
Beginning Unity 
Android Game 
Development

From Beginner to Pro
—
Kishan Takoordyal



Beginning Unity 
Android Game 
Development

From Beginner to Pro

Kishan Takoordyal



Beginning Unity Android Game Development: From Beginner to Pro

ISBN-13 (pbk): 978-1-4842-6001-2		  ISBN-13 (electronic): 978-1-4842-6002-9
https://doi.org/10.1007/978-1-4842-6002-9

Copyright © 2020 by Kishan Takoordyal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole 
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilm or in any other physical 
way, and transmission or information storage and retrieval, electronic adaptation, computer 
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a 
trademark symbol with every occurrence of a trademarked name, logo, or image, we use 
the names, logos, and images only in an editorial fashion and to the benefit of the 
trademark owner, with no intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, 
even if they are not identified as such, is not to be taken as an expression of opinion as to 
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the 
date of publication, neither the author nor the editors nor the publisher can accept any 
legal responsibility for any errors or omissions that may be made. The publisher makes no 
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress 
Media, LLC is a California LLC and the sole member (owner) is Springer Science+Business 
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our 
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub via the book’s product page, located at www.apress.com/ 
978-1-4842-6001-2. For more detailed information, please visit www.apress.com/
source-code.

Printed on acid-free paper

Kishan Takoordyal
Eau Coulee, Mauritius

https://doi.org/10.1007/978-1-4842-6002-9


To my family and the high school friends who have 
supported me from the start



v

Chapter 1: �Programming Concepts��������������������������������������������������������1

1.1 ��Variables, Constants, and Types�����������������������������������������������������������������������4

1.1.1 ��Integer Data Type�������������������������������������������������������������������������������������4

1.1.2 ��Float Data Type����������������������������������������������������������������������������������������4

1.1.3 ��Boolean Data Type�����������������������������������������������������������������������������������4

1.1.4 ��String Data Type��������������������������������������������������������������������������������������5

1.1.5 ��Variables��������������������������������������������������������������������������������������������������5

1.1.6 ��Constants�������������������������������������������������������������������������������������������������6

1.1.7 ��Comments�����������������������������������������������������������������������������������������������6

1.2 ��Arrays���������������������������������������������������������������������������������������������������������������7

1.2.1 ��Declaring and Creating an Array��������������������������������������������������������������7

1.2.2 ��Setting, Fetching, and Modifying Values in an Array��������������������������������8

1.3 ��Arithmetic Operators����������������������������������������������������������������������������������������9

1.3.1 ��Addition, Subtraction, Multiplication, and Division����������������������������������9

1.3.2 ��Variables and Constants������������������������������������������������������������������������10

1.3.3 ��Modulus�������������������������������������������������������������������������������������������������10

1.3.4 ��Compound Assignment Operators���������������������������������������������������������11

1.3.5 ��Quick Increment and Decrement�����������������������������������������������������������11

Table of Contents

About the Author����������������������������������������������������������������������������������xi

About the Technical Reviewer������������������������������������������������������������xiii

Introduction�����������������������������������������������������������������������������������������xv



vi

1.3.6 ��Unary Operations�����������������������������������������������������������������������������������11

1.3.7 ��Casting��������������������������������������������������������������������������������������������������12

1.4 ��Logical Operators�������������������������������������������������������������������������������������������12

1.4.1 ��Simple Boolean Expressions�����������������������������������������������������������������13

1.4.2 ��AND (&&)������������������������������������������������������������������������������������������������14

1.4.3 ��OR (||)�����������������������������������������������������������������������������������������������������14

1.4.4 ��NOT (!)����������������������������������������������������������������������������������������������������14

1.5 ��Selection��������������������������������������������������������������������������������������������������������14

1.5.1 ��if then else Control Structure����������������������������������������������������������������15

1.5.2 ��Case Control Structure��������������������������������������������������������������������������17

1.6 ��Iteration����������������������������������������������������������������������������������������������������������18

1.6.1 ��while Loop���������������������������������������������������������������������������������������������19

1.6.2 ��for Loop�������������������������������������������������������������������������������������������������19

1.6.3 ��foreach Loop������������������������������������������������������������������������������������������20

1.6.4 ��Continue and Break�������������������������������������������������������������������������������21

1.7 ��Functions�������������������������������������������������������������������������������������������������������22

1.7.1 ��Basics����������������������������������������������������������������������������������������������������23

1.7.2 ��Parameters��������������������������������������������������������������������������������������������23

1.7.3 ��Returning a Value����������������������������������������������������������������������������������24

1.7.4 ��global and local�������������������������������������������������������������������������������������25

1.8 ��Coroutines������������������������������������������������������������������������������������������������������26

1.8.1 ��Defining and Calling Coroutines������������������������������������������������������������26

1.8.2 ��Using Seconds Instead of Frames���������������������������������������������������������27

Chapter 2: �Introduction to Unity����������������������������������������������������������29

2.1 ��Creating a Unity Account��������������������������������������������������������������������������������29

2.2 ��Downloading Unity and Add-ons��������������������������������������������������������������������30

2.2.1 ��Unity Hub�����������������������������������������������������������������������������������������������31

2.2.2 ��Creating an Empty Project���������������������������������������������������������������������33

Table of ContentsTable of Contents



vii

2.3 ��Essential Windows�����������������������������������������������������������������������������������������35

2.3.1 ��The Project Window�������������������������������������������������������������������������������36

2.3.2 ��The Hierarchy Window���������������������������������������������������������������������������37

2.3.3 ��The Scene Window��������������������������������������������������������������������������������38

2.3.4 ��Game View���������������������������������������������������������������������������������������������46

2.3.5 ��The Inspector Window���������������������������������������������������������������������������50

2.3.6 ��The Unity Asset Store����������������������������������������������������������������������������52

2.3.7 ��The Console Window�����������������������������������������������������������������������������55

2.3.8 ��Build Settings����������������������������������������������������������������������������������������58

Chapter 3: GameObjects, Prefabs, Materials,  
and Components����������������������������������������������������������������������������������59

3.1 ��GameObjects and Prefabs������������������������������������������������������������������������������59

3.2 ��Components���������������������������������������������������������������������������������������������������62

3.2.1 ��Transform����������������������������������������������������������������������������������������������65

3.2.2 ��Camera��������������������������������������������������������������������������������������������������67

3.2.3 ��Lighting��������������������������������������������������������������������������������������������������72

3.2.4 ��Renderer������������������������������������������������������������������������������������������������76

3.2.5 ��Collider��������������������������������������������������������������������������������������������������77

3.2.6 ��Rigidbody�����������������������������������������������������������������������������������������������81

3.2.7 ��Audio Source and Listener���������������������������������������������������������������������82

3.2.8 ��Particle System�������������������������������������������������������������������������������������84

3.2.9 ��Trail Renderer����������������������������������������������������������������������������������������93

3.3 ��Materials��������������������������������������������������������������������������������������������������������96

3.4 ��Tags and Layers���������������������������������������������������������������������������������������������98

3.5 ��Scripts����������������������������������������������������������������������������������������������������������100

Table of ContentsTable of Contents



viii

Chapter 4: �User Interface�������������������������������������������������������������������105

4.1 ��Canvas���������������������������������������������������������������������������������������������������������106

4.1.1 ��Canvas Component������������������������������������������������������������������������������107

4.1.2 ��Canvas Scaler��������������������������������������������������������������������������������������109

4.1.3 ��Graphic Raycaster�������������������������������������������������������������������������������111

4.2 ��Rect Transform���������������������������������������������������������������������������������������������112

4.3 ��Text���������������������������������������������������������������������������������������������������������������114

4.4 ��Image�����������������������������������������������������������������������������������������������������������116

4.5 ��Raw Image���������������������������������������������������������������������������������������������������118

4.6 ��Slider������������������������������������������������������������������������������������������������������������119

4.7 ��Button����������������������������������������������������������������������������������������������������������122

4.8 ��Input Field����������������������������������������������������������������������������������������������������124

4.9 ��Toggle�����������������������������������������������������������������������������������������������������������126

4.10 ��Drop-down�������������������������������������������������������������������������������������������������128

4.11 ��Scrollbar�����������������������������������������������������������������������������������������������������130

4.12 ��Scrollview��������������������������������������������������������������������������������������������������132

4.13 ��Panel����������������������������������������������������������������������������������������������������������134

4.14 ��EventSystem����������������������������������������������������������������������������������������������134

4.15 ��Introduction to Input Axes��������������������������������������������������������������������������136

Chapter 5: �Building Our First Android Game: Sphere Shooter�����������139

5.1 ��Render Pipelines������������������������������������������������������������������������������������������139

5.1.1 ��Universal Render Pipeline (URP)����������������������������������������������������������140

5.2 ��The Environment������������������������������������������������������������������������������������������145

5.3 ��Our Player (Tank)������������������������������������������������������������������������������������������151

5.3.1 ��Making the Tank����������������������������������������������������������������������������������151

5.3.2 ��Setting Up Our Scene��������������������������������������������������������������������������157

5.3.3 ��Player Movement���������������������������������������������������������������������������������163

Table of ContentsTable of Contents



ix

5.3.4 ��Camera Positioning�����������������������������������������������������������������������������170

5.3.5 ��Making the Player Shoot Bullets���������������������������������������������������������171

5.4 ��Enemies�������������������������������������������������������������������������������������������������������179

5.4.1 ��Making an Enemy��������������������������������������������������������������������������������179

5.4.2 ��Importing Another Asset from the Store����������������������������������������������183

5.4.3 ��Making Our Enemy Move and Explode������������������������������������������������183

Chapter 6: �Improving and Building Sphere Shooter��������������������������193

6.1 ��Spawning Enemies��������������������������������������������������������������������������������������193

6.2 ��Scoring���������������������������������������������������������������������������������������������������������196

6.3 ��Making Menus���������������������������������������������������������������������������������������������202

6.3.1 ��Coding Utilities Required���������������������������������������������������������������������202

6.3.2 ��Start Menu�������������������������������������������������������������������������������������������205

6.3.3 ��Pause Menu�����������������������������������������������������������������������������������������211

6.3.4 ��Game Over Menu���������������������������������������������������������������������������������216

6.4 ��Adding Health�����������������������������������������������������������������������������������������������221

6.5 ��A New Enemy�����������������������������������������������������������������������������������������������228

6.6 ��HealthBoxes�������������������������������������������������������������������������������������������������233

6.6.1 ��Making the healthBox��������������������������������������������������������������������������233

6.6.2 ��Adding Health��������������������������������������������������������������������������������������234

6.6.3 ��Spawning healthBoxes Along the Map������������������������������������������������235

6.7 ��Exporting the Game as an .apk file��������������������������������������������������������������239

Index��������������������������������������������������������������������������������������������������249

Table of ContentsTable of Contents



xi

About the Author

Kishan Takoordyal started at a young age 

by learning programming with Python. 

Since acquiring a greater interest in game 

development, he has been developing games, 

using the Unity game engine for more than 

four years. He is also a Linux aficionado and 

has worked on his own distribution. Currently, 

he resides in his home country, Mauritius, 

where he often participates in major technical 

events and hackathons with Cyberstorm.mu, 

while developing quality games and improving 

his portfolio with new skills.  



xiii

About the Technical Reviewer

Simon Jackson is a longtime software 

engineer and architect with many years of 

Unity game development experience, as 

well as the author of several Unity game 

development books. He loves to create Unity 

projects as well as lend a hand to help educate 

others, whether via a blog, vlog, user group, or 

major speaking event. 

His primary focus at the moment is the 

XRTK (Mixed Reality Toolkit) project. This is 

aimed at building a cross-platform mixed reality framework to enable both 

VR and AR developers to build efficient solutions in Unity and then build/

distribute them to as many platforms as possible. 



xv

Introduction

This book aims to help readers master the art of programming game apps 

for Android, using the Unity3D game engine. It will help those wishing 

to pursue a career, or hobbyists, understand basic concepts of game 

development, using Unity. By the end of the book, readers will have gained 

sufficient knowledge to confidently build an Android game.

The book starts by explaining simple programming concepts, to 

familiarize beginners with the relevant jargon. Readers will then learn to 

navigate the Unity interface and use basic tools (hand, move, rotate, scale, 

rect). They will also learn to create basic 3D objects in the game, while 

getting to know the purpose of several windows (Hierarchy, Inspector, 

Scene, Game, Console, Project, Asset Store). The role of prefabs, Canvas 

UI elements (such as Text, Button, Image, etc.), and several components 

(transform, renderer, collider, rigidbody, etc.) will also be discussed.

In the last chapters, readers will learn to create a simple game for 

Android, using the concepts studied in the previous chapters. Scripts will 

have to be written to handle the behaviors of the player and enemies, as 

well to handle other aspects of the game.

A lot of MonoBehavior structs (Vector3, Quaternion) and functions 

(Awake, Start, Update, FixedUpdate, OnCollisionEnter, Coroutine) 

also will be explained. Tips, such as switching to the universal rendering 

pipeline, if targeting mobile platforms, will also be shared throughout the 

book, to help improve in-game performance.

By the end of the book, the reader will have gained solid knowledge 

for making basic Android games that can be upgraded later to make more 

complex versions.



1© Kishan Takoordyal 2020 
K. Takoordyal, Beginning Unity Android Game Development,  
https://doi.org/10.1007/978-1-4842-6002-9_1

CHAPTER 1

Programming 
Concepts
Programming is all about taking a problem and defining a solution for it. 

Every detail is elaborated to try and convey that solution to a computer.  

For some, specific instructions are given to the computer system, to 

perform tasks leading to the desired solution.

Thankfully, there are high-level programming languages to help us 

write these solutions in a language closer to English than to 0s and 1s. 

In exact terms, a programming language is a set of rules that provides a 

means of instructing a computer what operations to perform.

Let’s consider an analogy. (Refer to Figure 1-1.) Suppose that we have 

a couple of fruits and must make a salad out of them. The first step is to 

analyze and define the problem. Specifically, input data (fruits) must be 

identified and turned into expected output data (salad).

The second step is planning. One technique that programmers make 

use of are flowcharts, which are a pictorial representation of a step-by-step 

solution to a problem. They help us to focus on the program logic rather 

than on the appropriate syntax of the programming language we’ll use.

https://doi.org/10.1007/978-1-4842-6002-9_1#ESM


2

The third step consists of actually coding the program. The logic in the 

second step must now be converted into something that the computer can 

understand. Various integrated development environments (IDEs) exist to 

help programmers code in the programming language of their choice.  

An IDE is just like a text editor but has several additional features to help 

the development of a program, such as auto-completion or a debugger. 

Auto-completion is a feature whereby sentences are automatically 

completed with keywords that the IDE expects next, while a debugger 

helps to run the program and possibly find bugs.

The fourth and final step is to test the program. A few errors might be 

present, and to detect them, different types of test data must be input, and 

the output must be consistent with the expected result. Debugging refers 

to detecting, locating, and correcting bugs. These bugs might be syntax or 

logical ones, among others, the former being, for example, a misspelled 

instruction that the computer doesn’t understand, and the latter being 

something like telling the computer to repeat an operation but not telling it 

how to stop repeating.

Chapter 1  Programming Concepts



3

Figure 1-1.  Making a salad

Chapter 1  Programming Concepts



4

This chapter will guide you through many popular programming 

concepts, but to keep things simple, a lot of content will be set aside.

Note  You won’t be able to run the following code snippets yet, 
but don’t worry. They are meant only to give you some basic theory 
before we jump into Unity coding in subsequent chapters.

1.1  �Variables, Constants, and Types
In programming, data can be of many different types. As we will be 

working with the Unity game engine, snippets (parts) of code will be 

expressed in C#. For this chapter, we will be considering only four types of 

data: integer, float, boolean, and string.

1.1.1  �Integer Data Type
Numerical values that are whole numbers (without a fractional part) can 

be expressed in an integer form. Integer values can also be negative.

10, 2667, -50, 0

1.1.2  �Float Data Type
Numerical values that have a fractional part can be expressed in a floating-

point form. Float values can also be negative.

3.9874, 1.245, -112.245, 0.0932

1.1.3  �Boolean Data Type
Boolean values have a value either of true or false.

Chapter 1  Programming Concepts



5

1.1.4  �String Data Type
Sets of characters can be expressed in string form.

"Unity", "192.168.100.0", "The big brown fox"

1.1.5  �Variables
Different operations can be performed on all sorts of data. In the long run, 

it might be a good idea to make use of variables. A variable is a type of 

special container to hold a specific kind of data. As an analogy, a variable 

may be a wardrobe that serves to hold clothes and nothing else—not 

kitchen utensils, for example. In C#, the classic way of declaring a variable 

is as follows:

<variableType> <variableName> = <value>;

In C#, a variable of a particular data type cannot hold values of another 

data type. To be clear, to declare and assign values to variables of the data 

types mentioned, something similar to the following would have to be set up:

int myInteger = 10;

float myFloat = 3.9874f;

bool myBool = false;

string myString = "Unity";

Note that for floating-point variables, f must be appended at the end 

of the float value, to make sure that it is interpreted as a float (rather than 

the double data type). In the double data type, values are stored in 64 bits 

(maximum 16 digits), which is not so useful for the type of values we will 

be dealing with. Using a float data type also provides more performance 

overall, because data is stored in 32 bits (7 digits).

Chapter 1  Programming Concepts



6

If variables are initialized without a value, for example, bool 

condition, the default value of the data type they’re using will be assigned 

to them, in the case of this example, false. For integers and floats, the 

default values will be equal to 0 and 0.0f, respectively. For strings, this will 

be "" (a blank and empty string).

If a variable already contains a value, and a new value is assigned to 

it, the contents of the variable will be overwritten, and it will contain the 

newly assigned value until the end of the program, unless another value is 

assigned to it.

int pin = 1234;

pin = 4321;

// pin now holds a value of 4321.

Note that if a variable has already been declared, there’s no need to 

reference it with its data type. This will be discussed more thoroughly in 

Section 1.7.

1.1.6  �Constants
Constants are just like variables, except that they can’t be modified after 

declaration and will keep the value they were initialized with. The process 

to declare a constant is similar to that to declare variables, except that the 

const keyword must be placed before the data type field.

const <variableType> <variableName> = <value>;

1.1.7  �Comments
A comment is a programmer-readable annotation or explanation in a 

script that usually makes it easier for users to understand what some 

part of a code does. Comments are generally ignored by the compiler/

interpreter. In C#, comments can be written either in a single-line or 

multiline way.

Chapter 1  Programming Concepts



7

// This is a single-line comment.

/* This is a multiline comment.*/

1.2  �Arrays
An array is a form of data storage structure similar to a variable, in the 

sense that it is declared to hold a specific data type. Unlike variables, 

however, arrays can hold multiple data values. When an array is created, 

a predefined size is set for it. The array will thus hold the number of data 

values equal to its size.

Data values found at indexes (positions) in the array may, just like 

variables, be read, modified, or replaced by other data values of the same 

type. The index of an array starts at 0 (the first data value), and the last 

index will be equal to the size of the array minus one, because the first 

index isn’t one.

1.2.1  �Declaring and Creating an Array
If an array is declared without the part after the equal sign, it will just have 

a size of zero. The size of the array can be modified later, but data values 

stored at each index will be reset to the default value of the data type the 

array uses.

<arrayType>[] <arrayName> = new <arrayType>[<size>];

// create an integer array of a size of 5 named firstArray

int[] firstArray = new int[5];

// create a string array with a size of 0 named secondArray

string[] secondArray;

Chapter 1  Programming Concepts



8

// creating a new string array with a size of 10 and assigning 

it to secondArray

secondArray = new string[10];

Another way of declaring arrays could be to initialize them with values 

at the start.

<arrayType>[] <arrayName> = {<value0>, <value1>};

int[] firstArray = {5, 10, 20, 35, 45};

string[] secondArray;

secondArray = {"abc", "def", "ghi"};

To get the length of an array, that is, how many values it can store, the 

Length method can be called.

int[] firstArray = {5, 10, 20, 35, 45};

int arraySize = firstArray.Length; // 5

1.2.2  Setting, Fetching, and Modifying Values 
in an Array
In this section, we are going to look at how to set and modify values at 

indexes in an array.

<arrayName>[<index>] = <value>;

<variable> = <arrayName>[<index>];

In the following example, the value 13 will be stored in the third 

position (index 2) of the integer array being used (firstArray). The value 

13 is obtained by adding the data values being stored at index 0 (7) and 

index 4 (6) where size - 1 refers to index 4.

Chapter 1  Programming Concepts



9

int[] firstArray;

int size = 5;

firstArray = new int[size];

firstArray[0] = 7;

firstArray[4] = 6;

firstArray[2] = firstArray[0] + firstArray[size - 1];

1.3  �Arithmetic Operators
It is common to perform arithmetic operations in programming. The 

basic arithmetic operations are addition, subtraction, multiplication, and 

division. Numerical values can be manipulated using these operators. 

This also applies to variables and constants that hold numerical values 

(int, float). Arithmetic operators must have two operands, and multiples 

of them can be chained for one equation. An operand is anything that is 

used with an operator. For example, numbers in an addition statement 

are operands, and the plus sign is an operator. An order of operations is 

respected: operations in parentheses are evaluated first, followed by those 

for division and multiplication and, finally, addition and subtraction.

1.3.1  Addition, Subtraction, Multiplication, 
and Division
These can be used just as you learned in math class.

1 + 1; // 2

9 -6; // 3

4 * 2; // 8

60 / 12; // 5

6 * 2 + 3; // 15

5 * (3 - 1) + 1; // 11

Chapter 1  Programming Concepts



10

1.3.2  �Variables and Constants
As previously stated, arithmetic operations can be done by using variables 

or constants that hold numerical values.

int number = 1;

number + 1; // 2

number + 8 - 6; // 3

Results of arithmetic operations can also be stored in variables of a 

numerical type.

int number = 2;

number = number * 2; // 4

number * 4; // 16

number = number + 56; // 60

number / 12; // 5

1.3.3  �Modulus
This is another useful arithmetic operator. It returns the remainder of an 

integer division. Just as in the preceding operators, it can also be used with 

variables and constants.

11 % 4; // 3

Chapter 1  Programming Concepts



11

1.3.4  �Compound Assignment Operators
There’s a shorthand way of assigning the value of an operation to a variable 

that is involved in that operation.

Example Equivalent

sheep += 5; sheep = sheep + 5;

sheep -= 5; sheep = sheep - 5;

sheep *-= 5; sheep = sheep * 5;

sheep /= 5; sheep = sheep / 5;

sheep %= 5; sheep = sheep % 5;

1.3.5  �Quick Increment and Decrement
Variables can be incremented or decremented by 1 rapidly.

int count = 5;

count++; // 6

count++; // 7

count--; // 6

1.3.6  �Unary Operations
A unary operation is an operation with only one operand. As unary 

operations have only one operand, they are evaluated before other 

operations containing them. This usually applies to positive and 

negative operators. For example, +8 + -2 and +2 - -3 are the equivalents 

of 8 - 2 and 2 + 5, respectively.

Chapter 1  Programming Concepts



12

1.3.7  �Casting
It may happen that when performing arithmetic operations, for instance, 

an output of the undesired type is obtained. For example, if a programmer 

has a variable declared as an integer in which they are about to store the 

result of 5 * 1.61f, a float result will be obtained that can’t be stored in that 

variable.

This is one of the situations in which casting comes in. Basically, 

casting transforms a value of a particular data type into the same value, 

but of a specified data type. Casting a float to an integer doesn’t round the 

value. Only the integer part is returned.

int perfectInt;

float badFloat;

badFloat = 5 * 1.61f; // 7.55f

perfectInt = (int)badFloat; // 7

In the preceding example, we cast the value of the variable badFloat 

to perfectInt. We could, however, have directly performed the arithmetic 

operation and cast it in an integer in the perfectInt variable directly. For 

arithmetic operations where a float result is expected, there is no need to cast 

integers involved (whether in a variable or a raw value) to a float data type

Casting may also be inapplicable in some cases. For example, a 

stringvalue comprised of letters can’t be cast to an integer or float.

1.4  �Logical Operators
Logical operators in C# are symbols that are used to connect expressions, 

such that the value of the compound expression produced depends on that 

of the original expressions and on the meaning of the logical operator(s) 

used.

Chapter 1  Programming Concepts



13

1.4.1  �Simple Boolean Expressions
Boolean expressions always result in either a true or false. For example, 

asking a question such as Is 5 greater than 2? would result in yes. In 

programming, this would be written as 5 > 2, and the resulting Boolean 

value returned would be true.

Symbol Interpretation

== Is equal to

!= Is not equal to

> Is greater than

< Is less than

>= Is greater or equal to

<= Is less than or equal to

4 > 5 // false

180 < 450 // true

60 >= 70 // false

567 <= 550 // false

330 != 80 // true

45 > 45 // false

40 < 40.1f // true

90 >= 90 // true

1 == 2 // false

"Cat" == "Dog" // false

"cat" == "Cat" // false

"Shoes" == "Shoes" // true

"Car" != "Plane" // true

Chapter 1  Programming Concepts



14

1.4.2  �AND (&&)
The AND logical operator takes two operands. It returns a value of true if 

the operands result in true.

(1 == 1) && (5 > 4) // true

(3 > 4) && (80 >= 79) && (50 > 40) // false

1.4.3  �OR (||)
The OR logical operator takes two operands. It returns a value of true if at 

least one of its operands results in true.

(3 < 4) || ( 255 == 256) // true

(4 > 5) || (40 < 50) || ("abc" == "def") // false

1.4.4  �NOT (!)
The NOT logical operator takes only one operand. It turns a Boolean value 

into its counterpart. That is, if the Boolean value of its operand is true, it 

will return false.

!(1 == 2) // true

!((4 <= 8) && (6.1 >= 6)) // false

1.5  �Selection
Normally, scripts are comprised of many lines of code. The sequence of 

instructions is performed one after another. Sometimes, we wish to run 

particular instructions based on specific conditions only. That’s where 

selection comes in. By asking some sort of question, we can have the 

computer system do something based on the answer. Control structures 

Chapter 1  Programming Concepts



15

are what help us change this flow in programming. Every control structure 

requires the indentation of code placed inside it. Indentation is really just 

spaces or tabs.

1.5.1  �if then else Control Structure
In this selection control structure, the condition of all the clauses specified 

will be checked in the normal flow the code is running until the first 

condition that results in true is found, or if all of them result in false. If 

the condition of a clause results in true, its code block will run, and all the 

other clauses will be skipped, because only one of the clauses specified can 

be run.

Using a very simple if then else, some code can be performed only 

if the specified condition results in true.

if (condition) {

 // Do something

}

string apple = "fruit";

int numberOfFruits = 0;

if (apple == "fruit") {

 numberOfFruits++;

}

The else keyword can also be specified to make another block of code 

run, if the condition in the if clause results in false instead.

if (condition) {

 // Do something

} else {

 // Do something else instead

}

Chapter 1  Programming Concepts



16

string apple = "fruit";

int numberOfFruits = 0;

int numberOfVegetables = 0;

if (apple == "fruit") {

 numberOfFruits++;

} else {

 numberOfVegetables++;

}

Additionally, if and else clauses can be used together to make 

multiple conditions in one block only. Note that the last else clause can be 

omitted.

if (condition) {

 // Do something

} else if (another condition) {

 // Do something

} else {

 // Do something else instead

}

string gender = "M";

int males = 0;

int females = 0;

int undefined = 0;

if (gender == "M") {

 males++;

} else if (gender == "F") {

 females++;

} else {

 undefined++;

}

Chapter 1  Programming Concepts



17

Finally, if then else control structures can be “nested” into other if 

then else control structures.

if (condition) {

 if (condition) {

 // Do something

 }

}

string species = "human";

string furColor = "";

int brownFur = 0;

int blackFur = 0;

// != is interpreted as "is not equal to"

if (species != "human") {

 if (furColor == "brown") {

 brownFur++;

 } else if (furColor == "black") {

 blackFur++;

 }

}

1.5.2  �Case Control Structure
A case selection control structure works with a variable, and depending on 

the value it contains, specific code can be run. All the case clauses will be 

verified until one of them has a condition that results in true; otherwise, 

the code in the last clause, default, will be run. If one of the case clauses 

has a condition that results in true, the respective code block will be run, 

and all the remaining clauses won’t be verified and, thus, skipped. The 

break keyword is required in each clause. This form of control structure is 

useful in the event that many checks have to be performed, as it provides a 

more elegant solution than chaining many if-else statements.

Chapter 1  Programming Concepts



18

switch(variable) {

 case value:

 // Do something

 break;

 default:

 // Do something else then

 break;

}

string apple = "fruit";

int numberOfFruits = 0;

int numberOfVegetables = 0;

int numberOfExceptions = 0;

switch (apple) {

 case "fruit":

 numberOfFruits++;

 break;

 case "vegetable":

 numberOfVegetables++;

 break;

 default:

 numberOfExceptions++;

 break;

}

1.6  �Iteration
Very often, some parts of a script may have to be repeated more than once. 

Instead of duplicating the code x times, to keep the program easier to read, 

modify, and debug, and, in some cases, make algorithms significantly 

more efficient, loop control structures may be used. Code placed between 

Chapter 1  Programming Concepts



19

the curly braces of loop control structure clauses will keep running, based 

on a predefined condition. If, however, a condition always remains true, 

the loop will run infinitely and cause the program to crash.

1.6.1  �while Loop
Essentially, code in a while loop keeps on repeating itself while some 

condition is true.

while (condition) {

 // Do something

}

In the following example, the while loop runs five times.

int number = 1;

while (number < 6) {

 number++;

}

1.6.2  �for Loop
A for loop is a bit more complex to write than a while loop. Unlike the 

latter, it doesn’t have just a condition. Rather, it involves declaring a 

variable, setting a condition, which, if doesn’t result in true, causes the 

loop to stop running, and, finally, setting the amount by which the variable 

will be incremented/decremented each time.

for (<declareVariable>; <condition>; <variableIncrement>)

{

 // Do something

}

Chapter 1  Programming Concepts



20

For example, a for loop can be used to perform the sum of all the even 

numbers from 2 to 10. Basically, a variable, i, is declared as an integer, 

initially given the value 2, and each time the loops run, its value will be 

incremented by 2 and added to the variable sum, until i has a value greater 

than 10.

int evenSum = 0;

for (int i = 2; i <= 10; i += 2) {

 evenSum += i;

}

1.6.3  �foreach Loop
This is a slightly modified version of the for loop and is more common 

to use with structures such as arrays. Instead of writing a for loop to loop 

through all values of an array, a foreach loop can be written quicker, 

which gets the work done. Unlike the regular for loop, in which the size of 

the array has to be written for the condition part, that’s not necessary for a 

foreach loop.

foreach (<dataType> <newVariableName> in <arrayName>) {

 // Do something

}

For example, let’s imagine that we have an array of float values 

and wish to get the sum of all the elements of that array. The foreach 

loop will loop through every element of the array values and, each time, 

automatically assign the current element to the temporary float variable 

temp, which will itself be added and stored in the variable sum.

float[] values = {66.3f, 346.21f, 45.8f, 890.8f, 556.99f};

float sum = 0.0f;

Chapter 1  Programming Concepts



21

foreach (float temp in values) {

 sum += temp;

}

For reference, here’s the equivalent in a normal for loop. Note that 

values.Length returns a value of 5, but the loop cannot be equal to this, 

because the last index of the array will be 4.

float[] values = {66.3f, 346.21f, 45.8f, 890.8f, 556.99f};

float sum = 0.0f;

for (int i = 0; i < values.Length; i++) {

 float temp = values[i];

 sum += temp;

}

1.6.4  �Continue and Break
The continue keyword “tells” a loop to skip any code remaining and 

directly jump to the next iteration of the loop. A simple example could be 

iterating through an array of food and simply jumping to the next instance 

of the iteration, to avoid incrementing an integer variable if the element 

of the array at the current position isn’t a fruit.

string[] food = {"fruit", "human", "fruit", "vegetable", "shoes"};

int fruits;

foreach (string current in food) {

 if (current != "fruit") {

 continue;

 }

 fruits++;

}

Chapter 1  Programming Concepts



22

The break keyword instantly ends the execution of a loop and jumps 

to the line of code just after and outside the loop. It can be used to end the 

execution of a loop once a particular value has been found in an array, for 

example, because it’s futile to continue checking the rest of the elements of 

that array.

string[] alphabets = {"a", "b", "c", "d", "e", "f"};

string alphabetToSearchFor = "c";

int alphabetRealPosition = 0;

for (int i = 0; i < alphabets.Length; i++) {

 if (alphabets[i] == alphabetToSearchFor) {

 alphabetRealPosition = i + 1;

 break;

 }

}

1.7  �Functions
You could have scripts with hundreds or thousands of lines of code. While 

you can write everything in one continuous flow, wrapping code doing 

one specific thing in one function makes the code appear more tidy, and 

it’s easier to manage. In the preceding “Iteration” section (1.6), we learned 

how to decrease code duplication by making loops. But what if some code 

has to be run again multiple times but at different parts of the program? 

That’s where functions come in.

Chapter 1  Programming Concepts



23

1.7.1  �Basics
Functions contain code, and at desired parts in the script, they can be 

“called” to perform the operation they were written to do.

void <functionName> () {

 // Do something

}

Note that functions that do not return any value, that is, the script 

doesn’t expect a value from them, have the type void. A void function 

accomplishes its task and then returns control to the caller.

A simple function can be used to display something to the user. Of 

course, the function won’t run by itself. That’s why in the main flow that 

our code is running, we have to call it. The Debug.Log function will output 

a logging message of the string we pass to it.

PrintHelloWorld();

void PrintHelloWorld() {

 Debug.Log(“Hello World”);

}

1.7.2  �Parameters
At times, we might also want to pass values to our functions, so that they 

perform an operation with those, if, for example, we wish to reuse that 

function for similar operations but with different values. The values that 

we pass to functions are known as parameters, and they must be of the 

same data type as the actual parameters.

void <functionName> (<parameterType> <parameterName>) {

 // Do something

}

Chapter 1  Programming Concepts



24

Modifying the preceding example, we now want the function to print 

the sum of three numbers passed as parameters. The values passed are 

identified by a local name in the function, so that they can be referenced. 

The result of the sum is 11 and will be outputted in a logging message.

int a = 5;

int b = 4;

PrintSum(a, b, 2);

void PrintSum(int first, int second, int third) {

 Debug.Log(first + second + third);

}

1.7.3  �Returning a Value
In the previous examples, our functions only performed an operation. 

They didn’t in the true sense “return” a value. Functions not declared 

as void can return a value that can be assigned to variables or used to 

control the flow. For example, instead of making boolean variables to 

hold a boolean value being returned by a function to be used in an if 

else condition, we can directly call the function in the if clause. Note 

that when a function returns a value, that value must be preceded by the 

return keyword, and any code, if left in that function, won’t run.

<functionType> <functionName> (<parameterType> <parameterName>) 

{

 // Do something

 return <value>;

}

Taking the preceding example again, let’s assign the return value of the 

function to c this time.

int a = 5;

Chapter 1  Programming Concepts



25

int b = 4;

int c = 0;

c = Add3Numbers(a, b, 2);

int Add3Numbers(int first, int second, int third) {

 return first + second + third;

}

Let’s consider another example, this time with a boolean value. The 

function will return false if the variable eat doesn’t contain the value 

fruit.

string food = "fruit";

int numberFruits = 0;

if (itsAFruit(food)) {

 numberFruits++;

}

bool itsAFruit(string eat) {

 if (eat == "fruit") {

 return true;

 }

 return false;

}

1.7.4  �global and local
Basically, variables declared outside all the functions of a script are known as 

global, while those declared inside of functions are known as local. global 

variables can be accessed from anywhere inside the script, while local 

variables can only be accessed inside the function they are declared in.

Chapter 1  Programming Concepts



26

In the following example, a is a global variable, because it and its 

value can be accessed, read, and modified anywhere in the script. Even 

if a global variable is passed to a function as a parameter, the name by 

which that function has referenced the parameter being passed is known 

only to itself and, thus, both b and c are local parameters that can only be 

accessed, read, and modified inside the function temporaryFunction().

int a = 100;

void temporaryFunction(string b) {

 int c;

}

1.8  �Coroutines
Coroutines are very similar to functions, except that when you call a 

function, it runs to completion before returning. Any action that takes 

place in a function isn’t something that happens over time, as code in a 

function is run within a single frame update. While it is possible to use 

loops and checks to achieve this, it is often more useful to use a coroutine. 

Unlike functions, which must be manually called each time to be executed, 

coroutines can be set to run automatically at specified delays. Return 

values from a coroutine are compulsory and may not be assigned to any 

variable or used directly.

1.8.1  �Defining and Calling Coroutines
A coroutine can be called only once, and code within it will be run at a 

number of frames defined by some specific keywords.

Chapter 1  Programming Concepts



27

StartCoroutine("<coroutineName>"); // or  

StartCoroutine(<coroutineName>());

IEnumerator <coroutineName>(<parameters>) {

 // Do something

 yield return <returnValue>;

}

A coroutine always is defined as IEnumerator and must always have 

that yield return <returnValue>; line. Any code after that yield 

return <returnValue>; line will be run after the amount of frames 

specified as the returnValue.

For example, to increase the value of the integer variable 

numberFrames by one each time a frame is run in a game, the following code 

may be used. yield return null; is the equivalent of yield return 1; 

which, in our case, causes the last line of the coroutine to be ran once 

per frame.

int numberFrames = 0;

StartCoroutine("CountFrames");

IEnumerator CountFrames() {

 yield return null;

 numberFrames++;

}

1.8.2  �Using Seconds Instead of Frames
Instead of waiting for frames, coroutines can wait for a number of 

seconds.

IEnumerator <coroutineName>(<parameters>) {

 // Do something

 yield return new WaitForSeconds(<numberOfSeconds>);

}

Chapter 1  Programming Concepts



28

A good example to demonstrate this could be checking for some 

conditions at particular time intervals, rather than at each frame. The for 

clause specified following runs infinitely. The if clause will run at intervals 

of the value passed as parameter.

string weather = "rainy";

bool happy = false;

float numberSeconds = 0.5f;

StartCoroutine(CheckWeather(numberSeconds));

IEnumerator CheckWeather(float amount) {

 for ( ; ; ) {

 yield return new WaitForSeconds(amount);

 if (weather == "sunny") {

 happy = true;

 } else {

 happy = false;

 }

 }

}

Chapter 1  Programming Concepts



29© Kishan Takoordyal 2020 
K. Takoordyal, Beginning Unity Android Game Development,  
https://doi.org/10.1007/978-1-4842-6002-9_2

CHAPTER 2

Introduction to Unity
As you already know, we will be using the Unity game engine in order to 

develop games. Unity has been written in the C++ programming language, 

but its scripting application programming interface (API; what we’ll use to 

actually code the games) is in C#. Unity can be used for much more than 

just making games. It can even be used to create visualizations for movies, 

architecture, or car manufacturing.

The benefit of using Unity rather than writing our games from scratch 

is that Unity already provides many ready-made tools to assist us in our 

game-making process, such as physics or lighting. Compared to other 

game engines, Unity is far more popular, which makes resolving bugs 

or learning how to do something easier, because it is very likely that 

something will already be present on the Internet. Any games we wish to 

work on in Unity is a project.

2.1  �Creating a Unity Account
You must have an account set up at https://id.unity.com in order to use 

Unity. As well, you can create an account using your Google or Facebook 

account (Figure 2-1).

https://doi.org/10.1007/978-1-4842-6002-9_2#ESM
https://id.unity.com


30

2.2  �Downloading Unity and Add-ons
Unity has four licenses: Personal, Plus, Pro, and Enterprise. Personal 

has most of the features offered in the other business licenses and is free 

(Figure 2-2). Plus can be purchased by individuals who want more features 

than Personal offers. Pro or Enterprise licenses must be purchased if 

income derived from your game-developing business or organization 

exceeds a particular threshold. The greatest advantages that you’ll be 

forfeiting by using a Personal license are the ability to customize the 

splash screen of your game (when the game starts), the use of a dark 

editor UI, greater support, availability of premium resources (although not 

absolutely required), and more diagnostics/analytics. More information 

can be found at https://store.unity.com/.

Figure 2-1.  Creating a Unity account

Chapter 2  Introduction to Unity

https://store.unity.com/


31

2.2.1  �Unity Hub
Unity Hub is an application that can be used to download several versions 

of Unity, along with their respective modules, if required, and contains 

a list of the projects (cloud or local) you’re working on or have created 

(Figure 2-3).

Figure 2-2.  Unity plans

Chapter 2  Introduction to Unity



32

For MacOS or Windows users, Unity Hub can be downloaded from 

https://unity3d.com/get-unity/download/, and for Linux users, an 

executable file can be obtained from the forum at https://forum.unity.

com/threads/unity-hub-v2-0-0-release.677485/. Just install or run it 

after it finishes downloading.

Next, you must download a version of the Unity Editor (the actual game 

engine). You’ll have to use any 2019.3.x version for the examples in this book. 

Sign in to Unity Hub first, with the credentials you previously used to create 

an account. Then, proceed to click your profile picture or initials (top-right 

corner). Go to Manage License and activate a new Unity Personal license. 

Finally, go to Installs, click Add, select a 2019.3.x version of Unity, and 

choose the modules you wish to install. As we will be working on a mobile 

game, choose at least Android and/or iOS Build Support modules. Note that 

you will not be able to make iOS games if you don’t have an Apple computer. 

For Android build support, check Android SDK & NDK Tools and OpenJDK, 

too (Figure 2-4). The documentation and everything else is optional.

Figure 2-3.  Unity Hub projects

Chapter 2  Introduction to Unity

https://unity3d.com/get-unity/download/
https://forum.unity.com/threads/unity-hub-v2-0-0-release.677485/
https://forum.unity.com/threads/unity-hub-v2-0-0-release.677485/


33

You will also require an integrated development environment (IDE) 

to write scripts. Visual Studio Code is a lightweight and excellent choice. 

You can download it from https://code.visualstudio.com/. We will be 

linking it to the Unity Editor later. For now, just install it.

2.2.2  �Creating an Empty Project
In Unity Hub, click the blue New button, name the project you’re about 

to create, and choose a location in which to store it. Choose 3D as 

the template. Click Create, wait a while, and the project should open 

(Figure 2-5).

Figure 2-4.  Downloading the Unity Editor from the Hub

Chapter 2  Introduction to Unity

https://code.visualstudio.com/


34

First, go to Edit ➤ Preferences ➤ External Tools and make sure you’re 

using the built-in JDK, SDK, and NDK. The appropriate check boxes 

should be ticked. You will also have to assign the vscode option in the 

External Script Editor tab, to write and modify scripts in a proper IDE. This 

option is just under the External Tools header (Figure 2-6).

Figure 2-5.  Creating a new project

Chapter 2  Introduction to Unity



35

2.3  �Essential Windows
Unity provides several windows with very specific features to help 

developers in their game-developing process. You already know what a 

project means in Unity. Game projects contain scenes. Think of scenes 

as levels of a game, for example. It would be a bad idea to load everything 

when a lot of the things are currently unnecessary, for example. In scenes, 

you can design your levels and make them playable.

Now, everything that is present in a scene is called a GameObject 

(more on these in Chapter 3 of this book). When you make games, you will 

probably require images, sound, 3D models, etc. All of what you import in 

your project is an asset, whether you ever use it in a scene.

I’ll go through some of the most frequently used windows in Unity. 

Your empty project should look mostly like this (Figure 2-7):

Figure 2-6.  Checking preferences

Chapter 2  Introduction to Unity



36

You can change the layout of these windows by clicking the little layout 

button found at the top right of the Unity Editor (Figure 2-8). You can also 

resize them by dragging their edges.

2.3.1  �The Project Window
If you’re using the default layout, it should normally be found at the 

bottom of the editor. The Project window (Figure 2-9) is a collection of 

assets and directories that you have created or imported into a Unity 

project. You can also search the entire project to find an asset by its name 

or type, by using the search bar.

Figure 2-7.  An empty scene

Figure 2-8.  Layouts

Chapter 2  Introduction to Unity



37

2.3.2  �The Hierarchy Window
The Hierarchy window (Figure 2-10) basically contains a list of all the 

game objects that are present in the scene that is currently opened inside 

the editor. By default, it contains a camera and a light source, which you’ll 

learn more about in Chapter 3. It is found at the top left of the editor, in the 

default layout.

Figure 2-9.  The Project window

Figure 2-10.  The Hierarchy window, as it is by default

Chapter 2  Introduction to Unity



38

Try to create some primitive and basic GameObjects right from the 

Hierarchy window, by left-clicking the little plus icon or right-clicking 

anywhere in the window, to bring up a menu with options to choose from. 

The newly created GameObject will instantly show up in the Hierarchy 

window (Figure 2-11).

2.3.3  �The Scene Window
The Scene window is mostly used in level design where GameObjects 

must be placed to create in-game areas. You can navigate around the scene 

by using your mouse and make changes directly to objects in the scene 

in the Scene window. Note that the red color designates the x axis, green 

designates the y axis, and blue the z axis (Figure 2-12).

Figure 2-11.  Creating a 3D GameObject

Chapter 2  Introduction to Unity



39

You can select objects by left-clicking them in the Scene window. Try 

also right-clicking and dragging to rotate around, or use the scroll wheel 

to zoom in and out. You can finally click and hold the scroll wheel and 

move your mouse to pan around. If you left-click and select objects in the 

Inspector window, they will appear selected in the Scene window also.

There are seven tools (Figure 2-13) to help you perform operations in 

the Scene view. The first is the Hand tool. When it is selected, no object 

will be selected when you click them. Instead, the left mouse button will be 

used to pan around the scene in the same way that holding the scroll wheel 

does, as previously described.

Figure 2-12.  The scene window with a cube

Figure 2-13.  The seven scene tools

Chapter 2  Introduction to Unity



40

The second scene tool is the Move tool (Figure 2-14). When an object 

is selected in the Scene window, you can drag arrows to move it in the 

direction of a specific axis. The object may also be dragged by the two little 

squares, to move along two axes simultaneously.

The third scene tool, the Rotate tool, works in the same way as the 

Move tool, except that it is used for rotating GameObjects. By dragging 

along the colored circles, you can rotate a GameObject on one of the 

three axes, or along the gray circles, to rotate on two axes simultaneously 

(Figure 2-15).

Figure 2-14.  The Move tool

Chapter 2  Introduction to Unity



41

The fourth tool is the Scale tool (Figure 2-16), which allows us to scale 

selected GameObjects down or up. By dragging along the colored squares, 

you’re scaling GameObjects up or down along the respective axis, and by 

dragging from the little square at the center of the GameObject, you’re 

scaling GameObjects up or down uniformly along all axes at a time.

Figure 2-15.  The Rotate tool

Figure 2-16.  The Scale tool

Chapter 2  Introduction to Unity



42

The fifth scene tool is the Rect tool, which is useful for moving and 

scaling 2D objects. We’ll be using it afterward, when we’ll have to move or 

scale images, buttons, and 2D UI elements.

The sixth tool combines the features of the Move, Rotate, and Scale 

tools. We’ll skip what it does and use the seventh and final (Multi) tool for 

now (Figure 2-17).

In the Scene view, you can also click the little cones at the top-right 

corner of the window, to make the view angle perpendicular to an axis. For 

example, try clicking the red cone, to make the view angle perpendicular 

to the x axis, and, essentially, the content you see will now appear in two 

dimensions, bounded by the z and y axes (Figure 2-18).

Figure 2-17.  The Multi tool

Chapter 2  Introduction to Unity



43

Figure 2-18.  Viewing in the x axis direction

You can also click the text under the little cones, to switch between a 

perspective or orthographic view, depending on the type of game you’re 

making.

The first button at the top left of the Scene view allows you to see 

GameObjects in another form. A good example of moving to wireframe 

could be to adjust wheels for a car (Figure 2-19).

Figure 2-19.  Wireframe shading in the Scene window

Chapter 2  Introduction to Unity



44

The little 2D button at the top of the window makes everything appear 

in 2D, which is useful for working with 2D UI elements or on 2D games. 

The other buttons mainly serve to toggle on or off such things as lighting, 

audio, or effects.

Finally, there are also two buttons by default, labeled Center 

and Global. When you click the former, either Center or Pivot will be 

displayed. When using transform tools such as Move or Rotate, the arrows 

will be placed either at the center or at the pivot point of the selected 

GameObject(s). Try this in the Editor now, to get more comfortable with 

working with these. Try moving, rotating, and scaling 3D objects, and 

practice everything you’ve learned until now.

For example, if there are two cubes in the scene and both have been 

selected, if the first button is set to Center, the current tool will be placed 

equidistant from the two cubes (Figure 2-20).

Figure 2-20.  Center point of two GameObjects

Chapter 2  Introduction to Unity



45

Figure 2-21.  Pivot point of two GameObjects

If Pivot is used instead, the tool will be placed at the center of one of 

the two cubes, therefore known as the pivot point. In this case, the pivot 

point will be determined by which of the two cubes is selected first. If the 

left one is selected first, its center will be the pivot point (Figure 2-21).

Now on to Global and Local modes. Basically, when the mode of the 

first button is set to Global, all the tools will have the same positioning 

relative to the world. The red arrow will always point right (x axis); the 

green arrow will always point up (y axis); and the blue arrow will always 

point forward (z axis). These won’t depend on the position, rotation, or 

scale of the selected GameObject(s).

However, for the Local mode, the tool will always depend on the 

position, rotation, or scale of the selected GameObject(s). In a way, it’s like 

saying the blue arrow “is the z axis of the GameObject,” which means that 

the blue arrow will point to the forward movement of the GameObject(s), 

rather than the norm, which is across the world space that Global defines. 

In the following example, the cube is slightly rotated, so that its “forward” 

points a bit upward (Figure 2-22).

Chapter 2  Introduction to Unity



46

There is also a little magnet icon next to the Global/Local button. This 

can be used to toggle on/off Grid Snapping. This can be used when tool 

positioning is set to Global. Grid Snapping allows you to move objects by 

units of 1 across all axes and will thus snap the position of GameObject(s) 

to the closest whole number position in the scene.

2.3.4  �Game View
This can be found just beside the Scene window, if you’re using the default 

layout. It is mostly used for testing game projects before exporting, as it 

shows a representation of the actual exported game to a third-party user 

(Figure 2-23).

Figure 2-22.  Local mode with a selected GameObject

Chapter 2  Introduction to Unity



47

Figure 2-23 shows what your empty game would look like if someone 

tried to play it right now. Display 1 allows you to toggle between different 

displays, to see how specific places will look.

The Free Aspect tab allows you to set a resolution/ratio, so that it is 

easier for you to see how the game will be rendered on a display with that 

particular resolution/ratio. Free Aspect takes the whole size of the game 

window. You can also create new resolutions or ratios (Figure 2-24).

Figure 2-23.  The game view

Chapter 2  Introduction to Unity



48

Using the slider for scale, you can zoom in or out of the Game window, 

although that is not available in the actual game if you don’t implement 

something similar. Maximize On Play can be set on or off. It will appear 

whiter if activated, and that allows you to test your game in full screen. 

Note that at this point, nothing will happen if you toggle it on or off.

Stats allow you to preview some info about the game, such as CPU 

usage or the number of vertices present (Figure 2-25).

Figure 2-24.  Setting a new resolution/ratio in the Game view

Chapter 2  Introduction to Unity



49

Figure 2-25.  Showing stats in the Game view

Gizmos allows you to preview more things that are shown to the end 

user, such as components like colliders, which you’ll learn more about in 

the next chapters. Finally, on to Play mode.

When you want to test your game without exporting a build of it, you 

can do that within the editor. There are three icons at the top of the Game 

window. The first (leftmost) one is the Play button. When you click that 

button, the Editor goes darker, the button turns blue, and you’re in what is 

called Play mode. In Play mode, you’re playing the game as a normal user 

would if they had a build of that game. To exit Play mode, you simply click 

the Play button again.

When in Play mode (Figure 2-26), you can click the button beside 

it—the Pause button to temporarily pause the game. Clicking the Pause 

button again will resume it. The last (rightmost) button is the Step button, 

and whenever you click it, it will automatically play one frame and pause 

the game, if it isn’t paused already. You can still click the Pause button 

to resume the game. The Step button is useful if we want to know what’s 

happening with each frame that is leading to a bug.

Chapter 2  Introduction to Unity



50

Please be aware that any changes you make while in Play mode are 

temporary. That is, if, for example, you move an object in Play mode, when 

you go back to the normal editing mode, the changes will revert to how 

they were before you entered Play mode.

2.3.5  �The Inspector Window
If you’re using the default layout, the Inspector is the big vertical triangle 

at the right side of your screen. It contains much information on selected 

GameObject(s), based on the components that are attached to this (these) 

GameObject(s). By default, all GameObjects have a transform component 

(Figures 2-27 and 2-28). Most components have fields or properties with 

values that can be tweaked from this window.

Figure 2-26.  Entering Play mode

Chapter 2  Introduction to Unity



51

Figure 2-27.  A typical default Inspector window for a cube: part 1

Figure 2-28.  A typical default Inspector window for a cube: part 2

Chapter 2  Introduction to Unity



52

The cube we’ve been taking as an example, or a new cube that we 

create, should normally have these components by default. The purpose 

of tags and layers will be explained in the last chapters, and the use of 

the components you’re seeing will be documented in Chapter 3. When 

the check box next to Static is ticked, our GameObject(s) won’t move or 

physically change at runtime, no matter what we do. This has performance 

gains. You are advised to try changing the properties of some components, 

to see the difference this makes.

2.3.6  �The Unity Asset Store
If you remember what was mentioned about the definition of assets 

in the section where you learned about the Project window, there are 

several ways to import assets into Unity. One of the most common is by 

opening .unitypackage files. A Unity package, or a file ending with a 

.unitypackage extension, is a compressed file that includes several assets.

For this section, we’ll focus mostly on downloading and importing 

assets from the Asset Store, rather than from third-party unofficial 

sources. The Asset Store is kind of marketplace where you can browse 

and download assets for your games. Think of it as Unity’s Google Play for 

Assets.

To access the Asset Store, you must head to Window and click the 

Asset Store tab. Or simply hit Ctrl+9. You can resize the Asset Store window 

or place it somewhere. It should look something like Figure 2-29 in full 

screen.

Chapter 2  Introduction to Unity



53

You can search for assets using the search bar and use filters for things 

such as price and category. For the sake of this tutorial, we are going to 

download and import a package called Simple Input, which happens to be 

free. Use the pricing filter to target only free assets (Figure 2-30).

Figure 2-29.  The Asset Store

Figure 2-30.  Searching for assets

Chapter 2  Introduction to Unity



54

Then click the first one that pops up (it should look like the first result 

in the preceding screenshot). You can read the description, preview what 

files will be imported, and check out the screenshots or reviews while on 

the page of an asset. Hit download when you’re ready. When it finishes 

downloading, you should now see on that button that Import appears 

instead of Download (Figure 2-31). Click it.

Unity will now decompress the package. Finally, hit Import. The 

assets will appear in your Project window once everything is imported 

(Figure 2-32).

Figure 2-31.  The Simple Input system asset

Chapter 2  Introduction to Unity



55

2.3.7  �The Console Window
Console is a read-only window that can have logs, warnings, or errors 

(Figure 2-33). While testing your code for your game projects, you’ll 

often output values to the Console, to make sure everything is working as 

expected. This is called debugging. Unity may also warn you of things that 

may not really affect your project right now but can cause problems in the 

long term. As for errors, you must fix them; otherwise, you will not be able 

to run or build your game.

Figure 2-32.  Importing an asset—Simple Input System in our project

Chapter 2  Introduction to Unity



56

When you click a log/warning/error in the Console window, more 

details will appear at the bottom of the screen, indicating mainly the 

statement and line number that are responsible for the message in 

question. If you double-click a message in the Console, the responsible 

script will be opened in the default text/code editor Unity has been 

assigned to use.

The Clear button will remove all the messages in the Console window, 

except those that must absolutely be fixed to continue development of 

your game project (Figure 2-34). The Clear on Play automatically performs 

the operations of the Clear button every time you enter the Play mode, 

as long as it is enabled. Similarly, Clear on Build will run each time Unity 

successfully builds an executable file of your game.

Figure 2-33.  Example of logging, warning, and error messages in the 
Console

Chapter 2  Introduction to Unity



57

The Collapse tab will compile the same console messages together 

in a single message. The number of instances will be represented in a 

small circle at the far right of the Console window. Error Pause will pause 

the game in Play mode when an error is received, and the last drop-

down button Editor allows you to choose where you want to have debug 

messages from, perhaps from a device connected to your computer, for 

example.

The Search bar allows you to search for messages in particular, and 

the last three small colored buttons allow you to choose what kind of 

debug messages you desire. For example, clicking the yellow button 

will stop all warning messages from popping in the Console window. 

However, the number of every type of logging message received since 

the last time you hit Clear will still continue to be displayed beside their 

respective buttons.

Figure 2-34.  Amount of messages by type and genre in the Console 
window

Chapter 2  Introduction to Unity



58

2.3.8  �Build Settings
This can be accessed from File ➤ Build Settings. In the Build Settings 

window, you can switch to the platform with which you want to export 

your game and adjust some more options that will be covered more fully 

in future sections (Figure 2-35). The current platform you’re on will be 

represented by a small Unity logo before its label. For future projects, 

switch to the Android platform. You’ll see how to configure and make 

builds soon. Drag and drop the scenes you want in the Build Settings 

window. The first one will be the one the player will see as they open your 

game. Finally, it’s a good practice to save your scene and project. Do so 

from the File tab.

Figure 2-35.  The Build Settings window

Chapter 2  Introduction to Unity



59© Kishan Takoordyal 2020 
K. Takoordyal, Beginning Unity Android Game Development,  
https://doi.org/10.1007/978-1-4842-6002-9_3

CHAPTER 3

GameObjects, 
Prefabs, Materials, 
and Components
As stated in Chapter 2, games built with Unity are usually arranged in 

scenes. These scenes usually contain many objects to enhance them and 

make the game interactable and enjoyable. The goal is to have a concrete 

game with solid mechanics, good gameplay, and good graphics.

3.1  �GameObjects and Prefabs
In Unity, objects in scenes are referred to as “GameObjects.” When you 

create a new scene, it contains a Main Camera and a Directional Light. 

These are GameObjects. Every object you find in the Hierarchy window is 

a GameObject. If you create a cube, it is also a GameObject.

Now, if you have multiple scenes and are using a common 

GameObject in all of them, it would be great if you could drag and drop 

that object in all of them, instead of configuring it from scratch for every 

scene, right? This is where prefabs come in. You can basically save a 

version of a GameObject and drag and drop it in other scenes (Figure 3-1). 

You just have to drag and drop a GameObject in the Project window, and it 

will turn into a prefab.

https://doi.org/10.1007/978-1-4842-6002-9_3#ESM


60

The GameObject you just turned into a prefab will now have a bluish 

tint to it in the Hierarchy tab. As for your prefab, you can just load another 

scene and drag it into the Hierarchy or Scene tab of that newly opened 

scene.

You can also make changes directly to a prefab. You just have to 

double-click it in the Project window. The Scene window will now have 

a bluish background, and you will now be able to see the children of that 

prefab (if it had any) and make changes to its properties, as well as to those 

of its children.

After making the desired changes, you can save them by clicking the 

little arrow beside the prefab name at the top-left corner of the Hierarchy 

window, or by using a shortcut such using Ctrl;+S. The former action will 

automatically save changes made to the prefab and return you to the scene 

that was previously open. All instances of that prefab will then be updated 

with these changes in all the scenes in which they are found (Figure 3-2).

Figure 3-1.  Making prefabs

Chapter 3  GameObjects, Prefabs, Materials, and Components



61

If you make changes to the GameObject that you turned into a prefab 

in the scene, there is an Overrides button in the Inspector window that you 

can click to cause the changes you made to be applied to the prefab and 

thus to every instance of that prefab in other scenes (Figure 3-3). You can 

also revert properties to those of the prefab version. This is not a necessary 

step, and you can as well have a GameObject in a scene that comes from a 

prefab but does not have the exact same properties.

Figure 3-2.  Opening prefabs

Figure 3-3.  Overriding prefab properties

Chapter 3  GameObjects, Prefabs, Materials, and Components



62

If you made a prefab, placed it in a scene, and don’t want it to be 

updated or overridden by future changes made to the prefab, you can always 

make that prefab instance become an independent GameObject, by right-

clicking it in the Inspector and either clicking Unpack Prefab or Unpack 

Prefab Completely. For example, if you placed a prefab in one scene, and 

it has properties that completely differ from the ones in the original prefab, 

you might wish for that version to be completely independent.

You can make prefabs of prefabs, for example, by creating a GameObject 

that has multiple prefabs as children and itself being turned into a prefab. 

The former option will just remove the first level of nested prefabs, while the 

latter option will remove all of them. It should also be noted that deleting 

a prefab does not delete GameObjects that are instances of that prefab in 

scenes. These prefab instances will just become independent GameObjects 

and will have a reddish tint along their names in the Hierarchy (Figure 3-4). 

Nesting prefabs can be useful in a game in which all enemies behave in a 

similar way and share the same base features.

Figure 3-4.  Deleting prefabs

3.2  �Components
Every GameObject has components. A component is basically a module 

that can be attached to a GameObject. A component provides several new 

properties and features in addition to those an empty GameObject already 

provides. Some components require other components to be present on a 

GameObject to work properly, while some are compulsory, even when you 

Chapter 3  GameObjects, Prefabs, Materials, and Components



63

wish to create an empty 3D object. When you select GameObjects, you will 

see all the common components that are attached to them in the Inspector 

window that can also be shrunk or expanded by clicking their names 

(Figure 3-5).

Figure 3-5.  Multiple components

In the Inspector window, you can change the values of components. 

You can also click the three dots at the top-right corner of components, in 

order to bring up more options, such as Reset, which will assign default 

values to the component, as if you just added it.

You can also copy and paste component values to two components 

at the same time, by clicking Copy Component. After selecting the 

GameObject having the component you wish to override the values of, 

click Paste Component Values. You can also copy components and directly 

paste them on another GameObject.

It should also be noted that a GameObject can have more than one 

instance of a particular component, although there are some exceptions 

to this. You can also reorder components on a GameObject, by dragging 

them up or down, or by using the three dots and clicking Move Up or Move 

Down.

Beside the three dots icon, there’s another button. Clicking it allows 

you to use a preset for the respective component.

Chapter 3  GameObjects, Prefabs, Materials, and Components



64

To get the manual or documentation for a component, you can simply 

click the question mark icon beside the preset button on the left. A browser 

tab will open with suitable and relevant information (Figure 3-6).

Figure 3-6.  Viewing the documentation

Figure 3-7.  Adding components

Finally, you can add new components to a GameObject by clicking the 

Add Component button and browsing or searching for the component you 

wish to add, or by using the Editor menu (Figure 3-7).

Chapter 3  GameObjects, Prefabs, Materials, and Components



65

3.2.1  �Transform
If you followed along in Chapter 2, you have already interacted with the 

Transform component from the Scene window and might have a solid 

idea of what it is about. The Transform component is required by every 

GameObject. Unlike integer or float data types, the Transform component 

is made up of three sets of Vector3 values. You can think of a Vector3 as 

being a float array made up of three values. From the first index, or from 

the left, these three values are respectively denoted by the “x,” “y,” and “z” 

characters. The three sets of Vector3 values of the Transform component 

are the position, rotation, and scale of the selected GameObject(s) 

(Figure 3-8).

Figure 3-8.  The Transform component

The x axis is denoted by the red color and goes from left (-) to right (+)  

horizontally. The y axis is denoted by the green color and goes from 

bottom (-) to top (+) vertically, and the z axis is denoted by the blue color 

and goes from backward (-) to forward (+). All the axes are perpendicular 

to one another.

The Position Vector3 represents the position of the GameObject in 

the world in X, Y, and Z values. You can change these values by directly 

entering them into the text boxes beside the specific axis name, or by 

dragging your cursor from the axis name to the right (+) or left (-), in the 

Inspector tab itself.

Chapter 3  GameObjects, Prefabs, Materials, and Components



66

The Rotation Vector3 represents the rotation of the GameObject in the 

world in x, y, and z values, and the Scale Vector3 represents the position of 

the GameObject in the world in x, y, and z values.

However, if the selected GameObject is the child of another GameObject, 

its position, rotation, and scale is relative to its parent. For example, following 

are the Transform component of two different cubes (Figures 3-9 and 3-10):

Figure 3-9.  The Transform component of Cube1

Figure 3-10.  The Transform component of Cube2

Now, if we had to make Cube2 a child of Cube1, by dragging its 

GameObject on that of the latter in the Hierarchy window, here is what its 

transform would look like (Figure 3-11):

Chapter 3  GameObjects, Prefabs, Materials, and Components



67

Because it is at the same position as Cube1, relative to its parent, 

the Vector3 position of Cube2 will be 0 on all axes. As its rotation is 0 

everywhere, for it to maintain that, Cube2 must subtract 90 degrees on 

its relative y axis, to maintain that value of 0, because Cube1 is rotated by 

90 degrees on its own y axis. As for the scale, it’s pretty self-explanatory: 

Cube2 is bigger than Cube1 by two times along all the axes.

3.2.2  �Camera
A camera is the equivalent of our eyes in a video game. Everything you 

perceive in a game is being “seen” by a component known as Camera. 

Typically, at one particular time, you’d have only one main camera 

enabled in a single-player game, to show the player what they can see. If 

you’re playing a third-person game, the camera will be behind the main 

character you’re controlling and, thus, create the impression that the latter 

is being watched and followed by another entity. In a first-person game, 

the camera acts as the eyes of the character you’re controlling.

There should normally be a Camera component already attached to a 

GameObject (Main Camera) in an empty scene, if you haven’t made any 

modifications to it (Figure 3-12).

Figure 3-11.  The Transform component of Cube2 if it is a child of 
Cube1

Chapter 3  GameObjects, Prefabs, Materials, and Components



68

The Clear Flags option allows you to choose from a predefined list 

what should be displayed in empty areas of the camera.

•	 By default, it is set to Skybox, which, as you will learn 

later, is made up of a total of six images that usually 

complement one another to form a sort of cube that 

surrounds the scene.

•	 Additionally, you can choose the Solid Color option 

and pick a color in the Background property just below.

Figure 3-12.  The Camera component

Chapter 3  GameObjects, Prefabs, Materials, and Components



69

•	 If you choose Depth Only, nothing will be displayed 

in empty areas, and Don’t Clear will persistently 

display whatever was present in the last frame, if not 

overridden by anything.

Culling masks is a mechanism to control what gets rendered to this 

camera, based on the graphical elements that have been assigned to 

groups, called Layers.

Next, you can choose whether to make the camera use a perspective or 

orthographic view. If you choose orthographic (by default, it’s perspective), 

everything the camera sees will be in a somewhat 2D view.

•	 With an orthographic camera, you have the ability to 

adjust the size of the camera, i.e., the area that it can 

“see” at one particular moment or frame.

•	 With a perspective camera, you have the ability to 

choose its field of view, which is literally the process of 

adjusting the “angle” it can “see” from its center.

You can also adjust whether the field of view is along the Horizontal (x) 

axis, which goes from top to bottom, or along the Vertical (y) axis, which 

goes from left to right.

Still, for a perspective view, you can choose to make the camera more 

configurable, by ticking Physical Camera (Figure 3-13). This will allow 

you to adjust more settings, such as the focal length and the sensor size of 

the camera. By the way, to change the position and rotation/orientation 

of the camera, you have to modify the respective values in the Transform 

component of the GameObject that has that Camera component attached.

Chapter 3  GameObjects, Prefabs, Materials, and Components



70

Now come the Clipping Planes. Unity’s equivalent of 1 unit translates 

to 1 meter in the real world. For a camera, the Clipping Planes setting has 

a Near and a Far value. These two values represent the minimum and the 

maximum distance of a GameObject to a camera for the latter to render 

it. If the camera is closer than the Near distance to a GameObject, say, 

the camera is at the very center of the GameObject in question and the 

Near value is something like 0.5, it won’t get rendered. If now another 

GameObject is way far from the camera at a distance greater than the Far 

value, it won’t get rendered either.

As for the Viewport Rect setting, it is made up of two sets of Vector2 

values. As everything displayed on a screen is in 2D form, there isn’t a third 

value for these sets of data to represent the z axis.

•	 The X and Y values allow you to adjust horizontally and 

vertically, respectively, where the render of the camera 

should be positioned.

•	 The W and H values represent the portion of the 

screen that will be used for the render of the camera 

horizontally and vertically, respectively. A value of 1 

represents using the full width or height of the screen, 

and a 0 represents none.

Figure 3-13.  A perspective camera

Chapter 3  GameObjects, Prefabs, Materials, and Components



71

For example, if you were making a console racing game with a split 

screen feature for two players, you could have two cameras, each taking 

half of the screen, following one of the two players. Both cameras would 

have a W value of 0.5, an H value of 0, and a Y value of 0, but a different value 

of X to match the position of the left and right halves of the screen.

If you are using multiple cameras in a scene, you can set a different 

depth value for them. For example, if you’re making a game in which 

you can switch between a third-person and first-person view, you can 

make use of two cameras for either views, but as they both take up 100% 

of the screen real estate, the depth value determines what camera will be 

rendered to the player. In that example, the player will see what the camera 

having the highest depth value is “seeing.”

The rest of the settings will have a very brief description, and for 

simple or small projects, you probably won’t have to mess with those, and 

if you do, it’s better edit that of the project itself, rather than individual 

settings of cameras. The Rendering Path setting allows you to choose how 

GameObjects are rendered by a camera with respect to lighting.

The Target Texture allows you to assign a 2D render texture to a 

Camera component. That texture will then be updated with whatever 

the camera sees in the scene. This is useful for when you want to create a 

minimap in the form of a bird’s-eye view, for example. A camera can be set 

up to follow the player from above and look down (90, 0, 0). It could then 

output to a 2D texture that can then be assigned to a “rectangle” that will 

always be shown in the top-right corner of the screen.

Occlusion Culling is a popular technology that can drastically improve 

performance in some types of games. If you are making use of that 

technology and in particular want a camera to benefit from it, tick the 

respective check box. For Occlusion Culling to work properly, your scene 

has to be “baked” for this specific feature; otherwise, ticking the check box 

won’t result in any changes.

Chapter 3  GameObjects, Prefabs, Materials, and Components



72

As for high dynamic range (HDR) and multisampling anti-aliasing (MSAA)  

rendering, they can make your game look better, but using MSAA, especially, 

has important performance costs.

Finally, ticking Allow Dynamic Resolution will allow the camera 

to scale render textures, if the platform you’re building your game for 

supports it.

3.2.3  �Lighting
Lighting is very important in a video game. The position and rotation of a 

main light determines the portion of GameObjects that are visible, relative 

to their angle to the direction rays are cast from the light source and, thus, 

the direction that shadows are cast, as well as the size of these.

An empty scene in Unity will by default have a GameObject known as 

a Directional Light, with a Light component (Figure 3-14) that provides 

uniform light in a single direction, simulating something similar to a sun. If 

there were no light sources in a scene, the world would be completely dark.

In the Hierarchy window, you can create from four default types of 

light sources, namely, Directional, Point, Spot, and Area. A Directional 

light can be used to light a scene entirely and basically act as the sun. Point 

lights are used for more niche scenarios, such as, for example, torches 

in a medieval village. Spot lights can be used, for example, to simulate 

flashlights in a dark house for a horror game, and Area lights can be used 

to uniformly light up a defined area.

To keep this part simple, I will be basing explanations on Directional 

light sources only. The additional settings that are obtained with the other 

types of light sources are fairly self-explanatory.

Chapter 3  GameObjects, Prefabs, Materials, and Components



73

First, you can set the color of the light to be emitted by the light source. 

You can then set the light mode to Realtime, Mixed, or Baked.

•	 If you’re using the Realtime light mode, GameObjects 

will be shaded as you play the game.

•	 With Baked, you can “bake” your scene to make a type 

of lighting data asset that will be assigned to that light 

source automatically.

•	 If you’re using Mixed, you will have a combination of 

Baked and Realtime lighting.

Figure 3-14.  The Light component

Chapter 3  GameObjects, Prefabs, Materials, and Components



74

If you’re making games that require a moving light source or have 

GameObjects that are spawned progressively or randomly, it is better to 

use Realtime, because the lighting data will be more accurate. However, 

if you want to make some performance savings on the lighting side, and if 

objects are pretty much static in your scene, along with the lighting source, 

you might consider baking your scene prematurely and using Baked.

If you’re using Mixed or Realtime as the lighting mode, you get to 

tweak some additional settings for the types of shadows that will be 

produced. You can choose from having no shadows to having soft or hard 

ones. Soft shadows appear smoother than hard ones but require more 

processing power. You can then modify values of shadows that will be 

produced, such as their strength, their resolution (which can be also set 

in the project’s settings), and the bias in distance from their respective 

GameObjects (Figure 3-15).

Figure 3-15.  Quite normal intensity light on a cube

You can also increase or decrease the intensity and indirect 

multiplier of a light source. Indirect light is light that gets reflected by one 

GameObject on another GameObject. Increasing either of these two values 

Chapter 3  GameObjects, Prefabs, Materials, and Components



75

makes the scene appear brighter. Here’s what the scene in the preceding 

figure would look like if the intensity of the light source were bumped to 

twice its original value (Figure 3-16):

Figure 3-16.  High-intensity light on a cube

The cookie property allows you to assign a 2D texture to the light 

source. The texture will be used as a mask. You can think of it as being a 

thick cardboard shape (in the form of a dinosaur, maybe) that’s brought in 

front of a light source (a bulb). This will define the shadows, silhouettes, or 

patterns that will be obtained when light from the source is cast. You can 

also edit the size of that cookie mask in the option just below it.

Ticking Draw Halo will create a blurry sphere around the light source, 

with a radius equal to its range (a property available if you’re using point or 

spot light sources) and of the same color as the light cast by the source.

Flare can be used to allow flares to be rendered by the light source in 

the scene, which might be useful if you’re making cinematics. The Render 

Mode can be changed to reflect the importance of lights in a scene, if 

you’re using some form of Forward Rendering. Finally, in a manner similar 

to that for cameras, you can select layers of GameObjects that will be 

Chapter 3  GameObjects, Prefabs, Materials, and Components



76

affected by the light source in its Culling Mask property. GameObjects of 

Layers not selected won’t be affected in any way by that light source. In 

Unity’s documentation, you can find additional details on different light 

samples.

3.2.4  �Renderer
I’m now going to discuss two essential components that are crucial to 

making 3D GameObjects visible. Any GameObject lacking these would be 

transparent and invisible. The first component is the Mesh Filter, which 

takes a mesh from your assets and passes it to the second component, the 

Mesh Renderer for rendering on the screen (Figure 3-17).

Figure 3-17.  The Renderer component

Chapter 3  GameObjects, Prefabs, Materials, and Components



77

In further topics, you’ll be learning what exactly materials are, but for 

now, just assume they’re colors.

A Renderer can make use of multiple materials, depending on how the 

mesh from the Mesh Filter component is set up. The lighting properties 

can be tweaked, if you want to customize how a GameObject receives or 

casts shadows.

You probably won’t need to mess with the other properties of 

Renderers when making games, but you can always access Unity’s 

documentation or manual to learn more.

3.2.5  �Collider
Physics in a game depends on Rigidbodies and colliders. Colliders are the 

group of components that allow collision to occur. It is also common to see 

colliders being used as triggers. For example, getting sufficiently close to a 

nonplayer character (NPC) in a game may trigger a dialogue between the 

NPC and your character.

In Unity, there are six types of colliders natively, mainly

•	 Box (Figure 3-18)

•	 Sphere

•	 Capsule

•	 Mesh

•	 Wheel

•	 Terrain

In this book, I will cover the first four colliders. Wheel colliders are 

used to make the wheels of land vehicles, among other similar objects, and 

Terrain colliders are used with terrains, which are another form of native 

3D object, but with more configurable options. Terrains won’t be covered 

in this book.

Chapter 3  GameObjects, Prefabs, Materials, and Components



78

Cubes that are created in the Editor come with a Box Collider by 

default (Figure 3-19). If you click the Edit Collider button, you will have the 

ability to scale the collider in your scene view. You only have to drag in the 

direction you wish to scale the collider the little squares that appear.

Figure 3-18.  The Box Collider component

In the Inspector window, changing the x, y, or z value of Vector3, 

known as “Center” is going to move the collider in the respective direction. 

Changing values of Size will make the collider bigger or smaller, respective 

of the axis on which you’re modifying its value. It should be noted that 

increasing or decreasing the scale transform for a GameObject will make 

its collider’s size decrease by a similar ratio. For example, if you create a 

cube and make all of its scale Vector3 values equal to 2, even if the size of its 

collider will be 1 on all axes, assuming you didn’t manually modify anything, 

the collider will still wrap around the full volume or size of the cube.

Figure 3-19.  Modifying the bounds of a Box Collider in the scene

Chapter 3  GameObjects, Prefabs, Materials, and Components



79

The Physics Material tab just above can be used to make the collider 

simulate a particular real material. For example, some physics materials 

can make a collider feel more slippery when you walk on it, such as ice, 

while others can make it feel like something that appears to have more 

friction, such asphalt, for example.

If we want an event to fire when two physics objects collide but not 

have them bounce off each other, trigger colliders are used. So, if you want 

a light to turn on as you move over a part of the floor, these will help. If you 

tick IsTrigger on a Collider component, the GameObject associated with 

it will appear to lack the ability to participate in collisions. In other words, 

you will be able to walk through the GameObject, even if it has a Collider 

component when its IsTrigger box is ticked. This is useful when you want 

to make trigger zones, for example, in a game where walking in an area 

triggers something to occur, such as playing a cutscene.

The properties of Sphere Colliders (Figure 3-20) are very similar to 

those of Box Colliders. The only difference is that they have a Radius 

property instead of a Vector3-size one. You can modify the collider in the 

Scene window with the first button of that property, but dragging a point 

will increase the radius uniformly along all axes.

Figure 3-20.  The Sphere Collider component

Capsules are made up of two semi-spheres (two halves of a sphere), 

with one found at the top and one at the bottom of the capsule. There is a 

distance between those two semi-spheres, known as the height. Capsule 

Colliders similarly have properties for these (Figure 3-21).

Chapter 3  GameObjects, Prefabs, Materials, and Components



80

Finally, let’s talk about Mesh Colliders (Figure 3-22). If, for example, 

you have a GameObject that is irregularly shaped, you can add a Mesh 

Collider component to it. The Mesh Collider will by default add collision to 

the entire surface of the GameObject.

Figure 3-21.  The Capsule Collider component

Figure 3-22.  The Mesh Collider component

To make a Mesh Collider, use IsTrigger. You must mark it as “Convex” 

first. Ticking that will make the collider use a fair number of 3D regular 

shapes to cover the whole surface area and volume of the GameObject. 

Using Convex also allows collision between other GameObjects using a 

Mesh Collider. As far as possible, however, it is recommended that you use 

the other colliders discussed previously, rather than these, because they 

offer a performance boost, even if the Mesh Collider is marked as Convex.

Chapter 3  GameObjects, Prefabs, Materials, and Components



81

3.2.6  �Rigidbody
The Rigidbody component (Figure 3-23), which is usually used with 

a Collider component, is that one magical component that can turn a 

GameObject into an object that reflects the properties of objects in the real 

world. It can enable the Physics engine to allow objects to bounce off other 

objects and simulate such things as gravity. If you’re making a game that 

has to do with physics, you’ll very likely have to make use of Rigidbody.

Figure 3-23.  The Rigidbody component

The Mass property allows you to set the mass of an object. One unit 

is equivalent to 1 kilogram. Bigger values will make a GameObject feel 

heavier. Increasing mass will additionally make GameObjects less reactive 

to external forces (for example, explosions) and fall faster, if using Gravity.

Drag is the equivalent of air resistance, and the difference in this value 

is seen when making the GameObject fall from a height. Angular Drag 

is nearly the same, but it can be defined by how much air resistance will 

affect the GameObject’s rotation from torque. A value of 0 for either of 

these values can be translated as “this GameObject is not affected by air 

resistance.”

Chapter 3  GameObjects, Prefabs, Materials, and Components



82

Not ticking Use Gravity will prevent the GameObject from falling down 

automatically, if left at a height above the ground with nothing below 

supporting it.

If Is Kinematic is ticked, the GameObject will not be affected by normal 

physics. In order to make the GameObject move or affect its position or 

rotation, you must manipulate its respective Transform values. This is 

useful for making moving platforms.

Interpolation can be used to make the GameObject feel smoother, if 

there’s jerkiness in the movement of the player character of a game, for 

example. Setting Interpolate to Interpolate will smooth the Transform, 

based on that of the previous frame, while in Extrapolate, the Transform 

will be smoothed, based on that of the estimated next movement. You’ll 

learn more about Interpolation when we start coding.

The Collision Detection system can be changed from Discrete to one 

of the Continuous modes, if a GameObject is moving so fast that it’s able 

to go through other colliders, because the Collision Detection system 

isn’t detecting it fast enough. Using modes other than Discrete will have 

performance costs.

Finally, you can set constraints for a GameObject. Ticking either check 

box will not allow the GameObject to move or rotate on the respective 

axis/axes. This doesn’t mean that it won’t via code or script. It just means 

that normal physics applied to the Rigidbody (e.g., a collision) won’t have 

any effects to it.

3.2.7  �Audio Source and Listener
An Audio Listener component is usually found on the main Camera 

GameObject. It implements a microphone-like device. It records the 

sounds around it and plays them through the player’s speakers. You can 

only have one listener in a scene. For example, if at one point in your scene 

you had a car motor running and producing sound, the sound would play 

at a higher volume when the camera got closer to it.

Chapter 3  GameObjects, Prefabs, Materials, and Components



83

In contrast, an Audio Source component is what defines what sound(s) 

to play and how to play it (them). The position of where the sound is 

coming from will be determined by the position of the GameObject to 

which the Audio Source component is attached (Figure 3-24).

Figure 3-24.  The Audio Source component

The first property of an Audio Source component is the AudioClip. 

This is usually an audio file that in Unity you import as an asset. The 

Audio Mixer Group is another component or asset you can use to further 

personalize the quality of sound that will be produced.

Ticking Mute disables Audio Listeners from picking up the audio 

produced by its Audio Source. Later, you can tick bypasses, to prevent the 

sound produced by the Audio Source from being affected by other effects, 

Chapter 3  GameObjects, Prefabs, Materials, and Components



84

either Listener ones or those resulting from another type of component, 

with Reverb Zones applied to it accordingly.

Play On Awake will make the Audio Source play the assigned Audio 

Clip as soon as the scene loads, and Loop will make the Audio Source 

replay the Audio Clip from scratch, each time it has completed playing 

automatically.

If you have multiple Audio Sources in a scene, you can set a different 

priority for each, using its Priority slider. If, for example, an Audio Listener 

is equidistant from two Audio Sources, the one that has the lowest Priority 

slider of the two will sound louder than the other.

What the Volume slider does is pretty obvious. An Audio Source with 

a volume of 1 will play its assigned Audio Clip as loud as the maximum 

volume that the speaker has been set to output at. Note that the sound 

produced by an Audio Source having a volume of 0 won’t be heard.

The Pitch slider is used to set the frequency of the sound produced by 

an Audio Source. It can also be used to speed up or slow down the sound.

The Stereo Pan slider sets the amount of the output signal that gets 

routed to Reverb Zones. The amount is linear in the (0–1) range, but allows 

for a 10 dB amplification in the (1–1.1) range, which can be useful to 

achieve the effect of near-field and distant sounds.

Spatial Blend, Reverb Zone Mix, and 3D sound settings are beyond the 

scope of this book.

3.2.8  �Particle System
A Particle System is a component that appears to emit some kind of 

particle or shape at a particular position and rotation (Figure 3-25). For 

example, using a Particle System may help you to emulate fire, snow, or 

simply smoke coming from a car’s exhaust.

Chapter 3  GameObjects, Prefabs, Materials, and Components



85

In your Scene window, a Particle System by default will look something 

like the preceding screenshot. The three buttons will, respectively, 

from the left, pause, restart, or stop the Particle System. The difference 

between Stop and Pause is that Stop will restart the system but pause it 

immediately.

•	 Playback Speed can be changed to view the Particle 

System running at a speed other than that specified.

•	 Playback Time contains a value that represents the 

number of seconds that have passed since the Particle 

System has started running.

•	 Particles is the number of generated particles that is 

currently active for that Particle System, and Speed Range 

is the min-max value for the speed of these particles.

•	 Simulate Layers allows you to simulate the Particle 

System on layers other than those of the GameObject 

that holds it.

•	 Ticking Resimulate will make changes applied to the 

Particle System show immediately.

Figure 3-25.  Particle System in a scene

Chapter 3  GameObjects, Prefabs, Materials, and Components



86

•	 Show Bounds will make a 3D volume appear in the 

Scene window, which will indicate the maximum 

distance that particles can travel in that system.

•	 Finally, if ticked, the last check box, Show Only 

Selected, will hide all unselected Particle Systems in the 

current effect.

Duration (see Figure 3-26) defines the amount of time a Particle 

System will be emitting. This means that after that number of seconds has 

passed, no more particles or shapes will be created. Of course, if Looping is 

ticked, that value doesn’t hold any importance, because, then, the system 

will always keep on emitting.

Figure 3-26.  The first settings in a Particle System component

Chapter 3  GameObjects, Prefabs, Materials, and Components



87

Start Delay is the amount of time the system will wait before it starts 

emitting. Start Lifetime defines after how many seconds a particle will 

be automatically destroyed after it is emitted. Start Speed is the speed at 

which a particle will travel initially when it is emitted.

Start Size or 3D Start Size can be used to define the size of a particle. 

Start Rotation or 3D Start Rotation defines its rotation. Flip Rotation can 

be used to flip the rotation of particles. Start Color changes the color of the 

particle when it is created.

Gravity Modifier can create particles affected by gravity. A value higher 

than 0 will make the particles fall down quicker. A value lower than 0 will 

act according to the previous statement, but the particles will go up instead 

of down, and 0 will render the particles entirely unaffected by gravity.

Simulation Space can be set to Local, World, or Custom.

•	 If set to Local, particles will move relative to the 

Transform of the GameObject their Particle System is 

attached to.

•	 In World, they move relative to the world or scene.

•	 In Custom, you can specify another Transform to make 

the system relative to.

Simulation Speed is the multiplier at which the Particle System will 

play back. Changing the Delta Time mode is useful for playing effects while 

Paused, if using the Unscaled option.

Scaling Mode serves to resize particles relative to the entire hierarchy, 

local particle node, or only apply scale to the shape.

Ticking Play On Awake will make the particle system start running 

automatically.

Emitter Velocity allows you to change the mode either to Transform or 

Rigidbody, depending on how to calculate velocity if the system is moving.

Chapter 3  GameObjects, Prefabs, Materials, and Components



88

Max Particles defines the maximum number of particles in the system 

at one particular moment. If this number is reached, no more particles will 

be emitted until there are fewer particles than the number defined.

Ticking Auto Random Seed will make the simulation different each 

time the effect is played.

In Stop Action, you can define what to do if the Particle System is 

stopped and all particles have been destroyed. You can, for example, 

choose to disable the Particle System component or destroy the 

GameObject that has the latter as component.

Culling Mode defines what happens when the system is offscreen, i.e., 

when the particles are not visible onscreen.

•	 The Catch-up mode pauses offscreen simulations but 

performs a large simulation step when they become 

visible, giving the appearance that they were never 

paused.

•	 Automatic uses Pause mode for looping systems and 

AlwaysSimulate if not.

•	 AlwaysSimulate will never Pause the simulations, even 

if offscreen.

When Ring Buffer Mode is set to Enabled, particles remain alive until 

the Max Particles buffer is full, at which point new particles will replace the 

oldest, instead of dying when their lifetime has elapsed.

I will be discussing Emission (Figure 3-27) and Shape in detail, but 

for most of the other properties that remain, I will state only what they are 

used for. A Particle System does not have to make use of all the properties 

that are available in the Inspector.

Chapter 3  GameObjects, Prefabs, Materials, and Components



89

The value in the Rate over Time property represents the amount of 

particles that will be emitted per second. That in Rate over Distance is the 

same as Rate over Time but acts per unit second instead.

The Bursts array allows you to emit particles at specific time frames. Its 

Time property lets you choose when to emit bursts of particles, and Count 

designates the number of these particles to emit. Additionally, you can set 

a curve or create a range for the number of particles to emit, by choosing 

another setting in the drop-down other than the value.

The value in Cycles allows specifying how many times to repeat the 

burst. You can set it to infinity by choosing that property when accessing its 

drop-down menu.

Interval lets you repeat that burst every x seconds, and Probability is a 

value from 0 to 1. If Probability is set to 0, the burst will never occur, and if 

set to 1, it will always occur. A value of 0.5 will have the burst occur 50% of 

the time or not occur 50% of the time.

You can add more sets of values by clicking the plus icon below or 

remove sets by clicking the minus icon.

Shape represents the 3D volume of the emitter (Figure 3-28). A 

Spherical shape, for example, will cause particles to be emitted in all 

directions. We will be looking at the Cone shape for this part. The different 

options the other shapes provide are quite easy to understand too.

Figure 3-27.  Emission property of the Particle System component

Chapter 3  GameObjects, Prefabs, Materials, and Components



90

A higher value of Angle will make emitted particles go in more 

directions, and increasing the Radius will increase the volume that 

particles can cover. Radius Thickness can have a value from 0 to 1. A value 

of 0 will make emitted particles seemingly have a denser value.

The value in Arc represents the maximum angle from the center of 

the emitter from which particles can be spawned. A value of 0 will make 

particles emit from the center of the emitter only, while a value of 360 

allows particles to be emitted at any point along the area of the base of the 

emitter. For example, as we are using a cone, a value of 360 makes particles 

spawn at any point found on the small circle that forms the base of the 

emitter.

Figure 3-28.  Shape property of the Particle System component

Chapter 3  GameObjects, Prefabs, Materials, and Components



91

Mode allows you to choose how particles are spawned around the 

Arc. A mode of Random makes them spawn at any position with respect 

to the original Arc value, and Spread lets you choose to spawn particles at 

specific angles. A value of 0 disables this behavior.

The value that Emit from uses can be changed to specify from where 

you want particles to be emitted, either from the Base or the Volume itself. 

Using a Texture 2D asset, you can modify from where particles will sample 

their color.

The Vector3 Position allows you to move the emitter volume from the 

position of the Transform of its GameObject. Rotation and Scale play a 

similar role.

Ticking Align To Direction will automatically aligns particles, based on 

their initial direction of travel.

Randomize Direction takes a value of 0 to 1. A value of 1 will override 

the initial direction of travel of particles with a random direction.

Similarly, Spherize Direction overrides that initial direction of travel 

with a direction that projects particles outward from the center of the 

Shape Transform.

Finally, Randomize Position moves the starting position by a random 

amount, up to the maximum value it contains.

Moving on to the four buttons at the bottom of the Shape Property, the 

first one can be clicked to toggle on or off the Shape gizmo editing mode. 

This acts in the same way as the Modify Collider button for colliders, 

allowing you to resize the boundaries or shape of the emitter volume in the 

Scene window.

The three other buttons allow you, respectively, to move, rotate, or 

scale the emitter volume, using guides such as arrows, which will appear in 

the Scene window as you toggle them.

Chapter 3  GameObjects, Prefabs, Materials, and Components



92

The values in Velocity over Lifetime and Limit Velocity over Lifetime 

can be tweaked to make the particles gain or lose speed with time, 

respectively.

Inherit Velocity allows you to control the speed particles inherit from 

the emitter itself.

Force over Lifetime and Color over Lifetime contain properties that can 

be modified to make particles gain/lose force and exhibit color changes 

with time, respectively.

Color by Speed works in a way similar to Color over Lifetime but acts as 

per the speed of particles, rather than with time. Size and Rotation over/by 

Lifetime or Speed act similarly.

External Forces can be modified to make particles be affected by wind, 

for example. Noise lets you add turbulence to the movement of particles, 

and Collision lets you specify multiple collision planes that particles can 

collide with.

Triggers allow you to execute script code, based on whether particles 

are inside or outside collision shapes. Sub Emitters allow each particle 

to emit particles in another system. Texture Sheet Animation allows you 

to specify a texture sheet asset and animate/randomize it per particle. 

Lights lets you control light sources attached to particles, and Trails lets 

you attach trails to particles (which you will learn more about in the next 

section, “Trail Renderer”). Custom Date is quite complex and allows 

particles to interact with scripts or shaders.

As for the properties of Renderer, well, you can define how particles 

are rendered, i.e., control their color, trails, rendering mode, sorting mode, 

minimum/maximum size, alignment with respect to the camera, flip/pivot 

along axes, and how they interact with shadows/lights.

Chapter 3  GameObjects, Prefabs, Materials, and Components



93

3.2.9  �Trail Renderer
Trails are another form of Particle System that draw where a GameObject 

has been (Figure 3-29). Think of them as being tails. If you had a plane, for 

example, you might want it to have trails along its wings, to simulate the 

effect of flying through the air.

Figure 3-29.  A trail from a Trail Renderer component on a 
GameObject in the scene

The first thing on a Trail Renderer (Figure 3-30) component is some 

sort of graph of Width (y axis) vs. Time (x axis). You can add more points 

on that graph, to make a trail bigger or smaller with time.

Chapter 3  GameObjects, Prefabs, Materials, and Components



94

•	 The values of the Time axis (x axis) actually correspond 

to a percentage of the total time the trail has been set to 

render, as defined by the Time property (in our case, 5). 

This time value of 5 can be interpreted as the maximum 

time that the trail will persist. Following is an example. 

If the value is set to 10, and a car is continuously being 

driven, pieces of the trail will continuously be spawned, 

Figure 3-30.  The Trail Renderer component

Chapter 3  GameObjects, Prefabs, Materials, and Components



95

which will appear as if the trail will reach a maximum 

length value of 10. The trail will remain this long 

(appearing like a long rectangle), because new pieces 

are being spawned to replace the previous one from the 

car, at a maximum value of 10, until the car brakes. The 

trail will then become shorter and shorter, until it has a 

length of 0. This will take 10 seconds to occur, because 

each piece will be destroyed 10 seconds after it has 

been spawned, with the farthest pieces being the ones 

to disappear first.

•	 The values of the Width axis (y axis) will correspond to 

the width of the trail formed at a particular point in time.

Min Vertex Distance is the minimum distance at which to spawn from 

the previous one a new point on the trail.

Ticking Autodestruct automatically destroys the GameObject having 

that Trail Renderer as component when there is no trail. Unticking 

Emitting will pause trail generation.

Color allows you to set a gradient for the color along the trail. Corner 

Vertices is the amount of vertices to add for each corner. End Cap Vertices 

is the number of vertices to add at each end of the trail.

Alignment lets you rotate trails to face their transform component 

or the camera. If you choose to use the TransformZ mode, lines will be 

extruded along the XY plane of the Transform.

Texture mode, on the other hand, can be set to another mode, 

depending on how you want coordinates to be placed.

If ticked, Generate Lighting Data will generate data for shaders 

associated.

A Shadow Bias can be applied to prevent self-shadowing artifacts.  

A value of 0.5 represents 50% of the trail width at each segment.

You’ll learn about materials in the next section, but for now, just 

assume that they define the color of the trail.

Chapter 3  GameObjects, Prefabs, Materials, and Components



96

Lighting lets you choose how shadows are cast or received. Similarly, 

Probes, are about lighting and reflections.

3.3  �Materials
As was previously discussed, materials can change the appearance of 

GameObjects equipped with a Renderer component. This includes the 

texture, color, and smoothness of an object, in addition to several other 

properties. The properties that a material possesses are defined by the 

shader that that material uses. A shader defines how an object looks, and a 

material can be thought of to be an instance of a shader, just like data types 

and variables. A material can be created in the Project window by right-

clicking anywhere and heading to Create ➤ Material (Figure 3-31). You can 

rename the material just created.

Figure 3-31.  Creating a material

Figure 3-32.  Applying a material to a GameObject with a Renderer

To apply a material to a GameObject in the scene, you can simply drag 

and drop it on the object in the Scene window directly, on the name of the 

GameObject in the Hierarchy window, or at the bottom of the Inspector 

view, if the GameObject in question is selected (Figure 3-32).

Chapter 3  GameObjects, Prefabs, Materials, and Components



97

To edit properties of a material, you can simply expand it on any 

GameObject it has been applied to its renderer of, or select it in the Project 

window, doing so in the Inspector window (Figure 3-33).

Figure 3-33.  Properties of a material

Chapter 3  GameObjects, Prefabs, Materials, and Components



98

By default, a created material will use the Standard Shader. This can be 

changed, matching specific requirements. The little transparent squares 

that appear beside properties can be assigned 2D textures, so that they 

don’t appear plain, as they are by default.

Albedo is the main color of the material, and you can pick another 

color. All instances of objects that are using that material will display and 

apply the changes in real time.

The Metallic and Smoothness sliders will make the color of the 

material appear more or less metallic and smooth, respectively. You can 

also change the source to Albedo Alpha to simulate another effect.

As stated, you can set 2D textures for the normal, height, occlusion, 

and detail masks. After ticking Emission, you can make the material emit 

HDR colors.

Tiling and Offset are useful if, for example, you have a material using a 

grid 2D texture. Changing these values will make the material repeat itself 

or move along axes.

I won’t go into detail about Secondary Maps and the other options, 

because these are not required for the purposes of this book.

3.4  �Tags and Layers
As mentioned, tags can be used, for example, to identify what object 

collided with an enemy during a shooting game. If it was the player, we 

should remove health from him; otherwise, if it was a bullet, damage 

should be taken by the enemy.

Layers can be applied to GameObjects too. In the Editor, you can 

define whether a layer of GameObject can collide with another layer 

of GameObject. By default, when you create a Layer and assign it to a 

GameObject, it can collide with all objects, using existing Layers, if you 

don’t modify anything. Layers can also be used to define what objects are 

rendered by the camera or affected by a particular light source.

Chapter 3  GameObjects, Prefabs, Materials, and Components



99

In Edit ➤ Project Settings ➤ Physics, you can set many default physics 

properties, such as the value of Gravity and friction settings. We will be 

keeping everything as it is for now, but you can always change values, 

to better understand the changes on your own. Scrolling down, you will 

find the Layer Collision Matrix, with which you can set whether Layers of 

GameObjects can collide with those of other GameObjects (Figure 3-34). 

Note that unticking or disabling collision between two layers will make 

collision impossible between two GameObjects. Each of one of these two 

layers, including IsTrigger, calls what won’t work anymore.

Figure 3-34.  An example of a Layer Collision matrix

To create new Tags or Layers, head to Edit ➤ Project Settings ➤ Tags 

and Layers and expand the respective tabs. For tags, click the plus icon, 

enter a name, save, and close the window. For layers, type in the first 

empty rectangle you see named User Layer <num> and close the window 

(Figure 3-35).

Chapter 3  GameObjects, Prefabs, Materials, and Components



100

To apply a tag or/and layer to a GameObject, select it in your Scene or 

Hierarchy window and select the respective tag or/and layer you want to 

apply to it (Figure 3-36).

Figure 3-35.  Tags and layers

Figure 3-36.  Applying tags and layers to GameObjects

3.5  �Scripts
Scripts can be classified as both being a component and an actual 

independent asset. Scripts can only be written in UnityScript (like C#, with 

some modifications), as all other former languages have been deprecated. 

You can create scripts by either using the Add Component menu found at the 

bottom of the Inspector window when you select GameObject(s) and type the 

name of the script you wish to add, or right-click in the Project window and 

create one (Figure 3-37). Note that when you use the former option, and the 

script name you typed doesn’t exist, you have the ability to directly create one.

Chapter 3  GameObjects, Prefabs, Materials, and Components



101

When a script has been created, you’ll also be able to see it in your 

Project window. Selecting a script displays a preview of its contents in the 

Inspector (Figure 3-38).

Figure 3-37.  Creating scripts

Figure 3-38.  Viewing scripts in the Inspector

Chapter 3  GameObjects, Prefabs, Materials, and Components



102

If you double-click the script, it will be opened in the code editor you 

set in Edit ➤ Preferences. The first three lines of any new script created 

serve to reference namespaces that contain classes. These will allow you 

to write code that makes use of popular and important data types, such as 

lists and arrays. The using UnityEngine; line will let you interact easily 

with other components in the engine, via your scripts.

Code you write in a script is normally placed between its starting and 

closing curly brackets. The : MonoBehaviour part is what’s going to make 

your script actually behave like a component in Unity.

Next, if you want to declare global variables, you can do so outside any 

functions, within the curly brackets of the class.

Code written in the void Start() {} function will run once when 

you enter Play Mode. That written in void Update() {} will be executed 

once per frame. If your game is running at 60 FPS, the code in the update 

function will run 60 times in a second.

Figure 3-39 shows an example of declaring a global integer-type 

variable and making it publicly visible in the Unity Editor and to other 

scripts. Note that if you omit the public part, variables will by default be 

marked as private and won’t be accessible directly to other scripts or 

visible in the Editor.

Chapter 3  GameObjects, Prefabs, Materials, and Components



103

After saving your script, and after it has been automatically compiled 

in Unity, you should be able to see a new field on the GameObject that 

has that script as component. Editing the value in that field in the Editor 

directly changes the value that the myInt variable holds (Figure 3-40). 

You’ll learn more about scripting in Unity in later chapters.

Figure 3-39.  How a script is by default + a global integer variable: 
myInt

Figure 3-40.  Viewing and modifying script variables from the Inspector

Chapter 3  GameObjects, Prefabs, Materials, and Components



105© Kishan Takoordyal 2020 
K. Takoordyal, Beginning Unity Android Game Development,  
https://doi.org/10.1007/978-1-4842-6002-9_4

CHAPTER 4

User Interface
Typically, a user interface (UI) refers to the means by which a user interacts 

with a computer system. In our case, the term refers mostly to UI elements 

in our game, such as buttons and joysticks, which allow a player to interact 

with our game. In addition, this chapter will also discuss other types of UI 

elements, such as Text, Slider, and Image, which the player can’t interact 

with but can be used to display important information or provide a better 

user experience. For this chapter, it is recommended that you use a 2D 

view. You can do so by clicking the little button labeled 2D at the top of the 

Scene window (Figure 4-1). Also, we’ll be using the Rect tool (Figure 4-2).

Figures 4-1 and 4-2.  The 2D view button (left) and the Rect tool (right)

https://doi.org/10.1007/978-1-4842-6002-9_4#ESM


106

4.1  �Canvas
In Unity, 2D UI elements must be the child of a GameObject known 

as Canvas. By default, whenever you create a UI element in the Editor, 

Unity will create the canvas and make the element a child of the latter, 

if no canvas has already been created. For now, let’s look at the multiple 

components on an empty Canvas GameObject. This can be created 

by right-clicking in the Hierarchy window and selecting Canvas from 

the UI. You may also have noticed that another GameObject named 

EventSystem has been created in the scene. I will first analyze the different 

components found on the Canvas GameObject. If you zoom out in your 

scene view, the canvas should look like the following screenshot. Note that 

you can also double-click UI elements, or any GameObject for that matter, 

to bring them entirely in view (Figure 4-3).

Figure 4-3.  The canvas as it appears in the Scene window in 2D 
view

As just stated, UI elements need to be children of a Canvas 

GameObject in order to be visible and/or interactable. However, if, for 

example, a canvas has four UI elements of the same size as children and is 

Chapter 4  User Interface



107

found at the same exact position, the first elements will be drawn first on 

the screen, and the last ones will be drawn on top of them (demonstrated 

in section 4.3, “Text”).

4.1.1  �Canvas Component
There are three modes of rendering elements in the Canvas component 

(Figure 4-4).

Figure 4-4.  The Canvas component

In the first and default mode, Screen Space—Overlay, the canvas 

will be the size of the screen and, thus, match the latter’s resolution. If 

Pixel Perfect is ticked, the UI will be rendered without anti-aliasing for 

precision. If multiple Canvas components with that same mode are used 

in the scene, the one with the highest Sort Order value will be the one that 

will be rendered. Changing the Target Display allows you to test multiple 

canvases, or views, in the Editor. I won’t really go into great detail about 

that option or about the Additional Shader Channel.

If the mode is set to Screen Space—Camera (Figure 4-5), the canvas 

and its child elements will be rendered with respect to the Camera 

GameObject assigned.

Chapter 4  User Interface



108

Another way of saying this is that the canvas can be thought to then 

act as a plane. You can set its distance from the camera in the Plane 

Distance field. While you won’t see changes in the size of the canvas if, for 

example, you’re making use of 3D GameObjects, there will be a noticeable 

difference in the distance at which the canvas is being rendered from the 

camera. Figure 4-6 demonstrates this.

Figure 4-6.  An example of a canvas with a Camera Screen Space 
mode and 3D objects

Figure 4-5.  The Canvas component set to a Screen Space—Camera 
Render Mode

The third and final mode, World Canvas, makes the canvas behave as a 

3D plane in the game. Using this mode allows you to have as many Canvas 

GameObjects in a scene as you want, and they will all be rendered by the 

camera assigned. For example, in a game, this mode can be used to make 

Chapter 4  User Interface



109

floating health bars over enemies. The canvas would thus be at the same 

3D position and rotation as the enemy its child slider represents the health of. 

Figure 4-7 illustrates an example.

Figure 4-7.  A canvas with a health bar in World Space

Figure 4-8.  The Canvas Scaler component

The screen of the monitor also makes use of a World Space Canvas 

GameObject.

4.1.2  �Canvas Scaler
The Canvas Scaler (Figure 4-8) is a very useful component that allows us to 

specify how our canvas(es) should be rendered with respect to different screen 

sizes. It works only with the Screen Space modes of the previous component.

Chapter 4  User Interface



110

In the first mode, the canvas will always be the same size. If, for 

example, you make a game for a 720p screen and accordingly resize your 

elements to match this, when that resolution is doubled, all elements 

will still be of the same physical size and, thus, appear two times smaller, 

provided the screen size is constant for both the 720p and 1440p 

screen (Figure 4-9). Increasing the Scale Factor will make the canvas 

proportionally bigger. The last option applies to Sprites, which we won’t 

make use of, because we are more concerned with 2D games.

Figure 4-9.  The Canvas Scaler component set to scale with 
screen size

You can set a reference resolution for which you’re targeting the 

game to be developed for. Then, you can choose from making the canvas 

match the screen width or height, or shrink, or expand accordingly. For 

the former, you can set a canvas to match only the width or height of the 

screen. Bringing the slider all the way to the left, for example, will make the 

canvas indifferent, whether the height in pixels of a screen size is increased 

or not, while width is kept constant. However, in that case, if the width of a 

screen in pixels is changed, the canvas will scale in equal proportions.

Finally, in the last mode, Constant Physical Size, you can set the actual 

physical size of the canvas in terms of centimeters, millimeters, inches, 

points, or picas. That’s really all you need to know about that.

Chapter 4  User Interface



111

As this book aims to help you develop mobile games, specifically for 

the Android platform, the Canvas Scaler usually is set to match the height, 

if we’re creating a game in landscape. For example, if we have a phone 

that has a 1920 × 1080 resolution, and the game will play in landscape 

(horizontally), the final screen height will correspond to the value 1080. 

Commonly, screens become larger vertically rather than horizontally. Our 

statement attempts to convey that if we have phones with aspect ratios of 

16:9, 18:9, or 21:9, for example, our buttons and other elements will remain 

of the same size, unless the screen is actually larger rather than longer. 

Our game will thus be able to play full-screen on these devices, without 

affecting how our elements are laid out, such as in terms of their scale. 

Now, if our game was played on a device with a larger screen, not only a 

longer one, it would scale and still display properly. Depending on the 

game you’re trying to make, this won’t always be what you’re wishing to 

do, and you might pursue another option.

4.1.3  �Graphic Raycaster
This component (Figure 4-10) is basically used to determine whether an 

element on the canvas has been hit or not.

Figure 4-10.  The Graphic Raycaster component

I won’t go into detail about the properties, because you’ll rarely 

interact with this component. Just so you know, they are used for tweaking 

what object(s) should be able to block the raycast.

Chapter 4  User Interface



112

4.2  �Rect Transform
This is a component that you’ll see on all UI-type GameObjects (Figure 4-11). 

It is the equivalent of the Transform component on 3D GameObjects but 

for UI elements, with some additional options and properties. For the 

Canvas GameObject, values in this component might be locked.

Figure 4-11.  The Rect Transform component

The Pos X, Y, and Z correspond to the typical position Vector3 of a 

Transform component. The same logic applies to the rotation and scale 

fields. Changing the Width or Height value is self-explanatory. Take 

note that if you change the value held in Pos Z, this won’t really make a 

difference unless two or more elements are overlapping, in which case the 

element with the highest Pos Z value of the bunch will be the one visible. 

For example, if there were many empty 2D squares (Images), each having 

the same size and found exactly at the same position but each having a 

different color, the one with the highest Pos Z of the group would be the 

one visible. There are exceptions to this rule, however. Note, too, that the 

name and number of fields will differ, based on the selected Anchor type.

Chapter 4  User Interface



113

Anchors designate the point where the position of the UI element should 
be relative to their parent’s Rect Transform and position. Each of the Min and 
Max values can be in the range of 0 to 1 in terms in X and Y coordinate axes. 
An X value of 0 corresponds to the leftmost position of the canvas while one of 
1 corresponds to the rightmost. Similarly, this range goes from the uppermost 
position of the canvas to the bottommost for the Y value. Usually the Vector2 
Min and Max values are the same.

While Anchors had to do with the positioning of the element relative to their 
parents itself, the Pivot is all about moving the center of the UI element relative 
to itself. Again, X and Y values go from 0 to 1, but this time, these represent the 
positioning of something known as the pivot of the UI element based on its own 
width and height. For example, if the X pivot value was set to 0 and you’d try to 
increase the width of the element, the pivot would be at the leftmost end, and 
the element would scale only from its right side unlike it would from its center in 
both horizontal directions if that value was 0.5, i.e., at the center of the element.

You can also visually change the Anchor points and pivot of an element 
by clicking the grid-looking thing at the top-left corner of a Rect Transform 

component (Figure 4-12).

Figure 4-12.  Anchor Presets

Chapter 4  User Interface



114

Clicking any of these presets will automatically assign its anchor values 

to the element. Additionally, if the Shift button is also held while doing so, 

the pivot value will also get modified in a similar fashion. If the Alt button 

is held in the process, independent of whether the Shift one is held or not, 

the element will also move to that anchor position and thus have a Vector2 

position of (0, 0). You’ll be able to test all these after you’ve learned about 

other Canvas UI elements.

4.3  �Text
To create a UI element, simply right-click in an empty space in the 

Hierarchy window, head to UI, and choose the element you require. For 

this section, we’ll be looking at the UI element named Text. Make sure it is 

a child of a Canvas GameObject. Double left-clicking the element should 

make it visible and centered in your Scene window (Figure 4-13).

Figure 4-13.  The Text UI element

Of course, you can drag along the edges of the Text element, to make it 

occupy a bigger area, or manually modify the values of its Rect Transform 

component, for that matter (Figure 4-14).

Chapter 4  User Interface



115

Modifying the field where “New Text” is written by default on a Text 

component directly changes what’s actually written on the element.

Next, you can specify the font to be used, if you imported font files in 

your Project. You can choose from normal, bold, and/or italic font styles 

for your Text element, as well as specify the font size and line spacing. For 

example, a larger font size value will make text appear bigger, and a smaller 

value of line spacing will reduce the distance between lines in a paragraph. 

Ticking Rich Text allows you to style specific words in your text, such as by 

placing them between HTML-like tags.

Further on, you can align your text at the left, center, or right and at the 

top, center, or bottom of the area its Rect Transform component occupies. 

Ticking Align By Geometry will execute some minor changes to make the 

text reflect more of your previous choice, in terms of its actual geometry.

Figure 4-14.  The Text component

Chapter 4  User Interface



116

For Horizontal Overflow, you can either choose to make the text 

continue on a new line (Wrap) when a line has more words than the 

width of the Rect Transform can hold or just ignore the width of the Rect 

Transform and continue on that same line (Overflow).

For Vertical Overflow, you can either choose Truncate or Overflow. In a 

similar fashion, in the latter, the text will continue ahead of the edge of the 

height of the Rect Transform and occupy only as much space as it requires, 

whereas in the former, after the maximum lines that the Rect Transform 

can hold has been reached, the rest of the text or lines will be discarded 

and won’t be visible.

Ticking Best Fit allows you to set a minimum and maximum size for 

the font size of the text. These values will override the former Font Size 

field. The text won’t have a font size less than the minimum value and will 

tend to have a font size as close as possible to the maximum value, as long 

as the Rect Transform has an area sufficient to hold all the text. If the Rect 

Transform can easily house all the text at that minimum value, Font Size 

will internally be incremented to a higher value, but less or equal to that 

maximum value set while the Rect Transform can hold the full text.

Note that if you specify a font size or a minimum font size in Best Fit 

larger than what the Rect Transform can hold while not using overflow 

modes, some or all the characters in the text might not be visible.

Next, you can change the color of the text and assign a material, if you 

want your text to have some effect, such as a horizontal gradient.

Ticking Raycast Target allows you to add events later via script when, for 

example, you want something to occur when the Text UI element is clicked.

4.4  �Image
Remember that UI elements that are at the bottom of the list of the 

children of the Canvas get rendered on top of the ones that are above them 

in that list? Well, here’s what happens if we create a UI Image element and 

place it before a Text element in the list of Canvas children (Figure 4-15):

Chapter 4  User Interface



117

If, however, the Text and Image elements switch places, the Image will 

be in front or on top of the Text element (Figure 4-16).

Figure 4-15.  Rendering an Image over a Text UI element

Figure 4-16.  Rendering a Text over an Image UI element

Figure 4-17.  The Image component

This component can be used to display a noninteractive image to the user. 

You can use this for such elements as decorations or icons (Figure 4-17).

Chapter 4  User Interface



118

Image can be set to display an actual picture graphic. Note that the 

image will be scaled to match the dimensions of the Rect Transform. You 

can mark an Image asset to be a Sprite 2D type, so that you can assign it 

to the Source Image property of a UI Image component, so that it displays 

that image. To mark an imported image as a Sprite 2D type, you just have 

to select it in the Project window and change its Texture Type to Sprite 

(2D and UI) in the Inspector (Figure 4-18). In Chapter 6, we’ll be using a 

Sprite 2D texture for a Pause button.

Figure 4-18.  A texture marked as Sprite 2D

Setting another color on the Image Component can be thought of 

as putting a color filter on an image. The Material property can be used 

to apply other effects on the final image to be rendered. Ticking Raycast 

Target lets Unity consider that image for raycasting.

4.5  �Raw Image
Unlike Images, only images of the Texture type can be rendered on a Raw 

Image component (Figure 4-19).

Chapter 4  User Interface



119

The Color and Material properties work similarly to those in Image 

components. As for the Vector2 values X and Y and W and H, they 

correspond, respectively, to the positioning and size of the Texture 

assigned, relative to the Rect Transform component. Modifying the X and 

Y values will make the Texture offset by X and Y amounts from the center 

of the Rect Transform, and modifying the W and H values will, accordingly, 

change the width and height of the Texture with respect to the actual width 

and height of the Rect Transform.

4.6  �Slider
The Slider UI element can be useful in various situations. They can be 

used to make health bars for enemies and/or the player easily, or be 

interactable, in order to change some in-game value, such as volume 

(Figures 4-20 and 4-21).

Figure 4-19.  The Raw Image component

Figure 4-20.  A slider

Chapter 4  User Interface



120

If Interactable is kept ticked, you will be able to drag and adjust the 

slider’s knob when the game is played. Transition allows you to set visual 

feedback, depending on the value of the slider or the state of the knob.

Figure 4-21.  The Slider component

Chapter 4  User Interface



121

For example, using a Color Tint transition allows you to set defined 

colors for the knob, depending on whether it is disabled or pressed. 

In a similar fashion, Sprite Swap causes a defined change in the Sprite that 

is being used, and Animation will accordingly trigger set animations. Of 

course, there will be no change if the Transition has been set to None.

The options in Navigation allow you to control the slider via keyboard 

keys. If you don’t want a slider’s value to change, using the keyboard keys, 

set this property to None. Fill Rect and Handle Rect are Rect Transform 

components that must be assigned, in order for the slider to know where 

its Fill and Handle are found.

Direction defines visually where the min and max values of the slider 

are found. If this is set to Right to Left, the smallest value the slider can 

hold will be found visually at the far-right end of the slider.

Just below the Direction property, there are two fields that allow you 

to set the minimum and maximum values that the slider can hold. If 

the Knob is found at either end of the slider, it will either represent the 

minimum or maximum values set in the fields I just discussed, depending 

on the Direction property.

Ticking Whole Number will ensure that values the slider represents 

will be integers only. Numbers with a decimal/fractional part won’t occur 

while this is kept ticked.

Changes made by adjusting the Value slider will also be reflected by 

the slider in the Scene and Game Windows. This Value slider goes all the 

way from the minimum value (left) set to the maximum value (right) set.

Finally, you can set the slider to do something whenever its value is 

changed. For example, you can make the slider call a function in some script 

on a GameObject when its value is changed. We will make use of this later.

Next, let’s take a quick look at the children that form part of a Slider 

GameObject by default (Figure 4-22).

Chapter 4  User Interface



122

Background has an Image component and is of the full size of a Slider 

GameObject. Changing properties of that component will directly alter the 

background of the slider.

The Fill Area is just an empty GameObject, but it is required in order for 

the fill of the slider to work properly. Next, Fill GameObject works similarly 

to Background GameObject. As the slider has a value closer to its maximum 

value, the fill will occupy a larger area and cover the background.

Handle Fill Area denotes the area in which the Handle of a slider can move. 

Finally, the Handle is just an Image Component (with a Rect Transform) that 

uses a plain white Circle sprite by default. The handle is the visual component 

you’ll interact with, if you decide to change the value of a slider in-game.

4.7  �Button
Button can be thought of as that clicky component that you interact with 

in a game in order to do something. A good example of a button could be 

something that looks like an arrow that makes your character jump when 

you press it. By default, a button looks like the following when created 

(Figure 4-23):

Figure 4-23.  A button

Figure 4-22.  The children GameObjects of a typical Slider UI element

Chapter 4  User Interface



123

To change the size of a button, just edit the appropriate values in the 

Rect Transform component of its GameObject. To change its default looks, 

edit the Image component on its GameObject, as desired (Figure 4-24).

Figure 4-24.  The Button component

The first couple of properties do the same thing as those of a Slider 

component. You won’t be able to interact with a button if Interactable 

is not ticked. Transition basically defines how the button should look, 

depending on states such as when it is pressed or disabled.

A smaller value of Fade Duration will reflect changes made quicker. For 

example, if the button is pressed, and a Color Tint transition is being used, 

the button will instantly transition to a color specified in Pressed Color, if 

the Fade Duration value is set to 0 (seconds).

Chapter 4  User Interface



124

Again, the button can be set to perform certain actions, as defined in 

the OnClick() list at the bottom of that component.

By default, a button also has a Text GameObject as a child. You can 

safely delete or destroy it, if you don’t need it, however.

4.8  �Input Field
An Input Field is really just a text box. Clicking it will bring up the default 

keyboard on a mobile device and allow you the possibility of typing something. 

As children, it has two Text UI elements. The first is known as the Placeholder 

and will contain some dummy text while nothing has been typed. The other Text 

UI element will contain the text you type. You can modify the properties of these 

Text UI elements to obtain the styling you want (Figure 4-25).

Figure 4-25.  An input field

On an Input Field component, you will again find the Interactable, 

Transition, and Navigation properties. These will do the same things as in 

Button and Slider.

The properties related to Text represent, respectively, the Text UI 

element to use to display typed content, a field directly mapped to the text 

property of that Text UI element, and the maximum number of characters 

that that Input Field can hold. Note that the Placeholder text will disappear, 

unless there is nothing set in the Text property. If this is not blank, the data 

entered by the user will already be preceded by the text we set.

Choosing a proper Content Type for the type of data to be entered is 

useful to define how data entered will be displayed (Figure 4-26).  

Chapter 4  User Interface



125

Figure 4-26.  The Input Field component

For example, if set to Password, when a user enters something in the Input 

Field, all characters will automatically be replaced by asterisks. Visit the 

documentation for InputField to learn the difference between the many 

Content Type options.

Chapter 4  User Interface



126

Depending on the value you set in Content Type, you might also have 
a Line Type property, which allows you to choose whether data can be 
formatted only in a single line (Single Line), whether it can be formatted 
across multiple lines, or if the user can span a new line by pressing the Enter/
Return key (Multi Line Newline) or not (Multi Line Submit). With the latter 
option, the text will go across multiple lines automatically, when required.

By default, the Placeholder property only references the first child of an 
Input Field, as the Text UI element that contains placeholder text.

The value in Caret Blink Rate defines how many times per second the 
caret will blink. A higher value held in Caret Width will make the caret 
wider, and you also can choose a custom color for the caret by ticking the 
Custom Caret Color and selecting a color.

Selection Color is the highlighting color across characters when they 
are selected. Ticking Hide Mobile Input will hide on iOS devices the native 
input field attached to the onscreen keyboard.

If the Read Only check box is ticked, it won’t be possible to input more 
characters in an Input Field.

Finally, you can add actions to the OnValueChanged() and 
OnEndEdit() lists. Actions in the former option will be executed whenever 
the value held in the Input Field is changed. For example, if you enter Play 
mode and input three characters, OnValueChanged() will be called three 
times, and any actions set will performed three times. As for OnEndEdit(), 
actions assigned there will be executed each time the user finishes editing 
the text content, either by submitting something or clicking somewhere 
that removes the focus from the Input Field.

4.9  �Toggle
Toggle is very similar to Button and works mostly in the same way. The 
only fundamental difference is that Toggle has either a True or False value 
at a particular time (Figure 4-27). Every time a toggle is clicked or touched, 
it alternates between these two values. If it was True before it was clicked/

touched, it will have a False value; otherwise, it will have a True value.

Chapter 4  User Interface



127

On a Toggle Component (Figure 4-28), IsOn denotes the True/False state 

of the Toggle UI element. While this is ticked, the Toggle is in a True state.

The Toggle Transition property allows you to set a visual effect for 

when a user interacts with the Toggle UI element.

Figure 4-27.  A toggle

Figure 4-28.  The Toggle component

Graphic is set to a GameObject having an Image component. This 

Graphic will represent the True/False state of the Toggle UI element.

Chapter 4  User Interface



128

As for the Group property, you can assign a GameObject having a 
Toggle Group component here. A toggle group is basically a collection of 
Toggle UI elements. It can be useful sometimes to have only one toggle in 
many to have a True state at a time, for example. This is exactly why toggle 
groups might come in handy, but they are outside the scope of this book.

And as with most of the previous UI elements introduced, some 
action(s) can be executed when the value of the toggle has been changed.

A Toggle GameObject has two children by default (Figure 4-29).

Figure 4-30.  A drop-down menu

Figure 4-29.  Children GameObjects of a typical Toggle UI element

The first child is Background, which has an Image component by 
default. This GameObject itself has another Image UI element as a child, 
named Checkmark. This Checkmark GameObject activates or deactivates, 
depending on the True/False state of the toggle.

The other of the two children is named Label and is just the Text beside 
the Background/Checkmark of a Toggle UI element. It is not a fundamental 
part of a Toggle UI element and can be safely deleted.

4.10  �Drop-down
Imagine making a defined list of options from which the user can pick one. 

This is exactly why the Dropdown UI element exists in Unity (Figure 4-30).

Chapter 4  User Interface



129

When a drop-down is touched/clicked, an expanded menu with all 

predefined options is displayed. If the number of options requires a bigger 

area to be displayed than what’s already defined for the drop-down, a 

scrollbar will be displayed on the right side of the list of options. After an 

option has been selected, the drop-down will collapse back to its initial 

state, displaying the currently selected option.

A Dropdown UI element has a long list of children, but because of their 

precise names, and by using the Rect tool, you can easily understand the 

purposes they serve (Figure 4-31). In this section, we will examine only the 

new properties present in the Dropdown component.

Figure 4-31.  The Dropdown component

Chapter 4  User Interface



130

Figure 4-32.  A scrollbar

Template, Caption Text, and Caption Image are all references to Rect 

Transform, Text, and Image components, respectively. Template is by default 

the GameObject that contains many children, which all form part of the list 

that appears when a drop-down is clicked/touched. Caption Text denotes the 

Text component in which the name of the currently selected option will be 

written. Caption Image is not necessary but represents the Image Component 

that will feature the image representing the currently selected option.

Item Text and Item Image work in quite the same way as Caption Text 

and Caption Image but will, this time, represent options in the drop-down 

list generally.

Value is the index of the currently selected option in the list of options. 

It goes from 0 to the number of items in the list minus one.

Alpha Fade Speed is the number of seconds that it takes to transition to 

a fully opaque drop-down list or to a fully transparent one.

Finally, you have the actual list of predefined options, from which you can 

add or remove options. For each option, you have the possibility to change a 

name, assign a sprite to represent it, and to reorder it in the list of options.

4.11  �Scrollbar
Scrollbars (Figure 4-32) are very similar to sliders. The main differences are 

that scrollbars provide a tad more tweaking for their handles, but instead 

of having a minimum or maximum value that can be set, they can only 

have a value from 0 to 1.

Chapter 4  User Interface



131

Figure 4-33.  The Scrollbar component

The handle of a scrollbar will be positioned near its left edge, if the 

scrollbar has a value of 0, and near the right edge for a value of 1.

You can refer to the section about sliders to understand most of the 

properties provided by a Scrollbar component (Figure 4-33). The only two 

new properties are Size and Number of Steps.

The Size slider will always have a value between 0 and 1. A value 
of 1 will make the handle have a width and height equal to that of the 
Rect Transform component. Number of Steps will define the number of 
possible stops that the scrollbar will have while its handle is being dragged. 
For example, if that property gets set to a value of 4, when you enter the 
Play mode and drag on the slider, there will be only four positions along 
the whole width of the scrollbar where the handle can be positioned at 
a time. The default value of 0 allows the handle to be freely positioned 

anywhere along that width.

Chapter 4  User Interface



132

Figure 4-34.  A scrollview

4.12  �Scrollview
The Scrollview UI element has a viewport (Figure 4-34). In it, you can place 

several UI elements, such as Text, Image, or Button. It also comes with 

horizontal and vertical scrollbars by default. You can use these to scroll 

between the elements you place in its viewport.

Using a scrollview is an elegant solution to place multiple elements in a 

defined area for mobile games, because, unlike PC or console games, which 

are usually played on screens bigger than those present on mobile phones, 

mobile game developers regularly have to display multiple elements that 

can’t often be made too small, as then the end user will find it difficult to 

interact with, or won’t properly perceive, what’s represented. A scrollview 

can also be used to scroll across a large Image or Text element too.

Content represents the Rect Transform of the child of the scrollview 

that will house all the elements that you place in its viewport (Figure 4-35).

Chapter 4  User Interface



133

Figure 4-35.  The Scrollview component

Not ticking Horizontal or Vertical will disable the respective scrollbar at 
runtime. The movement type can be set to either Unrestricted, Elastic, or 
Clamped. Using the two last options will make the content remain within 
the bounds of the Scroll Rect. Elastic will bounce the content when it 
reaches the edge of the Scroll Rect, however. The amount of bounce in the 
latter will be determined by the Elasticity property.

If Inertia is ticked, the content will continue to move when the handle 
is released after a drag. If not, the content will only move when dragged. If 
Inertia is set, the Deceleration Rate will determine how quickly the content 
will stop moving. A rate of 0 will stop the movement immediately, while a 

rate of 1 will make the movement never slow down.

Chapter 4  User Interface



134

Figure 4-36.  The Panel component

Scroll sensitivity is the sensitivity to scroll using wheel and trackpad 

events. Some of the other properties are just used to point the Scroll Rect 

to the viewport and scrollbars. The scrollbars have a visibility property. 

Setting that property to Permanent will prevent the scrollbar from being 

hidden, while Auto Hide And Expand Viewport will make the content 

hide when not needed. The latter of the two will also cause the viewport 

to expand when that occurs. Spacing is the distance between the scrollbar 

and the bottom-right corner of the Scroll Rect.

4.13  �Panel
A panel is just an image with some transparency that has its Rect Transform 

stretching along the full width and height of its parent. That is, if you make a 

Panel UI element the child of a Canvas element set to Screen Space—Overlay, 

it will occupy the full visible area of your screen in Play mode (Figure 4-36).

4.14  �EventSystem
Event System is a component that controls all interactions with the UI system, 

receiving inputs from keyboard, mouse, touch screen, etc., and translating 

them to interactions with the underlying UI elements (Figure 4-37).

Chapter 4  User Interface



135

Figure 4-37.  The Event System component

Figure 4-38.  The Standalone Input Module component

It works out which canvas and control the user has interacted with and 
activates it accordingly. Without Event System, the UI would merely draw 
on the screen and do nothing.

Additionally, Event System allows UI controls (which support events, 
such as check boxes and buttons) to inform the Unity project when the 
user has interacted with them. For example, a user clicks a button, the 
button then activates or deactivates another GameObject. This can be a 
very powerful system, if used correctly.

First Selected corresponds to the GameObject that was selected first 
at runtime. Ticking Send Navigation Events allows EventSystem to send 
navigation events, such as Move, Submit, and Cancel. Drag Threshold 
corresponds to the soft area for dragging in pixels.

The Standalone Input Module (Figure 4-38) is the component that 
actually detects input (keyboard key presses, mouse pointer clicks, 
touches) and sends the corresponding event to the game. Without this 

component, you wouldn’t be able to interact with your game.

Chapter 4  User Interface



136

The properties with a String value just correspond to axes that 

represent some of the common inputs with your game. The value held in 

Input Actions per second represents the number of inputs allowed per 

second, and Repeat Delay is the delay in seconds before the Input Actions 

per Second repeat rate takes effect. Ticking Force Module Active will force 

the Standalone Input Module to be active.

We won’t have to edit any property of any of the components found on 

our Event System in the game we will be making.

4.15  �Introduction to Input Axes
As we will be concentrating on making mobile games, it is important, 

for many types of games, to know how axes work. To interact with an 

adventure 3D mobile game, you might want to use a joystick, to move the 

player. This joystick will most probably make use of an axis or axes.

A joystick such as the following (Figure 4-39) can be used to move the 

player’s character in all directions in a 3D game. The player can hold and move 

the handle of the joystick in the direction they prefer their character to go.

Chapter 4  User Interface



137

Figure 4-39.  Typical illustration of joystick axes

That joystick shown makes use of two axes: a horizontal one and a 
vertical one. When the handle is not pressed, it sits in the middle of the 
total area of the joystick. At this position, it has a value of 0 for both its axes. 
Referring to the preceding figure, if the handle is pushed to the top-left 
corner, it will have an approximate value of -0.5 to represent its horizontal 
axis and another of +0.5 or 0.5 for its vertical axis.

You will soon learn to make use of joysticks in a mobile game and how 
to map them to actually trigger actions of the character. Another fun thing 
that joysticks allow us to do is to modify the speed of the character, based 
on the value of one of its axes. For example, if we set the maximum speed 
of our character to 10 units/second, we can multiply that by the current 
value of the vertical axis of our joystick, so that we can make our character 
go slower, by not fully pushing the joystick handle up.

Chapter 4  User Interface



139© Kishan Takoordyal 2020 
K. Takoordyal, Beginning Unity Android Game Development,  
https://doi.org/10.1007/978-1-4842-6002-9_5

CHAPTER 5

Building Our First 
Android Game: 
Sphere Shooter
That’s it, we’re now ready to build an actual 3D mobile game in Unity! 

In this chapter, we’re going to make a simple game. Basically, our game 

character will be a cube with a turret (we’ll be calling this a tank). Using 

two joysticks, a player can move the tank and fire bullets. Next, we’re 

going to make an enemy and spawn copies of it. Enemies will try to go in 

the same direction as the player’s tank, and the aim of the game will be to 

destroy them before they succeed.

5.1  �Render Pipelines
The process of drawing graphics to the screen (or to a render texture) 

is known as rendering. This process is one of the key factors affecting 

performance in games. By default, the main camera in Unity renders its 

view to the screen.

Recently, Unity released the Scriptable Render Pipeline (SRP). An SRP 

aims to allow developers to control rendering via scripts, thus providing a 

high degree of customization.

https://doi.org/10.1007/978-1-4842-6002-9_5#ESM


140

Among the many possible Render Pipelines that can be created 

using SRP, Unity provided two prebuilt SRPs: the High Definition Render 

Pipeline (HDRP) and the Universal Render Pipeline (URP).

While HDRP lets you create cutting-edge, high-fidelity graphics 

for high-end platforms, we won’t be using it for making mobile games, 

because it has a high performance cost.

5.1.1  �Universal Render Pipeline (URP)
URP is a very elegant solution for making mobile games. It provides several 

graphics/quality options that can be tweaked very easily, and in many genres 

of games, it has been proven to provide a noticeable performance boost over 

the default Render Pipeline that Unity uses for making a new project.

You can make a new project that uses URP by default, but for the sake 

of explaining how to add it to an existing project, we’ll choose instead the 

standard option (Figure 5-1).

Figure 5-1.  Making a new project

Chapter 5  Building Our First Android Game: Sphere Shooter



141

Primarily, I will be targeting the 1920 × 1080 resolution or the 16:9 

aspect ratio for the game we’ll be making (Figure 5-2).

Finally, for this section, we’ll be adding the URP package to our game 

and switching our game project, to make use of it. Head over to Window 

➤ Package Manager. You might have to wait a bit before the long list of 

packages is loaded. If that doesn’t occur after everything seemingly has 

been loaded, click around in the Package Manager window.

Scroll or search for the Universal RP package. When that’s done, click 

it. Hit install and wait for everything to be imported (Figure 5-3). You can 

close the Package Manager window once that’s done, because we won’t 

require any more packages from there.

Figure 5-2.  The layout of my Editor

Chapter 5  Building Our First Android Game: Sphere Shooter



142

Finally, to allow our project make use of URP, we must tell it to do so. 

First, right-click anywhere in your Project window and click Create ➤  

Rendering ➤ Universal Render Pipeline ➤ Pipeline Asset (Forward 

Renderer). This will create an asset for URP with many properties that can 

be tweaked to easily change the graphics/quality of our game. Two new 

assets should appear in your project window (Figure 5-4).

Figure 5-3.  Installing the Universal RP package from the Package 
Manager window

Figure 5-4.  URP Pipeline assets

Chapter 5  Building Our First Android Game: Sphere Shooter



143

At this point, you must know what the different properties do. All we 

have left to do now is to drag and drop the URP Pipeline Asset we just 

created into the Scriptable Render Pipeline Settings tab (Figure 5-5) found 

in Edit ➤ Project Settings ➤ Graphics.

One important thing to remember is that if you are working on a project, 

and you decide to switch its Render Pipeline, you must ensure that all the 

materials you are working with are using a shader compatible with the new 

Render Pipeline you want to use. Otherwise, everything in your Scene/Game 

windows will appear pink. Fortunately, Unity provides an easy solution.

If the new Render Pipeline you are switching to is URP (you’ll have to do 

a similar thing for HDRP), in addition to everything I discussed previously in 

this section, you will have to click Edit ➤ Render Pipeline ➤ Universal Render 

Pipeline ➤ Upgrade Project Materials to UniversalRP Materials. Doing so 

will automatically upgrade all materials in your project to use the equivalent 

shader that URP provides. You can also choose the second option, which is to 

upgrade only the materials you select, depending on your needs.

To complete this section and start working on the fun part,  

just switch the build platform of the project to Android. Open the Build 

Figure 5-5.  Adding an SRP in the Graphics section of Project Settings

Chapter 5  Building Our First Android Game: Sphere Shooter



144

Settings (Ctrl+Shift+B or File ➤ Build Settings), click the Android option, 

making sure it’s highlighted, and hit Switch Platform (found near the 

bottom-left corner). A Unity logo should appear beside the Android label 

on its right, and you can close the Build Settings window (Figure 5-6). 

Often, if the step of switching to a different platform is done later in the 

development of a game, many assets, such as sprites or textures, will have 

to be done again, which takes quite a bit of time. That’s why it’s best to do 

switch platforms at an early stage in the creation of a game, if you’re sure of 

what platform you’re primarily focused on developing for.

Figure 5-6.  Switching to the Android Build platform

Chapter 5  Building Our First Android Game: Sphere Shooter



145

5.2  �The Environment
For now, the game will only feature a ground and some invisible walls 

at its edges. The ground itself will only be a large cube. Right-click in the 

Hierarchy tab and click 3D Object ➤ Cube. After the latter is selected, 

make sure its position and rotation are set to (0, 0, 0) in the Inspector tab. 

Give it a scale of (150, 0, 150). Figure 5-7 shows what its Transform should 

look like.

Next, head over to Edit ➤ Project Settings ➤ Tags and Layers and 

create a Ground tag. Rename the Plane to Ground and assign it that tag. 

You can mark it as Static as well (Figure 5-8).

For the invisible walls, create an empty GameObject, name it Walls, 

and reset its Transform component so that it has a position and rotation of 

(0, 0, 0) and a scale of (1, 1, 1). You can mark it as static too (Figure 5-9).

Figure 5-7.  The Transform component of the Ground GameObject

Figure 5-8.  Marking the Ground GameObject as Static

Chapter 5  Building Our First Android Game: Sphere Shooter



146

Create a new cube GameObject as a child of Walls and name it Wall 1. 

Give it a position of (0, 0, -75), a rotation of (0, 0, 0), and a scale of (150, 50, 1).  

If you look at your Scene window, that cube should normally be at the 

forward edge of your ground (Figure 5-10).

On the Wall 1 GameObject, disable its Mesh Renderer component (tick 

the check box beside its Mesh Renderer label), so that the wall can actually 

be invisible. Figure 5-11 shows all the components that are found on our 

first wall.

Figure 5-9.  The Transform component of the Walls GameObject

Figure 5-10.  The Ground and Wall 1 GameObjects in the scene

Chapter 5  Building Our First Android Game: Sphere Shooter



147

Now, simply duplicate (Ctrl+D) the Wall 1 GameObject three times 

and place the new instances at the remaining edges of the ground. The 

following table will give you the necessary Transform values.

Name Position Rotation Scale

Wall 1 (0, 0, -75) (0, 0, 0) (150, 50, 1)

Wall 2 (-75, 0, 0) (0, 90, 0) (150, 50, 1)

Wall 3 (0, 0, 75) (0, 0, 0) (150, 50, 1)

Wall 4 (75, 0, 0) (0, 90, 0) (150, 50, 1)

Here’s what our hierarchy should look like so far (Figure 5-12):

Figure 5-11.  The components on the Wall 1 GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



148

If you select the Walls GameObject or all of your actual 3D walls, your 

scene should look like this (Figure 5-13):

Figure 5-12.  GameObjects currently present in the scene, as seen in 
the hierarchy

Figure 5-13.  Previewing the ground and invisible Walls GameObjects

To complete this section, we just need to add some other kind of 

material to our ground. If it stays like this, the player might have difficulty 

perceiving that their tank is moving (if there’s only the ground and the tank 

on the screen). As a solution, we could use a material with a Grid texture. 

Chapter 5  Building Our First Android Game: Sphere Shooter



149

To make the game appear more interesting, let’s use a stone texture with a 

cartoony look.

In your Project window, make two new folders: one named Materials 

and another named Textures. Then, head over to the Asset Store (Ctrl+9 or 

Window ➤ AssetStore), search for Stone Floor, sort by Price (Low to High), 

and download and import the asset shown in Figure 5-14.

If the asset is no longer available, download it from this link: https://

raw.githubusercontent.com/EdgeKing810/SphereShooter/master/

Assets/Textures/Stone_floor_09.png. Import it into the Editor by 

dragging and dropping it from your file manager to the Unity window in the 

Project window. Then, put the imported texture in a folder named Textures.

Figure 5-14.  The Stone Floor Texture Tile asset from the Asset Store

Chapter 5  Building Our First Android Game: Sphere Shooter

https://raw.githubusercontent.com/EdgeKing810/SphereShooter/master/Assets/Textures/Stone_floor_09.png
https://raw.githubusercontent.com/EdgeKing810/SphereShooter/master/Assets/Textures/Stone_floor_09.png
https://raw.githubusercontent.com/EdgeKing810/SphereShooter/master/Assets/Textures/Stone_floor_09.png


150

A new folder named stone_floor_texture must have been formed when 

you imported the asset from the store. Move the Stone_floor_09 texture 

(square-looking one) to the Textures folder you created in the previous 

step (drag and drop) and delete the stone_floor_texture folder.

In your Materials folder, right-click and hit Create ➤ Material. Name it 

Ground. Drag and drop the Stone_floor_09 texture in the little square beside the 

Base Map label on the Ground material or click the circle icon beside that same 

label and select the texture. Set the color of the Base Map as RGBA (255, 255, 

255, 255) or Hexadecimal FFFFFF. The Metallic and Smoothness sliders should 

each be set to 0, so that the game has a better look. Finally, set both of the Tilling 

values (X and Y) to 15 (Figure 5-15). This will make the texture repeat itself 15 

times horizontally and vertically on our ground. Just drag and drop the material 

on the Ground GameObject in the Scene or Hierarchy window and save.

Figure 5-15.  The material for the Ground GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



151

The ground should now look like that in Figure 5-16. Congratulations, 

our simple game environment is now ready!

Figure 5-16.  How your Ground GameObject should look

5.3  �Our Player (Tank)
In this section, we are going to create our player tank with a cube, a sphere, 

and a cylinder. We are also going to write our first scripts, to allow our tank 

to move, aim, and shoot with a twin-joystick setup.

5.3.1  �Making the Tank
Refer to Figure 5-22 to get an idea of how our player tank will look.

	 1.	 Let’s start by making a cube. Name it Player and give 

it a position of (0, 1, 0). Its rotation and scale will be 

the default (0, 0, 0) and (1, 1, 1), respectively.

	 2.	 Assign it the Player tag. (It already exists by default.)

	 3.	 Do not mark the Player tank as static, because that 

will stop it from moving later.

Chapter 5  Building Our First Android Game: Sphere Shooter



152

	 4.	 Make two new materials, name them as you wish, 

and give them a Base Map color of your choice. I will 

be making a Cyan (0, 110, 255) and a Yellow (255, 

255, 255) material and will reduce their Metallic and 

Smoothness sliders to 0.

	 5.	 Drag and drop one of the two materials you created 

on the Player GameObject (in my case, the Cyan one).

	 6.	 Add a Rigidbody component to the Player and check 

all the constraints (except position X and Z), so that 

the Player tank doesn’t rotate or move along/on axes 

we don’t want (Figure 5-17).

Chapter 5  Building Our First Android Game: Sphere Shooter



153

Now, create a sphere as a child of the Player GameObject. Label it 

Rotator. In the next steps, it will receive a cylinder to mimic a tank turret, 

and it will be the object that will rotate when the player (you) tries to aim. 

Give it a position of (0, 0.5, 0), a rotation of (0, 0, 0), and a scale of (0.75, 

0.75, 0.75). Remove its Sphere Collider component, and make it use the 

Figure 5-17.  The components on the Player GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



154

second of the two materials we previously created. In my case, I will be 

giving it the Yellow material (Figure 5-18).

To make the turret, create a Cylinder object as a child of the Rotator 

and name it Turret. Again, remove its Collider component (in this case, a 

Capsule Collider one) and give it the same material that is being used on 

the Rotator, to make it seem that these two objects make up a single one. 

The turret must have a position of (0, 0.2, 0.8), a rotation of (90, 0, 0), and a 

scale of (0.4, 0.8, 0.4) (Figure 5-19).

Figure 5-18.  The components on the Rotator GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



155

Our bullets need to exit from the tip of the turret. We will code this 

later, but for now, just create an empty GameObject as a child of the turret. 

It will have a position of (0, 1, 0), a rotation of (-90, 0, 0), and a scale of  

(1, 1, 1). Name it bulletEnd (Figure 5-20).

Your Hierarchy window should look like the following (Figure 5-21) at 

this point:

Figure 5-19.  The components on the Turret GameObject

Figure 5-20.  The Transform component of the bulletEnd GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



156

The color that you chose for the player’s tank might vary, but it should 

resemble Figure 5-22 at this stage.

Figure 5-21.  The GameObjects currently present in our scene, as seen 
in the hierarchy

Figure 5-22.  How the player Tank GameObject looks

Chapter 5  Building Our First Android Game: Sphere Shooter



157

5.3.2  �Setting Up Our Scene
A quick and elegant solution to implement joystick-related behaviors in 

our game is to import the Simple Input System asset from the Asset Store 

(Figure 5-23).

Next, we want to have two joysticks in our game: one for moving our 

tank and another for aiming its turret. Create a UI ➤ Canvas. Set its Canvas 

Scaler component to a Scale with Screen Size UI Scale mode. You’re free 

to use a Reference Resolution and Screen Match Mode of your choice, but 

I will be using a 1920 × 1080 resolution and match only the height (1080) 

(Figure 5-24).

Figure 5-23.  Importing the Simple Input System asset

Chapter 5  Building Our First Android Game: Sphere Shooter



158

From your Project window, drag and drop the Plugins ➤ SimpleInput 

➤ Prefabs ➤ Joystick prefab in your scene, as a child of the canvas. You’ll 

notice that the label of that new joystick has a bluish tint in your Hierarchy 

window. This is because it is still currently a prefab. Any changes you 

make to the Prefab (the instance in your Project window) will be applied 

to any instance of it anywhere else—in your scenes, for example. We won’t 

require this capability, though. You can freely right-click the joystick in 

your scene and click Unpack Prefab or Unpack Prefab completely. It will 

just act like a regular GameObject then. Rename it Move Joystick.

Give the Move Joystick’s Rect Transform a width and height of 300. Set 

its position to (300, 300). Its child, named Thumb, should have a width and 

height of 150 (Figure 5-25). Again, you’re free to pick other values.

Figure 5-24.  The components of the Canvas GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



159

There’s no need to change any other properties, such as the pivot/

anchor points of color of the Image component(s). You may also notice 

that there’s a script attached to the joystick with the same name. This is the 

script that will be responsible for making the Joystick actually interactable 

and translating our actions to in-game inputs (Figure 5-26).

The X Axis and Y Axis fields translate to the name of the axis that will be 

used to represent -1 to 1 values of the joystick horizontally and vertically, 

respectively. The Value label will show its numeric value. The option 

Figure 5-26.  The Joystick script of Move Joystick

Figure 5-25.  The Rect Transform of Move Joystick

Chapter 5  Building Our First Android Game: Sphere Shooter



160

chosen in Movement Axes will define what axes the joystick will act on. 

Value Multiplier is pretty self-explanatory. If set to 5, the range of values for 

the joystick along one axis will be -5 to 5. Thumb represents the child of the 

joystick that will be the object that moves to provide visual feedback for the 

direction the player is pointing the joystick in. Movement Area Radius is 

the maximum distance from the center of the joystick that the Thumb can 

move to. Dynamic Joystick options just make the Joystick invisible after a 

certain delay, without interaction, and allow the player to make the joystick 

appear anywhere they touch the screen (or in a defined area).

We will let these options remain, as they are for the Move Joystick. 

Duplicate the Move Joystick GameObject, name the new instance Look 

Joystick, and position it at the same Y position, but at a different X position, 

that is equal to the same distance the Move Joystick was from the left 

edge of the screen, but this time, from the right edge. These Joystick 

GameObjects have a pivot point at the bottom-left corner that makes their 

X and Y positions relative to that point of the canvas. As I had set my screen 

width to be 1920 (in the Canvas Scaler), the new X position for my Look 

Joystick will be 1920 – 300, which is equal to 1620. Just change the axes of 

the script on the Look Joystick to be MouseX for the X Axis and MouseY for 

the Y Axis (Figure 5-27).

Figure 5-27.  The Joystick script of the Look Joystick

Chapter 5  Building Our First Android Game: Sphere Shooter



161

Our game will be following a top-down camera view. To achieve that, 

place your Main Camera GameObject just above your tank and rotate 

it so that it looks down. My Main Camera has a position of (0, 12.5, 0), 

a rotation of (90, 0, 0), and a scale of (1, 1, 1). All of the other properties 

on its other components are set to their default values. I’m also going to 

set a Solid Color under Environment for its Camera component, so that 

when the tank reaches the edge of the ground, there is a more appropriate 

background. I’m using a Color of (60, 70, 60, 255) and, in hex, 3C463C 

(Figure 5-28).

I also rotated my Directional Light, so that the shadows formed on the 

ground looked more appropriate to me (Figure 5-29). This is not required, 

however.

Figure 5-28.  The components on the Main Camera GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



162

Your Game window should look like the following screenshot 

(Figure 5-30), with the joysticks added and the camera repositioned/

rotated at this point.

Figure 5-29.  The Transform component on my Directional Light 
GameObject

Figure 5-30.  How the Game window should currently look

Chapter 5  Building Our First Android Game: Sphere Shooter



163

5.3.3  �Player Movement
Time to make our player tank actually move! To keep our Assets organized, 

create a new folder in your Project window named Scripts. In that folder, 

right-click and create a C# script. Name it playerMovement. Again, if 

you want to pick another application to edit scripts, head over to Edit ➤ 

Preferences ➤ External Tools and choose the one you want. Then, double-

click on Script to open it.

In the last section of Chapter 3, I discussed the purpose of everything 

present in a blank Unity C# script, so I won’t cover that again. First, add 

the line using SimpleInputNamespace; on the fourth line, just after using 

UnityEngine;. This will allow us to match the inputs on the axes of our 

joysticks to actual actions in the game.

As we did for the first line inside of our playerMovement class, we will 

create some variables to either hold values or reference other components. 

Also, we won’t be using void Update() {}, and we will be removing all 

comments. Make your code look like the following:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using SimpleInputNamespace;

public class playerMovement : MonoBehaviour {

 public Transform rotator;

 private Rigidbody cubeRb;

 public float speed = 5.0f;

 private Vector2 input;

 void Start() {

 }

}

Chapter 5  Building Our First Android Game: Sphere Shooter



164

The rotator variable will reference a Transform component, which 

we’ll later rotate, based on inputs, so that our tank can aim with its turret. 

As it is marked as public, we can assign it visually to our script ourselves, 

in the Inspector, later. cubeRb is a private variable and won’t be visible in 

the Inspector. We will assign it the Rigidbody component of our player tank 

from the script itself. While there are many methods to move a character in 

a game, the one we will be using consists of modifying the velocity of our 

tank (its Rigidbody), based on the inputs from our Move Joystick.

The speed variable will contain a float value and be visible in the 

Inspector. We will be multiplying our joystick inputs to that value, to make 

the player tank move slower or faster.

Finally, we will be storing our inputs in a Vector2 variable. As our tank 

will just be moving along the X and Z axes, we don’t have to use a Vector3 

variable. Note that curly brackets can be placed on a new line (as they were 

by default) too. There’s a lot that goes into personal preference when it 

comes to coding.

The script will be attached to our player tank and will act as a 

component later on. A lot of the movement or turret rotation it will 

perform will have to do with the Rigidbody of our player tank, which will 

be referenced in the CubeRb variable. To achieve this, we can add one line 

to our Start function, so that when the game starts, cubeRb is referenced.

void Start() {

 cubeRb = GetComponent<Rigidbody>();

}

That line can be interpreted as “Get the Rigidbody component on 

the current GameObject and reference it in our cubeRb variable.” Now, 

every time we do something to the cubeRb variable, it will directly affect 

the Rigidbody component on our player tank. It is not necessary to use a 

variable, but it is more convenient than typing GetComponent<Rigidbody>() 

each time. We are also making savings in performance, by caching 

MonoBehaviour components in our current system.

Chapter 5  Building Our First Android Game: Sphere Shooter



165

To keep our code organized and clean, we will make use of many 

functions and have a more modular approach. To get joystick inputs, we will 

make use of the following function. You can add it just after the Start one.

bool GetInput(string horizontal, string vertical) {

 input.x = SimpleInput.GetAxisRaw(horizontal) * speed;

 input.y = SimpleInput.GetAxisRaw(vertical) * speed;

 �return (Mathf.Abs(input.x) > 0.01f) || (Mathf.Abs(input.y) > 0.01f);

}

Basically, we are creating a function named GetInput. To it, we will be 

passing two strings, each corresponding to the horizontal and vertical axes 

of a joystick, respectively.

Then, we will be fetching the current numerical values of these axes 

using SimpleInput.GetAxisRaw(<axisName>), multiply them by the float 

value held in the speed variable, and store them in the X or Y position of 

input;, our Vector2 variable.

Additionally, the function will return a Boolean value. It will return 

true, if at least one of the two values of our Vector2 variable, input, is 

holding a value greater or less than but not equal to 0. A value of true 

being returned can be interpreted as “the joystick is being interacted with,” 

because SimpleInput joysticks have a value of 0 on both their axes when 

not being held/touched.

As joystick axis inputs can be less than 0 (-1 to 1), we could formulate 

a formula such as “return true if horizontal axis is less than 0 or horizontal 

axis is greater than 0 or vertical axis is less than 0 or vertical axis is greater 

than 0, else return false,” which, in UnityScript, would be written as follows:

if (input.x < 0 || input.x > 0 || input.y < 0 || input.y > 0) {

 return true;

} else {

 return false;

}

Chapter 5  Building Our First Android Game: Sphere Shooter



166

Perhaps you’ve noticed that the condition in the if statement itself will 

give a true or false value, so we can return that itself, instead of making 

a long or bulky if-else statement. Now the whole statement has been 

reduced to

return (input.x < 0 || input.x > 0 || input.y < 0 || input.y > 0);

We can further simplify that by making use of the Mathf.Abs() function, 

which is already available to us. The Abs part stands for “Absolute.” This 

means that for any number that you pass to that function, it will return its 

absolute value. If you pass a positive value to it, there will be no changes, 

but if you pass a negative one, it will be converted into a positive number. 

For example, passing the 0, -9.88, 12.5, and -78.489 values one at a time to 

the function will return 0, 9.88, 12.5, and 78.489. That is how I obtained the 

return statement in the previous picture. Feel free to use any number of 

parentheses you want, to keep your code cleaner.

To actually move the player, we’ll again create and use another 

function.

void MovePlayer() {

 �cubeRb.velocity = Vector3.Normalize(new Vector3(input.x, 0, 

input.y)) * speed;

}

In short, we are going to set the velocity of the player tank’s Rigidbody 

(by making use of the cubeRb variable that is referencing it) to match our 

horizontal and vertical inputs. As our Rigidbody requires a Vector3 value 

for its velocity (in 3D axes), the Y value of our Vector2 variable, input, will 

correspond to the Z axis here. We will also Normalize our Vector3 value, 

so that the player tank doesn’t go faster when moving diagonally. This 

will force our Vector3 to have a magnitude of 1, so we will again have to 

multiply it by the value held in our speed variable. You’ll also notice that we 

are not returning anything. This is because our function is marked void.

Chapter 5  Building Our First Android Game: Sphere Shooter



167

For context, we will be fetching the inputs once again but store them in 

the input Vector2 variable itself later, for the axes responsible for rotating 

the turret. rotator is a variable referencing a GameObject with a Transform 

component (our sphere on top of our cube). We will want to rotate it about 

the Y axis. By default, rotation is expressed in a Quaternion format rather than 

a Vector3 one. So, to rotate GameObjects in terms of Vector3 using their 

Transform components, we need to modify their eulerAngles property.

void RotateTurret() {

 �rotator.eulerAngles = new Vector3(0, Mathf.Atan2(input.x, 

input.y) * 180 / Mathf.PI, 0);

}

If you ever did a little trigonometry, you know that to find the angle 

between two lines, we use tan. We are doing exactly the same thing: finding 

the angle between the X and Y joystick inputs. As the angle we’ll obtain is 

in a radian form, we must convert it to degrees. We can either multiply that 

value by 180 then divide it by pi (Mathf.PI) or just multiply it by Mathf.

Rad2Deg, which essentially does the same thing. Finally, after obtaining 

that angle in degrees, we just create a new Vector3 variable, give its Y value 

a value equal to our angle, and assign it to the eulerAngles property of the 

Transform of the GameObject we wish to rotate—in our case, our rotator.

To complete this script, we must call our functions, so that they’re 

used. Previously, we discussed a game loop named Update(), which runs 

every frame and executes code placed within its curly brackets. As we’re 

now dealing with rigidbodies and, thus, physics-related stuff, it’s better 

to make use of another function named FixedUpdate(), which runs at 

intervals rather than every frame. This will make our game look smoother.

void FixedUpdate() {

 if (GetInput("Horizontal", "Vertical")) {

  MovePlayer();

}

Chapter 5  Building Our First Android Game: Sphere Shooter



168

 if (GetInput("MouseX", "MouseY")) {

  RotateTurret();

 }

}

On the first lines, we’re using the GetInput function, passing the 

"Horizontal" and "Vertical" axes. The input Vector2 variable will hold 

the current value of these two axes. The if statement will ensure that 

the MovePlayer() function will only be called if the player is currently 

interacting with the Move Joystick.

Similarly, we’re calling the GetInput function again, but this time, 

passing the axes of the Look Joystick. If the player is interacting with the 

latter, only then the turret (rotator) will be rotated. If we didn’t have this 

check, the turret would jump back to its original position (pointing up) 

each time we let go of the Look Joystick, which ruins the gameplay a bit.

Here’s the full code, if you have been stuck somewhere. It is always 

recommended to type the code yourself, however. Functions do not have 

to be typed before or after another.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using SimpleInputNamespace;

public class playerMovement : MonoBehaviour {

 public Transform rotator;

 private Rigidbody cubeRb;

 public float speed = 5.0f;

 private Vector2 input;

 void Start() {

  cubeRb = GetComponent<Rigidbody>();

 }

Chapter 5  Building Our First Android Game: Sphere Shooter



169

 void FixedUpdate() {

  if (GetInput("Horizontal", "Vertical")) {

   MovePlayer();

  }

  if (GetInput("MouseX", "MouseY")) {

   RotateTurret();

  }

 }

 bool GetInput(string horizontal, string vertical) {

  input.x = SimpleInput.GetAxisRaw(horizontal) * speed;

  input.y = SimpleInput.GetAxisRaw(vertical) * speed;

  �return (Mathf.Abs(input.x) > 0.01f) || (Mathf.Abs(input.y) > 

0.01f);

 }

 void MovePlayer() {

  �cubeRb.velocity = Vector3.Normalize(new Vector3(input.x, 0, 

input.y)) * speed;

 }

 void RotateTurret() {

  �rotator.eulerAngles = new Vector3(0, Mathf.Atan2(input.x, 

input.y) * 180 / Mathf.PI, 0);

 }

}

Just save the script and head back to the Unity Editor when you’re 

done. Drag and drop the script on the player tank or Add Component ➤  

playerMovement. While the player tank is selected, drag and drop the 

Rotator GameObject from the hierarchy in the rotator field of the script. 

Enter the Play mode and try interacting with the Move and Look joysticks. 

One should cause the player tank to move and go in the specified 

direction, while the other should cause the turret to appear to be rotating.

Chapter 5  Building Our First Android Game: Sphere Shooter



170

5.3.4  �Camera Positioning
While testing the game in the last section, you might have noticed that the 

player tank can go offscreen. This is not something we want, so, in this 

section, we will configure Main Camera to follow the player tank smoothly. 

This time, create a script named cameraFollow and open it.

We will use only two variables: a Transform one named player, which 

will be referencing the Transform of our player tank, and a float one, 

height.

public Transform player;

public float height = 12.5f;

To make the camera follow the player, we must use a function such as 

Update() and set the position of the camera to that of the player, except 

for the Y value, which, instead, we’ll set to the value held in our height 

variable, so that we can have a proper top-down view.

void LateUpdate() {

 this.transform.position = new Vector3(player.position.x, 

height, player.position.z);

}

Instead of the traditional Update(), we will be using LateUpdate(), 

which is very similar but runs after other update loops have been run. 

Placing camera-movement related code in it is a good practice, because it 

means that all the movement-related code has already been executed first, 

before the camera has to move. Again, here’s the full code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

Chapter 5  Building Our First Android Game: Sphere Shooter



171

public class cameraFollow : MonoBehaviour {

 public Transform player;

 public float height = 12.5f;

 void LateUpdate() {

  �this.transform.position = new Vector3(player.position.x, 

height, player.position.z);

 }

}

Save the script, add it to the Main Camera GameObject, and drag and 

drop the Player GameObject from the hierarchy to the player field of the 

script and hit the Play button. The camera should follow the player tank 

now.

5.3.5  �Making the Player Shoot Bullets
This section is divided into two parts: making the bullet and shooting. To 

make the bullet, simply create a sphere (3D Object ➤ Sphere) GameObject 

in your hierarchy first. Name it Bullet and give it a position of (0, 1, 2), a 

rotation of (0, 0, 0), and a scale of (0.3, 0.3, 0.3). Next, make a tag named 

Bullet and assign it to your GameObject. Also, under Lighting properties in 

the Mesh Renderer component of the Bullet GameObject, set Cast Shadows 

to Off, so that bullets do not appear to have a shadow (Figure 5-31).

Chapter 5  Building Our First Android Game: Sphere Shooter



172

Leave the Sphere Collider properties as they are, then add a Rigidbody 

component to the Bullet GameObject. Untick Use Gravity and tick only the 

Freeze Position Y under constraints. You might also want to create/add a 

material to the Bullet GameObject at this point. I will be using the Light 

Green one (Figure 5-32).

Figure 5-31.  The components on the Bullet GameObject #1

Chapter 5  Building Our First Android Game: Sphere Shooter



173

Finally, we will want our bullets to get destroyed eventually, so that 

they don’t always remain in our game and cause a drop in performance. To 

do this, create a script named destroyer, wait for it to finish compiling (see 

the small loading icon in the bottom-right corner), and then add it on the 

Bullet component. Open the script. Here’s the full code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

Figure 5-32.  The components on the Bullet GameObject #2

Chapter 5  Building Our First Android Game: Sphere Shooter



174

public class destroyer : MonoBehaviour {

 public float delay = 3.0f;

 void Start() {

  Destroy(this.gameObject, delay);

 }

}

On the first line, inside of the class, we’re creating a new public float 

variable named delay and giving it an initial value of 3. Then, in the Start 

function of our script, we’re telling Unity to Destroy the GameObject 

that script is attached to, after a number of seconds that correspond to 

the value currently being held in the delay variable. If we don’t pass any 

second parameters to the Destroy function, it will immediately destroy our 

GameObject as soon as the game starts. Finally, in your project window, 

create a folder named Prefabs and drag and drop the Bullet GameObject 

from your hierarchy to that folder. You have successfully made a prefab! 

You can now safely destroy the Bullet GameObject from your scene.

For the next steps, you will also require a sound effect to be played  

when you shoot bullets. You can use the one I will be using, by downloading  

it from https://raw.githubusercontent.com/EdgeKing810/SphereShooter/ 

master/Assets/Sounds/fireBullets.wav (right-click and Save As). Make 

a folder named Sounds or Sound Effects and drag and drop the .wav file or 

the sound file you will be using from your file manager to the Unity Editor. 

Next, add an Audio Source component to your player tank GameObject, 

untick Play On Awake, and assign the audio file you just imported in the 

AudioClip property (Figure 5-33).

Chapter 5  Building Our First Android Game: Sphere Shooter

https://raw.githubusercontent.com/EdgeKing810/SphereShooter/master/Assets/Sounds/fireBullets.wav
https://raw.githubusercontent.com/EdgeKing810/SphereShooter/master/Assets/Sounds/fireBullets.wav


175

Time to give our player tank the ability to shoot bullets! Create a new 

script named bulletSystem and open it. Interacting with the Look joystick 

right now is only causing the rotator to rotate, thus aiming the turret in the 

direction we want. However, if we want to shoot, the handle (Thumb) of 

that joystick will have to be more than a defined distance from the center 

of the joystick. Next, we will want to check if enough time has passed since 

the player has last shot, to be able to shoot again. Finally, if those two 

conditions are satisfied, we just have to instantiate (spawn) a bullet at the 

bulletEnd position (the empty GameObject that is a child of our turret), 

give that bullet a force, to propel it forward, and emit a shooting sound.

Figure 5-33.  The Audio Source component on the Player GameObject

Chapter 5  Building Our First Android Game: Sphere Shooter



176

First, add the Using SimpleInputNamespace; line to the script, 

because we will be fetching joystick inputs later too. Here are the variables 

that we will be using in this script:

public Transform bulletEnd;

public Rigidbody bulletPrefab;

public float force = 500.0f;

float currentTime;

public float delay = 0.5f;

AudioSource audioSource;

bulletEnd will be referencing the Transform component of the 

child of our Turret GameObject for where bullets should be instantiated. 

Unsurprisingly, bulletPrefab will reference the Bullet prefab that we 

created. The floating value in the force variable will define the force at 

which bullets that have been instantiated will be propulsed. currentTime 

and delay represent, respectively, the number of seconds since the start 

of the game that the last bullet was fired and the number of seconds the 

player must wait to fire another bullet. Last, the audioSource private 

variable will reference the Audio Source on the player tank to play the 

assigned sound effect later.

void Start() {

 audioSource = GetComponent<AudioSource>();

}

In the Start function, we will just be referencing the Audio Source 

on the GameObject the script is attached to (our player tank) in the 

audioSource variable.

As our script has to deal with applying forces and, thus, physics, we’ll 

use FixedUpdate.

Chapter 5  Building Our First Android Game: Sphere Shooter



177

 void FixedUpdate() {

  if (((Mathf.Abs(SimpleInput.GetAxisRaw("MouseX")) > 0.75f) ||

       (Mathf.Abs(SimpleInput.GetAxisRaw("MouseY")) > 0.75f)) &&

     �((Time.time - currentTime > delay) || (currentTime < 0.01f))) {

    currentTime = Time.time;

    audioSource.Play();

    �Rigidbody bulletInstance = Instantiate(bulletPrefab, 

bulletEnd.position, bulletEnd.rotation) as Rigidbody;

    bulletInstance.AddForce(bulletEnd.forward * force);

  }

 }

}

Let’s first analyze the condition that allows all the instructions in the 

FixedUpdate loop to be run if true only.

((Mathf.Abs(SimpleInput.GetAxisRaw("MouseX")) > 0.75f) || 

(Mathf.Abs(SimpleInput.GetAxisRaw("MouseY")) > 0.75f))

This statement results in true only if MouseX and/or MouseY currently 

have a value greater than 0.75 or less than 0.75. In preceding sections, I have 

explained similar statements for the playerMovement script. Next, we’re 

chaining the boolean we got from that statement with the following one:

((Time.time - currentTime > delay) || (currentTime < 0.01f))

This condition will return true only if more seconds than the value held 

in the delay variable have passed since the last time a bullet was fired, or if 

currentTime is less than 0.01, which means that it is the first time we’re firing 

a bullet (so no need to wait). If both of these conditions are true (hence the 

&& symbol), only then will we run the code within the if statement.

Chapter 5  Building Our First Android Game: Sphere Shooter



178

The first two lines that will be run will assign the value of the amount 

of seconds that have passed since the game was started to the currentTime 

variable, to indicate that the last time a bullet was fired was now, and play 

the AudioClip assigned in the AudioSource component.

Finally, we are creating a new Rigidbody variable named bulletInstance,  

and as we instantiate (make a clone of) the bullet prefab at the bulletEnd 

position and rotation in our scene, we assign it to that variable. 

bulletInstance, which is now holding a copy of our bullet prefab in the 

scene, will be given a force equal to the value present in the similarly 

named variable and in the forward direction of our turret (or bulletEnd, 

for that case).

Following is the full code, in case you missed something. Save the 

script and return to the Unity Editor.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using SimpleInputNamespace;

public class bulletSystem : MonoBehaviour {

 public Transform bulletEnd;

 public Rigidbody bulletPrefab;

 public float force = 500.0f;

 float currentTime;

 public float delay = 0.5f;

 AudioSource audioSource;

 void Start() {

 audioSource = GetComponent<AudioSource>();

 }

Chapter 5  Building Our First Android Game: Sphere Shooter



179

 void FixedUpdate() {

 �if (((Mathf.Abs(SimpleInput.GetAxisRaw("MouseX")) > 0.75f) || 

(Mathf.Abs(SimpleInput.GetAxisRaw("MouseY")) > 0.75f)) &&

 ((Time.time - currentTime > delay) || (currentTime < 0.01f))) {

   currentTime = Time.time;

   audioSource.Play();

   �Rigidbody bulletInstance = Instantiate(bulletPrefab, 

bulletEnd.position, bulletEnd.rotation) as Rigidbody;

   bulletInstance.AddForce(bulletEnd.forward * force);

  }

 }

}

Assign the script to the player tank GameObject. Expand the children 

of the Player GameObject in the hierarchy and drag and drop the bulletEnd 

GameObject in the Bullet End field of the script instance on the Player 

GameObject. In a similar fashion, drag and drop the Bullet GameObject 

from the Project window in the Bullet Prefab field. Enter Play mode and test 

that everything works. You should be able to shoot bullets now.

5.4  �Enemies
In this section, we are going to make a spherical enemy, instantiate copies 

of it in our game, and make these copies target and move toward our 

player tank. Enemies should also be destroyed when they collide with 

either the player or with bullet(s). Let’s take the first step right away.

5.4.1  �Making an Enemy
Start by creating a sphere. Create and assign it a tag of Enemy and name the 

new sphere GameObject itself Enemy. Place it at a position of (0, 1.15, 10), 

and give it a rotation of (0, 0, 0) and a scale of (1.5, 1.5, 1.5). No properties 

Chapter 5  Building Our First Android Game: Sphere Shooter



180

are required to be modified for its Mesh Renderer or Sphere Collider 

components. Next, add a Rigidbody component, untick Use Gravity, and 

freeze the Y position of the GameObject from the Constraints tab.

Additionally, add an Audio Source component and untick Play On 

Awake. This Audio Source component will be from where sounds of the 

enemy getting destroyed will be played. Download the following audio file 

and import it in the previously created Sounds folder of the project:

https://github.com/EdgeKing810/SphereShooter/blob/master/

Assets/Sounds/explosion0.wav.

Assign explosion0 in the Audio Clip field of the Audio Source. You 

might also want to create/place a material on the Enemy GameObject at 

this point. I will be creating and using a red one (Figures 5-34 and 5-35).

Figure 5-34.  The components on the Enemy GameObject #1

Chapter 5  Building Our First Android Game: Sphere Shooter

https://github.com/EdgeKing810/SphereShooter/blob/master/Assets/Sounds/explosion0.wav
https://github.com/EdgeKing810/SphereShooter/blob/master/Assets/Sounds/explosion0.wav


181

Figure 5-35.  The components on the Enemy GameObject #2

To make our gameplay look a bit more interesting, let’s add a Trail  

Renderer to our Enemy. For a reason that I’ll explain later at the 

scripting stage, make a new empty GameObject as a child of our Enemy 

GameObject and name it Trail Renderer. Only edit its Transform 

component, and place it at a position of (0, 0, 0). If we placed it too high, 

the trail renderer would be rendered on top of our player tank.

Add a Trail Renderer component to that child GameObject. Try setting 

a width value of about 0.35 (right-click first, to set exact values) on the 

graph-looking thing, assign it a material of your choice at the Element 0  

position under Materials, and set Cast Shadows to Off, under Lighting 

(Figures 5-36 and 5-37).

Chapter 5  Building Our First Android Game: Sphere Shooter



182

Figure 5-37.  The components on the Trail Renderer GameObject #2

Figure 5-36.  The components on the Trail Renderer GameObject #1

Chapter 5  Building Our First Android Game: Sphere Shooter



183

5.4.2  �Importing Another Asset from the Store
When our Enemy collides with our player or a bullet, we will want to 

destroy it (which we can already do using Destroy() ). We can also add 

some visual effects, such as an explosion particle system. Fortunately, 

there is a package on the Asset Store that provides everything we’ll need. 

Download and import the Simple FX asset (Figure 5-38).

5.4.3  �Making Our Enemy Move and Explode
Everything that enemies need to be able to handle and do will be put into 

only one script. Create and open a script named enemy from your Scripts 

folder. We will be making and using many variables.

const string playerTag = "Player";

const string bulletTag = "Bullet";

public float minSpeed = 1.0f;

public float maxSpeed = 6.0f;

Figure 5-38.  The Simple FX—Cartoon Particles asset in the Asset 
Store

Chapter 5  Building Our First Android Game: Sphere Shooter



184

float speed;

GameObject player;

public GameObject enemyExplosionPrefab;

AudioSource audioSource;

The tags that our player and bullets are using will be stored in two 

string constants identified respectively as playerTag and bulletTag.  

As we will be using these constants further on in our code, it will be easier 

to reference them in the long term using these constants, because if we 

change the tags of these GameObjects in the future, we will only have the 

value being held in these constants, rather than all references in our code.

Another thing that we will be doing is allow our enemies to move at 

a random speed, to make the game more fun. This random speed will 

be within the range of two float values contained in the minSpeed and 

maxSpeed variables and stored in a variable named speed, for later use.

The player GameObject variable will be used to contain a reference 

to our player tank GameObject. As enemies will be made using prefabs 

and instantiated in our scene in further sections, it will be useless to make 

the player variable public, because we won’t be able to drag and drop 

the player from our scene to our enemy prefab in our project. Doing so 

doesn’t make sense, as, for example, if a different scene is opened, a prefab 

can’t reference a GameObject from that scene. Instead, we will be coding 

something with which the enemy can automatically find the player when it 

is instantiated.

The next GameObject variable is enemyExplosionPrefab and will 

be used to reference an explosion prefab from the Simple FX asset we 

imported earlier.

audioSource is simply a variable that will reference the Audio Source 

component on the Enemy to play the explosion sound we assigned to it in 

its Audio Clip field.

Chapter 5  Building Our First Android Game: Sphere Shooter



185

We are going to place some code in our Start function, so that it is 

executed only once, at the start of the lifespan of our enemy GameObjects.

void Start() {

 speed = Random.Range(minSpeed, maxSpeed);

 audioSource = GetComponent<AudioSource>();

 player = GameObject.FindWithTag(playerTag);

}

First, we are going to calculate a random speed from the minimum 

and maximum values we have set and store that float value in the speed 

variable, using the Random.Range function. Random.Range will return a 

random value greater or equal to minSpeed but less than maxSpeed.

Next, we are going to store a reference to the Audio Source component 

on the current GameObject (in our case, the one of our Enemy) in the 

audioSource variable. We are also making use of the GameObject.

FindWithTag function, passing the string in the playerTag constant as 

parameter, to reference the GameObject of our player tank in the player. 

GameObject.FindWithTag will search for a GameObject having the tag we 

passed as parameter, and as soon as it finds one meeting that criteria, it 

will return it.

For the game loop, we can either make use of Update or FixedUpdate.

void FixedUpdate() {

 if (player) {

  �transform.position = Vector3.MoveTowards(transform.position, 

player.transform.position, speed * Time.deltaTime);

 } else {

  GetComponent<Rigidbody>().velocity = new Vector3(0, 0, 0);

 }

}

Chapter 5  Building Our First Android Game: Sphere Shooter



186

In FixedUpdate, we will perform one of two actions, depending on 

whether there is a player tank GameObject in our scene. If, for example, 

our player tank GameObject is destroyed in the current scene, the player 

variable will hold a value of null instead of an actual GameObject 

reference.

A way to check “if the player variable is currently referencing a 

GameObject” could be if (player != null) or simply if (player). 

Logically, if the player variable does not have a null value, it must 

correspond to a GameObject, in our case, the player tank, because it is the 

only GameObject that uses the value held in the playerTag constant as tag.

So, if the player variable actually corresponds to something, we want 

the Enemy to move toward the position held in its Transform component. 

To do this, we can simply set the value of the position of the Transform of 

our Enemy GameObject to be equal to the Vector3 value returned by the 

Vector3.MoveTowards function. In our case, Vector3.MoveTowards uses 

three parameters. The first is the a Vector3 value (the current position 

of our Enemy), which we want to gradually turn into the value passed as 

the second parameter (the position of the player tank). The third value 

defines the rate or speed at which we want the first value to turn into the 

second; hence, we pass the speed variable. A Vector3 value closer to that 

of the position of the player will be returned every time FixedUpdate runs. 

Multiplying the value by Time.deltaTime makes the transition more linear 

and smoother when using Update as it runs each frame. It won’t make a 

difference in FixedUpdate.

Otherwise, if our player variable corresponds to null, we will want to 

make our Enemy GameObject stop moving and stay in place. If we hadn’t 

included that if statement in the first place, we would have received many 

errors if the player tank GameObject was destroyed, because the script 

would try to move the Enemy to a position of null, which is invalid.

We will also make use of two other functions. The next is 

OnCollisionEnter, which will run automatically in our script when the 

enemy collides with anything. The parameter we pass to this function 

Chapter 5  Building Our First Android Game: Sphere Shooter



187

corresponds to the collision caused by the Collider of the GameObject 

that collided with that of the GameObject that the script was on caused. 

In our case, that parameter will be equal to the collision caused by the 

Collider of any GameObject that collides with (the collider of) our Enemy 

GameObject. We will just reference the collision that Collider caused as the 

local variable col.

void OnCollisionEnter(Collision col) {

 if (col.gameObject.CompareTag(bulletTag)) {

  Destroy(col.gameObject);

 }

 if (col.gameObject.CompareTag(playerTag) ||

     col.gameObject.CompareTag(bulletTag)) {

  DestroyEnemy();

 }

}

The first if condition checks whether the GameObject that collided 

with our Enemy was a Bullet GameObject. We do this by accessing the 

GameObject of the Collider that caused the collision and then checking 

whether it has the same tag as Bullet GameObjects, using the string 

value held in the bulletTag constant as parameter. We could also write 

if (col.gameObject.tag == bulletTag), but the way I wrote it is the 

recommended way, which also provides some performance benefits.

If that is the case, we will wish to destroy the Bullet GameObject that 

just collided. In the next if condition, we check whether the Enemy 

GameObject collided with a bullet or with the player tank. If that is what 

happened, we want to call a function named DestroyEnemy that will 

determine what should happen when the enemy “dies.”

void DestroyEnemy() {

Chapter 5  Building Our First Android Game: Sphere Shooter



188

 �GameObject explosionInstance = Instantiate(enemyExplosionP

refab, transform.position, enemyExplosionPrefab.transform.

rotation);

 Destroy(explosionInstance, 5.0f);

 audioSource.Play();

 Transform trailRenderer = transform.GetChild(0);

 if (trailRenderer) {

  trailRenderer.parent = null;

  �Destroy(trailRenderer.gameObject,   trailRenderer.

GetComponent<TrailRenderer>().time);

 }

Destroy(this.gameObject);

}

In the DestroyEnemy function, the first thing that we will do is 

instantiate the enemy explosion prefab GameObject from Simple FX, 

referenced in the enemyExplosionPrefab variable, at the position of the 

Enemy GameObject, but at the rotation of the explosion prefab itself, and 

store a reference to that instance in a new local GameObject variable that 

we will create and name explosionInstance.

After the explosion particle system has been instantiated and run in 

the scene, instead of bloating our scene with many GameObjects that 

serve no purpose, we’ll instead destroy the GameObject of that explosion 

particle system after five seconds (just ample time for the system to fully 

run). Then, we will play the Audio Clip held in the enemy’s Audio Source 

component (explosion0).

As we want our Trail Renderer to be wiped out automatically, instead 

of being immediately destroyed when our Enemy is “dead,” we create a 

reference to it in a new Transform variable called trailRenderer. Calling 

Chapter 5  Building Our First Android Game: Sphere Shooter



189

transform.GetChild(0) returns the first child (0 being the first index) of 

the current GameObject’s (our Enemy GameObject) transform.

Next, if the enemy has a child GameObject, trailRenderer shouldn’t 

be equal to null. Only then will we set the parent of the trailRenderer 

GameObject or the first child of our Enemy GameObject to be equal to 

null. This will make the GameObject have no parent at all and, thus, 

not be the child of any GameObject anymore. However, as I discussed 

earlier, with the instance of the explosion GameObject, we will destroy 

the trailRenderer’s GameObject too, but this time, instead of thinking 

of and putting a suitable value, we will fetch the amount of time that the 

Trail Renderer component itself will take to wipe its trail out or, in other 

words, the amount of time it will take for the trail to reach a length/width 

of 0 and pass it as second parameter to the Destroy function, which will 

cause the Trail Renderer’s GameObject to be destroyed as soon as it has 

a trail length/width of 0. Remember that trails will autodestroy parts of 

themselves with time by default. Now, you might understand why we 

made a new GameObject for the Trail Renderer component earlier, instead 

of placing it on the main Enemy GameObject.

Last, we immediately destroy the GameObject of the enemy. Here is 

the full script:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class enemy : MonoBehaviour {

 const string playerTag = "Player";

 const string bulletTag = "Bullet";

 public float minSpeed = 1.0f;

 public float maxSpeed = 6.0f;

 float speed;

 GameObject player;

Chapter 5  Building Our First Android Game: Sphere Shooter



190

 public GameObject enemyExplosionPrefab;

 AudioSource audioSource;

 void Start() {

  speed = Random.Range(minSpeed, maxSpeed);

  audioSource = GetComponent<AudioSource>();

  player = GameObject.FindWithTag(playerTag);

 }

 void FixedUpdate() {

  if (player) {

   �transform.position = Vector3.MoveTowards(transform.position, 

player.transform.position, speed * Time.deltaTime);

 } else {

   GetComponent<Rigidbody>().velocity = new Vector3(0, 0, 0);

  }

 }

 void OnCollisionEnter(Collision col) {

  if (col.gameObject.CompareTag(bulletTag)) {

   Destroy(col.gameObject);

  }

  if (col.gameObject.CompareTag(playerTag) ||

      col.gameObject.CompareTag(bulletTag)) {

   DestroyEnemy();

  }

 }

 void DestroyEnemy() {

  �GameObject explosionInstance = Instantiate(enemyExplosion 

Prefab, transform.position, enemyExplosionPrefab.transform.

rotation);

  Destroy(explosionInstance, 5.0f);

Chapter 5  Building Our First Android Game: Sphere Shooter



191

  audioSource.Play();

  Transform trailRenderer = transform.GetChild(0);

  if (trailRenderer) {

   trailRenderer.parent = null;

   �Destroy(trailRenderer.gameObject,   trailRenderer.

GetComponent<TrailRenderer>().time);

  }

  Destroy(this.gameObject);

 }

}

Save the script. When you’re back in the Unity Editor, put the 

script on the Enemy GameObject and drag and drop the SimpleFX ➤ 

Prefabs ➤ FX_Fireworks_Blue_Small prefab, or a similar one, in the 

enemyExplosionPrefab field on the script. If you hit Play, you should see 

that the sole enemy in our scene will move toward the player tank and play 

a sound and spawn an explosion when it is destroyed, either by being hit 

by a bullet or by colliding with the Player GameObject. In Chapter 6, we 

are going to improve the game by randomly spawning some enemies at 

set spawn points, adding health (for the player) and high scores, making a 

menu for when the game starts and when a player loses, and much more.

Chapter 5  Building Our First Android Game: Sphere Shooter



193© Kishan Takoordyal 2020 
K. Takoordyal, Beginning Unity Android Game Development,  
https://doi.org/10.1007/978-1-4842-6002-9_6

CHAPTER 6

Improving and 
Building Sphere 
Shooter
While technically the game is playable as configured in the previous 

chapter, in this chapter, we will add several new mechanics and features. 

At the end, I will discuss additional features that can be included in the 

game, if you wish to continue to develop it and trigger a build, so that we 

have a standalone app that can be installed on Android devices.

6.1  �Spawning Enemies
One enemy is nice, but the game would be way better if we had more. In 

this section, we will place empty GameObjects at defined positions in our 

scene and, at a set delay, instantiate (spawn) enemies at a random position 

of the defined ones.

Create an empty GameObject, name it SpawnPoints, and place it at a 

position of (0, 1.15, 0). Its rotation and scale will already be set at (0, 0, 0) and 

(1, 1, 1). We could mark it as static, but that wouldn’t make a difference.

Create four empty GameObjects as children of SpawnPoints (Figure 6-1). 

Name them how you want, and place them at (0, 0, 15), (15, 0, 0), (0, 0, -15), 

and (-15, 0, 0).

https://doi.org/10.1007/978-1-4842-6002-9_6#ESM


194

Next, drag and drop the Enemy GameObject from the scene to the 

Prefabs folder in the Project window and delete it from the scene.

Create a new script, name it enemySpawner, wait for it to compile, 

place it on the SpawnPoints GameObject in the scene, and open it. This is 

what will be responsible for spawning enemies in our scene.

public float delay;

public GameObject enemy;

We will store the delay between spawning enemies in a public 

float variable named delay and store a reference to our enemy Prefab 

GameObject in enemy.

void SpawnEnemy() {

    �int randomPos = (int)Random.Range(0, transform.childCount);

    �Instantiate(enemy, transform.GetChild(randomPos).position, 

enemy.transform.rotation);

}

To spawn enemies, we will make use of a function named SpawnEnemy. 

The first thing that we will do in that function is pick the index of one of 

the children of the SpawnPoints GameObject randomly. There are four 

possible spawn points available, so we pass the minimum (0) and the 

maximum (transform.childCount) to the Random.Rage function, to 

randomly select one. By doing this, we can add as many spawn points as 

we wish without editing the code every time. As the value that is going 

to be returned will be a floating-point one, we convert it to an integer 

Figure 6-1.  SpawnPoint GameObjects

Chapter 6  Improving and Building Sphere Shooter



195

(casting) and store it in the local variable randomPos. In the next step, we 

find the child of SpawnPoints at the index we just got and instantiate an 

Enemy GameObject at that position and at the enemy’s rotation itself.

void Start() {

    InvokeRepeating("SpawnEnemy", 0.0f, delay);

}

Finally, the SpawnEnemy function will be called as soon as the game 

starts at every <delay> seconds, using the InvokeRepeating function, 

which takes the following three parameters:

	 1.	 The function to call

	 2.	 The start time

	 3.	 How often the function should be called

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class enemySpawner : MonoBehaviour {

   public float delay;

   public GameObject enemy;

   void Start() {

       InvokeRepeating("SpawnEnemy", 0.0f, delay);

   }

   void SpawnEnemy() {

       int randomPos = (int)Random.Range(0, transform.childCount);

       �Instantiate(enemy, transform.GetChild(randomPos).

position, enemy.transform.rotation);

   }

}

Chapter 6  Improving and Building Sphere Shooter



196

Just set a delay value of your choice and drag and drop the Enemy 

prefab in the enemy field back in the Editor. Test to see if enemies are being 

spawned, moving toward the player tank, and being destroyed (Figure 6-2).

6.2  �Scoring
Right now, when we kill an enemy, it just gets destroyed and disappears. 

However, it would be great if we could keep something like a score and 

increment it as enemies are killed.

To start, create a UI Text element under the Canvas GameObject. Name 

it ScoreText, place it at (-660, 350, 0), and give it a width and height of 375 

and 100, respectively (Figure 6-3).

Figure 6-2.  The enemySpawner script as a component

Chapter 6  Improving and Building Sphere Shooter



197

For the Text component itself, we won’t be using Best Fit, because it 

can look a bit awkward that the Text UI element in the game seems to get 

bigger/smaller as we play. So, instead, we set the font size to a maximum 

value that is anticipated to be sufficient to hold all the information we’ll 

ever want to store in that UI element.

I have also added dummy text, as well as setting Font Style to Bold. 

Additionally, I have set text alignment to the left horizontally and in the 

center vertically and given it a yellowish color (Figure 6-4).

Figure 6-3.  The Rect Transform component of the ScoreText UI 
element

Chapter 6  Improving and Building Sphere Shooter



198

We will want our enemies to send a call, to increase the score every 

time they get hit by a bullet and, correspondingly, update the ScoreText UI 

element. As I previously noted, we can’t directly reference things in a scene 

to Prefabs in the Project window. This is a very good time to introduce 

Instances. Using static properties and making them publicly accessible in a 

scene, classes and functions can be accessed and called from anywhere in 

that scene.

To demonstrate this, create a new GameObject, name it ScriptManager, 

and create and open a script named scoreManager. Add the using 

UnityEngine.UI line to the script, so that we are able to modify the text 

value of scoreText later.

public static scoreManager instance;

public Text scoreText;

int score;

Figure 6-4.  The Text component of the ScoreText UI element

Chapter 6  Improving and Building Sphere Shooter



199

We will be using three variables. The first will be named instance and 

will literally correspond to an instance of our script that can be called from 

other scripts. The two other variables, scoreText and score, respectively, 

reference the UI Text element we previously created and configured and 

store the current score.

void UpdateScore() {

    scoreText.text = "Score: " + score.ToString();

}

We will have a function to update the contents of scoreText too, so 

that we don’t have to continuously check or update using a form of the 

Update() function. Note that the contents in the score variable has to be 

converted into a string format.

void Awake() {

    if (instance) {

        Destroy(this.gameObject);

    } else {

        instance = this;

    }

    UpdateScore();

}

public void IncreaseScore(int amount) {

    score += amount;

    UpdateScore();

}

In the Awake function, we will create the instance for the script before 

other scripts have been initialized in the scene. We first check whether an 

instance of this script already exists, and if yes, we destroy the current one. 

Otherwise, we set the instance of the script in the scene to be the current 

one. Finally, we update our scoreText, so that it doesn’t hold our dummy 

text at Play.

Chapter 6  Improving and Building Sphere Shooter



200

public void IncreaseScore(int amount) {

    score += amount;

    UpdateScore();

}

We will also have a last function, so that we can change the score 

value. To that function, we can pass a value to specify the amount by which 

to increment the score. We only have to update scoreText then.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class scoreManager : MonoBehaviour {

   public static scoreManager instance;

   public Text scoreText;

   int score;

   void Awake() {

       if (instance) {

           Destroy(this.gameObject);

       } else {

           instance = this;

       }

       UpdateScore();

   }

   public void IncreaseScore(int amount) {

       score += amount;

       UpdateScore();

   }

Chapter 6  Improving and Building Sphere Shooter



201

   void UpdateScore() {

       scoreText.text = "Score: " + score.ToString();

   }

}

Back in the Editor, we place the script on the ScriptManager 

GameObject and drag the actual ScoreText UI element in the scoreText 

field of the script (Figure 6-5).

If you enter the Play mode, not much will change when you kill 

enemies. This is because enemies have not been said to do anything in 

relation to incrementing the score yet. Open the enemy script and add the 

following line just after that responsible for destroying bullets that collide 

with the enemy:

scoreManager.instance.IncreaseScore(1);

This line will cause the enemy to access the scoreManager instance 

in the scene and call the IncreaseScore function, passing in a value of 1, 

which will increment the score by 1.

void OnCollisionEnter(Collision col) {

     if (col.gameObject.CompareTag(bulletTag))  {

         Destroy(col.gameObject);

         scoreManager.instance.IncreaseScore(1);

     }

}

Figure 6-5.  The scoreManager script as a component

Chapter 6  Improving and Building Sphere Shooter



202

Save the script, and when you enter Play mode this time, the score 

should be incremented by 1 each time you kill an enemy (Figure 6-6). 

Nothing will change if it is the enemy that collided with you.

6.3  �Making Menus
In this section, we will be building three menus that the player can interact 

with. The first one will be displayed when the game starts, another when 

the player loses, and the last whenever the player pauses the game. 

However, we will first code everything that we will require the UI buttons of 

these menus to perform.

6.3.1  �Coding Utilities Required
Create and open a script named utilityScript. As UI buttons can already 

do many things, such as disabling GameObjects, we won’t have to code 

all the behaviors that we will require. Add the line using UnityEngine.

SceneManagement; to the script, so that we can later call associated 

methods/functions.

Figure 6-6.  How the score display should look like after killing two 
enemies

Chapter 6  Improving and Building Sphere Shooter



203

public void Restart() {

  SceneManager.LoadScene(SceneManager.GetActiveScene().name);

}

The first function will allow the player to restart the game when they 

lose. Using Unity’s SceneManager, we have only to load the current scene 

again. We do this by using the LoadScene function and passing the name of 

the current scene as parameter.

The next function is all about exiting the game. We use 

Application.Quit().

public void Quit() {

    Application.Quit();

}

To pause and unpause the game, we set the Time.timeScale value to 

either 0 or 1. A value of 0 will make everything unable to move.

public void Pause() {

    Time.timeScale = 0.0f;

}

public void UnPause() {

    Time.timeScale = 1.0f;

}

Finally, we pause the game as it starts, so that we can choose what to 

do on the first menu.

void Start() {

    Pause();

}

Chapter 6  Improving and Building Sphere Shooter



204

Here is the full code:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.SceneManagement;

public class utilityScript : MonoBehaviour {

   void Start() {

       Pause();

   }

   �public void Restart() {    SceneManager.

LoadScene(SceneManager.GetActiveScene().name);

   }

   public void Quit() {

       Application.Quit();

   }

   public void Pause() {

       Time.timeScale = 0.0f;

   }

   public void UnPause() {

       Time.timeScale = 1.0f;

   }

}

Place the script on the ScriptManager GameObject itself.

Chapter 6  Improving and Building Sphere Shooter



205

6.3.2  �Start Menu
This menu will be displayed whenever the scene is loaded. In Scene, 

disable the SpawnPoints GameObject (untick the check box to the left of 

its name in the Inspector while selected). We don’t want enemies to be 

spawned before we click the Play button.

Under Canvas, create a new empty GameObject named StartMenu. 

Make sure it is at the bottom of the list of children of the Canvas in the 

hierarchy, so that it is displayed on top of all the other elements.

Make a UI Image named Background a child of StartMenu. Give it a 

width and height bigger than those you are using as resolution in the Game 

window. I’m using a 1920 × 1080 resolution, so I will assign a width of 2500 

and a height of 1250. Give the UI Image component a color of your choice 

and reduce its opacity a bit, if you want. I’m using a somewhat cyan color 

and an opacity of 190 (Figure 6-7).

Figure 6-7.  The Background UI element

Chapter 6  Improving and Building Sphere Shooter



206

Next, you can make a Text UI element as a child of StartMenu 

(Figure 6-8). Name it Title. It will be used as a label for the name of our 

game. Make it as big as you want, using Best Fit and align it in the center 

for both axes (Figure 6-9).

Figure 6-9.  The Text component of the Title UI element

Figure 6-8.  The Rect Transform component of the Title UI element

Chapter 6  Improving and Building Sphere Shooter



207

We only need two buttons now. Create a UI button element, still as a 

child of StartMenu, and name it PlayButton. I’ve selected a green color for 

the Image component of my PlayButton and made it 400 units wide, 100 

units tall, and placed it at (0, -180, 0) (Figure 6-10).

In the OnClick() part of the Button component of PlayButton (Figure 6-11),  

click the plus icon (+) three times. In the first slot, drag and drop in the 

StartMenu and select the GameObject.SetActive(bool) function, while 

making sure that the check box that will appear remains unchecked. In 

the second, do a similar thing, except using the SpawnPoints GameObject 

this time and making sure the check box is checked. Last, drag in the 

ScriptManager and choose utilityScript.UnPause().

Figure 6-10.  The PlayButton UI element

Chapter 6  Improving and Building Sphere Shooter



208

To complete the PlayButton element, select its child (named Text), 

make it display Play, and, optionally, change its color. Make it use a Bold 

font style and tick Best Fit (Figure 6-12).

Figure 6-11.  The OnClick function of the Button component of 
PlayButton

Figure 6-12.  The Text component of the child of PlayButton

Chapter 6  Improving and Building Sphere Shooter



209

We only require the Exit button now. Duplicate PlayButton, name the 

new element ExitButton, give it a red color, place it at (0, -315, 0), and give 

its Text UI element child a value of Exit (Figure 6-13).

In the OnClick() of ExitButton, reference ScriptManager and call the 

utilityScript.Quit() function (Figure 6-14).

Figure 6-13.  The Text component of the child of ExitButton

Chapter 6  Improving and Building Sphere Shooter



210

Your hierarchy should contain the following elements and GameObjects  

as children of the Canvas GameObject (Figure 6-15):

Note that clicking the Exit button in the Editor won’t do anything. You 

can enter Play mode and make sure that the buttons work now (Figure 6-16).

Figure 6-15.  The GameObjects that currently form part of the 
children in Canvas

Figure 6-14.  The OnClick() function of the Button component of 
ExitButton

Chapter 6  Improving and Building Sphere Shooter



211

6.3.3  �Pause Menu
Before we make the actual Pause menu, let’s make a pause button that 

we can press in-game. Disable the StartMenu GameObject first, so that 

we can preview everything we do more easily in the Game/Scene view. 

Download and import the following image in the Textures folder in the 

Project Window: https://raw.githubusercontent.com/EdgeKing810/

SphereShooter/master/Assets/Images/Pause.png. Select it and mark it 

as a Sprite2D in the Inspector and hit apply (Figure 6-17).

Figure 6-16.  How the StartMenu looks

Chapter 6  Improving and Building Sphere Shooter

https://raw.githubusercontent.com/EdgeKing810/SphereShooter/master/Assets/Images/Pause.png
https://raw.githubusercontent.com/EdgeKing810/SphereShooter/master/Assets/Images/Pause.png


212

Next, create a UI Button element as a child of the Canvas GameObject 

and place it above the StartMenu GameObject or at the top of all the 

children. Name it PauseButton. Duplicate the StartMenu GameObject 

too, name the new instance PauseMenu, and enable its GameObject 

(Figure 6-18).

Figure 6-17.  Importing the texture of PauseButton

Chapter 6  Improving and Building Sphere Shooter



213

Figure 6-18.  The GameObjects that currently form part of the 
children in Canvas

Delete the Text UI element that is a child of PauseButton. You might 

not be able to spot the PauseButton unless you disable the GameObject of 

StartMenu and PauseMenu. Place PauseButton at (0, 400, 0) and make it 

have both a width and height of 100. In its Image component, make sure it 

uses the Pause Sprite as Source Image (Figure 6-19).

Figure 6-19.  The Rect and Image components of PauseButton

Chapter 6  Improving and Building Sphere Shooter



214

The OnClick function of its Button Component should disable its own 

GameObject, enable that of the actual PauseMenu, and call the Pause 

function from the utilityScript on ScriptManager (Figure 6-20).

If you disabled the PauseMenu GameObject, re-enable it now while 

keeping StartMenu disabled. The Background of PauseMenu can be 

changed to another color, if you wish. Next, change the Title to Paused and 

delete the ExitButton GameObject. Rename PlayButton ResumeButton, 

give it a blue color, and the text Resume inside. Maybe move it a little more 

toward the bottom too (Figure 6-21).

Figure 6-20.  The OnClick function of the Button component of 
PauseButton

Figure 6-21.  The GameObjects that currently form part of the 
children in Canvas

Chapter 6  Improving and Building Sphere Shooter



215

The OnClick of ResumeButton should enable the GameObject of 

PauseButton, disable that of PauseMenu, and call the UnPause function 

from utilityScript found on ScriptManager (Figure 6-22).

The last thing to do is to disable the PauseMenu GameObject in the 

scene and enable that of StartMenu. We had done the opposite just to be 

able to preview how it would look. Here’s what my PauseMenu looks like 

when I click the PauseButton while playing (Figure 6-23):

Figure 6-22.  The OnClick function of the Button component of 
ResumeButton

Figure 6-23.  How the PauseMenu looks

Chapter 6  Improving and Building Sphere Shooter



216

6.3.4  �Game Over Menu
You should already have guessed the use of this menu just by the name. 

Duplicate StartMenu, name the new instance GameOverMenu, and 

disable the GameObjects of both StartMenu and PauseMenu. Change the 

color of the Image component of the Background GameObject, display 

Game Over in the text of Title instead, and delete PlayButton. Rename 

ExitButton RestartButton, change its color, and name its Text child display 

Restart. Finally, make it call the Restart function of utilityScript on 

ScriptManager in OnClick () (Figure 6-24).

Create a new Text UI element as a child of GameOverMenu and name 

it ScoreLabel. Place it at (-200, -25, 0) and give it a width and height of 365 

and 80, respectively. Make it display Score:, align it to the left horizontally 

and at the bottom vertically. Give it a Font Size of 65, mark it bold, and 

change its color (Figure 6-25).

Figure 6-24.  The OnClick function of the Button component of 
RestartButton

Chapter 6  Improving and Building Sphere Shooter



217

Duplicate that Text UI element, name it Value, and make it a child of 

ScoreLabel. Change its color, align it to the right horizontally, make it use 

a normal Font Style, and change its Rect Transform properties to have a 

position of (465, 0, 0) and a width and height of 250 and 80, respectively 

(Figure 6-26).

Figure 6-25.  The Rect Transform and Text components of 
ScoreLabel

Chapter 6  Improving and Building Sphere Shooter



218

Duplicate the ScoreLabel GameObject, rename the new instance to 

HighScoreLabel, make it have a position of (-200, -125, 0), change its text 

value to High Score:, and change its color (Figure 6-27).

Figure 6-26.  The Rect Transform and Text components of Value

Chapter 6  Improving and Building Sphere Shooter



219

Figure 6-27.  The Rect Transform and Text components of 
HighScoreLabel

Chapter 6  Improving and Building Sphere Shooter



220

My Hierarchy window looks like the following for the children of the 

GameOverMenu GameObject (Figure 6-28):

And this is what my GameOverMenu should look like later, when health 

mechanics are implemented, and the player loses a game (Figure 6-29):

Again, disable the GameObjects of PauseMenu and GameOverMenu 

and enable that of StartMenu.

Figure 6-28.  The children GameObjects of GameOverMenu

Figure 6-29.  How the GameOverMenu looks

Chapter 6  Improving and Building Sphere Shooter



221

6.4  �Adding Health
We’ll take a similar approach to how we implement scores for the player’s 

health. There will be a unique script instance on the player tank with 

a function, so that enemies can call to decrease its health. We will also 

instantiate a player explosion when they lose and create what is necessary 

to give more context to the GameOverMenu.

First, duplicate the ScoreText UI element and name it HealthText. 

Change the color of the Text component, change its text to Health:, and 

place it at (-660, 450, 0). Make sure that the HealthText GameObject is 

around the same index as the one for ScoreText, so that it is not rendered 

below or on top of unwanted elements. Create a new script named 

healthManager, place it on the Player GameObject, and open it. Add the 

using UnityEngine.UI; line to the script, so that we are able to modify the 

text value of the Text elements we’ll use later.

public static healthManager instance;

public Text healthText;

public Text scoreText;

public Text highScoreText;

int health = 5;

public GameObject explosionPrefab;

Again, the first variable we are creating will correspond to an instance 

of our script, so that it can be called from other scripts. healthText will 

reference the Text component of our HealthText GameObject later. As 

for scoreText and highScoreText, they will correspond to the Text 

component of the corresponding GameObjects in GameOverMenu. The 

integer variable health will just keep track of the amount of health the 

player tank currently has. It will initially have a value of 5. Last, we will be 

referencing an explosion prefab to be instantiated when the player dies.

Chapter 6  Improving and Building Sphere Shooter



222

void Awake() {

    if (instance) {

        Destroy(this.gameObject);

    } else {

        instance = this;

    }

    UpdateHealth();

}

In the Awake function of our script, we will be making sure that only 

one instance of it is present in the scene. Refer to section 6.2 (“Scoring”) if 

you don’t understand this snippet of code.

void UpdateHealth() {

    if (health <= 0) { GameOver(); return; }

    healthText.text = "Health: " + health.ToString();

}

In a function named UpdateHealth, we’ll update the text referenced in 

the healthText variable to display the health of the player. If the health is 

less than or equal to 0, we will call a function to perform a Game Over.

public void ChangeHealth(int amount) {

    health += amount;

    UpdateHealth();

}

We will also have another function publicly accessible, so that enemies 

can cause damage. Of course, enemies when calling this function will pass 

on a negative value, such as -1.

void GameOver() {

    healthText.text = "Health: 0";

    �Instantiate(explosionPrefab, transform.position, 

explosionPrefab.transform.rotation);

Chapter 6  Improving and Building Sphere Shooter



223

    Destroy(this.gameObject);

    �scoreText.transform.parent.parent.gameObject.

SetActive(true);

    int score = scoreManager.instance.GetCurrentScore();

    scoreText.text = score.ToString();

    int highScore = PlayerPrefs.GetInt("HighScore", 0);

    if (score > highScore) {

        highScore = score;

        PlayerPrefs.SetInt("HighScore", highScore);

    }

    highScoreText.text = highScore.ToString();

}

In the GameOver function, we will, in short, have to destroy the player 

and update the score/high score text of the corresponding GameObjects in 

the GameOverMenu variable.

The first thing we will do is set the healthText text value to display the 

amount of health to be 0, spawn an explosion at the position of the player, 

and destroy the player tank GameObject. You should be familiar with these 

syntaxes.

Next, to display the actual GameOverMenu screen, we use the 

gameObject.SetActive method with true as parameter for the parent 

GameObject of the parent Transform of our scoreText Transform itself.  

If you look at your hierarchy, you’ll see that GameOverMenu is the parent 

of ScoreLabel, itself the parent of Value, i.e., our scoreText. We could have 

referenced the GameOverMenu GameObject directly using a variable, but 

it is useful for you know this way of doing things.

Then, we will be creating a local integer variable named score, to which we 

will assign the value returned from a function we call from our scoreManager 

instance (which we will implement in the next steps), to get the score. We will 

display this in the text component referenced in the scoreText variable.

Chapter 6  Improving and Building Sphere Shooter



224

For the high score, we will first create another local variable. To this 

variable, we will fetch and store the previous High Score. We do this by 

making use of PlayerPrefs, which has the ability to store data even when 

the game is closed. The syntax for fetching integer data is PlayerPrefs.

GetInt(<ID>, <defaultValue>). In our case, the ID is HighScore. 

PlayerPrefs will search and return a stored value that is associated with 

that ID. If that ID doesn’t exist, or no data has been saved using that ID, the 

default value of 0 will be returned and stored in the highScore variable.

We will then check whether our current score in the game we just 

played is greater than the High Score. If yes, we will both set the value 

of the highScore variable and the PlayerPref corresponding to the 

HighScore ID to the value of score. Finally, we update the value of the text 

component referenced in the highScoreText variable.

The full script follows:

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class healthManager : MonoBehaviour {

   public static healthManager instance;

   public Text healthText;

   public Text scoreText;

   public Text highScoreText;

   int health = 5;

   public GameObject explosionPrefab;

   void Awake() {

       if (instance) {

           Destroy(this.gameObject);

       } else {

Chapter 6  Improving and Building Sphere Shooter



225

           instance = this;

       }

       UpdateHealth();

   }

   public void ChangeHealth(int amount) {

       health += amount;

       UpdateHealth();

   }

   void UpdateHealth() {

       if (health <= 0) { GameOver(); return; }

       healthText.text = "Health: " + health.ToString();

   }

   void GameOver() {

       healthText.text = "Health: 0";

       �Instantiate(explosionPrefab, transform.position, 

explosionPrefab.transform.rotation);

       Destroy(this.gameObject);

       �scoreText.transform.parent.parent.gameObject.

SetActive(true);

       int score = scoreManager.instance.GetCurrentScore();

       scoreText.text = score.ToString();

       int highScore = PlayerPrefs.GetInt("HighScore", 0);

       if (score > highScore) {

           highScore = score;

           PlayerPrefs.SetInt("HighScore", highScore);

       }

       highScoreText.text = highScore.ToString();

   }

}

Chapter 6  Improving and Building Sphere Shooter



226

For the script to properly compile and work, we must create the 

GetCurrentScore function in our scoreManager script first.

public int GetCurrentScore() {

  return score;

}

That function can be publicly called and will return an integer value ; 

that is held in the score variable.

Save both of the scripts. Back in the Editor, assign the corresponding 

components to the fields of healthManager. Don’t forget that this script 

should be on your Player GameObject (Figure 6-30).

Health Text will correspond to the Text component of the HealthText 

GameObject you created at the start of this section. Score Text and High 

Score Text will then correspond to the Text component of the GameObject 

named Value that is the child of the ScoreLabel and HighScoreLabel 

GameObjects, respectively. As the Explosion Prefab, I am using the FX_

Explosion_Rubble prefab from SimpleFX ➤ Prefabs.

Additionally, we have to modify the enemy script, so that enemies can 

cause damage. Edit the OnCollisionEnter function, to verify if the object 

that collided is the player and, if that is the case, call the ChangeHealth 

function on the healthManager instance.

Figure 6-30.  The healthManager script as a component

Chapter 6  Improving and Building Sphere Shooter



227

Figure 6-31.  Errors being caused from the cameraFollow script

  if (col.gameObject.CompareTag(playerTag))  {

      healthManager.instance.ChangeHealth(-1);

  }

I’ve also gone ahead and modified the OnCollisionEnter function, 

so that there is a little less code duplication and the overall look is cleaner. 

You don’t need to do that, though.

void OnCollisionEnter(Collision col) {

     if (col.gameObject.CompareTag(bulletTag))  {

         Destroy(col.gameObject);

         scoreManager.instance.IncreaseScore(1);

         DestroyEnemy();

     }

     if (col.gameObject.CompareTag(playerTag))  {

         healthManager.instance.ChangeHealth(-1);

         DestroyEnemy();

     }

 }

Now, if you play the game, you will see that the HealthText text gets 

updated when enemies collide with you. When your health reaches 0, 

an explosion will be seen along with the GameOverMenu, which will be 

displayed with the correct score and highScore values.

You will also notice errors when you lose (Figure 6-31).

Chapter 6  Improving and Building Sphere Shooter



228

These have to do with the cameraFollow script not being able to follow 

the player tank when it is destroyed, because it corresponds to a value of 

null. Edit the cameraFollow script and add a check to prevent that error 

from occurring when the player tank is destroyed and, thus, doesn’t exist.

void LateUpdate() {

  if (player) {

    this.transform.position = new Vector3(player.position.x, 

height, player.position.z);

  }

}

6.5  �A New Enemy
While the current enemy does its job quite well, let’s introduce a new 

enemy that takes three shots to be destroyed. It will also cause more 

damage if it collides with the player.

Start by duplicating the Enemy prefab in the Project window. Name 

the new instance EnemyBig and the original one EnemySmall. Double-

click to open the EnemyBig prefab (Figure 6-32). Give it a Scale of (3, 3, 3), 

and change its color and that of its Trail Renderer child by making use of a 

new material. I’ll also be making the Trail Renderer wider by using a width 

of 0.75. Finally, we will also want to reduce the Max Speed value of the 

enemy script on the EnemyBig GameObject to something like 3 and use 

another explosion prefab. For this, I will be using the SimpleFX ➤ Prefabs 

➤ FX_Fireworks_Blue_Large, but with an orange color.

Chapter 6  Improving and Building Sphere Shooter



229

Let’s now modify the script responsible for spawning enemies, 

enemySpawner, so that it randomly spawns either of our two enemies 

prefabs. The first thing we have to do is transform the public GameObject 

enemy statement to one that refers to an array of GameObjects with the 

identifier “enemies”: public GameObject[] enemies.

Then, add a line of code before the line containing the instantiate 

instruction, to create a local GameObject variable, named enemy, that will 

be assigned a random (enemy) GameObject from the enemies array.

void SpawnEnemy() {

    int randomPos = (int)Random.Range(0, transform.childCount);

    �GameObject enemy = enemies[(int)Random.Range(0, enemies.

Length)];

Figure 6-32.  The components on the new Enemy GameObject

Chapter 6  Improving and Building Sphere Shooter



230

    �Instantiate(enemy, transform.GetChild(randomPos).position, 

enemy.transform.rotation);

}

Back in the Editor, drag the two enemy prefabs in their corresponding 

slots of the enemySpawner component found on the SpawnPoints 

GameObject (Figure 6-33).

You should now be able to see the new enemy getting instantiated 

when you play, but it is still behaving like the original one. Open the enemy 

script. Time to make some changes.

We’ll be using two new variables: health and damageToCause. Both 

will be global integer-type variables and publicly accessible, with a default 

value of 1.

public int health = 1;

public int damageToCause = 1;

Save the script, then, on the EnemyBig Prefab in the Project window, 

set both of these variables to have a value of 3 (Figure 6-34).

Figure 6-33.  The updated enemySpawner script as a component

Chapter 6  Improving and Building Sphere Shooter



231

Figure 6-34.  The final properties of components of the EnemyBig 
GameObject

Then, modify the OnCollisionEnter function so that when an enemy 

collides with a bullet, this reduces its health by one (health--), instead of 

calling the DestroyEnemy function. If an enemy collides with the player, 

it should cause an amount of damage equal to the value held in the 

damageToCause variable, so just replace the -1 value that was being passed 

to the ChangeHealth function of the healthManager script instance to 

-damageToCause. Finally, add a check, so that the DestroyEnemy function is 

called if the health of an enemy is less or equal to 0.

void OnCollisionEnter(Collision col) {

     if (col.gameObject.CompareTag(bulletTag))  {

         Destroy(col.gameObject);

Chapter 6  Improving and Building Sphere Shooter



232

         scoreManager.instance.IncreaseScore(1);

         health--;

     }

     if (col.gameObject.CompareTag(playerTag))  {

   healthManager.instance.ChangeHealth(-damageToCause);

         DestroyEnemy();

     }

     if (health <= 0) {

         DestroyEnemy();

     }

 }

Save the script and head over to Play mode. You should see that 

EnemyBig GameObjects takes three bullet hits to be destroyed, and if they 

collide with the player tank, cause a damage of 3.

To complete this section, let’s add something more to the enemy script, 

so that enemies get faster over time, to make the game less boring (not that 

it was, but whatever).

In the first line of the Start function of the enemy script, in addition to 

the speed variable, add the value of (Time.time / 25). The first method 

we’re calling will return the amount of seconds, because the game started, 

and we are, in short, making sure that the speed of enemies being spawned 

will increase by 1 every 25 seconds.

void Start() {

 speed = Random.Range(minSpeed, maxSpeed) + (Time.time / 25);

 audioSource = GetComponent<AudioSource>();

 player = GameObject.FindWithTag(playerTag);

}

Chapter 6  Improving and Building Sphere Shooter



233

Figure 6-35.  The components on the healthBox GameObject

6.6  �HealthBoxes
This is the last section in which we will be making modifications to the 

game. I will introduce a little cube that will be spawned randomly along 

the area of the Ground GameObject at defined intervals. If the player 

tank collides with one of these little cubes, which we will refer to as 

healthBoxes, we will increase their health by a certain value.

6.6.1  �Making the healthBox
In your scene, create a 3D Object ➤ Cube GameObject. Name it healthBox 

and give it a position of (0, 1, 3), a rotation of (0, 0, 0), and a scale of (0.4, 

0.4, 0.4). You can also assign a material of a green color to it. Then, check 

the isTrigger property of its Box Collider component (Figure 6-35).

Chapter 6  Improving and Building Sphere Shooter



234

As we made the healthBox GameObject have an isTrigger collider, 

enemies can go right through it without requiring us to mess with the 

Tags and Layers properties. Our player tank can also just pick it up and 

continue its route unaffected from the direction we want it to go, because 

no collisions are occurring.

6.6.2  �Adding Health
Right now, if you play, the player tank just goes through the healthBox 

GameObject, and there’s really nothing more that happens. To make the 

tank interactable and give it a meaning in the game, we must code a script 

that defines what should happen. Create a script, name it healthBox, and 

open it.

We will require a function to run when an isTrigger collision occurs, 

and if it was the player tank’s collider that was the cause of this, we 

must call the function to increase the player’s health and destroy the 

GameObject of the healthBox. If we didn’t perform this last step, the player 

could continuously move on and off the same healthBox to increase their 

life. We will also increase the health of the player by 2, but you can choose 

another value.

The full script is given following. Save it, and place it on the healthBox 

GameObject in the scene. You will also notice that we are using the 

OnTriggerEnter function with a Collider type reference passed as 

parameter. The function will be performed in a similar way to the famous 

OnCollisionEnter function we have been using all along, but this time, for 

treating trigger collisions.

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

Chapter 6  Improving and Building Sphere Shooter



235

public class healthBox : MonoBehaviour {

   void OnTriggerEnter(Collider col) {

       if (col.gameObject.CompareTag("Player")) {

           healthManager.instance.ChangeHealth(2);

           Destroy(this.gameObject);

       }

   }

}

When you enter the Play mode now, you should notice that the 

healthBox GameObject gets destroyed, and your health increases by 2 (or 

the value you have selected in the previous step) when you “collide” with 

it.

6.6.3  �Spawning healthBoxes Along the Map
Turn the healthBox GameObject in a prefab and delete it from your scene 

(Figure 6-36).

Chapter 6  Improving and Building Sphere Shooter



236

Create another script, name it healthBoxSpawner, and open it. We 

will be using three variables that will be used to, respectively, reference 

the GameObject of the healthBox prefab, the Transform of the Ground 

GameObject in our scene, and hold a value that will define at what 

intervals to spawn a healthBox GameObject, in a similar way to the 

enemySpawner script.

Figure 6-36.  The healthBox GameObject after being turned in a prefab

Chapter 6  Improving and Building Sphere Shooter



237

public GameObject healthBox;

public Transform ground;

public float delay = 3.0f;

As in the case of the Start function in the enemySpawner script, we 

must call a function every x seconds, as defined in the delay variable to 

instantiate a healthBox GameObject.

void Start() {

    InvokeRepeating("SpawnHealthBox", 0.0f, delay);

}

As our Ground GameObject has a scale of magnitude 150 along its x 

and z axes, and the origin (0, 0, 0) is at its center, any GameObject to be 

at its edge must have an x and/or z position of 75 or -75. So, we will pick a 

random value between 75 and -75 for both the x and y value at which we 

want to instantiate a healthBox in the SpawnHealthBox function.

For example, to get a random value for the position along the x axis, we 

would use the following code:

float xPos = Random.Range(-1.0f, 1.0f) * (ground.localScale.x / 2);

Scale is always expressed locally for GameObjects. The ground.

localScale.x value divided by 2 will give us 75, and we just multiply that 

by a random value between -1 and 1.

We will do the same to get a value for the z axis. The y axis value will 

be 1. Then, it is just about creating a Vector3 variable and instantiating a 

healthBox at that position. Quaternion.identity can be interpreted as 0 

rotation along all axes.

void SpawnHealthBox() {

    �float xPos = Random.Range(-1.0f, 1.0f) * (ground.

localScale.x / 2);

    �float zPos = Random.Range(-1.0f, 1.0f) * (ground.

localScale.z / 2);

Chapter 6  Improving and Building Sphere Shooter



238

    Vector3 spawnPos = new Vector3(xPos, 1, zPos);

    Instantiate(healthBox, spawnPos, Quaternion.identity);

}

Here’s the full script, in case you missed something. Save it and drag 

it on the SpawnPoints GameObject in your scene, because we want it to 

run only when we are playing the game (not before the player clicks Play, 

pauses the game, or loses).

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

public class healthBoxSpawner : MonoBehaviour {

   public GameObject healthBox;

   public Transform ground;

   public float delay = 3.0f;

   void Start() {

       InvokeRepeating("SpawnHealthBox", 0.0f, delay);

   }

   void SpawnHealthBox() {

       �float xPos = Random.Range(-1.0f, 1.0f) * (ground.

localScale.x / 2);

       �float zPos = Random.Range(-1.0f, 1.0f) * (ground.

localScale.z / 2);

       Vector3 spawnPos = new Vector3(xPos, 1, zPos);

       Instantiate(healthBox, spawnPos, Quaternion.identity);

   }

}

Chapter 6  Improving and Building Sphere Shooter



239

Drag and drop the healthBox prefab in the Health Box field and the 

Ground GameObject in the Ground field. You can set another value for the 

Delay instead of 3 (Figure 6-37).

6.7  �Exporting the Game as an .apk file
We now have a fully functional game! Let’s make an .apk file, so that we can 

install it on our Android phones and show off to our friends!

If you followed along with this book, from the point at which we 

downloaded a version of the Unity Editor from the Hub and installed 

Android modules to it, your Edit ➤ Preferences ➤ External Tools tab 

should look like this (Figure 6-38):

Figure 6-37.  The healthBoxSpawner script as a component

Figure 6-38.  Tools for building for the Android Platform

Chapter 6  Improving and Building Sphere Shooter



240

Save your scene and project. Enter the Build Settings window (File ➤ 

Build Settings, or Ctrl+Shift+B). The first thing to do is add all the scenes 

you want to be present in your .apk (Figure 6-39). We have only one scene, 

so click Add Open Scenes. If we had multiple scenes, we’d drag them all 

in, the first one being the one we want the player to see when the game is 

opened (Figure 6-39).

Click the Player Settings button at the bottom-left corner of that 

window. We will modify some settings first, before hitting Build. The 

Project Settings window will come up, and you’ll be on the Player tab. The 

Player is the place from which we customize various options for the final 

game built by Unity. We will only be looking at the most frequently used 

Figure 6-39.  The Build Settings window

Chapter 6  Improving and Building Sphere Shooter



241

options for building an Android game. The first thing that we can do is set 

a company name (your name as a developer, maybe), a product name (the 

name of our game), and set a version number (such as 1, 2, 3.5, etc.). These 

can be set to anything you want.

You already know how to import textures from the step in which we 

imported one for the Pause button (section 6.3.3, “Pause Menu”). We can 

then assign an icon and a cursor to our game. By default, if left empty, the 

icon will be that of Unity’s logo, and the cursor will be blank (Figure 6-40).

I won’t be covering the settings under Icon, but, in brief, you can 

specify textures of various resolutions to match the final icon size on 

various phones. It will scale the image we added in the Default Icon 

property accordingly, if not tweaked anyway, so it is not something you 

absolutely must do.

Under Resolution and Presentation (Figure 6-41), you can personalize 

how you want your game to be presented on phones. The options are pretty 

self-explanatory and easy to understand. We won’t be changing anything 

in this section, except that we want our game to play only in a landscape 

mode. We can keep the Default Resolution set to Auto Rotation but unselect 

the Portrait modes below, or just choose another option instead of the Auto 

Rotation one. You can also get an idea of what many settings do, by keeping 

your mouse cursor hovered over one for a few seconds.

Figure 6-40.  The first options in the Player tab

Chapter 6  Improving and Building Sphere Shooter



242

Under the Splash Image tab (Figure 6-42), you can choose to display 

something when a user enters your game, such as the cover image of your 

game developer company and such. You can’t set it to not display the 

Made by Unity logo in the Personal edition. You can set the Splash Style 

or Animation, or even set a background (rather than a solid color), to 

customize your splash screen.

If you want to display other images, add them in the Logos list, along 

with the amount of time you want them to be present on the screen.

Figure 6-41.  Resolution and Presentation in the Player Settings

Chapter 6  Improving and Building Sphere Shooter



243

Under Other Settings, we first have some settings about rendering and 

graphics that we don’t really have to mess with (Figure 6-43). We also have 

the package name of our game that will be the full identifier of our game 

on our phone. No games or apps should have the same package name. 

While the version serves to identify releases of your game to you, every 

update that you make to your game should have a higher Bundle Version 

Code number than the previous one for your Android phone, to not throw 

errors and install it. The Minimum and Target API Levels serve to represent 

the range of Android phone versions that your game can be installed on. 

Figure 6-42.  Splash Image in the Player Settings

Chapter 6  Improving and Building Sphere Shooter



244

If you try to install the .apk on an Android phone with an Android version 

not falling in this range, it will fail.

As for the Configuration part, you have to switch to the IL2CPP 

Scripting Backend, to target devices with an ARM64 architecture (under 

Target Architectures; see Figure 6-43) and if you want your game to be 

accepted later (if you submit it) to Google’s Play Store. Our game will 

already be pretty performant; there is no need to tweak any other options.

Finally, we can make a Keystore and “sign” our game, so that it has 

the identity of the person who made it. Phones and the Play Store will also 

deny updates to a game/app if signed with a key that is not the one that 

was used for the first version submitted.

Click the Keystore Manager button, create a new keystone, fill in the 

details, and click the Add Key button (Figure 6-44).

Figure 6-43.  Identification and configuration in Other Settings

Chapter 6  Improving and Building Sphere Shooter



245

Then, input the same details in the Publishing Settings section of the 

Player (Figure 6-45).

Figure 6-44.  The Keystore Manager window

Figure 6-45.  Publishing Settings in the Player

Chapter 6  Improving and Building Sphere Shooter



246

If later on you make games that after being built have .apk files that 

occupy more than 100MB, you must tick Split Application Binary, which 

that will create an additional expansion file (OBB file) and reduce the size 

of the .apk file, so that Google Play accepts it.

Finally, click Build in the Build Settings window and specify the location 

and name of the .apk file that is going to be generated (Figure 6-46). Then, 

just wait. If the build fails, check your Console window for errors and simply 

Google them.

One common error on Windows has to do with licenses of the Android 

SDK modules not having been accepted. To fix this, you must go to the 

location where the Android SDK has been downloaded/installed and 

execute the following command in a CMD window. Replace the Unity 

Editor version with your own.

cd "Program Files\Unity\Hub\Editor\2019.3.0b12\Editor\Data\

PlaybackEngines\AndroidPlayer\SDK\tools\bin"

sdkmanager.bat --licenses

If you get any other errors, just search and try to find a solution. If you 

still are not able to get your game to build properly, download and install 

the Android SDK, NDK, JDK, and Gradle manually and point Unity to their 

location in the Edit ➤ Preferences window.

Figure 6-46.  One of the processes that runs when we click Build

Chapter 6  Improving and Building Sphere Shooter



247

Note  Following is what my External Tools tab looks like on Linux 
(Figure 6-47). I wasn’t getting it to work with the included Android 
tools I had downloaded along Unity in the Hub, so I manually 
unpacked/installed all of them, and now my game builds properly. If 
you proceed to this step, you can follow along not-too-dated forum 
posts and find articles easily. Note that for some tools, such as JDK 
and NDK, Unity supports very specific versions.

Once you have your .apk file, send it to your phone. and in a file 

manager app on your phone, just browse to where the .apk file is and 

install it (Figure 6-48). You can now play the game you made and show it to 

your friends!

Figure 6-47.  My External Tools window

Figure 6-48.  The final .apk file

Chapter 6  Improving and Building Sphere Shooter



248

There are still many things that can be done in Sphere Shooter if you 

want to build your skills and make a better game. Here’s a short list:

•	 Add more sound effects and Particle Systems.

•	 Implement a feature that allows the player to choose 

from a couple of looks for the Ground GameObject’s 

textures.

•	 Add more enemies: one that is smaller and faster, one 

that spawns smaller enemies when killed, one that can 

stick to the player and reduce their max speed.

•	 Add coins to the game that allow the player to buy more 

turrets for their tank.

•	 Increase the value of a kill the longer the player 

survives.

•	 Add more tanks with lasers, projectiles, and 

flamethrowers.

•	 Implement something like Challenges in the game, 

with rewards upon completion.

You can also refer to a game named Balls and Turrets, which at its core 

is Sphere Shooter. Find it on Google Play.

I hope you enjoyed this book as much as I did writing it! We looked 

at several concepts of game development and how to use many of the 

features that Unity offers. We even made a demo game that can be heavily 

improved and built on. I am glad if you have considered a career in game 

development after having read this book. Please don’t hesitate to learn 

more on the topic and build great and fun games. Share them with me. I’d 

love to see your creations.

Chapter 6  Improving and Building Sphere Shooter



249© Kishan Takoordyal 2020 
K. Takoordyal, Beginning Unity Android Game Development,  
https://doi.org/10.1007/978-1-4842-6002-9

Index

A
Albedo, 98
Android platform, tools, 239
.apk file, 239, 247
Arithmetic operations

addition, 9
casting, 12
compound assignment 

operators, 11
division, 9
increment/decrement, 11
modulus, 10
multiplication, 9
subtraction, 9
unary operation, 11
variables/constants, 10

Array
declaration/creation, 7, 8
definition, 7
fetching, 8
modifying, 8
setting, 8

Asset Store, 52–55, 149
AudioClip property, 174
Audio Listener component, 82
audioSource variable, 176, 185
Audio Source component, 83, 84, 

174, 175

audioSource private variable, 176
Auto-completion/debugger, 2
Awake function, 199, 222

B
Background UI element, 205
Base Map label, 150
Boolean data type, 4
Box Collider, 78
Build Settings  

window, 58, 240
bulletEnd position, 178
Bullet GameObject, 171–174
Button component, 123

PauseButton, 214
RestartButton, 216
ResumeButton, 215

C
Camera component, 67–69

multiple, 71
perspective, 70
rotation/orientation, 69
Viewport Rect setting, 70

cameraFollow script, 170, 227
Camera GameObject, 161, 171

https://doi.org/10.1007/978-1-4842-6002-9#ESM


250

Camera Screen Space mode, 108
Canvas

component, 107, 108
Scaler, 109–111
3D objects, 108
2D view, 106
World Space, 109

Canvas GameObject, 158
Capsule Colliders, 79, 80
Case control structure, 17, 18
Casting, 12
ChangeHealth function, 231
Colliders, 77
Collision Detection  

system, 82
Compound assignment  

operators, 11
Console window, 55–57
Constants, 6
Coroutines

defining/calling, 26, 27
using seconds instead of 

frames, 27, 28
cubeRb variable, 164
Culling Mode, 88
currentTime variable, 178

D
Data types, 4, 5
Debug.Log function, 23
Destroy function, 174, 189
DestroyEnemy function, 231
Dropdown component, 129

E
Emitter Velocity, 87
Enemies

Asset Store, 183
collision, 187
destroy, 189, 191
dies, 187
lifespan, 185
making, 179, 180
move/explode, 183, 184
new, 228
player variable, 186

EnemyBig GameObject, 228, 231
enemyExplosionPrefab  

variable, 184, 188
Enemy GameObject, 180, 181, 229
enemySpawner script, 196, 236
eulerAngles property, 167
Event System component,  

134, 135
Explosion particle system, 188
External Tools window, 247

F
FixedUpdate() function, 167
Float data type, 4
force variable, 176
foreach loop, 20, 21
Functions

basics, 23
global/local, 25, 26
parameters, 23, 24
value return, 24, 25

INDEX



251

G
GameObject.FindWithTag 

function, 185
GameObjects

center point, 44
components, 63, 64
documentation, 64
local mode, 46
materials, 96

color, 98
properties, 98

pivot point, 45
prefab, 59–62
scripts, 100–103
tags/layer, 98, 100

GameObject.SetActive(bool) 
function, 207

GameOver function, 223
Game view, 47

resolution/ratio, 48
showing stats, 49

GetCurrentScore function, 226
GetInput function, 168
Graphic Raycaster component, 111
Gravity Modifier, 87
Ground GameObject

components, 147
hierarchy, 148
invisible walls, 148
look, 151
material, 149, 150
static marking, 145
textures, 149

transform component, 145, 146
wall, 146

H
HealthBoxes

adding, 234
making, 233
prefab, 236

HealthBox GameObject, 233, 234
healthBoxSpawner script, 239
healthManager script, 226
healthText variable, 222
HealthText GameObject, 221
Hierarchy window, 37
High Definition Render Pipeline 

(HDRP), 140
High dynamic range (HDR), 72
highScoreText variable, 224

I
if then else control  

structure, 15–17
Image component, 117
IncreaseScore function, 201
Inherit Velocity, 92
Inspector window, 50, 51
Integer data type, 4
Integrated development 

environments (IDEs), 2
InvokeRepeating function, 195
isTrigger property, 233
Iteration

INDEX



252

continue/break, 21, 22
foreach loop, 20, 21
for loop, 19
while loop, 19

J
Joystick axis, 165
Joystick GameObject, 160
Joystick script, 159, 160
Joystick’s Rect Transform, 158, 159

K
Keystore Manager window, 245

L
Layer Collision matrix, 99
Light component, 72–76
LoadScene function, 203
Logical operators

AND (&&), 14
Boolean expressions, 13
NOT (!), 14
OR (||), 14

for loop, 19

M
Mathf.Abs() function, 166
Max Particles, 88
maxSpeed variables, 184

Menus
coding utilities, 202
game over, 216, 220
pause, 211–213, 215
pause game, 203
start, 205, 211

Mesh Collider component, 80
minSpeed variables, 184
Movement Area Radius, 160
MovePlayer() function, 168
Move tool, 40
Multisampling anti-aliasing 

(MSAA), 72
Multi tool, 42

N
nemySpawner script, 230

O
Occlusion Culling, 71
OnClick() function, 208, 210, 214
OnCollisionEnter function, 226, 

231, 234
OnTriggerEnter function, 234

P, Q
Panel component, 134
Particle System, 84–87
Particle System component, 88–90
Pause function, 214
Pitch slider, 84

Iteration (cont.)

INDEX



253

PlayButton UI element, 207
Player GameObject, 153
playerMovement class, 163
playerMovement script, 177
Player Settings

identification/configuration, 244
resolution/presentation, 242
splash image, 243

playerTag constant, 186
Player tank

hierarchy window, 156
look, 156
making, 151
set up, 157

player variable, 186
Play mode, 50
Priority slider, 84
Programming

analyze, 1
coding, 2
planning, 1
testing, 2

Project window, 36, 37
public GameObject enemy 

statement, 229

R
Random.Rage function, 185, 194
Raw Image component, 118, 119
Rect and Image components, 213
Rect Transform and Text 

components, 112, 113, 206, 
218, 219

Renderer component, 76, 77
Render Mode, 75
Rigidbody component, 81, 82, 172
Ring Buffer Mode, 88
Rotate tool, 41
rotator variable, 164
Rotator GameObject, 154, 169

S
Scale tool, 41
Scene window, 38, 39, 43
scoreManager script, 198, 201
scoreText variable, 223
ScoreText UI element, 197–199
Scoring

dummy text, 199
enemies, 201, 202
update, 200

Screen Space—Camera Render 
Mode, 108

Scriptable Render Pipeline  
(SRP), 139

ScriptManager GameObject, 201
Scrollbar component, 131
Scrollview component, 133
Selection

case control structure, 17, 18
if then else control  

structure, 15–17
Simple Input System asset, 157
Slider component, 120
SpawnEnemy function, 195
SpawnHealthBox function, 237

INDEX



254

Spawning enemies, 193, 194
delay, 194
parameters, 195
position, 195

SpawnPoint GameObjects, 193, 194
speed variable, 164
Sphere Collider component, 79
Start function, 164, 176
Stereo Pan slider, 84
String data type, 5

T
Target Texture, 71
3D GameObject creation, 38
Text component, 115

ExitButton, 209
PlayButton, 208
ScoreLabel, 217

Textures folder, 150
Ticking Raycast Target, 116
Time.timeScale value, 203
Title UI element, 206
Toggle component, 127
trailRenderer GameObject, 182, 189
Trail Renderer component,  

92–95, 181
Transform component, 65–67, 95
Triggers, 92
Turret GameObject, 155

U
Unary operation, 11
Unity

account, 30, 31
empty scene, 36
external tools header, 35
layouts, 36
new project creation, 34

Unity Editor, 33
Unity Hub, 31, 32
Universal Render Pipeline  

(URP), 140
assets, 142
Build Settings, 143, 144
layout, 141
making project, 140
manager window, 142
SRP, 143

UnPause function, 215
Update() function, 199
UpdateHealth  

function, 222
User interface (UI), 105

button, 122, 124
canvas (see Canvas)
drop-down, 128–130
Event System, 134–136
image, 116, 117
input field, 124–126
joystick axes, 136, 137
panel, 134
raw image, 119
scrollbars, 130, 131
scrollview, 132, 134
slider, 119–122
Sprite 2D, 118
text, 114, 115

INDEX



255

toggle, 126–128
2D view, 105

utilityScript.Quit() function, 209

V
Variables, 5, 6
Vector2 variable, 164, 165, 167

Vector3 variable, 164
void Start() {} function, 102
void Update() {} function, 102

W, X, Y, Z
While loop, 19
Wireframe shading, 43

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Programming Concepts
	1.1 Variables, Constants, and Types
	1.1.1 Integer Data Type
	1.1.2 Float Data Type
	1.1.3 Boolean Data Type
	1.1.4 String Data Type
	1.1.5 Variables
	1.1.6 Constants
	1.1.7 Comments

	1.2 Arrays
	1.2.1 Declaring and Creating an Array
	1.2.2 Setting, Fetching, and Modifying Values in an Array

	1.3 Arithmetic Operators
	1.3.1 Addition, Subtraction, Multiplication, and Division
	1.3.2 Variables and Constants
	1.3.3 Modulus
	1.3.4 Compound Assignment Operators
	1.3.5 Quick Increment and Decrement
	1.3.6 Unary Operations
	1.3.7 Casting

	1.4 Logical Operators
	1.4.1 Simple Boolean Expressions
	1.4.2 AND (&&)
	1.4.3 OR (||)
	1.4.4 NOT (!)

	1.5 Selection
	1.5.1 if then else Control Structure
	1.5.2 Case Control Structure

	1.6 Iteration
	1.6.1 while Loop
	1.6.2 for Loop
	1.6.3 foreach Loop
	1.6.4 Continue and Break

	1.7 Functions
	1.7.1 Basics
	1.7.2 Parameters
	1.7.3 Returning a Value
	1.7.4 global and local

	1.8 Coroutines
	1.8.1 Defining and Calling Coroutines
	1.8.2 Using Seconds Instead of Frames


	Chapter 2: Introduction to Unity
	2.1 Creating a Unity Account
	2.2 Downloading Unity and Add-ons
	2.2.1 Unity Hub
	2.2.2 Creating an Empty Project

	2.3 Essential Windows
	2.3.1 The Project Window
	2.3.2 The Hierarchy Window
	2.3.3 The Scene Window
	2.3.4 Game View
	2.3.5 The Inspector Window
	2.3.6 The Unity Asset Store
	2.3.7 The Console Window
	2.3.8 Build Settings


	Chapter 3: GameObjects, Prefabs, Materials, and Components
	3.1 GameObjects and Prefabs
	3.2 Components
	3.2.1 Transform
	3.2.2 Camera
	3.2.3 Lighting
	3.2.4 Renderer
	3.2.5 Collider
	3.2.6 Rigidbody
	3.2.7 Audio Source and Listener
	3.2.8 Particle System
	3.2.9 Trail Renderer

	3.3 Materials
	3.4 Tags and Layers
	3.5 Scripts

	Chapter 4: User Interface
	4.1 Canvas
	4.1.1 Canvas Component
	4.1.2 Canvas Scaler
	4.1.3 Graphic Raycaster

	4.2 Rect Transform
	4.3 Text
	4.4 Image
	4.5 Raw Image
	4.6 Slider
	4.7 Button
	4.8 Input Field
	4.9 Toggle
	4.10 Drop-down
	4.11 Scrollbar
	4.12 Scrollview
	4.13 Panel
	4.14 EventSystem
	4.15 Introduction to Input Axes

	Chapter 5: Building Our First Android Game: Sphere Shooter
	5.1 Render Pipelines
	5.1.1 Universal Render Pipeline (URP)

	5.2 The Environment
	5.3 Our Player (Tank)
	5.3.1 Making the Tank
	5.3.2 Setting Up Our Scene
	5.3.3 Player Movement
	5.3.4 Camera Positioning
	5.3.5 Making the Player Shoot Bullets

	5.4 Enemies
	5.4.1 Making an Enemy
	5.4.2 Importing Another Asset from the Store
	5.4.3 Making Our Enemy Move and Explode


	Chapter 6: Improving and Building Sphere Shooter
	6.1 Spawning Enemies
	6.2 Scoring
	6.3 Making Menus
	6.3.1 Coding Utilities Required
	6.3.2 Start Menu
	6.3.3 Pause Menu
	6.3.4 Game Over Menu

	6.4 Adding Health
	6.5 A New Enemy
	6.6 HealthBoxes
	6.6.1 Making the healthBox
	6.6.2 Adding Health
	6.6.3 Spawning healthBoxes Along the Map

	6.7 Exporting the Game as an .apk file

	Index



