

Microsoft.Intellipad.Indent Tab

Microsoft.Intellipad.InsertNewline Shift+Enter | Enter

Microsoft.Intellipad.MakeLowercase Ctrl+U

Microsoft.Intellipad.MakeUppercase Ctrl+Shift+U

APPENDIX C � INTELLIPAD COMMANDS AND GESTURES

220

Command Key Combination Description

Microsoft.Intellipad.MoveCurrentLineTo
BottomOfView

Alt+Home

Microsoft.Intellipad.MoveLineDown Down

Microsoft.Intellipad.MoveLineUp Up

Microsoft.Intellipad.MoveToEndOfDocument Ctrl+End

Microsoft.Intellipad.MoveToEndOfLine End

Microsoft.Intellipad.MoveToNextCharacter Right

Microsoft.Intellipad.MoveToNextWord Ctrl+Right

Microsoft.Intellipad.MoveToPreviousCharacter Left

Microsoft.Intellipad.MoveToPreviousWord Ctrl+Left

Microsoft.Intellipad.MoveToStartOfDocument Ctrl+Home

Microsoft.Intellipad.MoveToStartOfLine Home

Microsoft.Intellipad.NavigateToUri None Opens the Uri given in
args, leaving the current
buffer visible.

Microsoft.Intellipad.New Ctrl+N Opens a new untitled
buffer in the active view.

Microsoft.Intellipad.NewGrammarEditing
Environment

None Opens a new MG file in
the basic DSL authoring
configuration.

Microsoft.Intellipad.NewProject Ctrl+Shift+N Create a new CSharp
modeling project.

Microsoft.Intellipad.Open Ctrl+O Opens a file in the active
view.

Microsoft.Intellipad.OpenMru None Opens a buffer listed in
the most recently used
list.

Microsoft.Intellipad.OpenStartFiles None Opens buffers specified
on the command line.

 APPENDIX C � INTELLIPAD COMMANDS AND GESTURES

221

Command Key Combination Description

Microsoft.Intellipad.PageDown Page Down

Microsoft.Intellipad.PageUp Page Up

Microsoft.Intellipad.Paste Ctrl+V | Shift+Insert

Microsoft.Intellipad.Primer None Opens the Intellipad
primer.

Microsoft.Intellipad.Redo Ctrl+Y |
Alt+Shift+Backspace

Microsoft.Intellipad.ReformatDocument Ctrl+E,D Reformats the document
by changing the
indentation of each line.

Microsoft.Intellipad.ReloadSettings Ctrl+Alt+F5 Reload the configuration
settings of Intellipad.

Microsoft.Intellipad.Replace Ctrl+H Opens the mini-buffer
and calls the Replace
function.

Microsoft.Intellipad.ReplaceNext F4 Finds and replaces the
next instance of a string
with another string.

Microsoft.Intellipad.ReplacePrevious Shift+F4 Finds and replaces the
previous instance of a
string with another string.

Microsoft.Intellipad.ResetSelection Esc

Microsoft.Intellipad.RunTests Ctrl+R,A Runs Intellipad's built-in
self tests.

Microsoft.Intellipad.Save Ctrl+S Saves the contents of the
buffer in the active view to
their current file location.

Microsoft.Intellipad.SaveACopy None Saves a copy of the buffer
in the active view to the
specified file location.

Microsoft.Intellipad.SaveAll Ctrl+Shift+S Saves the contents of all
buffers currently opened
by Intellipad.

APPENDIX C � INTELLIPAD COMMANDS AND GESTURES

222

Command Key Combination Description

Microsoft.Intellipad.SaveAs None Saves the contents of the
buffer in the active view to
the specified file location.
The original buffer is
closed, discarding any
changes.

Microsoft.Intellipad.ScrollDownAndMove
CaretIfNecessary

Ctrl+Down

Microsoft.Intellipad.ScrollUpAndMove
CaretIfNecessary

Ctrl+Up

Microsoft.Intellipad.SelectAll Ctrl+A

Microsoft.Intellipad.SelectCurrentWord None

Microsoft.Intellipad.SelectEnclosing None

Microsoft.Intellipad.SelectFirstChild None

Microsoft.Intellipad.SelectLineDown Shift+Down

Microsoft.Intellipad.SelectLineUp Shift+Up

Microsoft.Intellipad.SelectNextSibling None

Microsoft.Intellipad.SelectNextSiblingExtend
Selection

Alt+Shift+Down

Microsoft.Intellipad.SelectPageDown Shift+Page Down

Microsoft.Intellipad.SelectPageUp Shift+Page Up

Microsoft.Intellipad.SelectPreviousSibling None

Microsoft.Intellipad.SelectPreviousSiblingExtend
Selection

Alt+Shift+Up

Microsoft.Intellipad.SelectToEndOfDocument Ctrl+Shift+End

Microsoft.Intellipad.SelectToEndOfLine Shift+End

Microsoft.Intellipad.SelectToNextCharacter Shift+Right

Microsoft.Intellipad.SelectToNextWord Ctrl+Shift+Right

 APPENDIX C � INTELLIPAD COMMANDS AND GESTURES

223

Command Key Combination Description

Microsoft.Intellipad.SelectToPreviousCharacter Shift+Left

Microsoft.Intellipad.SelectToPreviousWord Ctrl+Shift+Left

Microsoft.Intellipad.SelectToStartOfDocument Ctrl+Shift+Home

Microsoft.Intellipad.SelectToStartOfLine Shift+Home

Microsoft.Intellipad.SetEncoding None Sets the file encoding of
the buffer in the view.

Microsoft.Intellipad.ShowCompletions Ctrl+Space Shows possible
completions of a token.

Microsoft.Intellipad.ShowDefinitionList F12 Shows a list of definitions.

Microsoft.Intellipad.ShowNotifications None Shows the notification
buffer.

Microsoft.Intellipad.ShowReferencesList Shift+F12 Shows a list of all things
that reference the
highlighted item.

Microsoft.Intellipad.ShowScriptBuffer None Opens the interactive
Python script buffer in the
current view.

Microsoft.Intellipad.ShowSqlBuffer None Opens the interactive SQL
buffer in the current view.

Microsoft.Intellipad.ShrinkBufferViewHorizontal Ctrl+, Shrinks the width of the
active view.

Microsoft.Intellipad.ShrinkBufferViewVertical Ctrl+Shift+, Shrinks the height of the
active view.

Microsoft.Intellipad.Space Space

Microsoft.Intellipad.SplitHorizontal Ctrl+W,- Splits the active view into
two views, one above the
other.

Microsoft.Intellipad.SplitVertical Ctrl+W,\ Splits the active view into
two views, side by side.

Microsoft.Intellipad.ToggleBehavior None Toggles the specified
behavior on or off.

APPENDIX C � INTELLIPAD COMMANDS AND GESTURES

224

Command Key Combination Description

Microsoft.Intellipad.ToggleFileChanges
Notification

Ctrl+W,N Toggles if you want
notification that an open
file is changed outside of
Intellipad.

Microsoft.Intellipad.ToggleFullScreen Alt+Shift+Enter Toggles full-screen
operation of Intellipad on
or off.

Microsoft.Intellipad.ToggleLineNumber Ctrl+Shift+L

Microsoft.Intellipad.ToggleMiniBuffer Ctrl+Shift+D | Ctrl+/ Toggles the mini-buffer
view on or off.

Microsoft.Intellipad.ToggleOverwriteMode Insert

Microsoft.Intellipad.ToggleWordWrap Ctrl+W,W

Microsoft.Intellipad.TransposeCharacter Ctrl+T

Microsoft.Intellipad.TransposeLine Alt+Shift+T

Microsoft.Intellipad.Undo Ctrl+Z |
Alt+Backspace

Microsoft.Intellipad.Unindent Shift+Tab

Microsoft.Intellipad.YankLine Ctrl+L Copies the line(s) where
the cursor is.

Microsoft.Intellipad.ZoomCommand Ctrl+W,Z Opens the mini-buffer
and calls the Zoom
function.

Microsoft.Intellipad.ZoomDown Ctrl+-

Microsoft.Intellipad.ZoomUp Ctrl+=

A P P E N D I X D
�
� � �
�

The Quadrant Menu Tree

File

 New

��� ��M File

��� ��Workpad (Ctrl+N)

��� ��Session (Ctrl+Shift+N)

��� ��T-SQL Console

 Open File (Ctrl+O)

 Delete Session

 Drop Database

 Save File

 Save File As

 Save Changes (Ctrl+S)

 Revert All Changes

 Resolve All Conflicts

��� ��As Proposed

��� ��As Original

��� ��As Database

 Print

 Exit

Edit

 Redo (Ctrl+Y)

 Undo (Ctrl+Z)

 Cut (Ctrl+X)

 Copy (Ctrl+C)

 Paste (Ctrl+V)

 Delete

 Select All (Ctrl+A)

(Continued)

�

View

 Explorer

� � ���<List of Sessions Submenu>

 Changes

 Errors

� � ���<List of Sessions Submenu>

 Workpads

� � ���<List of open workpads Submenu>

 Details

 Zoom

� � ���To Active Workpad (F10)

� � ���To All Workpads (F12)

� � ���25%

� � ���50%

� � ���100%

� � ���200%

� � ���400%

 Set Preferred Zoom

� � ���Current (Ctrl+Shift+O)

� � ���50%

� � ���75%

� � ���100% (Ctrl+Shift+Z)

� � ���125%

� � ���150%

� � ���200%

 Refresh (F5

(Continued)

�

Workpad

 Save View As

 Set As Default View

 View Source

 Configure

 Float

 Show Query Bar

 Close (Ctrl+F4)

 Close All Workpads

Data

 Deploy (Ctrl+F5)

 Install Addin

 Show SQL

 Export Database To M

 Import Assembly

 Import Uml

 Insert Item (Ctrl+I)

 Delete Item

Help

 Quadrant Help

 Quadrant Repository Connection

 About Quadrant

A P P E N D I X E

� � �

229

Generated T-SQL
for the Car Model Example

The following listing is the generated T-SQL code for the CarTypeExample M code shown in Figure 5-10 in
Chapter 5.

set xact_abort on;
go

begin transaction;
go

set ansi_nulls on;
go

if not exists
(
 select *
 from [sys].[schemas]
 where [name] = N'CarTypeExample'
)
 execute [sp_executesql] N'create schema [CarTypeExample]';
go

if not exists
(
 select *
 from [sys].[schemas]
 where [name] = N'EngineModule'
)
 execute [sp_executesql] N'create schema [EngineModule]';
go

if not exists
(
 select *
 from [sys].[schemas]
 where [name] = N'$MRuntime.CarTypeExample'
)

APPENDIX E � GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

230

 execute [sp_executesql] N'create schema [$MRuntime.CarTypeExample]';
go

if not exists
(
 select *
 from [sys].[schemas]
 where [name] = N'$MRuntime.EngineModule'
)
 execute [sp_executesql] N'create schema [$MRuntime.EngineModule]';
go

create function [CarTypeExample].[Check_Cars_Func]
(
 @Year as int
)
returns bit
as
 begin
 return case
 when @Year >= 1769
 then 1
 else 0
 end
 end;
go

create function [CarTypeExample].[Check_Cars_Func1]
(
 @Year as int
)
returns bit
as
 begin
 return case
 when @Year <= 2020
 then 1
 else 0
 end
 end;
go

create function [EngineModule].[HorsepowerPerCylinder]
(
 @Eng as xml
)
returns decimal(19,6)
as
 begin
 return convert(decimal(19,6),
 (
 select (@Eng).value(N'(/entity/Horsepower)[1]', N'int') as [Item]

 APPENDIX E � GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

231

)) / convert(decimal(19,6),
 (
 select (@Eng).value(N'(/entity/Cylinders)[1]', N'tinyint') as [Item]
))
 end;
go

create function [EngineModule].[Check_Engines_Func]
(
 @Cylinders as tinyint
)
returns bit
as
 begin
 return case
 when @Cylinders >= 1
 then 1
 else 0
 end
 end;
go

create function [EngineModule].[Check_Engines_Func1]
(
 @Cylinders as tinyint
)
returns bit
as
 begin
 return case
 when @Cylinders <= 12
 then 1
 else 0
 end
 end;
go

create function [EngineModule].[Check_Engines_Func2]
(
 @Horsepower as int
)
returns bit
as
 begin
 return case
 when @Horsepower < 1000
 then 1
 else 0
 end
 end;
go

APPENDIX E � GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

232

create function [EngineModule].[Check_Engines_Func3]
(
 @Fuel as nvarchar(max)
)
returns bit
as
 begin
 return case
 when @Fuel in
 (
 N'gas',
 N'diesel',
 N'propane'
)
 then 1
 else 0
 end
 end;
go

create table [EngineModule].[Engines]
(
 [Id] int not null identity,
 [Cylinders] tinyint not null,
 [Horsepower] int not null,
 [Fuel] nvarchar(max) not null,
 [Description] nvarchar(max) not null,
 constraint [PK_Engines] primary key clustered ([Id]),
 check ([Horsepower] between 0 and 65535),
 constraint [Check_Engines] check ([EngineModule].[Check_Engines_Func]([Cylinders]) = 1),
 constraint [Check_Engines1] check ([EngineModule].[Check_Engines_Func1]([Cylinders])�
 = 1),
 constraint [Check_Engines2] check ([EngineModule].[Check_Engines_Func2]([Horsepower])�
 = 1),
 constraint [Check_Engines3] check ([EngineModule].[Check_Engines_Func3]([Fuel]) = 1)
);
go

create table [CarTypeExample].[Cars]
(
 [Id] bigint not null identity,
 [Mfr] nvarchar(max) not null,
 [Model] nvarchar(max) not null,
 [Year] int not null,
 [Engine] int not null,
 constraint [PK_Cars] primary key clustered ([Id]),
 check ([Year] between 0 and 65535),
 constraint [FK_Cars_Engine_EngineModule_Engines] foreign key ([Engine]) references�
 [EngineModule].[Engines] ([Id]),
 constraint [Check_Cars] check ([CarTypeExample].[Check_Cars_Func]([Year]) = 1),
 constraint [Check_Cars1] check ([CarTypeExample].[Check_Cars_Func1]([Year]) = 1)
);

 APPENDIX E � GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

233

go

create table [$MRuntime.EngineModule].[Engines_Labels]
(
 [Label] nvarchar(444) not null,
 [Value] int not null,
 constraint [PK_Engines_Labels] primary key clustered ([Label]),
 constraint [FK_Engines_Labels_Value_EngineModule_Engines] foreign key ([Value])�
 references [EngineModule].[Engines] ([Id]) on delete cascade
);
go

create index [IR_Engine] on [CarTypeExample].[Cars] ([Engine]);
go

create table [$MRuntime.CarTypeExample].[Cars_Labels]
(
 [Label] nvarchar(444) not null,
 [Value] bigint not null,
 constraint [PK_Cars_Labels] primary key clustered ([Label]),
 constraint [FK_Cars_Labels_Value_CarTypeExample_Cars] foreign key ([Value]) references�
 [CarTypeExample].[Cars] ([Id]) on delete cascade
);
go

create index [IR_Value] on [$MRuntime.EngineModule].[Engines_Labels] ([Value]);
go

create function [$MRuntime.EngineModule].[LookupInEngines_Labels]
(
 @name as nvarchar(max)
)
returns table
as
 return
 select top (1)
 [t3].[Id] as [Id],
 [t3].[Cylinders] as [Cylinders],
 [t3].[Horsepower] as [Horsepower],
 [t3].[Fuel] as [Fuel],
 [t3].[Description] as [Description]
 from [$MRuntime.EngineModule].[Engines_Labels] as [p]
 cross apply
 (
 select [$Engines3].[Id] as [Id],
 [$Engines3].[Cylinders] as [Cylinders],
 [$Engines3].[Horsepower] as [Horsepower],
 [$Engines3].[Fuel] as [Fuel],
 [$Engines3].[Description] as [Description]
 from [EngineModule].[Engines] as [$Engines3]
 where [$Engines3].[Id] = [p].[Value]
) as [t3]

APPENDIX E � GENERATED T-SQL FOR THE CAR MODEL EXAMPLE

234

 where [p].[Label] = @name;
go

create index [IR_Value] on [$MRuntime.CarTypeExample].[Cars_Labels] ([Value]);
go

create function [$MRuntime.CarTypeExample].[LookupInCars_Labels]
(
 @name as nvarchar(max)
)
returns table
as
 return
 select top (1)
 [t3].[Id] as [Id],
 [t3].[Mfr] as [Mfr],
 [t3].[Model] as [Model],
 [t3].[Year] as [Year],
 [t3].[Engine] as [Engine]
 from [$MRuntime.CarTypeExample].[Cars_Labels] as [p]
 cross apply
 (
 select [$Cars2].[Id] as [Id],
 [$Cars2].[Mfr] as [Mfr],
 [$Cars2].[Model] as [Model],
 [$Cars2].[Year] as [Year],
 [$Cars2].[Engine] as [Engine]
 from [CarTypeExample].[Cars] as [$Cars2]
 where [$Cars2].[Id] = [p].[Value]
) as [t3]
 where [p].[Label] = @name;
go

commit transaction;
go

Index

� Symbols

� A

� B

� C

See

�

� D

See

� E

� F

�

� G

� H

� I

� K

� L

See

� M

See
See

�

� N

� O

See

� P

� Q

� R

See

See

� S

See

�

See

See

See

See

� T

See

� U
See

� V
See

�

� W

� X

� Z

	Title Page

	Copyright Page

	Contents at a Glance
	Table of Contents

	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	CHAPTER 1 Installing and Setting Up SQL Server Modeling
	Software Pre-Requisites
	Hardware and Operating System Requirements
	Configuring SQL Server
	Downloading and Installing
	Checking the Installation

	If Something Goes Wrong…
	The Repair Option
	The Uninstall Option

	Summary

	CHAPTER 2 Introduction to Intellipad
	Getting Started with Intellipad
	The File Menu
	The Edit Menu
	The Find Commands
	The Replace Command
	The Go to Line Command
	Behaviors
	Disable External Changes

	The View Menu
	Full Screen
	Zoom
	Split Windows
	The Mini-Buffer

	The Help Menu
	Commands List
	Intellipad Primer

	View Title Banner Functions
	View Modes

	CHAPTER 3 Domain-Specific Languages 101: Lola’s Lunch Counter
	Some Caveats
	A Simple Exercise: The Sandwich Language
	Where You Want to End Up
	Getting Started with the Intellipad DSL Grammar Mode Interface
	Broadening the Choices
	Interleaving (Ignoring) Whitespace
	Defining Tokens
	Enabling Multiple DSL Statements
	Tightening Up the Syntax
	Moving Toward Structured Data
	Testing the Syntax
	Making the Syntax More Flexible
	The SandwichLanguage DSL MGraph

	Extending SandwichOrders to More Than One Main Ingredient
	Deployment
	Thinking Ahead

	Concluding Thoughts

	CHAPTER 4 Introduction to Quadrant
	My Car: Creating a Simple Model in Quadrant
	Building the Car Model in Quadrant
	Deploying the Model to SQL Server
	Viewing the Model and Adding Data in the Explorer
	Customizing Column Views in Quadrant
	Viewing and Editing the Model in SQL Server
	Managing Changes to the Data in Quadrant
	Managing Conflicts in Quadrant
	Using the Quadrant Explorer Query Bar
	More on Customizing the View

	Summary

	CHAPTER 5 M – The Modeling Language
	Why M?
	Getting Started with M
	Modules
	The Four Basic Constructs of M

	Types
	Intrinsic and Derived Types
	M’s Built-Ins: The Intrinsic Types
	The Collection Type
	Multiplicity Constraints
	Collection Operators

	The Entity Type
	Entity Value Initializers
	Member Names
	Entity Values
	Entity Value Operators

	Modules Revisited: Import and Export Directives
	Extents
	Generating T-SQL Code for the Car Model

	Computed Values
	Overloading

	Languages
	Summary

	CHAPTER 6 SQL Server Modeling Services – The Folder Pattern
	The Modeling Services Folder Pattern
	Example: A Quality Control System for CarModel

	CHAPTER 7 SQL Server Modeling Services – Security
	Using Security to Limit Data Visibility
	Setting Up – Installing the PatternApplication Sample
	Building on the CarModel
	Building the MfgComponentModel Project in Visual Studio
	Refining the Model to Include Security
	HasFolderAndAutoId
	Adding the PatternApplication Module
	Building the Project
	Deploying to the Database
	Creating the QC Folders
	Building the Sample Data
	Setting Up the QC Manager Test Users
	Configuring Test-User Permissions in SQL Server Management Studio
	Testing

	Summary

	APPENDIX A Intellipad Primer
	Intellipad Basics
	Buffers
	Views
	Modes
	The Mini-Buffer

	Working with M in Intellipad
	SQL Preview
	Basic DSL Authoring Configuration

	Customizing Intellipad
	Changing the Menus
	Changing the Colors
	Adding New Modes
	Customizing Commands

	Intellipad Components
	Compiled Components
	Declarative Components
	Script Components

	List of Available Modes
	Command-Line Options

	APPENDIX B Intellipad Mini-Buffer Commands
	APPENDIX C Intellipad Commands and Gestures
	APPENDIX D The Quadrant Menu Tree
	APPENDIX E Generated T-SQL for the Car Model Example
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

