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Department of Philosophy, University of Geneva, Geneva, Switzerland



1

Introduction

nick huggett, keizo matsubara, and
christ ian wüthrich

This volume is one of the fruits of a three-year research project, Space and Time
after Quantum Gravity, funded by the John Templeton Foundation.1 Our goal was
to explore the idea that attempts to quantize gravity either significantly modify
the structures of classical spacetime or replace them—and spacetime itself—
altogether. It is a premise of our work that philosophy and physics are inter-
twined, so that advances in physics entail revisions in philosophy but also require
conceptual—that is, philosophical—advances and refinement. Hence our project
activities were focused on bringing interested physicists and philosophers into
conversation.

Thus, in addition to their research, project members organized numerous collo-
quia, workshops, and schools and ran three essay contests (our work is archived at
www.beyondspacetime.net). From the researchers who participated in these events
we selected a group that represents the cutting edge of a range of topics concerning
the nature of spacetime in the new physics of quantum gravity and invited them
to contribute to a pair of volumes. One—Philosophy beyond Spacetime (Wüthrich,
Le Bihan, and Huggett, forthcoming)—deals more directly with the implications
of quantum gravity for traditional philosophical concerns. This volume deals more
with questions that require philosophical analysis, arising in the development of dif-
ferent approaches to quantum gravity. This distinction is a somewhat hazy one; sev-
eral articles could have fitted equally well in either volume. But roughly speaking,
the former volume should interest a wider range of philosophers, and the present
volume a wider range of physicists (also being the more technical of the two);
physicists and philosophers with interests in our foundational questions should find
both volumes valuable.

1 Grant number 56314 from the John Templeton Foundation, performed under a collaborative agreement
between the University of Illinois at Chicago and the University of Geneva. The contents of the work produced
under this grant are solely the responsibility of the authors and do not necessarily represent the official views
of the John Templeton Foundation.
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Even with two volumes, we could select only a small proportion of the
researchers who were involved with the project, and not every topic, and far
from every speaker, could be included here. So we have attempted to select
a representative collection of papers that cover (1) research in the most active
foundational areas in the field and (2) a range of approaches and questions within
each topic. We hope, then, to provide a fairly comprehensive snapshot of the state
of the field, to encourage further dialogue between physics and philosophy, and to
promote further work.

The chapters in this volume are organized around three main themes: the possible
‘emergence’ of spacetime, the role of time in quantum gravity, and more specific
interpretational issues raised by quantum gravity. The remainder of this introduction
sketches these themes and the contributions. The following sketches focus on some
(not all) important ideas in order to show how the papers develop common themes
from different angles; they are not intended to replace reading the chapters, which
contain much more than can be discussed here! Rather, we hope that the sketches
will whet the reader’s appetite for what follows.

1.1 Spacetime Emergence

The first part addresses the question of how the classical spacetime of general
relativity (GR) and quantum field theory (QFT) might be derived or emergent in
theories that attempt to quantize gravity: we shall say ‘quantum theories of gravity’
(QTG) in order to be clear that the category includes any approach that aims to
unify gravity and the quantum (and not only those that attempt to apply quantization
strategies to GR). One question is the different senses in which classical spacetime
might be derived from, or emerge from, or reduced to a more fundamental theory,
without the full structures of classical spacetime. Another question approaches the
issue diachronically, asking whether classical spacetime could have been ‘created’
from something nonspatiotemporal at the big bang.

A traditional framework for thinking about the derivation of classical spacetime
is given by the Bronstein cube (Bronstein 1933; see also Figure 2.1 in this volume),
which can be thought of as picturing a system of physical theories as limits of one
another. The dimensions are labeled with c,G, and h̄, so that they represent nonrel-
ativistic, nongravitational, and classical limits, respectively. The eight vertices are
populated by various theories; for instance, Newtonian mechanics, special relativity
and GR, and particle and field quantum mechanics; but, of course, the most signif-
icant vertex for our purposes is that occupied by a theory of everything (or at least
‘more’) incorporating a QTG. QFT (in flat spacetime) can be found in the G→ 0
limit of this theory, and GR in the h̄ → 0 limit. Put this way, the picture seems
to embody a fairly straightforward answer to the challenge of deriving spacetime;
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classical spacetime is an effective description of a QTG, which holds in a formal
limit and is a good approximation when the effects of the parameters in question
can be experimentally ignored. But, of course, that is much too quick (even for
known theories): What is the theory? Does the parameter actually appear in a way
that lends itself to taking such a limit? And what is the physical significance of the
parameter in the theory, such that we can argue that we live in a regime in which it
can be neglected? These, especially the last one, are not purely formal questions but
are the issues of interpretation that confront attempts to derive classical spacetime.

In the second chapter of this volume, Daniele Oriti argues that the cube in
fact fails to capture an important formal and physical possibility; namely that the
physical elements or atoms of a QTG may form spacetime only in special aggre-
gate states, which have a spatiotemporal description in a large N , ‘hydrodynamic’
limit. In short, we need to add a fourth dimension, parameterized by the number
of degrees of freedom, N , yielding a Bronstein–Oriti hypercube of QTG. Tra-
ditional programs for QTG start with the ordinary cube in mind and so attempt
either to quantize GR (as in the original loop quantum gravity [LQG] program),
or to gravitize QFT (as in the first string revolution). But, as Oriti points out, the
renormalization group revolution in statistical mechanics has yielded a formal and
conceptual understanding of large N systems that was not available to Bronstein
in 1933. Moreover, as these programs have developed, they have started to indicate
that the fundamental degrees of freedom may not be obtained by the direct approach
of quantizing or gravitizing; for instance, string dualities can be interpreted as
indicating some structure that ‘quotients’ the apparent differences in spatiotemporal
structure between duals. Oriti surveys similar clues from other programs.

His ‘fourth dimension’ gives substance to the idea of spacetime emergence.
That is, if a set of physical quantities approximate those of a more fundamental
theory in the limit in which a constant vanishes, there is a straightforward epistemic
interpretation of the reduction; our observations are simply not fine grained enough
to be sensitive to perturbations arising from the parameter, in the circumstances.
That is a simple, really quantitative, sense in which one theory reduces to another.
A large N limit might be of the same kind, but as Oriti explains, it highlights
another possibility, suggested by various concrete proposals. That is, that the atoms
of the theory might be intrinsically nonspatiotemporal and take on a spatiotemporal
aspect only in suitable largeN configurations. Note that for such a theory, the claim
that the atoms are not spatiotemporal is not based on a direct interpretation of
their degrees of freedom but rather on the fact that they simply do not constitute
spatiotemporal structure in all states; if they were intrinsically spatiotemporal they
would have to constitute something spatiotemporal however they were configured.
(Of course, this argument depends indirectly on the interpretation, specifically on
claims about how the atoms can be physically combined to produce spacetime.)
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This possibility carries a deeper, qualitative kind of reduction of spacetime from
nonspacetime, and in the N →∞ limit, which underwrites a sense of ‘synchronic
emergence’ often found in the literature. Though what is also generally expected is
a formally and conceptually well-controlled map between the theories, constituting
a ‘reduction’ in the classic sense, rather than the strong emergence found in other
parts of the philosophy literature.

As Oriti explains and illustrates, a theory in which atoms may or may not com-
bine to constitute spacetime offers a further, even stronger sense of emergence.
Namely, there may be the possibility of a transition from a nonspatiotemporal to a
spatiotemporal state, at the big bang perhaps: diachronic emergence, or ‘geomet-
rogenesis’. Indeed, the work of Oriti and his collaborators on group field theory
strongly suggests just this. Of course, geometrogenesis is formally and conceptually
very puzzling, for the very concept of a transition seems to imply time throughout
the process, but by assumption there is no time before geometrogenesis!

The possibility that the history of the universe includes the emergence of the tem-
poral from the atemporal also arises in the third chapter, by Suddhasattwa Brahma.
(The more general question of time in QTG is discussed in Part II.) He presents
results developed within the framework of loop quantum cosmology (LQC), which
implements high-level principles drawn from LQG. As such, it is to a considerable
extent neutral on the nature of the atoms of spacetime, their formal expression
and conceptual significance; by assuming certain general features to be conse-
quences of the underlying theory, LQC does not directly speak to the manner in
which they are derived. The reasons for adopting such an approach are of course
to obtain a framework in which concrete empirical consequences can be derived,
without needing full knowledge of the fundamental theory or details of how to take
appropriate limits; the results are assumed. While we cannot see a full story of
emergence from studying such a theory, it is still a quantum theory, and as Brahma
explains, LQC does entail a significant result about the derived nature of spacetime.
(Moreover, because LQC is based on general principles, the lesson holds of any
theory that realizes them. Brahma argues that the results do not depend on idealizing
assumptions in the derivation—e.g., of sphericity—but follow from the physical
principles of the theory alone.)

Specifically, the assumptions made appear to suffice for the resolution of clas-
sical singularities, at the big bang and (it seems likely) in black holes. Moreover,
as Brahma explains, the resolution involves a transition from a Lorentzian metric
signature in the classical region to a fully Euclidean metric signature in the region
of the singularity; without a change in the number of dimensions, there is spacetime
classically, but only space in the quantum region! (As the chapter discusses, a
similar idea occurs in the distinct context of the Hartle–Hawking no boundary
proposal [Hartle and Hawking, 1983].) We have in a sense the emergence of time
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from the nontemporal, but three points should be noted: First, we do not have full-
blown geometrogenesis because the quantum regime is not strictly nongeometrical,
as in the cases Oriti discusses. Second, as a result, it is in principle possible to
consider one of the spatial dimensions as that in which the space–to–spacetime tran-
sition occurs, potentially providing the basis on which that issue can be resolved.
However, third, one should not expect a well-defined Euclidean signature metric
in the quantum regime resolving the singularity, but rather a fuzzy one; so the
situation is not straightforward. To make progress on these questions, as Brahma
discusses, one would need to open up the question of the atoms of the theory; and
perhaps in that case one would see that geometrogenesis does after all underlie the
process.

Classical singularities are, of course, one of the consequences of classical physics
of greatest interest in QTG. Not exactly anomalies in the sense of a failure of the
laws (if one is prepared to accept manifolds with singular points removed) but
places at which one expects a more fundamental theory to diverge substantially
from GR, yielding novel predictions. For instance, a QTG might predict specific
traces in the cosmic microwave background (CMB) or in the Bekenstein–Hawking
thermodynamics of black holes. The first possibility is the topic of Robert Branden-
berger’s chapter.

He explains the nature and content of the CMB and the conclusions about the
origins of the universe that can be drawn from it using the theory of cosmolog-
ical perturbations, in whose development he played a central role. In particular,
isotropy implies that today’s Hubble radius is smaller than the future horizon of
early points, while causality requires that currently observed structures were within
the Hubble radius at early times. Moreover, there are two further criteria, inferred
from the observed power spectrum of the CMB: first, acoustic oscillations require
that the universe has been isotropic above the Hubble scale for a long time, and
second, any theory of the early universe must explain the scale invariance of the
spectrum. Inflation is the conventional response to these constraints, but in the
context of QTG it can only be an effective theory, to be understood in terms of some
deeper quantum account of gravity. For instance, one might well expect to find a
mechanism for inflation within string theory, but despite the efforts of theorists,
no definitive mechanism has been found (e.g., Baumann and McAllister, 2015; see
also Bojowald [2002] for a proposed account of inflation within LQC). (Moreover,
inflation is not without problems.)

However, as Brandenberger explains, there are alternative accounts of the early
universe to inflation, which also satisfy the CMB criteria; these solutions typically
try to take into account proposals for more fundamental physics, QTG. For instance,
the initial singularity could be smoothed out with a bounce solution, in which the
universe extends through the big bang into an earlier classical spacetime. Unlike the
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LQC bounce discussed by Brahma in Chapter 3, Brandenberger focuses on models
based on string theoretic concepts, including the possibility of a T-dual universe on
the other side of the big bang. While these proposals are speculative, they illuminate
the way in which new physics in a QTG might resolve the puzzles of the CMB.
Moreover, they again illustrate the idea that spacetime might be emergent in a
diachronic sense, from a quantum state at the big bang; though again, whether they
involve full geometrogenesis from nonspatiotemporal atoms depends on details of
the scenarios that are not yet understood. (Some of the philosophical implications
of this situation have been further explored in Huggett and Wüthrich [2018].)

In Chapter 5, Daniel Harlow returns to the question of synchronic emergence—
the derivation of spacetime as an effective structure rather than its creation. Specifi-
cally, he addresses two important lessons for QTG that black holes may be teaching
us. He first argues that one can best understand the enormous difficulty encountered
in quantizing gravity by considering the tension between GR and QM caused by
the possibility of black holes. Specifically, a rod capable of measuring Planckian
lengths must have a sub-Planckian position uncertainty, hence a minimum momen-
tum uncertainty according to QM. Assuming a low (with respect to the speed of
light) velocity, a minimum mass follows, which is easily seen to exceed the Planck
mass. But a Planck length-sized object of mass greater than the Planck mass is
inside a black hole, according to GR, and incapable of measuring lengths. That is,
black holes exemplify the difficulty in defining quantum observables for arbitrarily
small regions in QTG.

Harlow’s second lesson is how black holes help illuminate the nature of holo-
graphic duality (the latter is discussed further in Chapters 12 and 13) and plausibly
show the existence in string theory of the synchronic emergence described by Oriti.
Harlow makes the point that the duality is (if correct) an exact correspondence,
holding between fundamental quantum theories on the boundary and the bulk of
anti–de Sitter spacetime, known as AdS/CFT duality: a conformal field theory on
the boundary and some form of string theory in the bulk. On the other hand, the
bulk gravitational field arises as a derived, effective theory of the fundamental bulk
quantum theory. The value of AdS/CFT duality is that the bulk quantum theory
is not understood well enough to carry out such a derivation, but the boundary
CFT is under enough control to allow the exploration of emergent gravitational—
spacetime—features.

As Harlow points out, the philosophical literature has focused on the question of
whether the duality between exact theories can be an asymmetric relation of emer-
gence, generally concluding that instead it is some symmetric relation of physical
equivalence. Harlow’s central claim is that this focus ignores the fact that bulk
spacetime physics is derived from boundary physics and hence indirectly from
exact bulk physics, an asymmetric relation of derivation.
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Using a simple black hole model, in the formal framework of quantum infor-
mation theory, Harlow goes on to illustrate how this relation is one of spacetime
emergence. Briefly, three qutrits (states in 3-dimensional Hilbert spaces) live on
the boundary, comprising a 33 = 27-dimensional Hilbert space of a boundary
quantum theory. The effective bulk theory is represented by a single qutrit, living
in a 3-dimensional subspace of the full theory, corresponding to the few degrees
of freedom of a classical black hole. But the fundamental bulk theory is dual to
that on the boundary and so also lives in a 27-dimensional Hilbert space; what
has happened to the other 24 dimensions? It’s not at all surprising that the effective
theory has fewer degrees of freedom than the fundamental; that’s more-or-less what
it means to be effective, in a general sense. Rather the question is, since these extra
degrees of freedom are not those of effective bulk gravity, what bulk physics do
they describe? Harlow’s work indicates that they represent microstates of a bulk
black hole within the fundamental bulk theory. This toy model then represents the
situation envisioned by Oriti; one has effective spacetime only to the extent that the
quantum state of the system has a component in the appropriate subspace; other
degrees of freedom belong to a fundamental, nonspacetime theory. Insofar as the
model accurately represents nonperturbative bulk string theory, AdS/CFT duality
shows that that too is a theory of emergent spacetime.

1.2 Time in Quantum Theories of Gravity

It has long been understood that a successful QTG could have significant impli-
cations for our understanding of the nature of time. Many of the difficulties—
especially those related to the problem of time—in constructing such a theory
seem to stem from the tension between needing a classical time parameter in the
dynamics, yet quantizing time by quantizing the metric. In Part II, we have collected
four chapters that focus on time in the construction of QTG: what the implications
might be and how the conception might have to be changed in order to successfully
quantize gravity.

The chapters draw on philosophical thought about the nature of time in this
effort, showing nicely the interaction between the two disciplines. In particular,
a central theme is the question of whether various QTG do or should realize a
form of temporal becoming. Physics typically views time from the point of view of
analysis, in which quantities ‘flow’ only in the sense of taking on different values at
different times, with rates understood as limiting ratios �f (t)/�t . This picture
seems adequate, and indeed natural, in a classical spacetime background, since
it mirrors the mathematical treatment of physical quantities. Traditional temporal
becoming is the view that there is more to the passage of time than this picture
captures, that later states are in some further sense produced by earlier ones, or
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the later times are created after the earlier, or that successive presents come to be.
The italics indicate that these terms don’t merely redescribe the standard, analytic,
account of physical time; what more they denote depends, of course, on the specific
account offered (Savitt [2017] provides a survey). Becoming is also often combined
with ‘presentism’, the view that in some substantive way the present is more real
than other times: reality is becoming. Such a view is often contrasted with a ‘block’
conception of time, according to which the present is merely a matter of perspective,
within a full spacetime.

These concepts are unpacked more fully in the following chapters, in relation to
QTG. Three of them see becoming, in three different conceptions, as important to
quantizing gravity. The final chapter in Part II takes an even more radical view: no
becoming, but no block either, just (in some sense) a collection of frozen moments,
fundamentally speaking, temporally unconnected.

In Chapter 6, Carlo Rovelli discusses how he thinks that spacetime—particularly
time—should be understood in LQG (the chapter also includes a useful appendix
summarizing the theory for nonspecialists). He argues that a number of confusions
regarding space and time arise because people mean different things when using
the expressions space and time; he describes the concepts as ‘stratified, multi-
layered’. To counter these confusions, he distinguishes five senses of time (and
parallel senses of space).

Relational time involves only the relations between events; the temporal position
of one event is specified by temporal adjacency with the occurrence of another.
This conception of time is common to many theories, including LQG. In contrast,
Newtonian time is a fixed metrical structure, independent of the unfolding of events
and indeed of whether anything changes at all; it is exemplified by both Newtonian
and special relativistic physics. Things are very different with the introduction of
dynamical general relativistic time, which is understood in terms of clock time
between events, which of course depends both on a dynamical metric and the path
of the clock (as in the special theory as well). Rovelli explains how, with some
subtleties due to quantum effects, this conception of time holds in LQG, thereby
preserving what he takes to be an important lesson of GR.

In addition, he distinguishes irreversible time, connected with thermodynamics,
statistical mechanics, and the entropy gradient, and experiential time, our experi-
ence or feeling that time flows. For Rovelli, these should be distinguished because
they do not have any direct bearing on the nature of time from a distinctively LQG
perspective but have to do with statistical and neurological effects, respectively.
They are thus distinguished because bringing them into the current discussion can
sow confusion.

With these distinctions drawn, the chapter unpacks the notion of time in LQG,
focusing on the importance of temporal becoming. First, while accepting that the
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relativity of simultaneity undermines an absolute present and presentism—
something challenged by Lee Smolin in his chapter—Rovelli argues that a block
conception of time, devoid of becoming is not the inevitable consequence. Instead,
he identifies the transition amplitudes of LQG with the coming to be of one state
from another; moreover, since these are between spacetime states they can be fur-
ther identified with regions of spacetime. Such a scheme does not require the global
now of classic presentism, but it does rest on becoming at a local here and now
and so is not a block universe picture either. Thus according to Rovelli, the choice
between presentism and the block is a false one! In his view, time passes, things
become, but locally rather than globally; this is the lesson for time from LQG. The
remainder of the paper is devoted to showing in more detail how his interpretation
of time (and the related understanding of space and spacetime) play out in LQG:
the picture that emerges is one in which the universe is a ‘network of quantum
processes’.

One might ask whether his account of time leans more heavily toward a kind of
local presentism or a block universe. The answer depends on how one fleshes it out.
On the one hand, the system of transitions that make up a universe has something
of the structure of block universe. However, Rovelli rejects questions of whether
all regions or just the here-now is real, as a merely conventional one about the
definition of ‘real’. On the other, if describing quantum transitions as becoming is
not merely verbal, but denotes some strong ontological status, then the view is more
sympathetic to presentism. Here Rovelli’s view of experiential and irreversible time
(and his 2017 view that it may be perspectival) suggests that he does not subscribe
to a ‘thick’ notion of becoming either.

We now turn to the chapter by Fay Dowker, which also addresses the question
of temporal becoming and the block universe, but in the context of causal set
theory (CST), which she argues realizes temporal becoming in a strong ontological
sense, against defenders of a block universe. According to CST, the universe is
constituted by a casual set, a discrete structure consisting of elements with causal
or temporal relations between them; the manifold picture of spacetime used in GR is
an approximation, applicable in some regimes. As the theory currently stands there
is no full quantum version of the dynamics; instead what is given is a classical
but stochastic description that gives rise to classical sequential growth models,
according to which the causal set grows dynamically—‘becomes’—by the addition
of new elements. Dowker sees the births of new events as something that objectively
happens, underwrites the irreversibility of time, and that moreover could be a phys-
ical underlying objective process that explains experiential time. In other words,
her account of becoming not only has a different source from Rovelli’s, she argues
that quantum gravity has implications for conceptions of time that Rovelli thinks it
does not.
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Now, traditional conceptions of time flowing or becoming typically rely on some
form a global present, either in presentist or growing block accounts. The problem
is, of course, that a global spacetime present allows for an objective time parameter
and so is not generally covariant; this seems to be an undesirable step backwards
toward a prerelativistic understanding of time. Dowker argues that CST, however,
provides an alternative model of flow without such a global now. Elements of the
causal set are objectively created only before or after one another when they are
in each other’s causal pasts or futures, but there are no facts of the matter about
the order in which elements that are not causally related were created. In turn,
this is encoded in the equality of transition probabilities for paths that reorder the
creation of such elements. The resulting temporal becoming is what Rafael Sorkin
(2006) has dubbed ‘asynchronous becoming’, a localized form of becoming in a
multiplicity of ‘nows’. (An earlier version of Dowker’s proposal has been critically
discussed in Callender and Wüthrich [2017].)

Dowker argues that CST can thus accommodate both being (the baby) and
becoming (its birth)—unlike the block universe, which fails to capture the latter
aspect. In this manner, it reconciles two sides of a long-standing debate about
which of these features ought to be given priority by embracing the essence of both.
Arguably, one would expect being to refer to the objective structure of spacetime
or of a causal set, while becoming would be rendered subjective by virtue of being
relativized to a frame or a worldline. Surprisingly, Dowker defends the opposite
view that being is subjective, whereas becoming is objective. According to her, the
birth process of an atom of spacetime, and hence the becoming, is independent of
any observers or frames as it constitutes an objective physical process. Conversely,
there is no objective world of being; being is derivative in that it depends on a prior
process of birthing, and what is objective is only each atom’s past as that is what
has become as of this atom. Thus being is relative to each atom and in this way
subjective. Finally, Dowker asserts that this view of ‘asynchronous becoming’ is
possible only in a discrete spacetime and hence not available in GR.

In the next chapter, Lee Smolin lays out the philosophical framework of his work
over the past 20 or more years, a research program aimed both at providing a
realist interpretation of quantum mechanics and at quantizing gravity. (While the
chapter discusses how the two aims are intertwined, here we will focus on the
latter.) At the foundation of this work is a commitment to an aspirational form
of relationalism, a methodological imperative (rather than a priori truth) to seek
to remove arbitrary—‘absolute’—elements from physical theories. In part, he sees
this principle in the history of science: eliminating absolute spacetime structure,
including point identity in favor of equivalence-up-to-diffeomorphism, to give one
example among the many he presents. In part, he sees it as guiding the search for
a QTG.
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Also central to his program is a form of temporal becoming that privileges time
over space, a view developed in earlier publications (e.g., Smolin, 2013; Smolin and
Unger, 2014). He does not use the expression temporal becoming explicitly, but his
description of the view is clear: “the aspect of time I assert is irreducible is its
activity as the generator of novel events from present events . . . The thick present is
continually growing by the addition of novel events. At the same time other events
in the thick present, having exhausted their potential to directly influence the future,
slip from the present to join the always growing past.”2 Moreover, the present, but
not the past or future, is real, so this is a form of presentism. Smolin’s language
expresses the difference between the traditional physical conception of time based
on the real numbers and that appropriate to the dynamics of his approach; indeed,
he explicitly rejects the possibility of the kind of fixed, deterministic dynamical
laws typified by the familiar differential equations of physics. Instead, things do
not just happen one after the other, but each (irreversibly) generates the next. Thus
Smolin proposes a stronger conception of becoming than Rovelli’s, one similar to
that of causal set theory, explored by Dowker and colleagues.

Of course he is aware of the challenges to the ‘present’ presented by the relativity
of simultaneity, but he points to the theory of shape dynamics, to demonstrate that
they can be addressed. This classical theory (its quantization is discussed by
Gomes in the following chapter) is based on preferred spatial slices but is locally
indistinguishable from general relativity. Although shape dynamics is relational,
as we shall see in Chapter 9, it is most naturally thought of as a theory in which
space is fundamental and time derived, an example of timeless relationalism. As
we noted, instead Smolin advocates the primacy of time over space: temporal
relationalism. (Clearly this sense of time is stronger than Rovelli’s relational time.
Extending Smolin’s terms, Rovelli would seem to advocate a form of ‘spacetime
relationalism’, taking neither space nor time as more fundamental.)

In addition to time and causation (or generation), Smolin also proposes that
energy and momentum are fundamental: the fundamental states live in momentum
space rather than physical space. Even at the classical level, spacetime can be
reconstructed, exemplifying the sense in which space can emerge from time and
the nonspatial. (To editorialize: insofar as momentum space is nonspatial.) On
quantizing, one discovers that locality—meaning point coincidence of trajectories
in this case—is relative; as simultaneity is motion dependent, locality is energy
dependent. For Smolin, this result shows that spacetime itself is as observer-
dependent as simultaneity, an effective construct in limited regimes.

These ideas provide a cohesive conceptual framework for the program of tem-
poral relationalism, and a number of the contributions that Smolin and others have

2 The present is ‘thick’ in the sense that it contains events that are causally related.



12 Nick Huggett, Keizo Matsubara, and Christian Wüthrich

made to quantum gravity. The final section of his chapter gives a comprehensive
overview of the program and what has been accomplished, in the light of this
framework. We will just emphasize the more recent developments from his study of
energetic causal set models, which directly implement the tenets of temporal rela-
tionalism: from an underlying irreversible nonspatial dynamics, a reversible particle
dynamics in a Lorentzian spacetime emerges as an effective structure. Moreover,
the Einstein field equation can be derived from the thermodynamics of the model.
Thus energetic causal models exemplify the way in which spacetime might emerge
from a theory of temporal becoming.

In the final chapter of Part II, Henrique Gomes investigates the picture of time
arising from his recent work on the foundations of QTG, drawing a radically dif-
ferent picture. The first half discusses a train of thought that points to the version
of shape dynamics developed by Gomes, Gryb, and Koslowski (2011). Tracing the
root of the problem to the difficulty in quantizing the causal structure of relativity,
Gomes sketches the challenges facing QTG: the problem of time for Hamilto-
nian approaches and the problem of parameterizing the space of 4-dimensional
Lorentzian spacetimes for covariant approaches. In both cases, Gomes notes that
resolutions can be found in the space of classical solutions (‘on shell’), but that this
is inadequate to a quantum theory; he draws the lesson that causal structure should
not be built in to a fundamental quantum theory but recovered in an effective theory.

Gomes argues that shape dynamics implements this idea classically by replacing
spacetime symmetries with spatial symmetries: position relationalism and scale
relationalism (which are the unique symmetries acting solely on configuration
space, rather than on phase space). But, he asks, how are we to understand time—
the dynamics of shape dynamics—in the theory? The original, classical theory
proposed the simplest solution: introduce an independent time parameter. To
quantize, one could use this parameter to define a Schrödinger equation. But in
his chapter Gomes is dissatisfied with that approach; such an absolute time violates
the relationalism that he sees as the cure for the problems of quantizing spacetime
structure. In this then, he takes the opposite interpretational view from Smolin.

Instead, Gomes applies to time the idea that classical structures need only be
recovered effectively. In the latter part of the chapter, he develops a formal
framework to realize this idea, and develops an interpretation with profound con-
sequences for time. The formalism involves a notion of quantum path integral that
is independent of a time parameter and a measure over configuration space, which
lead to a Born rule for the theory. This framework involves selecting a privileged
‘in state’, which Gomes notes is key to the notion of a record. Concretely, it allows
him to define a formal notion of a record, the apparent trace in the present, of a past
transition from the initial to the present state. Significantly, this definition requires
a semiclassical approximation, and so such records are inherently semiclassical.
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His interpretation of this framework is that fundamentally there is no duration,
only instantaneous configurations, and all possible ones are on an equal ontological
footing, akin to a many-worlds interpretation. Fundamentally, there is no time at
all. Like Barbour (1999) but unlike Smolin, Gomes thinks that the past of any
configuration is fully reducible to the records (or time capsules) contained in that
configuration; however, unlike Barbour, Gomes’s time can only be reconstructed
effectively at the semiclassical level, since records are semiclassical. In sum, there
is effective time, but only an instant. An extended past can be projected from the
effective apparent records held by that instant, but it is merely a just-so story; even
effectively, only the instantaneous records themselves are real. In this view, space
is fundamental, and time barely real, and there is neither passage nor the block.

Of course, this image of time diverges greatly from our ordinary conception, and
in particular clashes violently with our concepts of personal history, an issue that
Gomes also takes up.

In this part of the book we have thus seen four different responses to how we
should understand time in QTG. Some authors—in particular Dowker and even
more strongly Smolin—award to time a more pronounced and special role than
to space, in a departure from the orthodox understanding of relativity. In contrast,
we take Rovelli to advocate a view in which space and time are on more equal
footing—that is by both being emergent from the underlying quantum theory in
basically the same way. Finally, Gomes takes space to be the more fundamental
aspect of reality.3

1.3 Issues of Interpretation

The first two parts of this book investigated in various ways the implications of
QTG for the nature and emergence of space and time, but such theories have raised
other important questions for the interpretation, epistemology, and metaphysics of
science, some of which have been hotly debated. The chapters in Part II address sev-
eral such issues: the ‘information loss’ paradox(es), the meaning of string theory’s
dualities, and the implications of QTG for the logic and metaphysics of possible
worlds.

First, what is the physical nature of black holes? Often thought to be a key to
quantum gravity, black holes appear to admit a thermodynamic treatment, suggest-
ing that, perhaps, a QTG ought to provide a description of its microstates. The issue
of black hole thermodynamics is taken up by David Wallace in his contribution. He
argues, contrary to recent philosophical criticisms (Maudlin, 2017), that black hole

3 For a similar observation about the diverging views on the nature of time that can be found among researchers
working on developing a QTG, see Matsubara (2017).
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information loss (the failure of temporal reversibility, manifested as non-unitarity
in QM) is indeed paradoxical, though not in the way often presented. Overall, the
point is that one expects to understand the Bekenstein–Hawking entropy of a black
hole in Boltzmannian terms as the logarithm of the fundamental microstates and
indeed Hawking radiation (effectively) as a decay channel of the fundamental state.
But this picture relies on treating a black hole both as possessing thermodynamical
properties such as temperature and being quantum mechanical, and these features
come under pressure in the information paradox.

Popular presentations present the ‘paradox’ as an issue for the end point of
evaporation, at the Hawking time. In starkest terms, a black hole in a pure state
undergoes unitary evolution (Hawking radiation) until it is entirely gone, and all that
remains is thermal radiation, a mixed state. Yet it is a mathematical impossibility for
a unitary process to turn a pure state into a mixed one. But as has been pointed out
for over 20 years (and recently insisted on), because of the classical singularity the
end point of the process is not a Cauchy surface, and so insisting on a deterministic,
unitary evolution is at best to make a substantive, controversial claim. However,
Wallace explains that the emission of thermal radiation from a black hole produces
a paradox in the physical principles believed by many (though not all) to describe
the process—well before the Hawking time or even without complete evaporation
(and so is not resolved by considering the end point).

On the one hand are statistical mechanical principles. The discovery of Hawking
radiation elevated the Bekenstein thermodynamical description from analogy to
reality by showing that the description remains valid when black holes interact
with other thermodynamical systems; in particular, they can exchange heat. Since
thermodynamics in general is understood in terms of a microphysical description—
with entropy as the logarithm of microstates—one concludes that the same is true
of black holes, that black hole thermodynamics describes, in the large, the statistics
of black hole microstates. (Hence the programs to derive, in string theory and
LQG especially, the entropy and radiation spectrum of black holes from posited
microstates.) In particular, as Wallace explains, the black hole is often modeled
in the statistical mechanical ‘membrane paradigm’ as a surface located around the
horizon, containing the microphysical degrees of freedom, which are transformed
to thermal radiation and lost, decreasing their Boltzmann entropy. Whatever the
underlying theory, if the microstates are quantum, this process must be unitary. (It
is worth emphasizing that the membrane paradigm is most popular within string
theory, which is the real target of Wallace’s chapter.)

On the other hand, derivations of Hawking radiation rest on the principles of
QFT in curved spacetime. These extend the well-tested principles of QFT in flat
spacetime, but do not concern situations in which a full quantum theory of grav-
ity is needed, of extreme curvature or energy density. They entail that Hawking
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radiation is in a thermal state, a mixture with unentangled modes. As noted, a
unitary evolution cannot produce a mixed state from a pure one, so modes of the
Hawking radiation are understood as entangled with degrees of freedom of the
black hole, which are traced out in the usual way when one observes an entangled
subsystem.

But there is a limit to this understanding; according to the statistical mechanical
membrane paradigm that Wallace endorses, at a certain point—the ‘Page time’—
the decreasing Boltzmann entropy of the black hole means that there are no longer
degrees of freedom with which the thermal modes can entangle. Yet the principles
of QFT used in the derivation of Hawking radiation entail the continued production
of a mixed state—in violation of unitarity, and so of a quantum description of the
situation.

As Wallace reviews, the Page time is much shorter than the Hawking time for
complete evaporation (roughly half), and the scenario can even be modeled in
evaporating black holes without complete evaporation. So the qualms about the
popular form of the information paradox do not arise; Wallace’s explication of the
Page paradox is thus much sharper, apparently calling for giving up either QFT
in curved spacetime or the membrane paradigm. Neither option is attractive (at
least within string theory). The former seems to imply that quantum gravitational
effects are relevant whenever spacetime is curved, not only when the curvature is
Planckian; the latter threatens to make black holes an exception to the statistical
mechanical approach to microphysics. Wallace’s essay reviews in detail how tight
and difficult a bind this is and how attempts to resolve it with appeals to ‘black hole
complementarity’ seem to lead to the ‘firewall paradox’.

In Chapter 11, Richard Dawid discusses the current and future status of string
theory. He makes an argument to the effect that the difficulty in giving a com-
plete description of string theory—its ‘chronic incompleteness’ he calls it—can be
explained if string theory is a final theory. (It should be noted that Dawid uses
the expression string theory in a wide sense, including future developments of
the theory and other associated ideas such as M-theory.) He presents a number
of observations suggesting that string theory is a likely candidate for being a final
theory of physics: First there is the universality of string theory; that is, it does
not seem to be restricted to describing only a certain class of phenomena. Second,
string theory does not have any fundamental dimensionless free parameters. Third,
string theory has a minimal length scale.

Dawid sees these three features are in stark contrast to past physical theories.
First, past physical theories have been expected to be applicable to only a restricted
domain of phenomena. Second, typically our theories have had freely adjustable
dimensionless parameters that could be chosen to fit what we observe in nature.
The values of these parameters may be explainable by a more fundamental theory
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or by the way in which the theory is embedded in a specific physical background.
The lack of such parameters is taken by Dawid to suggest that string theory is a
final theory. Finally, our previous theories have been thought to be replaceable and
seen as effective theories arising from more fundamental theories that are valid at
smaller length scales. With the minimal length scale of string theory—suggested
by the T-dualities that allow a small scale to be eliminated in favor of a description
in terms of larger distances—Dawid argues that there is no reason to expect string
theory to be similarly replaced by a more fundamental theory.

Just as he sees these features pointing to string theory as a final theory, he
also argues that they make it hard to fully understand and articulate, leading to
chronic incompleteness. Central to his argument is the way in which string theory
is primarily understood in terms of perturbative calculations around near classical
limits. Such backgrounds themselves are put in by hand and are not part of the
dynamical description. The absence of freely adjustable parameters in the theory—
even though we seem to have many allowed groundstates—means that we cannot
tune the theory to a classical state of some unknown more fundamental physics.
Thus for a deeper description, the backgrounds must be understood in terms of the
nonperturbative dynamics of string theory itself. But while string dualities provide
additional insights into the nonperturbative physics, they are not sufficient to this
task. Broadly speaking, the challenge to developing such a deeper account of string
theory is that it needs to handle situations that cannot be well approximated by
any classical picture, thus making our commonsense understanding of the situation
even less useful for guiding us in the right direction.

Turning an apparent failure—chronic incompleteness—into evidence in favor of
string theory as a final theory is at least controversial! But as with Dawid’s earlier
work, it should contribute to an ongoing discussion of what might characterize a
final theory and what research programs are worth pursuing. (And even whether it
is worth pursuing such a theory, rather than taking smaller steps to greater but not
final understanding.)

The next two chapters explore the interpretational and methodological signifi-
cance of AdS/CFT (or gauge/gravity) duality mentioned earlier—the core of recent
research in string theory—in two different ways. (Daniel Harlow addressed its sig-
nificance for spacetime emergence Chapter 5.) First, Sebastian De Haro addresses
the relation of duality to physical equivalence and the implications of such equiva-
lence. This is a topic that has been addressed by philosophers, but De Haro provides
a rigorous framework for the conceptual situation that permits clear and precise
answers to the important questions, including whether spacetime is primitive or
derived in string theory. Whereas Harlow raised the question of whether one side
of the duality was derived from the other, here the issue is different: when are duals
equivalent, and what follows if they are?
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De Haro defines duality in general to be a formal relation between theories, a
partial isomorphism of a certain kind: more specifically, an isomorphism between
parts of two theories, with sufficient structure—a space of states, set of observables,
and dynamics—to themselves be called theories. So for instance, in the case of
a pair of simple harmonic oscillators (SHOs) with masses and spring constants
related (m,k) → (1/k,1/m), a duality maps (x,p) → (p, − x). A table of
value pairs over time would be the same if it displayed (x,p) for one system and
(p, − x) for the other, and so the duals share this common structure. And in general
a duality picks out a ‘common core theory’, a part that the two theories share up to
isomorphism.

Now, of course, for a real bob on a spring, the SHOs are still different systems
since they have inter alia observably different masses; it’s just that if one were given
only a table of value pairs over time, one could not tell if they described (x,p) for
one system or (p, − x) for the other. The point is that physical equivalence—
intuitively, ‘telling the same story about the world’—is not a purely formal matter
but also depends on what the duals mean and whether they mean the same. At
one time the answer would simply have been ‘if they make the same observable
predictions’, but part of the value of De Haro’s contribution is to offer an account
of the interpretation of theories that does make this distinction precise, without
appeal to such crude verificationism.

The reason real dual SHOs are distinct is that in our world, their common core
can be embedded in—or ‘extended’, in De Haro’s terms, to—a larger theory that
gives external meaning to their terms: mass, spring constant, momentum, posi-
tion. But one can envision a world in which the common core instead described
everything; possible states are fully distinguished by the value pairs, with the same
allowed histories and interpreted as the values of the only two canonical observables
of the world. Then the duals are nothing but different tools for computing the
dynamics, with their differences (in m and k, and x and p) as nothing but empty
conventions needed to turn the mathematical handle. Then there would be no larger
theory of the world (without uninterpreted surplus structure) in which the core could
be embedded, so it could not receive an external interpretation but rather an internal
one, like the interpretation we just gave, which simply maps the elements of the
theory to their worldly referents. De Haro gives a precise account of the situation
that will enable more focused discussion of its consequences.

Given this framework, (at least) two interpretational issues remain. First, could
we ever reasonably believe that the common core of a pair of duals was not extend-
able? That it captured all the physical structure of the world (in its domain), so that
it was not just part of a broader (perhaps more fundamental) theory? As Jeremy
Butterfield emphasizes, in a paper for the companion volume to this one (Wüthrich,
Le Bihan, and Huggett, forthcoming), the formal existence of a duality alone does
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not show that. (De Haro does not claim otherwise.) Here one may be tempted to use
methodological principles such as ontological simplicity to move from duality to
‘unextendability’. Second, suppose that the world were such that the common core
of a pair of duals indeed has no external interpretation; does it follow that the duals
are physically equivalent? Perhaps instead they could describe a pair of worlds
in which different physical quantities are instantiated in isomorphic patterns. This
is not a question of physics, but metaphysics: how properties are identified across
possible worlds. De Haro argues that the existence of two such worlds would violate
the identity of indiscernibles. If one answers yes to the previous questions for a pair
of duals, then the duals are physically equivalent, with their content exhausted by
an internal interpretation of their core.

In the final part of the chapter, De Haro applies his framework for duality to
gauge/gravity duality, showing that while the common core contains some weak
spatiotemporal structure, it does not contain most of the structure of a spacetime
theory. Thus if one answers the two previous questions positively and adopts an
internal interpretation of string theory, then AdS spacetime is not fundamental, but
merely a conventional description, and in that sense emergent.

Next, in their jointly written chapter, Radin Dardashti, Richard Dawid, Sean
Gryb, and Karim Thébault address a number of questions regarding how one should
think about the possible empirical consequences of such AdS/CFT duality. While
the original reason for studying the duality was to deal with quantum gravity and
Planck scale physics, the formalism and mathematical results have more recently
been used for dealing with other questions in physics than QTG; for instance, quark-
gluon plasmas. The authors find it important to distinguish three different contexts
in which an AdS/CFT duality could be applied and want to explain why different
conclusions would be warranted in the different contexts if the dual theories were
shown to be empirically adequate.

In the first context, in which AdS/CFT duality is used to describe fundamental
physics (in a sense they explain), the authors argue that empirical success would not
give us any reason to prefer one of the dual pictures over the other. Their argument
is that each of the dual theories would be confirmed as much as the other in the
Bayesian sense. Furthermore, in the context of fundamental theories the authors do
not think there is any good principled reason for assigning one of the dual theories
with different priors to the other. The authors consider this as a good reason for
not prioritizing one picture over the other when it comes to ontology. Either the
ontological picture to which one should be committed is to be articulated on the
basis of a structure that is shared between the two pictures—a common core—or
one should accept some form of dual ontology where in some sense the ontology
of both theories should be equally acknowledged. In both cases, the upshot is that
the duals are different descriptions of one single theory.
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In the second context, the duality is supposed to relate effective theories for
which there exists a single more fundamental theoretical description. In this context,
the situation is somewhat different, and the authors open up the possibility that
one of the dual pictures could justifiably be seen as a better description of the
underlying physical reality: if the ontological picture suggested by one of the dual
theories was closer to that of the more fundamental theory. In the effective context,
arguments could also be introduced concerning whether one or the other picture
could more plausibly be embedded in a larger, more encompassing description of
reality. However, while the authors describe this possible way in which one of the
duals could be given priority, they also point out that this way of reasoning relies on
a rather strong form of scientific realism. Thus if weaker forms of scientific realism
instead were assumed—where ontic commitments play a less central role—then the
two dual theories would still be considered as on par and equally confirmed.

The third and final context is the instrumental one in which the duality is used for
the purpose of making approximate predictions in another theory, where this other
theory is not one of the two duals. The authors focus on the application of AdS/CFT
duality to quark-gluon plasmas. These are governed by quantum chromodynamics
(QCD), but the implications cannot be easily calculated because perturbation theory
is not applicable in the relevant regime. However, it can be argued that a CFT would
give results similar to those of QCD; then the CFT results can be calculated using
the dual AdS description to make approximate predictions for the plasma. These
results are approximate because the duality with QCD is not exact, so that we have
an example of the third context. The authors argue that the empirical success of
predictions of this kind do not confirm either of the dual descriptions; instead it
confirms only the conjunction of QCD and the approximation scheme based on
the duality that is used. Furthermore, there is no reason to take this kind of suc-
cessful approximate prediction as constituting evidence supporting string theory as
a QTG.

The final two chapters discuss the possible formalism of QTG, in particular
relation to the metaphysics of ‘possible worlds’. These of course play an important
role in the thinking of such figures as Leibniz but, as Tiziana Vistarini explains
in Chapter 14, especially in the modern modal logic of possibility and necessity. In
the work of Lewis, for instance, one can interpret the claim that ‘P is possible’ in
terms of an ‘accessibility relation’: as saying that P is true in some possible world
accessible to the actual world. (For instance, if one defines a world to be physically
accessible iff the laws of physics are true in it, then P is physically possible if
there is some physically accessible world in which P is the case.) Moreover, from
accessibility one can develop a graded relation of degree of similarity, so that we
can talk of possible worlds being more or less similar. Lewis (1973) introduced this
notion for an account of the logic of ‘counterfactual conditionals’: ‘if P had been
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the case, then Q would have been the case’ is true iff in the most similar world(s)
in which P is true, so is Q.

The manifold of possible worlds thus invoked, and the metaphysics of modality
it represents, is thus derived from the logic of modal sentences and so, as Vistarini
explains, arguably on the logic of ordinary language, with inevitable imprecisions
(for instance in the cardinality of worlds). The crux of her chapter is to argue that the
moduli space of string theory—the space of possible models or theories—provides
a physically grounded and metaphysically substantive extension of the space of
possible worlds. She explains how this space has a topological structure, relative
to a given model, induced by the space of deformations of that model, within
moduli space. Crucially, she shows how this topology is strong enough to define
a partial ordering on the points of moduli space, which she proposes interpreting
as a similarity relation and hence points of moduli space as possible worlds of the
theory. This proposal, of course, raises a host of philosophical questions, which the
chapter starts to address. For one thing, the space of worlds is precisely defined,
allowing precise answers to questions of its structure; for instance, the similarity
relation has a countable spectrum. For another, the worlds described by ordinary
language—the ‘manifest image’—should, in some way, be reducible to those of
fundamental physics, including their structure of possibility; Vistarini sketches how
such a reduction of modality might go in string theory, through a revised form of
Humean supervenience.

Of course, many of the essays of this volume have proposed significant mod-
ifications to the classical spacetime picture of GR in a QTG. In the last chapter,
Ko Sanders proposes another, using the tools of mathematical category theory to
reformulate a classical spacetime theory, with an eye to a different route to quanti-
zation. Again, as in other approaches it is important that the classical picture can be
recovered in appropriate regimes where we know that this picture is accurate.

As a starting point for the analysis, Sanders uses the framework of locally
covariant quantum field theory (LCQFT). This framework is similar to alge-
braic quantum field theory (AQFT) but uses the tools of category theory for the
purpose of encoding the features of locality and general covariance. In contrast to
AQFT—where only one quantum system is given a description in terms of a
C∗-algebra—LCQFT associates to each object in the category Loc of globally
hyperbolic Lorentzian manifolds a corresponding object in the category Alg of
C∗-algebras. In this axiomatic framework QFTs can be formulated to take gravita-
tion into account without actually quantizing gravity, a way of formulating QFT in
curved spacetimes.

In general terms, Sanders suggests that to go beyond LCQFT and to formulate
a bona fide QTG one could try to preserve much of the structure used in LCQFT
but replace the category Loc with another category. Using this other category the
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classical manifold description would be a good approximate description only in
certain regimes. He does not propose such a category in his chapter but proposes
searching for it as a research program. Overall then, as with the papers in the first
part of this volume, Sanders presents yet another example of a picture where the
traditional picture of spacetime is an emergent and not fundamental feature of
reality, this time using the framework of category theory.

The chapter also proposes in some detail that categories could serve as mod-
els of modal logic. More specifically he claims that the category Phys—whose
objects are mathematical descriptions of physical systems—ought to be such a
model. Here the possibilities that are modeled are not full possible worlds but
rather physical systems; these could be extended to whole worlds but we do not
have to deal with the whole worlds when articulating possibilities. Sanders argues
that this aligns better with the actual practice of physicists since it is not typically
the case that one needs to describe a full possible world when describing a physical
system.
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University Press, to whom we are very grateful for their help (and patience). It
also owes a huge debt to our Editorial Assistant at UIC, Niranjana Warrier, whose
combination of facility with the material and modern manuscript production was
invaluable; we truly don’t know how this would have got done without you. Finally,
there are the administrators at UIC and UNIGE who worked hard to facilitate our
efforts; and of course the John Templeton Foundation, whose financial support of
the sciences made the project possible.
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Part I

Spacetime Emergence





2

The Bronstein Hypercube of Quantum Gravity

daniele orit i

2.1 Introduction

The quest for quantum gravity has undergone a dramatic shift in focus and direction
in recent years. This shift followed, and at the same time inspired and directly
produced many important results, further supporting the new perspective. The pur-
pose of this chapter is to outline this new perspective and to clarify the conceptual
framework in which quantum gravity should then be understood. I will emphasize
how it differs from the traditional view and new issues that it gives rise to, and I
will frame within it some recent research lines in quantum gravity.

Both the traditional and new perspectives on quantum gravity are nicely captured
in terms of a ‘diagram in the space of theoretical frameworks’. The traditional view
can be outlined in correspondence with the Bronstein cube of physical theories
(Bronstein, 1933; Stachel, 2003). The more modern perspective, I argue, is both a
deepening of this traditional view and a broader framework, which I will outline
using (somewhat light-heartedly) a Bronstein hypercube of physical theories.

2.2 The Bronstein Cube of Quantum Gravity

The Bronstein cube of quantum gravity (Bronstein, 1933) is shown in Figure 2.1.
It lives in the cGh space, identified by the three axes labeled by Newton’s grav-
itational constant G, the (constant) velocity of light c, or, better, its inverse 1/c,
and Planck’s constant h. Its exact dimensions do not matter, the axes all run from
0 to infinity, but its corners can be identified with the finite values that the same
constants take in modern physical theories.

The figure does not represent specific physical theories or models (despite some
of the labels), but more general theoretical frameworks. Its conceptual meaning can
be understood by moving along its corners, starting from the simplest theoretical
framework, i.e., classical mechanics, located at the origin (0,0,0) (understood
as hosting all theories and models formalized within this framework, be they
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Figure 2.1 The Bronstein cube. Reproduced, with many thanks to the author, from
S. Hossenfelder, http://backreaction.blogspot.com/2011/05/cube-of-physical-the-
ories.html.

about fields, particles, forces). Moving from the origin along the G-axis, we start
including in our theoretical framework gravitational physics, i.e., the effects of the
gravitational interactions on the same entities dealt with in classical mechanical
models. The very moment these become non-zero, we are in the realm of classical
Newtonian gravity. If we move instead from the origin along the 1/c axis, we
start taking into account relativistic effects, i.e., due to the finite propagation
speed of physical signals (information), bodies, and interactions, bounded by the
velocity of light. If both relativistic effects and gravitational ones are taken into
account, we reach the corner presided by general relativity, a classical, relativistic
mechanics including also the gravitational interactions of all mechanical systems.
Historically, this is the corner reached with the first revolution of twentieth-century
physics. The other revolution came with the realization that an altogether different
‘direction’ exists, in the physical world: quantum phenomena, those (roughly) due
to the existence of a finite lower bound for the ‘action’ of a system, for the area it
can occupy in phase space, corresponding to the Planck constant h. Thus, moving
from the origin along the h-direction, we find quantum mechanics, the modern
framework for all physical systems, with its associated amount of weirdness and
marvels, which we have not yet grown fully accustomed to. Actually, it becomes
the modern framework for all physical systems once we also take into account
relativistic features, by moving away from the nonrelativistic side of the cube,
entering the domain of quantum field theory. This is indeed the modern framework

http://backreaction.blogspot.com/2011/05/cube-of-physical-theories.html
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of physics. Or is it? Not really, of course, since we know that all systems are
quantum and relativistic, but we also know that gravity exists and that, in the more
modern understanding coming from general relativity (GR), the gravitational field,
the spacetime geometry that is identified with it, and thus spacetime itself, is a
physical, dynamical entity. Modern physics is somehow framed either close to the
GR corner, or around the quantum field theory (OFT) corner, but it cannot be said
to correspond to any single domain within the Bronstein cube, lacking a quantum
theory of gravity. We would then like to be able to move along both the h-direction
and the G-direction, incorporating both gravitational effects (including very strong
ones) and quantum effects into a single coherent description of the world. The
corner we would reach by constructing a quantum gravity theory would be that of a
theory of everything, not in the sense of any ontological unification of all physical
systems into a single physical entity (although that is a possibility and a legitimate
aspiration for many theoretical physicists), but simply in the sense that in such
framework we could in principle describe in a formally unified way all known
types of phenomena: quantum, relativistic, gravitational.

Obviously, this is but an extremely rough sketch of theoretical physics. It does
not account even remotely for the complexity of phenomena that are actually
described by the mentioned frameworks. And it does not say anything about the
very many subtleties involved in actually moving from one framework to the other,
and back from there. One example should suffice to illustrate these limitations: the
classical limit, which naively should allow us to reduce a quantum (description
of a) system to its classical counterpart. Taking this limit and understanding how
the classical world emerges from the quantum one is a notoriously thorny topic,
involving mathematical complications and conceptual ones, including the issue
of measurement, decoherence, etc. Other limitations have to do with the fact that
all the quantities appearing in the picture are dimensionful, and thus they do not
correspond to directly observable/measurable quantities. Plus, no mention is made
of the actual nature of the systems considered, which however modifies greatly
what can actually be described (and how) within each framework. For example, we
know that a relativistic description of quantum interacting particles is problematic
and requires moving to a field-theoretic framework, being then understood only as
an excitation of a quantum field. Thus not every entity can live in every corner of
the Bronstein cube.

2.3 The Problem of Quantum Gravity from the Bronstein Cube

Before thinking about such an extension, let us dig more into the perspective
on quantum gravity as encoded in the Bronstein cube. This is the straightfor-
ward view that sees quantum gravity as obtained from quantizing the geometry
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(metric/gravitational field) of spacetime and its dynamics, by whatever quantization
method; i.e., as quantized GR. The quantum gravity corner can be reached by incor-
porating quantum effects starting from the GR corner or by adding the gravitational
aspects of the world (equivalently, nontrivial spacetime geometries) in a quantum
description of it. This corresponds to the strategy of all the traditional approaches to
quantum gravity (Kiefer, 2005): canonical quantum gravity, including, at least in its
original form, the connection-based version of this program corresponding to loop
quantum gravity (Ashtekar and Lewandowski, 2004; Bodendorfer, 2016); covariant
path integral formalisms, including discretized versions of the same quantum
Regge calculus (Hamber, 2009); and (causal) dynamical triangulations (Ambjorn
et al., 2012), to the extent in which the lattice structures are understood only as
regularization tools. It also includes the asymptotic safety program (Niedermaier
and Reuter, 2006), based on the nonperturbative completion of the formulation of
(perturbatively quantized) gravity as an effective field theory. It could include also
(depending on the interpretation) the noncommutative geometry program (Majid,
2006; Lizzi, 2008), where one quantizes the geometric structures of spacetime
directly, without relying on their role as encoding the gravitational interaction. The
situation with string theory (Polchinski, 1998; Blau and Theisen, 2009) is more
ambiguous, due to the huge variety of formalisms and research directions now
under such umbrella label; still, the understanding of string theory as quantized GR
may at least apply to its very early perturbative versions, since the interpretation as
quantum gravity theories was due to the existence, in their spectrum, of graviton
excitations, quanta of the gravitational field from an effective quantum field theory
point of view. If string theory is used in this perturbative, semiclassical form
to study the gravitational side of the anti–de Sitter spacetime conformal field
theory (AdS/CFT) correspondence (which in itself may not require string theory
at all), then also the latter would not present immediately a challenge to the usual
picture of quantum gravity. Still, as I will discuss in the following, the AdS/CFT
correspondence itself can be seen as a reason to believe that string theory itself
requires a more radical departure from the conventional understanding of spacetime
and geometry.

This perspective makes perfect sense and exhausts the range of possibilities if
the step from classical to quantum gravity does not entail a change of fundamental
degrees of freedom; i.e., if the spacetime geometry, the metric field, and gravity
are primary entities and the task is to understand their quantum properties. Even
in this case, of course, understanding their quantum properties may reveal a num-
ber of surprising and very exotic aspects of the world. The step from classical to
quantum, when dealing with such a fundamental entity like spacetime geometry,
is by all means a challenging one, both mathematically and conceptually. The
issue of time, the debate between relationalism versus substantivalism in spacetime
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theories, the problems with diffeomorphism invariance, on top of the purely tech-
nical issues faced by quantum gravity theorists are there to testify the magnitude
of the challenge. These issues are already challenging in a classical GR context,
where the theory is complete and the physics is well understood. In a quantized GR
context, what the theory is expected to involve, even leaving aside its incomplete
status, raises a host of new and even more severe difficulties (Kiefer, 2014). One
example will suffice: what is left of usual physics, of the customary understanding
of the world, in a theory with indefinite and fluctuating causal structures, an imme-
diate consequence of superposing quantized geometries, even assuming that each
of them maintains a continuum and close-to-classical character? This explains the
difficulties in constructing a theory of quantum gravity on such basis, despite the
many results obtained over a span of decades.

2.4 Beyond the Bronstein Cube: The Idea of Emergent Spacetime

The point is, however, that the perspective discussed here does not capture the
range of problems faced by modern approaches to quantum gravity, neither at the
technical nor at the conceptual level. It does not capture where quantum gravity
stands with respect to the rest of fundamental physics either. Let me explain why
by first reviewing briefly a number of hints challenging the view discussed ear-
lier. They were produced by research within the Bronstein cube, but at the same
time pushing against its walls, so to speak, noticing their fictitious nature and thus
strongly suggesting that there is more to be done and discovered outside it.

These recent results are of two different types. First, they come from research
directions not directly aiming at constructing a full theory of quantum gravity but
focusing on semiclassical gravitational physics and sometimes on systems that are
not gravitational at all but that give surprising insights on the possible nature of
geometry and gravity. Second, they come directly from quantum gravity
approaches, often of the ‘conservative’ tradition living inside the Bronstein cube,
which nevertheless end up producing challenges to the very perspective that
inspired them.

The first group of results can be taken as suggesting that the continuum geometric
structure of spacetime, on which general relativity and quantum field theory are
based, is not fundamental and that some sort of discrete quantum counterpart should
replace it in a full theory of quantum gravity. If this is the case, spacetime as we
know it would be an approximate, emergent notion from something else, which
would be then not be spatiotemporal in the usual sense (although it may retain
some features of the spacetime we are accustomed to). The key points here are the
discrete nature of the more fundamental degrees of freedom and the need to see
spacetime (and its geometry) as emergent.
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The second group of results offers a number of proposals for what the more
fundamental degrees of freedom could look like and for which features of
continuum spacetime and geometry could be dropped in the more fundamental
description. They also explore a range of more or less radical departures from
accepted behavior that we may need to be accustomed to if we want to understand
the more fundamental nature of space and time (and how to understand the world
in their absence).

Among the first group, the oldest results can be taken to be those establishing the
existence of singularities in gravitational physics. They may be taken to imply only
that quantum corrections to gravitational dynamics have to be taken into account,
but they may also be taken as a suggestion that something more radical happens: a
breakdown of the continuum spacetime description itself. The divergences of quan-
tum field theory too admit a conservative as well as a more radical interpretation.
The correct coupling of quantum field theories for matter (and other interactions)
with a properly quantized version of GR may be all that is needed to cure them,
introducing a natural cut-off scale. Or they may be an indication that some more
radical form of discreteness replaces the continuum nature of quantum fields,
including the gravitational field. Indeed, several scenarios incorporating a minimal
length (or a maximal energy scale) have been proposed (Hossenfelder, 2013), as
effective descriptions of quantum gravity, and they end up challenging many more
aspects of standard spacetime physics, including for example locality, which is at
the root of quantum field theory and of the whole of continuum spacetime physics.
This challenge to locality is not surprising, since the hypothesis of a minimal
length was proposed from the very beginning as a consequence of the impossibility
of exact localization when the gravitational effects of quantum measurements
are taken into account. Among these scenarios, many rely on noncommutative
geometry tools (Majid, 2006; Lizzi, 2008). Thus they also offer a first example of a
quantum gravity approach that can be understood at first in a conservative way, and
that turns out to be more radical than imagined in its implications. To this group
belong also the very many results dealing with black hole thermodynamics and
in particular with black hole entropy (Carlip, 2014). These are far too many (and
interesting) to review them here. However, the main message, for our concerns,
is simple. A black hole, in the end, is a region of spacetime. If it has entropy
and it is a standard statistical mechanical system, then this entropy accounts for its
microstates. These microstates could be (a subset of) modes of the quantized metric
field or of some relevant matter field (inside or close to the horizon). But they could
also be microstates associated with a different set of dynamical entities that only at
macroscopic scales look like any of the two. Moreover, if this entropy is finite, this
microstructure should have some built-in fundamental discreteness and thus be of a
very different nature than ordinary spacetime (and geometry). Similarly radical are
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the results that support a holographic nature for the degrees of freedom constituting
a black hole and that stem from a combination of classical and semiclassical
arguments. In turn, semiclassical black hole physics has inspired a number of
research directions investigating the more general thermodynamical properties of
spacetime and the possibility that spacetime/gravitational dynamics (including the
whole of GR) is itself to be understood as the thermodynamics, or hydrodynamics
in some of the approaches, of unknown microscopic degrees of freedom (Jacobson,
1995; Chirco, Eling, and Liberati, 2010; Padmanabhan, 2015). In this view, the
spacetime metric, thus the gravitational field, would be a coarse-grained variable
accounting for such microscopic degrees of freedom, and spacetime should be
understood as a sort of a fluid-like collective entity. Another independent research
area implicitly makes the same suggestion: analogue gravity models in condensed
matter systems (Barcelo, Liberati, and Visser, 2005), in particular in the context
of quantum fluids. These systems reproduce, at the hydrodynamic level, several
phenomena with an equivalent description in terms of semiclassical physics on
a curved geometry, including semiclassical black hole–like physics. Thus they
support the suggestion that the gravitational physics is an effective, emergent
description of a different type of physics, and spacetime is indeed a fluid-like
system, the result of the collective behavior of nonspatiotemporal entities.

Quantum many-body systems have also brought us a different type of surprise,
showing an intriguing connection between entanglement and geometry, suggesting
that the latter can be reduced to the former instead of being treated as fundamental
(Van Raamsdonk, 2010). For example, the entanglement entropy associated with
a region A on the flat boundary of an AdS space, computed within a simple CFT,
is proportional to the area of the minimal surface inside the bulk AdS space with
the same boundary as A. The mutual information between two spatial regions on
the same flat boundary scales inversely with the geodesic distance between the
two regions, measured again in the bulk AdS; the very connectivity between two
regions of spacetime has been conjectured to be due to the entanglement between
(the quantum degrees of freedom of) the two regions.

Many of these results have been obtained in the context of the AdS/CFT corre-
spondence (Ramallo, 2015). This can be seen as an approach to quantum gravity
(at least the sector of it corresponding to AdS boundary conditions), which, despite
relying so far mostly on standard field theory methods, suggests a more radical
view of spacetime and gravity (understood as curved geometry), in which the latter
is again emergent from a system that, while defined on a continuum flat spacetime,
is not gravitational. AdS/CFT is then also a first example of the second group of
results, pointing to a view of the quantum gravity problem beyond the Bronstein
cube (for a discussion on the conceptual challenges raised by the AdS/CFT corre-
spondence, see De Haro, Mayerson, and Butterfield, 2016; De Haro, 2017).
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String theory (Polchinski, 1998; Blau and Theisen, 2009) is often used to
describe the gravitational side of the AdS/CFT correspondence, and it has been
another independent source of radical challenges to the conventional view of
spacetime and of quantum gravity. These range from the implications of
T-duality for the notion of spatial distance itself to the equivalence between
different spacetime topologies encoded in mirror symmetry to the generalized
geometries that seem to be needed to describe various effective configurations of
string theories (Hohm, Luest, and Zwiebach, 2013). The upshot is that, while we do
not know what sort of fundamental degrees of freedom underlie string theories, we
know that they will not be spatiotemporal or geometric in any standard sense and
that spacetime and geometry as we know them are both collective and emergent
notions, in such context (Seiberg, 2006; Huggett and Vistarini, 2015).

Generalized geometries, in particular fractal geometries (Calcagni, 2012), have
also been studied extensively, because the running of spacetime dimensions found
in several quantum gravity approaches suggests a role for them in the full theory,
maybe as an intermediate regime between the fundamental, nonspatiotemporal one
and the emergent spacetime of standard field theory.

In fact, quantum gravity approaches, even when starting as conservative quanti-
zations of GR, ended up proposing concrete candidates for the fundamental degrees
of freedom underlying spacetime, which are, on their own, not spatiotemporal in
the standard sense. Loop quantum gravity (Ashtekar and Lewandowski, 2004) has
fundamental quantum states encoded in spin networks—graphs labeled by group
representations, with histories corresponding to cellular complexes labeled by the
same algebraic data (spin foams) (Baratin and Oriti, 2012; Perez, 2013). The same
type of quantum states (and discrete histories) are shared with group field theories
(Krajewski, 2011; Oriti, 2012, 2017a). These states and histories, in appropriate
regimes, can be put in correspondence with piecewise-flat (thus discrete and sin-
gular) geometries, but in the most general cases they will not admit even such
protogeometric interpretation. The latter are, in turn, the building blocks of sim-
plicial quantum gravity approaches like quantum Regge calculus (Hamber, 2009)
and (causal) dynamical triangulations (Ambjorn et al., 2012), which indeed can
be seen as strictly related to group field theories and their purely combinatorial
counterparts, random tensor models (Gurau and Ryan, 2012; Rivasseau, 2016).
In all these quantum gravity formalisms, therefore, continuum spacetime has to
emerge from structures that are fundamentally discrete and rather singular (from
the continuum geometric perspective), and in some cases, purely combinatorial
and algebraic. A different type of fundamental discreteness, not less radical, is the
starting point of the causal set approach (Dowker, 2013).

The main lesson seems to be that continuum spacetime and geometry have
to be replaced, at the fundamental level, by some sort of discrete, quantum,
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nonspatiotemporal structures and have to emerge from their collective dynamics
in some approximation (Esfeld and Lam, 2013; Huggett and Wüthrich, 2013;
Crowther, 2014; Oriti, 2014; Wüthrich, 2014).

One could say that, since these ‘atoms of space’ are assumed to be quantum
entities, spacetime is understood in all these formalisms as a peculiar quantum
many-body system (Oriti, 2017c), that only at macroscopic scales will look like
the smooth (indeed, fluid-like) object we are accustomed to. There is, therefore, an
obvious general coherence between this picture of spacetime painted by quantum
gravity approaches and the more indirect (but also more closely related to estab-
lished physics) indications obtained by the semiclassical considerations, e.g., in
black hole physics.

2.5 The Bronstein Hypercube of Quantum Gravity

The suggested existence of new types of fundamental entities, different from con-
tinuum fields, has one general consequence for our understanding of the quan-
tum gravity problem. Given such fundamental (nongeometric, nonspatiotemporal)
degrees of freedom, there is one new direction to explore: from small to large
numbers of such fundamental entities. We know (from quantum many-body sys-
tems and condensed matter theory) that the physics of few degrees of freedom
is very different from that of many of them. When taking into account more and
more of the fundamental entities and their interactions, we should expect new
collective phenomena, new collective variables more appropriate to capture those
phenomena, new symmetries and symmetry-breaking patterns, etc. And it is in
the regime corresponding to many fundamental building blocks that we expect a
continuum geometric picture of spacetime to emerge, so that the usual continuum
field theory framework for gravity and other fields will be a good approximation of
the underlying nonspatiotemporal physics.

Notice that this is to a large extent independent of whether the discrete struc-
tures are understood as physical entities or simply as regularization tools. This
will affect, of course, whether one assigns a physical interpretation to all the
results of their collective behavior or not and whether or not one tries to eliminate
any signature of the discrete structures leading to them. But the existence of the
mentioned new direction remains a fact, as it remains true that one has to learn
to move along this new direction if one wants to recover a continuum picture
for spacetime and geometry (and with them, a gravitational field with relativistic
dynamics).

To have a better pictorial representation of what quantum gravity is about, then,
the Bronstein cube should be extended to an object with four (a priori) independent
directions, to a Bronstein hypercube, as shown in Figure 2.2.
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Figure 2.2 The Bronstein hypercube. Figure © Robert Webb/Stella software,
www.software3d.com/Stella.php /CC-BY-SA-3.0.

The fourth direction is labeled N , to indicate the number of quantum gravity
degrees of freedom that need to be controlled to progressively pass from an entirely
nongeometric and nonspatiotemporal description of the theory to one in which
spacetime can be used as the basis of our physics. A complete theory of quantum
gravity will sit at the same corner in which it was sitting in the Bronstein cube
(which is obviously a subspace of this hypercube), but the same theory admits a
partial, approximate formulation at any point along the N -direction ending at that
corner. Only, the more one moves away from it, the less the notions of continuum
spacetime and geometry will fit the corresponding physics. One could say that the
definition of a theory of quantum gravity will be provided in the opposite corner
(looking only at the two ends of the N -direction, while keeping both G, h, and 1/c
finite), because it is at this point that the definition of the fundamental degrees of
freedom of the theory and of their basic quantum dynamics will be put on the table.
This is sensible, but it is also true that providing a complete definition of the same
theory amounts to making sure it is well defined up to the opposite end, even though
the same theory will always be used in some approximation or truncation.

As we had anticipated, proposing the Bronstein hypercube as the proper arena
for quantum gravity means stating that one needs to bring in the lessons and tools
of statistical mechanics and condensed matter theory, i.e., the third revolution of
last century’s physics. It is in that context that we have learned to control the rich
physics of many quantum interacting degrees of freedom. We could label then the
new direction of the Bronstein hypercube by the Boltzmann’s constant, also in order
to emphasize the above point (Cohen-Tannoudji, 2009). It could also be a way
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to make a link with information theory (another crucial area of developments in
modern physics), with the implicit link between number of degrees of freedom of
a system and its (Boltzmann) entropy, in turn hinting at the physical nature of such
information content. This relabeling would have the advantage of characterizing the
hypercubic extension of the Bronstein cube by the addition of a fourth fundamental
constant, in many ways on equal footing as the other three. It is indeed useful to
think in these terms. We do not use this relabeling explicitly simply because we
want to maintain the focus on the number of (quantum gravity) degrees of freedom
to be controlled in different regimes of the theory, rather than with any specific con-
text in which the new degrees of freedom manifest their physical nature. Another
reason for not adopting a terminology directly reminiscent of statistical concepts is
the following. We should not confuse the task of ‘moving along the N -direction’,
that is, of understanding the continuum limit of the fundamental degrees of freedom
of quantum gravity, and the emergence of continuum spacetime in the process,
with the distinct issue, albeit related and definitely important, of defining a general
relativistic (quantum) statistical mechanics, including the gravitational field and
its thermal fluctuations (Montesinos and Rovelli, 2001; Rovelli, 2013; Chirco and
Josset, 2016). Understanding the continuum physics of quantum gravity degrees
of freedom may involve formulating a proper statistical framework for them, and
this framework would have to be covariant in the obvious sense of not depending
on any preferred spatiotemporal frame, local or global, for the simple reason that
they would not be defined in any spatiotemporal context to start with. The key
distinction has to do with the nature of the entities whose statistical framework
one is considering. These fundamental quantum gravity degrees of freedom are not
smooth spacetimes (or geometries) or their straightforward quantized version. Thus
it is the difference between the (quantum) statistical treatment of the gravitational
field (with coupled matter fields) and the (quantum) statistical treatment of ‘non-
spatiotemporal building blocks of spacetime’ (together with ‘nonspatiotemporal
building blocks of matter’) (Kotecha and Oriti, 2018).

One obvious limitation of the description in terms of the number of fundamental
degrees of freedom N is that this notion is ambiguous. Not only do what count as
fundamental quantum gravity degrees of freedom depend inevitably on the quantum
gravity formalism under consideration, but the very notion of relevant degrees of
freedom of a system is intrinsically ambiguous. For any quantum system, in fact,
it depends on the vacuum state chosen (on the chosen irreducible representation
of the fundamental algebra of its quantum observables), on the adopted scale of
description, and on the observables chosen as relevant for capturing the physics one
is interested in. The first aspect shows that the starting point adopted for describing
the system is not God-given, and one should keep this ambiguity under check; but
one starting point needs to be chosen and once this is done, as in all quantum gravity



36 Daniele Oriti

approaches we know, our arguments about the need to move along the N -direction
are valid. These ambiguities imply that there is no single hypercube of physical
theories, because what one finds in its corners and along its edges depends not
only on the specific quantum gravity framework being chosen but also on specific
criteria used to choose a set of degrees of freedom, a certain vacuum state, relevant
symmetries, and so on within each specific quantum gravity framework. The choice
of all these elements is complex and leads, in general, to inequivalent theories. Once
more, the Bronstein hypercube, just like the Bronstein cube, should be understood
as only a representation of the conceptual environment within which specific, can-
didate physical theories of quantum gravity are to be studied and interpreted. The
second aspect includes a good part of the difficulties that we have to solve when
moving along the N -direction. The number of fundamental degrees of freedom is
a good proxy, in quantum gravity, for the usual notion of scale in usual spacetime
physics, and the need for a change in description at different scales is specifically an
important part of the notion of emergence, including the problem of the emergence
of continuum spacetime.

2.6 Understanding the Bronstein Hypercube

The first point that using the Bronstein hypercube allows us to emphasize is the cru-
cial distinction between classical and continuum limits. This is where the novelty
of the new perspective on quantum gravity is most apparent. In a theory of quantum
gravity in which the fundamental entity remains the gravitational field or the geom-
etry of continuum spacetime, the problem of recovering the usual physics of GR
(coupled to quantized fields) is the problem of controlling the classical approxima-
tion of the more fundamental quantum description of the same. If the fundamental
discrete and quantum entities are not directly spatiotemporal, the usual spacetime
physics should emerge after taking some sort of continuum approximation, which
may or may not be taken in conjunction with a semiclassical approximation. In fact,
we have many examples in physics in which such a continuum limit must be taken
while maintaining the quantum properties of the fundamental constituents and in
which doing otherwise entirely misses important macroscopic physics.

Let us give some examples. Consider some nonrelativistic many-body quantum
system of interacting atoms in flat space and with gravitational interaction switched
off, i.e., the side of the Bronstein hypercube corresponding to c � 1, G ∼ 0.
This definition is, of course, so generic that it includes an infinity of systems; in
practice, all of condensed matter and solid state physics and more. In the corner
corresponding to small number of quantum atoms, we have a bunch of discrete
quantum entities, and we can take two directions out of it. If we neglect their
quantum properties (going toward the h ∼ 0 area of the Bronstein hypercube),
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we obtain the classical mechanics of a few (point) particles. If we now take a
continuum approximation by increasing the number of particles to infinity, we
obtain a continuum classical system that, e.g., in the case of a fluid, could be
described by classical hydrodynamics. Starting from the same corner but taking
instead a continuum/hydrodynamic limit first, we could end up with a very peculiar
continuum system like a quantum fluid, for example a Bose condensate (if we were
dealing with spinless atoms at low temperatures), characterized by peculiar but very
much physical features like superfluidity (or superconductivity), even at the macro-
scopic level. Or we could end up with even more exotic macroscopic phenomena,
as in new phases of matter with topological order. All these macroscopic physical
properties would be invisible if we were to take the continuum approximation after
taking the classical approximation, or by taking the two simultaneously. Moreover,
the two directions may be, in general, noncommuting, in the sense that taking
the same two approximations in a different order may give different results. The
distinction between the two is therefore crucial. A similar story can be told, starting
with the same system in the same corner of the Bronstein hypercube, in terms of
its statistical treatment, noticing the differences between classical and quantum sta-
tistical mechanics. And a similar picture can be drawn in the relativistic case, thus
looking at the opposite side of the Bronstein hypercube, corresponding to c ∼ 1.

The distinction between the two independent directions of the Bronstein hyper-
cube corresponding to h and to N is crucial also because they are traveled using
very different types of mathematical techniques and conceptual tools and because
we encounter very different types of new physics along the two paths. It is even
more crucial in quantum gravity, for two main reasons. First, in the context of a
theory so much under construction and so incomplete, and with so little guidance
from empirical observations, it is very dangerous to not pay enough attention to the
path we are taking or to have the wrong expectations about what we are supposed
to do to make progress or about what phenomena we should look for at each stage.
Second, in the case of quantum gravity we have really no obvious reason to expect
that the two directions commute.

The specifics depend of course on the quantum gravity formalism being consid-
ered. As an example, one can consider the relativistic and gravitational counterpart
of the earlier atomic case, thus with c ∼ 1 and G ∼ 1, within the context of
loop quantum gravity and/or group field theories. The corner with few quantum
gravity degrees of freedom in the full quantum regime corresponds to a description
of the world in terms of simple (superpositions of) spin networks associated with
graphs with a smallish number of nodes and with a quantum dynamics captured
by amplitudes (spin foam models or lattice gravity path integrals) associated with
(superpositions of) cellular complexes with limited combinatorial complexity (this
could be increased, of course, but this description implies that it remains limited
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enough that we do not need to use different, collective, or coarse-grained entities
and variables). The straightforward classical approximation of the same structures
results in a description in terms of classical piecewise-flat geometries (character-
ized, in the case of spin networks, by first-order classical variables: edge lengths or
triangle areas and discrete connection variables), and with a dynamics encoded in
solutions of discrete geometric equations, e.g., Regge geometries, possibly coming
from the discretization of some continuum gravity action. Better, this is what we
expect given the partial results we have so far (Freidel and Geiller, 2013; Han and
Zhang, 2013), but it is not completely established, and it remains an interesting
challenge for the community. A further continuum limit is then needed to obtain
an effective description in terms of (some possibly modified version of) GR and
matter field theories. When the correspondence with Regge geometries (or similar)
is solid, one can rely on the results obtained in that context for studying such
continuum limit. When this is done, we are back in the sector of the Bronstein
hypercube corresponding to the Bronstein cube, and we could consider quantizing
our continuum gravitational theory. This already shows the difference between clas-
sical and continuum approximations in this quantum gravity context. Seen from the
perspective encoded in the Bronstein hypercube, and given the same starting point,
i.e. the same fundamental structures, the route toward a complete quantum theory
of gravity would instead require taking into account more and more spin network
degrees of freedom, at the quantum dynamical level, reaching (at least formally) the
opposite corner of the hypercube along the N -direction. This would be the regime
of very large (possibly infinite) superpositions of quantum spin network states,
including very refined graphs, with correspondingly complex interaction processes,
which would then be effectively described in terms of collective variables like
continuum fields (including the gravitational field) and field theoretic dynamics,
e.g., some modified version of GR, up to any additional quantum corrections. As
I emphasized earlier, we should not expect that the result will be the same as that
obtained by quantizing GR, and we should actually expect that this is not the case,
if not under additional assumptions or approximations. Why this is the case should
be clearer in the following, once we take a deeper look at what it is involved in
moving along the N -direction.

2.7 How to Move along the N -Direction

The N -direction is the path along which emergence of spacetime and geometry
should take place. The notion of emergence itself is a thorny topic in philosophy of
science (Batterman, 2006, 2011; Bedau and Humphreys, 2008; Butterfield, 2011a,
2011b; Butterfield and Bouatta, 2012). The possibility that spacetime is not a fun-
damental but an emergent notion, and that the emergence process should then be
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understood in a nonspatiotemporal manner, raises a host of conceptual puzzles at
both ontological and epistemological level. Some of them have been discussed in
earlier work (Oriti, 2014). Here, I want to focus more on the physical aspect of this
idea. That is, I want to discuss how we move along the N -direction, technically,
and what we could expect to find, when we do so.

So, first, how do we move along the N -direction, from less to more degrees of
freedom? One main technical tool is the renormalization group, which is usually
phrased as mapping a theory seen at a given scale to its counterpart at a different
scale (this requires us to go beyond the naive view of renormalization as a way to
‘cure’ or ‘hide’ the theory’s divergences). It is accompanied by several approxima-
tion schemes, by which we can extract suitable descriptions of the theory, capturing
the key observables we are interested in at the given scale. As mentioned earlier,
the notion of scale in the usual spacetime physics, e.g., in ordinary quantum field
theory, intertwines the number of degrees of freedom of the system with some
geometric or spatiotemporal quantity, like energy or distance, simply because such
theories deal with degrees of freedom that are localized in spacetime and are asso-
ciated to a well-defined notion of energy. In quantum gravity, while the specifics
of any renormalization scheme will depend on the approach being considered,
we should expect only a more abstract notion of scale, more or less reduced to a
counting of degrees of freedom, to be available. This does not mean that such notion
of scale cannot be tentatively interpreted in some protospatiotemporal manner, but
it means that such interpretation will be fully justified only in the regime of the
theory where continuum spacetime and geometry are shown to emerge.

Computing the full renormalization group flow of a given theory, in fact, amounts
(formally) to defining the full (quantum) dynamics of the same (Kopietz, Bartosch,
and Schütz, 2010; Rivasseau, 2014a); this means removing (again, formally) any
truncation that may initially be applied to it to have mathematically well-defined
quantities, in particular any truncation to a finite (small) number of its fundamental
degrees of freedom. In this sense, it contains both a continuum limit (usually asso-
ciated with the limit of large momenta and small distances) and a thermodynamic
limit (usually corresponding to large volumes and infinite number of atoms or field
values), when the two notions both make sense but differ, as in usual spacetime
physics. We do not know if this is the case in quantum gravity, in general, and the
question can be addressed only by considering specific quantum gravity formalisms
and providing a definition of both limits. I do not distinguish the two, in what
follows, referring simply to the ‘continuum limit’.

The renormalization group flow is always computed within some approximation
scheme. This is a technical necessity, but it also contains an important physical
insight: what matters at each step is to control the (approximate) behavior of key
observables, and only the aspects of the theory that are most relevant to them,
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neglecting the rest. The important insight is that a lot of what the theory contains,
in principle, does not affect the relevant physics, at least not significantly. The
relevant collective variables and observables may differ from those in the initial
definition of the same theory (and that enter the computation of the same collective
quantities). Such approximate, coarse-grained description, alongside other forms of
truncation, is thus not just a technical tool that physicists have to adopt for lack of
computational power or skills but is where they show or test their physical under-
standing of the system. These approximations, moreover, are both a prerequisite
for the understanding of the renormalization group flow of the theory and directly
suggested by it, since the renormalization group flow itself gives indications on
which dynamics and which observables (e.g., order parameters) are relevant in
different regimes (scales).

Next, we ask the second question: what should we expect to find, once we move
along the N -direction via renormalization group tools and as we approach the full
quantum gravity corner of the Bronstein hypercube? A continuum spacetime and
geometry is the goal, of course. And it is what we should find if our quantum
gravity formalism is to be physically viable. But we should also expect to find
much more than that. Physical quantum systems, when they are interacting (thus
nontrivial) and possess an infinite (or very large) number of degrees of freedom,
do not have a unique continuum limit. How they organize themselves when large
numbers of their constituents are taken into account depends on the value of their
fundamental coupling constants (or other external parameters). Their collective
behavior leads to different macroscopic phases, separated by phase transitions. The
effective, emergent physics of different continuum phases can be very different,
and they are also stable (by definition) under moderate changes of their defining
parameters and, of course, under the dynamics of the system. They are in many
ways different possible worlds—inequivalent collective realizations of what we
were initially considering a single physical system when focusing on small numbers
of its fundamental constituents. The questions in any quantum gravity approach,
once the fundamental entities and their quantum dynamics are identified and the
renormalization group flow can be, in principle, set rolling, are as follows: What
are the macroscopic phases? Are any of them effectively described in terms of
smooth geometry (with matter fields) and spacetime? With these new questions
come many others, for example, concerning the physical meaning of the phase
transition(s) separating a nongeometric from a geometric phase, that of the different
geometric phases themselves, if more than one such phase appears, and the possible
observational signatures of this potentially new physics.

Before I briefly survey recent progress on these issues, let me draw two general
consequences of this line of reasoning. First, moving along the N -direction, i.e.,
toward the full definition of the theory, brings potentially new physics and requires,
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possibly, a change in description of the system at each step. Second, the result
of such journey is not unique but it is given by different possible continuum lim-
its, different continuum theories with different effective physics. In this sense, the
Bronstein hypercube should not be expected ‘to close’ to form a hypercube at all,
but a multiplicity of possible hypercubes at best. And this is assuming that moving
along the h-direction starting from the GR corner (or the one corresponding to
some other continuum classical gravitational theory) gives any consistent result
at all, and that, in addition, the h- and N-direction commute. This is also the
point, however, where our attitude toward the nonspatiotemporal structures that
our quantum gravity formalism is built on, whether we regard them as physical or
mere mathematical (e.g., regularization) tools, becomes crucial. In the latter case,
in fact, only the continuum phase(s) with a geometric interpretation will be deemed
physical, and the others ignored, and the result of quantizing the classical theory
will have to be the same by definition, since the extension from the Bronstein
cube to the hypercube would be a mere technical expedient, with the true physics
remaining captured by the perspective associated with the Bronstein cube.

One more interesting and challenging aspect of the hypercube perspective on
quantum gravity concerns symmetries, which are crucial tools in theory building
(Brading and Castellani, 2003). Investigating the role of symmetries in quantum
gravity from the point of view of the Bronstein hypercube means investigating two
(related) issues: first, the fate of diffeomorphism invariance, the defining symmetry
of general relativity, in going from the Bronstein cube to the Bronstein hypercube,
and then within the latter; second, the nature of new quantum symmetries and
their use in moving along the N -direction and in recovering continuum spacetime
and geometry in the end. Diffeomorphism invariance stands and falls, in many
ways, alongside continuum spacetime and geometry, whether one sees it as a mere
mathematical convenience or as a fundamental requirement of physical theories
(Norton, 2003; Pooley, 2010). This means that, in the Bronstein cube, it will follow
geometry and the gravitational field in being ‘quantized’, to reach the quantum
gravity corner. This is nowhere more clear than in the canonical approach, where
defining and imposing diffeomorphism invariance at the quantum level is equivalent
to defining and imposing the quantum gravitational dynamics. It also means that,
when changing the nature of the fundamental degrees of freedom of the theory, thus
moving to candidate fundamental entities different from spacetime fields defined on
some differentiable manifold, diffeomorphisms will cease to be defined altogether.
Formally, at least, they will play no role in the fundamental theory. This does not
mean, however, that diffeomorphism symmetry will not still be important, at the
conceptual level. To start with, the fundamental dynamics will have to be some
form of constrained or relational dynamics, like in continuum, diffeomoprhism
invariant GR. This is simply due to the fact that, like continuum diffeomorphism
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invariant GR, the fundamental quantum gravity theory will not admit any notion of
time that is not given, at best, in terms of some internal (and approximate) degree of
freedom of the theory, used as a relational clock, and thus will not take the form of
a standard time evolution. This implies that the experience and mindset developed
in the context of diffeomorphism invariant, continuum quantum theories will be
very much relevant. Further, depending on the nature of the candidate fundamental
degrees of freedom of the theory, the same may be characterized by new quantum
symmetries that are some sort of pregeometric counterpart of diffeomorphisms.
They could be some discretized version of them, like in approaches based on sim-
plicial piecewise-flat structures (Dittrich, 2009, 2011; Baratin, Girelli, and Oriti,
2011), or of more exotic type, e.g., purely combinatorial (Ambjorn et al., 2012;
Dowker, 2013). In any case, the requirement that they reduce to diffeomorphisms
in the appropriate continuum (and classical) limit, or that, at least, they can be
traded for diffeomorphisms in the same limit, will play a crucial role in identifying
such new symmetries. In turn, the identification of new fundamental symmetries,
whatever their relation to diffeomorphisms, will certainly play an important role in
the construction of the fundamental theory and in the reconstruction of continuum
spacetime and geometry from it. They could be the key instrument for defining the
fundamental theory space within which the dynamics of the pregeometric atoms
of space should be studied; they could be the tool for characterizing the different
universality classes or continuum phases in which they organize themselves when
moving along the N -direction; they could single out conserved quantities or other
collective observables around which the emergent continuum geometric dynam-
ics could be built. Work on all these aspects can be found in the literature, for
example in group field theory (GFT) and random tensor models (Rivasseau, 2014b;
Bahr, Dittrich, and Geiller, 2015; Dittrich and Geiller, 2015, 2017; Kegeles and
Oriti, 2017; Kegeles, Oriti, and Tomlin, 2017).

2.8 A Brief Survey of Recent Results along the N -Direction

The renormalization of quantum gravity models is a very active area of research,
in many of the quantum gravity formalisms based on nonspatiotemporal, discrete
building blocks.

It has been a central research topic in simplicial quantum gravity approaches
since their very inception, also because in these approaches the discrete structures
are usually seen as unphysical regularization tools so the continuum limit is
mandatory before thinking of any physics. In quantum Regge calculus (Hamber,
2009) one fixes the triangulation at the onset and has its edge lengths as dynamical
variables, weighted by the (exponential of the) Regge action (a discretization of
the Einstein–Hilbert action for GR). The strategy for taking the continuum limit,
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usually limited to Euclidean geometries, is then analogous to the lattice gauge
theory one, adapted to a varying lattice geometry, in which lattices are progressively
refined by increasing their complexity while keeping some macroscopic quantity
fixed, e.g., the total ‘spacetime volume’. There is no consensus on whether a
continuum phase with a smooth geometry is found, and some of the phases
identified so far are consistently interpreted as rather degenerate or singular
from the continuum spacetime perspective, on the basis of simple indicators
like dimension estimators (e.g., spectral or Hausdorff dimension). In dynamical
triangulations one takes a complementary approach, and with the same starting
point, it restricts attention to equilateral triangulations, which are summed over
with the same Regge weight. The continuum limit amounts to computing the full
sum over triangulations concentrating it on the finer ones (sending the fixed edge
length to zero while keeping the total volume fixed). The results are consistent (and
inconclusive) in the Euclidean setting but become much more interesting when
Lorentzian discrete geometries are considered and additional ‘causality’ conditions
are imposed, basically providing the triangulations summed over with a fixed
foliation structure. Then, one finds strong indications that (at least) one smooth
geometric phase is produced in the continuum limit, as it can be detected by
dimension estimators and rather coarse geometric quantities, like the total spatial
volume.

Random tensor models (Gurau and Ryan, 2012; Rivasseau, 2016) produce in
their perturbative expansion (around the fully degenerate configuration, corre-
sponding to no spacetime at all) the same type of dynamical configurations and
equilateral triangulations, and with the same weight, as the Euclidean dynamical
triangulations approach. They provide a generating functional for them and,
accordingly, offer a new set of statistical and field-theoretical tools to study their
continuum limit. The results are so far broadly consistent with what has been found
from the pure simplicial gravity perspective, in the simple large N limit of the
tensors. The new set of tools, however, promises more, and it has already hinted at
a deeper level of analysis, with many preliminary results on double scaling limits,
phases beyond what has been found in the large N , etc.

In canonical loop quantum gravity, maybe due to its traditional understanding
as a straightforward quantization of continuum GR, the issue of renormalization
and continuum limit has received less attention. A canonical renormalization
group scheme at the full dynamical level has been proposed (Lang, Liegener, and
Thiemann, 2017), but most of the results have been so far limited to the kinematical
setting, neglecting the quantum dynamics of the theory. These results include the
continuum limit that is used to define the kinematical Hilbert space of the theory
and that singles out the so-called Ashtekar–Lewandowski vacuum as the basis
for constructing spin network excitations (Ashtekar and Lewandowski, 2004).
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Its construction is a nontrivial mathematical achievement, but its physical nature
is dubious. From the continuum perspective, it is a state corresponding to a
totally degenerate geometry and a highly fluctuating connection, thus far away from
anything resembling our spacetime. This prompts one to look for the sector of the
theory corresponding to highly excited states over such vacuum and encoding many
of the fundamental spin network degrees of freedom. It also suggests that, when
this is done, the relevant description of the same theory will be very different, and
possibly will involve a phase transition to a new, more geometric phase. Lacking a
full renormalization group analysis, the issue of possible new vacua/phases could
be studied only at the kinematical level, but has already produced very interesting
results. New kinematical vacua with a nondegenerate (constant) geometry, but still
with highly fluctuating connection, were constructed and analyzed in some detail
(Koslowski, 2007; Koslowski and Sahlmann, 2012), shown to define inequivalent
representations (thus genuinely new phases) and already to offer a more sensible
physical interpretation in terms of continuum spacetime geometries. They can be
understood as a sort of condensate of spin networks excitations, thus resonating
with earlier (Oriti, 2007) and more recent (Oriti, 2017b) work in the group field
theory (re)formulation of spin network dynamics. Even more recently, a different,
complementary type of new vacua have been constructed (Bahr et al., 2015; Dittrich
and Geiller, 2015, 2017; Dittrich, 2018), corresponding instead to a fixed curvature
and fluctuating geometry (triad/flux variables) and with excitations corresponding
to curvature defects. The simplest such vacuum can be associated with a simple BF
topological field theory and zero curvature, while vacua corresponding to non-zero
constant curvature (a cosmological constant?) seem to be given by condensates of
curvature defects.

Spin foam models (Baratin and Oriti, 2012; Perez, 2013) can be understood
as a covariant dynamics for canonical loop quantum gravity states, i.e., spin net-
works, thus they are an alternative setting for defining the renormalization group
flow and the continuum limit of the theory, encoding also the quantum dynam-
ics. They can also be understood as lattice gravity path integrals in first-order
(tetrad+connection) variables, thus in direct relation with simplicial quantum grav-
ity approaches. Renormalization of spin foam models has been tackled in two
(complementary) frameworks. The first (Dittrich, 2012, 2017; Bahr et al., 2013;
Dittrich, Mayerson, and Butterfield, 2016; Bahr, 2017; Bahr and Steinhaus, 2017;
Delcamp and Dittrich, 2017) treats them as analogous to lattice gauge theories on
a fixed lattice, thus in line with the way the continuum limit of quantum Regge
calculus is studied. However, it brings on board mathematical methods and insights
of canonical loop quantum gravity and also takes advantage of the direct resem-
blance with gauge theories. More recently, key tools from quantum information
theory and many-body systems, like tensor networks, have also started to play an
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important role. Coarse-graining steps and renormalization are encoded in maps
between spin foam amplitudes associated with different scales, where the notion
of scale here is tied to the combinatorial complexity of the underlying lattice,
and they therefore provide a dynamical counterpart of the kinematical continuum
limit that defines the Hilbert space of the canonical theory. The results are so far
mostly confined to simplified models, rather than with the full-fledged amplitudes
proposed for 4-dimensional quantum gravity, but they are already very interesting
and possibly indicative of more general lessons. For example, one finds hints of a
nontrivial phase diagram with a degenerate geometric phase and a nontrivial phase
of topological nature, thus tentatively supporting the kinematical results on possible
vacua in the canonical theory. The other way to tackle spin foam renormalization
is to see them as Feynman amplitudes of group field theory models and to focus on
the renormalization of the latter.

Group field theory renormalization has been in fact a very active and rapidly
growing research direction for almost 10 years, now, with many results (Freidel,
Gurau, and Oriti, 2009; Carrozza, Oriti, and Rivasseau, 2014; Benedetti, Ben
Geloun, and Oriti, 2015; Ben Geloun and Rivasseau, 2016; Ben Geloun, Martini,
and Oriti, 2016; Carrozza, 2016; Carrozza and Lahoche, 2017; Carrozza, Lahoche,
and Oriti, 2017; Lahoche and Oriti, 2017). The strategy is to rely on the close-
to-standard field theoretic formulations of these models as field theories on Lie
group manifolds (not interpreted, of course, as spacetimes) and use their intrinsic
notion of scale as a ‘distance on the group manifold’ or, conversely, the conjugate
momentum/resolution scale. Indeed, on such premises one can apply standard
renormalization group techniques, suitably adapted to the peculiar combinatorially
nonlocal nature of the GFT interactions. The trivial Fock vacuum of the theory,
around which one sees spin network excitations and develops the perturbative
expansion of a given group field theory model, is again a fully degenerate one, with
no topological or protogeometrical excitations; thus it is in the nonperturbative
sector of the theory that one looks for continuum spacetime, geometry, and physics.
Perturbative renormalization is, however, where one can find a consistency check
of the quantum theory, a way to constrain model-building ambiguities and deal
more directly with spin foam amplitudes. This activity relied heavily on the
parallel results on random tensor models, in particular the large-N expansion,
and has been also focused on simplified models. It has produced rigorous proofs of
renormalizability of a wide range of tensorial GFTs via multiscale methods: abelian
and nonabelian, with local gauge invariance, thus having Feynman amplitudes
corresponding to lattice gauge theories (and spin foam models ) and without it,
in low (e.g., 3-dimensional) as well as higher (e.g., 6-dimensional) topological
dimensions. More recently, work on nonperturbative renormalization has gained
traction, with the development of the functional renormalization group (FRG)
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formalism for GFTs. The same range of models studied perturbatively has been
studied by the FRG method, and there is by now a large body of results establishing
renormalizability as well as nontrivial phase diagrams for many tensorial GFTs,
their asymptotic freedom or safety in the UV, but also solid hints of Wilson–
Fisher-type fixed points in the IR, suggesting the existence of a condensate phase
in the continuum limit. This phase would be directly relevant for the extraction of
effective spacetime physics, especially in the cosmological setting, as I discuss later
in this chapter. For full-blown GFT models for 4-dimensional spacetime, we have
mainly partial results on radiative corrections (Bonzom and Dittrich, 2013; Riello,
2013; Doná, 2018), but the mathematical technology at our disposal is improving
fast, and we can also rely on related analyses of GFT models on homogeneous
spaces and on existence proofs of phase transitions in the GFT formulation of
topological BF theories in any dimension (the basis of a lot of model building for
4-dimensional quantum gravity models) (Baratin et al., 2014).

While the renormalization analysis of quantum gravity models has grown in
attention and results, comparatively little work has been done so far on the extrac-
tion of continuum physics from them. By this we intend the extraction of effective
dynamics for collective observables with a spatiotemporal and geometric interpre-
tation, in the regime in which large numbers (possibly infinite) of the fundamental
constituents are accounted for, and thus employing a set of explicit approximations
and coarse graining operated at the level of the fundamental theory itself. I do not
refer here to the many works in which tentative physics is extracted from either
simple models of continuum spacetime and gravitational dynamics that are only
inspired but not derived from the fundamental theory (e.g., loop quantum cosmol-
ogy and several models of quantum black holes) or truncations of the fundamental
theory dealing with very small numbers of the fundamental entities (e.g., restricted
to simple spin network graphs or simple spin foam or simplicial gravity lattices).

One example of this type of work is the extraction of an effective minisuperspace
dynamics and of a de Sitter-like (spatial) volume profile from the causal dynamical
triangulations approach, obtained by explicit numerical evaluation of this (very
coarse grained) observable (Ambjorn et al., 2012).

Another example of recent work in this direction is GFT condensate cosmology
(Gielen, Oriti, and Sindoni, 2013, 2014; De Cesare, Pithis, and Sakellariadou, 2016;
Gielen and Sindoni, 2016; Oriti, Sindoni, and Wilson–Ewing, 2016b; Pithis and
Sakellariadou, 2017; De Cesare et al., 2018; Gielen and Oriti, 2018), based on
two main assumptions—one of perspective, one more technical. The first is that
cosmology has to be looked for in the hydrodynamics of the fundamental theory, as
the most suitable approximation for close-to-equilibrium and most coarse-grained
dynamics, in the continuum limit. The second is that the relevant class of continuum
states (implicitly, the relevant continuum phase of the theory) for the extraction
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of gravitational physics is that captured by condensates of the microscopic build-
ing blocks (GFT quanta, i.e., spin network vertices or basic simplices). The first
assumption suggests concepts and technical tools to be used. The second, supported
also by the hints coming from the renormalization analysis of GFT models, makes
it possible to go directly from the microscopic definition of the quantum dynamics
of any given model, including the more promising 4-dimensional gravity ones, to
an effective dynamics for cosmological observables in the continuum limit. For
quantum condensates, in fact, the continuum hydrodynamics corresponds, in the
simplest (mean field, Gross–Pitaevskii) approximation, to the classical equations of
motion of the underlying field theory for the atoms, and the same happens in GFT
models. This strategy led to many results, over the last five years. They include
the extraction of a modified Friedmann dynamics for homogeneous and isotropic
geometries (and scalar matter), whose physics is captured by relational observ-
ables,1 with the correct classical limit at late times; a quantum bounce replacing
the classical big bang singularity, as long as one remains within the hydrodynamics
approximation of the full theory; the possibility of a long-lasting accelerated phase
of expansion after such bounce (a sort of purely quantum gravity–induced infla-
tion) without the need for introducing any inflation-like field; some preliminary
study of the dynamics of anisotropies, showing their natural suppression as the
universe grows; the first extensions of the formalism to cosmological perturbations,
which seems to indicate how a scale invariant spectrum is the natural outcome of
the dynamics, as long as one remains close to homogenous condensate states. To

1 Let us add some clarifications about the use of relational (dynamical) variables in a pregeometric,
nonspatiotemporal quantum gravity formalism. The use of relational clocks and rods is a convenient strategy
for defining a diffeomorphism invariant and physical notion of time and space, often adopted in general
relativity and in its quantized counterparts. I find it a perfectly acceptable solution to such issue (even if such
clocks and rods will not be idealized or perfect, since they remain physical and quantum entities, and thus will
offer only an approximate substitute for temporal or spatial coordinates). It is a solution, that is, to the issue of
‘disappearance of space and time’, in the sense proper to (quantum) GR of disappearance of any absolute,
nondynamical notion of space and time (as codified by a preferred frame), due to diffeomorphism invariance
and background independence (Rovelli, 2018). In the relational strategy, instead of any such absolute space or
time, we have dynamical fields, which may include the metric field itself, playing the role of clocks and rods.
This strategy requires, for its adoption, the usual continuum setting of the Bronstein cube, in which dynamical
fields are basic entities. The adoption of the same strategy in a pregeometric, nonspatiotemporal setting as
pictured in the Bronstein hypercube should be understood in the following generalized sense. One looks at the
fundamental degrees of freedom of the quantum gravity formalism at hand, which are nonspatiotemporal by
definition and do not correspond directly to continuum fields. Among those, one identifies the ones that, in a
continuum limit and in an approximate sense (that is, after moving along the N -direction toward the standard
continuum, spatiotemporal setting), will correspond to emergent dynamical fields and that can then be used as
relational clock and rods, i.e., in terms of which one will then assign spatiotemporal localization properties to
the other degrees of freedom of the quantum gravity system. Such use as relational notions of space and time
will take place, in other words, only after a spatiotemporal GR-like description has emerged (or in order to test
its emergence). It is possible that the application of this strategy requires the introduction of additional degrees
of freedom in a given model of pregeometric model, but it does not affect the need to move along the
N -direction, for the whole set of degrees of freedom, to show the emergence of spacetime along the way (thus
it does not mean that one is introducing space or time ‘by hand’ in the fundamental definition of the theory,
just as the fact that eventually spacetime and geometry emerge approximately in a pregeometric quantum
gravity model does not imply that they were there from the very beginning).
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these, one could add the first generalization of the scheme to spherically symmetric
geometries and black hole horizons (Oriti, Pranzetti, and Sindoni, 2016a; Oriti
et al., 2018), with more interesting results. We are just at the beginning of the
exploration of the emergent continuum physics of GFT models (and of their spin
foam counterpart), clearly, but the path seems promising.

2.9 Conclusions

I have argued that the proper setting for thinking about quantum gravity and for
exploring the many issues it raises (mathematical, physical, conceptual) is broader
than the traditional one of quantizing GR, well captured by the Bronstein cube. It
is best pictured as a Bronstein hypercube, in which the nonspatiotemporal nature
of the fundamental building blocks suggested by most quantum gravity formalisms
(and even by semiclassical physics) and the need to control their collective dynam-
ics are manifest. This allows the proper focus on the problem of the emergence of
continuum spacetime and geometry from such nonspatiotemporal entities. I have
also argued that modern quantum gravity approaches are well embedded into this
conceptual scheme and have already started producing many results on the issues
that are put to the forefront by it. The quantum gravity world is therefore even
richer and more complex but also more exciting than traditionally thought, and we
are already actively exploring it. More surprises should be expected.
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Wüthrich, C. (2014). Raiders of the lost spacetime. Einstein Stud., 13, 297.



3

Emergence of Time in Loop Quantum Gravity

suddhasattwa brahma

3.1 Introduction

It is not difficult to imagine a mind to which the sequence of things happens not in
space but only in time like the sequence of notes in music. For such a mind such
conception of reality is akin to the musical reality in which Pythagorean geometry
can have no meaning.

—Tagore to Einstein, 1920

We are yet to come up with a formal theory of quantum gravity that is mathe-
matically consistent and allows us to draw phenomenological predictions from it.
Yet, there are widespread beliefs among physicists working in fundamental theory
regarding some aspects of such a theory, once realized. These premonitions about
the final form of a quantum gravitational theory comes from two somewhat mutu-
ally exclusive ideas. First, experience in dealing with other fundamental forces of
nature and their quantization, which have resulted in the Standard Model of particle
physics, has led to certain expectations regarding the outcome of quantizing gravity.
This is, of course, quite natural and what one expects to happen. The other major
source of prejudice, however, comes from the rather maverick nature of gravity as
described through its classical theory—general relativity (GR). The foundational
idea of relativity that gravity is geometry requires a rather careful handling in the
way one approaches to ‘quantize’ such a theory. It has often been said that GR
is one of the most beautiful theories in physics; and like any beautiful object, its
significance lies in the eyes of the beholder. Let us give an example to illustrate this
point.

Particle physicists considered the primary difficulty of quantizing gravity to
be the ultraviolet (UV) divergences that cannot be canceled by a finite number
of counterterms, as is done for every other fundamental force. This is what is
commonly known as the non-renormalizability of gravity (Collins, 1986). Thus
they went looking for a more suitable way to describe the dynamics of a massless,
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spin-2 particle—namely, the graviton—just as for other such gauge bosons in the
Standard Model. Broadly speaking, this search has culminated in the foundation
of string theory (Polchinski, 2007a, 2007b; Green, Schwarz, and Witten 2012),
which describes not only gravity but also all the other fundamental forces through
the spectra of string oscillations, as this fundamental object (the string) travels
through a d-dimensional spacetime.1 Implementing the excitations as extended
objects (strings) with nonlocal interactions, one gets rid of the infinities, the
unwieldy mathematical objects standard field theory is beset with. Without going
through the extremely rich history of the development of string theory in detail, it
is safe to say that one of the most ambitious goals for a string theorist is to unify all
the fundamental forces of nature via one common framework. In the more recent
past, string theory has also led to rather amazing mathematical dualities whereby
one is allowed to study the quantum gravity theory in a bulk spacetime by simply
examining a quantum field theory, without gravity, on its boundary (Becker, Becker,
and Schwarz, 2006). This remarkable feature, termed the ‘gauge/gravity duality’,
or more generally the ‘holographic principle’, can be looked upon as one of the
most beautiful artifacts of quantum gravity, arising from underlying mathematical
symmetries.

On the other hand, relativists2 take the idea of background independence as a
guiding principle for quantizing gravity rather seriously (Thiemann, 2008). The
idea here is that one cannot quantize the graviton as a particle moving on a specified
spacetime, as is done for the other fundamental gauge fields in nature. Rather
gravity supplies us with both the stage as well as the actors on it: the background
spacetime as well as the particle mediating gravity has to emerge from the fun-
damental theory (Ashtekar and Lewandowski, 2004). This beautiful idea led to
several theories that do not assume a fixed form of a background spacetime, most
notably in loop quantum gravity (LQG). Under the rather minimal requirement of a
differential manifold, a suitable reformulation of GR is proposed such that the fields
describing it do not, a priori, require a background metric. This does not imply that
there is no background independence in string theory; it is, however, implemented
in a much more indirect manner and is in a rather nascent stage at the moment (for
instance in string field theory [Rastelli, 2005]). It is important to emphasize that
background independence, as a motivation, is not a monopoly of LQG, but there
are other approaches, such as asymptotic safety or causal dynamical triangulations,
which implement this feature in different ways. I mention this example to cite what
was at the heart of looking for an alternative to string theory. Similarly, although

1 Historically, string theory did come about to describe strong interactions before one found a more suitable
candidate for the latter in quantum chromodynamics.

2 Obviously, both these classifications of particle physicists and relativists are made rather loosely in order to
make a larger point.
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direct manifestations of the ‘gauge/gravity duality’ is yet to be revealed in LQG,
there is nothing to suggest that such a principle is lacking in the theory3 (see for
instance, Han and Hung [2017]).

So we find that two of the major approaches to quantum gravity not only do not
share their technical and conceptual foundations but even diverge in their ambitions
for the resulting theory. And, of course, the diversity in research for a quantum the-
ory of gravity is also rather rich with many of the other approaches (not mentioned
here) bringing distinct aspects of gravity into play. How can such ideas converge
in their expectations from the final version of their individual quantum gravity
theories? In order to understand this, let us first recall what quantizing the other
fundamental forces has taught us. Quantum theories, typically, help us in resolving
singularities which appear in their classical counterparts. This general expectation,
as can be understood from its origin, is shared by all theories of quantum gravity.
Since some well-defined physical quantity, such as energy density, diverges at the
singular point, one concludes that some of the laws of physics have broken down
at the singularity and we require a new set of rules to describe the dynamics in
those regimes. Let us recourse to a (perhaps over-)simplified example to make
our case. Hooke’s law, describing the force exerted by a spring, can be written
as k = F/x. This implies if we are to calculate the tension in the spring between
two infinitesimally close points, then it would indeed be infinite! But this is not
a true infinity but rather only a mathematical manifestation of the fact that we
have applied the classical Hooke’s law beyond its realm of validity. This can be
seen if one recalls that the spring is built out of atoms, and once we consider
subatomic lengths, laws of atomic physics has to come in to replace the classical
Hooke’s law. Thus the fundamental minimum distance scale of atomic spacings
(which is something that can be derived and is not postulated, from the Schrödinger
equation governing the quantum theory) comes in to save the day. A similar thing
is expected to happen for the (curvature) singularities found in GR (Hawking and
Ellis, 2011), most famously the initial singularity in cosmology termed the big bang
and the one found inside the core of black holes. Any quantum gravitational theory
attempts to bring in a new set of laws that would cure the theory of such (classical)
pathologies.

Next we have to deal with the more subtle point of the expectation of a
non-classical, fuzzy nature of quantum spacetimes, which is also expected by
and large from almost all theories of quantum gravity.4 This is a more surprising
common factor between quantum gravity theories since it is realized through

3 However, a crucial difference between the two theories remain in that LQG is less ambitious than string theory
in not attempting an unification of all the known forces in nature.

4 One notable exception is the asymptotic safety program (Reuter and Saueressig, 2012).
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distinct mathematical procedures having origin in the different theories. Almost
all background independent quantizations of gravity talk of a discrete, granular
description of spacetime at some fundamental level. The guiding principle for these
theories is that spacetime, at the most primordial level, is an irregular substratum
made up of the fundamental building blocks, or the atoms of spacetime. Naturally,
the explicit form of these elementary degrees of freedom depend on the specific
framework one deals with,5 but, on the whole, one loses the smooth, continuous
description of classical backgrounds geometries at sub-Planckian scales. On the
other hand, although string theory is at least formulated over smooth manifolds,
there is a growing consensus that spacetime in this case (and may indeed be for any
consistent theory of gravity) is built out of quantum entanglement (for instance,
see Lin et al. [2015]). Even speculative proposals that string theory is a coarse-
grained approximation of a more statistical phenomenon of microscopic degrees
of freedom, with gravity being an emergent interaction, have recently surfaced
(Verlinde, 2011). The bottom line is that all of this points toward a description
of gravity at fundamental scales that is quite exotic compared to its classical
counterpart as a smooth spacetime continuum.

In this essay, I aim to use the input of singularity resolution from LQG and show
that demanding mathematical consistency leads to the emergence of non-Lorentzian
geometry in the theory. Specifically, my goal is to show that time’ is an emergent
concept in LQG, in the sense that one effectively transitions from a 4-dimensional
fuzzy’ Euclidean space to the usual (3 + 1)-dimensional Lorentzian spacetime in
high curvature regimes. Although this shall be demonstrated only for symmetry-
reduced systems in LQG, care needs to be taken that they are not oversimplified
toy models, bland enough to miss key subtleties of the full theory. I emphasize
that my goal is not to comment on the robustness of singularity resolution in LQG,
which has been established to a great extent in the existing literature (for instance,
see Ashtekar, 2009; Ashtekar, Corichi, and Singh, 2003; Bojowald, 2001; Gambini
and Pullin, 2013) but rather to extract only a crucial ingredient commonly required
for tackling singularities in the theory. The other input to be assumed is that the
theory avoids quantum gravitational anomalies and satisfies a well-defined notion
of covariance (adapted to a canonical setup), which is a strict requirement, not just
of LQG, but any consistent quantum gravity theory.6 These two minimal require-
ments, when combined, would be shown to give rise to a rather remarkable change
in our understanding of the underlying spacetime, leading to emergence of time
in LQG.

5 In LQG, for instance, one has discrete spin-network states giving rise to a discrete area and volume spectra
(Thiemann, 2008).

6 What I mean precisely by this shall be spelled out more explicitly in a later section but it is important to note
that this is different from the idea of Lorentz covariance for a flat, Minkowski spacetime.
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3.2 Singularity Resolution in LQG

Setting aside the mathematical beauty of GR, it has also been an extremely suc-
cessful theory and has passed all proposed experimental tests with flying colors
thus far. Yet, a more fundamental theory is required that incorporates not only the
dynamical nature of geometry but also the features of quantum physics. Indeed, a
brief glance at Einstein’s equations, Gμν = (8πG/3)Tμν , is enough to convince
one of that. Since the right-hand side of the equation consists of quantum matter
described by the Standard Model, the left-hand side must be replaced by some suit-
able quantum version of gravity. The more obvious reason for invoking a quantum
gravity theory obviously arises when dealing with curvature singularities contained
in solutions to Einstein’s equations, where the equations themselves fail. This is
a more serious problem than the divergences that arise in other gauge theories
describing, for instance, the electromagnetic field. In Minkowskian physics, if such
a field becomes singular at a given point, it does not affect the underlying spacetime
and, consequently, has no effect on the evolution of the other fields in the theory.
However, since gravity is geometry according to GR, when the gravitational field
becomes singular, the picture of the continuum spacetime itself breaks down and all
of physics gets disrupted. Now, we no longer have a stage on which to describe the
dynamics of the other matter or gauge fields. This points toward the fact that our
picture of gravity as a smooth continuum of spacetime must itself not be applicable
to points arbitrarily close to such a singularity and what we require is a quantum
theory of geometry (see, for instance, Thiemann [2008] and Bojowald [2010] for
details).

Let us focus on the simple example of the k = 0, Friedmann–Lemaitre–
Robertson–Walker (FLRW) geometry to understand how singularity-resolution
takes place in LQG (Ashtekar and Singh, 2011; Bojowald, 2013). (In this context,
we would refer to this theory as loop quantum cosmology [LQC] rather than a
coarse-graining of the cosmological degrees of freedom from the full quantum
theory.) The requirements of consistency from LQC are twofold: on one hand,
the quantum theory needs to have a regular behavior for the quantum state in the
higher curvature regime and resolve the big bang singularity. On the other hand,
these quantum corrections, which are strong enough to overcome the gravitational
collapse due to Planck scale energy densities, have to die off extremely fast
beyond the Planck scale so that we recover the well-known behavior of GR.
Both these conditions are met by LQC and thus we have a well-defined quantum
cosmological model. Inside the deep quantum regime, the density and curvature
reach a maximum value, as opposed to increasing indefinitely as in the classical
theory due to novel quantum geometry effects. This might be interpreted as an
‘effective’ repulsive force that overcomes the classical gravitational attraction and
thus resolves the singularity by preventing the quantum evolution from going to the
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singular point. In the full quantum theory, one can show that singularity-resolution
might be seen as the zero volume state getting decoupled from the dynamics of the
quantum state corresponding to the universe. Although the main achievement of
LQC is to incorporate novel quantum geometry corrections, heuristically adapted
from LQG in the form of a minimum non-zero value of area (or the area-gap) in the
left-hand side of Einstein’s equations, we can shift the correction to the right-hand
side to facilitate comparison with the standard Friedmann equation, which now
reads:

H 2 = 8πG

3
ρ

(
1− ρ

ρc

)
, (3.1)

where H is the Hubble parameter and ρ is the energy density, which gets an upper
bound (the critical density, ρc, which is proportional to M2

P l) from these quantum
effects.

Although we describe the broad picture of singularity-resolution in the specific
case of LQC described earlier, the mechanism remains the same for other models
where it has been possible to do the same. Specifically, singularity resolution
has been achieved for a variety of cosmological models (Ashtekar, Corichi, and
Singh, 2008; Ashtekar and Singh, 2011), such as the Bianchi models, FLRW
geometries with cosmological constants, Gowdy systems with additional symme-
tries (de Blas, Olmedo, and Pawlowski, 2015) and for open or closed universes, in
addition to the flat case mentioned earlier. Recently, similar techniques have been
applied to black hole solutions, such as Schwarzschild (Gambini and Pullin, 2013)
or Callan–Giddings–Harvey–Strominger (CGHS) models (Corichi, Olmedo, and
Rastgoo, 2016), with the remarkable success of resolving the singularity inside
the cores of such black holes much as in the manner described. However, for my
purposes, I do not need to go into the full quantum theory of any of these cases in
detail. Instead, I focus on the most crucial ingredient in LQG, which leads to such
singularity resolution across a variety of different models.

In LQG, we have well-defined operators for holonomies (or parallel transports
of connections) on the kinematical Hilbert space but not for the connections
themselves.7 Thus one requires a different way of expressing connections on the
Hilbert space via their holonomies. Curvature of the connection, which shows up in
the Hamiltonian of the theory, has to be regularized in terms of these holonomies.
Indeed, a direct consequence of this can be seen in the minisuperspace quantization
of LQC. The Wheeler–DeWitt (WDW) theory in this case, which arises from
the Schrödinger quantization of the quantum mechanical phase space, is known
to suffer from the same pathologies as the classical solution as far as the big

7 Mathematically, this implies that the holonomy operators are not weakly continuous.
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bang is concerned. On the other hand, the Stone—von Neumann uniqueness
theorem guarantees that the quantum kinematics for a finite dimensional phase
space isomorphic to R

n (such as the quantum cosmological model) is unique. The
way LQC can go past this obstruction is precisely via violating the assumptions
of weak-continuity from the von Neumann theorem and thus, essentially, giving
rise to a new form of quantum mechanics. In effect, all of this mathematical rigor
of working with weakly continuous holonomies can be pinned down to give one
effect: the inclusion of holonomy corrections in the theory.

In an effective theory of a loop-quantized model, the idea is to replace the
connection (or, in practice, extrinsic curvature components) by a polymerization
function in the Hamiltonian of the theory (Bojowald, 2012). This polymerization
function is obviously not chosen ad hoc, but rather through a rigorous regulariza-
tion of the curvature components in a specified representation of the internal gauge
group (SU(2)), along with inputs of the area-gap from the full theory. Typically, the
holonomies are calculated in the fundamental spin-(1/2) representation of SU(2)
and the polymerization function, for some extrinsic curvature component K , takes
the form:

K → sin(δK)

δ
, (3.2)

where δ is related to the Planck length in a specified manner. This kind of
nonperturbative correction, coming from LQG, is commonly known as holonomy
correction (or equivalently, modification) function. Although the sine function has
been obtained explicitly in the case of LQC, for the spin-(1/2) representation,
we can allow for more general quantization ambiguities and replace connection
components by any local and bounded function of it. This type of correction
plays the most crucial role in singularity resolution and the bounded nature of
the function comes from this requirement. It is important to emphasize that LQG
does not resolve singularities by incorporating some arbitrary bounded functions
of the connection, but rather derives them in some symmetry-reduced models. For
the purposes of this essay, I simply choose to not work with a specific form of
this function but rather keep it arbitrary, thus demonstrating that my conclusions
are not tied to some specific fine-tunings arising from a particular model in LQG
but are rather general in their ambit. Therefore, the first input for us is going to
be incorporating such holonomy correction functions which lead to singularity
resolution (and is thus bounded) K → f (K).

Before concluding this section, we need to make a comment about why this
function has to be chosen to be local. It is tied to the same reason that we are
yet to have a consistent formulation of any canonical quantum gravity theory
in (3 + 1)-dimensions. It is only known how one can loop-quantize simpler,
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symmetry-reduced models and, only in such cases, can singularity resolution
be demonstrated manifestly. In LQG, one is yet to understand how to explicitly
evaluate holonomy operators in inhomogeneous directions, along edges of spin-
network states. Although the full technical details of this problem is far beyond the
scope of this essay, I shall revisit this issue in the simplified arena of Schwarzschild
spacetimes.

3.3 Covariance in Canonical Quantum Gravity

It is well known that coordinate freedom is one of the stepping-stones of GR
(and, indeed, of all general covariant theories going beyond GR), i.e., the theory
remains invariant under local diffeomorphisms xμ → xμ + ξμ(x). LQG is
based on a Hamiltonian formulation of gravity, where spacetime is foliated into
spatial hypersurfaces evolving along a time parameter. However, in canonical
theories, coordinate transformations of spacetime tensors are replaced by gauge
transformations that generate deformations of the spatial hypersurfaces in full
spacetime. The Hamiltonian (or scalar) constraint is defined as the one that
generates deformations along the direction normal to the hypersurface while the
(spatial) diffeomorphism constraint generates those along tangential directions. In
generally covariant theories, these four smeared constraints (per point) satisfy the
(Dirac) hypersurface deformation algebra.8 These constraints satisfy a first-class
system forming a closed algebra, which implies that the Poisson brackets of the
constraints vanish on the constraint surface (see Bojowald [2010], for details).

The phase space of canonical gravity is formed by the metric on the spatial
hypersurface qab and its conjugate momenta proportional to the extrinsic curvature
components Kab. The full spacetime metric is typically parametrized by a lapse
function M , the shift vector fields Na and the spatial metric qab. The arbitrary
function M labels the Hamiltonian constraint while Na smears out the diffeomor-
phism constraint. The crucial observation is that the symmetry deforming the spatial
hypersurfaces, tangentially along Na and along the vector Mnμ (nμ being the unit
normal to the hypersurface), are equivalent to Lie derivatives along spacetime vec-
tor fields therefore representing coordinate freedom. Gauge-covariance under hy-
persurface deformations (equivalent to the underlying spacetime diffeomorphisms)
is ensured by the following algebra:{

D
[
Na1
]
,D
[
Na2
]} = D [LN1N

a
2

]
(3.3)

8 Technically, it forms a Lie algebroid and not an algebra, a fact I use in the next section. However, in the
meantime, I shall keep referring to it as an algebra as is common in the physics literature.
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H [M] ,D

[
Na
]} = −H [LNM] (3.4)

{H [M1] ,H [M2]} = D [qab (M1∇bM2 −M2∇bM1)
]

. (3.5)

Equations (3.3) and (3.4) demonstrate the action of infinitesimal spatial diffeomor-
phisms with the right-hand side given by the Lie derivatives LN1N

a
2 = [N1,N2]a

and LNM = Na∂aM . Equation (3.5) complicates the intuitive geometric pictur-
ization due to the appearance of structure functions, in the form of the inverse
of the spatial metric. The Hamiltonian constraint does indeed provide the time
reparametrizations required to supplement the spatial diffeomorphisms generated
byD[Na] to form the full spacetime diffeomorphism symmetry of gravity, but only
on the constraint surface.

It is important to emphasize that covariance, in the canonical context, is an
off-shell property. Fields that do not satisfy the constraint equations D[Na] = 0
and H [M] = 0, as derived from GR, still must be well behaved so as to not
violate this algebra. This is in keeping with our understanding of 4-dimensional
symmetries from Lagrangian theories, where to write down a covariant action
one only needs to define a Lorentz-invariant measure and contract indices prop-
erly with any metric, without paying attention to whether they are solutions to
Einstein’s equations. The specific nature of the algebra of the constraints has
to be satisfied by the constraint functions on the whole phase space and not
just the constraint surface. Its form dictates the kinds of gauge transformations
the constraints generate and how they are related to spacetime properties. All
of this is, however, well understood in the classical formulation of GR as a
canonical theory. An open question, recently addressed, is regarding the fate of
such symmetries once quantum modifications from a particular theory are taken
into account.

We first postulate the requirements for a canonical quantum theory of gravity to
be covariant (Bojowald and Brahma, 2015; Bojowald, Brahma, and Reyes, 2015):

1. The classical Hamiltonian and diffeomorphism constraint, on including quan-
tum corrections, must still act as generators that form a closed algebra free of
quantum anomalies.

2. The quantum algebra of the new generators must have a classical limit that is
identical to the classical hypersurface deformation one as defined in
Equations (3.3)–(3.5).

The first condition simply ensures that we do not violate the gauge symmetries of
gravity in the quantum theory. If the quantum constraint operators (or equivalently,
effective versions of them including quantum corrections) still form a first-class
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system then we have the same number of gauge conditions required to eliminate
spurious degrees of freedom as in the classical case. Thus the gauge generators, in
the quantum theory, would also lead to the same dimension of the solution space and
thereby avoid gauge anomalies. Since the absence of anomalies is the requirement
for any consistent quantum (gauge) theory, condition (1) is the corresponding one
for a quantum version of gravity viewed as a gauge theory. The second condition
ensures that what we end up with, the quantum gravity theory, is a consistent
quantum theory of spacetime. This is an even stricter requirement since this ensures
that we end up with a theory that gives the correct spacetime structure in the
classical regime. While the first condition deals alone with the important issue of
anomaly freedom in quantum gravity theories, both of them together ensure that
one ends up with a covariant quantization of gravity. It is conventional to assume
that once one can get the quantum corrected brackets to have a closed algebra,
then the quantization is covariant. What has been recently demonstrated (Bojowald,
Brahma, and Reyes, 2015) is that a background-independent quantization requires
not only anomaly freedom but also a well-defined classical limit so that the quantum
theory is indeed one of spacetime. This is indeed the difference of full quantum
gravity theory from a theory of matter on a quantum-modified spacetime. The
latter, by itself, has severe requirements that the gravitational and the matter form
of the constraints close to form first-class algebras, whereas the former requires
not only this, but, in addition, also that they have a matching version of covariance
(i.e., the two first-class algebras of the matter and gravitational constraints have the
same form). Naturally, this has severe ramifications for the way one can covari-
antly couple matter to such quantum theories, which is beyond the scope of this
essay. As a final reminder, I stress that our key requirement is not that the theory
remains Lorentz invariant, which turns out to be a deformed symmetry in this
context (Brahma et al., 2017), but simply that the gravitational gauge conditions
are not violated.

I end this section with an important caveat: one cannot see the effects of covari-
ance in a minisuperspace model. One deals with homogeneous degrees of freedom
alone in such systems and thus the diffeomorphism constraint is trivially satisfied
for such models. Covariance cannot be addressed in such models because, owing
to lack of inhomogeneities, the relationship between both temporal and spatial
variations of fields are absent in them. Mathematically, since the diffeomorphism
constraint is trivially zero, one cannot examine any behavior of the constraint alge-
bra in such settings. As a consequence, no restrictions on the dynamical equations
of wave-functions can be imposed by demanding covariance in such models and any
putative quantum effect can be included at will. However, such arbitrary quantum
modifications would result in a minisuperspace model that cannot be embedded
within a larger covariant full theory. Thus we shall have to deal with models that
have at least one inhomogeneous component. In fact, all known models of LQG
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that resolve classical singularities (and are not completely homogeneous) are of this
form. Thus we shall hereafter restrict ourselves to such midisuperspace models.

3.4 Emergence of Time in LQG

We have all our ingredients and are ready to state the main result. From Section 3.2,
we infer that singularity resolution in LQG typically introduces a bounded function
for extrinsic curvature components. We keep our assumptions to a minimum and
do not even fix a specific form for the holonomy correction function. This kind
of a general ansatz, requiring only that the correction function is bounded, then
suggests that we are gathering the least information necessary from the particu-
lar theory (LQG) and keeping ample room for improvements to the quantization
scheme within it. Our second requirement, following Section 3.3, is the necessary
condition that the quantization procedure is spacetime covariant, in a well-defined
sense. Based on these two rather general assumptions, we shall show that there is
a remarkable deformation to the underlying spacetime structure for such quantum
modifications.

3.4.1 Explicit Example: Spherically Symmetric Gravity

It is easiest to first concentrate on a concrete example to illustrate my point and then
state the general result for other such systems. For spherically symmetric gravity
adapted to Ashtekar–Barbero variables (Bojowald and Swiderski, 2006), one has a
2-dimensional phase space spanned by the triad variables Ex and Eφ in the radial
and angular directions respectively, along with their canonically conjugate extrinsic
curvature components Kx and Kφ . There is only one nontrivial component of the
diffeomorphism constraint, given by:

D[Nx] = 1

G

∫
dx Nx(x)

(
−1

2
(Ex)′Kx +K ′φEφ

)
, (3.6)

while the gravitational spherically symmetric Hamiltonian constraint takes the
form:

H [M] = − 1

2G

∫
dx M(x)

(
|Ex |− 1

2EφK2
φ + 2|Ex | 1

2KφKx

+|Ex |− 1
2 (1− 
2

φ)E
φ + 2
′φ|Ex |

1
2

)
, (3.7)

with the spin-connection given by 
φ = −(Ex)′/2Eφ . The prime denotes a deriva-
tive with respect to the radial coordinate. We have suppressed the dependence of the
field variables on the radial coordinate in the above expressions (due to spherical
symmetry, we can safely integrate out their dependence on the angular coordinates).
Thus we have a system of 2-dimensional phase space with 2 first-class constraints,
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thus resulting in no local physical degrees of freedom (the only global degree of
freedom is the ADM mass of the system). The usual spatial metric of the system
can be written in terms of the Ashtekar–Barbero variables as:

dq2 =
(
Eφ
)2

|Ex | dx2 + |Ex | (dθ2 + sin2 θdϕ2
)

. (3.8)

The classical constraint algebra can be easily evaluated using the Poisson structure
of the phase space:

{Kx(x) , Ex(y)} = 2Gδ(x,y), {Kφ(x) , Eφ(y)} = Gδ(x,y). (3.9)

The only quantity of the inverse spatial metric that shows up as a structure function
in the algebra is qxx = |Ex |/(Eφ)2 since the only derivative that gives a non-zero
result is along the radial coordinate.

We now proceed with our program of replacing the (angular) extrinsic curvature
components with local functions of itself, i.e., Kφ → f

(
Kφ
)

in the Hamiltonian
constraint. As mentioned before, I do not consider holonomies corresponding to the
Kx variables since they are calculated along the edges of a (1-dimensional) spin-
network and are, therefore, nonlocal in nature and difficult to implement (Bojowald
et al., 2014). However, it has been shown that one can suitably reformulate the
constraints to eliminate the Kx variable from the Hamiltonian constraint altogether
and have only the Kφ one (Gambini and Pullin, 2013). Thus we can consider the
point-wise holonomy operators corresponding to the Kφ component alone, which
act locally at the nodes of the spin networks, without loss of generality. With these
modifications, the effective Hamiltonian constraint takes the form (Bojowald et al.,
2015; Brahma, 2015):

H [N ] = − 1

2G

∫
dxN(x)

(
|Ex |− 1

2Eϕf1
(
Kϕ
)+ 2|Ex | 1

2f2
(
Kϕ
)
Kx

+ |Ex |− 1
2 (1− 
2

ϕ)E
ϕ + 2
′ϕ|Ex |

1
2

)
. (3.10)

Note that we do not replace both the instances whereKφ shows up in (Equation 3.7)
with the same function but allow for even more generalities by plugging in dif-
ferent correction functions f1 and f2 (the classical expressions are recovered for
f1(Kφ) = K2

φ and f2(Kφ) = Kφ . However, we keep our diffeomorphism constraint
unmodified from the classical case. The reason for this is that, in LQG, one does
not have an infinitesimal quantum operator generating spatial diffeomorphisms rep-
resented on spin network states but rather spatial diffeomorphism invariance is
implemented in the full quantum theory through finite unitary transformations. (See
Laddha and Varadarajan [2011], and references therein for an attempt to define an
infinitesimal diffeomorphism constraint in LQG.) The Hamiltonian constraint, on
the other hand, acts infinitesimally only on diff-invariant spin network states in
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LQG. We are interested in questions regarding the covariance of the theory and
thus are interested in the off-shell structure of the constraint algebra, which should
be a largely representation-independent question and not depend specifically on the
spin-network states, the latter being after all only a choice of basis. In other words,
we assume that the flow of the diffeomorphism constraint is not crucially different
from the classical one as is done in all models of LQG, which achieve singularity-
resolution.9

We are now ready to calculate the brackets between the quantum-corrected con-
straints to find the resulting form of the constraint algebra. The algebra of basic
variables is now modified due to the inclusion of holonomy corrections for the
angular connection component:

{f (Kφ)(x),Eφ(y)} = G
(

df

dKφ
(x)

)
δ(x,y). (3.11)

There is a priori no reason to assume that the quantum-corrected constraints would
even form a closed algebra and thereby satisfy the requirement of anomaly freedom.
However, it turns out that the calculation of the brackets reveals two things. First,
we find a condition relating the two arbitrary holonomy modification functions and
hence they are not both independent. This condition is a requirement for anomaly
freedom, which gives (Bojowald et al., 2015; Brahma, 2015):

f2(Kφ) = 1

2

df1

dKφ
. (3.12)

More importantly, we find that the full algebra of the quantum-corrected constraints
stays the same except for the bracket between two Hamiltonian constraints, which
takes the form (Bojowald and Paily, 2013; Bojowald et al., 2015; Brahma, 2015):

{H [M1] ,H [M2]} = D [β qxx (M1∂xM2 −M2∂xM1)
]
, (3.13)

where the classical structure function, qxx , is modified by the factor:

β = 1

2

d2f1

dK2
φ

. (3.14)

We make the following observations regarding this deformation of the quantum
constraint algebra.

1. Since we kept both the holonomy modification functions arbitrary, there was
no guarantee that the algebra would close. However, we find that it is not only
anomaly free but closure also requires that one of the function be expressed in
terms of the other.

9 This presupposes that 3-dimensional space, but not necessarily spacetime, retains some features of the classical
structure.
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2. When we take the classical limit of the holonomy correction function f1,
we see that β goes to 1, reproducing the familiar hypersurface deforma-
tion algebra. This remarkable result satisfies our condition for a covariant
quantization.

3. Classically, the curvature component can increase infinitely, which in turn
implies that the energy density gets infinite at the classical singularity. However,
due to the inclusion of the holonomy modification from LQG, the function f1

reaches a maximum, and we avoid the classical singularity. The deformation
function β necessarily turns negative when the holonomy modification function
precisely reaches its maximum. This is because β is the second-order derivative
of a function that reaches its maxima. This simple, yet striking, feature of the
deformation function has long-ranging ramifications.

Once the deformation function changes sign, the bracket between two normal
deformations10 in the modified constraint algebra has the same sign as one gets
from Euclidean gravity. This is referred to as ‘signature change’ in the literature
since, although we start from the usual assumptions of a Lorentzian spacetime,
due to quantum corrections from LQG, we end up in an Euclidean four-space in
the deep quantum regime. In order to gain some physical intuition about it, in
models of quantum cosmology, it has been shown that signature change occurs
when the energy density is half the maximum of what it can achieve (ρc/2
of Equation 3.1). As one comes to this point, tracing backward from the well-
understood realm of classical cosmology, one enters this realm, thereby avoiding
the classical singularity but ending up in a fuzzy Euclidean regime. Mathematically,
the equations of motion turn elliptic for the perturbation modes for ‘times’11

less than the critical time mentioned earlier.
This implies radical new ideas regarding the nature of underlying quantum

spacetime and a new perspective of its geometrical structure above Planck scales.
At this point, it is sufficient to point out that we have successfully derived a
deformed notion of covariance for the quantized system, whereby one modifies
gauge transformations by quantum corrections but does not allow them to be
violated. As promised, I introduced only the crucial feature of bounded holonomy
operators from LQG to achieve this goal. As a consequence of this, time appears
as an emergent parameter below some energy scale during our effective transition
from an Euclidean to the Lorentzian phase. Although all the calculations shown are
effective constraints for simplicity, i.e., we do not take explicit quantum operators

10 Throughout this essay, I have been using the word deformation to mean two different things, which should be
clear from the context in which it is used.

11 In the Euclidean regime, one no longer has a timelike Killing vector but can still formally associate one of the
spatial dimensions as Euclidean time.
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corresponding to the constraints into consideration, the same result holds when
operator effects are taken into consideration as shown in Brahma (2015). Thus
this result is certainly not the manifestation of some semiclassical approximation
introduced within this scheme. (It has also been shown that fluctuations and higher
moments of the quantum state cannot introduce perturbative loop corrections
that can deform the structure functions of the constraint algebra [Bojowald and
Brahma, 2016a].)

3.4.2 Ubiquity of Signature Change in LQG

Since we have shown that time emerges at a some particular scale for spherically
symmetric gravity when effects required for singularity resolution are taken into
account, how can one be sure that this is not due to some additional quantization
choices introduced by us? We can answer this question in two ways. First, the only
assumption used, as shown in the previous subsection, was that of bounded cur-
vatures, which is at the heart of singularity resolution in LQG. However, although
the framework was kept extremely general on purpose, we can do even better to
exhibit the robustness of our claims. The same spherically symmetric system, or
equivalently the Schwarzschild black hole model, has been quantized based on a
completely different, but classically equivalent, set of first-class constraints where
the most complicated part of the constraint algebra had been Abelianized (Gambini
and Pullin, 2013). In other words instead of working with the familiar H [M] and
D[Nx] constraints as introduced in Equations (3.7) and (3.6), the quantization was
performed over a newly defined C[L] constraint and the usual diffeomorphism
D[Nx] constraint. For this set, first-class algebra has the same form for Equa-
tions (3.3) and (3.4), (with H replaced by C), while the last relation is replaced by
{C[L1] , C[L2]} = 0. Thus we no longer have the structure functions appearing,
and we have a true Lie algebra. (This is possible by choosing some judicious
linear combination of the old constraints to define the new constraint C[L].) It
has been further shown that the Schwarzschild singularity has been resolved for
a quantum theory based on these constraints, after polymerizing them according
to LQG. One would then imagine that signature change would be impossible for
such a system due to the disappearance of the structure functions. However, as
explained in Bojowald et al. (2015), requiring that the resulting quantum theory be
covariant (as defined in Section 3.3), one can show that not only does the structure
functions reappear and get deformed but also we have a signature change for this
model. Additionally, it was shown that if the holonomy correction functions were
kept arbitrary for this partially Abelianized system, then the restriction (3.12) is the
same one that is obtained even for the new system. Since the technical details of the
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two systems were largely different, except for the choice of bounded functions for
curvature components, we conclude that signature change (and consequently, the
appearance of time) does not depend on any additional regularization choices made
by us in the previous subsection but is a rather general result for the Schwarzschild
black hole model in LQG.

However, it might still be that there is some magical coincidence that leads to the
fortuitous notion of deformed covariance in the spherically symmetric spacetime
and therefore signature change is nothing but a manifestation of the symmetry
of the system. To verify that this is not the case, we can go back to the original
cosmological setup where singularity was first resolved within LQG. However, as
explained before, one cannot ask questions regarding covariance in homogeneous
models, the traditional setup for LQC. Fortunately, nature also demands that our
universe is not exactly homogeneous but rather has small inhomogeneities that
lead to formation of galaxies. We should then loop quantize a system that has
perturbative inhomogeneities on top of a homogeneous FLRW background in cos-
mology to get a more realistic picture. Indeed such a quantum scheme leads to
resolution of singularities once again through a nonsingular signature change (see,
for instance, Bojowald and Mielczarek [2015] and Cailleteau et al. [2012]). The
fundamental setup of these models is quite different from the one considered ear-
lier in that one only introduces holonomy correction functions for the background
connection component but leaves classical expression for the perturbative inhomo-
geneous extrinsic curvatures. Yet, one finds that a bounded version of background
curvature component to be a sufficient condition for signature change in these
models.

Finally, there is a vast arena of models in LQG that have recently been exam-
ined to show that singularity resolution cannot be divorced from signature change
for real valued connections (Bojowald and Brahma, 2018, 2017; Brahma et al.,
2017). In particular, a class of models shown to manifest signature change would
be all 2-dimensional dilaton models, which include the Callan–Giddings–Harvey–
Strominger (CGHS) black hole solution. Another example would be the (polarized)
Gowdy system with local rotational symmetry. I mention these models in particular
since the classical singularity in these models has been shown to be satisfactorily
resolved through loop quantization (de Blas et al., 2015; Corichi et al., 2016).
It has been demonstrated that for all these models the classical singularity is, in
fact, replaced by a nonsingular signature change and thus time appears in all these
models below some energy scale. Indeed, this work has been generalized even
further to a general midisuperspace model, with one direction of inhomogeneity and
no local physical degrees of freedom, to show that even for such a general model
(which includes all the given examples and even more class of models with no well-
defined classical analogs), holonomy corrections from LQG results in deformation
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of the structure function in a way that leads to signature change. The robustness of
these findings has also been checked against different choices of canonical variables
and for different choices of arbitrary dilatonic potential terms. It appears that time
is indeed an emergent parameter, at least within the class of models for which one
can have singularity resolution in LQG.

3.5 Discussion

Having shown that the same modification that resolves singularity in LQG is also
responsible for signature change, at least in all models in which classical singulari-
ties can be resolved in LQG, let us discuss some of the aspects of the findings.

3.5.1 Mathematical Basis for Emergence of Time

This essay shows novel features in the background spacetime structure in quantum
regimes due to the modification of the classical structure functions appearing in
the quantum-corrected constraint algebra. However, it is natural to assume at first
glance that one can absorb the deformation factor β in the inverse of the spatial
metric to get an ‘effective’ spatial metric q̃ab := βqab. However, such an effective
metric from the relation:

{H [M1] ,H [M2]} = D [q̃ab (M1∇bM2 −M2∇bM1)
]
, (3.15)

cannot be part of a spacetime metric to form a classical line element of the form
ds2 = −N2dt2+ q̃ab (dxa +Nadt)

(
dxb +Nbdt). It is because the modified gauge

transformations generated by the quantum corrected constraints for q̃ab do not
match the coordinate transformations of the infinitesimal dxa . This complication
notwithstanding, one might venture to find field redefinitions of the lapse, shift,
the original spatial metric and the extrinsic curvature, or a combination thereof,
to absorb β and recover the classical hypersurface deformation algebra. In other
words, one can try to define new field configurations as combinations of the old
ones that would then give rise to the same constraint algebra structure as the
classical case. Even if one is successful in finding such transformations, it does not
imply that the deformation we find is spurious: It would still affect the equations of
motion of particles on these deformed spacetimes. However, it would imply that the
background can be treated effectively as a Lorentzian geometry. This does not mean
that the background spacetime does not pick up quantum corrections but rather
that, in spite of such modifications, they retain some notion of classical spacetime
structures in that they can still be expressed as Lorentzian manifolds. However,
it is notoriously difficult to come up with different canonical transformations to
check whether β can be absorbed by one of them and therefore still retain a
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Lorentzian geometry. (Even if one cannot find one such transformation for a given
system, it does not rule out the possibility of one existing since there are infinite
number of transformations that can be applied to define new variables from the old
ones.)

Recently, this issue was addressed using a different approach (Bojowald et al.,
2016): using the well formulated theory of Lie algebroids since the hypersurface
deformation brackets provide an example of one. Indeed, irrespective of the specific
choice of the quantum gravity theory, it was possible to classify different inequiv-
alent spacetime structures that cannot be related by algebroid-morphisms. Since I
do not want to obfuscate the central findings with more mathematical structures
than necessary, I do not reproduce the details of that proof in this essay. However,
I shall nevertheless state my main result, as follows. Although it would seem that
an arbitrary phase-space deformation function β would imply virtually unrestricted
quantum corrections, only sgn(β) remains the unique choice after an equivalence
class of algebroids are taken into account. This has two main implications. First, as
long as one has a deformation function that does not change sign, it is possible, in
principle, to absorb this factor using some transformation and thus has an effective
Lorentzian structure. However, once β changes sign, then one cannot absorb it
globally, and a new version of quantum spacetime is obtained. In such a case,
one has distinct Lorentzian and Euclidean patches, which form nonisomorphic Lie
algebroids. This is the mathematical reason behind the emergence of time in such
theories. Keep in mind, that this entire mathematical analysis has been done without
reference to any specific quantum gravity theory. Our only input from LQG is to
provide a quantum modification function, which results in a sign changing β, which
triggers signature change.

Let us finally make some speculative comments regarding the emergence of time
in these models of LQG. As has been emphasized throughout, for every sym-
metric model of LQG where one can resolve the classical singularity, one can
explicitly prove signature change. These are precisely systems that model real-
world cosmology (such as FLRW geometry with small inhomogeneities) or black
holes (such as Schwarzschild or CGHS). Let us focus on the cosmological example
first. Since the spacetime now changes sign, a natural question to ask is how do
the cosmological perturbations propagate on top of such a quantum spacetime.
First, in a strict sense, perturbations cannot propagate in the Euclidean phase due
to a lack of a sense of time in this phase. However, one might identify one of
the spatial directions as the one that undergoes this ‘physical’ Wick rotation to
emerge as a time parameter. In that case, the change (I purposefully avoid using
the word evolution) of the perturbations may still be calculated with respect to
this parameter. However, a better method to think about the cosmological setting
may be the following. For actual physical predictions, it might be sufficient to
specify some initial value for cosmological perturbations infinitesimally close to



Emergence of Time in Loop Quantum Gravity 71

the signature-changing hypersurface on the Lorentzian side and then evolve them
on to the beginning of the inflationary phase. This way the initial state for inflation
can be specified accurately from the underlying quantum gravity theory since there
is no conceptual problem in evolving them throughout in the Lorentzian phase. Fur-
thermore, to obtain some intuitive understanding of the deep quantum regime, one
may even evolve them backward to evaluate their value on the signature-changing
hypersurface. This would then be matched onto the values of these perturbation
modes on the boundary of the fuzzy Euclidean phase. Recently, in the context of
cosmological perturbations, it has been suggested (Barrau and Grain, 2016) that
signature change implies dynamical instabilities in the form of super-Planckian
excursions. However, this result assumes the existence of Lorentzian spacetimes
with a well-posed initial-value problem, along with a corresponding standard line
element, which, of course, is not correct when holonomy corrections become strong
and the structure function changes sign. In other words, one should keep in mind
that it is a four-dimensional boundary value problem once signature change takes
place and use an effective line element, which is consistent with such a signature
(Bojowald, Brahma, and Yeom, 2018).

The overall picture with black holes is somewhat less clear at present. How-
ever, if the core of black holes display a Euclidean region, it implies there is no
deterministic evolution through this high curvature region. While singularity in the
form of diverging curvature may be avoided, a challenging question persists in the
sense of a spacetime incompletely determined by initial data. In order to extend
spacetime across the Euclidean region, one requires additional data on the part
of its boundary that borders on the future Lorentzian spacetime. This additional
requirement is reminiscent of other proposals of black-hole models, for instance
stretched horizons, introduced in the context of the black hole complementarity
principle. In any case, the detailed analysis of anomaly-free black holes within LQG
points toward a much subtler nonsingular description of quantum spacetime than
usually postulated in simplified bounce models. Just as an outside observer finds
the stretched horizon as a membrane, first storing and later releasing information
in the form of microphysical degrees of freedom, additional information is encoun-
tered once an observer moves into the future of a Euclidean region embedded in
spacetime. However, it should be pointed out that in the case of black hole models
of LQG, there is as yet no microscopic theory that would restrict or determine
possible data around Euclidean regions.

3.5.2 Necessity of Deformed Covariance

In their seminal work, Hojman, Kukař, and Teitelboim (1976; see also
Kuchar [1974]) had shown that starting from the classical hypersurface deformation
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algebra, one can uniquely get the Einstein–Hilbert action (up to the cosmological
constant), if one restricts to second-order derivatives of the field variables. This
remarkable result shows the uniqueness of GR as a covariant gravitational theory,
provided one does not consider higher derivative terms.12 Thus to get a quantum (or
at least, quantum-corrected effective) theory that obeys some notion of covariance
and is yet different from GR one needs to have a some deformation in the
hypersurface deformation algebra. Since we assumed that the diffeomorphism
constraint remains unmodified, our only deformation could appear in the brackets
between the Hamiltonian constraint; consequently, we do end up with a nonclassical
version of spacetime, although our classical hypersurfaces retain their classical
form. Hence this is an additional argument, which is consistent with the findings,
that a deformed notion of covariance is required also from the point of the
uniqueness theorem due to Hojman and co-workers.

It must be appreciated that modifying the constraints and yet attaining a closed
algebra can turn out to be an extremely ambitious task to accomplish. This has been
demonstrated recently in the works of Gomes and Shyam (2016), where the authors
wished to generalize the constraints by including noncanonical kinetic terms. Such
higher derivative kinetic terms were shown to be severely restrictive since the
resulting algebra was shown to suffer from anomalies. The underlying reason for
this goes back to the idea that modifying gravity is rather more difficult than what it
seems like at first. Let us look at the problem from another angle. In the Lagrangian
formulation one might say that the quantum-corrected effective (gravitational)
action takes the form:

S[g] = 1

16πG

∫
d4x

√−g [R + · · · ] , (3.16)

where the dots signify corrections to the Einstein–Hilbert action coming from loop
corrections. Any such term must itself be covariant in the sense that it is built
out of curvature invariants and has its Lorentz indices contracted in a proper way.
But these corrections, local or nonlocal, still lead to the same Dirac algebra since
the theory remains covariant after including them. However, there can be one fur-
ther correction possible in this context: one might find a redefinition of the mea-
sure d4x

√−g. This would mean that the notion of covariance in the theory is
now changed. However, such changes must also follow certain rules, which in
the canonical theory are implemented by requiring that there are no anomalies in
the theory. This is precisely what one finds in LQG: a new deformed notion of
covariance that renders the invariant line-element nonexistent in the deep quantum
regime. However, if one finds that quantum corrections lead to the Dirac algebra

12 Indeed, it is known that higher curvature theories also share the same classical hypersurface deformation
algebra (Deruelle et al., 2010).
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giving rise to anomalies, as is the case for Gomes and Shyam (2016), then such
corrections must be discarded, at least in their present form. In this context, one
must remember that our holonomy corrections are well defined local functions for
extrinsic curvature components and not like higher time-derivative kinetic terms as
used in Gomes and Shyam (2016). Hence we are easily able to avoid their no-go
theorems.

3.5.3 What Does Quantum Spacetime Consist Of?

The most provoking question raised by my essay is regarding the explicit nature
of the fundamental spacetime. I have shown that it cannot be described by conven-
tional classical Lorentzian structures once holonomy modifications from LQG are
taken into account. Although we start from a metric, and then define triads in the
classical theory, it turns out that once these corrections are included, one cannot
reverse the process to go back to the metric picture. In lower curvature regimes
one has access to effective Lorentzian spacetimes, and one gets back the usual
constructions. However, in the deep quantum regime, one can locally identify an
Euclidean or a Lorentzian patch, but there is no global metric structure that can
represent the full spacetime.

We know what quantum spacetime is not; it is not the usual Lorentzian manifold
we have grown accustomed to. However, what remains to be investigated is the
explicit nature of the atoms of spacetime. Can there perhaps be a noncommutative,
or even fractal, geometry, replacing the Lorentzian one, at the elemental quantum
level? One way to answer this question might be to assume that the spacetime has a,
say, noncommutative character. Then one can evaluate the same Dirac algebra for
such a mathematical construction. If the resulting deformation has a similar nature
to that of LQG, it would imply that LQG hints toward such a more fundamental
geometry. In that case, we would have to come up with a suitable coarse graining
for such a quantum theory, which would be consistent with our understanding of
smooth, continuous Lorentzian manifolds of classical gravity. There are reasons for
suspecting such a relationship between LQG and exotic geometries coming from
other considerations. If the hypersurface deformation algebra is deformed due to
holonomy corrections as described here, it can be shown that the flat Minkowski
limit of it gives rise to a noncommutative κ-Poincaré spacetime (Brahma et al.,
2017; Mielczarek and Trześniewski, 2017). To make this relationship more robust,
one needs to establish this correspondence beyond the flat limit.

It is currently a matter of debate as to how should one think about signature
change arising from LQG. First, it needs to be emphasized that the main math-
ematical concept arising out of holonomy corrections is the idea of ‘deformed
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covariance’, with signature change being the main physical effect of that. It seems
that LQG provides a physical Wick-rotation to be realized, as was envisioned in
theories such as the Hartle–Hawking (HH) proposal (Hartle and Hawking, 1983).13

However, there are also crucial differences in the signature change emerging in
LQG and the HH proposal. The quantum wave-function typically obeys a dif-
ference equation in LQG, as opposed to a more-familiar differential equation in
HH, and is closer spirit to the proposal by Vilenkin (1984). There is another way
to approach the problem that relies on noticing the fractal-dimensional nature of
the theory. One can estimate the effective (spectral) dimension of spacetime in
quantum gravity theories using methods involving diffusion of particles on a given
spacetime. These have led to the evaluation of the UV dimension of theories such as
causal dynamical triangulations and asymptotic safety. Including holonomy mod-
ification to the constraints in LQG, one can calculate such UV dimension for the
theory. But there is something unique in this case due to signature change. One
gets a physical cutoff for momentum when evaluating integrals due to the fact that
the deformation function changes sign. When this function goes to zero, on the
signature-changing hypersurface, it gives an equation for an upper (UV) limit of
the physical momentum that can be achieved in the Lorentzian phase. What we
obtain after that is a fuzzy Euclidean space. Preliminary calculations have shown
that the spectral dimension for LQG, including holonomy corrections, goes toward
the magic value of 2. However, it does not flow smoothly from 2 to 4 in a linear
manner, but rather exhibits a rich multifractional character. Simply put, it means
that, at different energies, the dimension of spacetime is different in the theory.

But why do we keep referring to the Euclidean phase as fuzzy? Well, for one
it is not known what is on the other side of this phase. There might have been
a Lorentzian phase before it, as is indicated by the cyclic, bouncing models of
minisuperspace quantizations of the background in LQG. However, it might just be
that there was simply a quantum Euclidean phase till our usual Lorentzian phase
popped up. Remember, in the Euclidean patch, one cannot ask temporal questions
and hence it makes no sense to ask how long it lasted. There is another reason to
suspect that this phase is not just a simple classical, Euclidean geometry. Although
it can be seen from the deformed Dirac algebra that the signature of the background
is the same as that for Euclidean geometry, the constraints themselves are not the
ones arising from the Euclidean version of GR, but rather a from a modified ver-
sion of it. More concretely, ongoing investigations show that there is an additional
potential term that appears in the Euclidean Hamiltonian constraint after signature

13 Let us illustrate this point with another well-understood analogy. Many interesting physical consequences are
known for coupling between long- and short-wavelength cosmological modes in the early universe. In a
similar vein, it has been shown that LQG can lead to such couplings spelling out a physical mechanism for it.
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change. For instance, if one starts with usual spherically symmetric gravity (with
holonomy corrections) in the Lorentzian phase, after signature change, we end
up with twice14 the spherically symmetric potential in the Euclidean phase. More
generally, since the usual Lorentzian structure is replaced by a quantum spacetime
lacking classical analogs, the physical meaning of such additional terms is under
active research. We can, effectively, still understand some of its features through
the deformed algebra structure and the modified constraints. However, if spacetime
is truly composed of discrete packets that obey some exotic, noncommutative or
fractal behavior, it is only natural that the resulting system cannot be fully under-
stood by classical notions. This forms another reason for the epithet fuzzy to be
assigned to this region—in the anticipation that the quantum geometry may turn
out to be noncommutative and perhaps some version of the fuzzy sphere. However,
what is now well understood for certain is that there is a fuzzy quantum region if
we go to very high energies, which is nonsingular and is certainly not described by
well-understood Lorentzian structures.

Finally, once there is no more an invariant line element, it is not possible to define
an action without the usual invariant measure for the integral. This makes working
in the Lagrangian picture impossible. However, the Hamiltonian picture remains
well defined with rigorous definitions of gauge-invariant quantities, which might
be evaluated to calculate observables. It seems that the Hamiltonian formulation,
which is on the same footing as the Lagrangian one in the classical setting, is now
somehow more preferred in the quantum theory. This is a surprising twist of turns
in LQG which would be interesting to explore further. This is, however, what was
once prophesied by Dirac15 and it seems to be arising from a quantum theory of
gravity.

3.6 Summary

We have shown that nonclassical structures can arise in quantum gravitational
theories with explicit examples of symmetry-reduced models in LQG. As outlined
in this essay, preliminary results suggest that emergent time is a concept central
to LQG and therefore, this has serious consequences for physical systems such as
the big bang cosmology or black hole singularities. Nonsingular signature change
replaces classical singularity in a much more intricate way than what was previously
predicted in strict minisuperspace quantizations, through a quantum bounce. A
fuzzy Euclidean region inside the core of black holes has new possibilities for the

14 The precise factor of 2 depends on tuning a fundamental parameter to 1 in the theory to simplify calculations.
However, the extra potential term in the Euclidean part appears irrespective of this choice.

15 “It would be permissible to look upon the Hamiltonian form as the fundamental one, and there would then be
no fundamental four-dimensional symmetry in the theory” (Dirac, 1958).
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resolution of the information loss paradox, especially in its partial similarity to
the black hole complementarity paradigm (Bojowald and Brahma, 2018), whereas
replacing the big bang singularity with an ‘asymptotically silent’ phase is reminis-
cent of the Hartle–Hawking wave-function and similar results from causal dynam-
ical triangulations (Mielczarek, 2012). Thus nonsingular bounce from LQG seems
to find common ground with other quantum gravity theories, which has been a very
tough proposition for these different approaches traditionally. The real question,
however, remains whether such exotic constructs are realized in nature. To further
probe this question, one first needs to find a full theory of canonical quantum gravity
that retains this feature of emergent time, going beyond simplified toy models.
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4

Beyond Standard Inflationary Cosmology

robert h. brandenberger

4.1 Introduction

4.1.1 Goals of Early Universe Cosmology

Explaining the origin and early evolution of the universe has been a goal of cosmol-
ogy for millennia. However, it is only over the past few decades that cosmology has
moved from being a branch of philosophy and theology to being a mainstream area
of physics research. This change is due to an explosion of data about the structure
of our universe that experimentalists and observers have gathered.

The prime example of data is the cosmic microwave background (CMB). The
CMB was discovered serendipitously in the 1960s (Penzias and Wilson, 1965).
Only in the early 1990s detailed measurements of the black body nature of the
spectrum became available (Gush, Halpern, and Wishnow, 1990; Mather et al.,
1990), and the first anisotropies were discovered (Smoot et al., 1992). Over the
following two decades, rapidly improving measurements of the angular power spec-
trum1 of the CMB anisotropies were made, culminating with the results from the
WMAP (Hinshaw et al., 2000)2 and Planck (Ade et al., 2013) satellites. To better
than 1 part in 104, the temperature of the CMB is isotropic. At a slightly lower
level, anisotropies appear. Figure 4.1 depicts the map of CMB anisotropies from
the WMAP satellite. In this figure, the sky is projected onto a plane in the same
way that the surface of the earth is sometimes projected onto a plane. To quantify
the anisotropies, we can expand the map in spherical harmonics and compute the
angular power spectrum. The results are shown in Figure 4.2 where the horizontal

1 The CMB temperature map of the sky can be expanded in terms of spherical harmonics (the analog of Fourier
expansion in Euclidean spaces). The spherical harmonics are labeled by two integers l and m with
−l ≤ m ≤ l. The coefficient of the (l,m) spherical harmonic gives the amplitude of the CMB anisotropies on
an angular scale proportional to l−1 and in a direction given by m. If we average the square of the coefficients
for fixed l over the allowed values of m, we obtain what is called the angular power spectrum of CMB
anisotropies.

2 WMAP stands for Wilkinson Microwave Anisotropy Probe.
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Figure 4.1 Map of the microwave background temperature anisotropies. What
is shown is a projection of the sky onto a plane. The color scale indicates
temperature. The temperature differences between hot and cold areas is of the
order 10−5 of the average temperature. Credit: NASA/WMAP Science Team.

Figure 4.2 Angular power spectrum of the data shown in the previous figure.
The horizontal axis is an inverse angular scale. The vertical axis gives the
mean magnitude of fluctuations on the corresponding angular scale. Credit:
NASA/WMAP Science Team.

axis is the value of l (or equivalently the angular scale), and the vertical axis gives
the amplitude. The figure shows several interesting features. First of all, there are
oscillations in the spectrum with a first peak at an angular scale of about 1◦. Second,
at large angular scales the spectrum is quite flat. Finally, on small angular scales the
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spectrum is suppressed. One of the main goals of early universe cosmology is to
provide an explanation for these data.

The CMB is not the only window we have to probe the structure of the universe.
Using optical and infrared telescopes we can study the distribution of galaxies
and galaxy clusters. X-ray telescopes allow us to map out the distribution of hot
gas (gas with a temperature much higher than the surface temperature of the
sun) in the universe. Radio telescopes allow the exploration of cold gas (gas with
a temperature lower than the surface temperature of the sun). A new window
to probe the universe is emerging: the 21 cm window (Furlanetto et al., 2006)
(radiation at a frequency of 21 cm), a window that allows us to map out the
distribution of neutral hydrogen, the atom that dominated matter content, up to
very large distances and early times. These windows have the added advantage
(compared to the CMB) of providing us with 3-dimensional maps as opposed to
only 2-dimensional ones.

The second main goal of early universe cosmology is to provide explanations
for these data based on physical models that obey the principles of causality. As
we will see, standard big bang cosmology, the paradigm of cosmology until 1980,
cannot provide a causal explanation (an explanation from a theory that obeys the
principles of special relativity, namely that no information can travel faster than the
speed of light) of the data, and we have to go back to the very early universe if we
want to find explanations.

An important aspect of cosmology as a branch of physics is that, once we
have a model that can address the data, we can make predictions for future
observations. As will be discussed later, the current paradigm of early universe
cosmology made predictions concerning data that were not yet available at
the time when the model was formulated. As mentioned later, standard big
bang cosmology predicted the existence and black body nature of the CMB,
and inflationary cosmology predicted an almost spatially flat universe with a
spectrum of CMB anisotropies with specific properties. These predictions were
confirmed much later once observations became available. Any alternative to
the whatever the current cosmological paradigm might be must make specific
predictions for future observations with which it can be distinguished from the
current paradigm. I regard this falsifiability aspect as an important challenge for
modern cosmology.

Summarizing, the goals of early universe cosmology are:

• Explain the origin and early evolution of the universe.

• Explain the currently available data on the large-scale structure of the universe
based on causal physics.

• Make predictions for future observations.
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A few words on the notation. We will mostly consider homogeneous and
isotropic space-times in which the line element is given by:

ds2 = dt2 − a(t)2dx2, (4.1)

where t is physical time (time measured by our physical clocks), x are comoving
spatial coordinates (a coordinate system that expands as space expands), and a(t)
is the cosmological scale factor. Particles at rest have time-independent comoving
coordinates, and the change in a(t) describes the expansion (or contraction) of
space. Light travels on curves x(t) for which ds2 = 0. It is often useful to work
with conformal time τ in terms of which light travels at 45◦ lines when drawing
space-time diagrams in terms of conformal time and comoving spatial coordinates.
The Hubble expansion rate H(t) is given by:

H(t) = ȧ
a
, (4.2)

where an overdot represents the derivative with respect to time.
We are using units in which the speed of light, Planck’s constant, and Boltz-

mann’s constant are all set to 1. These are units that are generally used in the field
of high energy physics.

4.1.2 Problems of Standard Big Bang Cosmology

Cosmology deals with space, time and matter. Standard big bang (SBB) cosmology
is based on describing space and time using Einstein’s classical theory of general
relativity, and matter in terms classical perfect fluids. At the present time (which
will be denoted by t0 in the following), matter is dominated by a fluid with vanishing
pressure, which in cosmology is called cold matter, while the CMB provides a
component that is subdominant at the present time.

The equations of motion of general relativity imply that in the presence of
homogeneously distributed matter, the scale factor a(t) cannot be constant. Space
is either expanding or contracting. Observations tell us that we live in an expanding
universe. Since the energy density in radiation increases faster (namely as a(t)−4)
as we go back in time than the energy density in cold matter (which increases as
a(t)−3), there is a time teq when the energy densities of the two components are
equal. Before teq the universe is dominated by radiation, afterward by cold matter.
It turns out that teq is the time before which inhomogeneities do not increase in
time (up to factors that are logarithmic in time).3

3 The dominant radiation causes a homogeneous gravitational potential that impedes the growth of density
fluctuations in the cold matter.
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There is another time that is important in the evolution of the late universe.
This is the time trec of recombination before which the energy density was larger
than the ionization energy of hydrogen. Hence, for t < trec the universe was an
electromagnetic plasma, and only after which it becomes neutral. The photons
(particles of light) that are present at the time trec can then travel unimpeded to
us. This is in fact the origin of the CMB.

For t < teq the scale factor increases as:

a(t) ∼
(
t

t0

)1/2

, (4.3)

and vanishes at the time t = 0. At this time, the curvature and energy densities
become infinite. This is the big bang singularity of standard cosmology.

The most impressive success of standard big bang cosmology is that it predicted
the existence and black body nature of the CMB. However, the scenario is not able
to explain the near isotropy of this radiation. This is the so-called horizon problem
and it is illustrated in Figure 4.3. Here, the horizontal axis indicates comoving
spatial coordinates, the vertical axis in conformal time. The lines at 45◦ represent
light rays. The speed of propagation of causation is limited by the speed of light.
As indicated in the figure, the region of causal contact between t = 0 and the
time of recombination is smaller than the region of the last scattering surface (the
intersection of our past light cone lp with the surface at t = trec) over which

xp

t

trec

t0

γ

γ

Figure 4.3 Illustration of the horizon problem. The vertical axis is time, the
horizontal axis is distance—implicitly using coordinates in which light travels at
45◦ angles. We see light rays (wavy lines) starting at the time trec of recombination
and reaching us today (time t0). As shown, the distance over which we see the
microwave light to be isotropic is much larger than the distance that could have
been in causal contact starting at the initial time t = 0.



84 Robert H. Brandenberger

the microwave background is observed to be isotropic. The maximal angular scale
where isotropy can in principle be explained by causal physics is the angular scale
of the first peak in the CMB angular power spectrum.

As Figure 4.2 shows, there is nontrivial structure in the CMB on angular scales
that, according to SBB cosmology, could never have been in causal contact. Hence
SBB cannot explain the origin of structure on these large scales. This is the forma-
tion of structure problem from which the SBB scenario suffers.

In addition, SBB cosmology cannot explain the degree of spatial flatness of
the universe that is currently observed. According to SBB cosmology, a spatially
flat universe is unstable to the development of curvature in the expanding phase.
The near spatial flatness that is currently observed requires a tuning of the relative
contribution of the spatial curvature to the total energy density, which is of the order
of 10−50 at energy scales corresponding to particle physics grand unification.

Since the SBB scenario is well tested at late cosmological times, any solution
of the above-mentioned problems will require new physics during the stages of the
very early universe.

4.1.3 Preview

In the following sections I discuss different scenarios of very early universe cos-
mology that can provide solutions to the horizon, flatness, and structure formation
problems. I compare the current paradigm, the inflationary universe scenario, with
a couple of alternatives. The main message will be that there are a number of
early universe scenarios, and not just inflation, that are compatible with current
observations.

I then ask the question, What kind of picture of the early universe emerges if
superstring theory is the correct theory that unifies all forces of nature at high
energies? Hints will be discussed indicating that superstring cosmology will be
nonsingular and may not include a phase of inflation.

4.2 Theory of Cosmological Perturbations

4.2.1 Basics of Cosmological Perturbation Theory

Observations of CMB anisotropies and large-scale structure concern linear fluctu-
ations about the cosmological background (4.1). Hence we must start with a brief
summary of how these inhomogeneities are described and how they evolve (see,
e.g., Mukhanov, Feldman, and Brandenberger [1992] and Brandenberger [2004]
for details). We here work in the context of Einstein gravity with a matter
source. For simplicity, matter is modeled in terms of a scalar field ϕ with a
nontrivial background dynamics ϕ0(t). Since the universe is observed to converge to
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homogeneity on large scales, the fluctuations can be described in linear theory. This
means that any fluctuating field can be expanded in plane waves (Fourier modes)
and each such mode evolves independently. The Fourier modes can be labeled by
the comoving wavenumber k.

Linear fluctuations of geometry and matter can be classified according to how
they transform under spatial rotations. Out of the 10 degrees of freedom of the
metric, four are scalars, four vectors, and two tensors (the two polarization states of
gravitational waves). The physics is independent of which coordinates are used,
and hence there are four coordinate modes (gauge modes) that can be factored
out, leaving only two scalars and two vectors, plus the gravitational waves. For
simple matter models, such as a scalar field with a homogeneous component that
is evolving in time (a rolling scalar field), the vector modes are not sourced at
linear order in perturbation theory, and hence I will not consider them. I focus on
the scalar modes that are sourced by matter. One of the scalar modes vanishes for
matter without anisotropic stress, and the remaining mode is determined by the
matter fluctuations.

We can choose coordinates in which the scalar metric fluctuations are diagonal,
and the metric is:

ds2 = a2
{
(1+ 2�) dη2 − [(1− 2�) δij + hij

]
dxidxj

}
, (4.4)

where � is a function of space and time and represents the scalar metric fluctua-
tions. The matter field including linear fluctuations is:

ϕ(x,t) = ϕ0(t)+ δϕ(x,t). (4.5)

The equations of motion for the fluctuations can be obtained by expanding the
action of matter plus gravity to second order about the background. Since the back-
ground satisfies the equations of motion, terms linear in cosmological fluctuations
cancel out in the action, leaving the quadratic terms as the leading fluctuation terms.
There is only one canonical fluctuation variable v(x,t) (variable in terms of which
the action has a canonical kinetic term). As shown in (Sasaki, 1986; Mukhanov,
1988), this variable is:

v = a
(
δϕ + z

a
�
)
, (4.6)

where:

z = aϕ
′
0

H , (4.7)

and obeys the equation of motion:

v′′k +
(
k2 − z

′′

z

)
vk = 0, (4.8)
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where a prime denotes the derivative with respect to conformal time τ . Here we see
the crucial role which the Hubble radiusH−1 plays. If the equation of state of matter
is constant in time, then the factor z′′/z is of the order H 2. Hence on sub-Hubble
scales (k > H ) fluctuations oscillate, while on super-Hubble scales (k < H ) they
are frozen in and are squeezed, i.e., in an expanding universe the amplitude of the
dominant mode of the above equation grows as z ∼ a.

The curvature fluctuation ζ is in fact given by v/z. What is measured is the power
spectrum Pζ (k) of ζ , which gives the mean square fluctuation of ζ on a length scale
k−1 and is given in terms of the Fourier modes ζ(k) of ζ by:

Pζ (k) = k3|ζ(k)|2. (4.9)

If this quantity is independent of k, one has a scale-invariant spectrum. More
generally, one has P(k) ∼ kns−1, where ns is called the scalar spectral index. The
observed spectrum is nearly scale-invariant with a small red tilt (Ade et al., 2014).

An initial vacuum spectrum at time ti is:

vk(ti) = 1√
2k

. (4.10)

This is a deep blue power spectrum, i.e., there is more power on short wavelengths.
If fluctuations originate as vacuum perturbations (which they are assumed to in
inflationary cosmology and in a number of alternatives), then the squeezing of
the fluctuations on super-Hubble scales must have exactly the right features to
convert the initial vacuum spectrum to a scale-invariant one. As discussed in the
next section, this happens both for inflationary cosmology and for the matter bounce
scenario.

Note that the equation of motion for the Fourier mode of the amplitude of grav-
itational waves is the same as (4.8) except that the function z(η) is replaced by the
scale factor a(η). If the equation of state of matter is constant, then z ∼ a and hence
the gravitational waves evolve as the curvature fluctuations.

4.2.2 Criteria for a Successful Early Universe Cosmology

The presence of acoustic oscillations in the angular power spectrum of the CMB
and in the power spectrum of matter density fluctuations (the so-called baryon
oscillation peak) were predicted (Peebles and Yu, 1970; Sunyaev and Zeldovich,
1970) a decade before the development of inflationary cosmology. In these works it
was realized that a roughly scale-invariant spectrum of standing wave fluctuations
on super-Hubble scales at cosmological times before the time trec of recombination
would, as the scales enter the Hubble radius and begin to oscillate as described
in the previous section, be in good agreement with the data on the distribution of
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Figure 4.4 Origin of acoustic oscillations in the CMB angular power spectrum.
Assuming that fluctuations originate as standing waves on scales that are super-
Hubble at early times, then different modes perform a different number of
oscillations between when they enter the Hubble radius and start to oscillate and
the time of recombination. Those that perform n = 0,2,4,... quarter oscillations
are standing waves with maximal amplitude at trec and yield peaks in the
anisotropy spectrum, whereas those that perform n = 1,3,... quarter oscillations
have velocity inhomogeneities only at trec and yield minima in the angular power
spectrum (see Sunyaev and Zeldovich [1970] from where the figure is adapted).

galaxies that were available at the time when the papers were written and give
rise to oscillations in the angular power spectrum of the CMB and in the power
spectrum of density fluctuations. The dynamics is illustrated in Figure 4.4. At that
time, however, no models based on causal physics were known for how to produce
such primordial fluctuations.

Here we outline the criteria that a successful early universe scenario must satisfy.
Let us emphasize again the difference between the horizon and the Hubble radius.
The horizon is the forward light cone of a point at the initial time and carries causal-
ity information. Beginning at the initial time, it is possible to have causal contact
within the horizon. The Hubble radiusH(t)1, on the other hand, is a local concept. It
separates scales where fluctuations oscillate (sub-Hubble modes) from scales where
the inhomogeneities are frozen in and get squeezed (super-Hubble modes).

Since the Hubble radius at trec is smaller than the radius of the part of the universe
that we probe with the CMB, the condition for an early universe scenario to solve
the horizon problem is that the horizon at trec be much larger than the Hubble
radius at that time (at least two orders of magnitude since the Hubble radius at trec
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corresponds to an angular scale of about 1◦ and we need to explain the absence
of order one anisotropies on the angular scales of the full sky). Thus the first
requirement on a successful early universe scenario is that the horizon at late times
be much larger than the Hubble radius.

In order to be able to have a causal mechanism of structure formation, scales
that are currently observed in cosmology must originate in the early universe with
a wavelength smaller than the Hubble radius. This is the second requirement.

Third, the scales that we observe today must propagate for a long time at super-
Hubble lengths. This is in order that the fluctuations are squeezed and enter the
Hubble radius at late times as standing waves. This is required in order to provide
an explanation for the observed acoustic oscillations in the angular power spectrum
of the CMB.

Finally, the generation mechanism that acts on sub-Hubble scales must yield a
nearly scale-invariant spectrum of cosmological perturbations.

The inflationary universe scenario provides a simple realization of these four
criteria. However, there are alternative realizations as explained in the following
section.

4.3 Paradigms of Early Universe Cosmology

4.3.1 Cosmological Inflation

Cosmological inflation (Brout, Englert, and Gunzig, 1978; Fang, 1980; Guth, 1981;
Sato, 1981) assumes that space underwent a period of almost exponential expansion
during a finite time interval in the very early universe, starting at some time ti
and ending at a time tR.4 The first model of inflation was based on a modified
gravitational action (Starobinsky, 1980) where higher curvature terms dominate
at early times and lead to accelerated expansion. Later models assumed that the
accelerated expansion of space is realized in the context of Einstein gravity, but
assuming the presence of a slowly rolling (Albrecht and Steinhardt, 1982; Linde,
1982, 1983) scalar field whose energy-momentum tensor is dominated by the scalar
field potential energy. After the end of inflation at time tR, the evolution of the
universe is like in SBB cosmology.

Figure 4.5 represents a spacetime sketch of inflationary cosmology. The vertical
axis is time, the horizontal axis denotes physical spatial distance. The solid curve
labeled H−1 represents the Hubble radius, the dashed line is the horizon, and the
curve labeled k represents the physical wavelength of a fluctuation mode.

During the phase of accelerated expansion for [ti < t < tR], the horizon is grow-
ing very fast while the Hubble radius increases only slowly. For almost exponential

4 The subscript R stands for reheating since at this time the conditions of a hot early universe must be created.



Beyond Standard Inflationary Cosmology 89

Figure 4.5 Space-time sketch of inflationary cosmology. The vertical axis is time,
the horizontal axis is physical distance. The curve labeled H−1 is the Hubble
radius, and the curve labeled k is the physical wavelength of the fluctuation
on a particular (comoving) scale. Note that during the period inflation both the
wavelength of a fluctuation and the horizon grow exponentially (for exponential
inflation), which is indicated by the curvature of the lines. After the end of
inflation, the wavelength grows as a(t) ∼ t1/2 which is indicated by the near
linearity of the curve.

expansion the horizon increases nearly exponentially while the Hubble radius is
almost constant. Only a very short interval of accelerated expansion is needed to
solve the horizon problem (the horizon needs to increase by a factor of greater than
100 relative to the Hubble radius).

If the energy scale of inflation corresponds to the scale of particle physics Grand
Unification (an energy scale of about 1016 GeV), then about 60 e-foldings of
exponential expansion are required in order that scales that we observe now in
cosmology had a wavelength smaller than the Hubble radius at the beginning of the
inflationary period. In this case, the second of the general criteria for a successful
early universe cosmology is satisfied.

As is evident from Figure 4.5, the wavelength of fluctuations is larger than
the Hubble radius for a long time. Hence the squeezing of the fluctuations that
is required in order to obtain the acoustic oscillations in the CMB angular power
spectrum is realized.
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Finally, as initially argued in Starobinsky (1979) for gravitational waves and in
Mukhanov and Chibisov (1981) for the curvature perturbations, the power spectrum
of fluctuations will be approximately invariant of scale. This is a consequence of
the time-translation invariance of the phase of exponential expansion (Press, 1980;
Sato, 1981). It is usually assumed that fluctuations originate as quantum vacuum
perturbations at early times during the inflationary phase. This assumption can be
justified since, in the absence of interactions with the agent driving the accelerated
expansion, any initial fluctuations are redshifted away, leaving the matter in a vac-
uum state. If the agent driving inflation interacts with matter, it is possible to realize
inflation while maintaining the dominance of thermal fluctuations. This is the warm
inflation scenario (Berera, 1995).

The scale invariance of the spectrum of curvature fluctuations can also be seen
using the general formalism described in the previous section. The curvature fluctu-
ation variable, starting out with a deep blue vacuum spectrum on sub-Hubble scales,
gets squeezed on super-Hubble scales. Large wavelength fluctuations exit the Hub-
ble radius earlier and are thus squeezed more. For almost exponential inflation the
squeezing is just right to turn the initial vacuum spectrum into a scale-invariant one.
To see this, consider first the Hubble crossing condition:

a−1(tH t (k))k = H . (4.11)

Before tH (k), the amplitude of vk is constant, afterwards it increases as z. Thus the
power spectrum of ζ at some late time t is:

Pζ (k,η) = k3z−2(η)

(
z(η)

z((ηH (k))

)2

|vk(ti)|2

� 1

2

(
a(tH (k))

z(tH (k))

)2

H 2. (4.12)

The k-dependence has canceled out, and we thus obtain a scale-invariant spectrum.
Gravitational waves evolve as curvature fluctuations, with the function z(η)

being replaced by a(η). Hence inflationary cosmology predicts a scale invariant
spectrum of gravitational waves whose amplitude is suppressed compared to that of
curvature fluctuations by the slow-roll parameter ε, which gives the ratio between
z and a during the inflationary phase.

Of the early universe scenarios discussed here, inflationary cosmology is the
only one that predicted (as opposed to postdicted) various observational results,
e.g., the spatial flatness of the universe, the almost scale invariance of the spectrum
of cosmological perturbations, and the near Gaussianity of this spectrum. In fact,
inflation predicted (Mukhanov and Chibisov, 1981) a slight red tilt of the spectrum,
a tilt that has now been established by the recent CMB observations (see, e.g., Ade
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et al. [2014]). Inflation predicts a nearly scale-invariant spectrum of gravitational
waves (Starobinsky, 1979) with a slight red tilt. Note that, whereas the tilt of
the spectrum of cosmological perturbations can be made blue by complicating
the scalar field model of inflation, the spectrum of gravitational waves has a red
tilt unless the matter that is responsible for inflation violates standard energy
conditions.5

A drawback of the inflationary scenario is the trans-Planckian problem for cos-
mological perturbations (Brandenberger and Martin, 2001; Martin and Branden-
berger, 2001). (See e.g., Brandenberger and Martin [2013] for a review with an
extended list of references.) If the period of inflation lasts only slightly longer than
the minimal amount of time it needs to in order to solve the flatness and structure
formation problems of SBB cosmology, then the wavelengths of the fluctuation
modes that we observe today are smaller than the Planck length at the beginning
of inflation. We do not understand the physics on these wavelengths, and hence
it is unclear if the initial conditions for the fluctuations that are used are well
justified. Some other problems of inflationary cosmology are discussed in later
sections.

4.3.2 Matter Bounce

Another paradigm to obtain successful structure formation is the matter bounce
scenario (Wands, 1999; Finelli and Brandenberger, 2002). It is assumed that there
is new physics6 that resolves the cosmological singularity. Time runs from −∞
to ∞. The universe begins in a contracting phase that is the mirror inverse of the
expanding standard big bang cosmology evolution, which is to say that at very early
times during contraction, a dark energy component may dominate, followed by a
period of matter-dominated contraction, followed by a radiation-dominated phase,
and then a nonsingular bounce. The bounce point (minimal value of the scale factor)
is t = 0.

Figure 4.6 presents a sketch of the resulting spacetime diagram. The vertical axis
is time, the horizontal axis represents comoving spatial distance. The Hubble radius
is symmetric about t = 0. The perpendicular curve indicates the wavelength of a
fluctuation. Since there is no origin of time, the horizon is infinite and there is no
horizon problem. As obvious from the figure, all scales originate inside the Hubble

5 At this point, we have not yet observed a stochastic background of gravitational waves, and observing the
small tilts predicted by various early universe models will be very challenging.

6 The new physics could be string theory, loop quantum gravity, or some effective field theory that corresponds
to Einstein gravity coupled to some matter that violated the usual Hawking–Penrose energy conditions. For a
review of bouncing cosmologies see, e.g., Brandenberger and Peter (2017). I am emphasizing here ways to
obtain a spectrum of cosmological fluctuations in agreement with observations, and the specific dynamics of
the bounce phase has little to say about this issue.
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Figure 4.6 Spacetime sketch of the matter bounce cosmology. The vertical axis is
conformal time, the horizontal axis is comoving distance. The curve labeled H−1

is the Hubble radius, and the vertical line represents the wavelength of a fluctuation
mode. The bounce phase (for which new physics is required) lasts from the time
when the Hubble radius takes on its minimal value in the contracting phase to the
corresponding time during expansion.

radius, and hence a causal structure formation scenario is possible. In fact, for scales
that exit the Hubble radius during the matter-dominated phase of contraction, an
initial vacuum spectrum on sub-Hubble scales evolves (Wands, 1999; Finelli and
Brandenberger, 2002) into a scale-invariant spectrum on super-Hubble scales. If we
take into account the dark energy component in the contracting phase, a slight red
tilt of the spectrum results, as in inflationary cosmology (Cai and Wilson-Ewing,
2015).

The reason why a scale-invariant spectrum of curvature fluctuations is obtained
from initial vacuum perturbations is that the squeezing function in (4.8) has the
same dependence on η as in the case of inflation. Hence the conversion of a vacuum
spectrum to a scale-invariant way proceeds as in the case of inflation.

Note that a scale-invariant spectrum of gravitational waves is also generated
in the matter bounce scenario. This demonstrates that the often stated claim
that a detection of primordial gravitational waves on cosmological scales will
confirm inflation is false (see Brandenberger [2011a] for a detailed discussion of
this point). In fact, in the matter bounce scenario the analog of the inflationary
slow-roll parameter ε is of order one, and hence there is no suppression of the
amplitude of gravitational waves.
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The matter bounce scenario faces significant problems. For one, the contracting
phase is unstable against anisotropies (Cai et al., 2013). In addition, there is no
suppression of gravitational waves compared to cosmological perturbations, and
hence the amplitude of gravitational waves is predicted to be in excess of the
observational bounds. If the cosmological perturbations are boosted in the bounce
phase, then non-Gaussianities are induced, which are in excess of observational
bounds (Quintin et al., 2015). Postulating a large graviton mass in the contracting
phase can solve both of these problems (Lin, Quintin, and Breadenberger, 2018).

4.3.3 Pre–Big Bang and Ekpyrotic Scenarios

The pre–big bang (PBB) (Gasperini and Veneziano, 1993, 2003) and ekpyrotic
scenarios (Khoury et al., 2001) are bouncing cosmologies that avoid the anisotropy
and overproduction of gravitational wave problems of the matter bounce scenario.
In both of these cosmologies, the contracting phase is dominated by a form of
matter whose energy density increases as fast (in the case of the PBB scenario)
or faster (in the case of the ekpyrotic scenario) than the contribution of anisotropy.
In the case of the PBB scenario, it is the kinetic energy of the dilaton field (one of
the massless degrees of freedom of string theory) that dominates in the contracting
phase; in the case of the ekpyrotic scenario it is the energy density of a new scalar
field with negative exponential potential. Both of these scenarios were initially
proposed based on ideas in superstring theory, but they can also be viewed as
effective field theories involving a new scalar field with some special features.

The spacetime sketches of the PBB and ekpyrotic scenarios are similar to that
of the matter bounce paradigm (see Figure 4.6), except that the bounce is not
symmetric. In particular, the horizon problem of standard big bang cosmology is
solved in the same way as in the matter bounce, and in the same way fluctuations
on all scales observed today originate inside the Hubble radius at early times, thus
allowing a causal structure formation scenario. However, unlike what happens in
the matter bounce scenario, the growth of fluctuations on super-Hubble scales in
the contracting phase is too weak to convert an initial vacuum spectrum into a
scale-invariant one. The resulting spectrum of curvature fluctuations and gravita-
tional waves is blue (see, e.g., Brandenberger and Finelli [2001] and Lyth [2002]),
thus not allowing initial vacuum perturbations to explain the observed structures
in the universe, and predicting a negligible amplitude of gravitational waves on
cosmological scales. As studied in Copeland, Easther, and Wands (1997a) and
Copeland, Lidsey, and Wands (1997b) in the case of the PBB scenario and in Notari
and Riotto (2002), Finelli (2002), Di Marco, Finelli, and Brandenberger (2003),
Lehners et al. (2007), Buchbinder, Khoury, and Ovrut (2007), and Creminelli and
Senatore (2007) in the case of the ekpyrotic scenario, a scale-invariant spectrum of
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curvature fluctuations can be obtained by using primordial vacuum fluctuations in
a second scalar field.

4.3.4 Emergent String Gas Cosmology

Another alternative to cosmological inflation as a theory for the origin of structure
in the universe is the emergent scenario as realized in string gas cosmology (SGC)
(Brandenberger and Vafa, 1989). This scenario (see, e.g., Brandenberger [2011b,
2009] and Battefeld and Watson [2006] for reviews) is based, as discussed in the
following section, on the idea that there was a long quasi-static phase in the early
universe dominated by a thermal gas of fundamental strings. This phase may be
past-eternal, or it may be preceded by a previous phase of contraction. At the end of
this phase there is a transition to the expanding radiation phase of SBB cosmology.

Figure 4.7 is a spacetime sketch of SGC. The vertical axis is time, with the time
tR denoting the end of the quasi-static phase, the horizontal axis is physical distance.
The curve labeledH−1 is the Hubble radius which is infinite in the Hagedorn phase,
falls to a microscopic value at tR and then increases linearly in time as in SBB
cosmology. Since time goes back to −∞, there is no horizon problem, as in the

Figure 4.7 Spacetime sketch of string gas cosmology. The vertical axis is time,
the horizontal axis is physical distance. The time tR is the end of the Hagedorn
phase and beginning of the radiation phase of SBB cosmology. The curve
labeled k represents the wavelength of a fluctuation mode. The Hubble radius is
labeled H−1.
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bouncing models discussed in previous sections. As is obvious from Figure 4.7, all
scales originate from inside the Hubble radius at early times, thus allowing for a
causal structure formation scenario.

As first realized in Nayeri, Brandenberger, and Vafa (2006), Brandenberger
et al. (2007), and Brandenberger, Nayeri, and Patil (2014), thermal fluctuations of
a gas of closed strings on a compact space with the topology of a torus lead to
a scale-invariant spectrum of curvature fluctuations and gravitational waves. The
tilt of the spectrum of curvature fluctuations is predicted to be red (as in the case
of inflationary cosmology), but that of the gravitational waves is slightly blue, in
contradistinction to what is obtained in inflation. The amplitude of gravitational
waves is suppressed compared to that of curvature fluctuations by the equation of
state parameter w = p/ρ (Brandenberger et al., 2007, 2014).

The emergent string gas cosmology model is an example where the fluctuations
are of thermal origin, not of quantum origin, as they are in most inflationary models
(warm inflation being the exception) and the ekpyrotic scenario.

4.3.5 Comparisons

The main messages from this section is that there are a number of different early
universe scenarios that can solve the horizon problem of SBB cosmology and that
can generate a spectrum of curvature fluctuations consistent with observations.
Inflationary cosmology is not the only scenario, although it was the first one and
the only one that can claim to have made successful predictions (as opposed to
postdictions). Inflation is also the only scenario that is at the present time self-
consistent from the point of view of low energy effective field theory (Einstein
gravity coupled to low energy quantum field matter). All the other scenarios
mentioned earlier need new physics to obtain essential aspected of the dynamics of
the cosmological background, be it a cosmological bounce or a quasi-static phase.
Another nice feature that inflation has is that—at least in the case of large-field
inflation—the slow roll trajectory in field space that leads to inflation is a local
attractor in initial condition space (Brandenberger and Kung, 1990; Brandenberger,
2016). This feature is shared by the ekpyrotic scenario, but not some of the
other ones.

On the other hand, in all of the alternatives to inflation mentioned, the physical
wavelength of the fluctuations that are currently observed are much larger than the
Planck length (as long as the maximal temperature is smaller than the Planck scale)
at all times. Hence the trans-Planckian problem that the theory of cosmological
fluctuations in inflationary cosmology suffers from is not present.

Unless model parameters are finely tuned, the energy scale at which inflation
takes place is close to the particle physics scale of Grand Unification. This is close
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to the Planck scale and even closer to the preferred string scale (Green, Schwarz,
and Witten, 1987). Hence the extrapolation of low energy physics to the scale of
inflation and (to the bounce scale in bouncing cosmologies) needs to be justified. In
spite of a large body of work, there have so far not been any convincing realizations
of inflation in the context of superstring theory. Hence there are good reasons to
look beyond standard inflationary cosmology.

Note that the structure formation scenarios described in this chapter are not the
only ones. The main goal was to present a few very different scenarios and to show
how the general criteria for a successful early universe model can be realized.

4.4 Hints from Superstring Theory

4.4.1 Challenges

The goal of superstring theory is to provide a quantum theory that unifies all four
forces of nature, including gravity (see, e.g., Green et al. [1987] and Polchin-
ski [1998a, 1998b] for textbook treatments of string theory). If nature is indeed
described by superstring theory, then string theory should play a crucial role at the
high energy densities that were present in the very early universe. Whichever of the
scenarios for structure formation described in the previous section is in fact realized
in nature should then be determined by string theory.

It has been shown to be very challenging to obtain an inflationary phase from
string theory (see, e.g., Baumann and McAllister [2014] for a detailed discussion).
The problem is that in order to obtain a period of slow-roll inflation from simple
scalar field potentials, field values in excess of the Planck mass mpl are required
(see, e.g., the review in Brandenberger [2016]). However, for such large field values,
string effects on the shape of the potential need to be considered and tend to destroy
the required flatness of the potential unless special symmetries of the field theory
(e.g., shift symmetry [Kawasaki, Yamaguchi, and Yanagida, 2000]) are considered.
But even in this case, string theory arguments such as the weak gravity conjecture
(Arkani-Hamed et al., 2007; Cheung and Remmen, 2014) tend to invalidate the
effective field theory constructions.

4.4.2 String Thermodynamics

There are indications that the description of the very early universe in string theory
will look very different from what can be obtained by models based on point
particle theories (which includes all existing “string-derived” low energy effective
field theories). The first evidence for this comes from string thermodynamics. It
has been known (Hagedorn, 1965) from the earliest days of string theory that there
is a maximal temperature TH of a gas of closed string in thermal equilibrium, the



Beyond Standard Inflationary Cosmology 97

so-called Hagedorn temperature. The value of this limiting temperature is given by
the string scale. Assuming that space is a torus of radius R, then the evolution of
the temperature T as a function of R is sketched in Figure 4.8. The length of the
plateau region of T (R) depends on the total entropy of the system: the larger the
entropy, the larger the plateau region.

The origin of the T (R) curve of Figure 4.8 is easy to understand. On a compact
space, there are three types of states of strings: momentum modes (which corre-
spond to the center of mass motion of the string), winding modes (which count
the number of times the string wraps the torus), and the string oscillatory modes
(whose energies are independent of R). The number of oscillatory states increases
exponentially with the energy of the state. It is this fact that leads to the existence
of the limiting temperature. As the energy density in a system is increased, then
the energy will go into the excitation of new oscillatory states as opposed to the
increase in the temperature.

The energies of the momentum and winding modes are quantized in units of 1/R
and R, respectively. For momentum modes we have:

En = n 1

R
, (4.13)

and for winding modes:

Em = mR (4.14)

Figure 4.8 Temperature (vertical axis) as a function of the radius (horizontal axis)
of a box of strings in thermal equilibrium.
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(in string units), where n and m are integers. In fact, there is one momentum and
one winding quantum number for each spatial dimension.

The above is the mass spectrum of free string states. It reflects an important
symmetry of string theory, the T-duality symmetry, which implies that under the
transformation:

R→ 1

R
(4.15)

(in string units), the spectrum of states is unchanged. This symmetry corresponds
to an interchange between momentum and winding quantum numbers. It is a sym-
metry of string interactions, and it is assumed to be a symmetry of nonperturbative
string theory, giving rise to the existence of D-branes (Polchinski, 1998b; see also
Boehm and Brandenberger, 2003). This symmetry allows us to understand the
symmetry of the T (R) curve of Figure 4.8 about lnR = 0: for large values of
R, the energy wants to be in the modes that are light for large values of R, namely
the momentum modes; while for R  1 in string units, the energy will drift into
the winding modes, which are the light ones in this range of R values.

Figure 4.8 immediately (Brandenberger and Vafa, 1989) leads one to expect that
in the context of string theory the cosmological singularity can be avoided,7 while in
the context of Einstein gravity coupled to particle matter a temperature singularity
as R→ 0 is unavoidable.

4.4.3 T-Duality Symmetry and Doubled Space

What is missing from the previous discussion is the dynamics of the background
spacetime. This can obviously not be described by the Einstein–Hilbert action
since the this action is incompatible with the T-duality symmetry of string theory.
Dilaton gravity as described in Gasperini and Veneziano (1993, 2003) is a better
starting point. In this case the T-duality symmetry of string theory is reflected in the
so-called scale factor duality, which involves a transformation of both the metric
and the dilaton field.

However, there may be a modified background description that is more useful
for superstring cosmology. The starting point of this description is the following: in
quantum mechanics the position eigenstates |x > are dual to momentum eigenstates
|p >. In a toroidal background, the momenta are discrete, labeled by integers n, and
hence:

|x >=
∑
n

einx |n >, (4.16)

where |n > are the momentum eigenstates with momentum quantum numbers n. As
discussed earlier, in string theory on a torus the windings are T-dual to momenta,

7 The logic here is that if the temperature remains finite, the curvature should not be able to blow up.
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and it is possible (Brandenberger and Vafa, 1989) to define a T-dual position
operator:

|x̃ >=
∑
m

eimx̃ |m >, (4.17)

where |m > are the eigenstates of winding, labeled by an integer m.
String states with both momenta and windings can be viewed as point particles

propagating on a doubled space, which is spanned by both the position and the dual
position eigenstates. The coordinates of this space are Xi :

Xi = (xi,x̃i). (4.18)

If the underlying target space of the strings has d spatial dimensions, the number
of spatial dimensions of the doubled space is 2d . This is the same space that is
used in the double field theory (for reviews, see Siegel [1993a, 1993b], Hull and
Zweibach [2009], and Aldazabal, Marques, and Nunez [2013]) approximation to
string theory.

Let us consider a torus with radius R. If R is large in string units, then the light
states are the momentum modes and a physical apparatus to measure length will be
built from momentum modes. However, if R is small compared to the string length,
then it is the winding modes that are light, and hence a physical apparatus will be
constructed from the winding modes. Hence an apparatus measuring the physical
length lp(R) will be measuring (see Figure 4.9):

lp(R) = R R � 1 (4.19)

lp(R) = 1

R
R  1,

when R is expressed in units of the string length (Brandenberger and Vafa, 1989).
This yields a new interpretation of a dynamical evolution R(t). The physical

interpretation of R decreasing toward R = 0 is that the dual radius (which is also
the physical radius) is increasing to R = ∞ in the dual directions. In double space
we can express this dynamics by taking a cosmological metric in double space,
which is:

ds2 = dt2 − a(t)dx2 − a(t)−2dx̃2. (4.20)

As mentioned, physical measuring sticks measure length in terms of the coordinates
related to the light string modes. Hence, for R > 1 (in string units), length will
be measured in terms of x, while for R < 1 it is measured in terms of x̃. Thus
a physical device will see space as contracting as R decreases toward R = 1,
but for R < 1 it will be seen as increasing. Thus a physical observer will see no
singularity. This argument is elaborated on in a recent paper (Brandenberger et al.,
2018).
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Figure 4.9 Physical length (vertical axis) as a function of the coordinate length
(horizontal axis).

4.5 Discussion

In spite of the fact that the inflationary scenario has been a model of early universe
cosmology with many successes, we may have to look beyond the standard infla-
tionary scenario in order to understand the complete evolution of the early universe.
All inflationary practitioners would admit that standard inflation cannot explain the
evolution all the way back to the big bang as a consequence of the cosmological
singularities that it does not avoid (Borde and Vilenkin, 1994). Although it is pos-
sible that the correct picture of the very early universe will involve a new phase
followed by a period of inflation like we understand inflation today, this needs not
be the case: there are a number of alternative early universe scenarios that lead to
cosmological structure formation consistent with current observations.

Of all of the structure formation paradigms, inflation may be the only one that
is self-consistent at the level of effective point particle field theories. However, if
nature is described by string theory, then it may be difficult to embed standard
inflation into the model, and an alternative such as string gas cosmology may
emerge in a more natural way, as already argued in Brandenberger and Vafa (1989).
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5

What Black Holes Have Taught Us
about Quantum Gravity

daniel harlow

Formulating a theory of quantum gravity has been a major goal of theoretical
physics for almost a century. Early efforts to ‘quantize’ general relativity using
the techniques that had succeeded for electrodynamics did not succeed for gravity,
despite considerable efforts by some of the greatest theoretical physicists of the
twentieth century (Feynman, 1963; DeWitt, 1967; ’t Hooft and Veltman, 1974). In
more precise terms, they were unable to fit general relativity within the framework
of relativistic quantum field theory. There are two reasons that are sometimes given
(see, e.g., the introduction of Becker, Becker, and Schwarz [2006]) for this failure:

• Gravity is not renormalizable: If one attempts to construct a perturbative
description of gravitational interactions starting from the Einstein–Hilbert action,
as one does in the standard model of particle physics starting from the
Yang–Mills/matter Lagrangian, then, unlike in the latter case, one encounters
an infinite number of short-distance divergences as one goes to higher and higher
orders in perturbation theory.

• Gravity is diffeomorphism invariant: In general relativity the causal structure
of spacetime depends on the metric, which is a dynamical variable. There is no
physical meaning to any particular set of coordinates we use to describe physics,
and as a result there is no notion of strictly local observables.

These statements are both true, but in fact neither one necessarily prevents a
complete formulation of quantum gravity based on a local Lagrangian in spacetime.
For example the Fermi theory of weak interactions and the chiral Lagrangian
description of pions interacting with nucleons are both nonrenormalizable field
theories, but both have long ago been ‘UV completed’ by the renormalizable
standard model of particle physics. So far this has not been done for gravity, but
the program of ‘asymptotic safety’ (see, e.g., Benedetti, Machado, and Saueres-
sig [2009]), seeks to do precisely this. Similarly, there are several low-dimensional
examples of diffeomorphism-invariant theories that have perfectly satisfactory
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formulations based on local Lagrangians: two especially simple ones are the
worldline action for a free relativistic particle and the Nambu–Goto action for a free
relativistic string (see, e.g., Polchinski [2007] for both).1 If nonrenormalizability
and diffeomorphism invariance are not to blame for the difficulty in quantizing
gravity however, what is? The goal of this essay is to argue that ultimately it is
black holes that are to blame.

The existence of black holes arises from the combination of relativistic invari-
ance and the universality of gravitational interactions. There could be no such thing
as a ‘Newtonian black hole’, since we could always escape any gravitational field
by moving fast enough, and there could also be no such thing as an ‘electromagnetic
black hole’, because no matter how strong the electric field in a region of space, a
particle that does not carry electric charge can simply fly through unaffected. By
contrast, relativity tells us that no object can move faster than the speed of light,
and the universality of gravity tells us that there is no such thing as a particle that is
‘neutral under gravity’. It is therefore possible to have a region of spacetime where
the gravitational field is so strong that nothing can escape it.

Black holes are important in quantum gravity because they put strong restrictions
on what kind of experiments probing the structure of spacetime are possible. In
particular, they prevent construction of the kind of local observables that are the
basic currency of quantum field theory. One way to understand this is to imagine
how we might operationally measure a local observable in quantum gravity. For
example we could try to construct a cubic network of rods of length � filling a region
of space, and then we could do experiments like ‘walk 12 rods in the x direction, 5
rods in the y direction, and 17 rods in the z direction, and then measure the electric
field.’ In order for this experiment to make sense, however, there are two basic
constraints it needs to satisfy. The first is that our collection of rods should not be
so heavy that it collapses to form a black hole, and the second is that the rods should
be heavy enough that quantum fluctuations in their position are small compared to
the distances we are trying to resolve. I’ll now show that these constraints are not
compatible for networks that are fine enough to probe quantum gravity.

Indeed say the linear size of the collection of rods is L, and that each rod has
mass m. To avoid collapse to a black hole, L needs to be much larger than the
Schwarzschild radius of the whole collection:

L� 2GmL3

c2�3
. (5.1)

1 It is true that theories with diffeomorphism invariance cannot quite be quantum field theories in the precise
sense, since they lack an energy momentum tensor and local operators, but these examples show that they can
nonetheless have local path integral formulations, which is all we could have asked for from gravity in the first
place. The ‘local observables’ I describe in this chapter always include ‘gravitational dressing’ to make them
diffeomorphism invariant.
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There are various ways to rewrite this constraint, one useful way is as

m

mp

(
�

L

)2
�

�p
, (5.2)

where mp and �p are the Planck mass and length. In order to have a useful set
of rods we need L � �, so the first factor on the right-hand side will be small.
In daily situations however �/�p is very large, so this bound will not be very
constraining on m: this is a good thing, since, for example, it is what prevents
the Laser Interferometer Gravitational Wave Observatory (LIGO) detector from
collapsing into a black hole despite the fact thatmp ∼ 10−8 kg. In quantum gravity,
however, we are indeed interested in distances of order �p ∼ 10−35 m, so we need
to take � ∼ �p. Our ‘no black hole’ inequality (5.2) then tells us that to probe
Planck-scale physics, we need

m mp. (5.3)

To see how quantum fluctuations constrain the mass in the other direction, we can
use the uncertainty principle. Indeed we need

�� δx >
h̄

δp
≈ h̄

mδv
� h̄

mc
, (5.4)

where I’ve also required that the rod velocities are nonrelativistic. We can rewrite
this as

m

mp
� �p

�
, (5.5)

so in daily situations the right-hand side is very small and we again don’t have
much to worry about. In studying quantum gravity, however, we again need to take
� ∼ �p, in which case we have

m� mp, (5.6)

which is obviously inconsistent with (5.3). Thus the combination of black holes and
quantum mechanics forbids the operational definition of local observables, which
are sharp enough to probe quantum gravity at the Planck scale.

Another way to get at the same physics is via the famous Bekenstein–Hawking
formula for the entropy of a black hole (Bekenstein, 1973; Hawking, 1975),

SBH = c3A

4Gh̄
. (5.7)

Here A is the horizon area of the black hole. This formula tells us something rather
remarkable about quantum gravity: the number of independent degrees of freedom
in a spacetime region is subextensive, or in other words, it grows with the size of
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the region less quickly than its volume. This again is telling us that the quantum
gravity does not have all the local observables that a quantum field theory would.

In the early 1990s, the Bekenstein–Hawking formula (5.7) led ’t Hooft and
Susskind to the idea that if a theory of quantum gravity is local, it has to be local in a
lower number of spacetime dimensions (’t Hooft, 1993; Susskind, 1995). Susskind
christened this idea the holographic principle. At first this was viewed with some
skepticism by the theoretical physics community, but this changed immediately
in 1998 with the discovery by Maldacena of a set of explicit examples of holo-
graphic theories of quantum gravity: the anti–de Sitter spacetime conformal field
theory (AdS/CFT) correspondence (Maldacena, 1999). Today this correspondence
remains our most complete and well understood example of a theory of quantum
gravity, and for 20 years it has been perhaps the most prolific source of new ideas in
theoretical physics (see Harlow [2018] for a recent overview of the correspondence
as well as the ideas described in the remainder of this essay).

The AdS/CFT correspondence says that any theory of quantum gravity in d + 1
dimensional asymptotically anti–de Sitter space is defined nonperturbatively by a
d-dimensional conformal field theory living on the boundary of that space. I illus-
trate this setup in Figure 5.1: the CFT is the ‘can’, while the AdS is the ‘soup’. This
situation is usually described by saying that the ‘bulk’ quantum gravity theory is
dual to the ‘boundary’ conformal field theory, and the radial direction, and therefore
the bulk spacetime, is described as emergent. This necessary emergence of the bulk
spacetime is perhaps the main thing black holes have taught us about quantum
gravity.

In the philosophy literature there has been some confusion over the meaning of
the words dual and emergent in this context (Rickles, 2013; De Haro, 2015; Dieks,
van Dongen, and De Haro, 2015). This confusion arises because usually something
that is emergent is only approximate, while AdS/CFT is usually claimed to be an

t

rθ

t

θ

Figure 5.1 Three-dimensional AdS/CFT. On the left we have AdS3, with gravity,
while on the right we have CFT2, without gravity. The t and θ coordinates are
manifest in the boundary CFT, while the radial r coordinate is emergent.
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exact correspondence. The explanation of this terminology is that in AdS/CFT there
are really three theories being considered: the boundary conformal field theory,
nonperturbative quantum gravity in the bulk, and low-energy effective field theory
in the bulk. The first two are claimed to be exactly dual/equivalent to each other,
while the third emerges approximately from either of the first two in appropriate
situations. This is illustrated for the best-known example of AdS/CFT, IIB string
theory on AdS5× S

5, in Figure 5.2. Since we do not currently have an independent
formulation of nonperturbative string theory, it is perhaps safest to view the duality
as using the boundary conformal field theory to define it. We may then ask to what
extent this is a good definition, with the criterion for success being that low-energy
effective field theory coupled to gravity emerges in appropriate situations.

How can a conformal field theory in d spacetime dimensions moonlight as a
theory of quantum gravity in d+1 spacetime dimensions with an emergent effective
field theory description? In recent years considerable progress has been made on
this question. One way of understanding the basic problem is as follows (Almheiri,
Dong, and Harlow, 2015): consider the algebra of an operator φ(x) in the center
of a time slice of AdS space with the set of operators O(X) at the boundary of the
slice. The basic setup is shown in Figure 5.3. Since φ(x) and O(X) are spacelike
separated in the radial direction r , locality naively suggests that they should be
commuting operators. But this is in tension with a basic property of any quantum
field theory, including the boundary conformal field theory: any operator that com-
mutes with all local operators at a fixed time must be proportional to the identity
(Streater and Wightman, 1989). This observation formalizes the notion that a given
theory cannot really be local with two different spacetime dimensionalities. But
how then is AdS/CFT possible? What was realized in (Almheiri et al., 2015) is

Figure 5.2 The logic of AdS/CFT. The exact duality for this example was estab-
lished by the D-brane decoupling argument of Maldacena (1999), assuming that
nonperturbative string theory exists. The emergence of low-energy supergravity
is obvious in string perturbation theory, but is quite mysterious from the point of
view of the boundary conformal field theory.
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Figure 5.3 Locality in the radial direction requires operators near the center of
AdS commute with operators near the boundary.

that this problem had actually already been solved, but by quantum information
theorists!

Quantum information theory is a relatively young field, which grew up around
the idea of figuring out what might be possible with a quantum computer (see
Nielsen and Chuang [2010] for an introduction and many more references). One
of the most basic problems in the theory of quantum information is to find a way
to perform quantum computations with imperfect hardware. The standard way of
doing this with classical computers is to do the computation redundantly: make
extra copies of everything and do the steps multiple times to make sure you
get the right answer. In quantum computing, however, we are constrained by the
famous no-cloning theorem, which says that quantum information cannot be copied
(Wootters and Zurek, 1982). This might seem fatal for the feasibility of quantum
computation, but in fact while quantum mechanics taketh away, it also giveth:
quantum entanglement gives a new way to introduce redundancy without running
afoul of the no-cloning theorem, and fault-tolerant quantum computation is indeed
possible. The essential idea is to encode the computation using a quantum error
correcting code, which stores the relevant quantum information nonlocally in
the entanglement between many degrees of freedom. This nonlocality offers the
encoded information a degree of protection against outside interference: what was
pointed out in (Almheiri et al., 2015) is that this protection is precisely analogous to
how φ(x) and O(X) are able commute in AdS/CFT as required by radial locality.
The physical qubits of the quantum computer are analogous to the boundary
conformal field theory, and the encoded computation is analogous to the quantum
gravity that it is simulating.

This idea can be studied in considerable generality, but here I will just give a
simple example to illustrate the basic point. The example is illustrated in Figure 5.4:
the CFT Hilbert space is the tensor product of three qutrits, which are shown as
solid dots. The bulk theory consists of a single qutrit, sitting at the hollow dot in the
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Figure 5.4 The simplest model of emergent spacetime: the three qutrit code.

center of the bulk. The state of the bulk qutrit is encoded in the boundary qutrits as
follows:

|̃0〉 = 1√
3
(|000〉 + |111〉 + |222〉)

|̃1〉 = 1√
3
(|012〉 + |120〉 + |210〉)

|̃2〉 = 1√
3
(|021〉 + |102〉 + |210〉) . (5.8)

The subspace of states spanned by |̃i〉 is called the code subspace, it is a
3-dimensional subspace of the 27-dimensional Hilbert space of the three boundary
qutrits. Bulk operators like φ(x) are represented in this model as operators that
act within the code subspace, and the magic of the subspace (5.8) is that any such
operator φ has the rather remarkable property that

〈ψ̃ |[φ,X]|χ̃〉 = 0 (5.9)

for any states |ψ̃〉 and |χ̃〉 in the code subspace and X any operator with support
on only one of the boundary qutrits. In other words, any operator on the hollow dot
commutes with any operator on any one of the solid dots: this is precisely locality
in the radial direction! The reason we avoid the contradiction of Figure 5.3 is that
we did not demand that [φ,X] = 0 as an operator equation: we only have its matrix
elements in the code subspace vanish.

But what are we to make of the states in the orthogonal complement of the code
subspace? If we are to interpret the AdS/CFT correspondence as a duality, then all
states in the CFT Hilbert space must bulk interpretations, while in our model so far
we have given a bulk interpretation only to states in the code subspace spanned by
the states (5.8). I claim that the remaining 24-dimensional set of states are nothing
but the microstates of a black hole that in those states has swallowed our bulk point!
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Figure 5.5 Leaving the code subspace leads to black hole formation.

This is shown in Figure 5.5. This may seem a bit ad hoc in this model, but study of
further examples has shown that this is the correct interpretation. In particular, in
AdS/CFT a rather general theorem of quantum error correction can be used to show
that pushing the holographic error correcting code to the point where boundary
locality will no longer allow locality in the emergent radial direction corresponds
precisely in the gravitational description to the formation of a black hole (Almheiri
et al., 2015; see also Harlow [2018]). Thus we return to our initial discussion: black
holes tell us that the local structure of the degrees of freedom in bulk gravitational
effective field theory is an emergent notion, valid only in a subset of all physical
states, and that the real microscopic degrees of freedom are organized in a quite
different manner. In recent years we have begun to get a rather detailed quantitative
understanding of how this works in our best-understood theory of quantum gravity,
the AdS/CFT correspondence. Surely there is more excitement ahead.
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Space and Time in Loop Quantum Gravity

carlo rovelli

6.1 Introduction

Newton’s success sharpened our understanding of the nature of space and time
in the seventeenth century. Einstein’s special and general relativity improved this
understanding in the twentieth century. Quantum gravity is expected to take a step
further, deepening our understanding of space and time, by grasping the implica-
tions for space and time of the quantum nature of the physical world.

The best way to see what happens to space and time when their quantum traits
cannot be disregarded is to look how this actually happens in a concrete theory of
quantum gravity. Loop quantum gravity (LQG) (Gambini and Pullin, 1996, 2010;
Rovelli, 2004; Theimann, 2007; Ashtekar, 2011; Perez, 2012; Rovelli and Vidotto,
2014) is among the few current theories sufficiently developed to provide a com-
plete and clear-cut answer to this question.

Here I discuss the role(s) that space and time play in LQG and the version
of these notions required to make sense of a quantum gravitational world. For a
detailed discussion, see the first part of Rovelli (2004).

A brief summary of the structure of LQG is given in the Appendix to this chapter,
for the reader unfamiliar with this theory.

6.2 Space

Confusion about the nature of space—even more so for time—originates from fail-
ing to recognize that these are stratified, multilayered concepts. They are charged
with a multiplicity of attributes and there is no agreement on a terminology to
designate spatial or temporal notions lacking some of these attributes. When we
say space or time we indicate different things in different contexts.

The only route to clarify the role of space and time in quantum gravity is to ask
what we mean in general when we say space or time (van Fraassen, 1985). There
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are distinct answers to this question; each defines a different notion of space or
time. Let’s disentangle them. I start with space, and move to time, which is more
complex, later on.

6.2.1 Relational Space

Space is the relation we use when we locate things. We talk about space when
we ask “Where is Andorra?” and answer “Between Spain and France.” Location is
established in relation to something else (Andorra is located by Spain and France).
Used in this sense space is a relation between things. It does not require metric
connotations. It is the notion of space Aristotle refers to in his Physics, Descartes
founds on contiguity, and so on. In mathematics it is studied by topology. This is a
very general notion of space, equally present in ancient, Cartesian, Newtonian, and
relativistic physics.

This notion of space is equally present in LQG. In LQG, in fact, we can say
that something is in a certain location with respect to something else. A particle
can be at the same location as a certain quantum of gravity. We can also say that
two quanta are adjacent. The network of adjacency of the elementary quanta of
the gravitational field is captured by the graph of a spin network (see Appendix).
The links of the graph are the elementary adjacency relations. Spin networks
describe relative spatial arrangements of dynamical entities: the elementary
quanta.

6.2.2 Newtonian Space

In the seventeenth century, in the Principia, Newton (1934) introduced a distinction
between two notions of space. The first, which he called the “common” one, is the
one illustrated in the previous item. The second, which he called the “true” one,
is what has been later called Newtonian space. Newtonian space is not a relation
between objects: it is assumed by Newton to exist also in the absence of objects.
It is an entity with no dynamics, with a metric structure: that of a 3-dimensional
Euclidean manifold. It is postulated by Newton on the basis of suggestions from
ancient Democritean physics and is essential for his theoretical construction.1

Special relativity alters this ontology substantially by merging Newtonian space and
time into Minkowski’s spacetime, but retains the Newtonian logic of a (background)

1 During the nineteenth century, certain awkward aspects of this Newtonian hypostasis led to the development of
the notion of “physical reference system”: the idea that Newtonian space captures the properties of preferred
systems of bodies not subjected to forces. This is correct but already presupposes the essential ingredient: a
fixed metric space, permitting to locate things with respect to distant references bodies. Thus the notion of
reference system does not add much to the novelty of the Newtonian ontology.
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entity assumed to exist also in the absence of objects. It is an entity with no
dynamics, with a metric structure.

In quantum gravity, Minkowski spacetime and hence Newtonian space appear
only as an approximations, as we shall see later. They have no role at all in the
foundation of the theory.

6.2.3 General Relativistic Space

Our understanding of the true physical nature of Newtonian space (and spacetime)
underwent a radical sharpening with general relativity (GR). The empirical suc-
cess of GR, which slowly accumulated for a century before booming recently,
adds strong credibility to the effectiveness of this step. GR shows that Newto-
nian space is in fact an entity as Newton postulated—it exists even where nothing
else exists, has properties, affects the behavior of objects—but it is not nondy-
namical as Newton assumed. Rather, it is a dynamical entity, very much akin to
the electromagnetic field: a “gravitational field.” Therefore there are two distinct
notions of space in GR. The first is the concept of relational space, the simple
fact that dynamical entities (all entities in the theory are dynamical) are localized
with respect to one another (“This gravitational wave pulse is inside the black
hole”). The second is a modification of the Newtonian concept of space: one spe-
cific dynamical entity, the gravitational field, which we keep calling space (or
spacetime) as a leftover habit from Newtonian logic. There is nothing wrong in
doing so, provided that the strong difference between these three notions of space
(order of localization, Newtonian nondynamical space, gravitational field) remains
clear.

LQG treats space (in this sense) precisely as GR does: a dynamical entity that
behaves as Newtonian space in a certain approximation. In addition, this entity
has the usual properties of quantum entities. Thus GR is the classical field theory
analogous to classical electromagnetism (EM), and LQG is the quantum theory that
describes the quantum gravitational field, analogous to quantum electrodynamics.

The characteristic properties of a quantum entity are three: (1) Granularity:
photons embody the quantum granularity of the EM field. They describe the fact
that exchanges with the quantum field are in packets. The quantum gravitational
field has the same granularity; it interacts in discrete packets. Its elementary
quanta are given by the discrete nodes of a spin network (see Appendix). Spin
network states form a basis in the Hilbert space of LQG, like photon states form a
basis in the Hilbert state of quantum EM. (2) Indeterminism: the dynamics of such
“quanta of space” is probabilistic like that of photons. (3) Quantum relationalism:
in its basic interpretation, quantum theory describes interactions among systems
(uglily called “measurements”) where properties actualize (Rovelli, 2017). So is in
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LQG: the theory describes properties of the gravitational field becoming actual in
interactions.

Section 6.3, illustrates the remarkable outcome from combining such quantum
relationalism with the relational nature of localization.

6.3 Time

The case with time is parallel to space, but with some additional levels of
complexity.

6.3.1 Relational Time

Time is the relation we use when we locate events. We are talking about time when
we ask “When shall we meet?” and answer “In three days.” Location of events is
given with respect to something else. (We shall meet after three sunrises.) Used in
this sense time is a relation between events. This is the notion Aristotle refers to
in his Physics,2 and so on. It is a very general notion of time, equally present in
ancient, Cartesian, Newtonian, and relativistic physics.

When used in this wide sense, time is definitely present in LQG. In LQG we can
say that something happens when something else happens. For instance, a particle
is emitted when two quanta of gravity join. Also, we can say that two events are
temporally adjacent. A network of temporal adjacency of elementary processes of
the gravitational field is captured by the spinfoams (see Appendix).

6.3.2 Newtonian Time

In the Principia, Newton distinguished between two notions of time. The first,
which he called the common one, is the one in the previous section. The second,
which he called the true one, is what has been later called Newtonian time. Newto-
nian time is assumed to be “flowing uniformly,” even when nothing happens, with
no influence from events, and to have a metric structure: we can say when two time
intervals have equal duration. Special relativity shows that the clock time between
two events depends on the clock’s motion, but it modifies the basic structure of
Newtonian ontology only by merging Newtonian space and time into Minkowski
spacetime.

In LQG (Minkowski spacetime and hence) Newtonian time appears only as an
approximation. It has no role at all in the foundation of the theory.

2 The famous definition is: Time is ἀριθμός κινήσεως κατὰ τὸ πρότερον καὶ ὔστερον “The number of
change with respect to before and after” (Physics, IV, 219 b 2; see also 232 b 22–23) (Aristotle, 1990).
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6.3.3 General Relativistic Time

What GR has shown is that Newtonian time is indeed (part of) an entity as Newton
postulated, but this entity is not nondynamical as Newton assumed. Rather, it is an
aspect of a dynamical field, the gravitational field. What the reading T of a common
clock tracks, for instance, is a function of the gravitational field gμν ,

T =
∫ √

gμν dxμdxν . (6.1)

In GR, therefore, there are two distinct kinds of temporal notions. The first is
the simple fact that all events are localized with respect to one another (“This
gravity wave has been emitted when the two neutron stars have merged,” “The
binary pulsar emits 700 pulses during an orbit”). The second is a leftover habit
from Newtonian logic: the habit of calling time (in spacetime) aspects of one
specific dynamical entity: the gravitational field. Again, there is nothing wrong
in doing so, provided that the difference between three notions of time (rela-
tive order of events, Newtonian nondynamical time, the gravitational field) are
clear.

LQG treats time (in this sense) as GR does: there is no preferred clock time, but
many clock times measured by different clocks. In addition, however, clock times
undergo standard quantum fluctuations like any other dynamical variable. There
can be quantum superpositions between different values of the same clock time
variable T .

What I mean is not to downplay the novelties imposed by quantum gravity.
What I mean is to place them where they belong. Confusion in the discussion
about time in quantum gravity comes from mixing up the “natural” notion of time
as a measure of change—which is common in our daily life and was the basis
of the understanding of time from antiquity to Descartes—with the radically new
Newtonian idea of a time that exists by itself independent from things. The second
is altered by quantum gravity. The first is left untouched.

Our common intuition about time is profoundly marked by natural phenomena
that are not generally present in fundamental physics. Unless we disentangle these
from the aspects of time described earlier, confusion reigns (I have extensively
discussed the multiple aspects of temporality in a recent book [Rovelli, 2018]).
These fall into two classes.

6.3.4 Irreversible Time

When dealing with many degrees of freedom we recur to statistical and
thermodynamical notions. In an environment with an entropy gradient, namely
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where in one time direction (the “past”) entropy was low, there are irreversible
phenomena. The existence of traces of the past versus the absence of traces of the
future, or the apparent asymmetry of causation and agency, are consequences of this
entropy gradient since this is the only source of time asymmetry, as all fundamental
physics, including LQG, is time symmetric. Our common intuition about time is
profoundly marked by these phenomena. We do not know why entropy was as low
in the past universe (Earman, 2006). A possibility is that this is a perspectival effect
due to the way the physical system to which we belong couples with the rest of the
universe (Rovelli, 2015). Whatever the origin of the entropy gradient, it is a fact
that all irreversible phenomena of our experience can be traced to (some version of)
it (Reichenbach, 1958; Price, 1996; Albert, 2000). This has nothing to do with the
role of time in classical or quantum mechanics, in relativistic physics or in quantum
gravity. There is no compelling reason to confuse these phenomena with issues of
time in quantum gravity.

Accordingly, nothing refers to “causation,” “irreversibility,” or similar in LQG.
LQG describes physical happening, the way it happens, its probabilistic relations,
the microphysics and not the statistics of many degrees of freedom, entropy gradi-
ents, or related irreversible phenomena.

To address these, and understand the source of features that make a time variable
special, we need a general covariant quantum statistical mechanics. Key steps in this
direction exist (see Connes and Rovelli [1994] and Rovelli [1993] on thermal time,
and Chirco, Josset, and Rovelli [2016] and references therein) but are incomplete.
They have no direct bearing on LQG.

6.3.5 Experiential Time

The second class of phenomena that profoundly affects our intuition of time are
those following from the fact that our brain is a machine that (because of the
entropy gradient) remembers the past and works constantly to anticipate the future
(Buonomano, 2017). This working of our brain gives us a distinctive feeling about
time: this is the feeling we call “flow,” or the “clearing” that is our experiential time
(Heidegger, 1977). This depends on the working of our brain, not on fundamental
physics (James, 1890). It is a mistake to search for something pertaining to our
feelings uniquely in fundamental physics. It would be like asking fundamental
physics to directly justify the fact that a red frequency is more vivid to our eyes
than a green one: a question asked in the wrong chapter of science.

Accordingly, nothing refers to flowing, passage, or the similar in LQG. LQG
describes physical happenings (Dorato, 2013), the way they happen, their proba-
bilistic relations and not idiosyncrasies of our brain (or our culture [Everett 2008]).
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6.4 Presentism or Block Universe?
A False Alternative

An ongoing discussion on the nature of time is framed as an alternative between
presentism and block universe (or eternalism). This is a false alternative. Let me
get rid of this confusion before continuing.

Presentism is the idea of identifying what is real with what is present now,
everywhere in the universe. Special relativity and GR make clear that an objective
notion of present defined all over the universe cannot be defined in the physical
world. Hence there can be no objective universal distinction between past, present,
and future. Presentism is seriously questioned by this discovery, because to hold it
we have to base it on a notion of present that lacks observable ground and appears
theoretically ill-motivated, and this is unpalatable.

A common response states that (1) we must therefore identify what is real with
the ensemble of all events of the universe, including past and future ones (Putnam,
1967), and (2) this implies that, since future and past are equally real, the passage
of time is illusory, and there is no becoming in nature (McTaggart, 1908).3

I maintain that the claim that points 1 and 2 follow from the demise of presentism
is wrong.

Point 1 is just a grammatical choice about how we decide to use the ambiguous
adjective real; it has no content (Quine, 1948; Austin, 1962). We find no difficulty
in distinguishing “real now” from “real in the past” or “real in the future.” If the
temporal structure of the world is richer than just the three alternatives “now / in
the past / in the future, we can simply enrich the manner in which we say some-
thing can be real. It can be “real here and now,” “real in the future of here and
now,” or “real in a region space-like separated from here and now,” and so on.
There is nothing that forces us to give up distinctions between these manners of
being real.

Point 2 is mistaken because it treats time too rigidly, failing to realize that time
can behave differently from our experience and still deserve to be called time. The
arguments against the reality of time are all weak because they consider only two
rigid alternatives: either there is in nature something that corresponds to our entire
intuition about time or there is no time in nature. But this is silly alternative, because
our intuition is multilayered and complex and certainly does not capture what
happens in nature. But this does not imply that our intuition about time, stripped
by some layers, cannot still be applied to some general aspects of nature.

3 The expression block universe is sometimes used to refer to this view, but its meaning varies according to
authors. I agree with those using it to say that fundamental physics does not require modification to be able to
describe the universe of our experience.
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Therefore the absence of a preferred objective present does not imply that tem-
porality and becoming (in a sufficiently general sense) are illusions. Fundamental
physics turns out to work much better in the language of becoming than in the
language of being. Quantum theory is about transitions, general relativity about
events. Events happen, rather than are, and this we call “becoming.” They have
temporal relations (in the sense of relational time) and these temporal relations
form a structure richer than we previously thought. We better adapt our notion of
becoming to what has been discovered, not discard it.

There are temporal relations, but these are local and not global; more precisely,
there is a temporal ordering, but it is a partial ordering and not a complete one.
The universe is an ensemble of processes that happen, and these are not organized
in a unique global order. In the classical theory, they are organized in a nontrivial
geometry. In the quantum theory, in possibly more complex patterns.

The expression real here now can still be used to denote an ensemble of events
that sit on the portion of a common simultaneity surface for a group of observers in
slow relative motion; the region it pertains to must be small enough for the effects
of the finite speed of light to be smaller than the available time resolution. When
these conditions are not met, the expression real now simply makes no sense.

Therefore the discovery of relativity does not imply that becoming or temporality
are meaningless or illusory: it implies that they behave in a more subtle manner
than in our prerelativistic intuition. In classical relativity, for example, they are not
structured according to a complete order, but only in a (locally) partial order, in
the mathematical sense. The best language for describing the universe remains a
language of happening and becoming, not a language of being. Even more so when
we fold quantum theory in. This is the language used in LQG.

LQG describes reality in terms of processes. The amplitudes of the theory
determine probabilities for processes to happen. This is a language of becoming,
not being. In a process, variables change value. The quantum states of the theory
code the possible set of values that are transformed into each other in processes.

In simple words, the now is replaced by here and now, not by a frozen eternity.
Temporality in the sense of becoming is at the roots of the language of LQG. But

in LQG there is no preferred time variable, as I discuss in the next section.

6.5 “Absence of Time” and Relative Evolution: Time Is Not Frozen

What is missing in LQG is not becoming. It is a (preferred) time variable, a fixed
Newtonian time, a continuous Einstein’s geometry.

Let me start by reviewing the (different) roles of the coordinates in Newto-
nian physics and GR. Newtonian space is a 3-dimensional Euclidean space and
Newtonian time is a uniform 1-dimensional metric line. Euclidean space admits
families of Cartesian coordinates �X and the time line carries a natural (affine)
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metric coordinate T . These quantities are tracked by standard rods and clocks.
Rods and clocks are not strictly needed for localization in time and space, because
anything can be used for relative localization, but they are convenient in the pres-
ence of a rigid background metric structure such as the Newtonian, or the special
relativistic one.

Rods and clocks are also useful in GR, but far less central. Einstein relayed
on rods and clocks in the early days of the theory, but later realized that this
was a mistake and repeatedly deemphasized their role at the foundation of his
theory. In fact, he cautioned against giving excessive weight to the fact that the
gravitational field defines a geometry (Lehmkuhl, 2014). He regarded this fact
as a convenient mathematical feature and a useful tool to connect the theory to
the geometry of Newtonian space (Einstein, 1921a), but the essential about GR
is not that it describes gravitation as a manifestation of a Riemannian spacetime
geometry; it is that it provides a field theoretical description of gravitation (Einstein,
1921b).

GR’s general coordinates �x,t are devoid of metrical meaning, unrelated to rods
and clocks, and arbitrarily assigned to events. They do not have the direct physical
interpretation of Newtonian and special relativistic coordinates, which are inter-
preted as the reading of rods and clocks. In GR, instead, behavior of rods and
clocks is determined by interaction with the gravitational field, it is not expressed
by the general coordinates �x,t . The arbitrariness of these coordinates implies that
to compare the theory to reality we have to find coordinate-invariant quantities, as
any experimental physicists working with GR knows well. This generates some
technical complication but is never particularly hard in realistic applications. In
particular, the relativistic t coordinates should not be confused with intuitive time,
nor with clock time. Clock time is computed in the theory by the proper time (6.1)
along a worldline. This quantity counts, say, the oscillations of a mechanism fol-
lowing the worldline. Contrary to what is sometimes stated, this is not a postulate
of the theory: it is a consequence of the equations of motion of the mechanism.

Given two events in spacetime, the clock time separation between them depends
on the worldline of the clock. Therefore there is no single meaning to the time
separation between two events. This does not make the notion of time inconsistent:
it reveals it to be richer than our naive intuition. It is a fact that two clocks separated
and then taken back together in general do not indicate the same time. Accord of
clocks is an approximative phenomenon due to the peculiar environment in which
we conduct our usual business.

Due to the discrepancy between clocks, it makes no sense to interpret dynamics
as evolution with respect to one particular clock, as Newton wanted.4 Accordingly,

4 Given two clocks that measure different time intervals between two events, it make no sense to ask which of
the two is “true time”: the theory simply allows us to compute the way each changes with respect to the other.
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the dynamics of GR is not expressed in terms of evolution in a single clock time
variable; it is expressed in terms of relative evolution between observable quantities
(a detailed discussion is in chapter 3 of Rovelli [2004]). This fact makes it possible
to get rid of the t variable altogether, and express the dynamical evolution directly in
terms of the relative evolution of dynamical variables (chapter 3 of Rovelli [2004]).
Thus special clocks or preferred spatial or temporal variables are not needed in
relativistic physics.

A formulation of classical GR that does not employ the time variable t at all is
the Hamilton–Jacobi formulation (Peres, 1962). It is expressed uniquely in terms
of the 3-metric qab of a spacelike surfaces and defined by two equations:

Da
δS[q]

δqab
= 0, Gabcd

δS[q]

δqab

δS[q]

δqcd
+ det q R[q] = 0, (6.2)

where Gabcd = qacqbd + qadqbc − qabqcd , and R is the Ricci scalar of q. Notice
the absence of any temporal coordinate t . In principle, knowing the solutions of
these equations is equivalent to solving the Einstein equations. Here S[q] is the
Hamilton–Jacobi function of GR. When q is the 3-metric of the boundary of a
compact region R of an Einstein space, S[q] can be taken to be the action of
a solution of the field equations in this region. It is the quantity connected to the
LQG amplitudes as in (6.7).

Absence of a time variable does not mean that time is frozen or that the theory
does not describe dynamics, as unfortunately is still heard.

Equations (6.2) indeed provide an equivalent formulation of standard GR and
can describe the solar system dynamics, black holes, gravitational waves, and any
other dynamical process, where things become, without any need of an independent
t variable. In these phenomena many physical variables change together and no
preferred clock or parameter is needed to track change.

The same happens in LQG. The quantum versions of (6.2) formally determine
the transition amplitudes between quantum states of the gravitational field. These
can be coupled to matter and clocks. Variables change together and no preferred
clock variable is used in the theory.5

It is in this weak sense that it is sometimes said that time does not exist at the
fundamental level in quantum gravity. This expression means that there is no time
variable in the fundamental equations. It does not mean that there is no change
in nature. The theory indeed is formulated in terms of probability amplitudes for
processes.

5 The canonical formulation of the theory leads to the same conclusion, but in a turned-around way: one first
describes evolution in a single parameter time, but the Hamiltonian that generates this evolution vanishes, and
only relations between quantities invariant under this evolution are predictable. So, the theory predicts only
relative evolution, and once again there is no preferred observable independent time.
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6.6 Quantum Theory without Schrödinger Equation

Quantum mechanics requires some cosmetic adaptations in order to deal with
the way general relativistic physics treats becoming. General relativistic physics
describes becoming as evolution of variables that change together, any of them
can be used to track change. No preferred time variable is singled out. Quantum
mechanics instead is commonly formulated in terms of a preferred independent
clock variable T . Evolution in T is expressed either in the form of Schrödinger
equation:

ih̄
∂ψ

∂T
= Hψ, (6.3)

or as a dynamical equation for the variables:

dA

dT
= ih̄[A,H ], (6.4)

whereH is the Hamiltonian operator. Neither of these equations is adept to describe
relativistic relative evolution. The extension of quantum theory to the relativistic
evolution is, however, not very hard, and has been developed by many authors,
starting from Dirac. See for instance chapter 5 of Rovelli (2004), or Rovelli and
Vidotto (2014), or, from a slightly different perspective, the extensive work of Jim
Hartle (1995) on this topic.

Like classical mechanics, quantum mechanics can be phrased as a theory of
the probabilistic relations between the values of variables evolving together, rather
than variables evolving with respect to a single time parameter. The Schrödinger
equation is then replaced by a Wheeler–DeWitt equation:

Cψ = 0, (6.5)

or as a dynamical equation for the variables:

[A,C] = 0, (6.6)

for a suitable Wheeler–DeWitt operator C. Again: these equations do not mean that
time is frozen or there is no dynamics. They mean that the dynamics is expressed
as a joint evolution between variables, rather than evolution with respect to a single
special variable. (On the issue of time in quantum gravity, see Huggett, Vistarini,
and Wüthrich [2013] and Rickles [2006].)

Formally: the h̄→ 0 limit of equation (6.5) is the second equation in (6.2); given
boundary values, (6.5) is formally solved by the transition amplitudes W . These
can be expressed as a path integral over fields in the region and in the h̄→ 0 limit
W ∼ eih̄

S
h̄ , where S is a solution to (6.2). These are formal manipulations. LQG

provides a finite and well-defined expression for W , at any order in a truncation in
the number of degrees of freedom.
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4-dimensional region = quantum process

boundary state: 

Figure 6.1 A compact spacetime region is identified with a quantum transition.
The states of LQG sit on its boundary.

6.7 Quantum Process = Spacetime Region

Quantum theory does not describe how things are. It describes quantum events that
happen when systems interact (Rovelli, 2017). We mentally separate a quantum
system, for a certain time interval, from the rest of the world and describe the
way this interacts with its surroundings. This peculiar conceptual structure at the
foundations of quantum theory takes a surprising twist in quantum gravity.

In quantum gravity we identify the process of the quantum system with a
finite spacetime region. This yields a remarkable dictionary between the relational
structure of quantum theory and the relational structure of relativistic spacetime:

quantum transition ↔ 4-dimensional spacetime region
initial and final states ↔ 3-dimensional boundaries

interaction (measurement) ↔ contiguity

Thus the quantum states of LQG sit naturally on 3-dimensional boundaries of
4-dimensional regions (see Figure 6.1) (Oeckl, 2003). The quantum amplitudes are
associated to what happens inside the regions. Intuitively, they can be understood as
path integrals over all possible internal geometries, at fixed boundary data. For each
set of boundary data, the theory gives an amplitude, that determines the probability
for this process to happen, with respect to other processes.

Remarkably: the net of quantum interactions between systems is the same thing
as the net of adjacent spacetime regions. This comes naturally from the application
of quantum theory to finite spacetime regions.

6.8 Conclusion

Space and time are expressions that can mean many different things:

1. Space can refer to the relative localization of things, time can refer to the
becoming that shapes nature. As such, they are present in LQG like in any other
physical theory.
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2. Spacetime is a name given to the gravitational field in classical GR. In LQG
there is a gravitational field, but it is not a continuous metric manifold. It is a
quantum field with the usual quantum properties of discreteness, indeterminism,
and quantum relationality.

3. Space and time can refer to preferred variables used to locate things or to track
change, in particular reading of meters and clocks. In LQG, rods and clocks
and their (quantum) behavior can in principle be described, but play no role in
the foundation of the theory. The equations of the theory do not have preferred
spatial or temporal variables.

4. Thermal, causal, flowing aspects of temporality are grounded on chapters of
science distinct from the elementary quantum mechanics of reality. They may
involve, for example, thermal time, perspectival phenomena, statistics, and brain
structures.

5. The universe described by quantum gravity is not flowing along a single time
variable or organized into a smooth Einsteinian geometry. It is a network of
quantum processes, related to one another, each of which obeys probabilistic
laws that the theory captures. The net of quantum interactions between sys-
tems is identified with the net of adjacent spacetime regions.

These are the roles of space and time in loop quantum gravity. Much confusion
about these notions in quantum gravity is confusion between these different mean-
ings of space and time.

Appendix: Loop Quantum Gravity in a Nutshell

As any quantum theory, LQG can be defined by a Hilbert space, an algebra of
operators, and a family of transition amplitudes. The Hilbert space H of the theory
admits a basis called the spin network basis, whose states |
,jl,vn〉 are labeled by
a (abstract, combinatorial) graph 
, a discrete quantum number jl for each link l
of the graph, and a discrete quantum number vn for each node n of the graph. The
nodes of the graph are interpreted as elementary “quanta of gravity” or “quanta of
space,” whose adjacency is determined by the links, see Figure 6.2. These quanta
do not live on some space: rather, they themselves build up physical space.

Figure 6.2 The graph of a spin network and an intuitive image of the quanta of
space it represents.
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Figure 6.3 Spinfoam: the time evolution of a spin network.

The volume of these quanta is discrete and determined by vn. The area of the
surfaces separating two nodes is also discrete, and determined by jl . The elementary
quanta of space do not have a sharp metrical geometry (volume and areas are not
sufficient to determine geometry), but in the limit of large quantum numbers, there
are states in H that approximate 3-dimensional geometries arbitrarily well, in the
same sense in which linear combinations of photon states approximate a classical
electromagnetic field. The spin network states are eigenstates of operators Al and
Vl in the operator algebra of the theory, respectively associated to nodes and links of
the graph. In the classical limit, these operators become functions of the Einstein’s
gravitational field gμν , determined by the standard relativistic formulas for area and
volume. For instance, V (R) = ∫

R

√
det q, for the volume of a 3-dimensional spatial

region R, where q is the 3-metric induced on R.
In the covariant formalism (see Rovelli and Vidotto [2014]), transition

amplitudes are defined order by order in a truncation on the number of degrees
of freedom. At each order, a transition amplitude is determined by a spinfoam:
a combinatorial structure C defined by elementary faces joining on edges in turn
joining on vertices (in turn, labeled by quantum numbers on faces and edges), as in
Figure 6.3.

A spinfoam can be viewed as the Feynman graph of a history of a spin network;
equivalently, as a (dual) discrete 4-dimensional geometry: a vertex corresponds
to an elementary 4-dimensional region, an elementary process. The boundary of
a spinfoam is a spin network. The theory associates an amplitude WC(
,jl,vn)
(a complex number) to spinfoams. These are ultraviolet finite. Several theorems
relate them to the action (more precisely the Hamilton function S) of GR, in the
limit of large quantum numbers (Freidel and Krasnov, 1998; Barrett et al., 2009,
2011; Fairbairn and Meusburger, 2010; Rovelli and Vidotto, 2014; Han, 2017).
This is the expected formal relation between the quantum dynamics, expressed in
terms of transition amplitudes W and its classical limit, expressed in terms of the
action S:

W ∼ ei Sh̄ , (6.7)

whereW and S are both functions of the boundary data.
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This concludes the sketch of the formal structure of (covariant) LQG. Notice
that nowhere in the basic equations of the theory does a time coordinate t or a
space coordinate x show up.
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7

Being and Becoming on the Road to Quantum
Gravity; or, the Birth of a Baby Is Not a Baby

fay dowker

7.1 A Persistent Lack of Consensus

The ancient dichotomy between Being and Becoming continues to find expression
in the ongoing struggle to understand the nature of time. This struggle encompasses
disagreement on exactly what the two positions in the Being vs. Becoming debate
are.1 For the purpose of this paper I take the two positions to be, “The universe is
nothing more than a Block in which past, present and future events have the same
physical status” and “The universe comes into being in a physical process that cor-
responds to the passage of time.” Imprecise as these positions are, they are distinct
enough and suggestive enough to be heuristics for the stimulation of research on
the physics of spacetime in different directions. And progress in relevant physics
will surely illuminate the terms of the debate. This interplay between the Being vs.
Becoming dichotomy and research in fundamental physics forms the background
to this article.

To set the scene, let us consider some statements supporting the two sides from
modern thinkers. On the Becoming side, philosopher J. Norton states (2010),

Time really passes.. . . Our sense of passage is our largely passive experience of a fact about
the way time truly is, objectively. The fact of passage obtains independently of us. Time
would continue to pass for the smoldering ruins were we and all sentient beings in the
universe suddenly to be snuffed out.. . . We have no good grounds for dismissing the passage
of time as an illusion. It has none of the marks of an illusion. Rather, it has all the marks of
an objective process whose existence is independent of the existence of we humans.

On the Being, or Block side, physicist P. Davies (2013) says,

The flow of time is an illusion, and I don’t know very many scientists and philosophers
who would disagree with that, to be perfectly honest. . . . And presumably the explanation
for this illusion has to do with something up here (in your head) and is connected with

1 Two representative works from the philosophical literature that set out some of the possibilities are Butterfield
(2012) and Price (2011).
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memory I guess – laying down of memories and so on. So it’s a feeling we have, but it’s
not a property of time itself . . .. Time doesn’t flow. That’s part of psychology.

Arguments such as Davies’s are strongest when they are grounded in our best
current scientific theory of spacetime, general relativity, as described by physicist
S. Carroll (2011),

Modern physics suggests that we can look at the entire history of the universe as a single
four-dimensional thing. That includes our own personal path through it, which defines our
world line. This seemingly conflicts with our intuitive idea that we exist at a moment,
and move through time. Of course there is no real conflict, just two different ways of
looking at the same thing. There is a four-dimensional universe that includes all of our
world line, from birth to death, once and for all; and each moment along that world line
defines an instantaneous person with the perception that they are growing older, advancing
through time.

Davies and Carroll are in accord with the view of H. Weyl (1949),

The objective world simply is, it does not happen. Only to the gaze of my consciousness,
crawling upward along the life line of my body, does a section of this world come to life as
a fleeting image in space which continuously changes in time.

Setting aside the question of whether we really do experience “fleeting image[s]
in space” or something more dynamic, or how to make sense of an “instantaneous
person,” let us look in more detail at the reason that general relativity draws many
modern thinkers to adopt the Block Universe view.

7.2 Being and Becoming in General Relativity

In general relativity (GR) spacetime is a 4-dimensional manifold with a Lorentzian
geometry. The Lorentzian geometry gives spacetime its lightcone structure and its,
closely related, causal structure. These structures are fundamental to the physics
of GR and mean that the spacetime in GR cannot be understood as any kind of
combination of a spatial geometry and a temporal geometry.

Nowhere in GR does one find the concept of a 3-dimensional physical “Being”:
there is, fundamentally, no such thing. There are no 3-dimensional objects because
there is no 3-dimensional space. In order to give physical meaning to physically
meaningful time coordinate. This would contradict one of the basic principles of
GR, general covariance. General covariance says that coordinates on spacetime
have no physical significance, no more significance than a choice of coordinate
grid on a map of Mexico City, say. The concept of “persisting physical object”
is replaced, in GR, with a pattern of regularity in the values of the fields and
distribution of worldlines on 4-dimensional spacetime.
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The only concept of time that exists in GR is that of proper time duration along
timelike worldlines. Physical time pertains to only worldlines and the time that
elapses along a worldline is independent of the coordinates of that worldline. Time
in GR cannot be thought of as a fourth dimension. Indeed, the difference between
space and time in GR could hardly be more stark in the sense that there is time
duration but there is no concept, fundamentally, of physical spatial distance. GR,
then, denies the notion of Being, if Being is interpreted as having a 3-dimensional
character. However, general relativity does contain a Being that is 4-dimensional:
the physical world in GR is a 4-dimensional Lorentzian spacetime together with
matter in the form of fields and worldlines on it.

Does GR force a Block view on us? Can it accommodate the concept of Be-
coming? To incorporate Becoming, while still doing justice to the 4-dimensional
character of the world, a growing 4-dimensional spacetime seems to be called for,
as suggested by C. D. Broad (1923). One obvious way to achieve this would be to
postulate that spacetime in GR continually, physically grows by what has some-
times been called “Hypersurface Becoming.” Such an incarnation of Becoming
has been supported in recent times by G. Ellis and R. Goswami (2014) and also
by L. Smolin (2013). However, such Hypersurface Becoming contradicts general
covariance, providing as it does a physical foliation of spacetime into 3-dimensional
spatial hypersurfaces. It picks out a special time coordinate labeling the leaves of
the foliation and gives it physical significance. This return to the prerelativistic no-
tions of a global time and of absolute physical simultaneity is unpalatable to many
physicists. This aversion to violation of general covariance leads many workers to
claim GR as support for a Block view of the physical world.

Despite this, the continuing arguments for Becoming, though not quantitative
and mostly composed of appeals to intimate experience, are undeniably powerful.
Nothing is more fundamental to our experience of the world than the temporal
nature of that experience. And so, dissatisfaction with the Block view persists, and
consensus has not been reached. The gist of the following, frustrated exchange may
be familiar (Blockhead and Broadhead are J. Earman’s [2008] terms):

Blockhead: Events happen in the Block. There in the Block, a tree is grow-
ing; there, a supernova is exploding; there, a person is experiencing time
passing.
Broadhead: No. The Block is static. It corresponds to events that have happened,
or that will have happened, not to events happening. There, in the Block, is the
history of the growth of a tree; there, is a supernova having exploded; there, is a
person having experienced time passing.
Blockhead: The Block does correspond to things happening.
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Broadhead: No it doesn’t.
Blockhead: Yes it does.

It’s a pantomime of an argument, going nowhere.

7.3 Growing a Discrete Spacetime

Recently, however, novel possibilities for the physics of spacetime have been
introduced that merit a reevaluation of the question of physical Becoming. This has
taken place in the context of the causal set approach to the problem of quantum
gravity, which is based on the hypothesis that spacetime is fundamentally atomic at
the Planck scale.

Most workers on quantum gravity accept that a differentiable manifold will not
be a good description of spacetime at length scales at the Planck length and smaller.
Spacetime discreteness or atomicity at the Planck scale is perhaps the simplest
hypothesis that can be made in response to this widespread expectation. The causal
set program for quantum gravity is based on this atomic hypothesis (Bombelli et al.,
1987; Sorkin, 1991, 2003). It proposes that our seemingly smooth, continuous,
Lorentzian spacetime is an approximation at large scales to a discrete, partially
ordered set or causal set.

The elements of the causal set are conceived of as the atoms of spacetime—note,
atoms of spacetime and not atoms of space—and the number of spacetime atoms
comprising a region manifests itself as the spacetime 4-volume of that region in
(close to) Planck units. The observable universe has a spacetime volume of roughly
10240 Planck volumes, and this therefore is the order of magnitude of the number of
spacetime atoms needed to describe what we observe. The order relation between
the spacetime atoms in the causal set manifests itself as the spacetime causal order
in the approximating Lorentzian spacetime.2

Figure 7.1 is an example of a small causal set illustrated as a graph.
The causal set hypothesis is grounded in work by Kronheimer and Penrose

(1967), Hawking (Hawking, King, and McCarthy, 1976), and Malament (1977)
showing that, for a continuum Lorentzian spacetime, the causal order and local
scale information together are equivalent to the full geometry. This fact underpins
the claim that a causal set can indeed be approximated by a Lorentzian geometry:

2 In GR the spacetime causal order is a relation of precedence, of before and after, not of causation. The
ambiguous term causal order is used because the spacetime chronological relation is defined by timelike
curves and to distinguish this from the relation defined by timelike or null curves, the term causal relation is
used for the latter relation. It is this spacetime causal relation that is hypothesized to be underpinned by the
causal set’s order relation. The name causal set has therefore inherited this confusion from continuum GR: the
order of a causal set is an order of precedence and not of causation. “Temporal set” might have been a better
name but it is too late to change it now.
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w

z

y

x

Figure 7.1 The Hasse diagram of a causal set with 6 elements. The vertices are
the elements of the causal set. The edges represent the covering relations and the
upward going direction on the page represents the direction of the order: given an
edge joining two vertices, the lower vertex precedes the upper vertex. The relation
is transitive. Therefore, w precedes y, y precedes z and so w precedes z. w and x
are unordered.

the causal set’s order relation provides the approximating continuum’s causal order
and the local physical scale is set by the causal set’s discreteness.

In the causal set program for quantum gravity, an outstanding task is to construct
the physical dynamics of causal sets. This dynamics is expected to be quantum
mechanical in order to do justice to the unity of physics. At the present stage of
development of the theory, we do not have a quantum dynamics for causal sets but
we do have a family of classically stochastic models, the classical sequential growth
(CSG) models of Rideout and Sorkin (2000).

Each model in the CSG family is a stochastic process in which a causal set
grows by a process of continual, random births of new spacetime atoms. In order
to define a CSG dynamical model, a “gauge time” is introduced: integers that
label discrete stages of the growth process. The process starts with the birth of a
single causal set element labeled 0. At the beginning of stage n > 0, a causal set
with elements labeled 0,1,2, . . . n − 1 has already grown and the stage consists
of the birth of a new element labeled n. This newborn chooses, with a certain
probability given by the model parameters, a subset, S, of the already existing
elements to be to the future of.3 At the end of stage n, therefore, one more element
has been added to the growing causal set. That the labeling generated by this staged
process is a gauge and not physical is shown by the fact that the probability of
growing a given causal set by stage n does not depend on the labeling. Figure 7.2
shows two labelings of the same 6-element causal set. The probabilities of growing
these two causal sets are equal in a CSG model: the labeling has no physical
significance.

3 A particular CSG model is defined by a set of non-negative parameters, {t0,t1,t3, . . .} and the relative
probability of the newborn choosing to be to the future of a set of elements S is t|S|, where |S| is the cardinality
of S.
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Figure 7.2 Two labelings of the same causal set.

The physical order in which the spacetime atoms are born in a CSG model is the
partial order that the atoms possess in the growing causal set. For example, if the
causal set in Figure 7.2(a) represents the causal set grown in a CSG model, atom
labeled 1 is born before atom labeled 4 because the former precedes the latter in
the causal set order. However there is no physical order between the birth of atom
labeled 1 and that labeled 3 because there is no order relation between them in the
causal set. Sorkin (2007) calls this partially ordered growth Asynchronous Becom-
ing and argues that CSG models are counterexamples to the claim that relativity
implies the Block view of spacetime (see also Dowker [2014]). A CSG model is a
model of a spacetime that Becomes in a manner compatible with the absence of a
physical global time.

7.4 Being and Becoming in Classical Sequential Growth

The physical world in a classical sequential growth model consists of two different
types of things. One of these types is the material of the world consisting of the
spacetime atoms and their order relations. The other type of thing is the asyn-
chronous birth process. Both the atoms and the process are physical, and they are
different: the birth of a baby is not a baby, the birth of a spacetime atom is not a
spacetime atom.

The existence of CSG models allows the conversation between the Blockhead
and the Broadhead to be more meaningful. The Broadhead has something concrete
to hang their argument upon, a theory to compare to the Block.4 A CSG model
contains something new, something that is absent in the Block, namely the birth
process. In a CSG model, an event corresponds to a collection of spacetime atoms

4 Whether asynchronous becoming conforms to a Broadhead’s intuitions and motivations is a question Callender
and Wüthrich take up (Wüthrich and Callender, 2015).



Being and Becoming on the Road to Quantum Gravity 139

and the causal relations between them. The occurrence of the event corresponds to
the birth of these atoms.

Blockhead: Events happen in the Block. There in the Block, a tree is grow-
ing; there, a supernova is exploding; there, a person is experiencing time
passing.

Broadhead: No. The Block is static. It corresponds to events that have happened,
or that will have happened, not to events happening. There, in the Block, is the
history of the growth of a tree; there, is a supernova having exploded; there, is a
person having experienced time passing.

Blockhead: The Block does correspond to things happening.

Broadhead: Compare the Block to a CSG model, in which there are not just
spacetime atoms but the birth process as well. Suppose, for the sake of argument,
a CSG model produces a causal set, C, well approximated by a continuum space-
time like our universe, together with some decorations on the spacetime atoms,
field values say, for the matter degrees of freedom. Suppose that a subcausal set,
S, of that causal set corresponds to the history of a supernova explosion. It is the
births of the spacetime atoms in S that correspond to the explosion happening.
This birth process is missing in the Block; the Block is only the history of the
process.

The Broadhead can further argue, following Sorkin (2007), that the CSG model
“even provides an objective correlate of our subjective perception of ‘time passing’
in the unceasing cascade of birth events that build up the causal set, by ‘accre-
tion’ as it were.” This objective correlate is absent in the Block. Thus, if one
accepts one’s perception of time passing as empirical data, then a model with
an asynchronous becoming process is empirically favored over a Block Universe
model. The form of these data are peculiar, subjective, and nonquantitative. It seems
therefore to be a matter of personal choice for a scientist whether to accept or
reject the call of his or her own perception of time passing to be coordinated with
some element of physical theory. However, one’s perceptions change when one
understands the world better. It is possible that to view the world through a theory
with Becoming is necessary to be able to interrogate and describe one’s perceptions
systematically.

7.5 Other Dichotomies

Let us tie things together by considering, along with the dichotomy of Being vs.
Becoming, two others: Objectivity vs. Subjectivity and Continuity vs.
Atomicity.
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There is Being and there is Becoming in a CSG model. The spacetime atoms and
their relations realize Being5 and the birth process realizes Becoming.6

The birth process is objective. It is physical and not dependent on any “observer.”
It would continue for the smoldering ruins were we and all sentient beings in the
universe suddenly to be snuffed out. Moreover, the process is objective in the further
sense that it is not subject to any atom or other being (as, for instance, the relative
past is).7

And yet there is no single, objective picture of “the physical world that exists” in
a CSG model, not even a world that grows and changes.8 Instead, there are many 4-
dimensional “Being”s, but they are subjective: each Being is subject to a spacetime
atom’s birth and is the past of that newborn atom, consisting of the set of spacetime
atoms that precede the newborn. This subjectivity—subject to a birth event—leads
to no contradictions or contrary inferences, since any two spacetime atoms will
agree on the structure of the causal set in their common past.

Thus, in a CSG model, Becoming is objective and Being is subjective. Not only
are the seemingly opposed concepts in each of the two dichotomies reconciled in
the physics of CSG but the two dichotomies are intertwined.

As for the third dichotomy of Atomicity vs. Continuity, for myself I find it
hard to conceive of Asynchronous Becoming except in the context of a discrete
theory of spacetime. However, someone capable of conceiving of the Asynchronous
Becoming of a continuum spacetime manifold could argue that Becoming can be
realized even within GR.9

If causal set theory is to be successful as a theory of quantum gravity, classical
sequential growth will have to be generalised to some kind of quantum sequential

5 The Being in a CSG model is a spacetime, not a spatial Being, in accord with GR.
6 CSG models are stochastic. However, I want to emphasize that it is not the stochasticity as such that means a

CSG model embodies Becoming. Stochastic processes, including CSG models, can be given a Block
interpretation and indeed this is the way they are treated formally mathematically. For example, a random walk
on the integers is mathematically formalized as merely a “one-shot” random choice of one single infinite
trajectory (aka Block) for the walker from a “sample space” of possible infinite trajectories (possible Blocks)
with a probability measure on it. On the other hand, a deterministic becoming process is also conceivable.
Consider a random walker on the integers who always steps to the right and never to the left. If the physical
process of taking discrete steps is explicitly part of the model then the walker’s trajectory grows physically and
this model will embody Becoming, even though it is deterministic.

7 I am trying to make it clear that, in the context of the heuristic dichotomy I am setting up here, “objective”
means more than mind independence and here, conversely, “subjective” does not mean mind dependent.

8 This fact is at the heart of Callender and Wüthrich’s sceptical view on whether Becoming is manifested in a
CSG model (Wüthrich and Callender, 2015).

9 Note that it is essential to Becoming as conceived in this paper that the birth process is part of the theory as a
physical element. In the continuum “Worldline Becoming” of Clifton and Hogarth (1995) there is no physical
process: Becoming is, for Clifton and Hogarth, explicitly a relation, not a process. Stein (1991) also identifies
Becoming with a relation and not a process, as do Callender and Wüthrich (Wüthrich and Callender, 2015).
Dieks (2006) comes close to proposing an Asynchronous Becoming process for continuum spacetime, but
muddies the proposal by claiming “There is no need to augment the block universe in any way.” The Block is
the history of the Becoming process, not the process itself so there is a need to augment the Block with the
process in order to claim that Becoming is realized in the theory.
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growth. The points presented here will have to be reassessed in the light of these
future developments.

It is interesting to note that the Objectivity vs. Subjectivity dichotomy has played
a central role in discussions of the interpretation of quantum theory. Disagreements
about quantum theory often center on this dichotomy. On one view, a theory must be
observer independent, or objective, to be satisfactory: it must provide an objective
World Picture. On another view, it is acceptable, even necessary, for the role of
subjects—observers or agents—to be privileged. CSG provides an example, albeit
in a classical setting, of a theory in which there are both objective and subjective
aspects of the physical world.

The broadest goal of those working on quantum gravity is to find a unified
framework for the whole of fundamental physics. It is not surprising to find ancient,
but persistent, disputes about the nature of the physical world being played out as
we work toward that goal.
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Temporal Relationalism

lee smolin

8.1 Introduction

I would like to introduce a research program aimed at solving the foundational
issues in quantum mechanics in a way that also addresses the problem of quantum
gravity.

There are, roughly speaking, two kinds of approaches to the measurement prob-
lem and the other issues in quantum foundations. The first take is that the principles
of quantum mechanics are largely correct and therefore aim to make our think-
ing more compatible with the practice of quantum physics. The second kind of
approach begins with the hypothesis that the foundational puzzles are consequences
of an incompleteness of our understanding of nature, due primarily to the lack of
a detailed description of individual systems. These approaches then aim to provide
such a description by positing novel hypotheses about physics. Consequently these
approaches are realist, whereas the first kind of approach are mostly anti-realist or
operational. The aim is a deeper theory, inequivalent to quantum mechanics, which
completes the partial description the standard theory now reveals. As it is a distinct
theory, we may hope this completion will be testable. The two main examples
of such completions of quantum mechanics that have been studied so far, pilot
wave theory (Bohm, 1952) and dynamical collapse models (Pearle, 1976; Ghirardi,
Grassi and Rimini, 1990), do make testable predictions, which differentiate them
from quantum mechanics.1

The program I present here is in this second class. What distinguishes it from
other realist completions of quantum theory is, first of all, the emphasis on relation-
alism, which the reader may recall is a way to characterize general relativity (GR).

1 Pilot wave theory makes predications that differ from these of quantum mechanics because one can prepare an
ensemble out of quantum equilibrium, in which Born’s rule is not satisfied (Valentini, 1991, 2002; Valentini
and Westman, 2005; Abraham, Colin and Valentini, 2014; Colin and Valentini, 2016; Underwood and
Valentini, 2016).
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That is, we connect quantum foundations to quantum gravity by seeking a relational
completion of quantum mechanics, i.e., an extension of the theory in terms of
“relational hidden variables.”

A theory can be called relational if it satisfies the set of principles that I lay out
in the next section. These basically dictate that the beables of the theory describe
relationships between dynamical actors, as opposed to defining properties in terms
of a fixed, unchanging background. But it is important to stress that there are
different classes of relational theories, which differ by the choice of which of the
basic elements of physics are to be regarded as fundamental and which as emergent.
By fundamental, I mean irreducible, in the sense that it cannot be eliminated in a
theory that aims to fully describe nature.

The program I advocate here regards time, causation, energy, and momentum as
fundamental quantities. Among the things that are emergent, and hence reducible
to more fundamental elements, are space and spacetime. Quantum mechanics itself
will also be emergent from a deeper physical theory. In the next several sections I
explain the motivation for these choices. They come from reflections on issues in
quantum gravity, seen in the light of quantum foundations.

The first big divide among relationalist theories has to do with whether time
is regarded as fundamental or emergent. Many relationalists, such as Julian Bar-
bour and Carlo Rovelli, have advocated the view that time is emergent. I take
the opposite view, that time is fundamental. My reasons will be only touched on
here; the full argument is presented at length in two books (Smolin, 2013b; Unger
and Smolin, 2014) and a number of supporting papers (Cortês and Smolin, 2014a;
Smolin, 2015a). These arguments were developed in collaborations with Roberto
Mangabeira Unger and Marina Cortês.

As Rovelli has emphasized, time is a complex phenomenon, and we should be
precise and assert exactly which aspects are being claimed to be fundamental. I
will be more precise in Section 8.3, but let me briefly say here that the aspect
of time I assert is irreducible in its activity as the generator of novel events from
present events (Cortês and Smolin, 2014a). This activity generates a thick present,
by which is meant that two events in the present can be causally related with each
other. This thick present is continually growing by the addition of novel events. At
the same time other events in the thick present, having exhausted their potential
to directly influence the future, slip from the present to join the always growing
past. This continual construction of the future from the present, which then be-
comes past, makes the distinction among past, present, and future objective and
universal.

I am aware of the arguments that claim that an objective observer-independent
distinction among the past, present, and future conflicts with special relativity. This
is addressed momentarily.
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Because it is grounded on a version of relationalism that takes time to be primary,
I propose to call this program temporal relationalism, as opposed to timeless rela-
tionalism, which supposes time to be emergent from a timeless fundamental theory.

Once one has decided that time is going to be fundamental or emergent, one
must ask the same question in regard to space. I will explain why it is unlikely that,
within a realist framework, time and space can both be fundamental. Since I choose
time to be fundamental, I must choose space to be emergent. It is, by the way, the
fact that in this construction time is fundamental, but space is not, that resolves the
apparent conflict of having an objective present with special relativity. The relativity
of inertial frames, and the consequent Lorentz invariance, is an emergent symmetry,
which comes into effect only when space emerges and is not hence a symmetry of
the fundamental laws, which govern a domain of events with causal relations, but
no space.

The third choice one has to make concerns energy and momentum: are they
fundamental or emergent? The more I reflect on the structure of our physical the-
ories the more I realize that momentum and energy are at the heart of the foun-
dations of physics and that this distinguishes physics, in ways that are sometimes
under-appreciated, from other fields of science that describe systems that change in
time. Only physics has the canonical structure indicated by the Poisson brackets,
{xa,pb} = δab , and the related principles of inertia and of the relativity of inertial
frames. These lead to the most fundamental structure in quantum mechanics, the
Heisenberg algebra, [x̂,p̂] = ıh̄, which cannot be expressed in a system constructed
with a finite number of qubits.

This is one reason I find the claims to analogize nature to a computer, classical
or quantum, to be inadequate: such claims neglect the fundamental roles energy
and momentum each play in the structure of our physical theories, indeed, I would
suggest, in nature. For reasons I describe later, I think it is interesting to develop
the idea that energy and momentum are both fundamental.

Thus the class of theories I will develop treat time, energy, and momentum as
fundamental. Space—and hence spacetime and its symmetries—are to be recovered
as emergent. Toward the end of the chapter, I will describe a class of theories I
constructed and studied with Marina Cortês that realize these ideas, called energetic
causal set models (Cortês and Smolin 2014a, 2014b, 2016, 2017).

I learned about relationalism from Julian Barbour, from a conversation we had
in the summer of 1980, in which he explained to me the debt that Einstein owed to
Leibniz and Mach as well as his detailed understanding of the hole problem and the
role of active diffeomorphisms. I realized immediately that I had always been an
instinctive, if very naive, relationalist. Talking with Julian, I became a slightly less
naive relationalist. My education has continued ever since, and I owe an enormous
debt to philosophers since then.
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Temporal relationalism is a part of a larger program of temporal naturalism,
which Roberto Mangabeira Unger and I presented in a number of publications
(Smolin, 2013b, 2015a; Unger and Smolin, 2014). The adjective temporal is again
meant to emphasize the centrality of the hypothesis that time is fundamental and
irreducible.

These temporal approaches are to be distinguished from timeless, or atempo-
ral, forms of relationalism and naturalism, which hold that the most fundamental
descriptions of the world are formulated without time, as time, in the sense of its
flow or passage, is held not to exist fundamentally. According to this view, time is
real but only in the sense that it is emergent, in the same sense that pressure and
temperature are real. The block universe is an aspect of timeless naturalism, so is
the notion that the laws of nature are fixed and unchanging.

In the next section I introduce principles for relationalism; the primacy of time
and causation is the subject of Section 8.3. Section 8.4 is devoted to the question
of whether energy and momentum should be treated as fundamental or emergent.
Section 8.5 introduces a new notion of locality, which is entirely relational. The
different strands of the argument come together in Section 8.6, where I introduce
the full program of temporal relationalism.

8.2 Relationalism and Its Principles

We begin with the principle behind relationalism, which is Leibniz’s principle of
sufficient reason. In his Monadology, Leibniz (1714) states,

31. Our reasonings are based on two great principles, that of contradiction, in virtue of
which we judge that which involves a contradiction to be false, and that which is opposed
or contradictory to the false to be true.
32. And that of sufficient reason, by virtue of which we consider that we can find no true
or existent fact, no true assertion, without there being a sufficient reason why it is thus and
not otherwise, although most of the time these reasons cannot be known to us.

Leibniz (1717) also applied the principle to events: “[T]he principle of sufficient
reason, namely, that nothing happens without a reason.” I read this to say that
every time we identify some aspect of the universe that seemingly may have been
different, we will discover, on further examination, a rational reason why it is so
and not otherwise.

I take this principle, not as metaphysics but, in a weak form, as methodological
advice for physicists hoping to make progress with our understanding of nature.

• Seek to progress by making discoveries and inventing hypotheses and theories
that lessen the arbitrary elements of our theories.

I call this the principle of increasingly sufficient reason, and it will be the form
I employ here.
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Here are some examples of steps in the history of physics that exemplify this
advice.

• Eliminate references to unobservable absolute positions and motions and replace
them by measurable relative positions and motions.

• Seek a theory of light in which its speed is not arbitrary but is computable in terms
of known constants.

• Formulate the dynamics of general relativity and gauge theories directly in terms
of gauge and active diffeomorphism invariant observables. This gives us unique
dynamics to leading order in the derivative expansion.

And here are some further steps that we might yet be able to accomplish.

• Seek a theory that exists or makes sense only if the number of (macroscopic)
spatial dimensions is three.

• Seek a completion of the standard model of particle physics that reduces the
number of freely tuneable parameters.

I don’t know whether or not there is an ultimate understanding in which sufficient
reason is maximally satisfied and cannot be improved on. But each of these steps
has been or would represent profound progress.

The principle of increasingly sufficient reason has a number of consequences
that are each worthy principles in their own light. In each case they are to be read
as advice, i.e., of the kinds of theories we ought to be aiming for, if we hope to
progress fundamental physics.2

1. The principle of increased background independence.
2. The principle that properties that comprise or give rise to space, time, and motion

are relational.
3. The principle of causal completeness.
4. The principle of reciprocity.
5. The principle of the identity of the indiscernible.

Each of these requires some elaboration.

8.2.1 Background Independence (Smolin, 2005)

All physical theories to date depend on structures that are fixed in time and have no
justification; they are simply assumed and imposed. One example is the geometry of

2 Notice that this advice, when followed, generates a dynamics for our theories to be challenged and improved,
which is present in the absence of anomalies or conflicts with experiment. This does not mean experiment
plays no role for, as Feyerabend pointed out, new theories may suggest new experiments, or give a new
significance to old experiments, which can distinguish them from older theories.
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space in all theories prior to general relativity. In Newtonian physics, the geometry
of space is simply fixed to be Euclidean 3-dimensional geometry. It’s arbitrary, it
doesn’t change in time, it can’t be influenced by anything. Hence it is not subject to
dynamical law. The principle of background independence requires that the choice
is made not by the theorist but by nature, dynamically, as a part of solving the laws
of physics.

The principle states that a physical theory should depend on no structures that
are fixed and do not evolve dynamically in interaction with other quantities.

Nondynamical, fixed structures define a frozen background against which the
system we are interested in evolves. I would maintain that these frozen external
structures represent objects outside the system we are modeling, which influence
the system but do not themselves change. (Or whose changes are too slow to be
noticed.) Hence these fixed background structures are evidence that the theory in
question is incomplete.

In many cases the observables of a background dependent theory describe how
some quantity changes, or some body moves, with respect to those fixed external
structures. This is the role of reference frames; they implicitly reflect a division of
the universe into two parts—a dynamical system we aim to study and a part whose
dynamics we neglect and fictionalize as fixed—for the purpose of pretending that
relational quantities like relative position and relative motion have an absolute
meaning.

It follows that any theory with fixed external structures can be improved if the
external elements can be unfrozen, made dynamical, and brought inside the circle of
mutually interacting physical degrees of freedom. This was the strategy that led Ein-
stein to general relativity. The geometry of space and time is frozen in Newtonian
physics, and it is also frozen in special relativity. In these theories, the spacetime ge-
ometry provides an absolute and fixed background against which measurements are
defined. These are reflected in the role played by reference frames. Mach pointed
out the fiction involved by identifying inertial frames with the “fixed stars.” General
relativity unfreezes geometry, making it dynamical. This freed the local inertial
frames from an absolute and fixed dependence on the global mass distribution and
made their relation dynamical, subject to solutions of the equations of motion.

This is rarely a one-step process. Typically, the new theory retains frozen ele-
ments, then it too is not the end of our search and will require further completion.
The principle asserts we should seek to make progress by eliminating fixed back-
ground structures by identifying them as referring to external elements and making
the choices involved subject to dynamical law.

It follows that the only complete theory of physics must be a cosmological
theory, for the universe is the only system that has nothing outside of it. A theory
of the whole universe must then be very different from theories of parts of the
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universe. It must have no fixed, frozen, timeless elements, as these refer to things
outside the system described by the theory, but there is nothing outside the universe.
A complete cosmological theory must be fully background independent.

It follows that quantum mechanics cannot be a theory of the whole universe
because it has fixed elements. These include the algebra of observables and the
geometry of Hilbert space, including the inner product.

This implies that there is no wave-function of the universe, because there is no
observer outside the universe who could measure it. The quantum state is, and
must remain, a description of part of the universe. Relational quantum mechanics
develops this idea.

We then seek to complete quantum theory by eliminating background structures.
We do this by exposing and then unfreezing the background and giving it dynamics.
In other words, rather than quantizing gravity we seek to gravitize the quantum, that
is, identifying and unfreezing those aspects of quantum theory that are arbitrary
and fixed, making them subject to dynamical laws. Turning this around, we hope
to understand the challenging features of quantum physics as consequences of
separating the universe into two parts: the system we observe and the rest containing
the observer and his or her measuring instruments. Closely related to background
independence is another key idea: that the observables of physical theories should
describe relationships.

8.2.2 Relational Space and Time

A relational observable, or property, is one that describes a relationship between
two entities. In a theory without background structures, all properties that describe
space, time, and motion should be relational. Background independent theories
speak to us about nature through relational observables.

Leibniz, Mach, and Einstein taught us to distinguish absolute notions of space
and time from relational notions and, more importantly, how to formulate physics
entirely in terms of the latter.

A relational theory can have some beables that are intrinsic to individual events
and processes. These describe properties of individual events, rather than relations
between two or more events. I will suggest that energy is one such intrinsic property.
I will argue that the structure of physics requires this.

8.2.3 Principle of Causal Completeness

We follow chains of causation back in time; the principle of causal completeness
states that all chains of causation relate back to events and properties of our single
universe.
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If a theory is complete, everything that happens in the universe has a cause,
which is one or more prior events. It is never the case that the chain of causes traces
back to something outside the universe.

Consequently, our theory can contemplate only a single, causally connected
universe.

8.2.4 Principle of Reciprocity

The principle of reciprocity was introduced by Einstein in his papers on general
relativity and states that if an object, A, acts on a second object, B, then B acts back
on A (Einstein, 1916).

8.2.5 Principle of the Identity of the Indiscernible

The principle of the identity of the indiscernible (PII) states that any two objects
that have exactly the same properties are in fact the same object.

One important implication of the identity of the indiscernible is that there are no
(global) symmetries. A symmetry of a physical theory is a group of transformations
on the state space that take solutions to other solutions. Consider an arbitrary point
in the state space a and consider also T ◦ a, where T is a transformation. They
have exactly the same properties, hence the PII requires that we identify them. The
symmetry then acts as the identity.

An example is a translation in space. In the full description, there is a silent back-
ground, which includes the observers and the measuring instruments. The physical
subsystem under study is being translated with respect to this silent and frozen
audience. When we identify and unfreeze the silent background and bring it into
the system of dynamical equations, we eliminate the symmetry.

This does not apply to gauge transformations, which take the mathematical
description of a state to a different mathematical description of the same state.

Relationalism then offers an important piece of advice to the project of the uni-
fication of the elementary particles and their interactions, which is that the deeper
a theory is the fewer global symmetries it should exhibit. This strikingly conflicts
with the method that inspired the grand unified theories such as SU(5),SO(10), and
E(7), which aimed to unify by postulating larger and larger global as well as gauge
symmetry groups. Of course, the program of grand unification failed experimentally
because of proton decay.

On the other hand, this is something that general relativity gets right. As shown
by Kuchar (1981), general relativity restricted to spatially compact solutions has no
conformal Killing fields on its configuration space and hence no global symmetries.
From general relativity we learn that global symmetries arise only as properties of
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certain very special, idealized solutions, where they may be regarded as signaling
the existence of a frozen, decoupled background sector.

String theory aspires also to get this right. Particular perturbative, background-
dependent string theories have global symmetries, but these are believed to repre-
sent expansions around solutions of a more fundamental, background independent
string or M theory, which has no global symmetries.

The first time I heard the assertion that more fundamental theories should have
fewer symmetries was in a talk by Roger Penrose in 1976 or 1977, in which he
used it to argue that twistor theory was right to break parity and even CP . I have
been thinking about it ever since. Thus, to me, one of the attractive features of loop
quantum gravity, in the original formulation based on Ashtekar’s original variables,
is that there is evidence the quantum theory does break P and CP (Contaldi,
Magueijo and Smolin, 2008).

8.2.6 Examples of Relationalism in Physical Theories

The importance of the methodological advice to “make our theories more relational
by eliminating background structure” is shown in several instances where it was
decisive. The role of relationalism in the passage from Newtonian dynamics to
Einstein’s general theory of relativity is paradigmatic, even iconic. So I will begin
here with the earlier transition between Aristotle and Newton. I believe there is a
way to tell that story that makes it also an instance where this advice was decisive.
The importance is that the move to eliminate background structure—in particular
the notions of absolute rest and absolute velocity—resulted in the discovery of
energy and momentum and the central roles they have played in the structure of
physical theories ever since.

• Second-order equations of motion and the canonical dualities. One of the most
important instances of the transformation of background structure into dynamical
degrees of freedom occurred during the transition from Aristotelian to Newtonian
physics. For Aristotle and his followers dynamics is first order in time, i.e., a
velocity is a response to a force. More generally, if xa are the relevant dynamical
quantities that live on a configuration space, C, then the dynamics is given by a
fixed vector field, va[x] on C:

dxa(t)

dt
= va[x(t)]. (8.1)

This law made sense to Aristoteleans because they believed velocity had an ab-
solute meaning. Hence its absence, rest, has an absolute meaning. Newton iden-
tified the absolute frame of reference needed to define rest as the Sun, which for
some experiments could be approximated by the rest frame of the laboratory. He
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removed this background structure by replacing absolute velocity with respect to
the laboratory with its relative counterpart. By making that subject to dynamical
law he made the decisive step to the new dynamics. In retrospect the key insight
was the discovery of momentum, as the dynamical quantity related to relative
velocity.

Most applications of mathematics to science, such as models of economics,
ecology, and biology are still Aristotelean. This is because they still have notions
of absolute change and stasis. Consequently, they have no analog of the princi-
ples of inertia or of relativity. The dynamical equations in economics, biology,
ecology, general dynamical systems, etc. are thus first order in time. Computers,
and algorithms generally, such as cellular automata, have the same first-order
structure, in which change is given by a first-order update rule:

X(n+ 1) = F [X(n)]. (8.2)

The fixed value of va or F [X(n)] codes the knowledge we have of the causes of
change in these systems. It is background structure.

This goes for computers as well. Whether classical or quantum, a computer
has a well-defined notion of stasis; the update rule, or the identity operation, that
changes nothing. So long as it does so, it misses a fundamental aspect of dynamics
in physics, whose deepest principle is that stasis and change are, to first order,
relative. This why I am not convinced by claims that physics could be modeled
or envisioned as a bunch of interconnected qubits.

Newton made the background structure, implicit in the fixed vector field va(x),
dynamical. The clearest way to see this is in the Hamiltonian formalism, where
the equations of motion are:

ẋa = {xa,H } = 1

m
gabpb. (8.3)

But where pb rather than being fixed, has been made to evolves from arbitrary
initial conditions, subject to dynamical law:

ṗa = {pa,H } = − ∂V
∂xa

. (8.4)

If we eliminate the pa we get the usual form of Newton’s laws, which are
second order in time, so that,

d2xa(t)

dt2
= G

[
x(t),

dx(t)

dt

]
, (8.5)

so the initial velocity, dx
a(t)

dt
, rather than being a fixed background structure, is a

contingent initial condition, which can be varied so that the same law applies to a
multitude of different circumstances.
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The canonical first-order form of dynamics is elegantly defined on a phase
space, 
 = (xa,pb). This carries an imprint of the original second-order form of
the dynamics in the canonical pairings:

{xa,pb} = δab, (8.6)

and in the form of the Hamiltonian:

H = gabpapb + V (x). (8.7)

There are still elements of background structure—they are coded into the Hamil-
tonian in the gab and V (x). There is also the background time, which can be
eliminated by making the Hamiltonian into a constraint. One way to do this was
pioneered by Julian Barbour together with Bruno Bertotti. Instead of the usual
action:

S =
∫
dt
√
g

(
1

2
gabẋ

aẋb − V (x)
)
, (8.8)

we write the time reparameterization invariant action:

S =
∫
dt

√
1

2
gabẋaẋbV (x). (8.9)

I want to emphasize that the canonical form of dynamics, based on the dualism
of a pair (xa,pb) tells us something fundamental about physics and distinguishes
motion in space from all other forms of change studied by the different sciences.

A key consequence of this structure is Noether’s theorem, which relates sym-
metries in the xa’s to conservation laws involving total values of the pa’s. These
symmetries arise from invariances of H, which reflect the principles of relation-
alism, i.e., that the forces are functions of relative coordinates.

All of this structure is special to the laws of motion and field equations of
physical systems.

• Mach’s principle was a step in articulating how space, time, and motion in a
relational world would differ from Newtonian physics, with its dependence on
absolute space and time. It gives a criteria for a relational theory, which is that
the response to an acceleration or rotation of a body, measured against “the fixed
stars” must be the same as if that body were fixed and the universe accelerated or
rotated in the opposite sense.

General relativity with spatially closed topology satisfies a form of Mach’s
principle. But general relativity with asymptotically flat boundary conditions does
not, because asymptotic infinity defines a fixed inertial frame of reference.
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• Connections and gauge invariance. One of the most basic things we know about
nature is that the laws of physics are second order in time. This means that the
law of motion prescribes accelerations as a function of positions and velocity. To
define such a law we have to be able to compute the rate of change of a rate of
change or, equivalently, compare two velocity vectors at slightly different times.

To compare two vectors at different events in spacetime, we need to be able
to bring them together at the same point. To do this requires a notion of parallel
transport. If we give a fixed, nondynamical rule for comparing vectors at differ-
ent events, we impose background structure and hence violate the principle of
background independence. To satisfy that principle, we must introduce a notion
of parallel transport that can be contingent and subject to dynamics. The structure
needed to do so is a connection.

The proof that a connection implements background independence is that one
can rotate the tangent space at two nearby points independently, without affecting
the laws of motion. This is an example of how background independence implies
an important consequence:

• Symmetries should all be local. Indeed, it follows that a relational theory should
have no global symmetries. This is true of general relativity with cosmological
boundary conditions (Kuchar, 1981). Another way to say this is that only proper
subsystems of the universe can have nonvanishing values of conserved charges.
The values of any such charges code relations between the subsystem that is
modeled and the rest of the universe. The symmetries such charges generate
translate or transform the subsystem with respect to the rest of the universe.

• General relativity, with compact spatial slices is a relational theory of space and
time. It is a story of events, their causal relations and their measure, but it is crucial
to understand that physical events do not correspond to mathematical points in a
differential manifold. Instead physical events correspond to equivalence classes
of those points under active spacetime diffeomorphisms. This means that events
have no intrinsic nondynamical labels. What distinguishes, and hence labels, a
physical event is a conjunction of degrees of freedom. One way to say this is that
physical events are labeled relationally in terms of what can be seen from there.

Temporal relationalists disagree with timeless relationalists on one point of
the interpretation of general relativity. Timeless relationalists take the diffeomor-
phisms discussed earlier to include the whole group of diffeomorphisms of the
4-dimensional manifold. This is in tension with some aspects of the primacy
of time, in particular with the insistence on an objective notion of the present
moment and an objective distinction among past, present, and future.

In classical general relativity this amounts to the claim that there is a physically
preferred slicing. Temporal relationalists then are interested in a reformulation of
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general relativity known as shape dynamics (Gomes, Gryb, and Koslowski, 2011;
Mercati, 2018).

• Shape dynamics is a classical gravitational theory that invokes a preferred slicing
of spacetime, which arises from constant mean curvature gauge of general rela-
tivity (Gomes et al., 2011; Mercati, 2018). But the many-fingered time symmetry
is not broken, rather it is traded for local scale invariance of the Hamiltonian
3-dimensional theory. It has the same massless spin two degrees of freedom of
general relativity and is equivalent to GR outside of horizons, but can differ within
horizons.

Shape dynamics is important because it shows us that all the empirical suc-
cesses of special and general relativity can be made compatible with the postula-
tion of a global time, which would be a consequence of an objective distinction
among past, (a thick) present, and future.

• Entanglement reveals that a pair of quantum systems can share properties that are
not properties of either. A completely relational description of a quantum system
would be one that constructed all its properties from such shared properties. This
is the case with the Einstein–Podolsky–Rosen (EPR) state, which has no definite
value of any component of the individual spins.

• Spin networks are models of a discrete or quantum geometry invented by Penrose
in the early 1960s. A Penrose spin network (Penrose, unpublished notes) is a
trivalent graph, whose edges are labeled by half-integers (denoting representa-
tions of SU(2)), such that the triangle inequality is satisfied at each node. This
condition means that there is an invariant or singlet in the product of the three
spin representations at each node.

Penrose was interested in the idea that the shared properties of entangled quan-
tum systems provided a realization of Mach’s principle, in the sense that the
properties of a local system are determined by its coupling to the larger system in
which it was embedded. Mach’s particular suggestion was that local initial frames
are determined to be those that don’t rotate or accelerate relative to the large scale
distribution of matter (which he referred to as the fixed stars).

Penrose realized a version of Mach’s principle in his spin networks. An edge in
the network is chosen to have its spin measured along an axis that is determined
by its coupling into the network as a whole. Through a combinatorial calculation
on the graph Penrose defines an angle between a pair of spins, each on an edge.
He then shows that in the limit of a large and complex graph, this reproduces the
geometry of a two sphere, which is the space of directions in R3.

• Relational hidden variable theories. One way to complete quantum mechanics
would be by the introduction of additional degrees of freedom, whose statisti-
cal fluctuations are responsible for the fluctuations and uncertainties in quantum
physics. These are called hidden variables, because it was presumed that they
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are not measured by the procedures that measure quantum observables. Given the
ubiquity of nonlocality in quantum systems, due to entanglement, it is natural to
hypothesize that the hidden variables are relational, in the sense that they describe
shared properties of pairs of quantum systems.

We then might expect to have a hidden degree of freedom for every pair of
ordinary degrees of freedom. These could be arranged as a matrix or a graph.

Several such relational hidden variables have been constructed (Smolin, 1985,
2002; Markopoulou and Smolin, 2004). These were formulated by constructing
an explicit stochastic process in which, in a certain largeN limit, the assumptions
Nelson (1966, 1985) imposes on a stochastic process to yield a solution to the
Schrödinger equation would be realized. This required a fine-tuning to keep the
dynamics time reversible, as discussed in Smolin (2006).

• Two-dimensional many body system (Smolin, 1985). The degrees of freedom are
complex numbers Zij , which are entries in an N ×N matrix, Z. The N complex
eigenvalues ofZ, labeled λi , give the positions ofN particles in the 2-dimensional
space C = R2.

A dynamics was imposed on the Zij , including an arbitrary potential energy
that is a function of differences, V [λj − λk], such that in the limit of large N
the eigenvalues λ move according to Newton’s laws in a potential V . There are
corrections that can be computed to order 1√

N
, and it is found that the probability

distribution evolves according to the Schrödinger equation.

A similar relational hidden variables model was constructed for a system of
N particles in D dimensions, where the hidden degrees of freedom are now M
N × N anti-Hermitian matrices (Smolin, 2002). The eigenvalues again give the
positions of the particles in RD.

The dynamics is chosen to be the standard matrix model dynamics used in
dimensionally reduced models of M theory and Yang–Mills theory, and it is again
shown that the Schrödinger equation is recovered to first order in an expansion
around the large N limit.

A relational hidden variable whose hidden variables are a graph was con-
structed in Markopoulou and Smolin (2004); matrix hidden variables theories
were also constructed by Steven Adler (2004) and Artem Starodubtsev (2003).

• Relational approaches to quantum gravity. The search for the correct quantum
theory of gravity has in my view reached an unexpected situation, which is
that several different approaches have achieved results that may be construed
as descriptions of plausible, but distinct, regimes of quantum gravitational phe-
nomenon (Smolin, 2017a, 2017b). At the same time, most have also encountered
significant barriers that make it seem unlikely that it by itself is a complete theory.

Several of these approaches reflect one or more aspects of the principles
of relationalism, typically by having background-independent kinematics and
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dynamics, in the narrow sense that their formulations do not require a fixed,
classical background spacetime. The background-independent approaches in-
clude causal set models (Bombelli et al., 1987), causal dynamical triangulations
(Ambjorn et al., 2013), group field theory (Oriti, 2017), and loop quantum gravity,
including both its Hamiltonian and path integral (or spin foam) formulations
(Rovelli and Vidotto, 2015).

Non-background-independent formulations include perturbative string theory
(Conlon, 2016), asymptotic safety (Eichhorn, 2018), and other perturbative
approaches.

However, recent very promising explorations of the idea that space may be
emergent from entanglement (an idea that at least roughly goes back to Penrose’s
early work on spin networks) certainly have a relational flavor (Lee, Kim, and
Lee, 2013).

8.3 The Primacy of Time and Causation

There are several ways of expressing the idea that time and causation are funda-
mental and primary.3

• The present moment is fundamental, meaning that there is no deeper level of
description that lacks a present moment, which is one of a flow of such moments.
The reason our experience is structured as a flow of moments is because that is
how the world is structured.

• The distinction among the past, present, and future is objective and universal. But
the present may be thick, which means it contains events that are causally related.

• The process that brings further novel events from present events is real and fun-
damental. This defines a thick present of events that have yet to give rise to all
their future events.

• Once an event has given rise to all the future events it is ever going to, it has used
up its whole capability to influence the future. It drops out of the thick present
and becomes part of the past. The past was real and is no longer real.4

• The future is not real and is, to some extent, open. There are no present facts of
the matter concerning future events.

A concrete illustration of a thick present is given in the energetic causal set
models I constructed with Marina Cortês (Cortês and Smolin, 2014a, 2014b). The
history of the universe is a set of events with causal relations and other properties;
for example, each event is endowed with energy and momentum. I can illustrate the
thick present with just the causal relations.

3 For more discussion on these, see Smolin (2013b, 2014a), Unger and Smolin (2014), and Cortês and
Smolin (2014a).

4 So an event is real and present by virtue of its capacity to directly influence the future.
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Each event, e has a causal past, P(e), which has some mathematical representa-
tion. There is a measure of the distinctiveness of two pasts, which we can indicate
symbolically:

D(e,f ) = g[P(e),P(f )]. (8.10)

The causal set grows by a series of distinct moves. In each move a new event, e,
is created, which has two parents, lets say a and b. These parent events are the
immediate causal past of e, the full causal past is:

P(f ) = P(a) ∪ P(b), (8.11)

including their causal relations.
Moreover each parent can have up to two children. At every stage in the con-

struction, the set of events with fewer than two children makes up the thick present.
There is an algorithm that determines the next event born. We used the rule

that the two parents are the members of the thick present that have the largest
distinctiveness, D(e,f ), among all pairs in the thick present (Cortês and Smolin,
2014a). Thus, at each step, one new event is created, which has at first no children
and so is part of the thick present. One or both of the parents may leave the thick
present to become part of the past, if this is their second child.

8.3.1 The Nature of Laws

This view has strong implications for how we think about physical laws.
If time is to be truly fundamental and irreducible, then there cannot be absolute,

unchanging deterministic laws. One reason is that if there are such laws, then any
property of the state of the world at time t ′, P(t ′) is a function of other properties
at an earlier or later time t ,

P(t ′) = F[t ′,t;Pa(t)]. (8.12)

But, if this is so, then time has been eliminated, as any property of the system at a
time other than t can be expressed in terms of properties only at t .

Another way to say this is that, if there is a mathematical object, M, that is a
perfect mirror of the history of the universe, in the sense that every true property
of the universe, and its history, corresponds to a true theorem about M, then each
instance of causation, i.e., of the generation of a causal relation, is equivalent to
an instance of logical implication. But this means that causation, the generation of
new events from present events, is equivalent to a timeless logical implication. So
causation, the essence of time, is reducible to logical implication, which is timeless.

So, when we assert that time is irreducible, we are asserting that there exists no
mathematical object, M, that is equivalent to the history of the universe, in the
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sense specified. Indeed we can name at least one property of the universe, which is
not shared by any mathematical object, which is that here in the universe it is always
some present moment, which appears uniquely, i.e., at most once, in a series of such
moments.

Several of our basic principles imply that laws cannot be absolute. The usual
notion of law contradicts the principle of reciprocity because laws affect the motion
of matter, but how matter moves or changes has no effect on what the laws are.
Similarly, the principle of causal completion is violated because a law that affects5

the motion of bodies, but cannot be affected by them, is a cause outside of the
universe of causes.

Instead, we propose that laws are meaningful for only limited ranges of space
and time, and that on cosmological scales, laws evolve. I have proposed, several
mechanisms by which this might happen (Smolin, 1992, 1997, 2012a). These are
briefly mentioned in the following discussion.

It is usually presumed that the fundamental laws are symmetric under time rever-
sal. If indeed, time is inessential and emergent, there can be no absolute difference
between the past and the future. Since we do have such a distinction, we are free to
make the hypothesis that the fundamental laws are irreversible. Indeed we mean this
in two senses, first that there is no symmetry of the laws that reverses the direction
of time; second that once an event happens, it cannot be made to unhappen (Cortês
and Smolin, 2014a).6

Penrose (1979) posited that a time asymmetry of the fundamental laws could
be responsible for the arrow of time. The basic idea is that a time reversible law
emerges at late times from a time irreversible law, but the former is subject to a
restricted set of initial conditions, which are compatible with the time asymmetry of
the fundamental law. We endorse this hypothesis, and we have found some results
that support it (Cortês and Smolin, 2014a).

8.3.2 The Nature of Space

What about space? If time is fundamental, what is space? For a relationalist, it
is assumed that space manifests a network of relationships, which define relative
position and relative motion. But are these spatial relationships fundamental or
emergent from a more elementary set of relations?

In general relativity, fixing a notion of time gives us a time slicing, M =
� × R. On each slice, a relational notion of space is given by the spatial metric,

5 The law affects, but does not cause, the event. Only events cause other events.
6 Suppose an event, E, among other actions, exchanges two distinguishable particles, A and B. This may be

followed by a second event, F, which returns them to their original positions. F may reverse the action of E,
but it does not nullify E. The result is a history with two events.
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hab, moduloDiff (�). If we don’t fix a time gauge, we instead view the spacetime
geometry as relational, corresponding to the spacetime metric, gμν , modulo
Diff (M).

In background-independent approaches to quantum gravity, these spatial, or
spacetime, relations are found to be emergent from a more fundamental network
of relations. In the simplest theory, which is causal set theory, both causal and
metric relations are emergent from a network of discrete causal relations. In other
background-dependent approaches, such as causal dynamical triangulations, loop
quantum gravity, spin foam models, and group field theories, the fundamental
discrete structure is more complicated, but it is still the case that the spatial or
spacetime geometry (modulo diffeomorphisms) is held to be emergent from a more
fundamental discrete structure of dynamically evolving relationships.

Thus the lesson from quantum gravity is that space or spacetime is emergent, not
fundamental.

It is also important to note that there are clues indicating that both space and time
cannot be both fundamental. These include:

1. Both existing realist completions to quantum mechanics, namely pilot wave the-
ory and dynamical collapse models, require a preferred simultaneity, and hence
are in tension with special relativity. This is the case even in pilot wave models
of relativistic quantum field theory, which reproduce the Lorentz invariance in
the quantum statistics. When one puts these models out of quantum equilibrium,
one sees instantaneous and nonlocal transmission of information that takes place
in a preferred simultaneity.

2. The state of the art concerning models in which classical spacetime emerges
from an underlying dynamical quantum geometry is that those that succeed
either have a fixed boundary or assume a prior temporal or causal order.

This suggests that the fundamental level of description should have a global
temporal order as well as a partial causal order and that space (and hence space-
time) should emerge from the network of relations existing in the fundamental
description.

At this point we may note that the work of Sorkin and collaborators has given us a
well-studied model of a fundamental spacetime that has only causal relations, this is
causal set theory (Bombelli et al., 1987).7 As candidates for a fundamental theory,
these models must be credited with a number of unique successes, including the
only genuine prediction of a cosmological constant of the right order of magnitude,
from a theory of quantum gravity (Sorkin, 2007).

7 Causal sets built out of intrinsic structures was developed by Furey (2006), Criscuolo and Waelbroeck (1999),
and Markopoulou (2000).
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Another important result is that causal sets can be produced by sampling
Lorentzian spacetimes. However it is important to note that there is an inverse
problem, which is the fact that almost no causal set arises from sampling a low
(by which I mean, say, less than 11) dimensional spacetime. The problem is then
to choose a dynamics on causal sets that induces a low-dimensional and weakly
curved Lorentizian spacetime to emerge. Because of the inverse problem such a
dynamics must suppress the typical contributions that fail to correspond to any
spacetime.

8.4 Energy Is Fundamental

The next (and last) choice we have to make to construct a relational theory of
fundamental physics has to do with the status of energy and momentum. We might
take these to be emergent quantities that arise as a consequence of Noether’s the-
orem. When the emergent spacetime has symmetries, these are generated by an
emergent energy and momentum.

The other choice is to presume them fundamental. The conservation laws of
momentum and energy are then to be posited ab initio. We conjecture that there
is an inverse Noether effect whereby the conservation of energy and momentum
imply the emergence of spacetime, with global translation symmetries. We see this
occur in the energetic causal set models (Cortês and Smolin, 2014a, 2014b), where
this solves the inverse problem for causal sets.

Another reason to presume energy is fundamental is that the concept is a neces-
sary part of Jacobson’s proof of the Einstein equations from the thermodynamics of
a more fundamental theory (Jacobson, 1995).

8.4.1 Emergent Locality

If space and spacetime are emergent concepts, so is locality. To illustrate this im-
portant point, I’d like to present a class of theories in which locality is explicitly
emergent, as a consequence of the classical equations of motion. Moreover, since
locality is a consequence of dynamics, it can be modified; to be precise, it is rel-
ativized, in an exact sense I will describe. This is then the story called relative
locality.

One way to approach this subject, which was the original way we discovered it, is
to think like a phenomenologist. Imagine that we have a quantum theory of gravity;
whatever it is it depends on four (not three) dimensional parameters, Newton’s
gravitational constant, G, h̄, c, and the cosmological constant �. Various regimes
of quantum gravity are expressible as limits of combinations of these constants.
(These include the well-known limits, such as G → 0 that gives quantum field
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theory on a fixed spacetime background, but there are a number of others that are
not often discussed; these are discussed in Smolin [2017b].)

Consider the particular limit where we hold c fixed and take h̄ and G both to
zero,

h̄→ 0, G→ 0, (8.13)

but with the ratio that defines the Planck energy fixed:

Ep =
√
h̄

Gc3
. (8.14)

This is a domain of experiment that should preserve the principle of the relativity
of inertial frames that c marks, but it also has a fixed (and therefore, we expect)
invariant energy scale, Ep. Because this is an extension of special relativity with
two invariant scales the name of this story used to be doubly or deformed special
relativity.

The same limit puts the Planck length to zero:

lp =
√
h̄G

c3
→ 0, (8.15)

so there is no quantum geometry. We then expect that the new physics will appear
first as corrections to the standard equations of relativistic physics, expressed as
ratios E

Ep
, where E is an energy or momentum, and will thus be naturally described

in terms of modifications of momentum space.
But before we look at those modifications let us note that there is already, with

Ep → ∞, a formulation of relativistic particle dynamics that takes
momentum space to be fundamental, while spacetime is an emergent or derivative
concept.

Let us start with a single free relativistic particle. It has a 4-momentum, pa ,
which lives on a flat momentum space, with flat metric ηab and mass m. It has an
action principle, based on the extremization of:

Sf ree =
∫
ds
(−xaṗa −NC

)
. (8.16)

The action is invariant under reparametrizations of s; as a result there is an Hamil-
tonian constraint, which is the result of varying by the Lagrange multiplier N :

C = ηabpapb +m2c4 = 0. (8.17)

Notice that the only geometry that is invoked is that of momentum space; xa(s) is
a momentum to the momentum (notice also the switch from paẋa to −xaṗa , this is
not a typo.
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Varying xa yields:

ṗa = 0, (8.18)

while varying pa gets us to:

ẋa = −2Nηabpb. (8.19)

So far this describes a free particle, which means it is at rest in momentum space.
We can add more particles trivially, by adding their actions, which are so far

independent. To begin to describe physics we introduce an interaction. The one
thing we know about interactions is that they conserve energy and momentum. So
let us consider an interaction where particles A+ B → C. We write pAa (1) for the
end of particle A’s worldline and pCa (0) for the beginning of particle C’s worldline.
The conservation law says:

Pa = pCa (0)− pAa (1)− pBa (1) = 0. (8.20)

We add this conservation law to the action, using a Lagrange multiplier, za:

S = �world linesS
f ree + zaPa . (8.21)

Now let us consider the equation that comes from varying pCa (0). Unlike the
other points of the worldlines, this end-point variation picks up two terms, and
we get:

xaC(0) = za; (8.22)

varying at the other two end points we find they are also at za:

xaA(1) = xaB(1) = xaC(0) = za . (8.23)

Hence the Lagrange multiplier za becomes identified with the interaction point, the
event where all three worldlines meet.

We see that, as promised, the interaction is local, i.e., takes place at a single event
and is emergent as a consequence of equations of motion. Now let us call that event
e, which is embedded at point zae . There is another event at the end of worldline C,
which we will call f ; it is embedded at zaf . Now on C the momentum is constant,
so we will call it pCa . By integrating (8.19) we have:

�zaef = zaf − zae = NηabpCb , N =
∫
C

N . (8.24)

Let us consider the case of massless particles, mC = 0. Then we note that the
inverse of the metric we defined on momentum space gives an induced metric on
the space of za’s. We write:

�zaef�z
b
ef ηab = N2pCc p

C
d η

ceηdf ηef = N2pCc p
C
d η

cd = 0. (8.25)
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The lesson of this story is that we start out with a theory defined on momentum
space, and the classical equations of motion induce an emergent spacetime, together
with an embedding of the events of our process in it, on which emerges a metric. In
the case of massless particles, what we induce is actually a conformal metric.

8.4.2 Relative Locality

Now that we are used to the idea that energy and momentum are primary and
spacetime and its geometry are emergent from the classical equations of motion, we
can go back to the original point, which was to represent quantum gravity effects
that might arise in the limit of Equations (8.13) and (8.14).

We want terms in the ratio of energies toEp to appear. How are we to do this? We
can get these from modifying the geometry of momentum space (Amelino-Camelia
et al., 2011; Freidel and Smolin, 2011).

A continuous geometry can depart from that of flat spacetime in two independent
ways. The metric can be changed. The metric comes into the constraint C, where the
norm of the momentum pa must be written as |p|2 = D2(p), the geodesic distance
from the point pa of phase space to the origin.

The other structure that can be changed is the connection or parallel transport.
This is given by a derivative operator or connection and is generally independent of
the metric. The parallel transport comes into the conservation law. The momentum
space is no longer a vector space, and we have to think about how we define
the sum of two or more momenta, which we need to state the conservation law.
We showed that a nonlinear combination operator is equivalent to a connection
(Amelino-Camelia et al., 2011; Freidel and Smolin, 2011).

An important point is that we want to preserve the relativity of inertial frames,
hence we want to preserve the fact that there is a symmetry group on momentum
space, which has 10 generators in the case of 3 + 1 dimensions. This means we
want a homogeneous geometry on momentum space.

There are three independent, invariant measures that can characterize the parallel
transport in a homogeneous geometry. These are torsion, nonmetricity, and curva-
ture. To give leading-order quantum gravity effects, these should be set proportional
to 1

Ep
and 1

E2
p

.

The effects of torsion and nonmetricity have been worked out. A typical result
is the following (Freidel and Smolin, 2011). Consider an observer who measures a
distant event, such as the one we just discussed, involving a photon of energy E,
a distance d from them. This event we will assume is local from the point of an
observer local to it. Then the distant observer will describe it to be nonlocal. For
example, if the event is the absorption of a photon by an atom, and the local observer
sees the photon disappear at the spacetime point where the photon encounters the
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atom, the distant observer will describe the absorption as happening when the
photon was still a distance x from the atom, where in rough numbers,

x = dEN = d E
Ep
, (8.26)

where N ∼ 1
Ep

is a component of the nonmetricity tensor.
This has observational consequences. Consider a gamma-ray burst a distance d

away and consider two photons that are emitted simultaneously, according to the
local observer. Then they arrive at the Earth with distinct times of arrivals
different by:

�t = d
c

�E

Ep
, (8.27)

where �E is the energy difference of the two photons (Freidel and Smolin, 2011).
In special relativity simultaneity is relativized, but locality becomes absolute. If

one observer sees two events to coincide at the same time and place, that is the
way all observers will see it. As we have just seen, an analysis of the possible
limits of quantum gravity phenomena, shows us that this notion of locality also
gets relativized.

The relativity of simultaneity is usually taken to mean that the notion of a spatial
manifold of space, in other words, has no place in a world described by special
relativity. It is a fiction created by the procedure that local observers use to construct
a picture of what is happening around them. Similarly, we interpret the phenomenon
of relative locality as a signal that spacetime itself is an observer-dependent notion
that falls apart when one looks too closely. Just like the surface of simultaneity is
a fiction tied to the motion of an observer, the notion of a local spacetime is also a
fiction, which depends on the position and motion of the observer as well as on the
energies of the probes she uses to observe the world distant from ourselves.

This relativization of the notion of locality was uncovered as the answer to
paradoxes pointed out by Hossenfelder (2010) and Schutzhold and Unruh (2003)
in several models with an invariant, observer-independent, energy scale (Amelino-
Camelia, 2001, 2002; Kowalski-Glikman, 2002; Magueijo and Smolin, 2002).

8.5 The Dynamics of Difference: Replacing Locality
with Similarity of Views

In a relational account of space, there is no intrinsic property of an object associated
to its location in space. Instead, an object’s position in space is a consequence of
its place in a network of relationships with other objects. What is fundamental is
that network of relationships from which position in space is emergent and, very
possibly, approximate.
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The network of relationships that describes a system may be illustrated by a
graph where the objects are nodes and two nodes are connected by an edge if
they are involved in a relationship. The edges may be labeled by properties of the
relationship. There is a metric on the graph (one of several which exist; we will see
another very different one shortly), gIJ , that counts the minimal number of steps to
walk from I to J on the graph.

An object has a view of the system it is a part of, which represents the knowledge
it may have of the rest of the universe; all such knowledge is a function of the
relationships that tie the object to the rest of the system. It is very useful to describe
the knowledge in terms of neighborhoods. The first neighborhood of an object, A,
consists of all objects in the network one step away on the graph, plus any edges
that may join them. Similarly, the nth neighborhood of J , N n

J , consists of all nodes
K such that:

gJ,K ≤ n, (8.28)

together with all the links in the graph between pairs of nodes in neighborhood. The
graphs representing neighborhoods of J have an origin, or marked point, that is the
object, J.

One way to represent the view of an object is by the sets of neighborhoods
together with their embedding maps into each other:

VJ = {N 0
J ,N 1

J , . . . ,N n
J , . . .}. (8.29)

I want to suggest that similarities and differences of views are fundamental,
whereas distance in space is emergent and approximate.

The usual idea of locality is that two objects will interact more often, or more
strongly, the closer they are in space. But notice that two nearby objects have similar
views of the rest of the universe. Here, by your view I mean, informally, what you
see when you look around, i.e., the sky from your point of view.

We can also think of this in terms of the view of an event Ve. Think of the
pattern of stars seen in the sky from a particular event’s perspective, i.e., the pattern
of incoming radiation on the sphere that is the space of directions on your back-
ward light cone. Clearly there is at least a rough relationship between the distance
between two events:

d(e,f ) =
√
|e − f |2, (8.30)

and the similarity of their views:

d(e,f ) ≈ g(Ve,Vf ), (8.31)

where g(Ve,Vf ) is a metric on the space of views.
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What if distance in spacetime is only a proxy for difference of views? What if
the locality that matters fundamentally is the distance in the space of views? This
means that two events are more likely to interact when their views are similar.

There are two ways that two events can have similar views. One is if they are
events in the history of two macroscopic bodies and are close to each other in
spacetime. This is the conventional case, which I’ve mentioned. The second is if
the two events arise in the histories of two atoms or molecules. These systems
have few degrees of freedom, so the space of possible views is going to be in
some sense small. But these are also systems that exist in vast numbers of copies
spread throughout the universe. So the view of an atom or molecule can have many
neighbors in the space of views. These neighbors define ensembles of microscopic
systems, which all interact with each other in spite of being spread through the
universe. I would like to suggest that it is these ensembles that quantum states refer
to. I would also suggest that the peculiarities of quantum mechanics arises from the
fact that it is a course-grained description of these ensembles.

This is the basic idea behind the real ensemble formulation of quantum mechan-
ics (Smolin, 2012b, 2016a, 2018).

To make this suggestion precise, we need to define the distinctiveness of the
views of two objects, J andK , which we will call DJK . There are several ways this
can be defined. The simplest is to define:

DJK = 1

n
p

JK

, (8.32)

where p is some fixed power and nJK is the smallest n such that N n
J is not isomor-

phic to N n
K under all maps that preserve the origin.

Alternatively, define a metric on views, μJK , which measures their distinctive-
ness, modulo all isomorphisms of the views that preserve the marked points.

Given a metric on the space of views, which measures their distinctiveness, we
may define the variety of the set of relations (Barbour and Smolin, 1992). This has
the general form:

V = 1

N2

∑
J �=K

DJK . (8.33)

This is, in general, an interaction among three systems, because for each pair
J and K the distinctiveness DJK involves a comparison of the views J and K
each have to third bodies. Very remarkably, this turns out to yield exactly Bohm’s
quantum potential (Smolin, 2016a).

This is the core of how Schrödinger quantum mechanics emerges from a dynam-
ics that involves comparisons among similar systems. I leave the details to available
papers (Smolin, 2012b, 2016a, 2018).
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8.5.1 Causal Sets and Causal Neighborhoods

Given the emphasis of the primacy of time and causation, we will be interested
in models of fundamental physics based on causal structures. A set of events,
{A,B,C, . . . , ∈ C together with a causal relation, >, is a causal set if for any
two events, A and B, only one of the following is true:

A > B, B > A, or,A and B are causally unrelated. (8.34)

We also require that the set be locally finite, i.e., for all A and B, the set of C such
that B > C > A is finite.

We require that causal relations are transitive, so that:

A < B, and B < C implies A < C. (8.35)

We will also want to denote the primary causal relations, A ¡– B, which are irre-
ducible and generate the rest.

The view of an event is its causal past:

B ∈ P(A)∀B such that A > B. (8.36)

We can define the first, second and nth causal neighborhoods as the subsets of P(A)
that are N or fewer causal steps to the past of A. These are denoted Pn(A).

We can define the causal versions of distinctiveness:

DAB = 1

n
p

AB

, (8.37)

where p is some fixed power and nAB is the smallest n such that PnA is not isomor-
phic to PnB .

We then define the causal version of variety:

V = 1

N2

∑
A�=B

DAB . (8.38)

We can then consider theories based on an energetic causal set, in which the
variety defined in this way acts as a potential energy. The dynamics of such a
theory aims to maximize the variety of the system. This acts preferentially on
pairs with small distinctiveness and changes them so as to increase the overall
variety. In other words, the more similar two events are, the more likely they are to
interact.

Under appropriate conditions, this leads also to a derivation of Schrödinger quan-
tum mechanics, from a theory whose dynamics involves extremizing the variety. I
leave the details to the original paper (Smolin, 2018).
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8.6 Temporal Relationalism

As I said in Section 8.1, the program of temporal relationalism aims to complete
quantum mechanics in a way that would simultaneously construct a quantum theory
of gravity and spacetime. It can aspire to do both because it is based on a series of
closely interconnected hypotheses about the nature of space and time. We discussed
each of these in the preceding pages; it is now time to put them together and
summarize the resulting picture.

1. Time, in the sense of causation is fundamental, by which is meant that it is
irreducible (Smolin, 2013b, 2015a; Unger and Smolin, 2014). The activity of
time is the unceasing and irreversible generation of novel events from present
events; this generates a continually growing network of causal relations (Cortês
and Smolin, 2014a).

2. Energy and momentum are also fundamental and irreducible (Amelino-Camelia
et al., 2011; Freidel and Smolin, 2011; Cortês and Smolin, 2014a, 2014b).
Events are endowed with energy and momentum and are transmitted by their
causal relations (Cortês and Smolin, 2014a, 2014b).

3. Space is not present fundamentally but is emergent from the underlying, dynam-
ically evolving network of causal relations (Cortês and Smolin, 2014a, 2014b).
Locality is emergent, as therefore is nonlocality.

4. Lorentzian spacetime geometry is an emergent, macroscopic coarse graining
of the fundamental causal structure, and the Einstein equations are conse-
quences of the statistical thermodynamics that traces the flow of energy through
the fundamental network of causal relations (Jacobson 1995; Smolin, 2014,
2017a, 2017c).

5. Locality is disordered, in the sense that there are mismatches between the emer-
gent metric causal structure and the fundamental causal structure (Markopoulou
and Smolin, 2007). These may be responsible for quantum nonlocality
(Markopoulou and Smolin, 2004).

6. Locality in space is a consequence of locality in a space of views, where a
view of an event is defined to be the information it receives from its causal past
(Smolin, 2018).

7. The most fundamental law is the one that generates new events and is irreversible
(Cortês and Smolin, 2014a). Other laws represent regularities, mostly emergent,
and are local and evolving (Smolin, 2013b; Unger and Smolin, 2014).

8. Local, reversible laws emerge from global irreversible laws (Cortês and Smolin,
2017). This explains the existence of arrows of time.

The main results of this research program to date include the following.
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• Relative locality. By studying a limit of quantum gravity defined by (8.13, 8.14),
we find an extension of special relativity where causation, energy, and momentum
are fundamental and space and spacetime are emergent (Amelino-Camelia et al.,
2011; Freidel and Smolin, 2011). Locality is relativized, so that whether two
events are observed to coincide depends on their energies and distance from the
observer .

• Energetic causal set models (Cortês and Smolin, 2014a, 2014b, 2016, 2017).
These were constructed with Marina Cortês and describe a world in which time,
causation, energy, and momentum are fundamental and all take place in a space-
less world. Some of the results include:

– The emergence of a Lorentzian spacetime together with an embedding of the
causal set into it (Cortês and Smolin, 2014a, 2014b).

– The evolution passes through an initial phase, which is chaotic and irreversible,
which gives way to an ordered phase where there emerge pseudo-particle-like
excitations with quasi-reversible dynamics (Cortês and Smolin, 2014a). We
now understand this to be very similar to the behavior of deterministic finite
state dynamical systems, in which the initial phase is dominated by a basin of
attraction that leads to a phase dominated by limit cycles (Cortês and Smolin,
2017). This mechanism can explain the emergence of time reversible effective
laws from a fundamental theory that is irreversible.

– In the limit of many events there emerges the dynamics of relativistic parti-
cles moving and interacting in the emergent Lorenzian spacetime (Cortês and
Smolin, 2014a, 2014b).

– A class of spin foam models invented by Wolfgang Wieland (2015) can be
understood as energetic causal set models (Cortês and Smolin, 2016).

– There appears to be a disordering of causality in the sense that the causal order-
ing in the fundamental law generating the causal set is not entirely consistent
with the causal structure of the emergent spacetime in which the causal set is
embedded (Cortês and Smolin, in preparation).

• Time irreversible extensions of general relativity (Cortês, Gomes, and Smolin,
2015; Smolin, 2016b). If general relativity emerges from a time irreversible the-
ory early in the history of the universe, there ought to be an extension of gen-
eral relativity that is not symmetric under time reversal. This could serve as
an effective theory to describe the transition from the time asymmetric to the
time symmetric dominated regime. We constructed two classes of such theories
(Cortês et al., 2015; Smolin, 2016b) and studied their implications for the physics
of the early universe (Cortês, Liddle, and Smolin, 2016).

• The real ensemble formulation of quantum mechanics (Smolin, 2012b, 2016a,
2018). This is a completion of quantum mechanics in which the wave-function
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of a microscopic system is derived from an ensemble consisting of all the
similar systems spread throughout the universe. We posit a new and highly
nonlocal interaction among the members of such ensembles, which extrem-
izes the variety of the system, where by variety we mean a measure of the
diversity of the views of the different subsystems (Barbour and Smolin, 1992).
We find that the variety is closely related to the Bohmian quantum potential
(Smolin, 2016a, 2018).

• Relational hidden variables theories, in which the hidden variables are shared
properties, associated to pairs of particles, were constructed (Smolin, 1985,
2002, 2006; Markopoulou and Smolin, 2004).

• Evolving laws. One of the big questions of fundamental physics is how the uni-
verse chooses its laws from a reservoir of many possible laws. A natural solution
is that the laws evolve in time (Smolin, 1992, 1997). This gives rise to the meta-
law dilemma (Unger and Smolin, 2014), which starts by asking whether there
is a law that governs the evolution of laws and, if so, how that was chosen. We
proposed so far three approaches to this question.

1. Cosmological natural selection (Smolin, 1992, 1997, 2013a). This is a pro-
posal I made in the late 1980s of a cosmological scenario in which laws and
their parameters evolve on a landscape of possible laws (analogous to the
fitness landscape of population biology).

2. The Principle of Precedence (Smolin, 2012a) is a proposal for laws to the
dynamical laws of quantum mechanics to evolve.

3. Universality of metalaws. A set of model metalaws are studied, and there is
shown to be a notion of universality of metalaws, such that one can’t distin-
guish them from each other (Smolin, 2015b, 2008).

• A causal theory of views (Smolin, 2018) arises by the combination of the real
ensemble formulation of quantum mechanics with the energetic causal sets. The
beables are the causal views of each event.

• The emergence of the Einstein equations from the thermodynamics of an energetic
causal set. Conditions are given to demonstrate the emergence of general relativ-
ity from the thermodynamic limit of an energetic causal set theory (Smolin, 2014,
2017a, 2017c) to which certain additional conditions have been imposed. These
conditions are expressed in Smolin (2017a) as four principles, the first of which is
equivalent to the statement that a quantum spacetime is described by an energetic
causal set model.

I refer the reader to the original paper (Smolin, 2017a) for a full discussion
and motivation of these principles. The key point for our discussion in this paper
is that I am able to show that these principles suffice to recover the Einstein
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equations from a certain kind of energetic causal set model (Smolin, 2017a). To
do this, I follow a strategy pioneered by Jacobson (1995, 2016) and (Padmanab-
han, 2004, 2010a, 2010b).

8.7 Conclusions

What is beyond spacetime?
I have described the main ideas, and main results to date, of a research program

that aims to find out. We postulate that time, causation, energy, and momentum
are fundamental and irreducible, but space and spacetime are emergent. Quantum
physics is also emergent from a more fundamental dynamics, based on the principle
of maximal variety (Barbour and Smolin, 1992). From the resulting viewpoint,
locality is discovered to be a proxy for similarity of views by which a subsystem
of the universe sees their position in the network of relations and interactions that
defines the world.
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9.1 A Summary of the Construction

Quantum mechanics arose in the 1920s. General relativity has been around since
the 1910s. But, as of 2018, we still have no quantum theory of the gravitational
field. What is taking us so long? I believe the most challenging obstacle in our way
is understanding the quantum superposition of general relativistic causal structures.
This obstacle is couched on facets of the “problem of time” (Kuchar, 2011)—an
inherent difficulty in reconciling a picture of time evolution in quantum mechanics
to a “block time” picture of general relativity.

I also believe we can overcome this obstacle only if we accept a fundamental
distinction between time and space. The distinction is timid in general relativity —
even in its ADM form (Arnowitt, Deser, and Misner, 1962)—and here I want to
push it further. In this spirit, I consider space to be fundamental and time to be a
derived concept—a concept at which we arrive from change (a loose quote from
Ernst Mach).

I here investigate the consequences of this distinction between time and space.
The distinction allows only a restricted class of fundamental physical fields—the
ones whose content is spatially relational—and it thus also restricts the sort of
fundamental theories of reality. It is consequential in that with this view we must
reassess our interpretation of quantum mechanics and its relationship to gravity.
The new interpretation is compatible with a version of timelessness that I explain
herein. With timelessness, comes the requirement of explaining history without
fundamental underlying dynamics. The role of dynamics is fulfilled by what I define
as records.

This paper consists mainly of two parts: one justifying the timeless approach
through problems in quantum gravity, and another describing physics within a
general timeless theory proposed here. In the following section, I introduce more
technical reasons for my interest in timeless theories. These have to do with quan-
tum gravity. I thus start with a brief description of what would count as a theory of
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quantum gravity, before moving on to the sort of problems it has, which I believe
timelessness might cure.

9.2 The Problems with Quantizing Gravity

I start in Section 9.2.1 with what I believe are the main principles of quantum
mechanics and gravity. I then follow in Section 9.2.2 with a brief idiosyncratic
exposition of issues in quantizing gravity. Then, in Section 9.2.3 I move on to an
illustration of which of these problems signal a fundamental difference between
time and space. Finally, in Section 9.2.4, I posit what sorts of different fundamen-
tal symmetries—i.e., to be imposed also off-shell, or at the quantum mechanical
level—would assuage the clash between dynamics and symmetry. These turn out
to be the spatial relational symmetries.

9.2.1 A Tale of Two Theories

General relativity is one of the pillars of our modern understanding of the uni-
verse, deserving a certain degree of familiarity from all those who purport to study
nature, whether from a philosophical or mathematical point of view. The theory has
such pristine logical purity that it can be comprehensively summarized by John A.
Wheeler’s famous quip (Misner, Thorne, and Wheeler, 1973)

Matter tells spacetime how to curve, and spacetime tells matter how to move.
(9.1)

We should not forget however, that ensconced within Wheeler’s sentence is our
conception of spacetime as a dynamical geometrical arena of reality: no longer a
fixed stage where physics unfolds, it is part and parcel of the play of existence.

In mathematical terms, we have:

Rμν − 1

2
Rgμν︸ ︷︷ ︸

spacetime curving

∝ Tμν︸ ︷︷ ︸
sources for curving

. (9.2)

Given the sources, one will determine a geometry given by the spacetime metric
gμν—the “matter tells spacetime how to curve” bit. Conversely, it can be shown
that very light, very small particles will roughly follow geodesics defined by the
geometry of the left-hand side (LHS) of the equation—the “spacetime tells matter
how to move” part.1

1 This distinction is not entirely accurate, as the right-hand side (RHS) of (9.2) usually also contains the metric,
and thus the equation should be seen as a constraint on which kind of spacetimes with which kind of matter
distributions one can obtain, “simultaneously.” I.e., it should be seen as a spacetime, block universe, pattern,
not as a causal relation (see Lehmkuhl [2011]).
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A mere decade after the birth of general relativity (GR), along came quantum
mechanics. It was a framework that provided unprecedented accuracy in experimen-
tal confirmation, predictions of new physical effects and a reliable compass for the
construction of new theories. And yet, it has resisted the intuitive understanding that
was quickly achieved with general relativity. A much less accurate characterization
than Wheeler’s quip for general relativity has been borrowed from the pessimistic
adage “everything that can happen, does happen.”2 The sentence is meant to raise
the principle of superposition to the status of core concept of quantum mechanics
(whether it expresses this clearly or not is very much debatable).

In mathematical terms, the superposition principle can be seen in the Schrödinger
equation:

Ĥψ = −ih̄ d
dt
ψ, (9.3)

whose linearity implies that two solutions ψ1 and ψ2 add up to a solution ψ1 +ψ2.
In the path integral representation, superposition is built in. The very formulation
of the generating function is a sum over all possible field configurations φ,

Z =
∫

Dφ exp

[
i

∫
L(φ)/h̄

]
, (9.4)

where L(φ) is the Lagrangian density for the field φ and Dφ signifies a summation
over all possible values of this field (the second integral is over spacetime).

Unfortunately, for the past 90 years, general relativity and quantum mechanics
have not really gotten along. Quantum mechanics soon claimed a large chunk of
territory in the theoretical physics landscape, leaving a small sliver of no-man’s
land also outside the domain of general relativity. In most regimes, the theories
will stay out of each other’s way—domains of physics where both effects need to
be taken into account for an accurate phenomenological description of nature are
hard to come by. Nonetheless, such a reconciliation might be necessary even for the
self-consistency of general relativity: by predicting the formation of singularities,
general relativity “predicts its own demise,” to borrow again the words of John
Wheeler. Unless, that is, quantum effects can be suitably incorporated to save the
day at such high curvature regimes.

9.2.2 The Problems of Quantum Gravity

At an abstract level, the question we need to face when trying to quantize general
relativity is: how to write down a theory that includes all possible superpositions
and yet yields something like (9.2) in appropriate classical regimes? Although

2 Recently made the title of a popular book on quantum mechanics (Cox and Forshaw, 2011).
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the incompatibility between general relativity and quantum mechanics can be of
technical character, it is widely accepted that it has more conceptual roots. In the
following, I describe only two such roots.

9.2.2.1 Is Non-Renormalizability the Only Problem?

The main technical obstacle cited in the literature is the issue of perturbative
renormalizabilty. Gravity is a nonlinear theory, which means that geometrical
disturbances around a flat background can act as sources for the geometry itself.
The problem is that unlike what is the case in other nonlinear theories, the
“charges” carried by the nonlinear terms in linearized general relativity become too
“heavy”—the gravitational coupling constant has negative mass dimensions—
generating a cascade of ever-increasing types of interactions once one goes
to high enough energies. This creates problems for treating such phenomena
scientifically, for we would require an infinite amount of experiments to determine
the strength of these infinite types of interactions. This problem can be called loss of
predictability.

There are theories, such as Horava–Lifschitz gravity (Horava, 2009), which seem
to be naively perturbatively renormalizable. The source of renormalizability here is
the greater number of spatial derivatives as compared to that of time derivatives.
This imbalance violates fundamental Lorentz invariance, breaking up spacetime
into space and time. Unfortunately, the theory introduces new degrees of freedom
that appear to be problematic (i.e., their influence does not disappear at observable
scales).

And perhaps perturbative non-renormalizability is not the only problem. Indeed,
for some time we have known that a certain theory of gravity called conformal
gravity (or Weyl squared) is also perturbatively renormalizable. The problem there
is that the theory is sick. Conformal gravity is not a unitary theory, which roughly
means that probabilities will not be conserved in time. But, which time? And is
there a way to have better control over unitarity? This can be called the problem of
unitarity.3

9.2.2.2 A Dynamical Approach

In covariant general relativity, the fundamental field, gμν , already codifies causal
relations, whether or not the equations of motion (the Einstein equations) have been
imposed. So a first question to ask is if we can give a formulation of quantum gravity
that reflects the fundamental distinction between causal and acausal. One way of

3 Another approach to quantum gravity called asymptotic safety (Reuter, 1998) also suffers from such a lack of
control of unitarity. This approach also explores the possible existence of gravitational theories whose
renormalization will generate dependence only on a finite number of coupling constants, thus avoiding the loss
of predictibility explained earlier.
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approaching this question is to first use a more dynamical account of the theory. We
don’t need to reinvent such an account, it is already standard in the study of gravity,
going by the acronym of ADM (Arnowitt–Deser–Misner) (Arnowitt et al., 1962).
The main idea behind a dynamical point of view is to set up initial conditions on
a spatial manifold M and construct the spacetime geometry by evolving in a given
auxiliary definition of time.4 Indeed most of the work in numerical general relativity
requires the use of the dynamical approach. Such formulations allow us to use the
tools of the Hamiltonian formalism of quantum mechanics to bear on the problem
of quantizing gravity. With these tools, matters regarding unitarity are much easier
to formulate, because there is a time with respect to which probabilities are to be
conserved.

However, since the slicing of spacetime is merely an auxiliary structure, the
theory comes with a constraint—called the Hamiltonian constraint —which implies
a freedom in the choice of such artificial time slicings. The metric associated to
each equal time slice, gab, and its associated momenta, πab, must be related by the
following relation at each spatial point x ∈ M:

H(x) : = R(x)− 1

g

(
πabπab − 1

2
π2

)
(x) = 0 ∀x ∈ M, (9.5)

where g stands for the determinant of the metric.

9.2.3 Problems of Time

The constraints (9.5) are commonly thought to guarantee that observables of the
theory should not depend on the auxiliary “foliation” of spacetime. As we will see
in this section, there are multiple issues with this interpretation. Famously, (9.5) also
contains the generator of time evolution. In other words, time evolution becomes
inextricably mixed with a certain type of gauge freedom, leading some to conclude
that in GR evolution is “pure gauge.” This is one facet of what people have called
the problem of time (see, e.g., Isham [1992] and Anderson [2017]). It is related
to the picture of block time—the notion that the object one deals with in general
relativity is the entire spacetime, for which the distinction among past, present, and
future is not fundamental. The worry is that the Hamiltonian formalism might be
freezing the bathwater with the baby still inside. What can we salvage in terms of
true evolution?

Even in the simplest example, it is not clear that the refoliation invariance
interpretation is tenable, as shown by Torre and Varadarajan (1999). For a scalar

4 In this constructed spacetime, the initial surface must be Cauchy, implying that one can perform this analysis
only for spacetimes that are time orientable.
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field propagating in Minkowski spacetime between two fixed hypersurfaces, differ-
ent choices of interpolating foliations will have unitarily inequivalent Schrödinger
time evolutions.

But what about more broadly? What can we say about the attempt to repre-
sent relativity of simultaneity in the Hamiltonian—both classical and quantum
mechanical—setting? In this section I investigate this question. The conclusion
will be that, at least from the quantum mechanical perspective, it might make
little sense to implement refoliation invariance. I contend that this is because
local time reparametrization represents an effective, but not fundamental, sym-
metry. I.e., I contend that invariance under refoliation is not present at a quan-
tum mechanical level, but should be recovered dynamically for states that are
nearly classical. This view undersigns a functionalist approach to spacetime
(Knox, 2017).

In the following two subsections, I expand first on obstacles for a quantization of
refoliation symmetry in the Hamiltonian setting, and then in the Lagrangian setting.
I expound on how these two types of obstacles point to timelessness as a possible
resolution.

9.2.3.1 Hamiltonian Evolution

Using the covariant symplectic formalism, one can geometrically project
symmetries of the Lagrangian theory onto the Hamiltonian framework. Using this
formalism, one can precisely track how Lagrangian symmetries in the covariant
field-space are represented as Hamiltonian flows in phase space. As shown by
Wald and Lee (Lee and Wald, 1990), for this projection to be well defined in the
case of non-spatial diffeomorphism invariance (acting as a spacetime Lagrangian
symmetry), one needs to restrict the Lagrangian theory to consider only those fields
that satisfy the equations of motion. Once restricted, indeed there exists a projection
of the nonspatial diffeomorphism symmetry to the symplectic flow of the standard
scalar ADM constraint (9.5). But otherwise, there isn’t such a correspondence. In
other words, the Hamiltonian formalism embodies the sacred principle of relativity
of simultaneity only on-shell.

Once the dynamics of the gravitational field are included in the Hamilto-
nian formalism (home of canonical quantum mechanics), it is impossible to
enforce relativity of simultaneity without also enforcing the gravitational equa-
tions of motion. This is worth repeating: for generic off-shell spacetimes, the
Hamiltonian constraint does not represent relativity of simultaneity. But sym-
metries should hold at the quantum level irrespectively of the classical equa-
tions of motion. Which brings forth the question: what would it even mean to
naively quantize (9.5)? What property would we be trying to represent with its
quantization?
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If one nonetheless ignores these issues and pushes quantization, one gets the
infamous Wheeler–DeWitt equation:

Ĥψ[g] = 0, (9.6)

where ψ[g] is a wave-functional over the space of 3-geometries. Following this
route, we see the classical problem of time transported into the quantum regime:5

One could look at (9.6) as a time-independent Schrödinger equation, which brings
us again to the notion of frozen time, from (9.3). A solution of the equation will
not be subject to time evolution; it will give a frozen probability wave-function
on the space of 3-geometries. To talk about its solutions, or the spectrum of the
Hamiltonian, one needs to talk about observables, which are nonlocal in phase
space (once one includes refoliation invariance). In other words, one needs to “solve
the theory” to even begin building a meaningful physical Hilbert space. Other
canonical approaches have so far similarly found insurmountable problems with
the quantization of this constraint. I contend that it should simply not be quantized,
as it does not represent a fundamental symmetry principle of the quantum theory.

9.2.3.2 Covariant Quantum Gravity

At a more formal level, to combine (9.2) with our principle of superposition, one
should keep in mind that spacetimes define causal structures, and it is far from
clear how one should think about these in a state of superposition. For instance,
which causal structure should one use in an algebraic quantum field theory approach
when declaring that spacelike separated operators commute? Quantum field theory
is formulated in a fixed spacetime geometry, while in general relativity spacetime
is dynamical. Without a fixed definition of time or an a priori distinction between
past and future, it is hard to impose causality or interpret probabilities in quantum
mechanics.

In quantum mechanics, we have time-evolution operators e−iĤ t taking us from
an initial physical state to a final one. In the language of path integrals, it is more
convenient to express evolution in terms of a gauge-fixed propagator (the inversion
of the quantum mechanical propagator requires gauge-degrees of freedom to have
already been gauge-fixed)W(φ1,φ2), where φ (e.g. φ = (x,t)) is deemed to at least

5 For the expert readers, I should note that a derivation of (9.6) exists from the path integral formalism (Halliwell
and Hartle, 1991). But that derivation already assumes that the Hamiltonian symmetries act on all the variables
in the path integral, and thus it does not resolve the problem Wald and Lee pointed to. Even ignoring all of
these issues, (9.6) has some further problems of its own. It has operator ordering ambiguities, functional
derivatives of the metric acting at a singular point, no suitable inner product on the respective Hilbert space
with respectable invariance properties, etc. One could also attempt to interpret (9.6) as a Klein–Gordon
equation with mass term proportional to the spatial Ricci scalar, but unlike Klein–Gordon, it is already
supposed to be a quantized equation. Furthermore, the problem in defining suitable inner products is an
obstacle in separating out a positive and negative spectrum of the Klein–Gordon operator (Anderson, 2017).
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contain all the gauge-invariant information.6 This simple characterization already
raises two types of difficulties.

The first, more conceptual problem, is that such a transition amplitude would
be one between full 4-dimensional spacetimes (or sets of spacetimes). It would
be a transition outside of time as such, but the way we usually think of quantum
transition amplitudes is within time.

The second is that there is no known local parametrization of physical (observ-
able) Lorentzian 4-geometries, [(4)g] (global obstructions—e.g., the Gribov prob-
lem [Singer, 1978]—also exist, but are less concerning). To understand what this
means, we need to introduce the notion of a slice. A “slice” is a split between the
physically equivalent (or gauge-equivalent) field configurations and the physically
distinct ones. A local slice is one that performs this split only locally in field space,
and it is equivalent to a local gauge-fixing if gauge transformations form well-
defined gauge orbits. Finding a slice theorem is relatively straightforward in the
case of Riemannian metrics (Euclidean signature) for any dimension. To make a
long story short, applying the strategy used in the Riemanninan slice theorem does
not work in the Lorentzian case due to the lack of invertibility of certain second-
order differential operators. Such operators are elliptic in the Riemannian case,
but for Lorentzian metrics the analogous operators are hyperbolic, invalidating the
construction of the slice. It is the sign of time that gets in the way—it blocks general
proofs either through the hyperbolic character of gauge-fixing equations or through
the noncompactness of the Lorentz group. For instance, the latter poses limitations
on physical parametrizations of Lorentzian metrics through curvature invariants
(Coley et al., 2009), which is unable to distinguish Kundt spacetimes, a relatively
broad class. Indeed this is related to the difficulty of finding a gauge-fixing of time
(or good clocks) that are valid everywhere in phase space.

A local parametrization, or slice for Lorentzian metrics has been constructed
(by Isenberg and Marsden) only for those Lorentzian metrics that (1) satisfy the
Einstein equations and (2) furthermore admit a particular kind of time foliation
(Isenberg and Marsden, 1982). This choice—constant mean curvature (CMC)—
corresponds to synchronizing clocks so that they measure the same expansion rate
of space everywhere (i.e., same local Hubble parameter).

Of course, this is suboptimal, to say the least. Quantization requires that we
consider metrics that are off-shell, i.e., that do not obey the classical equations of
motion. This issue is similar to the previously mentioned one, also surrounding
relativity of simultaneity—it has only a Hamiltonian representation for spacetimes
satisfying Einstein equations.

6 One can parametrize observables by families of gauge-fixings; as in e.g., partial observables, in the sense of
Rovelli (2002). Their inclusion does not change the discussion.
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9.2.3.3 Gluing Transition Amplitudes for Spacetime Regions

The previous argument assumes that spacetime does not possess boundaries,
where the gauge symmetries can be fixed. If one would like to have a piecewise
approach—that is, considering spacetime regions and then gluing them—other
types of questions arise about how to glue different transition amplitudes in gauge
theories, for instance, questions about the compatibility of gauge-fixing the degrees
of freedom at the boundaries (Donnelly and Freidel, 2016; Donnelly and Giddings,
2017) (which is problematic for a variety of reasons, including the previous one of
a lack of slice).

In a 3+1 decomposition, at least two related difficulties arise for the path integral.
One could take Ṅ = 0 = Ni , for lapse N and shift Ni . This is part of the standard
gauge-fixing taken for transition amplitudes in GR, such as for Hartle–Hawking
(Teitelboim, 1983). But these won’t cover generic spacetimes; such coordinates

generically form caustics. This is related to the problem mentioned earlier: there is
no (known) slice theorem for Lorentzian metrics (Isenberg and Marsden, 1982).

Moreover, as mentioned in footnote 5, the proof that such transition amplitudes
obey the Hamiltonian invariance equations, (9.6), assumes invariance under the
actions of the constraints, i.e., it assumes phase space invariance, not spacetime
(Lagrangian) invariance. Thus the argument expounded in regard to the Wheeler–
DeWitt equation applies also here: it is unclear if the transition amplitude expresses
relativity of simultaneity (Lee and Wald, 1990).

The second difficulty is that the spacetime corresponding to each gauge-fixed
path is taken to have boundaries(at least the initial and final time slices), and, again,
the fate of diffeomorphisms in the presence of boundaries is a very current matter
of discussion in the community.7 At least in the presence of degrees of freedom,
which are not strictly topological in nature, that is.

Indeed, many approaches to quantum gravity, such as spin foams (see Rov-
elli [2007] and references therein) are inspired by a treatment of topological
quantum field theory (TQFT) originated by Atyiah and Segal (Atiyah, 1988).
These treatments depict a transition amplitude from (co)boundaries of a manifold.
The boundaries host states and the interior of the manifold encode the transition
amplitude between these states. The transition amplitude can be obtained by a
path integral of all field histories between the two boundaries. And it is true that
there are many examples for which we understand quantization of TQFTs with
diffeomorphism symmetry, including gravity in 2+1 spacetime dimensions (see
Carlip [2005]). However, being topological in nature, in none of these theories is
there a discrepancy between the full field space and that subset which satisfies the
equations of motion; the equations of motion are trivially satisfied by using gauge

7 These concerns have resurfaced due to the study of entanglement entropy (Donnelly, 2014).
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transformations; in this case, indeed there is no difference between implementing
symmetries on-shell or off-shell. Therefore, in these theories, the counterargument
outlined in this section is not valid; it requires a gap between what is kinematical
and what is dynamical.

9.2.3.4 Many Problems. . .

Let us take stock of the many problems related to time in GR that we have men-
tioned: first, dynamics—the Einstein equations—has little to do with causality prop-
erties; even kinematically, the field gμν already carries causal relations.8 Second,
the Hamiltonian relates only to redefinitions of simultaneity when the Einstein
field equations are met (Lee and Wald, 1990). Relatedly, in GR the lines between
symmetry and evolution are completely blurred. In other words, within the Hamilto-
nian formalism—the most natural formalism for quantum mechanics—one cannot
implement the symmetries off-shell, that is, in a truly quantum mechanical manner.
Indeed, as mentioned in the beginning of the section, even in the simplest example
of a field theory (with local degrees of freedom) testing invariance under refoli-
ations in the quantum mechanical realm is problematic (Torre and Varadarajan,
1999). Third, in the covariant approach, no generic (i.e., also off-shell) gauge-fixing
is known. This is again a problem of the signature of operators related to the time
direction.

9.2.4 Symmetries, Relationalism and Laws of the Instant

Many of the problems in the previous section seem to point in the same direction:
parametrizing physical degrees of freedom in the presence of relativity of simul-
taneity is a difficult task. Perhaps restricting the fundamental symmetries of the
theory to disallow this mixing with evolution would cure some of these issues. As
I have emphasized, we only need to recover refoliation invariance on-shell, i.e.,
only after the equations of motion have been imposed. This frees up the theory to
accept different fundamental symmetry principles and delegate the fulfillment of
refoliation invariance to on-shell properties. In this section, we uncover what this
new sort of symmetries can be.

9.2.4.1 A Silver Lining

There are makeshift patches to the problems of time we have mentioned, and in
them, we can find a silver lining. For instance, as I mentioned, a very weak form

8 As a background, that is. One can move to the 3+1 context, in which, after gauge-fixing, one finds hyperbolic
equations of motion propagating field disturbances. But then, one is back to the other issues I have mentioned:
first, regarding generic gauge-fixings of the 4-diffeomorphisms. Second, regarding the inextricable relation
between evolution and gauge symmetry; is it possible to satisfy one but not the other?
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of a slice theorem—essentially generic gauge-fixings—exists for GR (Isenberg and
Marsden, 1982). It requires that the spacetime satisfy the Einstein equations and
admit a CMC foliation, i.e., synchronizing clocks so that the expansion of space
is constant everywhere. Moreover, going to the 3+1 framework to study dynamics,
one finds that most formal proofs for existence and uniqueness of solutions also
require the use of CMC foliations, through the so-called York method (York, 1971,
1973). Indeed, most if not all of the numerical simulations used to model black hole
mergers have worked within CMC (Pretorius, 2005), even helping interpret Laser
Interferometry Gravitational Observatory (LIGO) data; and every test that has ever
been passed by GR is known to be consistent with a CMC foliation.

The constraints these foliations need to satisfy generate certain dynamical (sym-
plectic) flows: changes of spatial scale, i.e., local conformal transformations, as
we will see shortly. Indeed, CMC foliations have special properties in GR: the
evolution of the spatial conformal geometry decouples from the evolution of the
pure scale degrees of freedom of the metric. Surprisingly, both the York method
and the slice theorem show that, although GR is not fundamentally concerned with
spatial conformal geometries, it is deeply related to them. As we now comment on,
this is not an accident; the most general sort of symmetries that act pointwise in
configuration space and locally in space are indeed conformal transformations and
diffeomorphisms.

In the following subsection, I introduce these symmetries. In Section 9.2.4.3, I
describe this result: these symmetries are the most general ones with an inherently
“instantaneous,” local, action.

9.2.4.2 Relationalism

In Hamiltonian language, the most general symmetry transformation acts through
the Poisson bracket { · · ·}, on configurations:

δεgij (x) =
{∫

d3x F [g,π;x ′)ε(x ′) , gij (x)
}
, (9.7)

where ε is the not necessarily scalar gauge parameter, which in this infinite dimen-
sional context is a function on the closed spatial manifold, M , and we are using
DeWitt’s mixed functional dependence; i.e., F depends functionally on gij (not
just on its value at x ′), as denoted by square brackets, but it yields a function with
position dependence—the “;x ′”) at the end.

Regarding the presence of gauge symmetries in configuration space, we would
like to implement the most general relational principles that are applicable to
space (as opposed to spacetime). At face value, the strictly relational symmetries
should be:
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• Relationalism of locations. In Newtonian particle mechanics this would imply
that only relative positions and velocities of the particles, not their absolute
position and motion, are relevant for dynamics. In the center of mass frame, i.e.,
in which the total linear momentum vanishes ( �P = 0), the supposition holds only
if the total angular momentum of the system also vanishes (see Barbour [2010]
and Mercati [2014]), �L ≈ 0. In the gravitational field theory case, relationalism
of locations is represented by the (spatial) diffeomorphism group Diff(M) of the
manifold M . It is generated by a constraint F [g,π;x ′) = ∇iπ ij (x) ≈ 0, which
yields on configuration space the transformation δ�εgij (x) = L�εgij (x), which is
just the infinitesimal dragging of tensors by a diffeomorphism.

• Relationalism of scale. In Newtonian particle mechanics this relational symme-
try would imply that only the relative distance of the particles, not the absolute
scale, is relevant for dynamics. It holds only if the total dilatational momentum
of the system vanishes (see Barbour [2010] and Mercati [2014]). In the gravita-
tional field theory, this symmetry is represented by the group of scale transforma-
tions (also called the Weyl group), C(M), which is symplectically generated by
F [g,π;x ′) = gijπij (x) ≈ 0 (it yields on configuration space the scale transfor-
mation δεgij (x) = ε(x)gij (x)). In this case the infinitesimal gauge parameter ε is
a scalar function, as opposed to a vector field �ε for the diffeomorphisms.

Unlike what is the case with the constraints emerging from the Hamiltonian ADM
formalism of general relativity, these symmetries form a (infinite-dimensional)
closed Lie algebra.

9.2.4.3 Laws of the Instant

Even if we disregard considerations about relationalism, local time reparametriza-
tions, or refoliations, also don’t act as a group in spatial configuration space and thus
do not allow one to form a gauge-invariant quotient from its action. That is, given
a particular linear combination—defined by a smearing9 λ⊥—of the Hamiltonian
constraints given in (9.5), it generates the following transformation:

δλ⊥gab(x) =
2λ⊥(πab − 1

2πgab)√
g

(x), (9.8)

which depends not only on the metric but also on the momenta. This dependence is
clearly in contrast to the symmetries related to relationalism of scale and of position,
mentioned earlier. It means that the 3-metric by itself carries no gauge-invariant
information.

Indeed, for the associated symmetry to have an action on configuration
space that is independent of the momenta, a given constraint F [g,π,λ] ≈ 0

9 The ⊥ notation is standard to represent parameter acting transversally to the constant-time surfaces.
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must be linear in the momenta. This already severely restricts the forms of the
functional to:10

F [g,π,λ] =
∫
F̃ (g,λ)ab(x)π

ab(x), (9.9)

so that the infinitesimal gauge transformation for the gauge-parameter λ gives:

δλgab(x) = F̃ (g,λ)ab(x).
Thus I would like symmetries to act solely on configuration space. Only such

symmetries are compatible with the demand that the W(g1
ab ,g

2
ab) give all the

information we need about a theory, since only such symmetries allow gab to carry
gauge-invariant information. I thus require that δεg1

ab(x) = G[g1
ab ,ε ;x) for some

mixed functional G, which crucially only depends on g1
ab.

In other words, the action of the symmetry transformations of “now” depends
only on the content of “now.” The action of these relational symmetries on each
configuration gab is self-determined, they do not depend on the history of the con-
figuration or on configurations g̃ab �= gab. In Gomes (2016), I gave a proof that the
relational symmetries of scale and position are indeed the only symmetries whose
action in phase space projects down to an intrinsic action on configuration space.

The conclusion of this argument is that spatial relationalism is singled out by
demanding that symmetries have an intrinsic action on configuration space. Just to
be clear, this feature is not realized by the action of the ADM scalar constraint (9.5),
since it is a symmetry generated by terms quadratic in the momenta and thus
the transformation it generates on the metric requires knowledge of the conjugate
momentum (and vice-versa).

Last (and also unlike what is the case with the scalar constraint (9.5)),11 the
action of these symmetries endows configuration space M with a well-defined, neat
principal fiber bundle structure (see Fischer and Marsden [1977]), which enables
their quantum treatment (Gomes, 2016).

For a theory that contains some driver of change, an absolute time of some sort,
we would extend our configuration space with an independent time variable, t ,
making the system effectively deparametrizable. With this absolute notion of time,
and an ontological deparametrization of the system, evolution from t1 to t2 would
not require any further definition. At this point we could stop, claiming that we
have expounded on what we expect a relational theory of space to look like. We
would be able to define a Schrödinger equation as in the usual time-dependent
framework and go about our business. Shape dynamics employing the complete

10 Up to canonical transformations that don’t change the metric, i.e., with generating functionals of the form∫
d3x (π̃abgab +√gF [g]), for F any functional of g and π̃ab the new momentum variable.

11 Barring the occurrence of metrics with nontrivial isometry group.
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relational symmetries is a theory of that sort.12 However, the presence of time there
is still disturbing from a relational point of view: where is this time if not in the
relations between elements of the configurations? Therefore, to fully satisfy our
relational fetishes, we must again tackle the question: without a driver for change,
what is the meaning of a transition amplitude?

9.3 Timelessness, Quantum Mechanics, and Configuration Space

9.3.1 The Special Existence of the Present: Parmenides and Zeno

It could be argued that we do not “experience” spacetimes. We experience one
instant at a time, so to say. We, of course, still appear to experience the passage of
time, or perhaps more accurately, we (indirectly) experience changes in the spatial
configuration of the world around us, through changes of the spatial configuration
of our brain states.

But if present experience is somehow distinguished, how does “change” come
about? This is where Parmenides has something to say that is relevant for our dis-
cussion. Parmenides was part of a group called the Eleatics, whose most prominent
members were himself and Zeno, and whose central belief was that all change is
illusory. The reasoning that led them to this conclusion was the following: if the
future (or past) is real, and the future is not existing now, it would have both prop-
erties of existing and not existing, a contradiction (or a “turning back on itself”).
Without past and future, the past cannot transmute itself into future, and thus there
is also no possible change. Of course, the argument hinges on the distinction we
perceive among present, past, and future, and in one form or another, is present in
many subsequent formulations, such as McTaggart’s (1908) influential.13

But perhaps no one better than Augustine captures our psychological dumb-
foundness when faced with the defenestration of time’s flow. He picked up the
question posed by the Eleatics, concluding that change was an illusion and yet,

How can the past and future be, when the past no longer is, and the future is not yet? As for
the present, if it were always present and never moved on to become the past, it would not
be time, but eternity.. . . Nevertheless we do measure time. We cannot measure it if it is not
yet into being, or if it is no longer in being, or if it has no duration, or if it has no beginning
and no end. Therefore we measure neither the future nor the past nor the present nor time
that is passing. Yet we do measure time.

12 The absolute time used in the original version of shape dynamics (Gomes, Gryb, and Koslowski, 2011), is of
the form 〈πabgab〉, where brackets denote the spatial average. This quantity is invariant only with respect to
Weyl transformations that preserve the total volume of space and is thus not completely relational. One can
extend the conformal transformation to the full group, acquiring an absolute time parametrization (Koslowski,
2015).

13 See Price (2009) for a review of McTaggart’s arguments and more recent counterarguments to a flow of
time.
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According to Augustine, time is a human invention: the difference between
future and past is merely the one between anticipation and memory.

To the extent that future and past events are real, they are real now, i.e., they
are somehow encoded in the present configuration of the universe. Apart from
that, they can be argued not to exist. My memory of the donut I had for breakfast
is etched into patterns of electric and chemical configurations of my brain, right
now. We infer the past existence of dinosaurs because it is encoded in the genes of
present species and in fossils in the soil. At any moment we are in the possession
of a host of redundant records of the same event, and they had better be in mutual
accord. It is from this consistent mosaic of records that we build models of the laws
of Nature. We fit the pieces together into a larger explanatory framework we call
“science.”

But does the Eleatic argument then bring about a solipsism of the instant? How
to connect a snapshot of the dinosaur dying with the snapshot of the paleontologist
finding its remains? In a timeless universe, what we actually do is deduce from the
present that there exists a continuous curve of configurations connecting “now” to
some other configuration we call “the past.”

A much more recent incarnation of the Parmenidean view is found in the work of
Julian Barbour (see Barbour [1999]), which I use here as a nearer port of departure.
Barbour observes that timeless configuration space should be seen as the realm con-
taining every possible now, or instantaneous configuration of the universe. Barbour
(1994), attempts to accommodate timelessness more intuitively into our experience:

An alternative is that our direct experience, including that of seeing motion, is correlated
with only configuration in our brains: the correlate of the conscious instant is part of a
point of configuration space . . . Our seeing motion at some instant is correlated with a
single configuration of our brain that contains, so to speak, several stills of a movie that
we are aware of at once and interpret as motion. . . . Time is not a framework in which
the configurations of the world evolve. Time exists only so far as concrete configurations
express it in their structure. The instant is not in time; time is in the instant.

I almost wholeheartedly agree with Barbour. We diverge only in the attribution
of experience to each configuration alone. I believe there is no empirical access
to single-field configurations; therefore, all statements about experience refer to
some coarse graining, or regions of configuration space, where a given attribute is
represented. Clearly, this empirical dilution of Barbour’s radical “solipsism of the
instant” does not conflict with my theoretical reasons for considering instantaneous
configuration space to be ontologically fundamental. I still believe that the past
doesn’t become the present; it is only embedded in the present. Every present
exists, every present is unique, and some presents may be entangled with other
presents.
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9.3.2 Timeless Path Integral in Quantum Mechanics

Configuration space for timeless field theories, which I will denote by M, should
be thought of as the set of all possible field configurations over a given closed
manifold M . Each point of configuration space q ∈ M is a “snapshot” of the
whole universe.14 I will require symmetries to be laws of the instant precisely so
that they are compatible with a theory defined at its most fundamental level by
W(q1,q2).

We start with a finite-dimensional system, whose configuration space, M, is
coordinatized by qa , for a = 1, · · · ,n. An observation yields a complete set of
qa , which is called an event. Let us start by making it clear that no coordinate, or
function of coordinates, need single itself out as a reference parameter of curves in
M. The systems we are considering are not necessarily deparametrizable—they do
not necessarily possess a suitable notion of time variable.

Now let � = T ∗M be the cotangent bundle to configuration space, with coor-
dinates qa and their momenta pa . The classical dynamics of a reparametrization
invariant system is fully determined once one fixes the Hamiltonian constraint
surface in �, given by H = 0. A curve γ ∈M is a classical history connecting the
events qa1 and qa2 if there exists an unparametrized curve γ̄ in T ∗M such that the
following action is extremized:

S[γ̄ ] =
∫
γ̄

padq
a, (9.10)

for curves lying on the constraint surface H(qa,pa) = 0, and are such that γ̄ ’s
projection to M is γ , connecting qa1 and qa2 .

Feynman’s original demonstration of the equivalence between the standard form
of nonrelativistic quantum mechanics and his own path integral formulation relied
on refining time slicings. The availability of time gave a straightforward manner
by which to partition paths into smaller and smaller segments. Without absolute
time, one must employ new tools in seeking to show the equivalence. For instance,
a parametrized curve γ̄ :[0,1] → � need not be injective on its image (it may go
back and forth). This requires one to use a Riemann–Stieltjes integral as opposed
to a Riemann one in order to make sense of the limiting procedure to infinite
subdivisions of the parametrization. In the end, a timeless transition amplitude
becomes (Chiou, 2013):

W(q1,q2) =
∫

Dqa
∫

Dpa δ[H ] exp

[
i

h̄

∫
γ̄

padq
a

]
, (9.11)

14 For instance, it could be the space of sections on a tensor bundle,
M = C∞(TM ⊗ · · · TM ⊗ TM∗ · · · TM∗). In the case of gravity, these are sections of the positive
symmetric tensor bundle: M = C∞+ (TM∗ ⊗S TM∗).
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where the path integral sums over paths whose projection starts at q1 and ends
at q2, and H is a single reparametrization constraint. In the presence of gauge
symmetries, if it is the case that these symmetries form a closed Lie algebra, one
can in principle use a group averaging procedure, provided one uses a similarly
translation invariant measure of integration (which is available for the single, or
global, reparametrization group).

For a strictly deparametrizable system,15 one obtains again:

W(t1,q
i
1,t2,q

i
2) ∼

∫
Dt G(t1,qi1,t2,qi2) ∼ G(t1,qi1,t2,qi2),

up to an irrelevant overall factor. Further, if the Hamiltonian is quadratic in the
momenta, one can integrate them out and obtain the configuration space path inte-
gral with the Lagrangian form of the action.

For gravity, given the symmetries acting ultralocally on configuration space (and
the principal fiber bundle structure they form) studied in Section 9.2.4.3, we take
the analog of (9.11), schematically projected down onto the space of conformal
geometries:16

W([g1],[g2]) =
∫

D[g]
∫

D[π ] exp

[
i

h̄

∫
γ̄

[πab] δ[gab]

]
δH([g],[π ]), (9.12)

where I have (again, schematically) used square brackets to denote the conformal-
diffeo-equivalence classes of the metric and momenta, and where δH represents a
single reparametrization constraint (not an infinite amount, as in the ADM scalar
constraint). Schematically, this transition amplitude should play the role of (9.11)
in the field theory case.

Although considerations of quantum gravity and its problems have led us to
value the timeless representation of quantum theory in Section 9.2, from now on we
denote the equivalence classes [g] and all other equivalence classes of fields under
the appropriate instantaneous symmetries, by the standard coordinate variable, q.

9.4 Records and Timelessness

Suppose that we have in our hands a W(qq,q2) for which q’s carry also the gauge-
invariant degrees of freedom. Still, as stressed in previous sections; without some
driver of change—which we usually call time—what is the meaning of this transi-
tion amplitude? Here we will see how such a meaning can arise from timelessness.
The ultimate meaning W(q1,q2) can give rise to is simple: the likelihood that

15 I.e. one for which [Ĥ (t1),Ĥ (t2)] = 0. If this is not the case, the equality will hold only semiclassically.
16 The full treatment of the gauge conditions requires a gauge-fixed Becchi–Rouet–Stora–Tyutin (BRST)

formalism, which is a level of detail I don’t need here. See Gomes (2016) for a more precise definition,
equation (28), where we use K(g1,[g2]) as opposed toW([g1],[g2]).
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records of q1 will be found in q2. In Section 9.4.1, I build the scaffolding for a
static volume form in configuration space. This requires a definition of the space
of beables and of an anchor to the path integral. Having done this, in Section 9.4.2
I introduce the structure that allows one to ascribe histories to properties of the
static volume form—records. However, records are not enough to talk about
conservation of probability, and at the end of the section I sketch how this
can be done.

9.4.1 Born Rule and the Preferred Configuration

In a true spatially relational, an instantaneous state of an observer is encoded in
a partial-field configuration. There are no subjective overtones attributed to an
observer—it is merely a (partial) state of the fields. Of course, there are many
regions of configuration space where no such thing as an observer will be repre-
sented.

Since each point is a possible now, and there is no evolution, each now has an
equal claim on existing. This establishes the plane of existence, every now that can
exist, does exist! We are at least partway toward the adage of quantum mechanics.
If this were a discrete space, we could say that each element has the same weight.
This is known as the principle of indifference, and it implies that we count each
copy of a similar observer once.17

But configuration space is a continuous space, like R2 (but infinite dimensional).
Unlike what is the case with discrete spaces, there is no preferred way of counting
points of R

2. We need to imprint M with a volume form; each volume form
represents a different way of counting configurations.

Contrary to what occurs in standard time-dependent many worlds quantum
mechanics, I will define a single, standard time-independent “volume element”
over configuration space M. Integrated over a given region, this volume element
will simply give the volume, or the amount, of configurations in that region.18 The
theory posited here is realist, in the sense that it ascribes an actual, true volume form
to configuration space. But there is also a role to be played by empirical guesses to
what this volume form is; it is this empirical volume form that we call our theory,
and it is the only thing rational beings update in this timeless picture—there is no
collapse of the objective wavefunction.

17 The intuition obtained for many worlds in the discrete configuration spaces can be misleading for our
purposes. In that case, each branch can be counted, and one needs a further explanation to count them
according to the Born rule. There are different ways of going about this, e.g., based on this principle, and on
the epistemic principle of separability, Carroll et al. claim that the Born rule can be derived (Sebens and
Carroll, 2014).

18 Of course, these volume forms are divergent and technically difficult to define. Properties of locality of the
volume form, discussed in Gomes (2017b) are essential to show that nonetheless their definition reduces to
the usual Born rule for isolated finite-dimensional systems. Furthermore, only ratios of the volume form have
any meaning.
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9.4.1.1 Born Rule

The volume form P(q)Dq is defined as a positive scalar function of the transition
amplitude, P(q) : =F(W(q∗,q)). We need to explain the notation in this equation.
First, there is still a sign of the principle of indifference in the manner we choose
the bare volume element, Dq; it is chosen as the translationally invariant measure
in the field theory context. But since it is being multiplied by P(q), the composition
P(q)Dq can still be anything. This measure, F , gives a way to “count” configura-
tions, and it is assumed to act as a positive functional of the only nontrivial function
we have defined on M, namely, the transition amplitudeW(q∗,q).

Now if we restrict the positive function F : C → R
+, so that it respects the

multiplicative group structure,

F(z1z2) = F(z1)F (z2), (9.13)

we can recover Markowian properties (locality in time), some form of which seems
likely to be a fundamental property of nature. From this multiplicative demand we
also recover a notion of records from the transition amplitude (Gomes, 2017b).
When we also demand that in the classical limit we obtain classical statistical
mechanics, (9.13) uniquely leads to a derivation of the “Born volume” form for
F : F(W(q∗,q)) = |W(q∗,q)|2, i.e.,

P(q) = |W(q∗,q)|2. (9.14)

Last, in the definition of P(q) I have sneaked in an “in” configuration, q∗, which
defines once and for all the static volume form over (reduced) configuration space.
I define q∗ roughly as the simplest, most structureless configuration of the fields
in question. Note that this can be a meaningful statement only if q carries its own
physical content; i.e., for symmetries that are laws of the instant. It is in this sense
distinct from a “past hypothesis” in GR, which requires some auxiliary foliation to
be defined.

9.4.1.2 The Preferred Configuration, q∗

This section gives a set of natural choices for q∗, depending on the configuration
space, gauge group, and manifold topology. Reduced configuration spaces may
not form smooth manifolds but only what are called stratified manifolds. This is
because the symmetry group G in question—whose action forms the equivalence
relation by which we are quotienting—may act qualitatively differently on different
orbits. If there are subgroups of the symmetry group—stabilizer subgroups—whose
action leaves a point q̃ fixed, the symmetry does not act “fully” on q̃ (or on any other
representative q̄ ∈ [q̃]); some subgroups of G simply fail to do anything to q̃. This
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implies the quotient of configuration space with respect to the full symmetry may
vary in dimensionality.

Taking the quotient by such wavering actions of the symmetry group creates a
patchwork of manifolds. Each patch is called a stratum and is indexed by the stabi-
lizer subgroup of the symmetry group in question (e.g., isometries as a subgroup of
Diff(M)). The larger the stabilizer group, the more it fails to act on q̃, the lower the
dimensionality of the corresponding stratum. The union of these patches, or strata,
is called a stratified manifold. It is a space that has nested “corners”—each stratum
has as boundaries a lesser dimensional stratum. A useful picture to have in mind
for this structure is a cube (seen as a manifold with boundaries). The interior of the
cube has boundaries that decompose into faces, whose boundaries decompose into
lines, whose boundaries decompose into points. The higher the dimension of the
boundary component, the smaller the isometry group that its constituents have,19

i.e., the more fully G acts on it. Thus the interior of the cube would have no stabilizer
subgroups associated to it, and the 1-dimensional corners the highest dimensional
stabilizer subgroups. Everything in between would follow this order: the face of the
cube could be associated to a lower dimensional stabilizer subgroup than the edges,
and the edges a lower one than the corners.

Configurations with the highest possible dimension of the stabilizer subgroup are
what I define as q∗—they are the pointiest corners of this concatenated sequence
of manifolds. And it is these topologically preferred singular points of configura-
tion space that we define as an origin of the transition amplitude. Their simplicity
coincides with—or is a reinterpretation of—characteristics we would expect from
a low-entropy beginning of the universe.

Thus, depending on the symmetries acting of configuration space, and on the
topology ofM , one can have different such preferred configurations. For the case at
hand—in which we have both scale and diffeomorphism symmetry andM = S3—
there exists two sorts of such preferred points: one connected to the rest of the
quotient space and the other disconnected. The preferred q∗ of M/(Diff(M) � C)
that is connected to the rest of the manifold is the one corresponding to the round
sphere. The disconnected point is the completely singular metric, q∗ = gab = 0.20

If we look at just the spatial diffeomorphisms, then the natural choice becomes
the singular metric q∗ = gab = 0. In the Hartle–Hawking state, in minisuperspace

19 E.g., let Mo be the set of metrics without isometries. This is a dense and open subset of M, the space of
smooth metrics overM . Let In be the isometry group of the metrics gn, such that the dimension of In is dn.
Then the quotient space of metrics with isometry group In forms a manifold with boundaries,
Mn/Diff(M) = Sn. The boundary of Sn decomposes into the union of Sn′ for n′ > n (see Fischer [1970]).

20 For conformal transformation, we can see it is disconnected in the quotient space, because we have no access

to gab = 0. Choosing any given reference ḡab , we can conformally project gab , i.e. [gab] =
(
ḡ
g

)1/3
gab . As

gab becomes degenerate, its determinant goes to zero, and any such conformal projection diverges. Any such
[gab] is therefore, at best, infinitely far.



196 Henrique Gomes

(where refoliations act as a single reparametrization, as they would here), this is
(equivalent to) the initial state chosen.

9.4.2 Records

9.4.2.1 Semiclassical Records

We are now in position to relinquish “a driver of change.” With the notion of
records, about to be introduced, we can recover all the appearances of change,
without it having to be introduced by fiat as extraneous structure.

Having defined q∗, we can set it as q1 and obtain a meaningful transition
amplitude W(q1,q2) to now, represented by q2. At a fundamental level, q∗,
together with a definition of F and the action, completely specify the physical
content of the theory by giving the volume of configurations in a given region
of M.

It is this anchoring of the amplitude on q∗ that allows probabilities to depend
only on the past. It is also what permits the existence of another class of object that
I call records.

The system one should have in mind as an example of such a structure is the
Mott (1929) bubble chamber. In it, emitted particles from α-decay in a cloud cham-
ber condense bubbles along their trajectories. A quantum mechanical treatment
involving a timeless Schrödinger equation finds that the wave-function peaks on
configurations for which bubbles are formed collinearly with the source of the α-
decay. In this analogy, a “record holding configuration” would be any configuration
with n collinear condensed bubbles, and any configuration with n′ ≤ n condensed
bubbles along the same direction would be the respective “record configuration.”
In other words, the n + 1-collinear bubbles configuration holds a record of the n-
bubbles one. For example, to leading order, the probability amplitude for n bubbles
along the θ direction obeys:

P [(n,θ), · · · ,(1,θ)] � P [(n′,θ), · · · ,(1,θ)]P [(n′,θ), · · · ,(1,θ)|(n,θ), · · · ,(1,θ)],
(9.15)

where n′ < n, and P [A|B] is the conditional probability for B given A.
Let us sketch how this comes about in the present context. When semiclassical

approximations may be made for the transition amplitude between q∗ and a given
configuration, we have:

Wcl(q
∗,q) =

∑
γj

�
1
2
j exp ((i/h̄)Scl[γj ]), (9.16)
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where the γj are curves that extremize the action, which on-shell we wrote as
Scl[γj ]), and � are certain weights for each one (called Van-Vleck determinants21).
This formula is approximately valid when the Scl[γj ]) > h̄.

Roughly speaking, when all of γj go through a configuration qr �= q, I will
define q as possessing a semiclassical record of qr . Note that this is a statement
about q, i.e., it is q that contains the record (a more precise definition is left for
Gomes [2017a]). I will call M(r) the entire set that contains qr as a record.

For q ∈ M(r), it can be shown that the amplitude suffers a decomposition (this
is shown in Gomes [2017a]):

W(q∗,q) � W(q∗,qr)W(qr,q). (9.17)

To show this in a simplified setting of a deparametrizable system—i.e., when the
Hamiltonian admits a split H(q,p) = po + Ho(qi,pi,qo), with [Ho(t),Ho(t ′)] =
0—one uses the same techniques as those used to prove the semigroup properties
of the semiclassical amplitude. For qo = t :

Wcl((q
i
1,t1),(q

i
3,t3)) =

∫
dq2Wcl((q

i
1,t1),(q

i
2,t2))Wcl((q

i
2,t2),(q

i
3,t3)). (9.18)

Since the extremal curves all go through the single point corresponding to t r2 , we
immediately recover (9.17):

Wcl(q
∗,q) = Wcl((q

i
1,t1),(q

i
3,t3)) = Wcl((q

i
1,t1),(q

i(r)

2 ,t r2 ))Wcl((q
i(r)

2 ,t r2 ),(q3,t3))

� Wcl(q
∗,qr)Wcl(qr,q).

Calculating the probability of q from (9.17), we get an equation of conditional
probability, of q on qr ,

P(qr) = P(q|qr)P (qr). (9.19)

The expression (9.19) thus reproduces the Mott bubble equation, (9.15) for qi,qj
along the same classical trajectory, and separated by more than h̄.

Furthermore, it is easy to show that when q1 is a record of q2 and there is a unique
classical path between the two configurations, then the entire path has an ordering
of records. Namely, parametrizing the path, γ (t), such that γ (0) = q1 ,γ (t

∗) = q2,
then γ (t) is a record of γ (t ′) iff t < t ′. We call such types of objects, strings of
records, and it is through them that we recover a notion of classical time.

21 The weights of each extremal path are given by the Van-Vleck determinant, �i = δπi1
δφ , where πi1 is the initial

momentum required to reach that final φ. Having small Van-Vleck determinant means that slight variations of
the initial momentum give rise to large deviations in the final position. Let me illustrate the meaning of a
Van-Vleck determinant with a well-known heuristic example: suppose that φ1 contains a broken egg. If φ
represents a configuration with that same egg unbroken (still connected to φ1 by an extremal curve), small
deviations in initial velocity of configuration change at φ1 will result in a final configuration very much
different (very far from) φ.
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9.4.2.2 The Recovery of Classical Time

If records are present, it would make absolute sense for observers in q to attribute
some of q’s properties to the “previous existence” of qr . It is as if configuration
qr had to “happen” in order for q to come into existence. If q has some notion of
history, qr participated in it.

When comparing relative amplitudes between possibly finding yourself in con-
figurations q1 or q2, both possessing the same records qr , the amplitude W(q∗,qr)
factors out, becoming irrelevant. This says that we don’t need to remember what
the origin of the universe was, when doing experiments in the lab, the required
elements for q are already encoded in qr .22

I believe that indeed, it is difficult to assign meaning to some future configuration
q in the timeless context. Instead, what we do, is to compare expectations now,
with retrodictions, which are embedded in our records, or memories. We compare
earlier records with more recent ones, and apply Bayesian updating of our theories
accordingly.

In the classical limit, without any interference, for a coarse graining for which
records are separated by on-shell actions large with respect to the Planck scale, we
recover a complete notion of history.

If there is nothing to empirically distinguish between our normal view of history
(i.e., as having actually happened) on one hand, and the tight correlation between
the present and the embedded past on the other, why should we give more credence
to the former interpretation? Bayesian analysis can pinpoint no pragmatic distinc-
tion, and I see no reasons for preferences, except psychological ones.

9.4.2.3 Records and Conservation of Probability

Now, one of the main questions that started our exploration of theories that are
characterized by the timeless transition amplitude, was the difficulty in defining
concepts such as conservation of probability for quantum gravity, which has no
fixed causal structure. Are we in a better position now?

What we are talking about so far is volume in configuration space. How does that
relate to probabilities of the sort that is conserved? In the presence of a standard
time parameter, we first distinguish between the total probability Pt at one time,
t , from Pt ′ at another, t ′. To translate this statement to one that uses only records
and configuration space, we want a notion that reproduces this separation. This
separation is accomplished by first restricting configurations in M(r) to subsets,
Sα, α ∈ �, such that there is no pair φαi ,φ

α
j ∈ Sα for which φi ∈ M(j). We call

22 But note that whenever a record exists, the preferred configuration q∗ is also a record. In fact, one could have
defined it as the record, of all of configuration space. Indeed, it does have the properties of being as
unstructured as possible, which we would not be amiss in taking to characterize an origin of the universe.
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these sets, Sα, screens. In other words, in each one of these sets, no configuration
is a record of any other configuration. This is taken to say that configurations
belonging to a single screen are not “causally related.” In relativistic terminology—
which can be misleading, since here we are in configuration space and not in real
space(time)—this would represent events that happen “at the same time” (for some
equal time surface). But here this property also holds for many worlds type theories
in configuration space, where there is no real time.

Now, each Sα ⊂ M(r) does not contain redundant records. But there are many
redundant records along each extremal trajectory, at least in the no-interference
case. In that simple case, there is precisely one extremal trajectory γj between φr
and each element φαj of a given screen, which is thus parametrized by the set J � j .
Define a screen S1 = {φ1

j = γj (t1j ),j ∈ J }, where t1j is a given parameter along
the j th extremal curve. We can then find another screen S2 = {φ2

j = γj (t2j ) , t2j >
t1j ,∀j}. In these simple cases, and at least for certain types of action functionals, it
can be shown that, for the translationally invariant measure and Born volume, the
infinitesimal volumes respect: V (S2) � V (S1) (Gomes, 2017a). This is as close as
we can get to a statement about conservation of probability.

9.5 What Are We Afraid Of? The Psychological Obstacles

What usually unsettles people, including me, about this view is the damage it
does to the idea of a continuous conscious self. The egalitarian status of each
and all instantaneous configurations of the universe—carrying on their backs our
own present conscious states—raises alarms in our heads. Could it be that each
instant exists only unto itself, that all our myriad instantaneous states of mind
exist separately? This proposal appears to conflict with the construed narrative
of our selves—of having a continuously evolving and self-determining conscious
experience.

But perhaps, upon reflection, it shouldn’t bother us as much as it does. First of
all, the so-called Block Time view of the self does not leave us in much better shape
in certain respects of this problem. After all, the general relativistic worldline does
not imply an evolving now—it implies a collection of them, corresponding to the
entire worldline. For the (idealized) worldline of a conscious being, each element
of this collection will have its own, unique, instantaneous experience.

Nonetheless, in at least one respect, the worldline view still seems to have one
advantage over the one presented in this paper. The view presented here appears
more fractured, less linear than the worldline view, even in the classical limit—
for which aspects of a one-parameter family of configurations becomes embedded
in a now. The problem is that we start off with a one-parameter family of indi-
vidual conscious experiences, and, like Zeno, we imagine that an inverse limiting



200 Henrique Gomes

procedure focusing on the now will eventually tear one configuration from the
next, leaving us stranded in the now, separated from the rest of configuration space
by an infinitesimal chasm. This is what I mean here by solipsism of the instant.
In Section 9.5.1, I will explain how this intuitive understanding can find footing
only in a particular choice of (nonmetric) topology for configuration space. That
topology is not compatible with our starting point of applying differential geometry
to configuration space.

9.5.1 Zeno’s Paradox and Solipsism of the Instant: A Matter of Topology

It might not seem like it, but the discussion about whether we have a collection
of individual instants as opposed to a continuous curve of instants hinges, albeit
disguisedly, on the topology we assume for configuration space. Our modern dis-
missal of Zeno’s paradox relies on the calculus concept of a limit. But in fact, a
limit point in a topological space first requires the notion of topology: a limit point
of a set C in a topological space X is a point p ∈ X (not necessarily in C) that can
be “approximated” by points of C in the sense that every neighborhood of p with
respect to the topology on X also contains a point of C other than p itself.

In the finest topology—the discrete topology—each subset is declared to be
open. On the real line, this would imply that every point is an open set. Let us call
an abstract precurve in X the image of an injective mapping from R (endowed with
the usual metric topology) to the setX. Thus no precurve onX can be continuous if
X is endowed with the finest topology. Because the mapping is injective, the inverse
of each point of its image (which is an open set in the topology of X) is a single
point in R, which is not an open set in the standard metric topology of R. Likewise,
with the finest topology, Zeno’s argument becomes inescapable—when every point
is an open set, there are no limit points and one indeed cannot hop continuously
from one point to the next. We are forever stuck here, wherever here is.

In my opinion, the idea that Zeno and Parmenides were inductively aiming at
was precisely that of a discrete topology, where there is a void between any two
given points in the real line. If X is taken to be configuration space, this absolute
“solipsism of the instant” would indeed incur on the conclusions of the Eleatics,
and frozen time would necessarily follow. However, the finest topology cannot be
obtained by inductively refining metric topologies.

With a more appropriate, e.g., metric, topology, we can only iteratively get to
open neighborhoods of a point, neighborhoods that include a continuous number of
other configurations. That means, for example, that smooth functions on configura-
tion space, like P(q), are too blunt an instrument—in practice its values cannot be
used to distinguish individual points. No matter how accurately we measure things,
there will always be open sets whose elements we cannot parse. And so it is with
any subjective, empirical notion of now.
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The point being that with an appropriate topology we can have timelessness
in a brander version than the Eleatics, even assuming that reality is entirely
contained in configuration space without any absolute time. With an appropri-
ate coarser (e.g., metric) topology on configuration space, we do not have to
worry about a radical solipsism of the instant: in the classical limit there are
continuous curves interpolating between a record and a record-holding config-
uration. I can safely assume that there is a continuous sequence of configura-
tions connecting me eating that donut this morning to this present moment of
reminiscence.

9.5.2 The Continuity of the Self: Locke, Hume, and Parfit

John Locke considered personal identity (or the self) to be founded on mem-
ory, much like my own view here. He says in “Of Ideas of Identity and
Diversity”:

This may show us wherein personal identity consists: not in the identity of substance,
but . . . in the identity of consciousness. . . . This personality extends itself beyond present
existence to what is past, only by consciousness.

David Hume wrote in A Treatise of Human Nature that when we start introspecting,
“we are never intimately conscious of anything but a particular perception; man is
a bundle or collection of different perceptions which succeed one another with an
inconceivable rapidity and are in perpetual flux and movement.”

Indeed, the notion of self, and continuity of the self, are elusive upon intro-
spection. I believe, following Locke, that our self is determined biologically by
patterns in our neural connections. Like any other physical structure, under normal
time evolution these patterns are subject to change. What we consider to be a
self or a personality, is inextricably woven with the notion of continuity of such
patterns in (what we perceive as) time. Yes, these patterns may change, but they
do so continuously. It is this continuity that allows us to recognize a coherent
identity.

In Reasons and Persons, Derek Parfit puts these intuitions to the test. He asks
the reader to imagine entering a “teletransporter,” a machine that puts you to sleep,
then destroys you, copying the information of your molecular structure, and then
relaying it to Mars at the speed of light. On Mars, another machine re-creates you,
each atom in exactly the same relative position to all the other ones. Parfit poses the
question of whether or not the teletransporter is a method of travel—is the person
on Mars the same person as the person who entered the teletransporter on Earth?
Certainly, when waking up on Mars, you would feel like being you, you would
remember entering the teletransporter in order to travel to Mars, you would also
remember eating that donut this morning.
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Following this initial operation, the teletransporter on Earth is modified so as
to leave intact the person who enters it. Each replica left on Earth would claim
to be you, and also remember entering the teletransporter, and then getting out
again, still on Earth. Using thought experiments such as these, Parfit argues that
any criteria we attempt to use to determine sameness of personal identity will
be lacking. What matters, to Parfit (1984), is simply what he calls “Relation R”:
psychological connectedness, including memory, personality, and so on.

This is also my view, at least intellectually if not intuitively. And it applies to
configuration space and the general relativistic worldline in the same way as it does
in Parfit’s description. In our case there exists a past configuration, represented (but
not contained) in configuration now in the form of a record. This past configuration
has in it neural patterns that bear a strong resemblance to neural patterns contained
in configuration now. Crucially, these two configurations are connected by contin-
uous extremal paths in configuration space, ensuring that indeed we can act as if
they are psychologically connected. We can—and should!—act as if one classically
evolved from the other. Indeed, in such cases our brain states are consistent with
evolved relations between all subsystems in the world we have access to. Different
sets of records all agree and are compatible with arising from joint evolution.
Furthermore, I would have a stronger Relation R with what I associate with future
configurations of my (present) neural networks, than to other brain configurations
(e.g., associated to other people). There seems to be no further reason for this
conclusion to upset us, beyond those reasons that already make us uncomfortable
with Parfit’s thought experiment.

9.6 Summary and Conclusions

9.6.1 Crippling and Rehabilitating Time

Time does not exist. There is just the furniture of the world that we call instants of time.
Something as final as this should not be seen as unexpected. I see it as the only simple and
plausible outcome of the epic struggle between the basic principles of quantum mechanics
and general relativity. For the one—on its standard form at least—needs a definite time,
but the other denies it. How can theories with such diametrically opposed claims coexist
peacefully? They are like children squabbling over a toy called time. Isn’t the most effective
way to resolve such squabbles to remove the toy?

Barbour, 1999

Loosely following the Eleatic view of the special ontological status of the present,
here we have carved time away from spacetime, being left with timeless configura-
tion space as a result. If time is the legs that carry space forward, we might seem to
have emerged from this operation with a severely handicapped universe.
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The criticism is to the point. Even if time does not exist as a separate entity
in the universe, our conception of it needs to be recovered somehow. If there is no
specific variable devoted to measuring time, it needs to be recovered from relational
properties of configurations. This essay showed that this can be done.

9.6.2 Psychological Hang-Ups

The idea of timelessness is certainly counterintuitive.
But our own personal histories can indeed be pieced together from the static

landscape of configuration space. Such histories are indiscernible from, but still
somehow feel less real than, our usual picture of our pasts. Even beyond the world-
line view of the self, the individual existence of every instant still seems to leave
holes in the integrity of our life histories. I have argued this feeling is due to our
faulty intuitions about the topology of configuration space.

Nonetheless, even after ensuring mathematical continuity of our notion of
history, the idea of timelessness and of all possible states of being threatens
the ingrained feeling that we are self-determining; since all these alternatives exist
timelessly, how do we determine our future? But this is a hollow threat. Forget about
timelessness; free will and personal identity are troublesome concepts all on their
own, we should not fear infringing their territory. I like to compare these concepts to
mythical animals: Nessie, Bigfoot, unicorns, and the like. They are constructs of our
minds, and—apart from blurry pictures—shall always elude close enough inspec-
tion. Crypto-zoologists notwithstanding, Unicorns are not an endangered species.
We need not be overly concerned about encroaching on their natural habitat.

9.6.3 What Gives, Wheeler’s Quip or Superpositions?

Neither, really.
Perhaps our shortcomings in the discovery of a viable theory of quantum gravity

are telling us that spacetime is the obstacle. Though at first sight we are indeed
mutilating the beautiful unity of space and time, this split should not be seen as a
step back from Einstein’s insights. I believe the main insight of general relativity,
contained in Wheeler’s sentence (9.1), is about the dynamism of space and time
themselves. There is no violence being done to this insight here.

Spatial geometry appears dynamic—it warps and bends throughout evolution
whenever we are in the classical regime. Regarding the dynamism of time, the
notion of “duration” is emergent from relational properties of space. Thus duration
too is dynamic and space dependent.

Nonetheless, all relational properties are encoded in the static landscape of con-
figuration space. The point is that this landscape is full of hills and valleys, dictated
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by the preferred volume form that sits on top of it. From the way that the volume
form distributes itself on configuration space, certain classical field histories—
special curves in configuration space—can give a thorough illusion of change. I
have argued that this illusion is indistinguishable from how we perceive motion,
history, and time.

Moreover, in regard to the quantum mechanics adage, the processes W(qr,q)
straightforwardly embody “everything that can happen, does happen.” The concept
of superposition of causal structures (or even that of superposition of geometries),
is to be replaced by interference between paths in configuration space. Those same
hills and valleys in configuration space that encode classical field histories reveal
the valleys and troughs of interference patterns. A very shallow valley around
a point—for example representing an experimental apparatus and a fluorescent
dot on a given point on a screen—indicates the scarcity of observers sharing that
observation. By looking at the processes between records and record-holding con-
figurations, we can straightforwardly make sense of interference, or lack thereof,
between (coarse-grained) histories of the universe.

In all honesty, I don’t know if formulating a theory in which space and time
appear dynamical, and in which we can give precise meaning to superpositions of
alternative histories, is enough to quantize gravity. Although the foundations seem
solid, the proof is in the pudding, and we must further investigate tests for these
ideas.

But neither do I believe that dropping time from the picture is abdicating hard-
won knowledge about spacetime. Indeed, we can recover a notion of history,
we can implement strict relationalism, we transfigure the measurement problem,
and we can make sense of a union of the principles of quantum mechanics and
geometrodynamics.23

It seems to me that there are many emotions against this resolution, but very few
arguments; as I said at the beginning of these conclusions, accepting timelessness is
deeply counterintuitive. But such a resolution would necessarily change only how
we view reality, while still being capable of fully accounting for how we experience
it. The consequences for quantum gravity still need to be unraveled. This whole
approach should be seen as a framework, not as a particular theory. And indeed,
in the nonrelativistic regime of quantum mechanics, we are not looking for new
experiences of reality, but rather for new ways of viewing the ones we can already
predict, a new framework to interpret these experiences with. This is the hallmark
of a philosophical insight, albeit in the present case one heavily couched in physics.
As Wittgenstein said: “Once the new way of thinking has been established, the old

23 Perturbative techniques of course still need to be employed, even in the semiclassical limit, to make sense of
the weights � in (9.16). This, and other issues to do with renormalizability are left for future study.
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problems vanish; indeed they become hard to recapture. For they go with our way
of expressing ourselves and, if we clothe ourselves in a new form of expression, the
old problems are discarded along with the old garment.”
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Why Black Hole Information Loss Is Paradoxical

david wallace

10.1 Introduction

Not everyone understands Hawking’s paradox the same way[.]
Samir Mathur1

The black hole information loss paradox has been a constant source of discussion
in theoretical physics since Stephen Hawking (1976) first claimed that black hole
evaporation is nonunitary and irreversible, but opinions about it differ sharply.
The mainstream view in theoretical physics—especially that part of high-energy
physics that has pursued string theory and string-theoretic approaches to quantum
gravity—is that (1) the paradox is deeply puzzling and (2) it must ultimately
be resolved so as to eliminate information loss. But prominent critics in physics
(Unruh and Wald, 1995, 2017; Penrose, 2004) and in philosophy (e.g., Belot,
Earman, and Ruetsche [1999] and Maudlin [2017]) seem frankly baffled that
anyone could expect information not to be lost in black hole evaporation and often
regard the apparent paradox as simply the result of confusion. Maudlin (2017,
p. 2) goes so far as to suggest that ‘no completely satisfactory non-sociological
explanation’ can be given for the paradox’s persistence!)

This sharp disagreement arises, I argue, from an equivocation as to what is meant
by ‘the’ information loss paradox. The form most widely discussed in the popular
and semipopular literature, closest in form to Hawking’s original discussion, and
most directly engaged with by the critics, is based on a clash between apparently
general features of quantum mechanics and the global structure of the spacetime
describing a completely evaporating black hole. That version of the paradox is
indeed less than compelling: information loss seems prima facie plausible, and in

1 Mathur (2009, p. 34).
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any case the question seems to require a full understanding of quantum gravity to
answer and so may be premature.

But there is a second version of the paradox, dating back to Page (1993), which
instead rests on the conflict between a statistical-mechanical description of black
holes and the exactly thermal nature of Hawking radiation as predicted in quantum
field theory (QFT). This version of the paradox is far more compelling, inasmuch
as very powerful arguments support both sides in the conflict and yet they appear to
give rise to contradictory results. The (mathematical) evidence against information
loss advanced by physicists is much more naturally understood in terms of the
second version of the paradox, and that version has if anything been sharpened
by work in recent years that strengthens both the case for and the case against
information loss. It remains in the truest sense paradoxical: a compelling argument
for a conclusion, a comparably compelling argument for that conclusion’s negation.

The structure of the paper is as follows. In Section 10.2, I briefly summarize
important background facts in the last 40 years of black hole physics: the extent
to which classical black holes can be given a thermodynamical description, the
discovery and significance of Hawking radiation, and the progress made in estab-
lishing a statistical-mechanical underpinning for black hole thermodynamics. In
Section 10.3 I present the two forms of the information loss paradox, focusing on
the second and more powerful form. In Sections 10.4 and 10.5 I review recent devel-
opments (respectively, anti–de Sitter spacetime conformal field theory [AdS/CFT]
duality and the firewall paradox) that bear on this form of the information loss
paradox; Section 10.6 is the conclusion.

Four notes before proceeding. First, I have written this article at about the level
of mathematical rigor found in mainstream theoretical physics. I do not attempt full
mathematical rigor, which seems premature in any case given the incomplete state
of development of the theories being discussed.

Second, for what it’s worth, my strong impression is that the version of the
information-loss paradox I focus on is also the version that high-energy physicists
mostly have in mind in their technical work on quantum gravity. However, I do not
intend this paper as a historical account, and I leave to others the interesting task of
disentangling the literature on the topic.

Third, quantum gravity is a large and varied field. The dominant research pro-
gram in that field is string theory, and my discussions of quantum gravity in this
paper (insofar as they go beyond low-energy regimes, which are somewhat bet-
ter understood) are entirely restricted to the string theory program. This is partly
because the second version of the paradox I discuss has been overwhelmingly
developed and discussed in string theory, but mostly on grounds of space and
of my own expertise. (I am not an expert on string theory by any means, but I
understand the relevant results well enough to have reasonable confidence on how
they work and what they rely on; I lack anything like that level of competence in
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other approaches to quantum gravity.) The reader should not infer anything about
the progress, or lack of progress, in understanding black hole statistical mechanics
and black hole information loss in other programs from my failure to discuss it here.
Readers more sceptical than I about the prospects of string theory, in particular, are
warmly encouraged to carry out analogous investigations in other programs. (For
loop quantum gravity in particular—the largest quantum gravity program outside
the string theory framework—Perez [2017] is a thorough recent review of black
hole physics in that program.)

Last, unless otherwise noted I work in units where kB = c = G = h̄ = 1.

10.2 Background

This is a rather brief overview of material I discuss, and critically assess, in much
more detail in Wallace (2018, 2019). I give only the key references; readers are
referred to these papers for more extensive information and references.

10.2.1 Black Hole Thermodynamics

In the 1970s it became clear that even classical black holes (that is, black holes as
described by classical general relativity, along with phenomenological descriptions
of matter fields) behaved in a great many respects as if they were ordinary thermal
systems. I review this material in depth in Wallace (2018), and readers are referred
there for details and further references, but in summary:

• Black holes have equilibrium (that is, stationary) states characterized (in their
rest frame) only by their energy and by a small number of conserved quantities
(charge and angular momentum); ‘no-hair’ theorems (Carter, 1979) establish the
uniqueness of these equilibrium states, and perturbations away from equilibrium
are damped down quickly (Thorne, Price, and Macdonald, 1986, chs. 6–7).

• Small-scale interactions with a black hole (such as lowering charged or rotating
matter into the hole) can be divided into ‘reversible’ and ‘irreversible’ in a fashion
closely analogous to infinitesimal adiabatic interactions with thermodynamical
systems (Christodolou and Ruffini, 1971). In this analogy, black hole surface area
plays the role of thermodynamic entropy: an infinitesimal change is reversible iff
it leaves the area invariant, and no physically possible intervention can decrease
the area.

• Stationary black holes of chargeQ, massM and angular momentum J satisfy the
differential expression:

dM = κ

8π
dA−�dJ −�dQ, (10.1)
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where κ is the surface gravity, A the surface area, � the surface angular velocity,
and � the surface electric potential (Bardeen, Carter, and Hawking, 1973). This
expression can be derived either as an abstract mathematical statement about
equilibrium black holes or as a statement about the small changes in Q, M , J ,
and A induced by allowing matter to fall into the black hole. This is exactly
the expression (under either interpretation) that would encode the First Law of
Thermodynamics for a self-gravitating body at thermal equilibrium with that
charge, mass, and angular momentum, if it had temperature λκ/8π and entropy
Aλ (for arbitrary positive λ). Some while later, Wald (1993) showed how to
extend the First Law and how to define the appropriate generalization of (entropy
∝ area) to arbitrary diffeomorphism-invariant theories of gravity.

• Hawking’s (1972) area theorem established that no intervention on a black hole
could decrease its area, and so extended the (entropy ∝ area) idea from infinites-
imal to finite processes.

The membrane paradigm (Thorne et al., 1986) that codified further advances in
classical black hole physics in the 1970s and early 1980s, extended this thermo-
dynamic interpretation of black holes to a local description, where a black hole
can be regarded (from the perspective of any observer who remains outside) as a
thin, viscous, charged, conducting membrane lying at the ‘stretched horizon’, just
outside the true event horizon. Under the membrane paradigm, for instance:

• The increase of black hole area when a charge is dropped onto it can be under-
stood as Ohmic dissipation as the charge flows through the surface;

• The return to equilibrium of the black hole under the same process can be under-
stood as the spread of the charge from an initially localized region to a uniform
charge distribution across the surface;

• An uncharged black hole rotating in an external magnetic field will develop eddy
currents that slow its rotation;

• Dropping a mass into a black hole induces damped perturbation in its shape, in
accordance with the Navier–Stokes equation for viscous fluids.

These results, collectively, provide an almost perfect interpretation of a black hole
as a thermodynamic system as long as heat exchanges with other systems are
disregarded. When they are considered, the analogy breaks down entirely as far as
classical physics is concerned; the only consistent temperature that can be assigned
to a black hole through considerations of thermal contact is zero, and no classically
possible physical process can be reinterpreted as heat flow from a black hole to
another thermal system.
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10.2.2 Hawking Radiation

Hawking (1975) discovered that when quantum field theory (QFT) is applied to a
black hole spacetime, it gives rise to field states that, as seen by distant observers,
correspond to thermal radiation emitted from the black hole. Hawking radiation
(which has since been rederived by many different methods; see Wallace [2018,
sec. 4.2] for a review and discussion of the evidence) can be understood as a conse-
quence of the entanglement of the QFT vacuum state and of any state locally similar
to that state. Field modes on either side of the event horizon are entangled, and from
the point of view of an observer who remains outside the event horizon, the effective
state of a field mode just outside the horizon can be described by tracing over the
physically inaccessible partner mode just inside the horizon. The resultant state is
perfectly thermal as measured by an observer just outside the horizon; because of
the black hole’s gravitational field, most of this thermal radiation falls back in and
the radiation seen by a distant observer differs from perfect black-body radiation
by a so-called gray-body factor correction.

From our point of view, Hawking radiation has two key features:

1. It exactly completes the description of a black hole as a thermodynamic system.
Hawking radiation from a black hole of surface gravity κ has temperature κ/2π ,
exactly in accord with the black hole temperature contained within the First
Law, (with λ = 4), and it provides a method by which black holes can be put
in thermal contact with each other and with other hot bodies (either through
radiative transfer or by directly mining the atmosphere of thermal radiation
surrounding the hole).

2. Hawking radiation carries energy (as defined via Noether’s theorem applied
at large distances) away from the black hole and so can be expected to
reduce its mass. Exact calculations remain impossible (they would require a
fully understood theory of quantum gravity) but a variety of different calcula-
tions, arguments and numerical simulations within semiclassical gravity (see
Wallace [2018, sec. 4.3] for a review) all give the expected ‘naive’ result that the
rate of decrease of the black hole’s mass is equal to the Hawking radiation flux at
infinity. As such, an isolated black hole will radiate away its mass theoretically
until it vanishes entirely, in practice at least until its mass approaches the Planck
mass and the assumptions of Hawking’s calculation (that full quantum-gravity
effects may be neglected) become invalid.

10.2.3 Black Hole Statistical Mechanics

So: black holes behave exactly like thermodynamic systems. All other thermo-
dynamic systems we know behave that way because their thermodynamics is
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underpinned by a statistical-mechanical description, so it is natural to speculate
that black holes also have a statistical-mechanical description that underlies their
thermodynamic behavior. In particular, the thermodynamic entropy of a statistical-
mechanical system is identified with the microcanonical entropy, i.e., the log
of the number of (mutually orthogonal) states available to it, so a statistical-
mechanical description for black holes implies that a black hole of given mass,
charge, and angular momentum and of area A has ∼ exp(A/4G) (mutually
orthogonal) microstates available to it. This speculation was made even before
the discovery of Hawking radiation, and by now there is a large amount of
calculational evidence supporting it. I review that evidence in depth in Wallace
(2019) (other reviews include Harlow [2016] and Hartman [2015]), but in brief,
there are three sources: effective field theory, full quantum gravity, and AdS/CFT
duality.

The effective field theory route treats general relativity as an ordinary (albeit non-
renormalizable) quantum field theory, with the Einstein–Hilbert action as the lead-
ing term in an infinite series of interactions and with some unspecified high-energy
physics cutting off the divergences in the field-theoretic description at around the
Planck length. In this formalism (and temporarily reintroducing the gravitational
constant G), statistical-mechanical entropy can be calculated using path-integral
methods; as was shown by Gibbons and Hawking (1977) only a few years after the
discovery of Hawking radiation, doing so recovers S = A/4G as the leading-order
term. Subsequent work has both clarified the conceptual basis of the calculation
and extended it to include interaction terms beyond the Einstein–Hilbert action and
higher-order quantum corrections to the leading-order result. The former exactly
reproduces Wald’s generalization of the entropy formula; the latter have exactly
the required form to renormalize the gravitational constant, ensuring that the G
in S = A/4G is the empirically measured, renormalized Newtonian constant, not
the bare constant that appears in the quantum Lagrangian. (More accurately, the
divergent part of the quantum corrections renormalizes the constant; the finite part
generates additional terms in the entropy formula proportional to logM , which are
negligible at classical scales.)

The full quantum gravity route depends on one’s preferred theory of quantum
gravity (and, since we have no fully worked-out theory of quantum gravity, is
necessarily tentative). The most precise (and also the most influential) calculations
have been done in string theory and are restricted to so-called extremal black holes;
since we will anyway have to consider such black holes later, I pause to give a brief
explanation.

Consider first a black hole with nonzero charge Q, mass M , but no angu-
lar momentum. The appropriate black hole solution to the field equations, the
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Reissner–Nordström solution, describes a black hole only if |Q| ≤ M (for larger
charges, there is a naked singularity). An extremal black hole satisfies |Q| = M

(and is best thought of as the limiting case of black holes closer and closer to
extremality). The surface gravity, and thus thermodynamic temperature, of an
extremal black hole, is zero; thus they do not radiate and can be thought of as
ground states. (In general, a nonextremal black hole with a substantial charge will
decay to an extremal black hole rather than evaporating entirely.) This generalizes
to charged, rotating black holes, as well as black holes in higher dimensions and
with more than one sort of charge; in each case, we can describe the black hole by
its conserved charge(s) and angular momentum together with the statement that it is
extremal.

Strominger and Vafa (1996) showed that for a certain class of extremal black hole
in five dimensions, the statistical-mechanical entropy can be calculated in string
theory; the result, to leading order, exactly matches the area formula. Subsequent
calculations have both widened the class of extremal black holes whose entropy
can be found in this manner and refined the calculations to include higher-order
corrections and to allow for small perturbations from extremality. The match to the
entropy deduced by low-energy methods is exact.

(It’s tempting to conclude that [1] this is evidence that string theory is the
correct theory of quantum gravity, and/or [2] that the Strominger–Vafa result is
significant only if string theory is the correct quantum theory of gravity. Both
conclusions are too quick. The fact that black hole entropy can be calculated in
low-energy quantum gravity—and, indeed, in QFT on a fixed background—
strongly suggests that any consistent ultraviolet completion of low-energy quantum
gravity will reproduce the entropy formula. The match between Strominger and
Vafa’s result, Gibbons and Hawking’s, and the semiclassical prediction is then
evidence first that string theory is a consistent quantum theory of gravity, and
second, that the sum-over-histories approach to low-energy quantum gravity really
is describing the low-energy regime of a consistent theory. (See Wallace [2019] for
further discussion.)

The AdS/CFT route relies on the conjectured duality (Gubser, Klebanov, and
Polyakov, 1998; Maldacena, 1998; Witten, 1998a) between a quantum gravity
theory with asymptotically AdSn+1 × K boundary conditions and a conformal
quantum field theory on the n-dimensional boundary of AdSn+1, where AdSn
denotes anti–de Sitter spacetime in n spacetime dimensions andK is some compact
space. (Anti–de Sitter spacetime is most perspicuously thought of here as a sort of
box, a covariant version of the ‘periodic boundary condition’ boxes often used to
make quantum field theories calculationally more tractable.) The conjecture arose
in string theory (indeed, arose in part through the extremal black hole calculations
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discussed earlier) but can be understood, and motivated, as a claim about general
quantum-gravity theories on AdS; it cannot be proved formally at present but can be
strongly motivated both by physical arguments and by a large number of examples
of calculations of the same quantity on either side of the duality, where completely
different methods nonetheless give the exact same answer.

The statistical mechanics of conformal field theories are conceptually under
much better control than in the quantum-gravity case, and AdS/CFT duality allows
us to calculate entropy and other thermodynamic quantities on the CFT side of the
duality and then map them back to the AdS case. The results (which are uncontro-
versially statistical-mechanical in origin) reproduce the predictions of black hole
thermodynamics; in general qualitatively (Witten, 1998b; Aharony et al., 2004),
but quantitatively and exactly, in those cases where quantitative results can be
obtained. (In particular, the extremal black hole calculations can be reproduced
[Strominger, 1998] via AdS/CFT methods.)

In aggregate, these results seem to give strong support to the idea that black
hole thermodynamics will be underpinned, in full quantum gravity, by a statistical
mechanics of the same general form as that underpinning any other thermodynamic
system, and that in particular, any classical stationary black hole has a large number
of microscopic degrees of freedom, in accordance with the statistical-mechanical
definition of entropy. The exact form of these degrees of freedom is left somewhat
obscure but they appear to have to live in a thin skin around the event horizon, both
on general physical grounds (degrees of freedom within the event horizon don’t
seem well placed to determine a system’s thermodynamic properties) and because
that seems to be where the detailed calculations place them in those cases where
they give any answer at all. A natural way to think of this is as a quantization of the
membrane paradigm: not only thermodynamically, but statistically mechanically,
a black hole seems to an outside observer as a thin membrane around the black
hole, which has a full unitary description as a quantum system interacting with
surrounding radiation, which will be at the Planck temperature as measured by an
observer suspended just above its surface, and whose thermodynamical properties
are explained in terms of its microscopic degrees of freedom. In particular, in this
description Hawking radiation is just ordinary thermal radiation from the surface of
the membrane.

10.3 Paradoxes of Information Loss

‘The’ paradox of information loss encompasses a wide range of ideas, but two main
versions of the paradox can be discerned. I begin with the version most commonly
discussed in the foundational literature, which I review only briefly; for a more
detailed review see, e.g., Wald (1994, ch. 7) or Belot et al. (1999). It turns on the
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violation of unitarity in complete black hole evaporation, and its relation to the
causal structure of the evaporating black hole spacetime.

10.3.1 Non-Unitarity of Total Evaporation

Figure 10.1 depicts the complete process of black hole evaporation according to the
semiclassical description (that is, assuming Hawking radiation via QFT on a fixed
black hole background spacetime and decrease of the mass of that black hole via
semiclassical back-reaction). We can distinguish three regions:

1. The preformation region I (the lower gray triangle), which is foliated by Cauchy
surfaces like �I .

2. The evaporation region II (the white region between the gray triangles), which
can be written as the union of II (int) (the region inside the horizon) and
II (ext) (the region outside). It is foliated by slices like �II .

3. The postevaporation region III (the upper gray triangle), foliated by slices like
�III .

Each region, individually, is globally hyperbolic, as is the combined region
I + II . The overall spacetime is not globally hyperbolic: the point X is a naked
singularity.

If QFT on this spacetime accurately describes the black hole evaporation process,
we would expect to be able to describe the physics in region I ∪ II by a unitary
dynamics, transforming, e.g., a pure quantum state on �I to one on �II . The latter
state, in general, would be entangled, with the reduced states on �II ∩ II (int) and
�II ∩ II (ext) being mixed, but the overall evolution would remain unitary and
retrodictable. Since the boundary between II (int) and II (ext) is a future horizon,
we would also expect a future-deterministic evolution on I ∪ II (ext), so that the
reduced state on �II ∩ II (ext) is uniquely determined by the state on �I , but
this evolution will be neither unitary nor past-deterministic (many different initial
states would lead to the same black hole exterior reduced state.) Strictly, the naked
singularity means that there is no well-defined evolution at all from region II to
region III , but if we stipulate some well-behaved local physics at the singularity,
the evolution from II to III is again deterministic but non-unitary. Indeed, the
quantum state on�out that describes the spacetime immediately upon evaporation is
obtained by unitarily evolving the state on �I forward to just before the singularity
and then tracing out over II (int).

The end result is that the process of black hole formation and evaporation, as
described by an observer outside the black hole, is a pure-to-mixed, irreversible
transition. The same result can be seen more physically by noting that the quantum
state of the exterior in the evaporation region just consists of Hawking radiation,
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Figure 10.1 Spacetime of a completely evaporating black hole (angular coordi-
nates suppressed).

which is (1) perfectly thermal, and hence mixed, and (2) determined only by the
bulk properties of the black hole (mass, charge, angular momentum) and not by any
details of its formation. On slices in region II, the full information remains because
the formation details are encoded on the state in II(int), but that information is lost
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once the black hole completely evaporates. (More carefully: that information is not
present in any of the slices in region III .)

There is a major lacuna in this argument: the final stages of black hole evap-
oration occur when the black hole’s curvature is Planck scale and so are well
into the regime where semiclassical calculations are unreliable. (This shows up
formally in Figure 10.1 via the naked singularity.) But it is hard to imagine filling
in the Planck-scale physics in order to save unitarity: the remaining energy does
not seem sufficient to encode all the remaining information in a final burst of
photons (to say nothing of the question of how it got from the black hole singularity
to the evaporation point X); the persistence of the black hole as a Planck-scale
‘remnant’ with fantastically many internal degrees of freedom looks difficult to
reconcile with other features of particle physics; the replacement of the pointlike
naked singularity with a lightlike ‘thunderbolt’ seems unmotivated and overkill
besides; and the removal of the future singularity so that the interior of the black
hole forms a ‘baby universe’ does nothing to save unitarity from the perspective of
the external observer.

This powerful argument for non-unitary evaporation is one form of the
information-loss paradox, which we can usefully call the ‘evaporation time
paradox’, yet readers might wonder why it deserves to be called a paradox and
not just an argument to the interesting conclusion that information is lost. Indeed,
that is how Hawking (1976) originally described it; more recently, information loss
has been advocated forcefully by Unruh and Wald (1995, 2017), Penrose (2004,
pp. 840–841), and Maudlin (2017) and more nuancedly by Belot et al. (1999).
The stripped-down version of their arguments would be: we have a right to expect
unitarity, information preservation, and retrodiction only on globally hyperbolic
spacetimes; the evaporation spacetime manifestly is not globally hyperbolic; so
non-unitary evolution is only to be expected.

Arguments for unitarity have been given for this version of the paradox, but
frankly they are (to me) less than compelling. The most straightforward (mostly
seen in informal discussion and semipopular work) is simply: unitarity is part of
quantum mechanics, so non-unitary evaporation is incompatible with quantum me-
chanics. But this seems to equivocate on the meaning of “quantum mechanics”;
of course we could just define quantum physics as incorporating unitary dynam-
ics, but at least some forms of QFT seem perfectly well defined on non-globally
hyperbolic spacetimes and to have dynamics that is locally unitary but globally
non-unitary on those spacetimes. (See Belot et al. [1999, append.], for discus-
sion; see also Deutsch [1991] for an example of the same phenomena in a dif-
ferent context.) Compare: Hamiltonian versions of classical electromagnetism are
defined only for globally hyperbolic spacetimes, but classical electromagnetism
can also be defined via its local field equations on a much more general class of
spacetime.
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More interesting objections come from quantum field theory. In QFT, the
amplitude for a transition can generally be expressed as a sum over all ways
in which the transition might come about, which for a full quantum theory of
gravity ought to include processes involving formation and evaporation of Planck-
scale black holes. Furthermore, high-energy processes like this are typically not
suppressed in sum-over-histories calculations; rather, their effects can normally be
absorbed into the renormalization of the empirically measured constants. Prima
facie, it looks plausible that non-unitary quantum-gravity effects will make a large
difference to low-energy physics and that this difference cannot be normalized
away, and some calculations (Banks, Susskind, and Peskin, 1984; Srednicki,
1993) seem to support this result. But the matter is controversial (see, e.g.,
Hawking [1996], Unruh and Wald [1995], or Unruh [2012] for dissenting views)
and at the least does not seem to provide decisive reasons to reject the argument for
information loss, pending a full quantum theory of gravity in which the calculations
can be done more carefully.

But while the evaporation time paradox is the form of the information loss para-
dox generally found in popular and foundational literature, it is not the only form.
A much more compelling paradox arises when Hawking radiation is considered
not just in the light of quantum mechanics in general, but in particular in the light
of black hole statistical mechanics.

10.3.2 Non-Thermality of Unitary Cooling

Following Page (1993), suppose we have some ordinary thermodynamic system
with Hilbert space H, which we want to describe using the microcanonical
ensemble. To do so we find some energy interval �E, narrow compared to typical
energies of the system but wide enough so that the number of energy eigenstates
betweenE andE+�E is large. Then we can define H(E) as the subspace spanned
by eigenstates of energy with eigenvalues between E and E + �E, and write the
total Hilbert space as:

H =
⊕
E

H(E), (10.2)

where the sum ranges over energies E = 0,�E,2�E, . . . N�E, . . .. The system
begins at microcanonical equilibrium at energy E0, and for expository simplicity I
assume its initial state is pure (and so is contained in H(E0)). It then cools through
the emission of thermal radiation; that is, emission of quanta of radiation in highly
mixed states. I also assume that the system is large enough that its energy remains
in a narrow band as it cools, so that to high accuracy the system’s state at any given
time is contained within (that is, is a density operator restricted to) some H(E).
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The original state of the system is pure, and its dynamics are unitary, so the
total state of system plus radiation is pure. But if the radiation is thermal, each
emitted photon will be in a mixed state and so must be entangled with some other
system for the total state to be pure. In thermal radiation no two emitted quanta
can be entangled, so each must be entangled with the system. More quantitatively,
if the total von Neumann entropy of the radiation quanta emitted as the system
cools from E0 to some lower energy E is S, then by unitarity the von Neumann
entropy SVN(E0,E) of the system must also be S. But if the system has energy E ∈
[E(t),E(t)+�E] at time t , its (mixed) state at t must be contained within H(E(t))
and so must have a von Neumann entropy less than log dimH(E(t)), which is to
say that the von Neumann entropy is bounded above by the microcanonical entropy
SMC(E(t)),

SVN(E0,E(t)) ≤ SMC(E(t)). (10.3)

And the latter (assuming the system has positive temperature) is decreasing as the
system cools. There will come a time—the so-called Page time, typically about
halfway through the cooling process—when this inequality saturates, and after
that point the radiation can no longer be exactly thermal. Instead, the late-time
thermal radiation will have to be entangled with the early-time radiation. (Page
provides plausibility arguments to the effect that this turnover will be fairly sharp:
the radiating body will emit almost exactly thermal radiation up to the Page time,
so that the von Neumann entropy of the radiating body rises initially until it equals
the decreasing microcanonical entropy and then the two remain equal for the rest
of the decay process.) The overall process is illustrated in Figure 10.2: the charac-
teristic time dependence of the von Neumann entropy, initially increasing and then
dropping off, is known as the Page curve. The initial purity of the system state plays
no essential role here provided that the initial state’s von Neumann entropy is much
lower than its microcanonical entropy.

According to black hole thermodynamics, black holes are ‘ordinary quantum-
mechanical systems’, and the von Neumann entropy of the matter that formed the
black hole will be extremely small compared to the black hole’s initial thermody-
namic entropy. (And, while the stellar precursor of an astrophysical black hole is not
plausibly in a pure state, the thermodynamic entropy of such a precursor is typically
negligible compared to the entropy of the black hole that forms from it.) The Page
time for a Schwarzschild black hole is approximately half the total evaporation
time, at which point it will have radiated away about half its mass; after this time,
it is not possible for the black hole’s radiation to be thermal. Instead, it should
be maximally entangled with the early-time radiation (albeit for any physically
plausible measurement process, this entanglement will be completely undetectable;
cf. Harlow and Hayden [2013]).



222 David Wallace

Entropy

t

von Neumann

Microcanonical

Page time Evaporation time

Figure 10.2 The Page curve.

The problem is that Hawking radiation—according to the quantum-field-
theoretic calculations—is exactly thermal, displaying no entanglement whatever
between early-time and late-time quanta. Indeed, if the calculation is read literally,
the successively emitted quanta are sequentially redshifted down from the trans-
Planckian regime at the horizon; each mode of the Hawking radiation is maximally
entangled (given its overall expected energy) with a radiation mode inside the event
horizon, which has no means of escaping, and so cannot also be entangled with
other radiation modes (a principle sometimes called ‘monogamy of entanglement’).

Call this the Page time paradox. (This is basically the form of the paradox as
presented in, e.g., Mathur [2009] and Polchinski [2016].) It is a clash between
the predictions of QFT and the predictions of black hole statistical mechanics that
occurs long before complete evaporation, when the black hole is still macroscopic
in scale (i.e., there seems no prospect of exotic quantum-gravitational effects com-
ing to the rescue). And while no doubt the exact results of Hawking’s calculation
need to be modified by various interaction terms and the like, the general form of the
calculation seems robust against these modifications, and there seems little prospect
that these modifications will give the large violations of thermality required to
conform to statistical mechanics, at least as long as the basic QFT framework
remains intact (see Mathur [2009] for a careful argument to this effect; see also
the discussion in Wallace [2018, sec. 4.2]).
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Remnants, or thunderbolts, or baby universes, no matter how helpful they may
be in preserving unitarity, do nothing to preserve the statistical interpretation of
black hole entropy or any account of black hole thermodynamics as arising from
statistical mechanics in the ordinary way, and so have no role in resolving this
version of the information loss paradox. Indeed, I will now show that this version
of the information loss paradox can be stated even for situations in which the black
hole does not completely evaporate.

10.3.3 Information Loss without Evaporation

For a straightforward realization of the paradox for nonevaporating black holes,
consider the cooling of charged black holes. Recall from our previous discussion
that charged nonrotating black holes satisfy the inequality |Q| ≤ M . Positively
charged black holes preferentially radiate positively charged particles (and vice
versa), but Hawking radiation is dominated by massless particles, so typically the
ratio |Q|/M increases in the decay of a charged black hole, and it is possible for this
inequality to saturate (i.e., reach |Q| = M). At this point the black hole is extremal;
extremal black holes have zero temperature and do not emit Hawking radiation (a
good thing for the self-consistency of black hole thermodynamics, since otherwise
they would violate |Q| ≤ M), so the black hole will not decay further.2

Now consider an extremal black hole that ought, according to black hole sta-
tistical mechanics, to be in a perfectly mixed state. (Such a black hole could be
formed, for instance, by taking a suitably nonextremal black hole and allowing it to
approach extremality by decay, such that it reaches the Page time before becoming
extremal.) If some (uncharged) radiation is absorbed by the black hole, it will heat
up and reradiate the absorbed energy as Hawking radiation. According to QFT,
this is a pure-to-mixed transition for physics outside the stretched horizon, since
the emitted radiation is perfectly thermal. But according to black hole statistical
mechanics, since the quantum state of the black hole is unchanged by the process
and the overall interaction is unitary, the outside-the-horizon description should
likewise be unitary and the emitted radiation should be in a pure state. (This was
an important test case in discussions of the information loss paradox in the 1990s;
cf. Maldacena and Strominger [1997] and references therein and will be further
discussed in Section 10.4.1 where we will see that it provides fairly direct evidence
for unitary evaporation.)

2 This assumes a black hole in a region of spacetime far from any other matter. Astrophysically realistic charged
black holes would preferentially absorb oppositely charged particles (from, e.g., the interstellar medium) at a
rate much faster than their evaporation by Hawking radiation, and so would tend away from extremality; thus
extremal charged black holes, though a theoretically possible thought experiment, should not be understood as
representing anything astrophysically realistic.
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For a somewhat more complicated case (due to Maldacena [2003]), consider
a mass-M black hole in a small box, in thermal equilibrium with its atmosphere
and with the walls of the box. (One way to implement this is to suppose that
the black hole exists in an asymptotically AdS spacetime with effective radius
smaller than the black hole’s Schwarzschild radius; another [York, 1986] is just
to impose reflecting boundary conditions on the black hole at a radius less than
1.5× the Schwarzschild radius). According to the QFT calculations, each emitted
photon is in a perfectly thermal state and so is uncorrelated with any other emit-
ted photon. The sharp statement of this in QFT (which is readily demonstrated;
see Harlow [2016, sec. 6.9] and Maldacena [2003] and references therein) is that
correlations between field operators at large time separations should fall off expo-
nentially: that is,

C(t) ≡ 〈Ô(t)Ô(0)〉ρ ≡ Tr(ρÔ(t)Ô(0)) ∼ e−cβt, (10.4)

where ρ is the thermal state of the black hole atmosphere, Ô(t) is some spatially
smeared field operator localized at time t , β = 8πM is the inverse temperature,
and c is a dimensionless constant. Provided the operator Ô(t) is chosen to project
onto outward-going states, this should continue to be true, given a QFT description
of Hawking radiation, even given the reflecting boundary conditions.3

But if black hole statistical mechanics is true, then (by the Bekenstein bound;
cf. discussion in Wallace [2018, sec. 4.5]) the system of black hole plus box is an
ordinary quantum system with a discrete energy spectrum Ĥ |i〉 = Ei |i〉. This puts
us in the realm to which the Poincaré recurrence theorem applies and so cannot be
compatible with exponentially decaying correlation functions. To be more precise
(here I loosely follow Harlow [2016, sec. 6.9])

C(t) =
∑
i,j

e−βEi

Z(β)
| 〈i|O |j〉 |2e−it (Ei−Ej ). (10.5)

If we decompose Ô into diagonal and off-diagonal parts, Ô = ÔD + R̂, this is:

C(t) = CD + CR(t) = 〈Ô2
D〉ρ +

∑
i �=j

e−βEi

Z(β)
| 〈i|R |j〉 |2e−it (Ei−Ej ). (10.6)

(To even give the correlation a chance to drop off exponentially, we should therefore
choose an observable with vanishing diagonal part.) The sums here are over ∼ eS
states, where S is the entropy of the ensemble at temperature β, andZ(β) ∼ eS−βE0 ,
whereE0 is the expected ensemble energy. So for this sum to be convergent at small
times we can expect | 〈i|R |j〉 |2 typically to be ∼ e−2S. For large times, the phase

3 I am grateful to Gordon Belot for useful discussion on this point.
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factors e−it (Ei−Ej ) can effectively be treated as random, so that CR(t), very roughly,
is a sum of e2S terms of magnitude∼ e−2S and random phase. The theory of random
walks predicts that this sum ought to be:

CR(t) ∼ e−2S ×
√

e2S = e−S . (10.7)

So if black hole statistical mechanics is true, the correlation factor can initially
drop off exponentially, but only until it reaches a value of∼ e−S. It will then remain
at about that level for a very long time, will occasionally fluctuate back to large
values, and eventually, by the quantum version of the Poincaré recurrence theorem
(see Wallace [2015] for a review), will return to its original large value. All this is
of course in flat contradiction with the QFT prediction of permanent exponential
decay. (The sharp version of the rather heuristic assumptions about Ô that I have
used in this argument is the eigenstate thermalization hypothesis Srednicki [1994].)

10.3.4 The Strength of the Page Time Paradox

According to one definition (Quine, 1966, ch. 1), a paradox is an apparently impec-
cable argument to an impossible conclusion—such as a pair of apparently impecca-
ble arguments whose conclusions contradict each other. By this definition, the Page
time version of the information loss paradox is a true paradox. The arguments for
black hole statistical mechanics are compelling: quite apart from the general reason
to expect a statistical-mechanical underpinning for any thermodynamic system,
we have the precise reproduction of the entropy formula (including subleading
corrections and renormalization effects) in low-energy quantum gravity, the equally
precise reproduction of that formula in a large class of extremal black holes using
string-theoretic methods, and the recovery of large parts of black hole thermody-
namics, qualitatively and quantitatively, from the statistical mechanics of conformal
field theory and the AdS/CFT duality. It is unserious to suppose that all of this is
simply coincidence. And yet, the arguments from QFT are equally compelling.

Prima facie, there are only two ways forward:

1. Accept that QFT fails as a description of the entire spacetime of an evaporat-
ing black hole, retain the statistical-mechanical underpinnings of black hole
thermodynamics, and try to understand why and when the QFT description
breaks down, given that the breakdown occurs in regimes that prima facie seem
‘nice’ and well within the applicability domain of the theory (Polchinski, 1995,
Mathur, 2009).

2. Retain QFT, reject black hole statistical mechanics, and find some
non-statistical-mechanical understanding of black hole thermodynamics that
nonetheless makes the compatibility of black hole and ordinary thermodynamics,
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and the quantitative results of various statistical-mechanical calculations of
black hole entropy, non-miraculous.

Since neither is especially attractive, it’s tempting to look for a middle way: to get
some understanding of black hole thermodynamics that holds onto its statistical-
mechanical underpinnings but permits non-unitary decay, and/or to find a way to
preserve at least most of the QFT description of the evaporation process even while
allowing for long-time entanglement between Hawking quanta (violating [4], for
the black hole at equilibrium). But results over the last 20 years have sharpened the
paradox and virtually foreclosed on the possibility of a middle way, as AdS/CFT
duality has provided direct mathematical evidence for duality and as the firewall
paradox has made stronger and more explicit the violation of QFT in the statistical-
mechanical description.

10.4 Evidence for Unitarity from AdS/CFT

AdS/CFT duality, briefly mentioned in Section 10.2, has become a growth industry
in theoretical physics since its initial discovery, and even a cursory discussion of
its structure and the evidence for it would double the length of this paper. (I give a
brief overview from the point of view of black hole physics in Wallace [2019]; more
detailed reviews include Aharony et al. [1999], Harlow [2016], Hartman [2015],
and Kaplan [2016]; for philosophical discussion see, e.g., De Haro, Mayerson,
and Butterfield [2016] or Teh [2013].) Here I take the existence of the duality
mostly for granted and simply discuss its implications for the unitarity of black hole
decay. Specifically, in Sections 10.4.1 and 10.4.2 I reprise the two ‘nonevaporating’
forms of the paradox discussed in Section 10.3.3; in Section 10.4.3 I give a direct
argument from AdS/CFT and from Poincaré recurrence that full evaporation is a
unitary process.

10.4.1 Unitarity of Hawking Radiation from Near-Extremal Black Holes

As I noted in Section 10.2.3, the statistical-mechanical entropy of certain extremal
black holes, calculated via string theory, exactly matches the predictions of black
hole thermodynamics. If such a black hole absorbs a small amount of uncharged
mass, it will be perturbed away from equilibrium and acquire a temperature, and the
leading-order change in entropy in this process again matches the thermodynamic
prediction (Horowitz and Strominger, 1996).

More strikingly, and more relevantly for our purposes, Maldacena and Stro-
minger (1997) were able to reproduce the exact spectrum of the perturbed black
hole’s Hawking radiation. To expand: recall (Section 10.2.1) that a radiating black
hole is not a black body when observed far from the horizon; radiation emitted in the
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near-horizon regime has some probability to be scattered back across the horizon,
and that probability depends on the radiation’s angular momentum and its energy.
These gray-body factors cannot be calculated analytically for the Schwarzschild
black hole, but they can be for the near-extremal black hole analyzed by Mal-
dacena and Strominger, giving the emission rate for photons of energy ω as a—
reasonably complicated—function of ω and the parameters characterizing the black
hole. Maldacena and Strominger found this function and then found the equivalent
function for the decay rate of the excited string state corresponding (in Strominger
and Vafa’s [1996] analysis) to the black hole, through string perturbation theory.
They match exactly, despite the completely different calculational tools applied in
the two cases (solving the wave equation on the black hole spacetime in one case,
calculating emission rates for a dilute gas of string excitations in the other).

This provides pretty powerful support for the hypothesis that black hole decay is
a unitary process. To quote Maldacena and Strominger (emphasis in original),

The string decay rates, extrapolated to the large black hole region, agree precisely with
the semiclassical Hawking decay rates in a wide variety of circumstances. However, the
string method not only supplies the decay rates, but it also gives a set of unitary amplitudes
underlying the rates. We find it tempting to conclude that these extrapolated amplitudes are
also correct. It is hard to imagine a mechanism which corrects the amplitudes, but somehow
conspires to leave the rates unchanged.

The robust nature of the string picture is very significant because it allows us to directly
confront the black hole information puzzle . . . According to Hawking information is lost
as a large excited black hole decays to extremality. On the other hand the string analysis
. . . gives a manifestly unitary answer.

In retrospect, the Maldacena–Strominger calculation can be recognized as a form
of AdS/CFT correspondence, realizing the duality between the near-horizon region
just outside a near-extremal black hole (which can be approximated as AdS3 × K
for compact K) and 2-dimensional conformal field theory on the boundary of that
spacetime. In either case the system is coupled to degrees of freedom describing the
far-from-horizon region; the CFT description of that coupling is manifestly unitary
and exactly reproduces the AdS results for overall scattering levels. See Hartman
(2015, pp. 114–130) for a presentation that makes the AdS/CFT aspect explicit.
(And note that as such, the calculation relies only on AdS/CFT duality and not on
any specific features of string theory.)

10.4.2 Unitarity of Hawking Radiation for Large Black Holes

Radiation from near-extremal black holes is one of the two no-evaporation forms of
the information loss paradox I discussed in Section 10.3.3. The other—Maldacena’s
eternal black hole—can also be analyzed via AdS/CFT methods. Recall that for a
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black hole in a box, large enough to be in stable equilibrium with its atmosphere,
QFT calculations of Hawking radiation contradict black hole unitarity for suffi-
ciently large times: the former predict that long-time correlation functions decay
exponentially without limit, while unitarity (in a finite box) predicts that the corre-
lations reach a minimum value of∼ e−S , and that they eventually undergo Poincaré
recurrence back to their original values. Since a large AdS black hole is a ‘black
hole in a box, in equilibrium with a radiation bath’, we can use AdS/CFT duality to
work out the correlation functions (the operators whose correlations are calculated
are well outside the horizon, in a region where the translation between AdS and
CFT descriptions is fairly well understood). We get these results:

1. For comparatively short times, the exponential decay of the correlations can be
recovered on the CFT side of the correspondence (Papadodimas and Raju, 2013).

2. For very long times, the discreteness of the spectrum of the CFT Hamiltonian
guarantees that the exponential decay ceases, and that the correlation coefficients
display the behavior predicted by unitarity, in contradiction with the predictions
of QFT applied to the interior (Maldacena, 2003).

So the AdS/CFT correspondence, applied to large black holes, provides further
‘compelling evidence’ (Harlow, 2016, p. 92) that black hole decay is unitary.

10.4.3 Unitarity of Black Hole Decay via AdS/CFT

In the case of black holes in AdS space that evaporate completely, it is tempting
to conclude immediately that that decay is unitary: after all, the AdS description is
dual to a CFT description that is manifestly unitary. But this has been challenged as
too quick (cf. Unruh and Wald [2017] and Maudlin [2017]), so here I give a more
explicit argument.

Specifically, suppose we have a QG theory on asymptotically AdS space
(with the usual reflecting boundary conditions normally assumed in AdS/CFT
duality), and a CFT on the boundary of that space, with Hilbert spaces HG, HCFT ,
respectively. We choose a foliation �t of AdS compatible with the time translation
symmetry map on AdS (so that the boundary of that foliation defines a foliation for
the CFT, and write Ĥ for the Hamiltonian of the CFT with respect to that foliation.
Then we make the following assumptions (working in the Heisenberg picture):

A. Perturbative QG sector: For any time t and any state of the interior describ-
able semiclassically as an excitation ψ of the vacuum (by, say, gravitons
or matter particles) on �t , which nowhere is dense enough to form an
event horizon, there is a state |ψ;t〉 ∈ HG which represents that state in
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the full quantum-gravity theory. Call the subspace spanned by such states
HG,P ⊂ HG.

B. CFT spectrum: The spectrum of Ĥ is discrete and bounded below, and Ĥ is at
most finitely degenerate.

C. Perturbative duality: There is a unitary map V̂ from HG,P into HCFT , such
that: 〈

ψ;t |ψ ′;t + τ 〉 = 〈ψ;t | V̂ †
exp(−iτ Ĥ )V̂ |ψ;t〉 , (10.8)

that is, the map between the interior and boundary theories commutes with
the dynamics in at least the perturbative sector.

(A) is a fairly minimal requirement of representational adequacy for the quantum-
gravity theory; (B) is a standard result about conformal field theories on compact
spaces (see, e.g., the discussion in Harlow [2016]); and (C) is a small fragment of
full AdS/CFT duality. (The map [V̂ ] in [C] can be constructed fairly explicitly, at
least to first order in perturbation theory; see Harlow and Stanford [2011].)

Now let ψ be an excitation of the AdS vacuum corresponding to a large amount
of diffuse infalling matter at time t which will at a later time (with very high
amplitude) form a black hole. Given (A), there is a state |ψ,t〉 that represents
this excitation. Given (B), the quantum version of the Poincaré recurrence theo-
rem applies to the boundary CFT (see Wallace [2015] for a review) and so for
any perturbative state |ψ,t〉 we can find a time T such that to an arbitrarily good
approximation,

exp(−iT Ĥ )V̂ |ψ,t〉 � V̂ ∣∣ψ ′,t 〉 . (10.9)

Given (C), |ψ,t〉 � |ψ,t + T 〉; in other words, after the recurrence time, the bulk
theory will describe a multiparticle state containing all the information of the pre-
black-hole state, and no information has been lost. Of course, T is vastly longer
than the black hole’s decay time, but if the evolution is unitary all the way forward
to T , in particular it is unitary during the decay process.

10.5 The Firewall Paradox

AdS/CFT duality seems to have persuaded most of the high-energy physics commu-
nity (notably including Hawking [2005]) that black hole evaporation is unitary. But
the duality remains poorly understood as far as the black hole interior is concerned,
and the question remains: how is it unitary, in the face of the clear arguments from
QFT for information loss. In the last few years this question has become more
urgent, with deep problems emerging in the hitherto leading strategy for reconciling
the exterior and interior descriptions. Section 10.5.1 reviews that strategy, normally
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called ‘black hole complementarity’; Section 10.5.2 reviews the so-called firewall
paradox that appears to invalidate it.

10.5.1 Black Hole Complementarity and the Black Hole Interior

At first sight, there is a conflict between black hole statistical mechanics and QFT
that is much more direct than the information loss paradox. After all, QFT predicts
that an observer will encounter nothing special as they fall freely across the horizon
from a starting point high above the black hole, and in particular will measure
radiation that deviates only weakly from empty space. This seems hard to reconcile
with the description of that same infalling observer that will be given by a fiducial
(i.e., hovering) observer: for that second observer, whose observations are confined
to the outside-horizon region, the quantum black hole is represented (cf. discussion
in Section 10.2.3) by a membrane just above the horizon, whose local temperature
is order the Planck temperature, and the infalling observer will collide with that
membrane and rapidly be thermalized by it.

The semiclassical membrane paradigm demonstrates that this is far too quick. In
that paradigm (recall) a quantity of charge dropped onto a black hole will spread
out uniformly over the horizon, with a known timescale, generating heat as it does
so through Ohmic dissipation. This description of stretched-horizon physics is for-
mally compatible with—indeed, is derived from—an underlying physics in which
the charge drops smoothly through the horizon and continues toward the singu-
larity. The point is simply that there is a mathematically valid description of the
physics of the black hole exterior in terms of the stretched horizon; the meta-
physical question of whether that description is true is interesting but somewhat
tangential.

Susskind, Thorlacius, and Uglum (1993) proposed extending this idea—that
interior information is encoded in information about surface perturbations—from
semiclassical physics to the full quantum theory of the black hole. Just as in the
classical case, the proposal is that the selfsame physical process can be described
in terms of coordinates adapted to the interior of the black hole or in terms of the
degrees of freedom of a membrane just outside the event horizon. A sketch of this
idea for the infalling observer would go as follows. The fall of the observer from
infinity onto the stretched horizon can be described equally well with respect to
stationary observers hovering above the horizon at a fixed height and with respect
to inertially falling observers (and that description is analyzable in terms of known
physics; cf. Unruh and Wald [1982]). Since the inertial description tells us that the
observer does not catch fire and burn up during this part of their journey, the station-
ary description must give the same result, so that the observer’s passage through the
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black hole atmosphere is uneventful despite its increasingly high temperature. (The
intuitive feeling that this can’t happen physically can be assuaged by noting that
the observer passes through the hotter part of the atmosphere at extreme relativistic
speed and so interacts with the atmosphere for a very short proper time; note that
an observer whose fall begins from quite close to the horizon and so takes a much
longer proper time to fall in will encounter highly blue-shifted Hawking radiation
right from the start of the fall, even in an inertial-frame description and so will be
consistently described as being burned up in both descriptions.)

When the observer reaches the stretched horizon, according to black hole
statistical mechanics, they will rapidly become thermalized (specifically, ther-
malization takes time ∼ M logM , as can be read off the thermodynamics of the
membrane paradigm). But ‘thermalization’ is a coarse-grained notion: it means
that for any observable relevant to the exterior physics, the expectation value
of that observable is the same when calculated with the ‘thermalized’ state as
with the true microcanonical-equilibrium state (the projector onto the energy
eigensubspace of the black hole Hilbert space). This is perfectly compatible with
observables relevant to the black hole interior having expectation values that
deviate sharply from the values calculated from the microcanonical-equilibrium
state, and indeed that describe the infalling observer in accordance with general
relativity.

Susskind et al. (1993) called this duality of surface and interior descriptions
black hole complementarity. The name invokes the noncommutativity of quantum-
mechanical observables: just as the same physical process can be described with
respect to a basis of definite position or definite momentum states and may look
very different in the two descriptions, so the horizon-crossing process can be
described with respect to a basis appropriate to exterior physics or one appropriate
to the infalling observer’s situation. (Regrettably, ‘complementarity’ also invokes
Bohr’s somewhat obscure philosophy of meaning—and Susskind et al. explicitly
refer to that philosophy—but so far as I can see it is not essentially required in
black hole statistical mechanics.)

However, the parallel with semiclassical complementarity is imperfect, precisely
because of the (Page time) information loss paradox: after the Page time, QFT con-
tinues to predict exactly thermal radiation, whereas black hole statistical mechanics
requires that radiation to be entangled with early-time radiation, and so if black
hole statistical mechanics is correct, then QFT must actually be wrong, not just a
redescription of the same physics, at late times. As we shall now see, the firewall
paradox of Almheiri et al. [2013], based on earlier ideas by Mathur [2009], strongly
suggests that this failure of QFT is not simply some kind of long-range effect but
completely invalidates the semiclassical description of the black hole interior.
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10.5.2 Firewalls

The firewall paradox can be stated in various more or less precise ways (see, e.g.,
Bousso [2013], Harlow [2016, sec. 7], Polchinski [2016, sec. 6], and Susskind
[2012], as well as the original sources noted earlier), but in essence it works like
this. Consider some photon mode B (more accurately, a wavepacket concentrated
on some such mode) describing photons emitted well after the Page time. That
mode will be in a thermal state at the appropriate time black hole temperature. We
now have two apparently contradictory claims:

1. According to a QFT description, B is fully entangled with some mode B̃ just
inside the event horizon.

2. According to black hole statistical mechanics, B is fully entangled with the
early-time radiation emitted by the black hole.

No quantum state can be fully entangled with two different systems (sometimes
called ‘monogamy of entanglement’), so this seems close to a contradiction. We
might hope to finesse this by remembering the idea of complementarity—that the
same underlying physics can be described in radically different ways, so that the
system has one valid description where B is entangled with an interior mode, and
one where it is entangled with early-time radiation. But as Almheiri et al. point out,
in principle (though not in practice; cf. Harlow and Hayden [2013]) an observer
could

1. Collect all the radiation emitted from the black hole up to the Page time;
2. Carry out a complicated operation on that radiation to distil a single photon mode
C that is fully entangled with B;

3. Linger close to the event horizon, and perform a joint measurement on B and C
(more precisely, on many such pairs B1,C1 . . . BN,CN ) to verify their entangle-
ment;

4. Jump into the black hole.

Assuming that the observer’s own local physics can be consistently described by
quantum mechanics , they can’t consistently find B to be entangled with B̃; indeed,
B + B̃ must be in a product state. This directly contradicts the QFT assumptions
underpinning Hawking radiation, and so undermines the basis of at least some
of the arguments for Hawking radiation that got black hole statistical mechanics
going in the first place. (Anecdotally it seems to be a matter of dispute in the
physics community to what extent the derivation of Hawking radiation is under-
mined by the firewall argument.) More dramatically, complete disentanglement of
QFT modes across the event horizon corresponds to a Planck-scale wall of energy
at the horizon—the ‘firewall’—that seems physically inexplicable and quite at odds
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with the general-relativistic idea of an event horizon as a globally defined, locally
inaccessible phenomenon.

The firewall paradox is only five years old at time of writing, and it would
be premature to try to summarize, far less assess, the wide variety of different
responses that have been offered (see Harlow [2016, sec. 8] for a partial review).
But it has roiled the community, disrupted what had been a fairly solid consensus
in favor of black hole complementarity, and thrown the theory of the black hole
interior wide open.

10.6 Conclusion

Thus we find ourselves in the enviable situation of having an interesting problem with no
really satisfying answer; if we are lucky this means that we will learn something deep.

Daniel Harlow4

The black hole information paradox, understood in its most powerful form, is a
clash between the unitary description of Hawking radiation implied by statistical-
mechanical models of the black hole horizon, and the non-unitary description given
by quantum field theory. It is neither a foolish failure by physicists to appreci-
ate the subtleties of non-globally hyperbolic spacetimes nor something harmlessly
resolved by ADS/CFT duality (the latter, at most, gives us reason to expect the
ultimate resolution to be unitary). It is a deep puzzle arising from enormously
plausible yet apparently contradictory lines of reasoning within quantum gravity,
and at present it is completely opaque how it is to be resolved.

This is a good thing. There are very few obvious empirical clues as to the nature
of quantum gravity; in their place, the best we have are the highly demanding and
often unexpected consistency constraints given by the internal structure of lower-
energy physics. We have learned much about the form of any satisfactory quantum
theory of gravity by trying to satisfy those constraints; as and when we find a satis-
factory resolution to the information loss paradox, we will have learned still more.

Acknowledgments

I am grateful to Gordon Belot, Sean Carroll, Erik Curiel, Eleanor Knox, James
Ladyman, and Tim Maudlin for useful discussions, and in particular to Jeremy
Butterfield for detailed and careful comments on a draft version. I’m also grateful
to three anonymous referees for careful and helpful comments.

4 Harlow (2016, p. 117).



234 David Wallace

References

Aharony, O., Gubser, S., Maldacena, J., Ooguri, H. and Oz, Y. (1999). Large N field
theories, string theory and gravity. Physics Reports 323, 183–286.

Aharony, O., Marsano, J., Minwalla, S., Papadodimas, K. and Van Raamsdonk, M. (2004).
The Hagedorn/deconfinement phase transition in weakly coupled large N gauge
theories. Advances in Theoretical and Mathematical Physics 8, 603–696.

Almheiri, A., Marolf, D., Polchinski, J. and Sully, J. (2013). Black holes: Complementarity
or firewalls? Journal of High Energy Physics 2013, 62.

Banks, T., Susskind, L. and Peskin, M. E. (1984). Difficulties for the evolution of pure
states into mixed states. Nuclear Physics B 244, 125–134.

Bardeen, J., Carter, B. and Hawking, S. (1973). The four laws of black hole mechanics.
Communications in Mathematical Physics 31, 161–170.

Belot, G., Earman, J. and Ruetsche, L. (1999). The Hawking information loss paradox: The
anatomy of a controversy. British Journal for the Philosophy of Science 50, 189–229.

Bousso, R. (2013). Firewalls from double purity. Physical Review D 88, 084035.
Carter, B. (1979). The general theory of the mechanical, electromagnetic and thermody-

namic properties of black holes. Pages 294–369 of: S. Hawking and W. Israel (eds.).
General Relativity: An Einstein Centenary Survey. Cambridge: Cambridge University
Press.

Christodolou, D. and Ruffini, R. (1971). Reversible transformations of a charged black hole.
Physical Review D 4, 3552–3555.

De Haro, S., Mayerson, D. R. and Butterfield, J. N. (2016). Conceptual aspects of
gauge/gravity duality. https://arXiv.org/abs/1509.09231.

Deutsch, D. (1991). Quantum mechanics near closed timelike lines. Physical Review
D 44(10), 3197–3217.

Gibbons, G. and Hawking, S. (1977). Action integrals and partition functions in quantum
gravity. Physical Review D 15, 2752–2756.

Gubser, S., Klebanov, I. and Polyakov, A. (1998). Gauge theory correlators from non-
critical string theory. Physics Letters B428, 105–114.

Harlow, D. (2016). Jerusalem lectures on black holes and quantum information. Reviews of
Modern Physics 88, 015002.

Harlow, D. and Hayden, P. (2013). Quantum computation vs. firewalls. Journal of High
Energy Physics 2013, 85.

Harlow, D. and Stanford, D. (2011). Operator dictionaries and wave functions in AdS/CFT
and dS/CFT. https://arXiv.org/abs/1104.2621.

Hartman, T. (2015). Lectures on quantum gravity and black holes. www.hartmanhep.net/
topics2015/gravity-lectures.pdf.

Hawking, S. (1972). Black holes in general relativity. Communications in Mathematical
Physics 25, 152–166.

Hawking, S. (1975). Particle creation by black holes. Communications in Mathematical
Physics 43, 199.

Hawking, S. (1976). Breakdown of predictability in gravitational collapse. Physical Review
D 14, 2460–2473.

Hawking, S. W. (1996). Virtual black holes. Physical Review D 53, 3099–3107.
Hawking, S. (2005). Information loss in black holes. Physical Review D 72, 084013.
Horowitz, G. and Strominger, A. (1996). Counting states of near-extremal black holes.

Physical Review Letters 77, 2368–2371.
Kaplan, J. (2016). Lectures on AdS/CFT from the bottom up. http://sites.krieger.jhu.edu/

jared-kaplan/files/2016/05/AdSCFTCourseNotesCurrentPublic.pdf.

https://arXiv.org/abs/1509.09231
https://arXiv.org/abs/1104.2621
www.hartmanhep.net/topics2015/gravity-lectures.pdf
www.hartmanhep.net/topics2015/gravity-lectures.pdf
http://sites.krieger.jhu.edu/jared-kaplan/files/2016/05/AdSCFTCourseNotesCurrentPublic.pdf
http://sites.krieger.jhu.edu/jared-kaplan/files/2016/05/AdSCFTCourseNotesCurrentPublic.pdf


Why Black Hole Information Loss Is Paradoxical 235

Maldacena, J. M. (1998). The large N limit of superconformal field theories and supergrav-
ity. Advances in Theoretical and Mathematical Physics 2, 231–232.

Maldacena, J. M. (2003). Eternal black holes in AdS. Journal of High Energy
Physics 0304, 021.

Maldacena, J. and Strominger, A. (1997). Black hole greybody factors and D-brane
spectroscopy. Physical Review D 55, 861–870.

Mathur, S. D. (2009). The information paradox: A pedagogical introduction. Classical and
Quantum Gravity 26, 224001.

Maudlin, T. (2017). (Information) Paradox lost. https://arXiv.org/abs/1705.03541.
Page, D. M. (1993). Information in black hole radiation. Physical Review Letters 71,

3743–3746.
Papadodimas, K. and Raju, S. (2013). An infalling observer in AdS/CFT. Journal of High

Energy Physics 1310, 212.
Penrose, R. (2004). The Road to Reality: A Complete Guide to the Laws of the Universe.

London: Jonathon Cape.
Perez, A. (2017). Black holes in loop quantum gravity. Reports on Progress in Physics 80,

126901.
Polchinski, J. (1995). String theory and black hole complementarity. https://arXiv.org/abs/

hep-th/9507094.
Polchinski, J. (2016). The black hole information problem. https://arXiv.org/abs/1609

.04036.
Quine, W. (1966). The Ways of Paradox. Cambridge, MA: Harvard University Press.
Srednicki, M. (1993). Is purity eternal? Nuclear Physics B 410, 143–154.
Srednicki, M. (1994). Chaos and quantum thermalization. Physical Review E 50, 888.
Strominger, A. (1998). Black hole entropy from near-horizon microstates. Journal of High

Energy Physics 9802, 009.
Strominger, A. and Vafa, C. (1996). Microscopic origin of the Bekenstein-Hawking

entropy. Physics Letters B379, 99–104.
Susskind, L. (2012). Singularities, firewalls, and complementarity. https://arXiv.org/abs/

1208.3445.
Susskind, L., Thorlacius, L. and Uglum, J. (1993). The stretched horizon and black hole

complementarity. Physical Review D 48, 3743–3761.
Teh, N. J. (2013). Holography and emergence. Studies in History and Philosophy of Modern

Physics 44, 300–311.
Thorne, K. S., Price, R. H. and Macdonald, D. A. (eds.). (1986). Black Holes: The

Membrane Paradigm. New Haven, CT: Yale University Press.
Unruh, W. G. (2012). Decoherence without dissipation. Philosophical Transactions of the

Royal Society of London A 370, 4454–4459.
Unruh, W. G. and Wald, R. M. (1982). Acceleration radiation and the generalized second

law of thermodynamics. Physical Review D 25, 942–958.
Unruh, W. G. and Wald, R. M. (1995). On evolution laws taking pure states to mixed states

in quantum field theory. Physical Review D 52, 2176–2182.
Unruh, W. G. and Wald, R. M. (2017). Information loss. https://arXiv.org/abs/1703.02140.
Wald, R. (1993). Black hole entropy is Noether charge. Physical Review D 48, 3427–3431.
Wald, R. M. (1994). Quantum Field Theory in Curved Spacetime and Black Hole

Thermodynamics. Chicago: University of Chicago Press.
Wallace, D. (2015). Recurrence theorems: A unified account. Journal of Mathematical

Physics 56, 022105.
Wallace, D. (2018). The case for black hole thermodynamics, part I: Phenomenological

thermodynamics. Studies in History and Philosophy of Modern Physics 64, 52–57.

https://arXiv.org/abs/1705.03541
https://arXiv.org/abs/hep-th/9507094
https://arXiv.org/abs/hep-th/9507094
https://arXiv.org/abs/1609.04036
https://arXiv.org/abs/1609.04036
https://arXiv.org/abs/1208.3445
https://arXiv.org/abs/1208.3445
https://arXiv.org/abs/1703.02140


236 David Wallace

Wallace, D. (2019). The case for black hole thermodynamics, part II: Statistical mechanics.
Studies in History and Philosophy of Modern Physics 66, 103–117.

Witten, E. (1998a). Anti de Sitter space and holography. Advances in Theoretical and
Mathematical Physics 2, 253–291.

Witten, E. (1998b). Anti-de Sitter space, thermal phase transition, and confinement in gauge
theories. Advances in Theoretical and Mathematical Physics 2, 505–532.

York, J. W. (1986). Black-hole thermodynamics and the Euclidean Einstein action. Physical
Review D 33, 2092–2099.



11

Chronic Incompleteness, Final Theory Claims, and
the Lack of Free Parameters in String Theory

richard dawid

11.1 Introduction

The present chapter aims at understanding the relation between two remarkable
characteristics of string physics. On the one hand, the theory’s position within the
fabric of physical reasoning as well as some characteristics of the theory itself
suggest that string theory, or the theory it would have morphed into once fully
developed, might represent a final theory: no empirical data can be gathered in this
world that would be at variance with the theory’s predictions. On the other hand,
half a century of intense work on string theory have not resulted in a fully fledged
theory. At this point, the prospects that this will happen in the foreseeable future
seem, if anything, less promising than at earlier stages of the theory’s evolution.

Each of the described characteristics of string physics raises distinct and sub-
stantial philosophical questions. A final theory claim raises the question: what
would the research process in fundamental physics look like once a universal final
theory has been found? A natural question regarding the chronic incompleteness of
string theory is: why is it so difficult to develop string theory into a fully fledged
theory? The two questions might actually address two sides of the same medal.
They could then be posed in the following more specific way. Are the seemingly
insurmountable difficulties to turn string theory into a complete theory conceptually
related to its character as a (potential) final theory? Should we therefore understand
chronic incompleteness as a core characteristic of a final physical theory?

Dawid (2006, 2013a, 2013b) has suggested that string theory may represent a
fundamentally new stage in physical theory building, where theory succession is
replaced as the driving principle of conceptual development by the open-ended
evolution of the conceptual understanding of a final theory that lacks a time frame
for completion. If so, the advent of the final theory prospect would have changed
the mode of scientific reasoning without abandoning the ‘infinite’ time horizon
associated with the completion of fundamental physics.

237
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This suggestion was based on two simple observations. (1) Chronic incom-
pleteness and the final theory claim have arisen in parallel in string physics.
(2) They seem to reflect generic features of quantum gravity. Without any specific
reference to string theory, the current perspective on quantum gravity may be
taken to suggest that the notion of an ongoing succession of theories for ever-
smaller characteristic distance scales will break down at the Planck scale (see, e.g.,
’t Hooft [1993]). Likewise, the chronic problems of attempts to come up with a
complete theory of quantum gravity are not confined to the string theory research
program.

Dawid (2006, 2013a, 2013b) has not put forward any substantial claim, however,
as to how the connection between the final theory status and the chronic incom-
pleteness of string theory can be understood at a conceptual level. It is the aim
of the present chapter to address this issue and consider some lines of reasoning
that may throw more light on the conceptual connection between final theory
status and chronic incompleteness. First, I will analyze the ways in which chronic
incompleteness may affect our understanding of what a final theory actually
amounts to. Second, a highly tentative idea shall be considered as to how finality
may be conceptually linked to what seems to be the predicament of chronic
incompleteness faced by physicists working on a universal theory.

What follows is of an explorative nature. It will not present strong conclusions
but just test possible ways of thinking about the issues discussed. I do feel, however,
that those issues are so crucial for understanding the current state of fundamental
physics that they should be addressed also from a philosophical perspective, and be
it with the highly insufficient means available to me.

Section 11.2 lists several ways in which string theory differs from previous
stages in fundamental physics. The issues of finality and chronic incompleteness
are then discussed specifically in Sections 11.3 and 11.4, and related to each other
in Sections 11.5 and 11.6. Section 11.7 discusses the role of dualities in the given
context, followed by a brief look at the case of M-theory in Section 11.8.

11.2 Five Ways in Which String Physics Differs from Previous
Stages in Fundamental Physics

In the nineteenth century, when physical formalization found an ever-increasing
scope of applications, a canonical understanding of the relation between the
observed world and physical theory building emerged. This understanding was
based on some core principles. Three of those principles that will be important to
our discussion were:

I. A physical theory must be applied to a specified set of phenomena.
II. A theory can be adapted to observations by choosing values of dimension-

less parameters that either are contained in the theory itself or specify the
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embedding of the given theory within the physical background needed for
understanding the measurements of the described set of phenomena.

III. Once one has identified a physical context that allows for a formalized account,
theories (which might well be insufficient or only partly accurate, to be sure)
can be developed (and most often also empirically tested) within a limited time
frame.

When the basic principles of classical physics were toppled during the physical
revolutions of the early decades of the twentieth century, this understanding of
the role a physical theory was expected to play was complemented by two further
principles:

IV. A physical theory must be expected to have a limited lifetime as a fundamental
theory and to be eventually superseded by a new theory in regard to which it
then plays the role of an effective theory.

V. Advanced physical theories contradict intuitions that are based on everyday
world experience and contain parameters that control the deviations from those
intuitions. However, theories that are at variance with intuitions make predic-
tions in line with those intuitions in some limits: special relativity converges
toward Galilean physics for velocities very small compared to the speed of
light, general relativity approaches predictions of Newtonian gravity in contexts
of very small spacetime curvature, and quantum mechanics is consistent with
the classical dynamics of objects who interact with the environment and whose
action is much larger than h̄.

It seems fair to say that principles I–V shape many physicists’ expectations
regarding the role of physical theory building up to this day. While these principles
still work very well in many fields of physics, they came under pressure in
fundamental physics once fundamental physics developed a focus on contemplating
theories of quantum gravity. This pressure can be felt today whichever approach
toward dealing with the problem of quantum gravity is chosen. The present
text focuses on string theory, where the inadequacy of the traditional view on
physical theory looks particularly far reaching. In fact, string theory seems flatly
incompatible with four of the five principles formulated and makes an intriguing
amendment to the fifth. As opposed to principles I–V, one may make the following
statements about string theory:1

I′. String theory is a universal theory.
II′. String theory has no fundamental dimensionless free parameters (but seems to

have a huge number of groundstates).

1 Here as throughout the entire paper, the term string theory, if not specified otherwise, denotes the overall
theory that aims at describing the observed world and is identified by the present knowledge on perturbative
superstring theory, duality relations, etc.
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III′. String theory is chronically incomplete (and lacks a promising perspective for
quantitative empirical testing in the foreseeable future).

IV′. String theory makes a final theory claim based on a minimal length scale.
V′. String theory has several classical limits related to each other by duality rela-

tions.

Given that the five described significant shifts in regard to the role of theory building
arise in the same theory, it seems natural to suspect that they are somewhat related
to each other. In the following, I aim to turn that suspicion into something slightly
more concrete.

11.3 Finality

A plausible starting point for finding connections between the five statements on
string theory is point IV′. T-duality implies that the string scale amounts to a
minimal length scale in string theory. Any statement on a distance smaller than
the string scale can be formulated, in the T-dual picture, as a statement about a
distance larger than the string length l. This fact may be taken to indicate that string
theory, if viable2 up to its own characteristic scale, correctly represents physics at
all scales and therefore constitutes a final theory (Witten, 1996).

A final theory claim that is extracted from a specific theory may be suspected
to be begging the question. If string theory were viable only as an effective theory
of a more fundamental theory, smaller distance scales could carry new information
based on that more fundamental theory. If so, the more fundamental theory would
break the final theory claim that had been developed based on what turned out to
be its effective theory. A final theory claim based on the allegedly final theory’s
own implications, therefore, may seem to deflate to the trivial claim: if the theory
is absolutely true, it is actually absolutely true. Dawid (2013a, 2013b) argues that,
despite the described issue, final theory claims can retain argumentative power in
conjunction with arguments of limitations to scientific underdetermination.

In the present discussion, we will therefore assume that the final theory claim
stated in point IV′, though obviously not conclusive, does carry argumentative
weight. If so, points I′ and II′ and IV′ form a remarkable set of characteristics of
string theory that suggest finality. Universality (point I′) removes the need for theory
succession on the path to further unification and thereby frames string theory as a
plausible end point of theory succession. The lack of fundamental dimensionless

2 Throughout this chapter, I talk about a theory’s viability rather than its truth. A theory is viable in a given
regime (e.g., up to a given energy scale), if it is in agreement with all the data than can be collected in that
regime (e.g., up to that energy scale). Talking about a theory’s truth raises difficult philosophical questions that
are not relevant to the issues addressed in this chapter. A more extensive argument in favor of the concept of
viability can be found in Dawid (2019).
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free parameters (point II′) removes the need for theory succession on the path
toward explaining specific parameter values (since all effective parameter values
must result from the dynamics of the full theory, where no parameter values can
be chosen at will) and thereby reinforces the former claim. Finally, the explicit
final theory claim (point IV′) provides a conceptual reason within the theory’s
theoretical framework for assuming the finality of string theory. In conjunction,
the three points form a consistent and mutually reinforcing set of arguments for
string theory’s status as a final theory. Viewing the issue the opposite way, points
I′, II′, and IV′ are per se highly unusual properties that may be expected to arise in
conjunction in a final theory.

11.4 Chronic Incompleteness

If it were just for the three discussed new aspects of string theory, one would thus
face the stunning perspective of an imminent end of fundamental physics: once the
final theory would have been fully formulated, no new fundamental theories should
be expected to emerge. Physics would be reduced to the menial work of developing
theories in more specific low-energy contexts and understanding their reductive
connections to string theory.

String theory comes with another substantial shift, however, that renders this
understanding inadequate. Fifty years after the birth of string theory (Veneziano,
1968) and 44 years after string theory was first proposed as a universal theory of all
interactions (Scherk and Schwarz, 1974), the theory still lacks a plausible perspec-
tive for a full formulation in the foreseeable future. The theory has known periods
of considerable optimism. At least twice during its evolution, in the years after the
consistency of a superstring action had been shown by Green and Schwarz (1984),
and in the years after the discovery of the web of dualities (Hull and Townsend,
1995; Polchinski, 1995; Witten, 1995) and anti–de Sitter spacetime conformal field
theory (AdS/CFT) correspondence (Maldacena, 1998), string theorists were hope-
ful that a full formulation of the theory would be attainable by developing further
and making full use of the concepts and tools available at the time. But each time
overwhelming obstacles to achieving that goal soon surfaced, as if they were put up
by magic hands defending the ultimate secrets of physics. The problems associated
with completing string theory in each case turned out to transcend what string
theorists at the given point had taken them to be.

Today it seems clear that, even if the final theory claim regarding string theory
were true, this fact would not translate into a prospect of the imminent end of
fundamental physics. Rather than bringing the time horizon for the completion of
fundamental physics from virtual infinity to somewhere within our lifetime, string
theory’s final theory claim seems to be associated with an extension of the time
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horizon for the completion of this particular theory that may, once again, virtually
reach toward infinity.

11.5 Chronic Incompleteness and the Lack of Free Parameters

Why is it so immensely difficult to turn string theory into a complete theory? One
important reason arguably has to do with one of the three points associated with
string theory’s finality claim: point II′, which states the lack of dimensionless free
parameters at a fundamental level, creates a new kind of problem for a theory’s
completion.

In order to get a better grasp of this point, one needs to start with a look at
perturbation theory.

In quantum field theory (QFT), which is understood to be the theoretical frame-
work for calculating low-energy effective theories of string theory, calculations of
scattering processes are based on a perturbative expansion in the coupling constant.
Small coupling constants allow for increasingly accurate results of calculations up
to a few orders in perturbation theory.

It is one important aspect of quantum field theory that the strong coupling regime
is directly related to the deep quantum regime (see, e.g., Polchinskin [2017]).
Higher orders in the coupling constants correspond to higher orders in h̄. A weak
coupling limit therefore corresponds to a small h̄ limit and represents a physical
situation where elementary objects can be localized fairly well. Physics then is in a
near-classical regime.

Quantum mechanics frames measurements in terms of confronting a quantum
system with a quasi-classical measuring apparatus. The entire setup of a quantum
theory is therefore developed from the perspective of a classical limit.

As long as the theory is in a regime where the coupling constant is small,
perturbation theory works. Once one aims to describe a strong coupling regime,
perturbation theory breaks down and one needs to rely on nonperturbative methods
and auxiliary techniques such as lattice theory. Such a situation corresponds to a
fully quantum regime where elementary objects are not well localized.

In the standard model of particle physics, the electroweak sector lives in a
weak coupling regime and therefore allows for perturbative calculations. QCD,
at low energies, to the contrary, is strongly coupled and requires nonperturbative
techniques.

String theory has been developed based on perturbation theory in the same
mold as perturbation theory for QFT. It describes the propagation and scattering of
oscillating quantum strings on a spatiotemporal background. It is clear, however,
that this is an insufficient approach for spelling out the full theory. The spatiotem-
poral background is itself generated by stringy dynamics. And string theoretical
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scenarios may be placed in either strong or weak coupling regimes. In other words,
it is clear that a full understanding of string theory must reach out beyond the
perturbative regime.

Duality relations constitute the most powerful tools in a string theoretical context
to reach out beyond the perturbative regime. The power of dualities was first clearly
understood in the mid-1990s, when Witten (1995) conjectured that the five types of
superstring theory plus a sixth enigmatic 11-dimensional M-theory were related
to each other by S- and T-duality relations that turned them into one different
representation of the same theory.

Exact dualities relate different theories or models to each other that are empiri-
cally equivalent.3 The isomorphy between the dual models is established based on
a ‘translation manual’ that indicates which parameters in one theory correspond to
which parameters in the dual theory and how the values of those parameters in one
theory are related to the values of the dual parameter in the dual model.

Duality transformations are particularly helpful for reaching out toward the
nonperturbative regime because they tend to invert parameter values and thereby
relate one theory in a deep quantum regime to another one in a near classical
regime. S-duality relates a theory with a strong string coupling g to a theory with
a weak string coupling 1/g. T-duality relates a theory with small compactification
radius r to a theory with a large compactification radius 1/r . In supersting
theory, different types of superstring theory are connected that way. For example,
S-duality relates type I superstring theory with a given string coupling g to SO(32)
heterotic string theory with string coupling 1/g, which in turn has as its T-dual
E8 × Es8 heterotic string theory with an inverted compactified dimension. A
strongly coupled type I string theory can, therefor, be represented as a weakly
coupled SO(32) heterotic string theory. And if that theory contains a small compact
dimension, it can be represented as a E8 × E8 heterotic string theory with a large
compactification radius. The web of dualities, therefore, extends the reach of string
theory by establishing that large parts of what seemed to lie beyond the reach of
perturbation theory is accessible by perturbation theory in a dual representation.

But string theory faces a problem that is substantially more serious than the
problem faced by a strongly coupled gauge theory. The additional problem is related
to the fact that string theory is a theory without fundamental dimensionless free
parameters.

In physics, it is important to distinguish between dimensionful and dimension-
less parameters.4 The absolute value of a dimensionful parameter is a matter of

3 The analysis of this chapter is based on the understanding that duality relations are exact. Recently, the
possibility of an inexact notion of dualities has been emphasized in a philosophical context by De Haro (2019).

4 For an instructive analysis of the role of free parameters in physics, see Duff (2015).
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choosing a physical unit. Per se, it is irrelevant for fitting theory to experiment. The
value of a dimensionless parameter, to the contrary, cannot be altered by choos-
ing different physical units. It, therefore, tells something significant about our set
of observations (if fixed based on empirical data) or about a theory’s empirical
implications (if extracted from the theory itself). Physical theories normally involve
dimensionless free parameters that can be tuned in order to fit the quantitative
specifics of the empirical evidence. In many cases, for example in quantum theories
that involve dimensionless coupling constants, dimensionless free parameters are
elements of the theory itself. In other cases, for example in Newtonian gravity, the
theory’s embedding within our observed world requires a comparison of a dimen-
sionful constant (such as the gravitational constant) with constants that characterize
the empirical setup used to test that theory. Free dimensionless parameters then
arise in the context of this comparison. In both cases, the free parameters involved
play a crucial role for connecting the theory to observation.

String theory is a fully universal theory that gives a joint description of all
fundamental phenomena. Measuring a fully universal theory cannot depend on
paramater values that are not represented in the theory itself. Dimensionless free
parameters thus cannot be generated by embedding a fully universal theory in a
wider framework. The issue of free dimensionless parameters is reduced to internal
characteristics of the theory itself.

String theory has one dimensionful free parameter, the string length l. But the
theory has no dimensionless free parameter. In the context of perturbative string
theory, this fact can be understood by looking at the geometric structure of
Feynman diagrams. While Feynman diagrams for pointlike particles have pointlike
interaction nodes where dimensionless coupling constants can be inserted, the
corresponding stringy Feynman diagram is represented by a 2-dimensional surface
with nontrivial topology. No coupling constants can be inserted at any point in
those diagrams. The string coupling enters as the value of an oscillation mode of
the string, the dilaton.

The lack of dimensionless free parameters in string theory is crucial for
our analysis because dimensionless free parameters play an important role in
the specification of classical limits. Describing a near-classical limit in QFT
corresponds to choosing a small value of a dimensionless coupling constant.
Describing a small curvature scenario corresponds to choosing a small value of
the ratio between the characteristic length scale of the dynamics described and the
radius of spacetime curvature. In the case of theories that involve free parameters,
placing the theory close to or far from a classical limit can be controlled by
choosing a value of a free dimensionless parameter. In string theory, nothing
of this sort can be done. The fundamental dynamics of string theory, therefore,
cannot be exemplified by choosing a near-classical limit. Whether or not the theory
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has solutions that lie close to a classical limit is decided by the fundamental
dynamics itself.

To be sure, parameter values such as the string coupling, the radii of compact
dimensions or background curvature terms can be specified in effective models
that emerge from the theory’s fundamental dynamics and correspond to a ground
state of the theory. Those effective parameter values can then be close to or far
from a classical limit. Calculating the fundamental dynamics itself, however, can-
not rely on specifying a parameter value that controls whether physics is in a
near classical or in a deep quantum regime. Only once effective parameter values
have been extracted as a solution of the fundamental dynamics, does the catego-
rization in terms of near classical or deep quantum make sense. Curvature terms,
compactification radii, or string coupling constants can be specified only in the
ground state of the theory once the fundamental dynamics of the theory has already
played out.

String theory thus finds itself in the following peculiar situation. It is defined, as it
stands, at a perturbative level in terms of strings moving through background space.
The core parameters that characterize the theory’s state are spatiotemporal and
allow for calculations in a near classical limit where interaction is weak, objects are
localized, and curvature is low. The propagation of individual strings only amounts
to a plausible intuitive representation of the dynamics in a near classical limit. But
the fundamental theory, lacking dimensionless free parameters, cannot be related to
any such limit before calculation.

Framing the theory in terms of parameters that are selected in order to work
well in the near classical limit, therefore, looks like an awkward choice when it
comes to describing and calculating string theory’s fundamental dynamics. Still,
all physical parameters deployed for describing string theory, or any other physical
theory, are of that kind (with one possible exception we will return to a little later).
These parameters seem capable of determining some contours of the fundamental
theory with the help of duality arguments and consistency requirements. But they
have not proved capable of providing a workable basis for calculating the theory’s
fundamental dynamics.

11.6 Finality in the Face of Chronic Incompleteness

Let us, for the moment, presume that string theory is a final theory in the sense
that (1) there is a string theory ground state that fully represents phenomenology at
energies below the Planck scale and (2) no observation that can be made in principle
would lead to the rejection of string theory. If string theory is a final theory in this
sense, the pair of facts stated at the end of the previous paragraph may have at least
three possible explanations.
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A. Even in principle, there exists no mathematical scheme that is empirically
equivalent to string theory and generates quantitative results that specify the
fundamental dynamics of the theory. In that case, the fundamental theory is
conceptually incomplete by its very nature. It has no fundamental dynamics and no
set of solutions that can be deduced from its first principles. The fundamental theory
merely serves as a conceptual shell that embeds low-energy descriptions (ground
states of the theory) consistent with the principles encoded in the fundamental
theory. Those low-energy descriptions contain specified parameter values and do
generate quantitative results. But there is no way to establish from first principles
how probable specific ground states of the system are.

B. Mathematically, the fundamental theory does have well-defined solutions.
There is a fact of the matter as to whether or not a low energy state constitutes
a solution of the fundamental theory and as to how probable that state is. How-
ever, there exists no algorithm that can establish those quantitative results based on
calculations that are substantially less complex than the full description of the entire
dynamics of the universe. Therefore, those calculations will never be carried out by
physicists.

C. There is a mathematical scheme that allows for calculating the dynamics of
the fundamental theory with reasonable effort. Physicists just have not found it yet.

Let us look a little closer at those three possibilities.
Alternative A would imply a fundamental break with the way science has under-

stood the role of mathematics in representing observations. In particular, it would
raise fairly intricate philosophical questions regarding the conception of a real
world and its relation to its mathematical description.

If string theory were indeed viable and A were true, the dynamics of the world
could not even probabilistically be extracted from a formal fundamental theory. A
fundamental theory is here understood to be constituted by a formal structure that is
defined based on a finite number of mathematical posits. In this scenario, quantita-
tive treatment and the extraction of quantitative predictions could be achieved at the
level string theory groundstates. That level of description could not be understood
as fundamental, however, since its consistent conceptualization relies on the repre-
sentation of that dynamics in terms of groundstates of a fundamental theory. The
corresponding theory could be inferred in its basic characteristics but could not even
in principle be expanded into a conceptual scheme that allowed for a specification
of the fundamental dynamics and the extraction of quantitative predictions.

A situation of that kind would allow for various philosophical interpretations.
From a strictly empiricist point of view, it could simply be characterized in terms of
limitations to the predictive power of scientific theory building. The peculiar status
of the fundamental theory, which is at the same time implied by the requirement
of having a consistent notion of string theory groundstates but also fundamentally
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incapable of being turned into a predictive scheme, is not reflected by a specific
philosophical conceptualization from such an empiricist perspective.

Viewed from the perspective of scientific realism, to the contrary, alternative A
raises fundamental new questions regarding the relation between reality and phys-
ical theory. Those questions can once again be addressed in a number of different
ways.

First, one might conclude that there is a part of reality that just cannot be repre-
sented by mathematics. But how, if not based on mathematics, should one conceive
of that part of reality? Given the full dominance of mathematical conceptualization
and the radical dissolution of any intuition-based concepts at the most fundamental
levels of physical description, prospects for developing a convincing conceptual
basis for any such understanding seem very limited. If there is any philosophical
message one may consistently draw from the evolution of physics throughout the
twentieth century, it hints in exactly the opposite direction. The century started
with the emergence of a general consensus that human intuitions regarding material
objects and their movement through space could be deployed in the context of
microphysics in order to develop a deeper—atomist—understanding of the world.
The further the century progressed, however, the more conspicuous it became that
each further conceptual step in the development of fundamental physics amounted
to jettisoning core elements of that intuitive perspective. Most ideas on how to join
general relativity and quantum physics seem to imply that, as a last step in this
decay process of intuitive concepts in fundamental physics, space and time them-
selves need to be abandoned as fundamental concepts. Having lost all guidelines
that had been based on human intuitions regarding physical objects, mathematics
seemed the only remaining basis for adequately expressing the fundamental phys-
ical characteristics of the world. Under those circumstances, the suggestion to aim
at some nonmathematical perspective on fundamental aspects of the world seems
hopelessly backwards-leaning.

In this light, it might look more promising to view alternative A from a very
different perspective. Reality, on that alternative reading, does not reach beyond
what can be grasped based on mathematical formalization but, quite to the contrary,
should be regarded as being confined to those levels of mathematical description
that allow for a quantitative analysis. If so, there would be no reality corresponding
to the level of fundamental principles for the very reason that those principles don’t
imply a fundamental dynamics. The fundamental theory would assume the peculiar
role of providing the closure of physics that is needed for consistency reasons
without representing the real world.

A perspective that avoids this irritating idea would be to insist on the principle
that there is a direct correspondence between the mathematical structure of a true
physical theory and the real world. Structural reality could then be attributed to the
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fundamental level. At that level, however, it would play out in a way very different
from what we expect from a physical theory. Only at the level of effective theories
that allow for a quantitatively specified dynamics would reality resemble a physical
system in the sense we are accustomed to.

Whatever the philosophical interpretation however, alternative A amounts to
introducing a strictly nonreductionist element into the fabric of physical theory
building: neither at a conceptual nor at an ontological level would it be possible
to reduce the phenomenology describable by our effective theory to the principles
of the fundamental theory.

Alternative B has the same practical implications as A but remains closer to
known philosophical territory. Mathematics could remain in place as a complete
representation of the dynamics of the world at the fundamental level. Reductionism
and full consistency could be upheld as general ontic principles of physics. There
would be a set of fundamental equations that fully specify the state of the world (or,
at any rate, the probability of the state we find ourselves in). Alternative B would
just imply that no manageable reduction of complexity regarding the fundamental
dynamics of the world can be achieved that leads to the extraction of parameter
values of effective theories based on any method of approximation. As briefly
mentioned, physics knows contexts that are sufficiently chaotic to block any serious
attempt at calculating specific outcomes of the dynamics. Just think of the exact
point of landing of a leaf carried away by autumn winds.5 In the given case, one
might suspect an even more desperate situation. Given the lack of free parameters
and classical initial conditions, the case we face might not even allow for choosing
simple initial conditions that do allow for calculations of the fundamental dynamics
in a toy model.

This outcome would retain the traditional philosophical take on the role of math-
ematics in physical theorizing. But it would not provide a physical perspective for
understanding the fundamental basis of the dynamics we observe at low energies.

Alternative C is what physicists are hoping for. Are there any good reasons
for assuming the existence of a full-fledged and calculable fundamental theory of
all interactions? One reason for feeling inclined to give a positive answer to this
question may lie in the history of science. The conviction that physical phenomena
can be described by a fully calculable theory even if they seem to defy any such
description at first glance has been the main driving force in physics ever since
the time of Galilei. The striking successes of physical theory building during four
centuries bear witness to the fact that this conviction has often been vindicated.

5 Some philosophers of science (see, e.g., Cartwright [1983]) have drawn far-reaching antireductionist
conclusions from this fact.
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Two caveats should be pointed at, however. First, as mentioned, not all physical
problems are assumed to have a calculable solution. In this light, the conviction
described earlier is in need of qualification. Scientists first make up their minds,
based on their experience, as to whether or not a given physical problem can be
expected to have a calculable solution. The physics community’s track record of
predicting what would eventually be calculable obviously is not flawless but seems
fairly good on average. In light of this track record, the physicists’ expectation that
a given physical problem has a calculable answer can become very strong. Such
strong expectations do constitute a main driving force behind their work.

A theory of quantum gravity, or string theory for that matter, at first glance looks
like the kind of theory that should be possible to develop and eventually to calculate.
But, and this brings the second caveat into play, string theory and the conceptual
context within which it is developed is in a number of ways substantially different
from anything physicists have witnessed up to this point. Therefore, it is far from
clear whether prevalent physical intuitions as to which kinds of questions can be
expected to have a fully calculable theoretical answer are applicable in this case.
It seems difficult to rule out that what seems to be a question that finds a fully
calculable theoretical answer in fact rather resembles the case of the leaf carried by
autumn winds and just defies calculation. This would bring us back to alternative B.

One specific difference between string theory and QFT brings alternative A into
play as well. In QFT, the perturbative approach is a tool for extracting quantitative
predictions from the theory. But QFT theory can be formulated as a full-fledged
theory (albeit not with the rigor algebraic quantum field theorists would want). In
the case of string theory, the perturbative approach was all there was in the early
days of the theory. No formulation of the theory was known that did not rely on the
perturbative approach. Though it was expected that the perturbative formulation of
the theory should in a cogent way designate a coherent full theory of strings, it was
by no means clear that such a theory existed.

The conspicuous abundance of string dualities is by many taken to offer a phys-
ical reason to believe in the existence of a calculable fundamental theory. The con-
jecture of, let us say, an exact S-duality relation, implies that deeply nonperturbative
large coupling solutions exist for each of the types of string theory that are related
to each other by the duality. This may be read as a stepping stone toward a general
fundamental formulation of string theory.

In the late 1990s there was much confidence among string theorists that dualities
could be developed into a tool for the full calculation of string theory’s dynamics.6

These hopes have turned out to have been premature. Though dualities have led to
many new insights into string theory, it is now generally acknowledged that further

6 A good example of the optimistic spirit at the end of the twentieth century is Greene (1999).
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substantially new methods would be needed in order to fulfil their early promises.
Dualities, in this light, may still be viewed as an indicator that full calculability is a
serious possibility but, at this point, cannot establish that a fully calculable theory
exists.

Given the power but also the limitations of duality relations in regard to finding
a fully calculable string theory, how should one understand the role of dualities in
this search on a more general basis?

The next section analyzes this issue by looking at the various kinds of dualities
that have been discovered so far in the context of string theory.

11.7 Types of Duality in String Physics

The extent to which parameters change from a model to its dual varies depending
on the type of duality and the context within which it plays out. The narrowest
instantiation of a duality relates parameter values to inverted values of the same
parameter in the same theory. This form of duality is called self-duality. An example
in string physics is the S-self duality of Type IIB superstring theory: type IIB string
theory with a string coupling g is dual to itself with a string coupling 1/g. Another
example is the T-duality of Bosonic string theory: a Bosonic string theory with
compactified radius R is dual to itself with compactified radius l2/R (where l is the
string length ).

In those cases, observable characteristics of individual objects may appear as
different characteristics in the dual description. For example, the winding number
of a string corresponds to the transversal momentum of the string in the T-dual
description.

Dualities can also relate values of a given parameter to the inverted values of
that parameter in a different theory. We have already encountered the example of
an S-duality that relates type I superstring theory with a given string coupling g
to SO(32) heterotic string theory with string coupling 1/g, which in turn has as its
T-dual E8 × E8 heterotic string theory with an inverted compactified dimension.

Duality relations can reach out even farther, however, and relate very different
parameters in very different theories to each other. An example of this kind is
AdS/CFT duality. To state one specific exemplification of AdS/CFT, a type IIB
superstring theory on AdS5 × S5 space is related to a 4-dimensional N = 4 super-
symmetric SU(n) Yang Mills theory (which is a conformal field theory). The duality
relates the curvature of AdS (in units of the string length ) to the ’t Hooft parameter
(gYMn)

1/4 in the dual conformal field theory, where gYM is the coupling constant
of the Yang Mills theory. In other words, a superstring theory is conjectured to be
dual to a theory that is conceptually so different that parameters that characterize
the first theory (such as spacetime curvature) don’t even show up as such in the
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dual. The duality relation, therefore, links values of that parameter to values of an
entirely different parameter in the dual theory.

One characteristic is common to all exemplifications of duality mentioned so
far: each of the parameter values linked by duality relations controls a classical
or low curvature limit of the respective theory. Moving away from a classical
limit in one theory corresponds to moving closer to a classical limit in its dual.
We have discussed this feature already in the S- and T-duality cases. S-duality
relates a coupling constant to its inverse. Moving to higher–and thereby more
quantum–values of the coupling in one theory therefore means moving to smaller–
and therefore more classical–values in the dual. Similarly, if one decreases the
compactification radius of a theory–and thereby moves toward a situation where
the classical concept of localization on that dimension becomes less meaningful–
one increases the compactification radius of the T-dual, thereby moving closer to a
classical intuitive understanding of that dimension.

In the AdS/CFT case, this principle still applies. String theory on AdS can be
related to an effective scenario of localized massive objects moving through space
only if the curvature radius is much larger than the string length. CFT, on the
other hand, has the characteristics of a weakly coupled theory only if the ’t Hooft
parameter is small. And a small ’t Hooft parameter corresponds to a small curvature
radius. Therefore, each of the dual theories has a classical limit that is controlled
by parameters that are linked to each other by the duality relation. Moving closer to
the classical limit in one theory amounts to moving farther away from the classical
limit in the dual.

As we have seen, it is exactly this typical characteristic of duality relations
encountered in the context of string physics that has proved so helpful for reach-
ing out beyond the perturbative regime. It can allow for calculations of physi-
cal situations that don’t look near classical in terms of one theory but do look
near-classical in its dual. However, for the reasons discussed in Section 11.5, the
described characteristic is not helpful for calculating the fundamental dynamics
of a theory without free parameters. The core obstacle to any such calculation is
the perturbative approach whose reliability is confined to specific parameter values
while the fundamental dynamics must be calculated before any such parameter
values have been fixed.

A further extension of the reach of duality relations might, in principle, overcome
that obstacle: a duality that relates one parameter in the initial theory that controls a
classical limit to a different parameter in the dual theory that does not lead toward
a classical limit at all. Obviously such a theory would encode the classical limit of
its dual theory in a similar way as, to take one example, a strongly coupled type
I superstring theory encodes the weak coupling limit of SO(32) heterotic string
theory. But a theory of the described kind would not contain elementary objects
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that, for specific parameters values, can be localized and behave in a near classical
way. Such a theory, if it exists, cannot restrict calculability to a near classical limit
because there is no such limit close to which perturbation theory works. So either
the theory is nowhere calculable (which means that there is no regime where it can
make any quantitative predictions) or it must be calculable away from any classical
limit. That is, it had to be calculable without perturbing around a classical solution.
In that case, the theory might offer a promising framework for a full calculation of
the fundamental dynamics.

If such a theory exists, it would be immensely difficult to find. New theories
and models are normally found by first thinking about ways in which one can
consistently move away from a classical limit. Once a new general theory has
been developed, specific realizations of that theory are found by trying to reproduce
empirical data, solving conceptual problems faced by specific model building, and
scanning the options for consistent theory and model building within the framework
provided by the general theory. To give an example, quantum field theory provided a
general framework within which specific theories and models, such as the standard
model and supersymmetric models were then developed.

Dualities are normally discovered by relating two theories to each other that had
already been found along the lines just described but had been taken to be sub-
stantially different due to their different classical limits. When Montonen and Olive
(1977) conjectured a duality between a theory with magnetic solitonic monopoles
and one with electric ones, the surprising point was the duality structure that related
weak to strong coupling limits rather than the point that electric solitons could be
built just like magnetic ones. When S- and T-duality were understood to link the
five types of superstring theory, all five theories had already been spelled out before.
The same goes for the two sides of AdS/CFT duality. There is no well-established
method to construct a new theory based on conjecturing a duality relation between
a known and an unknown theory and constructing the unknown theory just by
applying the duality.

So let us now assume that there is a duality relation that connects a theory with
a classical limit to a theory that does not relate classical limits to specific values of
its parameters. The latter theory cannot be found based on the traditional heuris-
tics of theory development that are based on thinking in terms of near classical
limits. It will also be very difficult to understand that the duality exists at all,
given that, as pointed out above, duality relations typically are discovered based
on prior knowledge about the two theories that turn out to be dual. Neither the
theory nor the corresponding duality relation would be likely to be discovered in
such a scenario.

One might, therefore, imagine the following scenario. There exist, in principle,
two kinds of theories about fundamental physics. There are those that can provide
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quantitative calculations of near classical limits based on perturbation theory. Such
theories are adequate for effective theories whose parameter values do sit close to a
classical limit and can be discovered and developed by thinking about them in terms
of a near-classical limit. But they are not adequate for calculating the dynamics of
the final theory (that is, a theory without free parameters).

Then, there are those theories that are not represented by any parameters that
lead toward a classical limit. Therefore they don’t have parameter values that are
preferable for calculations. To the extent those theories are calculable at all, they
may be expected to allow for the calculation of the entire parameter space and, in
this light look like adequate theories for representing the dynamics of a fundamental
theory without free parameters. But they are hidden in a conceptual realm that
cannot be accessed by following near-classical intuitions.

11.8 The Case of M-Theory

There is one important theory in the context of string physics that may represent an
example of the described scenario: M-theory.

Type IIA string theory with a given string coupling g is conjectured to be dual to
an 11-dimensional theory of membranes and 5-branes (M-theory) with a compact-
ified 11th dimension. E8 × E8 heterotic string theory is conjectured to be dual to
an 11-dimensional theory of membranes and 5-branes where the 11th dimension is
bounded by two 9-branes, each of them carrying one set ofE8 gauge fields. The size
of the 11th dimension (and the membrane extending through that 11th dimension)
in each case corresponds to the size of the string coupling. The strong coupling
limits of the string theories in both cases corresponds to a dual limit of M-theory,
with an infinitely extended 11th dimension.

The relation between M-theory and the two types of string theories dual to it
is of a peculiar kind. In the low coupling limit, the radius of the 11th dimension
of M-theory goes to zero. The theory dual to M-theory therefore does have a
classical limit of the kind known from other duality relations. But M-theory
with a large 11th dimension does not amount to a new classical limit. It cor-
responds to full uncompactified M-theory. M-theory does have a low energy
limit (covering energy scales that are small compared to the string length) where
11-dimensional supergravity serves as its effective theory. In this sense, one can
reach a new classical limit that amounts to the classical limit of a quantum field
theory of pointlike objects in 11 dimensions. But that limit is not taken in a genuine
M-theory description. Eleven-dimensional supergravity knows nothing about 2-
and 5-branes.

Therefore, the relation between M-theory and type IIA or E8 × E8 heterotic
string theory is quite different from all other known duality relations. By lacking a
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classical limit, it resembles the scenario that was described before as a scenario that
may generate the prospect of a fully calculable theory.

The lack of a perturbative regime for M-theory also constitutes one core
obstacle to formulating M-theory even to the extent this has been achieved for
10-dimensional superstring theories. The perturbative ‘entry point’ that is available
in the case of superstring theories is not available in the case of M-theory. More
than 20 years after it was conjectured, it is thus still unclear how to turn a theory of
2- and 5-branes in 11 dimensions into a consistent quantum theory. The concepts
of membranes and 5-branes provide a good heuristics for understanding the
nature of the duality relation. In the absence of a genuinely ‘membrany’ regime
that allows for a perturbative description, it seems doubtful, however, whether
membranes and 5-branes provide a promising framework for fully formulating and
calculating the theory. A lot of energy has been spent on finding better parameters
for representing the theory. Matrix theory (Banks, Fischler, and Shenker, 1997)
has been an influential candidate but has faced problems of its own. In other
words, understanding M-theory suffers from the fact that the heuristics of theory
development cannot be guided by looking at a classical limit of the theory itself.

11.9 Conclusion

This chapter has argued that the lack of free parameters of string theory plays a
crucial role in conceptually connecting two striking features of string physics: string
theory’s final theory claim and its chronic incompleteness. For several reasons, a
lack of free parameters may be taken to be a natural feature of a final and universal
theory. But the lack of free parameters removes the possibility of calculating the
theory’s dynamics starting from a classical limit based on a perturbative expansion.
Full access to a theory without free parameters thus might be expected to require
representations that don’t have their own classical limit. The fact that they cannot
be developed by generalizing away from a classical limit seems to impede the full
formulation of a final theory even once one has found it. The resulting idea of a
fundamental theory whose full formulation is hidden from the physicists’ grasp
because its most adequate representation lacks intuitive roots has even more radical
rivals, which amount to questioning the possibility of calculating the dynamics of
the fundamental theory either within the bounds of human calculational power or
as a matter of principle.

It has been suggested by various exponents and observers of contemporary fun-
damental physics (see, e.g., Smolin [2003], Woit [2003], and Hossenfelder [2018])
that the chronic incompleteness of string theory represents a substantial failure of
the research program that is indicative of a strategical problem that has afflicted
fundamental physics in recent decades. This conclusion is based on the implicit
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understanding that the challenges faced by scientific theory building, though obvi-
ously differing in their specifics, must always remain of roughly the same general
kind. A substantial deviation from expectations regarding the general ‘performance’
of scientific theories in a field on that view must indicate that the way the scientific
process plays out in the given case is flawed.

This chapter suggests a very different understanding of the current state of
physics. Considering the range and character of the very substantial differences
that set the current state of fundamental physics apart from any previous stage in
the history of physics, there is little reason to expect that theory building at the
present stage can be judged according to criteria that seemed adequate in the past.
To be sure, it might still happen that a new conceptual idea will in the near future
break the gridlock and, within a moderate timespan, lead up to a complete and
predictively powerful theory of quantum gravity. Obviously, none of the arguments
presented rules out such a scenario. But, judging the present situation on its own
merits rather than based on the experience one has gathered with respect to earlier
theories that played out in a very different overall context, that may not be the most
plausible scenario.

It may be necessary to substantially correct our understanding of the role of
theory building once physics has entered the stage when it plays out in the context
of a final theory. It might therefore make sense to significantly downscale expec-
tations on what a theory of quantum gravity can achieve in the foreseeable future.
Understanding the character of the suggested shift in detail and analyzing which
achievements can be reasonably aimed at under the new circumstances will then
itself become an important element of physical reasoning.
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Spacetime and Physical Equivalence

sebastian de haro

12.1 Introduction

In their programmatic special issue on the emergence of spacetime in quantum
theories of gravity, Huggett and Wüthrich (2013, p. 284) write that the program of
‘interpreting a theory “from above”, of explicating the empirical significance of a
theory, is both “philosophical”, in the sense that it requires the analysis of concepts,
and crucial to every previous advance in fundamental physics... As such, it must be
pursued by the study of theory fragments, toy models, and false theories capturing
some promising ideas, asking how empirical spacetime relates to them.’

Huggett and Wüthrich further articulate their project around three foci of
attention:

1. Does quantum gravity eliminate spacetime as a fundamental structure?
2. If so, how does quantum gravity explain the appearance of spacetime?
3. What are the broader implications of quantum gravity for metaphysical accounts

of the world?

These are indeed central questions for candidate theories of quantum gravity. If the
answer to the first question turns out to be affirmative, the impact on the philosophy
of spacetime will be spectacular: for there will be, at the fundamental level, no
spacetime. In this essay I consider the contribution, to the answering of questions 1
and 3, of one particular quantum gravity approach: gauge/gravity duality.1 This is
an approach developed in the context of string and M theory, but it has broader ram-
ifications: e.g., applications to condensed matter physics and heavy-ion collisions
(Ammon and Erdmenger, 2015, III)). I will not consider question 2 here.2

1 For an expository overview, see, e.g., Ammon and Erdmenger (2015). De Haro, Mayerson, and
Butterfield (2016) is a conceptual review.

2 There is a growing literature on the contribution of gauge/gravity dualities to question 2; see e.g., De
Haro (2017), Dieks, Dongen, and Haro (2015), and Rickles (2012).
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Thus I lay out, in the first part of the essay (Section 12.2), the conceptual scheme
for dualities that I advocate. My argument proceeds by analyzing dualities (12.2.2)
in terms of four contrasts, which lead up to making the distinction between theoret-
ical equivalence and physical equivalence.

A duality is an isomorphism between (bare) theories. Then the four contrasts are

a. Bare theory vs. interpreted theory (Section 12.2.1): A bare theory is a triple of
states, quantities, and dynamics, each of which are construed as structured sets,
invariant under appropriate symmetries. An interpreted theory has, in addition,
a pair of interpretative maps to physical quantities and other entities.

b. Extendable vs. unextendable theories (Sections 12.2.3.3–12.2.4): theories that
do, respectively do not, admit suitable extensions in their domains of application.
I will also allow for a weaker conception of ‘unextendable theory’, according
to which unextendable theories may admit an extension via, e.g., couplings to
other theories in their domain, but are such that their interpretations are robust,
i.e., unchanged under such extensions.

c. External vs. internal interpretations (Sections 12.2.1.2, 12.2.3.1, 12.2.3.2):
interpretations that are obtained from outside (e.g., by coupling the theory to a
second theory that has already been interpreted), respectively from inside, the
theory, i.e., from the role that states, quantities, and dynamics have within the
theoretical structure.

d. Theoretical vs. physical equivalence (Section 12.2.3): formal equivalence
(i.e., agreement of the bare theories, but with possible disagreement of the
interpretations) vs. full equivalence of the interpreted theories: i.e., agreement
of both the bare theory and the interpretive maps.

These contrasts build upon each other: so that (a) is used in the analysis of (b), (a)
and (b) are jointly used in the interpretative analysis of (c), and (a)–(c) are all needed
in order to reach a verdict distinguishing theoretical vs. physical equivalence, as (d)
intends.

My account provides sufficient details, so that the scheme can be readily
applied to other cases, and I give several examples that will work toward applying
the scheme to gauge/gravity dualities. However, a full account of theoretical and
physical equivalence, doing full justice to the intricacies of the matter, will have to
be left for the future. Further formal and conceptual development of the scheme is
in De Haro and Butterfield (2018).

Of course, not all of these notions are completely new. But my construal
of them is largely novel (the only exception being the contrast (c), for which
I am in full agreement with, and just develop further, the position of Dieks
et al. [2015] and De Haro [2017]). In particular, the way I here articulate the
notions of theoretical and physical equivalence in terms of the contrasts (a)–(d),
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so that I can successfully analyze dualities, are novel and are intended to add to the
literature on both dualities and equivalence of theories.

In the second part of the essay (Section 12.3), I apply the scheme (a)–(d) to
gauge/gravity duality. This will answer the following two questions, from the
perspective of this quantum gravity program: (iii) the nature of spacetime in
quantum gravity (Section 12.3.1), and (iv) the broader philosophical and physical
implications (Section 12.3.3). Philosophers of physics have started to address the
philosophical significance of dualities in recent years: and I compare with these
works in Section 12.3.2, so as to clarify my own contribution.

The organization of the second part of the essay thus responds to the questions (1)
and (3) posed by Huggett and Wüthrich, taken as specifically about gauge/gravity
duality.

Gauge/gravity duality is one particular approach to quantum gravity. Briefly, it
is the equivalence between:

(I: Gravity) On the one hand: a theory of quantum gravity in a volume bounded
inside a certain surface.

(II: QFT) On the other: a quantum field theory (QFT) defined on that surface,
which is usually, in most models, at ‘spatial infinity’, relative to the volume.

I will argue that, despite the apparent innocence of the references to spacetime
appearing in this brief summary of the duality: the physical interpretation of this
duality calls for a revision of the role that most of our physical and mathematical
concepts are supposed to play in a fundamental theory—most notably, the role
of spacetime. And the interpretation of the duality itself requires us to carefully
reconsider the philosophical concepts of theoretical equivalence and physical
equivalence.

12.2 Theories, Duality, and Physical Equivalence

In this section, I briefly describe the scheme (a)–(d), which I apply in Section 12.3.
In Section 12.2.1, I specify more exactly what I mean by ‘theory’ and related
notions. In Section 12.2.2, I give my conception of a duality between such
theories. Section 12.2.3 describes how, for theories ‘of the whole world’, duality
is tantamount to physical equivalence, i.e., the theories at issue being really the
same theory: this will involve two conditions (Section 12.2.3.2). In Section 12.2.4,
I compare my account with Glymour’s notion of equivalence.

12.2.1 The Conception of a Theory

Before we engage with the interpretation of dualities (which we will do in
Sections 12.2.2–12.2.3), we need to have conceptions of theory that are sufficiently
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articulated that they make an analysis of physical equivalence possible. I first
introduce, in Section 12.2.1.1, the notion of a bare theory. Then, in Section 12.2.1.2,
I discuss the notion of an interpreted theory.

12.2.1.1 Bare Theory

I take a bare theory to be a triple T = 〈H,Q,D〉 comprising: (1) a set H of states,
endowed with appropriate structure, (2) a set of physical quantities Q, endowed
with appropriate structure, (3) a dynamics D, consistent with the relevant structure.
Such a triple will generally also be endowed with symmetries, which are automor-
phisms s : H→ H preserving (a subset of) the valuations of the physical quantities
on the states (for details, see De Haro and Butterfield [2018, sec. 3.3]), and which
commute with (are suitably equivariant for) the dynamics D.

For a quantum theory, which will be our main (though not our sole!) focus:
we will take H to be a Hilbert space; Q will be a specific subset of operators on
the Hilbert space; and D will be taken to be a choice of a unique (perhaps up to
addition by a constant) Hamiltonian operator from the set Q of physical quantities.
In a quantum theory, the appropriate structures are matrix elements of operators
evaluated on states, and the symmetries are represented by unitary operators. But
as mentioned: the present notion of a bare theory applies equally well to classical
and to quantum theories, and there will be no requirement that a duality must relate
quantum theories.

A theory may contain many more quantities, but it is only after we have singled
out the ones that have a physical significance that we have a physical, rather than
a mathematical, theory or model. The quantities Q, the states H, and the dynamics
D have a physical significance at a possible world W , and within it a domain of
applicationDW (which we can think of as a subsetDW ⊆ W ), though it has not yet
been specified what this significance may be, nor what the possible world ‘looks
like’.3 To determine the physical significance of the triple, a physical interpretation
needs to be provided: which I do in the next subsection.

So, I will dub as the bare theory: just the formal triple T = 〈H,Q,D〉, together
with its structure, symmetries, and rules for inferring propositions, such as: ‘the
value of the operator Q ∈ Q in the state s ∈ H is such and such’. But there is no
talk of empirical adequacy yet.

We normally study a theory through its models. A model is construed as a repre-
sentation of the theory, the triple 〈H,Q,D〉,4 and will be denoted byM . A modelM

3 This framework allows of course for models that do not describe actual physical reality. While one can give
various metaphysical construals to concepts such as ‘possible worlds’, I here need only a minimal conception
of possible worlds as ‘how things can be’, in the context of a ‘putatively fundamental’ spacetime physics. Thus
I do not mean to subscribe to a specific metaphysics of possible worlds.

4 Representation is here meant in the mathematical sense of a homomorphism. In this paper, I consider only
isomorphic representations: for the nonisomorphic case, see De Haro and Butterfield (2018, secs. 2.2.2–2.2.3).
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of a theory T may include, in addition to the triple, some variables that are part of
the descriptive apparatus but have no physical significance (in the sense of the last
but one paragraph) from the point of view of the theory: I will call this the specific
structure of the model M . Since a theory can be represented by any of its models,
my account does not seek to eliminate the specific structure but to identify the core
〈H,Q,D〉 of the models: as that structure that is preserved across equivalent models
(see Section 12.2.2). In our duality of interest, gauge/gravity duality, I treat the two
sides of the duality as two models of the theory.

Notice that the notion of model I use here, as a representation (more generally,
an instantiation) of a theory, is distinct from the more common characterization of
a model as a specific solution for the physical system concerned (e.g., a specific
trajectory in the state space, or a possible history, according to the equations of the
theory), which I indeed here reject. My notion is motivated by dualities because
they prompt us to move what we mean by a theory ‘one level up’, in abstraction:
and I accordingly take what I mean by a model one level up, keeping the relation
between theory and model fixed, rather than introducing a new level between theory
and model. Thus, what used to be ‘two distinct theories’, each of them having their
own models, are now ‘two models of a single theory’, each model having its own
set of solutions, related to each other by the duality. What dual models have in
common, i.e., their common core, is isomorphic between the models. For more on
the motivation for, and the uses of, these notions of theory and of model, see De
Haro and Butterfield (2018, sec. 2).

12.2.1.2 Interpreted Theory

There is a certain minimalism to the presented conception of theory, since in
scientific practice one must be able to tell, in a given experiment or physical
situation to which the theory is supposed to apply, what the relevant quantities are
that correspond to the empirical data. The specification of a theory as a triple makes
no reference as yet to this: only the existence of some such relation, for a class of
possible worldsW , is assumed. So, when interpreting a theory, one wishes to also:

0. Establish the meaning of certain theoretical entities (if one is a realist), whether
directly measurable or not;

1. Establish some kind of bridge principles between the physically significant parts
of the theory and the world.

These two desiderata will be fulfilled by the two interpretative maps (denoted
I 0,I 1). Furthermore, one may also wish to establish theoretical principles that, for

This reference argues that a more general account of a model can be had: as an instantiation, or a realization, of
a theory.
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example, interconnect various experimental results (symmetry and locality being
just two examples of such theoretical principles often considered in physics).

So, I take a physical interpretation to be a pair of partial maps, preserving
appropriate structure, from the bare theory to some suitable set of physical quanti-
ties. I denote the maps as IT : = (I 0

T ,I
1
T ) : T → DW , where T is the triple5 and

DW is the domain within the possible world W (a pair of possible worlds, since
there are two maps [more on this later; for simplicity in the notation, I often drop
the subscript]). The restriction to only a domain within a possible world stems from
the wish to account for theories that do not describe the whole world, but only
part of it. The requirement that the map need only be partial means that not all the
elements of the theory necessarily refer. The more adequate the theory, the more
elements will refer and the map will satisfy additional conditions, but we will not
use this here.

The first partial map, I 0
T , is from the triple, H,Q, and D, to the quantities under-

stood conceptually (potential energy, magnetic flux, etc.), i.e., it corresponds to the
theoretical meaning of the terms. Of course, this theoretical meaning is informed
by experimental procedures, and it will usually involve the quantities as realized in
all possible laboratory experiments, through observations, or even through relations
between experiments and/or observations, in a domain D0 of a possible worldW 0.
But this possible world is not to be understood as our world in its full details
of context, but as a conceptual realm that fixes the reference of the theoretical
concepts.6

The second partial map, I 1
T , is from the triple, H,Q, and D (or Cartesian products

thereof), to the set of values (the set of numbers formed by all experimental or
observational outcomes, as well as the relations between them), i.e., the domain
D1 to which the theory applies, within a possible world W 1. That set of values is
typically (minimally) structured, and such minimal structure is to be preserved
by the map. Thus typically, the second map maps, e.g., individual states or
quantities, e.g., by pairing them: I 1

T : H × Q → R, where R is endowed with
addition and multiplication (for a concrete example, see Section 12.2.3.1), and
likewise for the dynamics. Notice that, unlike the first map, the second map
depends on contingent facts about the possible world W 1, such as the context of a
measurement.

The codomains of I 0
T and I 1

T as thus defined might, at first sight, seem to be again
just theoretical or mathematical entities, themselves in need of interpretation—a
space of functions in the first example, a set of real numbers endowed with addition

5 Or Cartesian products thereof: e.g., in quantum mechanics, the interpretation map maps, e.g., expectation
values to real numbers in the world. The expectation values themselves are maps from Cartesian products of
states and quantities to real numbers.

6 Cf. De Haro and Butterfield (2018, sec. 2), where the first map is an intension, and the second an extension.
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and multiplication, in the second. But this is not what is intended. We are to think
of the codomain of I 1

T as representing the real world in a straightforward way:
so, for example, the reals measuring the energy represent the value of a quantity in
appropriate units, given by the position of a voltmeter’s pointer on a scale (see some
examples in Section 12.2.3.1). The point is to map from theories to structured sets of
functions and numbers, which do not describe more theory, but rather are identified
with a set of possible physical situations, experimental outcomes, or observational
and conceptual procedures.

In what follows, the distinction between I 0 and I 1 (and between the idealized
world W 0 and the concrete world W 1, to which they map) will not be important,
and so I gloss over the ‘0 vs. 1’ contrast and simply talk of a pair of interpretation
maps, I , from the theory to the world,W . The distinction between the two cases is
brought to bear in De Haro and Butterfield (2018, secs. 2–3).

In my discussion, I have so far assumed that the interpretative maps are from
the elements of the triples themselves, rather than from their models, to quantities
etc. in the world. We will call such an interpretation internal: it requires nothing
but the theory. But, as I discuss in detail in Section 12.2.3.1, there are often good
reasons to pursue an interpretation that is obtained by, e.g., coupling the theory T to
some other theory Tmeas that is already interpreted. T thus inherits its interpretation
from Tmeas, and the coupling of T to Tmeas will often differ for the different modelsM
of T . In other words, Tmeas may be coupled toM throughM’s specific structure. So,
we distinguish:

1. External interpretation of T : a pair of maps, as earlier, IM : M × Tmeas → DW ,
from the model M of the theory T , coupled to the theory of measurement Tmeas

(or some other relevant theory that provides an interpretation), to the domain
DW ⊆ W .

2. Internal interpretation of T : a pair of maps, as earlier, IT : T → DW , from the
theory, T , to the domain, DW ⊆ W .

I will call a bare theory, once it is equipped with an interpretation, the interpreted
theory. It is the physical interpretation that enables the theory to be empirically
successful and physically significant.

The interpretation maps involve, of course, philosophically laden issues. But the
aim here is not to settle these issues, but rather to have a scheme in which the
formal, the empirical, and the conceptual are clearly identified and—as much as
possible—distinguished. The interpretational scheme should make the ontological
commitments explicit (more on this in Section 12.2.4).

The fact that the first map, I 0
T , is conceptual, and that the two maps also

respect relations between quantities (which might not be directly and independently
measurable, while still being physically significant), reflect the fact that the set
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of quantities Q need not be restricted to measurable or observable quantities.
I illustrate this with an example in Section 12.2.4.

The formulation of a bare theory as a triple is minimalist. But, with the interpre-
tation maps added, it is strong enough—because of the complete specification of the
set of physical quantities—that, under two conditions mentioned later, it will deter-
mine whether two theories are about the same subject matter. Questions concerning
the identity of two such triples will be questions concerning the sameness of models
(Section 12.2.3.2), rather than standard cases of underdetermination of theory by
empirical data. This is because we assume that the triple T = 〈H,Q,D〉, together
with the valuations constructed from the syntax, is well defined and consistent,
and that it encompasses all the empirical data (and relations between the data),
in a certain domain DW within W . The latter condition can be restated as the
requirement that the interpretative map be surjective, so that no element of the
domain DW is left out from the model’s description.7 I call such a model complete.
Thus, the equivalence of two triples means that the theories agree about everything
they deem physical. On the other hand, in standard cases of underdetermination
considered in the philosophy of science, the theories are underdetermined by what
is measurable or observable, by the available evidence, or even by the actual empir-
ical data obtained by scientists. The completeness of the theory is thus a necessary
condition for duality to which I return.

12.2.2 The Conception of Duality

With the conception of a theory considered in Section 12.2.1, a duality is now
construed as an equivalence of theories. More precisely, it is an isomorphism
d : M1 → M2 between two modelsM1 andM2 of a theory T : there exist bijections
between the models’ respective sets of states and of quantities, such that the values
of the quantities on the states are preserved under the bijections. (In the case of
quantum theories, these values are the set of numbers 〈s1|Q|s2〉, where s1,s2 ∈ H,
Q ∈ Q.) The duality is also required to commute with (d is to be equivariant for)
the two models’ dynamics, and to preserve the symmetries of the theory.

The notion of duality in this subsection is motivated by both physics and math-
ematics. Duality in mathematics is a formal phenomenon: it does not deal with
physically interpreted structures (even though, of course, several of the mathemati-
cal dualities turn out to have a physical significance). But this is also how the term
is used by physicists: it is attached to the equivalence of the formal structures of the
theories, regardless of their interpretations.

7 The qualification, ‘in a domain within a possible world’, is important because the theory need not be complete
at our world. A model may, for example, be complete within a given range of parameters not containing the
relevant values for our world. This is why completeness is to be construed as relative to DW andW .
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Duality, as a formal equivalence between two triples without the requirement
of identical interpretations, is thus a special case of theoretical equivalence: an
isomorphism, as earlier.

Like the conception of a theory, my conception of a duality is minimalist. On
this definition, for instance, position–momentum duality in quantum mechanics is
indeed a duality. The duality has two models, namely the formulations of quantum
mechanics based on, respectively, the x- and the p-representations of the Hilbert
space: Fourier transformation being the duality map. This duality is, of course,
somewhat trivial, because the two models contain the same amounts of specific
structure, in the sense given earlier: in short, a single variable. And indeed, I regard
it as a virtue that my conception of duality is general enough that both familiar,
and relatively simple, dualities, as well as the more sophisticated ones in quantum
field theory and quantum gravity, all qualify as dualities, under the same general
conception. Indeed, I take it that:

One of the lessons of duality is that ‘widely differing theories’ are (surprisingly)
equivalent to each other, in the same sense of equivalence in which two ‘notational
variants’ differ from each other.

An important question, given the conceptions of theory, model, and duality I have
introduced, is whether one can verify, in some well-understood examples, that the
scheme leads to the correct verdicts regarding duality. Examples of equivalences
between very different looking quantum field theories are provided in De Haro
and Butterfield (2018), where it is shown how duality thus construed obtains. The
focus of this essay—in line with the quote by Huggett and Wüthrich given in
Section 12.1—is in applying this conception, and the four contrasts (a) to (d), to
shed light on duality in quantum gravity.

The two-pronged conception of an interpreted theory as a triple plus an inter-
pretation, together with the notion of duality as isomorphism, allow us to introduce
the notion of the physical equivalence of models. The discussion of duality so
far indeed prompts us to distinguish theoretical equivalence from physical equiv-
alence: the latter being the complete equivalence of two models as descriptions of
physical systems, i.e., models with identical interpretations. The difference may be
cashed out as follows: theoretically equivalent models, once interpreted, ‘say the
same thing’ about possibly different subject matters (different parts of the world),
whereas physically equivalent models say the same thing about the same subject
matter (the same part of the world). There will also be a weak, but interesting, form
of physical equivalence, in which two dual models describe a single given world
equally well, even if in other cases they may also describe different worlds. More
on this in Section 12.2.3.
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Duality, then, is one of the ways in which two models can be theoretically equiv-
alent, without its automatically implying their physical equivalence. For instance,
a duality can relate a real and an imagined or an auxiliary system. In such a case,
duality is a useful and powerful calculational device—and nothing more. But it is,
of course, those cases in which dualities do reveal something about the nature of
physical reality, that prompts the philosophical interest in dualities: cases in which
the interpretation of the duality promotes it to physical equivalence.

12.2.3 From Theoretical Equivalence to Physical Equivalence

Having introduced, in the previous two sections, my conception of duality, and
the four contrasts (a) to (d) mentioned in Section 12.1, we now come to the cen-
tral question in this section: When does duality amount to physical equivalence?
I first discuss, in Section 12.2.3.1, the external and internal interpretations of a
theory (already briefly introduced in Section 12.2.1.2). In Section 12.2.3.2, I state
two conditions for physical equivalence: internal interpretation and unextendability.
In Section 12.2.3.3, I discuss the physical equivalence of dual theories that are
unextendable.

12.2.3.1 External and Internal Interpretations of a Theory

In this section, I further develop the external and internal interpretations, and in
particular two cases: (1) cases of external interpretations, in which physical equiv-
alence fails to obtain, despite the presence of a duality, and (2) cases in which
an external interpretation is not consistently available (where ‘consistently’ will be
qualified), so that one can have only an internal interpretation, and hence there is
physical equivalence.

Let me illustrate the external interpretation with an elementary example that
should make clear the difference between duality as a case of theoretical equiv-
alence and physical equivalence. Consider classical, 1-dimensional harmonic
oscillator ‘duality’: an automorphism, d : H → H, defined by d : H � (x,p) "→
(
p

mω
, −mωx), from one harmonic oscillator state to another, leaving the dynamics

D invariant—namely, the Hamiltonian H = p2

2m + 1
2 kx

2 and the equations of
motion that H defines. So, it is an automorphism of THO = 〈H,Q,D〉.8 But this
automorphism of 〈H,Q,D〉 does not imply a physical equivalence of the states:9

the two states are clearly distinct and describe different physical situations, since

8 I have described the states and dynamics of the harmonic oscillator: the quantities Q include, e.g., any powers
(and combinations of powers) of x and p.

9 In a world consisting of a single harmonic oscillator and nothing else, the two situations could not be
distinguished, and one might invoke Leibniz’s principle to identify them. This amounts to adopting an internal
interpretation, in the sense of Section 12.2.1.2.
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the map d relates an oscillator in a certain state of position and momentum, to an
oscillator in a different state.

This difference is shown in the fact that there is an independent way to measure
the ‘position’ of the oscillator at a given time: one sets the oscillator and a stan-
dard rod side by side, observes where on the rod the oscillator is located, and so
carries out a measurement of the former’s position. We can picture this as coupling
harmonic oscillator theory, THO, to our theory of measurement Tmeas, and interpret
the measurement as measurement of the oscillator position. I will call such an
interpretation of THO an external interpretation (cf. Section 12.2.1.2). It is obtained
by inducing the interpretation of THO from an already interpreted theory Tmeas, or by
extension to THO + meas. And I call a theory, that can be coupled or extended in this way
an extendable theory.

But there are cases—such as cosmological models of the universe, and models
of unification of the four forces of nature—in which these grounds for resisting the
inference from duality to physical equivalence—a resistance based on the
possibility of finding an external theory Tmeas—are lost. For the quantum gravity
theories under examination—even if they are not final theories of the world
(whatever that might mean!)—are presented as candidate descriptions of an entire
(possible) physical world: let us call such a theory T .10 So, there is no independent
theory of measurement Tmeas to which T should, or could, be coupled, because T
itself should be a closed theory (an unextendable theory; see Section 12.2.3.3). In
the next section, I use these ideas to spell out the conditions under which two dual
models are physically equivalent.

12.2.3.2 Internal Interpretation and Unextendability Allow Sameness of
Reference, and so Physical Equivalence

We return to dualities as isomorphisms of models (cf. Section 12.2.2); and so, we
consider, specifically, the interpretation of two models, M1 and M2, ‘of the whole
world’. In this section, I propose a condition that will, together with the internal
interpretation, secure physical equivalence, in the sense that one is justified in taking
duals to be physically equivalent, and I give the arguments to that effect.

The leading idea of an internal interpretation is that the interpretation has not
been fixed a priori, but will be developed starting from the duality. (Or, if by some
historical accident, an interpretation has already been fixed, one should now be
prepared to drop large parts of it.) The requirement that, I propose, justifies the

10 These are candidate descriptions of possible worlds, rather than the actual world. For example, the models
that we will consider in Section 12.3 entail a negative cosmological constant, whereas our universe seems best
described by a positive cosmological constant. But the interest in such models is, of course, that (1) given
their rarity, any consistent 4-dimensional theory of quantum gravity is interesting and (2) such idealized
models contain helpful lessons for the case of a positive cosmological constant.
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use of the internal interpretation such that uniqueness of reference is secured, is
as follows:

Unextendability: roughly, ‘the interpretation cannot be changed by coupling the
theory to something else or by extending its domain’. Unextendability replaces
the somewhat vague phrase of the whole world in the previous paragraph, and
I expound it in Section 12.2.3.3.

Unextendability plays a key role in inferring physical equivalence. For it ensures
that there is ‘no more to be described’ in the physical world, and that the models
cannot be distinguished, even if their domains of application were to be extended
(since no such extension exists). And so, it ensures that the internal interpretation
can be trusted as a criterion of physical equivalence (cf. Section 12.2.3.3), as I now
argue.

Starting, then, from two such dual models,M1 andM2 of T , the duality map lays
bare the invariant content 〈H,Q,D〉, as that content which is common to M1 and
M2, through the duality map (cf. Section 12.2.1.2). This is the starting point of the
internal interpretation, for both the theory and the models. I now propose that an
internal interpretation of a theory, satisfying the two stated conditions, is the same
for the two models (in the sense of Section 12.2.2), and in particular its reference is
the same:

(i) The formalisms of the two models say the same thing: for they contain the
same states, physical quantities, and dynamics (i.e., the domain of the maps is
identified by the isomorphism), and (ii) their physical content is also the same,
for the interpretation given to the physical quantities and states is developed from
the duality and nothing else. So, the codomains of the maps are the same, and they
coincide with the entire world. I am thus here proposing that the domains of the
worlds described by two dual models, and the worlds themselves are the same; this
is because, on an internal interpretation, the two worlds, in all their physical facts,
are ‘constructed, or obtained from’, the triples.

There is a way in which this inference, from dual models with internal inter-
pretations, to identical worlds, might fail: there might be more than one internal
interpretation and, therefore, more than one codomainDW described by the theory.
For in that case, despite the isomorphism of the two models, one might be tempted
to think that one model could be better interpreted in one way, and the other better
interpreted in another way.

But I take this objection to be misguided: the point is that, even if there is more
than one internal interpretation, the reference of a given internal interpretation is
the same for any two isomorphic models. Remember that, by definition, an internal
interpretation cannot discern between models, because it starts from the theory,
as a triple, and nothing else. So, there can be no reason for the interpretation to
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distinguish one model from the other—they both describe the world equally well
and in the same way, according to that internal interpretation. In other words:
even if a single common core admitted several internal interpretations, each of
them would refer to a single possible world, which would be the single reference
of the corresponding internal interpretation of all the models isomorphic to the
common core.

Let me spell out in more detail this inference from the isomorphism of models,
to the identity of the internal interpretations and identity of the worlds described
(hence physical equivalence), under the unextendability condition. There are two
ways to make this inference. The first argument, from the unextendability of the
models, will be given in Section 12.2.3.3. It is a version of Leibniz’s principle of
the identity of indiscernibles, which applies here because the two models describe
the entire world. The second argument, given in the previous paragraph, simply
follows from the definition of the internal interpretation, given in Section 12.2.1.2:
an internal interpretation is constructed from the triple of the theory and nothing
else (so, the specific structure of a model is not to find a counterpart in the world,
since the interpretation must be invariant under the duality map). Thus, given an
internal interpretation of the theory, the codomain of that interpretation, mapped
from the two models, is the same by definition: since the internal interpretation is
insensitive to the differences in specific structure between the models, its reference
must be the same.11 Explicitly, IM1 = IM2 ◦ d, where d : M1 → M2 is the duality
map. Thus, such thorough-going dualities can be taken to give physical equivalence
between apparently very different models.

It is important to note that this second argument for the identity of the codomains
follows from the definition of an internal interpretation, given in Section 12.2.1.2
(together with the two stated conditions). What is surprising about a duality that is
a physical equivalence, then, is not so much that two very different models describe
the same world, but rather that there is an internal interpretation to be constructed
from such minimal data as a triple,12 and so, what is surprising is that there is a
(rich) world for such a triple to describe! Admittedly, it would be hardly surprising
if the internal interpretation described something as simple as the real line. But, in
the examples we are concerned with here, the internal interpretation describes far
richer worlds!

11 The internal interpretation I is a partial surjective map from the theory to the world. But using the forgetful
map from the model to the theory (the map that strips the model of its specific structure), we can construct an
internal interpretation of the model, as the pullback of the interpretation map I by the forgetful map. It is in
this sense that I here speak of internal interpretations of the models as well as of the theory.

12 I call the triple ‘minimal’ data because it does not contain specific structure, which we normally think of as
giving a model, and its interpretation, its particular features. So, the internal interpretation constructed from a
triple may be rather abstract yet the claim is that it is an entire world!
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I do not claim to have established physical equivalence, under the conditions of
internal interpretation and unextendability, as a matter of logical necessity, just from
the notions of theory, model, and interpretation. Doing so would require a deeper
analysis of the notion of reference itself, and the conditions under which it applies
to scientific theories, which is beyond the scope of this paper (cf., e.g., Lewis
[1984]). What I claim to have argued is that, making some natural assumptions
in particular about how terms refer in ordinary language and in scientific theories,
the use of the internal interpretation and unextendability does deliver physical
equivalence.

12.2.3.3 Unextendability, in More Detail

I turn to consider theories, such as theories of quantum gravity, TQG say, for which
there is no extra physics to which TQG can be coupled or extended. Being a
description of the entire physical universe, or of an entire domain of physics, I
will take the interpretation IQG to be internal to TQG. Thus, as a sufficient condition
for being justified in the use of an internal interpretation, I have required, in
Section 12.2.3.2, that TQG be an unextendable theory. An interpretation map IQG

requires only the triple TQG = 〈H,Q,D〉 as input, and it only involves the triple’s
elements and their relations—it does not involve coupling TQG to other theories.
In such a case, duality preserves not only the formalism but necessarily also the
structure of the concepts of two complete and mathematically well-defined models.
If one model is entirely self-consistent and describes all the relevant aspects of the
world, then so must the other model. And so, duality becomes physical equivalence.
Thus, in other words, we are really talking about different formulations of a
single theory.

Let me spell out the (sufficient) condition, suggested by this discussion, for a the-
ory to admit an internal interpretation, since it will be important in Section 12.2.4.
A bare theory T in a domain DW of a possible worldW is unextendable iff:

i. T is a complete theory in the domain of applicability DW atW ;
ii. There is no other theory T ′′ for the possible world W (or another possible

world that includes it) and domainDW , such that for some T ′ isomorphic to T ,
T ′ ⊂ T ′′ (proper inclusion).13

iii. The domain of applicability DW coincides with the world described, i.e.,
DW = W .
Note that the possible world W is fixed by the interpretation. Unextendability
is thus a relation between bare theories and worlds and is thus a property of
interpreted theories.

13 T ′ is a fiducial theory that may well be identical to T . But in general, it may be the case that T ⊂ T ′′ is not
true but T ∼= T ′ ⊂ T ′′ is. In other words, T ⊂ T ′′ may only be true up to isomorphism.
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Recall the notion of completeness of a theory, in (i), introduced in Sec-
tion 12.2.1.1: as well-defined, consistent, and encompassing all the empirical data
in a certain domain DW (i.e., a partial surjective map). Condition (ii), in addition,
requires that there is no extension of the theory at W , or, in other words, the
theory already describes all the physical aspects of the relevant domain atW . Since
the relation of isomorphism in (ii) is formal, (ii) is a sort of ‘meshing’ condition
between (i)—or, more generally, between the idea of ‘not being extendable’—
and the formal relation of isomorphism between bare theories.14 Condition (iii)
is the usual condition that T is a theory ‘of the whole world’, i.e., its domain of
application is the entire world. Notice that (i) and (iii) do not suffice for physical
equivalence; one needs something like the technical requirement (ii) (see also the
next section).

I have concluded that, on an internal interpretation, there is no distinction of con-
tent between two dual models. In Section 12.2.4, I address two different purposes
for which the distinction between two dual models is irrelevant, besides the ontolog-
ical purposes so far discussed: viz., the logical and empirical purposes. This is not
to deny that there are other significant—metaphysical, epistemic, and pragmatic—
purposes or uses of physical theories, for which the differences are significant. For
instance, one of the main pragmatic virtues of gauge/gravity dualities is that one
theory is tractable in a regime of values of the parameters where the other theory is
intractable.

12.2.4 Comparison with Glymour’s Notion of Equivalence

How does the conclusion that the two theories related by gauge/gravity duality
admit internal interpretations and that under two additional conditions duality
implies physical equivalence compare with the relevant philosophical literature
on equivalence of physical theories? To discuss this, I recall the usual strategy
by which, faced with apparently equivalent theories, physicists try to break the
equivalence and relate this to an influential discussion, by Glymour. I agree with
Glymour’s verdicts for his examples, but I argue that this depends on the theories
in the examples being extendable.

It is a commonplace of the philosophy of science that, confronted with theoreti-
cally inequivalent, but empirically equivalent theories, physicists naturally imagine

14 I have argued that unextendability is a sufficient, though not a necessary, condition for the coherence of an
internal interpretation. The condition is not necessary because one can envisage a theory (e.g., general
relativity without matter) receiving an internal interpretation (e.g., points are identified under an active
diffeomorphism, taken as the lesson of the hole argument). This interpretation does not change when we
couple the theory to matter fields, and I will say that such an internal interpretation is robust against
extensions. If all possible extensions of a theory preserve an internal interpretation, then such an interpretation
is justified. If the extensions suggest diverging interpretations, then one needs to specify the domain of the
extension before one is justified in interpreting the theory internally. In other words, (i)–(iii) can be weakened,
if what we want is not sameness of reference but of descriptive abilities.
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resorting to some adjacent piece of physics that will enable them to confirm or
disconfirm one of the two theories as against the other. The classic case is: con-
fronted with differing identifications of a state of rest in Newtonian mechanics,
Maxwell proposes a measurement of the speed of light. There is a parallel for
dualities: when two theories are both theoretically and empirically equivalent, we
can still argue, by an extension or by a resort to some adjacent piece of physics, for
their physical inequivalence. This is articulated in the contrast, in Section 12.2.3.3,
between extendable and unextendable theories.

Glymour’s (1977) discussion of equivalence of theories uses the syntactic
conception of a theory as a set of sentences closed under deducibility. He introduces
the notion of ‘synonymy’: two theories are synonymous when they are, roughly
speaking, logically equivalent. That is, there is a well-defined intertranslation
between them.15 Although my use of theories as triples puts me closer to the
semantic conception (the syntactic conception’s traditional rival), in fact Glymour’s
criterion of synonymy meshes well with my notion of a duality, construed as an
isomorphism of triples, equipped with rules for forming propositions about, e.g., the
value of a quantity or a state. One considers the set of well-formed sentences built
from two triples T1 and T2, e.g., statements of the type ‘the value of the quantity
Q1 ∈ Q (resp.Q2), in such and such state, is such and such’. Duality then amounts
to isomorphism between two such sets of sentences. And this is a case of synonymy
in Glymour’s sense.

But does this immediately lead to physical equivalence? No. And the reasons
provided in Section 12.2.3.3 are similar to the ones Glymour gives. He envisages
theories that are synonymous, in the sense just described, yet are not physically
equivalent. Recall Glymour’s thought experiment (1977, p. 237):

Hans one day announces that he has an alternative theory which is absolutely as good as
Newtonian theory, and there is no reason to prefer Newton’s theory to his. According to his
theory, there are two distinct quantities, gorce and morce; the sum of gorce and morce acts
exactly as Newtonian force does.

Glymour denies that the Newtonian ‘force theory’ and Hans’s ‘gorce-and-morce
theory’ are physically equivalent. He argues that they are empirically equally
adequate, but not equally well tested. His reasons for this are, partly, ontological
(‘I am, I admit, in the grip of a philosophical theory’; Glymour [1977, p. 237]), and
his ontology leads him to prefer the Newtonian theory: the gorce-and-morce theory
contains two quantities rather than one, but there is no evidence for the existence
of that additional quantity. The argument is from parsimony; he prefers a sparse

15 Technically, what is required is a common definitional extension. Barrett and Halvorson (2016,
sec. 4, thms. 1–2) show that Glymour’s ‘synonymy’, i.e., there being a common definitional extension, is
equivalent to an amendment of Quine’s ‘translatability’.
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ontology. And so, Glymour’s reply to Hans seems to entail that the two theories
are not even theoretically equivalent, because the gorce-and-morce theory has one
more quantity than the force theory.

But even if the two theories were, or could be made, theoretically equivalent, I
would still agree with Glymour’s verdict of a lack of physical equivalence, in so far
as one is concerned with theories that admit external interpretations, and this for
two reasons:

a. His examples deal with classical theories of gravitation, i.e., extendable the-
ories admitting external interpretations, which can indeed vary widely. That these
theories are extendable, beyond a certain regime of energies, can be seen from both
Newton’s and Einstein’s theories’ predictions of singularities, which are usually
taken to be unphysical.

b. The force theory and the gorce-and-morce theory are empirically equivalent
on a restricted domain, but their extensions are not: ‘To test these hypotheses, the
theory must be expanded still further, and in such a way as to make the universal
force term [read instead: ‘gorce’] determinable’ (Glymour, 1977, p. 248).

But, as I argued before, under the conditions stated in Section 12.2.3.2, in partic-
ular in cases in which the theory already contains all the physics it can and should
contain—in case the theory is unextendable—such extensions are simply not given
and the inequivalence does not follow. In such a case, no further relevant theory
construction could tell force apart from gorce and morce. The latter phrase then
surely does not refer to anything independent and distinct from what is meant by
‘force’, and the two theories are physically equivalent. In other words, on an inter-
nal interpretation of a theory, Glymour synonymy leads to physical equivalence.

This also illustrates a point that I mentioned in the last but one paragraph of
Section 12.2.1.2, namely, that the set of quantities Q need not be restricted to
measurable quantities. Indeed, for an unextendable theory, we can perfectly well
add gorce and morce as distinct quantities to the set of quantities Q, even if no
measurement could possibly distinguish them. In other words, the difference of
gorce and morce can be added as a quantity, whose value no empirical data can
determine, in an unextendable theory.

Of course, Glymour’s argument for the distinctness of the two theories has an
ontological component: while Newton postulates one quantity, Hans postulates two.
We assumed that we already knew which terms in each sentence referred to some
things in the world (perhaps without yet knowing which things), on an external
interpretation. Hans’s theory was interpreted as saying that two things exist instead
of just one, and this implied the inequivalence of the two theories—at least, if
we assume that the interpretation maps refer as indicated in Section 12.2.3.2. To
explain how this is possible, given that the theories were Glymour-synonymous, one
envisaged extending the theory, thus giving an independent account of what these
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terms refer to: an account of what the existence of these two things would imply,
upon formulation of the theory on a larger range of validity within its domain.

That the issue at stake here is not only the theoretical equivalence of the triples
but also their physical equivalence, can be seen as follows. Glymour’s reply to Hans
is that he is committed to two quantities, gorce and morce, rather than a single force,
and so, one might be tempted to say that, on my account, this implies that the two
theories contain different quantities Q. They are different, as triples, and so not
theoretically equivalent. But I don’t think this is necessary. In Hans’s defence, his
claim could be taken to be that gorce and morce are two distinct quantities related
by a symmetry, and that this symmetry should lead us to identify his theory with a
theory of a single quantity. On this charitable account, Hans is saying that a theory
with two quantities and a symmetry relating them is the same as a theory with a
single quantity, i.e., he construes symmetries as equivalence relations and instructs
us to mod out theories by such symmetries. So, he is construing the two theories
as theoretically equivalent. But Hans’s improved argument again fails to produce
physical equivalence, even if he claims that there is theoretical equivalence: the
theories are extendable, and so, an extension of the theory beyond its domain may
reveal that the purported symmetry is broken and the triples are distinct (see two
paragraphs below).

But on an internal interpretation, we cannot assume we possess an account
of what ‘force’ and ‘gorce and morce’ mean, from outside the theory. The
impossibility of an extension, therefore the lack of an independent account of
what those terms mean, implies that we should not make such ontological claims
independently of the equivalence of the two theories. Because the two theories are
Glymour synonymous, and there is no extension, they can be taken to be physically
equivalent, and so, there are not two quantities but just one.16 I will now explain
how the failure of the unextendability condition (cf. [a] and [b] above) makes the
application of an internal interpretation problematic, for this particular example.

Notice that considering extensions of theories is, according to the perspective
of modern QFT, a basic desideratum of any serious theory. The breakdown of
Newtonian mechanics at short distances should be seen as an indication of its being
an effective theory. 17

Besides, there is a more specific relation to the gorce-and-morce proposal.
Unless the theory is defined to have an exact symmetry, the introduction of new

16 In discussing the internal interpretation, I am assuming that one’s formulation of the theory is sufficiently
perspicuous (e.g., as a triple), that the physical quantities can be read off from it. If this is not so, it might be
equally natural to say that there is no fact of the matter about whether one is committed to one or two
quantities—or that such facts are underdetermined by the relevant physical quantities. Cf. the discussion that
follows on effective field theory.

17 Effective field theories are theories that are accurate for phenomena in some range of (usually low) energies,
but are corrected by higher-order terms in the Hamiltonian, which are relevant at high energies.
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fields will generically introduce higher-order terms that break the seemingly
symmetrical way in which those fields appear in the low-energy Hamiltonian.
Thus, if gorce and morce are indeed distinct fields,18 most high-energy theories that
reduce to the gorce-and-more theory at low energies, will treat gorce and morce
differently. They have different interactions (unless an exact symmetry protects
them). Thus the framework of effective field theories promises to satisfy Glymour’s
demand of parsimony, that there should in principle be a way to determine the
values of distinct quantities.

Thus, the force and the gorce-and-morce theories are generically not physi-
cally equivalent, even though they are Glymour synonymous. For there are very
many possibilities for extension to high energies. The physical equivalence with
the Newtonian force theory can thus be established only if additional requirements
are imposed, such as the stipulation of a particular extension of the theory, or a
symmetry. This example sheds light on the concrete question of which theories are
likely to be unextendable.

12.3 Gauge/Gravity Dualities

The remarks in the previous section, introducing my conceptions of theory and
related notions, were necessarily brief. And as I mentioned in Section 12.2.2,
further work is required to illustrate how my conception of duality, and the contrasts
(a) to (d), gives the correct verdicts in cases of dualities that are well-understood
(cf., De Haro and Butterfield [2018]). In this section, I use the conception of duality,
and the contrasts (a) to (d), to shed light on a less-well-understood case, which is
of great relevance for our topic, of quantum gravity: gauge/gravity dualities.19

In Section 12.3.1, I take up question (1) in the introduction: whether spacetime
is eliminated; in particular, whether ‘spacetime’ is part of what the theory says.
I argue that the common core of the duality includes some, but not all, spacetime
structure. In Section 12.3.2, I discuss other works on duality. In Section 12.3.3,
I discuss some metaphysical implications.

12.3.1 Does What the Theories Say Include ‘Spacetime’?

My conception of duality, and the contrasts (a) to (d), give us a way of tackling
the question whether ‘spacetime’ is part of the content of the theory, or whether

18 The sum of gorce and morce is the derivative of the sum of two potentials. I envisage these two potentials as
pertaining to distinct fields—since Hans declares gorce and morce to be distinct.

19 The complete, nonperturbative mathematical theory of gauge/gravity duality is not known. Certain limits of
the duality are, however, well-known: the semiclassical limit, in particular. Assuming that some gauge/gravity
dualities are exact, at least for a suitable regime of parameters, the scheme illustrates the sense in which two
such models are equivalent. For more details, see De Haro, Teh, and Butterfield (2017, sec. 4.2).
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it is eliminated. The conceptions of theories and models in Sections 12.2.1 and
12.2.2 suggest that, what the theory says—what is physical about it—is the content
that the two models share: the content is preserved under the duality map. That
content is the triple of states, quantities, and dynamics: viz., the common core of
the theory. Thus we need to ask: (1) Whether spacetime structures are common
to the two models, and thus belong to the common core. (2) Whether there is an
internal interpretation that interprets the terms in the same way, in both models.

Gauge/gravity dualities relate (d + 1)-dimensional models of quantum gravity
to d-dimensional quantum field theories (QFT models) with gauge symmetries.
And suppose that two such models are dual, in the sense of Section 12.2.2. Thus
we have an isomorphism between the two Hilbert spaces and between the physical
quantities—so we are, in fact, considering unitary equivalence. For brevity, I
reduce our two questions, (1) and (2), to the following single question: whether the
common core, shared by these two models, is interpreted as spatiotemporal.

I will next argue that the common core is spatiotemporal, that it includes a
d-dimensional spacetime M, whose metric is defined only up to local (spacetime-
dependent) conformal transformations (De Haro et al., 2016, secs. 6.1.2–6.1.3),
i.e., a conformal manifold. This works as the ‘core’ theory in the following sense.
We examine the properties of the two models under the duality map, and the
structure that is mapped by duality, once formulated in a model-independent way,
is the content of the core triple. In fact, the duality map itself (especially its
formulation in De Haro et al. [2017, sec. 4.2]), already makes explicit what the
states and the operators of the triple are. So, let us look at the two models and
extract their common structure.

To obtain the quantities that the gravity model (under its standard interpretation)
takes to be physical, one evaluates the path integral over all metrics and topologies
with given boundary conditions:20

i. The first boundary condition is an asymptotic condition on the form of metric,
which is itself determined only up to a conformal factor; in other words, one
needs to specify a conformal d-dimensional manifold M together with a confor-
mal class of metrics, denoted [g], at the boundary.

The asymptotic symmetry algebra associated with this model is thus the confor-
mal d-dimensional algebra, and the representations of this algebra form the class of
possible states that belong to H.

20 For simplicity, I am now considering the case of quantum gravity without matter. This restricts our
considerations to a class of states and operators, with specific conformal dimensions. Adding matter can be
done, and does not affect the philosophical conclusions, but would involve some technical qualifications.
Also, in the rest of this section (except for one example with d = 4), I restrict the discussion to the case where
d is odd—again, purely for technical reasons.
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ii. Second, a boundary condition needs to be imposed on the asymptotic value of
the canonical momentum �g conjugate to the metric induced on the boundary,
evaluated on the possible states. This choice further constrains the class of states
in H; it determines a subset of states of the conformal algebra. The simplest
choice, 〈s|�g|s〉 = 0, preserves the full conformal symmetry, and the states
s ∈ H are, accordingly, representations of the d-dimensional conformal algebra.
Other choices break the conformal symmetry and further constrain the state
space.

Thus the boundary condition (ii) fixes a choice of the subset of states (repre-
sentations of the conformal algebra) that forms the dynamical Hilbert space of the
theory, whereas the first fixes a choice of a source that is turned on for the canonical
momentum �g. We will write the resulting states as |s〉M,[g] ∈ H, where s is the
state, modified by the addition of a source [g] on M coupling to �g. The basic
physical quantities are the canonical momenta �g ∈ Q conjugate to g (De Haro
et al., 2017, sec. 4.2.2.1).21

The quantum field theory model of the theory is a conformal field theory (CFT)
on a d-dimensional manifold whose metric is defined, up to a local conformal fac-
tor, by the very form of the asymptotic metric that one gets from the gravity model.
In fact, we can identify this, via duality, with the conformal manifold M. The states
are representations of the conformal symmetry algebra, the same algebra that we
obtain in the gravity model. The canonical momentum�g corresponds, through the
duality map, to the stress-energy tensor Tij of the CFT:�g ≡ T . The stress-energy
tensor is the operator from which the generators of the conformal symmetry algebra
can be constructed (see e.g., Ammon and Erdmenger [2015, sec. 3.2.3]).

Thus, the two models share the d-dimensional conformal manifold M with
its conformal class of metrics [g], the conformal algebra, and the structure of
operators, as claimed. The conformal algebra and class determine H, and thereby
the valuations of the important subset {Tij } of operators of Q, i.e., the infinite set of
correlation functions M,[g]〈s| Ti1j1(x1) · · · Tinjn(xn) |s〉M,[g] , where x1 . . . ,xn ∈
M, for any n. This infinite set of correlation functions contains important
dynamical information about the CFT.22 For us, the important point here is that the
common core is spatiotemporal.

Since my aim is to illustrate the fact that the bare theory contains quantities
that can be spatiotemporally interpreted, it will not be necessary to develop the
full internal interpretation of the theory. Rather, our next question is whether

21 The metric in the interior is not a quantity. There are two ways to see this: (i) from the fact that it is not part of
the common core preserved by the duality. But also (ii) it cannot be (on the minimalist account of quantities
given in this paper), since it is not a diffeomorphism-invariant quantity.

22 There is no claim here that my description contains all of the information about the CFT. Nonlocal operators,
such as Wilson loops (and perhaps additional states), also need to be compared.
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there is an internal interpretation that supports the spatiotemporal interpretation of
these quantities.

Two salient elements of an internal interpretation of the bare theory can be
recognized. Notice that both models interpret the pair (M,[g]) and Tij as represent-
ing, respectively, (i) a d-dimensional conformal manifold with a conformal class
of metrics and (ii) stress, energy, and momentum. Even if there are other aspects
to the internal interpretation of [g] and Tij , (i) and (ii) are certainly important
elements of it!

We are considering here gravity models with pure gravity, and no matter fields.
The QFT, of course, does have matter fields. But the stipulation of the specific set
of matter fields is not part of the invariant core. The interpretation of Tij as the
‘stress-energy momentum for a specific set of matter fields of the QFT’ can thus
not be part of the internal interpretation, because the specific set of matter fields are
not part of the common core. Thus, the qualifications of fields as being ‘gravity’, or
‘matter’, are our descriptions of specific models, and not parts of the theory!

To illustrate this point, let us discuss the common core and the specific structure
further in an example of d = 4: i.e., a 4-dimensional QFT and a 5-dimensional
gravity model.23 Specifically, we look at symmetries. The gauge symmetry group
of the QFT is SU(N). This symmetry is completely absent from the gravity theory.
The QFT is formulated so that this symmetry is explicit—the states H and the
observables Q are invariant under it. But since the common core contains only
states and quantities constructed from the triple T = 〈H,Q,D〉, which are invariant
under gauge symmetry, this gauge symmetry does not belong to the common core!

There is thus surprisingly little that is invariant under the duality between these
two theories: yet they describe all that is physical about the theories. The (d + 1)-
dimensional manifold M̂, most of its diffeomorphism group, gauge symmetries,
the dimension of spacetime. In the present context, these are apparently all part of
our description, rather than parts of the common core of the theory. Similarly, also
the concepts of vector fields, tensor fields, Lie groups, differential geometry: though
we use them to formulate our theories, each such a concept is not part of nature,
at least not part of the common core of the models of a gauge/gravity duality. For
example, tensor quantities in d + 1 dimensions do not map to tensor quantities in
d dimensions under duality, and so do not belong to Q. Rather, tensors are part of
the specific structure!

Thus, the answer to the question we posed in the title of this subsection requires
careful articulation, as follows. I state it in terms of what is eliminated from the
gravity model:

23 The QFT in question is a ‘super Yang-Mills theory’, a specific supersymmetric variant of Yang-Mills theory,
but the details are irrelevant here.
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i. The entire interior region of the (d + 1)-dimensional manifold, M̂ (including
its topology), is eliminated.

ii. All that remains is the asymptotic conformal manifold (M,[g]), which plays
the role of asymptotic boundary data for the equations of motion, and so is
arbitrary but fixed, and the states |s〉M,[g] ∈ H and the stress-energy tensor
Tij ∈ Q at spacelike infinity. This common core is endowed with an action of
the conformal group. So, in particular:

iii. All local gravitational structure has been eliminated: there are no local dynam-
ical gravitational degrees of freedom left.

In short, ‘most’ of the spacetime structure is eliminated. This agrees with the
general expectation in the quantum gravity literature.

12.3.2 Comparing with Recent Work on Dualities

Let us take stock of the distinctions we have made and discuss how they relate
to extant philosophical discussions of dualities in the literature. In this section, I
address recent work on dualities and state its limitations, as regards clarifying the
contrast between theoretical and physical equivalence.

Recent work on dualities engaging with this question includes Matsubara
(2013, p. 485) and Dieks et al. (2015, sec. 3.3.2). And in a special issue on
dualities edited by Castellani and Rickles, several authors engage with it. My
leading criticism is that the extant accounts, qua accounts of dualities, are not
sufficiently articulated to provide a clear difference maker between theoretical and
physical equivalence. In defence of these authors, I should add that it was not their
aim to look for a clear-cut difference maker!

Huggett’s (2017) focus seems closest to the ideas developed in this essay. His
analysis of T-duality is syntactic, and as such is an interesting alternative to mine,
which, as mentioned, is closer to the semantic conception of theory (though I
compared with Glymour’s syntactic account, in Section 12.2.4). T-duality, roughly
speaking, relates one kind of string theory in a space with a circle of radius R to
another kind of string theory in a space with a circle of radius 1/R. Huggett asks:
‘What happens if a duality applies to a “total” theory, in the sense that it is the com-
plete physical description of a world, so that there is nothing outside the theory?’
(2017, p. 86). His position is that, for dual models that describe subsystems, the
duals are really distinguishable, by looking outside the model. But theories of the
universe lack such a viewpoint, and so no distinction needs to be made between
dual models.

We must of course require the bare theories to have correct rules for forming
propositions and to be mathematically consistent (Sections 12.2.1.1 and 12.3.3).
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But the requirement that the theory be ‘a theory of everything’ could not be taken
as a general condition for an internal interpretation, for we do not need the theory
to describe absolutely all the facts, not even all the physical facts, of a world, in
order for it to admit an internal interpretation. Rather, what is needed for physical
equivalence are the joint requirements of internal interpretation and unextendability
(Sections 12.2.3.2 and 12.2.3.3). My construal, in Section 12.2.1.2, of a physical
interpretation IT as a pair of partial maps, which can be defined for an unextendable
theory on a domain DW , makes this point precise, so that one can now distinguish
external and internal interpretations.

One interesting aspect of Rickles’s (2017) account is his assertion that theoretical
equivalence is a gauge-type symmetry for all cases of duality. Our accounts differ in
this obvious sense, that mine is stated as an isomorphism between triples, rather that
as a gauge-type symmetry. But the most important difference is that Rickles does
not seem to contemplate cases of sophisticated dualities in which the theories could
fail to be physically equivalent. If one’s account moves too quickly from duality to
physical equivalence, it may render the external, and multifaceted, uses of duali-
ties (cf. the third paragraph of Section 12.1, and the last line of Section 12.2.3.3)
unintelligible.

Indeed, the account of dualities as just being gauge-type symmetries does not
explain the reasons for two theoretically equivalent models’ physical inequivalence.
The explanation of that is possible once we develop the idea of an external
interpretation.

Finally, I turn to Fraser (2017). My main point will revolve around her
chosen example, of Euclidean field theory (EFT) and QFT, not even being a case of
theoretical equivalence, let alone physical equivalence. Elucidating the distinction
between theoretical and physical equivalence seems indeed to be the main aim of
Fraser’s (2017) example of equivalence between EFT and QFT. She maintains that
EFT and QFT are theoretically (formally) equivalent but not physically equivalent.
She contrasts this with dualities in string theory, which she describes as cases of
physical equivalence. The example would seem to be well chosen indeed, and
Fraser’s mastery of QFT is indisputable; but, unfortunately, she does not give a
detailed account of how these two cases are supposed to differ.

More importantly, the example itself is deceptive if taken as a difference maker
for theoretical and physical equivalence, for it is in fact not a case of theoretical
equivalence! As Fraser admits in the first three sections of her essay, EFT and QFT
are not isomorphic; there is a map from EFT to QFT but not the other way around.
She writes: ‘That the relations are entailments rather than equivalences is not one of
the points of comparison between the EFT-QFT case and string theory that I want
to emphasize’ (Fraser, 2017, sec. 3, par. 3).

One may, of course, choose to downplay the role of equivalence and focus on
a one-way entailment, if one is just interested in a generic contrast between the
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EFT-QFT case and dualities in string theory. But one-way entailment will not give
us the difference maker we need in order to distinguish theoretical from physical
equivalence, for the very reason that these are not cases of theoretical equiva-
lence.24 As I have argued, the contrast between external and internal interpretations
is such a difference maker.

12.3.3 What Are the Broader Implications of Duality?

In this section, I discuss the broader implications of gauge/gravity dualities, in three
related comments.

The first comment concerns the interpretation of quantum gravity theories. In
cases in which a duality supports an internal interpretation, duality can be taken
to give rise to physical equivalence (cf. Section 12.2.3.2). In Section 12.3.1, the
internal interpretation was developed by stripping the two external interpretations
of irrelevant aspects, and identifying their common core, which constitute (at least
parts of) the internal interpretation. This means that the interpretation of a quan-
tum gravity theory, and the articulation of the ontology that may underlie such a
theory, starts from the common core of the different models and the parts of their
interpretations that are invariant under duality. This common core can turn out to
have surprising properties, e.g., its spacetime dimension being different from the
dimensions of the spacetimes of the models.25

The second comment concerns physical equivalence. Duality can be found in
both unextendable and extendable theories. Gauge/gravity dualities between string
or M theory and QFTs are presumed to be exact dualities between unextendable
theories, which in particular should have exact formulations.26 Other dualities, on
the other hand, are also exactly defined, but only with limited regimes of applicabil-
ity (cf. Section 12.2.4’s example of the Newtonian force theory and Hans’s gorce
and morce theory). Such theories are extendable, and for extendable theories we
are not always justified in believing internal interpretations, because an extension
might modify that interpretation (unless the interpretation is robust: cf. footnote 14).
This is because a coherent interpretation is always dependent on how the theory
is extended. In such cases of extendable theories about which we do not know
whether they are robust, we are not justified in taking the theories to be physically
equivalent. The effective field theory perspective in Section 12.2.4 suggested that
such theories are generically not physically equivalent.

But physical equivalence for unextendable theories that are theoretically equiv-
alent under an internal interpretation Section (12.2.3.2) holds good. Such theories

24 One might argue that something might still be learned from the contrast between one-way theoretical
entailment and one-way physical entailment.

25 For a more comprehensive discussion of the interpretation of dualities in quantum gravity, see De Haro
(2019).

26 For examples in which the duality is known to hold exactly, see De Haro and Butterfield (2018).
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are highly constrained, valid for all values of the parameters, and cannot be coupled
to any adjacent physics while preserving their theoretical equivalence.

This distinction may be seen as a contribution of quantum gravity consider-
ations to discussions of physical equivalence. It also underlines the importance,
for philosophy, of unextendable theories. Extendable theories abound: we have
discussed Newtonian mechanics and effective QFTs. There is also general relativ-
ity, whose extendability is shown by its singularities due to gravitational collapse.
Unextendable theories are rare but useful, and we do have some good examples of
them: conformal field theories, topological quantum field theories (Chern–Simons
theories, various versions of Yang–Mills theory, Wess–Zumino–Witten [WZW]
models) and topological string theories (describing subsectors of string theories).
They should provide important case studies for the philosophical topics of theoret-
ical and physical equivalence.

Third, concerning theory construction: note that unextendable theories need not
be ‘finished’ theories. Some theories (especially some 2-dimensional conformal
field theories) are indeed understood with rigorous mathematics; but other examples
(such as Chern–Simons theory and Yang–Mills theory), though expected to be
unextendable for good mathematical reasons, are still ‘theory fragments’, in the
sense of Huggett and Wüthrich’s (2013, p. 284) quotation in the introduction. So,
also for the theories mentioned earlier: completely rigorous mathematical proofs are
still lacking, even if the fragments are robust enough that they already contributed
to a Fields medal (for E. Witten in 1990).

12.4 Envoi

Let me end by echoing an important remark: the discussion, in Section 12.3, of the
philosophical significance of gauge/gravity dualities, returns us to the idea (echoed,
for instance, in the quotation by Huggett and Wüthrich) that philosophical analysis
goes hand in hand with theory construction.

The analysis of gauge/gravity dualities shows specific features of this two-way
street. On the one hand, concepts such as theoretical and physical equivalence (Sec-
tion 12.2) help us construct theories of quantum gravity and so brings metaphysical
analysis to bear on theory construction.

But also, on the other hand, theories of quantum gravity, in particular gauge/
gravity dualities, help us achieve greater clarity about those two philosophical
concepts, thereby exhibiting the virtues of a ‘science first’ approach to metaphysics.
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On the Empirical Consequences of the AdS/CFT
Duality

radin dardashti , r ichard dawid, sean gryb,
and karim thébault

13.1 Introduction

The mathematical, physical, and conceptual consequence of dualities has over
the last decade been subject to growing philosophical literature.1 There has
not, however, hitherto been any detailed philosophical analysis of the empirical
consequences of dualities. This paper aims to address this deficit by considering
a cluster of questions relating to the empirical consequences of the anti–de Sitter
spacetime conformal field theory (AdS/CFT) duality. Before we outline the goals
of our discussion it will be instructive to review the details of the duality itself.2 The
AdS/CFT duality relates the physics of ‘bulk’ gravity theories on asymptotically
anti-de Sitter spacetimes to that of ‘boundary’ conformal field theories. While
there are many concrete examples of this duality,3 we will be focusing on the
most discussed example of the AdS/CFT duality, namely between SU(N), N = 4
Super Yang–Mills theory in 3+1 dimensions and type IIB superstring theory on
AdS5× S5 introduced by Maldacena (1999) and further developed in Gubser,
Klebanov, and Polyakov (1998), and Witten (1998).

The strong form of the duality is defined in the ’t Hooft limit where the number
of color charges N → ∞ but the ’t Hooft coupling λ : = g2

YMN is fixed. In this
context, the duality is between the expectation value of the Wilson loop operator
for an SU(N), N = 4 Super Yang–Mills theory in a flat spacetime and the semi-
classical partition function of a macroscopic string in AdS5× S5 whose worldsheet
� ends on the path of the Wilson loop at the boundary. This is thus a gauge/gravity
duality with the Super Yang–Mills theory playing the ‘gauge part’ and the string
in AdS5× S5 playing the ‘gravity’ part. The duality is between the mathematical

1 See for example Dawid (2007), Rickles (2011), Dawid (2013), Matsubara (2013), De Haro (2017), Fraser
(2017), Rickles (2017), Huggett (2017), and De Haro and Butterfield (2018); see also Chapter 12.

2 Here and later we are, for the most part, following the excellent treatment of Ammon and Erdmenger (2015).
For historical details on AdS/CFT duality, see Rickles (2014, sec. 10.2).

3 See, e.g., Horowitz and Polchinski (2009) and Kaplan (2013).

284



On the Empirical Consequences of the AdS/CFT Duality 285

objects that represent all possible empirical observations on two sides. It is crucial
to note that the existence of this duality as an exact relation is largely conjectural:
it remains mathematically unproven despite being extensively verified in explicit
cases. In what follows we will put the formal status of the duality to one side
and simply assume that it holds. Furthermore, for ease of reference we will refer
to this precise specification of the duality below as ‘AdS/CFT’ with the relevant
specifications implicit.

To return to the goals of the paper. Given that our aim is to assess the empirical
consequences of dualities an immediate question is why we have chosen to focus
on the AdS/CFT duality. There are a number of obvious reasons why both sides this
duality might be taken to be empirically irrelevant. First, anti–de Sitter spacetimes
are characterized by a negative cosmological constant, so the gravity side of the
duality is evidently not well suited to describe the geometry of our universe, which
according to observation has a positive cosmological constant.4 Second, on the field
theory side, we have good reasons to expect that the number of color charges is
finite. Third, none of the empirically adequate quantum field theories that make up
the standard model is conformally invariant. It is clear, therefore, that according
to our best current understanding our world is not AdS and none of the known
interactions are described by a conformal field theory. Thus the duality is applicable
neither to the world as a whole nor for a description of nuclear interactions.

Why then consider the empirical consequences of AdS/CFT? Our two main rea-
sons are related to two very different applications. First, we hope to learn something
about our actual world by grasping the precise duality. This may happen either
due to a so far undiscovered general gauge/gravity duality or, more modestly, if
some aspects of AdS/CFT can be applied to other contexts as well.5 In the latter
case, one hopes for conceptual similarities between the AdS/CFT case and the so
far insufficiently understood theory describing actual physics at the Planck scale.
Second, in recent years AdS/CFT has been applied to contexts, like a quark-gluon
plasma near criticality, which are not described by a CFT but that turn out to be
quantitatively approximately describable by a CFT (which, in turn is calculable
in the dual gravity theory). In that case, there are empirical similarities between
predictions of the AdS/CFT theory and the real world. Thus there are good reasons
to be interested in the empirical consequences of the AdS/CFT duality, despite the
apparent strangeness of the topic.

The natural starting point for a philosophical investigation into the empirical
consequences of an area of science is to consider questions relating to confirmation.

4 Here we are assuming the duals to represent the entire universe rather than a subsystem with the relevant
boundary conditions.

5 For example, see Harlow (2016) for an application to the study of the unitarity of black hole physics.
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The following strike us as particularly pertinent: (1) Must we reunderstand the role
of inductive evidence once dualities come into play? (2) Are both sides of a duality
equivalently confirmed by collection of supporting empirical evidence? (3) What
are the implications of our view on confirmation for scientific ontology? (4) What
are the empirical consequences of using dualities to model quark-gluon plasma?
Although its use in scientific practice is rather varied, what we mean here and later
by confirmation is the specific term of art as used in contemporary philosophy of
science. That is, confirmation as a relation of inductive support between some evi-
dence and some hypothesis. Significantly, we will, for the most part, later always be
making reference to notions of confirmation that that are not putatively conclusive:
we will almost always be talking about whether or not there is partial inductive
support of a conclusion by evidence. A precise framework for analyzing such rela-
tions of partial inductive support in terms of ‘personal probabilities’ (or credences)
is Bayesian confirmation theory, and we will apply this framework extensively in
this chapter.6

Our analysis will be conducted with reference to three distinct contexts. The
first context follows from the observation that, although the AdS/CFT duality is
itself extremely unlikely to feature in a fundamental or effective description of
our universe, it is a well-studied exemplar of the general type of gauge/gravity
duality that could be expected to be physically salient. As such, we adopt the
epistemic standpoint of an agent situated in a universe where AdS/CFT is a feature
of the fundamental theoretical framework representing the world. Although in this
sense rather wildly hypothetical, we expect our analysis be broadly applicable
to the empirical and ontological implications of any fundamental gauge/gravity
duality. The second line of inquiry considers a distinct hypothetical scenario where
the duality relation is a characteristic of an effective description of the world
that does not hold at the fundamental level. Although this context is importantly
different from the first, we find that many aspects of our analysis carry through.
The third line of inquiry addresses the way the AdS/CFT duality has been put
to empirical use in the description of quark-gluon plasmas. In such contexts the
duality is combined with a limiting relation between conformal field theories and
certain parameter regimes of quantum field theories like QCD. We find that in this
context the empirical consequences of the AdS/CFT duality must be understood
in a very different way. In particular, we conclude that one should not take the
partially empirically successful application the AdS/CFT duality to the study of
quark-gluon plasmas to have told us anything regarding the empirical status of
string theory.

6 For models of confirmation in terms of the Bayesian framework, see Hartmann and Sprenger (2010) and
Bovens and Hartmann (2004).
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13.2 Fundamental Theory Context

In this section we concern ourselves with the empirical consequences of AdS/CFT
seen as part of a fundamental theory. We adopt the epistemic standpoint of an agent
situated in a universe where the AdS/CFT correspondence is part of a theory that is
believed to provide a fundamental predictive framework. A fundamental theory is a
framework for producing predictions concerning phenomena in a given domain that
does not provide an effective theory for, or approximation to, an underlying theory
that alters at least some of its core posits. Note that, while a theory is factually
either fundamental or not, fundamentality can only be claimed based on an agent’s
epistemic standpoint, which may change in time. Newtonian mechanics was taken
to be fundamental in the given sense by most physicists in the nineteenth century.
It is not taken to be fundamental today.

Our notion of ‘fundamental theory’ is a narrow one in two senses. First, by
fundamental we do not mean ‘universal’. While fundamentality does imply that the
theory remains viable to arbitrarily small distance scales, there is no assumption
that a fundamental theory provides a complete description of all physical facts. For
example, in the nineteenth century Newtonian mechanics could be understood as a
fundamental theory but not applicable to the domain of electromagnetic phenom-
ena. It would thus be nonuniversal. Our line of inquiry here thus differs substantially
from one pursued by De Haro and Butterfield (2018) who consider the implica-
tions of dualities in the context of ‘a physical theory as a putative theory of the
whole universe, i.e. as a putative cosmology, so that according to the theory there
are no physical facts beyond those about the system (viz. universe) it describes’
(pp. 37–38). Theories that are universal in this sense are necessarily fundamental in
our sense, but fundamental theories are not necessarily universal.7

The second aspect of narrowness in our definition of fundamental is particularly
important. Although fundamentality, in our sense, does relate to nonempirical
aspects of a theory it does not, on our view, render a theory entirely closed
to conceptual revision. The precise definition of fundamentality is particularly
sensitive in the context of string dualities. It is sometimes suggested that M-theory,
which is conjectured to stand in an exact duality relation (and therefore to be
exactly empirically equivalent) to certain types of superstring theory, is more
fundamental than the superstring formulations because it offers more direct access
to the degrees of freedom that govern string physics beyond the perturbative regime.
On our definition of fundamentality, M-theory is not more fundamental than, let’s
say, Type IIA superstring theory for the very reason that the two theories are (by
conjecture) empirically equivalent to each other.

7 The question of whether or not universal theories are possible or in principle would involve wading into the
deep and murky waters of the reduction/emergence debate. Something we are at pains to avoid.
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Thus, what we call a fundamental theory context can be indicated more precisely
in two steps. First, a theory is delimited in terms of a set of core theoretical posits
and a target domain of empirical phenomena. Second, the theory is a fundamental
theory if and only if there is no further theory that is more empirically adequate in
the target domain and does not share the same core theoretical posits. A theory that
is ‘superseded’ by a successor theory with the very same empirical predictions but
a different set of fundamental posits will still count as a fundamental theory.

Now that we have some clear sense of what we mean when we talk about
fundamental theories, it will be useful to attempt to achieve some clarity regard-
ing what we mean by empirically equivalent theories. The most well known and
discussed notion of equivalence in the context of scientific theories is empirical
equivalence. A minimal schema for describing such form of equivalence can be
specified as follows. Take a pair of uninterpreted theories as being each given
by some pair of linguistic specifications (models, sentences, categories, equations,
words,...) that we denote as T1 and T2, respectively. A minimally instrumentalist
interpretation, II , of such theories would be a mapping that connects linguistic
items (or groups of items) to observables (pointer readings, scattering amplitudes,
physical quantities,...) that are either introduced in terms of a further language or
extra-linguistically. An ontological interpretation, OI of such theories would be
a richer mapping that includes connections between linguistic items (or groups of
items) and nonobservables (entities, objects, structures,...) such that nonobservables
are understood (in some sense) to be existent things represented by the linguistic
items. Empirical equivalence is then given by a situation where II(T1) = II(T2).

A sufficient, but not necessary, condition for empirical equivalence is the
existence of a mapping at the linguistic level that is such that all linguistic items
that are suitable for interpretation as observables are appropriately connected.
Such a ‘translation manual’ between theories is precisely what is found in the
case of dualities in general and the AdS/CFT duality in particular. It is easy to see
why AdS/CFT implies empirical equivalence as per earlier: given the reasonable
assumption that the expectation value of the Wilson loop operator on the gauge side
and full partition function on the gravity side are the only things that minimally
instrumentalist interpretation connects to observables, we immediately have that
II(AdS) = II(CFT) in the respective semiclassical and ’t Hooft limit. The
AdS/CFT duality gives two different groups of linguistic items that describe the
same observables.8

8 Much more could be said, of course, toward a fuller characterization of both empirical equivalence in general
and its relation to a formal characterization of dualities. Giving such an account is explicitly not our purpose
here. This notwithstanding, we do take our minimal schema to be sufficient to our current purpose of making
clear the empirical significance of dualities in our three contexts. For a much less minimal account of duality
and equivalence, see De Haro and Butterfield (2018) which builds upon De Haro (Chapter 12). For further
recent work on a similar theme, see Fraser (2017) and Rickles (2017).
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These definitions and qualifications now made, we can proceed to our principal
line of analysis. We would like to adopt the epistemic standpoint of an agent situated
in a universe where the AdS/CFT correspondence is a core posit of a fundamental
theory. To what extent should we take confirmation of the theory by evidence to be
suitably dual? That is, could an agent take only one side of the duality as supported
by the empirical success of the theory or must they consider empirical evidence for
one side of the duality as necessarily evidence for the other? The inferential stand-
point of our hypothetical agent can be modeled in terms of Bayesian confirmation
theory as follows. We denote by H1 the proposition:

H1: Type IIB supersting theory on AdS5 × S5 provides an empirically adequate
description of the target system T within a certain domain of conditions
DAdS that include the semiclassical limit.

Similarly, we denote by H2:

H2: SU(N), N = 4 SYM in 3+1 provides an empirically adequate description of
the target system T within a certain domain of conditionsDCFT that include
the ’t Hooft limit.

The negation of these propositions are defined accordingly. Finally, we can encode
the evidence available to our agent by the propositions E, the empirical evidence
obtains, and ¬E, the empirical evidence does not obtain.

Let us assume that the agent has derived the evidence from the AdS side of the
duality. Since this is the weakly coupled side this will invariably be technically
more straightforward. We thus have that H1 → E which means (almost trivially)
that P(H1|E) > P (H1), given that 0 < P(H1) < 1 and 0 < P(E) < 1, and so
we have confirmation. It is instructive to break this very standard inference down a
little. By Bayes’s theorem:

P(H1|E) = P(E|H1)P (H1)

P (E)
. (13.1)

The marginals, P(H1) and P(E), we take to be x ∈ R s.t. 0 < x < 1, but
otherwise rationally unconstrained. Given that we have assumed that H1 → E it
follows necessarily that the likelihood is equal to one, i.e., P(E|H1) = 1. It then
immediately follows that the confirmation measure #1 = P(H1|E) − P(H1) is
greater than zero, and we have Bayesian confirmation of H1 by E.

Consider then what we can say about H2 given E in the fundamental theory
context and with AdS/CFT assumed. Since we have by II(AdS) = II(CFT) the
empirical equivalence of both sides, it follows that H2 → E as well. So again we
have that the likelihood should be set to one, i.e., P(E|H2) = 1. Things are a little
trickier regarding the marginal P(H2). In principle, even despite the fundamental
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theory context and assumption of AdS/CFT one might still set P(H1) �= P(H2)

since these are subjective degrees of prior belief regarding the truth of logically
distinct statements. We think in the fundamental theory context it seems intuitively
clear that one should set P(H1) = P(H2) since there is no clear physical reason
for assigning different priors in the fundamental case.9 However, clearly the sign
of the confirmation measure will be positive irrespective of the prior: so long as
0 < P(H2) < 1, we already have #2 > 0 and thus we have confirmation of H2

by E. Moreover, if we define the relative confirmation measure as:

#̄i = P(Hi |E)− P(Hi)
P (Hi)

, (13.2)

then just by the equation of likelihoods we immediately have that #̄1 = #̄2,
irrespective of the priors for H1 and H2. This point will be significant for the
discussion of the effective theory context later.

In addition to questions regarding empirical adequacy, we might also consider
the inferences regarding further ontological interpretation that our hypothetical
agent might make based upon the evidence obtained. There are three possible
options corresponding to the popular philosophical positions on the realist–
antirealist spectrum. Most straightforwardly, an ontic structural realist (Ladyman,
2016) would plausibly argue for an ontological interpretation such that the common
structure between the two sides of the duality is reified. A shared structural
vocabulary common between the two sides of the duality that would be taken
to do the work in representing the ‘actual structure of the world’. This would imply
directly that OI(AdS) = OI(CFT). Also straightforwardly, an instrumentalist
(Stein, 1989) or empiricist (Van Fraassen, 1980) would simply refuse to license
further beliefs about extra-observables and would reject any commitment to
entities, objects, or structures actually in the world as faithfully being represented
or not.

The situation of a standard realist is more subtle. Such realists typically jus-
tify belief in the faithful representation of extra-observables by theoretical terms
by reliance on empirical evidence combined with inference to the best explana-
tion. Depending upon what one thinks about the explanations on offer, this might
seem to allow for an ontological interpretation such that OI(AdS) �= OI(CFT).
In particular, our hypothetical realist agent might reason that the gravity side of
the duality is more fundamental and that their universe really is described by a
string theory in anti–de Sitter spacetime and not in any way by a Super Yang–
Mills theory. This would be to take the CFT seriously only as an uninterpreted
framework and ignore its putative claims for representational capacity. Plausibly,

9 Here should is understood in some normatively weaker sense than ‘an agent is rationally compelled to’.
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such a position would be unstable since in interpreting the AdS side one is nec-
essarily implicitly also interpreting at least the empirical sector of the CFT side.
Whatever explanation of empirical regularities is appealed to for justifying belief
in an ontology based upon the AdS side, a parallel justification is available for
belief in an ontology of the CFT side. And since we are, by assumption, dealing
with fundamental theories the virtue of such explanations for future generalizations
cannot be used as a tie-breaker between them. Essentially, the joint claim that we
have a fundamental predictive framework and that the ontological interpretation of
such a framework can be based upon inference to the best explanation, force our
hypothetical realist to accept a dual ontology at the pain of otherwise making an
arbitrary, noninferential ontological commitment. In this vein, it has been argued
by a wide range of philosophers of science (Dawid, 2007; Rickles, 2011, 2017;
Matsubara, 2013; Huggett, 2017) that an exact duality renders the duals differ-
ent formulations of one and the same theory. One way to avoid this perspective
would be to take dualities as approximate rather than exact (De Haro, 2017). An
alternative is to stick to the understanding that dualities are exact but move to a
context in which the dual theories are understood to be effective. In the follow-
ing section we consider the implications of the AdS/CFT duality in this effective
theory context.

13.3 Effective Theory Context

Recall from earlier that we defined the fundamental theory context as a situation
where there is no further theory that is more empirically adequate in the given
target domain and does not share the same core theoretical posits. The contrast
case that we consider in this section is the ‘effective theory context’ where there is
a further theory that is more empirically adequate in the given target domain and
does not share the same core theoretical posits. There are two reasons why this is
a particularly interesting context to consider dualities within. First, it addresses a
possible status of exact dualities that, to our knowledge, has not previously been
discussed in the literature. Second, it brings us one step closer to the application of
dualities to quark-gluon plasma calculations, which is discussed in the final section.

What makes the effective context relevant to our investigation is its potential to
break the principle of equal confirmation of dual theories that seems unassailable
in the context of fundamental dualities. To be sure, effective theories, even when
known not to be fundamental, can be strongly confirmed by empirical data within
the theories’ intended domains. Most empirical confirmation plays out in such con-
texts. However, situations can arise where the knowledge about a theory’s limited
realm of applicability may have a detrimental effect on the confirmation value of
data that are in agreement with that theory’s predictions.
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To understand this point, let us first think about the case of two conceptually
distinct theories that are not fully equivalent to each other but share some empirical
implications. An experimentum cruxis, that is strong empirical confirmation of
one theory and strong empirical refutation of the other in a regime where the
theories’ predictions differ from each other, would obviously imply the rejection
of the refuted theory also as a description of those contexts where the two theories
make the same predictions. Now, let us assume that the given theory has not been
empirically disconfirmed by data beyond the regime where the two theories are
empirically indistinguishable but there are strong reasons to doubt that the theory
can be made consistent or can be embedded in a consistent theory that covers
a wider range of phenomena. Such considerations would clearly have an impact
on assessments of the status of the given theory also in the constrained empirical
regime where it is applicable and agrees with the available data. In other words,
data that are consistent with that theory would not be taken to amount to strong
confirmation of the theory because of conceptual problems related to the theory in
a wider context. In Bayesian terms, this situation can be modeled by attributing a
very low prior to the given theory due to the expected problems of embedding it
in a wider conceptual context. A good example of such a situation is the case of
modified Newtonian dynamics (MOND) (Milgrom, 1983). MOND is particularly
well adapted to reproduce observed galaxy rotation curves (Sofue and Rubin, 2001).
However, this is not considered by scientists to amount to substantial confirmation
of MOND precisely because, despite several proposals, there is no completely
satisfactory way to obtain the MOND phenomenology from a complete cosmo-
logical model of the universe.10

The case of dualities between effective theories can be understood as a natural
generalization of this scenario. For the sake of clarity, we will now consider
a more general abstract duality between two effective theories and return to
specific considerations regarding the AdS/CFT afterwards. Let us first assume
that we have an exact duality between two theories, T1 and T2. As discussed,
this duality guarantees empirical equivalence but allows, in principle, for the
possibility of distinct ontological interpretations. Using the terminology of the
previous section, we would have that II(T1) = II(T2) but OI(T1) �= OI(T2).
Let us consider again the position of a strong realist who believes that the gravity
side of the duality is more fundamental and that, notwithstanding the duality,
their universe really is described by one side. In the fundamental theory context

10 Although there has been significant work on relativistic extensions of MOND, e.g., Bekenstein (2004), as well
as attempts to derive it from a more fundamental theory, e.g., Verlinde’s (2017) ‘emergent gravity’ approach
(Milgrom and Sanders, 2016) or Mannheim’s (2012) conformal theory, even the originator of the approach
accepts that such generalizations ‘do not yet provide a satisfactory description of cosmology and structure
formation’ (Milgrom, 2014).
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we suggested that inferentialist justification that most realists give for their view
is in conflict with this form of distinct ontological interpretation of dual pairs.
Prima facie, this need not be the case in the effective theory context. Recall
that, a nonfundamental theory is one that could be replaced by a theory that is
more empirically adequate in a given domain and does not share the same core
theoretical posits. Now imagine that one takes the pair T1 and T2 to be effective
theories to some more fundamental theory X in this sense. The case of particular
interest is where the mismatch of core theoretical posits includes the dual structure
of the effective description. In this situation it might seem reasonable for our strong
realist to assert OI(T1) �= OI(T2) on the basis that OI(T1) ≈ OI(X) and
OI(T2) �≈ OI(X). Plausibly then, this relative closeness of ontology combined
with the empirical superiority of X would provide an inferentialist basis for realist
commitment to T1 over T2, despite the fact that they are dual theories. The claim
is that this realist commitment to T1 over T2 can translate into the understanding
that T1 gets strong confirmation by data that agree with its predictions while the
empirically equivalent T2 does not. This happens if, in analogy to the MOND case,
a much higher prior can be attributed to T1 based on its better alignment with the
broader physical picture represented by X. In the given case, that would mean that
T1 gets a higher prior than T2 because there is a fundamental theory X that retains
the ontology of T1 while it seems unlikely that there is a fundamental theory that
retains the ontology of T2.

A natural line of objection is to question whether matters of ontology can ever
become relevant for matters of confirmation. There is at least one context in physics,
however, where ontology indeed becomes relevant for the assessment of a physical
hypothesis. Bohmian nonlocal hidden variable models have been established as a
possible interpretation of nonrelativistic quantum mechanics (QM).11 Making the
Bohmian approach compatible with the Lorentz invariance of relativistic physics is
an outstanding problem. If we assume, as most physicists do, that Lorentz invari-
ance is a fundamental feature of relativistic physics then one could plausibly argue
that a relativistic formulation of Bohmian quantum mechanics might in principal
be ruled out. For our purposes it is not important whether or not those problems
can be overcome in a way that upholds the Bohmian approach as an attractive
interpretation of relativistic quantum mechanics. The crucial question for us is:
if a relativistic Bohmian quantum mechanics proved impossible, would that then
discredit nonrelativistic Bohmian quantum mechanics as well, even though the
latter works in its own regime? Most observers think it would do so. The failure of
a set of ontological claims at a fundamental level is, in this case, taken to disfavor
those claims also at the effective level.

11 See Goldstein (2017) for an up-to-date discussion of Bohmian mechanics.
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One might object that Bohmian quantum mechanics is an interpretation rather
than a theory. But does this disqualify the example? If Bohmian quantum mechanics
is understood as an interpretation rather than a theory because it is empirically
equivalent to other ‘interpretations’ of QM, then one might call dual theories
‘interpretations’ as well as soon as one takes their ontic commitments seriously.

One may also have the understanding that Bohmian quantum mechanics is an
interpretation of quantum mechanics because it is essentially bound to a contingent
ontic view on quantum mechanics. By its very nature, the Bohmian approach is
predicated on a realist perspective. Its truth would imply the falsity of the onto-
logical outlook of alternative interpretations of quantum mechanics. A failure of
relativistic Bohmian mechanics would discredit the entire Bohmian approach to
quantum mechanics for the very reason that the approach implies a position of
ontological scientific realism: if the objects of Bohmian quantum mechanics are
shown not to exist relativistically, then they are shown not to exist at all. In general
terms, if one adopts a strong ontic realist view, then the degree of confidence one
has in the adequacy of an effective theory is extremely sensitive to that theory’s
relationship with more fundamental theories.

Applying a similar rationale to dualities in the effective theory context thus
hinges on accepting an ontic commitment as an essential part of endorsing a
physical theory. Clearly for the defender of a strict distinction between a scientific
theory and its interpretation, commitment to a theory need not involve endorsing
an associated ontology. Such nonrealism would already mean that empirical
confirmation is understood to be confined to theories and thus we should reject
the possibility of different degrees of confirmation for different dual effective
theories. Thus the question is whether string theory is consistent with any ontic
commitment (that is, any positive position in the scientific realism debate) that
can provide a basis for distinguishing between an ontic commitment to T1
and to T2. As already noted, in the fundamental theory context there are good
reasons to assert that string dualities are at variance with such a strong form of
ontic scientific realism (Dawid, 2007; Rickles, 2011, 2017; Matsubara, 2013).
In particular, the possibility to transform a theory into its dual makes the choice
between dual theories reminiscent of an (unphysical) gauge degree of freedom,
which seems to block (or at least make less plausible) any attempt to single
out the ontology of one of the duals as the true ontology (Rickles, 2017). The
understanding that all dual representations are equally valid is further strengthened
by the fact that typically all dual perspectives are needed in order to acquire a
satisfactory understanding of the physical content of string theory (Dawid, 2013).
These lines of reasoning tacitly assume, however, that string dualities play out at a
fundamental level. It thus seems possible for a defender of the strong form of ontic
scientific realism about dualities, in which the realist commitment to T1 differs
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from that to T2, to insist that their position is made more plausible by the effective
theory context.

Whether or not a different degree of commitment to T1 than to T2 can be
defended in that context thus depends on the specifics of the realist’s commitment
to X. From a minimal structural realist type position (Ladyman and Ross, 2007), we
might give an explanation of a theory’s ‘real’ content based on its role as an effective
theory. If we apply such a view to X then it is very difficult for us not to apply
it equally to T1 and T2, notwithstanding the facts about perceived ‘closeness’.
Equally, we can consider weak forms of scientific realism, such as perspectival
realism (Massimi, 2018) or consistent structure realism (Dawid, 2013), wherein
we accept as ‘representations of reality’ distinct empirically equivalent scientific
representations. Clearly, such weak realism offers us no basis for using X to retro-
spectively differentiate the ‘approximate truth’ of the effective theories T1 and T2.
An exponent of one of the weaker forms of realism would deny that approximate
truth should be understood in terms of ‘ontic continuity’ in the given context and
therefore would assert that both effective theories must be equally confirmed.

Finally, we can consider something more like a ‘common core’ perspective on
scientific realism at the fundamental level. Such diachronic commonalities might
be understood to trump synchronic ‘common core’ considerations at the effective
level, and therefore distinguish the ontological significance of one of the effective
theories. Choosing a ‘divide-and-conquer’ selective realism about X (Psillos, 2005),
we might as well argue for a realist commitment to T1 over T2 due to the greater
retention of theoretical terms key for explaining predictive success at the level of
X. Let us imagine that there were a gauge/gravity duality at an effective level. A
more fundamental theory X, however, is found to be strictly a gravity theory with
a fundamental ontology similar to its effective string theory and did not have a
dual field theory. In that case, an exponent of divide-and-conquer-style brand of
scientific realism could argue that the truth of the fundamental theory X would
render the effective gravity theory approximately true and the effective field theory
false. Knowledge of the existence of X could then result in attributing a low prior
to the effective field theory, in analogy to our examples of MOND and Bohmian
mechanics. Data in agreement with both effective theories could then amount to
strong confirmation of the gravity theory without being taken to be strong confir-
mation of the gauge theory. Adapting our Bayesian notation in an obvious way from
earlier, it would then be plausible, seen from this strong realist perspective in the
effective theory context, to set P(T1) � P(T2), which means that #T 1 � #T 2.
Of course, we would still have that the relative confirmation was equivalent, so
#̄T 1 = #̄T 2.

To conclude, differentiating degrees of confirmation based on the continuity
of ontic commitments from the effective to the fundamental level is an option in
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principle given certain forms of strong scientific realism. However, such a view is
in tension with a variety of weaker forms of scientific realism and, unsurprisingly,
any kind of nonrealism. Moreover, such a view is also rather against the spirit of
string physics, based on our current understanding of the theory. Nevertheless, we
hope that in considering this option may be helpful for getting a better grasp of the
range of possibilities one faces when thinking about the empirical consequences of
duality relations.

13.4 Instrumental Context

The most surprising applications of the AdS/CFT duality in contemporary physics
is in the context of quantum chromodynamics (QCD), the quantum field theoretic
description of the strong nuclear force. That a duality which originated from string
theoretic considerations has found application in the description of the phenomenol-
ogy of hadronic physics is a rather beautiful irony, given string theory’s own origin
in attempts to find a phenomenological model of the strong interaction (Cappelli
et al., 2012; Rickles, 2014). These fascinating connections notwithstanding, one of
the main messages of this paper is that one should be at pains not to overinterpret the
strength of the AdS/QCD theory connection. Rather, as could be expected from the
title of this section, we argue that as things stand neither the ontological nor empir-
ical implications of this application of the duality are compelling. Rather, as shall
be detailed in the following, we think there good reasons to take the application
of the AdS/CFT correspondence to hadronic physics as a purely instrumental one.
That is, we do not take partially empirically successful applications of AdS/QCD
to have told us anything regarding the empirical status of string theory.12

To understand how one might possibly use the AdS/CFT duality to model a
special class of systems described by QCD, it will be instructive to consider the
three fundamental senses in which QCD is unlike a CFT.13 Recall that the particular
example of AdS/CFT that we are considering is between Type IIB superstring
theory on AdS5× S5 and SU(N), N = 4 Super Yang–Mills theory in 3+1. First,
and most obviously, QCD is unlike N = 4 SU(N) Super Yang–Mills since it is
not supersymmetric. Second, QCD is not conformally invariant. Third, QCD has
a finite color number N = 3. Getting around the first two differences will depend
on finding a limit where Super Yang–Mills is effectively nonsupersymmetric and
where QCD is effectively conformal. Given what we know from condensed matter

12 This is at least in tension with remarks of Rickles (2014, p. viii) who remarks, en passent, that string theory
proving to be an ‘empirical dud’ is ‘highly unlikely as a general claim’ since duality symmetries present (or
originating) in string theory have to led to several ‘results that have experimental ramifications’, including in
the context of quark-gluon plasmas and superconductivity.

13 Here we mostly follow the excellent treatment of Ammon and Erdmenger (2015).
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physics about the emergence and disappearance of symmetries in different param-
eter regimes, the fact that such a limit can be found is not perhaps as surprising as
it might seem. In particular, if we fix the CFT to be at finite temperature, but near a
critical phase transition, then supersymmetry will be broken and if we choose QCD
to be near the deconfined phase transition then we find that the theory becomes
quasi-conformal. As we shall see later, the supersymmetry breaking is achieved
by choosing a black hole in asymptotically AdS spacetime with finite but near-
critical temperature on the gravity side of the duality. A physical basis to justify
ignoring the final difference is rather less obvious, but can again be well-illustrated
via the analogous approximation made in condensed matter physics. The CFT is
presumed to be defined via a large N expansion corresponding to the ’t Hooft limit.
That is, we take the color number to infinity in the CFT. Now, clearly 3 �≈ ∞, so
how can we justify treating QCD as approximated by a theory in such a limit? An
immediate analogy is to the thermodynamic limit in statistical mechanics, where
one assumes that the particle number, n, is infinite although we of course know full
and well that it is of the order of 1023. Making sense of the approximations and
idealizations of these kind of infinite limits has been the subject of a considerable
philosophical literature of the last decade.14 In fact, Bouatta and Butterfield (2015)
make a direct comparison between the ’t Hooft limit and the thermodynamic limit.
The important point for our purposes is that in the context of a 1/N expansion,
the difference between 3 and ∞ at first order is small enough that subsisting one
expansion with the other is a valid approximation provided one is only interested in
order of magnitude estimates.15

One context where such estimates are of interest to physicists is in the con-
text of quark-gluon plasmas. There is experimental evidence that such forms of
matter should be understood as strongly coupled fluids. Strong coupling means
that conventional perturbative techniques are unreliable. The standard alternative is
then a lattice gauge field theory approach. However, for time-dependent processes,
lattice methods become intractable, and it is easier to appeal to the AdS/QCD cor-
respondence to calculate physical values of the parameters of quark-gluon plasmas
using string theory. A particularly vivid example is the jet-quenching parameter,
q̂.16 This is the mean transverse momentum acquired by a ‘hard probe’ (i.e., a
high momentum, narrow beam of hadronic matter) per unit distance traveled. A
central field theory result is that q̂ can be expressed in terms of the correlator
of Wilson lines along a particular contour. The gravity dual description is given
in terms of a string action in a AdS–Schwarzschild black brane spacetime with a

14 Three particularly significant contributions are Batterman (2002), Butterfield (2011), and Norton (2012).
15 See Coleman (1988, ch. 8) for an elementary introduction to the 1/N expansion in field theory.
16 An earlier application of the AdS/QCD correspondence can be found in Kovtun, Son, and Starinets (2005).
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finite but near-critical Hawking temperature.17 In a landmark paper (Liu, Rajagopal,
and Wiedemann, 2006), these techniques lead to a calculated value for q̂ of 4.5
GeV2/fm, which is close to the experimental range from Brookhaven Relativistic
Heavy Ion Collider of 5–15 GeV2/fm. At the time this was the best theoretical
estimate of the parameter. How should we understand the implications of this result
for AdS, CFT or, in fact, QCD? This question turns out to be extremely subtle,
and the remainder of this paper is devoted to developing a line of analysis of this
new ‘instrumental context’ of dualities that is consistent with the conclusions made
regarding the previous two contexts.

A reasonable first step is to formulate our inferential standpoint in terms of
Bayesian confirmation theory as per earlier. We denote by H3 the proposition

H3: QCD provides an empirically adequate description of the target system T ′
within a certain domain of conditions DQCD that include the assumption of
near-criticality.

We can encode the evidence available to our agent by introducing a variable E′

corresponding to the two values, E′, the empirical evidence regarding the target
system T ′ obtains, and ¬E′, the empirical evidence does not obtain. In the case of
the jet-quenching parameter the target system T ′ would be a quark-gluon plasma
and the empirical evidence would be the measured value of q̂.

In order to consider the relevance of this empirical evidence to an agent’s beliefs
regarding the empirical adequacy of CFT and string theory as descriptions of T ′
one can introduce two propositions, H4 and H5:

H4: SU(N), N = 4 SYM in 3 + 1 provides an empirically adequate description
of the target system T ′ within a certain domain of conditions D′CFT that
include the finite but near-critical temperature assumption.

H5: Type IIB superstring theory on AdS5 × S5 provides an empirically adequate
description of the target system T ′ within a certain domain of conditions
D′AdS that include the finite but near-critical temperature assumption.

It is of course significant to note that in these definitions we are considering the
empirical adequacy of AdS/CFT as a description of a quark-gluon plasma. There
are a variety of obvious senses in which both sides of the duality immediately fail
to provide such descriptions. This notwithstanding, in regard to the jet-quenching
parameter taken in isolation, empirical adequacy of the dual theories is worth con-
sidering. In particular, we can expect that an agent can derive empirical predictions
regarding T ′ using the calculational techniques available from the AdS side of the

17 As Hawking and Page (1983) illustrated, black holes in AdS space undergo a thermodynamic phase transition
when the black hole size is of order of the characteristic radius of the AdS space.
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duality. Since this is the weakly coupled side this will invariably be technically
more straightforward. In fact, as noted, at least in 2006, this was the best available
technique.

We can represent this prediction of a value of the jet-quenching parameter that
is derived via the AdS model in terms of a further binary variable F . We take
this variable to have the value F when the predicted value obtains in the actual
quark-gluon plasma. Thus we have that H4 → F. The inferential structure of
our current context is unlike that of the fundamental or effective theory context.
In particular, there is no empirical regime in the physics of the quark-gluon
plasma where the predictions from AdS actually match the data: F �= E′ in
DQCD since the predicted value for q̂ was 4.5 GeV2/fm, which is outside the
experimental range of 5–15 GeV2/fm. This means thatE′ actually disconfirms AdS:
P(H5|E′) < P (H5). Due to the (assumed) exact duality between AdS and CFT,
the latter gets disconfirmed by E′ as well. So we have P(H4|E′) < P (H4).

As regards QCD as things have been set up, the relevance of E′ for H3 is not
clear. In particular, since there is only a crude approximating relation with the dual
theories it is not clear, as we have formulated things, whether we should take the
new evidence as positive, negative, or neutral in regard to the empirically adequacy
of QCD. The limiting relationship between QCD and AdS gives us a means to
derive an order of magnitude approximation regarding the phenomenology of the
former, using calculational techniques based upon the latter. Yet, AdS is not an
effective theory of QCD phenomenology and cannot be confirmed even in the weak
sense of increasing the degree of belief in the theory’s empirical adequacy in a
specific regime of testing. In fact, as already noted, there are simple and obvious
senses in which the AdS/CFT duals fail as empirically adequate descriptions of a
quark-gluon plasma: not least with regard to boundary conditions on the plasma
and the finiteness of the color number. Thus there is a strong sense in which any
empirical data collected from measurements on an actual quark-gluon plasma will
straightforwardly contradict the empirical adequacy, considered in general terms,
of AdS or CFT as a model of this system.18

One might, however, still plausibly expect that the data E′ to give us confidence
in the reliability of the package of approximation techniques and theories that are
being used. This is because, as noted in the original paper (Liu et al., 2006, p. 4),
there are good theoretical reasons to expect that the value calculated using AdS
would be a slight underestimate. There were good reasons to expect the right order

18 This is the direct counterpart to incisive remarks made by Butterfield (2011, p. 1072) in the context of the
thermodynamical limit. In that context, Butterfield notes that taking the particle number to be extremely large
corresponds to cosmic lengths and thus immediately makes the model ‘utterly unrealistic’, and thus
fundamentally empirically inadequate when considered in general. Norton (2012) makes a similar point in the
context of his distinction between approximation and idealization.



300 Dardashti et al.

of magnitude but also good reasons to expect some discrepancy. To be an accurate
formalization of the inferential standpoint of the relevant scientists we surely must
incorporate this kind of background contextual knowledge regarding the models
that are being employed into our Bayesian framework.

Let us assume that there is some background contextual knowledge that when
combined with the actual AdS calculation implies that the predicted value of the
jet-quenching parameter should roughly approximate the measured data but not
precisely coincide with it. Formally, we can introduce a proposition:

C: Type IIB superstring theory on AdS5 × S5 gives correct to order of magnitude
empirical approximation to QCD as a description of the target system T ′
within certain domains of conditions D′AdS and DQCD respectively.

Second, denote by δE a proposition:

δE: The difference between the predicted value derived via Type IIB superstring
theory on AdS5 × S5 and the experimental result is correct to order of
magnitude. That is F ≈ E′ in DQCD.

We then have that (H3 ∧ C) → δE and thus that P(H3 ∧ C|δE) > P (H3 ∧ C).
This is confirmation of the conjunction of the empirical adequacy of QCD and
the approximation relation between Type IIB superstring theory on AdS5 × S5 and
QCD. Ideally one would then like to make a definite statement regarding the change
in probabilities of each of the conjuncts. In particular, one would ideally like to
claim in these circumstances that QCD is individually confirmed. However, it can
be shown that the confirmation of a conjunction by some evidence is compatible
with the disconfirmation of either (or both) the conjuncts considered individually
(Atkinson, Peijnenburg, and Kuipers, 2009). Thus, the formal model allows us only
to establish confirmation in the package of the empirical adequacy of QCD and the
empirical approximation of QCD by string theory when taken together.19

As a final remark we should note the relevance of recent theoretical work in
calculating the jet-quenching parameter using lattice QCD techniques (Panero,
Rummukainen, and Schäfer, 2014). This approach leads to a calculated value of
around 6 GeV2/fm that is of course more consistent with the experimental range.
Furthermore, that the value calculated via a more realistic model is indeed slightly
above that calculated via the string theory model provides retrospective support to
the original theoretical arguments for the string theory calculation being a slight
underestimate.

19 Informally, one plausibly would still expect to have at least limited confirmation of H3 by δE. Establishing the
additional conditions necessary to show this formally would take us outside the remit of the current work
however.
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13.5 Conclusion

Dualities are typically viewed in terms of exact correspondences between funda-
mental theories of the world. Dual models can and do occur, however, outside such
fundamental theory contexts. If so, both the ontic implications and the specifics
of the empirical relevance of dualities change. We have argued in this paper
that there is a fairly rigid principle of equal confirmation in the case of dualities
between fundamental theories. Although this principle could be broken by assum-
ing different priors for dual theories, one finds no physical argument for doing
so. To the contrary, a number of physical arguments suggest treating duals as
different perspectives on the same theory, which would rule out the attribution
of different priors. This situation changes once one considers a duality relation
at the level of effective theories that has no correspondence at the fundamental
level. Such a scenario could, given a strong form of ontic realism, be viewed as
providing a physical basis for viewing the duals as different theories that might
even have different plausibility as viable effective theories about the world. Though
such a point of view has its problems, it should not be discarded out of hand.
Once one looks at the instrumental application of dualities in contexts where the
empirically viable theory is not understood to have a dual, such as the case of
quark-gluon plasma calculations, the role of theory confirmation does not depend
on distinguishing between confirmation values for the individual duals. Rather,
neither of the two duals gets confirmed by the data. Rough agreement of string
theory calculations with data can only generate confirmation for the approximation
together with the theory it is taken to approximate, which is QCD.
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14

Extending Lewisian Modal Metaphysics from a Specific
Quantum Gravity Perspective

tiziana vistarini

14.1 Possible Worlds and Accessibility Relations in Lewisian Formal
Modal Semantics

Old disputes give way to new. Instead of asking the baffling question whether whatever is
actual is necessarily possible, we could try asking: is the relation R symmetric?

David Lewis, The Plurality of Worlds, 1986, p. 19

Simplifying modal logic disputes is a main formal payoff of Lewis’s possible
worlds semantics. The latter is not the focus of the essay. Yet, since this essay is
about extending some Lewisian metaphysical applications of this formal frame-
work, it is convenient to sketch here some of the basic formal features of Lewisian
possible world semantics. In this section, possible worlds and accessibility relations
are purely formal devices since they remain uninterpreted.1

Lewisian possible worlds semantics unifies the plethora of different modal log-
ics that have come into existence since Aristotle. This unification is achieved by
translating heterogeneous modal logic disputes on controversial modal axioms in
disputes on more homogeneous sets of formal properties, namely, those of the
accessibility relations. Before the advent of the possible worlds semantics there
was no unified understanding of fundamental axioms like (Lewis, 1987):

a. if necessarily p, then p;
b. if necessarily p, then necessarily necessarily p;
c. if p, then necessarily possibly p;
d. if possibly p, then necessarily possibly p.

Lewis possible worlds semantics equipped with formal devices like possible
worlds and binary accessibility relations R between pairs of them (formal devices

1 Others before Lewis pioneered the formalism of possible worlds semantics, but here I will not discuss
non-Lewisian uses of the formal framework because that would bring us out of the essay’s topics.
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as long as they remain uninterpreted) completely changed the traditional formal
debate. Indeed, the Lewisian framework gives an extensional formal semantics uni-
fying the preexisting heterogeneous uses of these fundamental axioms. A simplified
description of how the basics of this modal machinery formally works might be the
following: a basic technique is that of quantifying over possible worlds “connect-
ing” to the “actual” one by some accessibility relation R. Supposing w denotes
the actual world, the machinery mainly works with two schemas for translating
traditional axioms about necessity and possibility into formal properties of the
accessibility relation R. These schemas are the following (Lewis, 1987):

1. necessarily p if and only if p is true at every possible world u such that R(w,u);
2. possibly p if and only if p is true at some possible world u such that R(w,u).

Then, an inquiry on whether any of the axioms—(a),(b),(c),(d)—holds can
be translated into an inquiry about specific formal properties of the accessibility
relation R. More precisely, axiom (a) holds just in case the accessibility relation
involved is reflexive, namely, just in case for all worlds u, we have R(u,u).
The majority of interpreted accessibility relations are reflexive, since all possible
worlds are accessible from themselves. Axiom (b) instead holds if and only if the
accessibility relation is transitive, that is, (b) will hold just in the case R(w1,w2)

and R(w2,w3) both entail R(w1,w3). Moreover, the inquiry about whether axiom
(c) holds is translated into the probe about whether the accessibility relation has the
formal property of being symmetric, namely, if it is the case that R(w1,w2) entails
R(w2,w1). Finally, axiom (d) holds in all those cases in which the accessibility
relation has the formal property of being Euclidean, that is, all those cases in which
R(w1,w2) and R(w1,w3) both entail R(w2,w3).

Although not detailed, this description shows the bare bones of Lewisian trans-
lation of heterogenous modal discourses about necessity and possibility into homo-
geneous sets of modal claims about formal properties of accessibility relations. The
philosophical payoff of such formal semantics branches off from its applications to
specific problems in metaphysics, in epistemology and in many other contexts. In
this essay I am focused on some Lewisian applications to modal claims in meta-
physics. More precisely, the application that produces the relation of nomological
accessibility among worlds, as well as the application that produces the relation of
similarity accessibility.

Now, since it is relevant to the content of this essay, one might wonder whether
Lewisian formal semantics is grounded on some clear-cut and unique way of distin-
guishing between the actual world and the possible ones: how does anyone single
a Lewisian world out for the label of actual? In other words, what is the nature of
actuality for Lewis? Answering requires that one moves forward with the analysis.
As we will see in what follows, especially in Section 14.3.2, according to Lewis
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all possible worlds are equally real in virtue of their “concreteness.” Understanding
what the abstract-concrete distinction comes to in the Lewisian context will prove to
be a nontrivial task. For now let’s say only that, according to Lewis, all possibilities
are realized in some world, independently of whether somebody thinks of them or
not. Then, if all possible worlds are real, how should anyone pick one as actual?
Lewis’ notion of actuality appears to be an indexical one. Its reference indeed is
described by him as varying with the speaker in the same way in which the reference
of deictics like “here” and “now” do. The utterance “actual world” pronounced by
me refers to the world where I am located. All possible worlds in which I am not
located are actual for their inhabitants. The world I regard as actual is nonactual for
individuals residing in those worlds I regard as nonactual (Lewis, 1973).

Lewis seems to hold a “contextual” view about actuality, one in which the context
for regarding a world as actual is given mainly by ordinary linguistic games. The
actual world in the metaphysical model that will be extending the Lewisian one
is any spatiotemporal structure, within the sets of quantum string theory solutions,
which is arbitrarily chosen as the central structure to which apply deformations
functions producing other worlds. As we will see, any family of possible worlds
has a central structure that is also called the “central fiber” of the family of worlds.
Also different families can share the same central fiber. Any family of possibilia can
be constructed without any prejudice on the choice of the central spatiotemporal
structure from the set of quantum string theory solutions. Much more on this in
Section 14.3.

14.2 Fleshing Out Accessibility Relations

One of the Lewisian applications of the possible worlds semantics to metaphysics
considered here involves physical science. This application is characterized by
a specific interpretation of possible worlds in terms of mereological spacetimes
wholes as well as by a specific interpretation of the accessibility relation in terms
of nomological accessibility. Then, saying that “world u is accessible from world
w” means saying that “u obeys the physical laws of w.”

This metaphysical application produces a notion of nomological necessity.
Indeed the interpreted accessibility relation transforms the general Lewisian
translation schema—(1)+ (2)—into the following specific schema:

N. if p is nomologically necessary, then p is true at all possible worlds that are
nomologically accessible from the actual world, namely, p is true at all possible
worlds that obey the physical laws of the actual world.

Now, one might ask what axiom among those mentioned in Section 14.1—(a),
(b), (c), and (d)—is satisfied by this definition of nomological necessity. An answer
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based on testing directly the axioms directly would be convoluted. By using a
pre-Lewis language, it would be unclear, for example, whether nomological
necessity satisfies axiom (c). Indeed that would require answering the convo-
luted question “is something that is nomologically possible also nomologically
necessarily possible?”

Sometimes looking for simple questions might be the best strategy for dealing
with simple answers. But a translation of some intricate question into a simpler one
not always produces a question equivalent to the original. Instead, in Lewisian for-
mal semantics, the translation via the scheme (N) accomplishes such equivalence.
The scheme (N) translates the question, about whether axiom (c) is satisfied into
an equivalent and more manageable one about whether the relation of nomological
accessibility is symmetrical. Then, the translated question is “is it always the case
that whenever world w1 obeys the physical laws of w2, then also w2 obeys the
physical laws of w1?”

Now, according to the Lewisian notion of physical laws the answer is negative.
The opposite might or might not hold true. Being symmetrical is not a definitional
property of nomological accessibility. Broadly speaking, for Lewis there is nothing
to reality except spatiotemporal distributions of local natural properties, and phys-
ical laws supervene on these distributions—this is the main core of the Lewisian
thesis of Humean supervenience. Then, an instantiation of lack of symmetry might
be that of a world w1 having a spatiotemporal structure that strictly contains that
of w2, hence having an additional spatiotemporal distribution of local facts not
shared with w2. In this case world w1 might obey more laws than those obeyed
by w2. Other examples of lack of symmetry might be constructed by using pairs
of nomologically possible worlds that are one a spatiotemporal deformation of the
other in such a way that the physical laws obeyed by one are strictly contained in
the set of physical laws obeyed by the other.2

Now, the same physical law might supervene two different spatiotemporal distri-
butions of local properties, but it also might not. Indeed, in general a deformation
of a Humean mosaic would produce deformations of the supervening physical
laws. This point about Humean mosaics, physical laws, and deformations will be
analyzed in Sections 14.3.2 and 14.3.3. In the latter I propose a nomological acces-
sibility structure tentatively extending the Lewisian one because partially carrying
its structural properties.

Another Lewisian application of his formal semantics in metaphysics is one that
produces his counterpart theory of de re modality. The latter is based on a specific
interpretation of the accessibility relation in terms of similarity order (also often

2 Saying that world w “obeys” some physical laws means saying that the latter “are laws of” that world and that
they “are true” in that world.
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called the counterpart relation). The interpreted accessibility relation is symmetrical
and not transitive.3 In Section 14.3.2 I propose a similarity accessibility structure
extending the Lewisian one because fully carrying its structural properties.

I want to conclude this section with few introductory remarks about possible
worlds. The ways in which philosophers think about the status of possible worlds
in modal metaphysics can be mainly divided in two schools of thought.4 One is
inspired by the robust kind of realism proposed by Lewis (1973, 1987) prelimi-
nary outlined in the previous section. As I said, Lewis makes clear that all actual
and nonactual possible objects are made of only one kind of being: nonactual
possibilities exist in just the same way that you and I do (Lewis, 1987). The other
school of thought assigns to possible worlds an abstract nature. Possible worlds are
ersatz worlds, or world surrogates that are in some sense representational. The two
main approaches within this school of thought share the same intent to avoid any
realist commitment to nonactuals. On the one side, the Sententialist view of ersatz
worlds, whose first articulation was proposed by Carnap (1947); on the other the
anti-reductive approach, whose most popular formulation is by Plantinga (1972),
republished in Plantinga (2003). This is an anti-reductive strategy because it sim-
ply identifies ersatz worlds as “ways the world might have been” without further
analysis in terms of sentences.

Now, my extension of Lewisian modal metaphysics does not really settle the
dispute between Ersatzers and Lewis, although, as we will see, does not maintain a
complete neutrality. This point is unpacked in Section 14.3.2.

14.3 Extending Lewisian Modal Metaphysics

14.3.1 The Topological-Fiber Bundle Structure of String Theory’s
Moduli Space

In this section I partially summarize parts of the methodology used elsewhere
(Vistarini, 2019, ch. 6) to argue for string theory background independence. More
precisely, I briefly describe the main algebraic-formal component of that composite
argument, although string theory background independence is not among the topics
of this essay. The reason I refer to that formal analysis in this essay can be succinctly
explained by a couple of points. In the book cited I introduce a “space” whose
topology is defined by sets of families of spacetimes (or worlds). These families

3 The symmetrical formal property can be thought quite straightforwardly. The nontransitivity can be thought in
the following simplified terms: y is necessarily P just in case all of y’s counterparts are P . But being a
counterpart of y here means being similar to y. Then, y0 can be a counterpart of y, and y1 a counterpart of y0,
without y1 being a counterpart of y. So, all of y’s counterparts y0 can be P without all the y0’s counterparts y1
being P .

4 A detailed introduction to the dialectic between modal realists and Ersatzers is contained in Divers (2002).
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contain the sets of physical solutions of quantum string theory. Such topological
“space” turns out to be representative of a multiworlds landscape that must not be
regarded as a physical megaverse because the worlds (spacetimes) represented in it
are completely spatiotemporally isolated from each other—i.e. they are not different
spacetime portions of the same megaverse. Rather that topological space should be
regarded as a space of possibilities. This space is also equipped with a fiber bundle
structure, whose fibers are Hilbert spaces each separately stemming from a single
isolated spacetime. Such a topological-fiber bundle structure is proved in Vistarini
(2019, ch. 6) to carry dynamical and physical properties of quantum string systems
useful to prove string theory background independence.

Now, the rationale behind joining some of the book’s trains of thoughts to the
different train of thoughts crossing this essay resides in the fact that the very same
topological-fiber bundle structure is shown here to also carry structural properties
of the Lewisian modal metaphysics. In other words, in this essay I attempt to show
that such a topological-fiber bundle structure (connected to quantum string theory)
is a plausible accessibility structure extending Lewisian similarity accessibility, as
well as tentatively extending Lewisian nomological accessibility.

Now, let’s start to unpack the content of this presentation with an intuitive and
simplified description of such a “space” and its topological-fiber bundle structure.
Such a description is extrapolated from the work cited, so for further details and
further context I will refer the reader to it. The thesis of string theory’s background
independence defended there was a multilayer conclusion of a multilayer argu-
ment. Three main argumentative lines contributed to it. One line originated from
an analysis of the physical content of perturbative quantum string theory (which
is also the most widely known formulation of quantum strings physics).5 Another
argumentative line stemmed from the use of string theory’s dualities, which is some
cases bring in a nonperturbative formulation of the theory.6

The third argumentative line originated from the topological and fiber-bundle
structures of the theory’s moduli space. Reading through these structures produced
two claims of background independence, which will be used in Section 14.3 to
extend Lewisian nomological accessibility.7 The topological-fiber bundle structure
I defined in the book does not overlap with the types of topology and bundle
structures usually defined on the theory’s moduli space by people in string physics
circles, even though the underlying set-theoretic structure is the same. This fact is

5 For bibliographic references to past works fully developing this topic and for a brief summary see
Appendix 14.A.

6 For bibliographic references to past works fully developing this topic and for a brief summary see
Appendix 14.B.

7 For formal details and philosophical discussion, for a complete presentation of moduli spaces in general and in
this specific context, see Vistarini (2019, ch. 6).
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probably due to a mismatch of goals. Moduli spaces are commonly used by string
physicists to either explore cosmological applications of the theory8 or to classify
different types of string theory.9 In this second case the hope is that of finding the
“fine moduli space” of the theory, that is, the moduli space that parameterizes and
encodes some unique fundamental formulation of string theory, from which every
other existing formulation can be gained by means of dualities.10 Differently from
these traditional uses, the topological-fiber bundle structure I defined was supposed
to work more like a kind of global “positioning” system. But differently from any
ordinary system of that kind, what it is “positioning” is the degree of background
independence of string physics.11

As I said, the topology I posit on the theory’s moduli space is defined by fam-
ilies of spatiotemporal structures, which include the sets of physical solutions of
quantum strings theory.12 The first step of the formal procedure that brings us to
the stage of defining this topology is getting these families. The formal process
might be concisely described as a formal act of “deforming” in many different
ways some initially chosen spatiotemporal structure, followed by a formal act of
“gluing together” the many results of these deformations. More precisely, given
an initial spacetime geometry (arbitrarily picked within the sets of physical solu-
tions of quantum string theory) if one somehow deforms that geometry, then one
produces a collection of different geometries. Then, the collection obtained by
means of deformations is also a topological set, or a family equipped with a topol-
ogy. The topology is induced by the deformations functions and by the fact that
the family elements are somehow glued together. The gluing functions equip the
collection with neighborhoods for each element. The relations among elements and
among neighborhoods satisfy the minimum set of axioms required to regard a set
as a topological set. As I show later on, these relations are not spatiotemporal.13

8 For example, Novak, Brustein, and de Alwis (2002).
9 Vafa (1998) and Zwiebach (2009, ch. 25) are among the most popular works on this topic.

10 The logic used in this application mimics the one that originally introduced moduli spaces in algebraic
geometry. In that context, the idea was that the study of intrinsic properties of some type of geometrical
objects (for example, properties of elliptic curves not depending on any higher dimensional embedding) might
have been made easier by the construction of the finest possible moduli space classifying those objects. The
task turned out to be not trivial since not many types of geometrical structures admit the unique fine moduli
space. It is much more usual they admit some coarse moduli space potentially improvable in a finer
classificatory structure, still far from the finest one. But if the fine moduli space is found for some type of
geometrical objects, that structure parameterizes the universal family of that type, that is, one that owns the
complete set of intrinsic properties of that type, and for this reason one from which any other incomplete
family of that type can be obtained (Vistarini, 2019, ch. 6).

11 For the topological parts of that structure I heavily relied on the mathematical work of Kodaira (2005).
12 In this way one gets a topological space of possibilities including the physical ones.
13 Any type of topological family of spacetimes obtained via deformations of some spatiotemporal structure is

formally equivalent to a topological non metrical “manifold.” Of course one may always decide to define a
metric on it, but one needs not: a metric is not definitional of such a topological manifold. For more details on
that see Vistarini (2019, ch. 6).
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In technical jargon the initial spatiotemporal structure is also called the central
fiber of the family, whereas the ones originating from applying deformation func-
tions to the central fiber are the generic fibers of the family. As I said in Section 14.1,
the central structure to which deformations apply is arbitrarily chosen within the
sets of quantum string theory’s solutions. Then, depending on what central fiber
and what type of deformations one chooses, one gets a type of family. Nevertheless,
any fiber of any family produced by deformations operators can be promoted to
be the central fiber of some other family of deformations. This fact produces a
metaphysical landscape of possibilia strictly containing the physical ones.

The word fiber here is doing a bit of heavy work because it needs some more
context to acquire full significance. To this aim, an intuitive account of the type of
link between the theory’s moduli space M and the families is crucial. The moduli
space is said to parameterize all these families of spatiotemporal structures. This
formal property of “being a parameter space” means in simple terms that there
exist a well-defined map φ sending any spatiotemporal structureKi (for any family
of deformations) to some point λi of the moduli space.14 Then, the word fiber
here refers to the domain of the moduli map φ, that is, the word refers to the
families of spatiotemporal structures. Another use of the word fiber will soon be
introduced in connection to the fiber bundle structure on M . The expression that
follows visualizes the nature of this link:15

M ←−φ Def (K0) ←−i K0

∀λi ∈ M,λi = φ(Ki),∀Ki ∈ Def (K0).

For any family of deformations Def (K0), for any arbitrarily chosen K0, the
topological structure of the family (induced by the deformations functions and by
the gluing functions) gets mapped onto M through formal maps related to φ that I
introduce in Section 14.3.2.

Although still incomplete, the presentation made so far can already give an idea
of what it means to say that the theory moduli space M gains a topology defined
by families of spacetimes. This topology is not equipped with a spatiotemporal
metric. And even more, it is not a metrical topology at all. The lack of any type
of metric built into such topology since the start is explained by the combination
of two facts. First, the atlas of topological neighborhoods covering M is made of

14 The minimal requirement of well-definition does not entail the one-to-one formal character. As we will see in
Section 14.3.2, few trivial families of deformations, also called isotrivial, are basically sent to one moduli
point.

15 Sometimes scientific works in deformation theory adopt an alternative, still equivalent, style of notation that
uses the inverse of the map φ, at least on those neighborhoods ofM where φ is invertible. Then, on those
neighborhoods ofM where it is possible to define φ−1 the link is expressed by λ0 = φ−1(K0) and
λi = φ−1(Ki),∀ i �= 0.
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the continuous images (via maps related to φ) of the topological neighborhoods
composing the topology of the families of deformations. Second, the families’
topology is induced by the functions of deformations and by the functions that glue
together the many spatiotemporal structures resulting from deformations. Such a
topology is not by definition metrical. In particular, the topology of any family of
spatiotemporal structures obtained by deformations, does not have a spatiotemporal
structure by definition. That explains why the topological relations among points of
M are neither spatiotemporal relations, nor more generally metrical.16

Now, I introduce the fiber bundle structure (H ,p) defined on top of the moduli
space M , which, as I said earlier on, carries any sort of relevant physical and
dynamical information. Here I am giving a sketchy description of its feature; for
a full analysis I refer the reader to Vistarini (2019, ch. 6). The reason for including
in the essay such brief description is that this fiber bundle structure plays a central
role in the tentative extension of the Lewisian nomological accessibility relation.
The following expression shows the salient features of the fiber bundle:

H

↓p
M ←−φ Def (K0) ←−i K0,

where H is the total space of the fiber bundle and it is defined by the following
union:

H =
∐

∀i,λi∈M
(Hλi × C).

Although this union is much more than a set-theory union, here I am skipping
any details about its extra structure because it is not relevant to the content of this
essay.

Each disjunct Hλ × C is a fiber of the fiber bundle over a point λi of the base
moduli spaceM . Hλi is the Hilbert space identified to some quantum string system
Q, whose dynamics are considered to unfold within the spacetime parameterized
by λi (the spacetime belongs to some family of deformationsDef (K0)). The vector
space of complex numbers C represent all the numerical values that the transition
functions fα1α2...αn of the systemQ can take over λi . Let me briefly unpack this last
claim about transition functions. Assuming that the entire set of physical properties
of the system Q—dynamically unfolding in λi—is represented by a set of linear
operators {Oα1Oα2 . . . Oαn}, the transition functions of the system are the procedure
by which one can calculate the expectation values of all its physical properties:

fα1α2...αn(λi) =< Oα1Oα2 . . . Oαn > .

16 For more formal details about this see Vistarini (2019, ch. 6).
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So, H is the fiber bundle resulting from the disjunct union of all the possible
Hilbert spaces Hλi , ∀i. Each Hilbert space is identified to a possible counterpart of
Q, each dynamically unfolding in an isolated spacetime λi . Let’s unpack a bit this
central point.

ConsiderQ evolving in a spacetime parameterized inM by λ0. The correspond-
ing fiber, i.e., (Hλ0 × C), with Hλ0 ≡ Q, gives dynamical information about the
expectation values that the system’s physical properties take as Q evolves in λ0.
Then, following the same logic, the fiber bundle as a whole (the disjunct union)
gives the same relevant dynamical information about all counterparts of Q, each
counterpart considered to be evolving within a spacetime λi parameterizing some
spatiotemporal deformation. As I argued, all λi are points spatiotemporally isolated
because the topological structure of the moduli space M is not equipped with a
spatiotemporal metric. Now, the disjointness of the union of the Hilbert spaces
composing the fiber bundle formally reflects the isolation of Q from any of its
counterparts and the isolation of any Q’s counterpart from any other. This formal
feature of spatiotemporal isolation is central to both my extensions of the Lewisian
metaphysical scheme.

Now, few more things about the projection map p appearing in the diagram,
which goes from the total space H of the fiber bundle to the moduli space M . The
main peculiarity of this map is that its inverse p−1 is a continuous function and it
is the section of the fiber bundle. More precisely, considering a quantum systemQ,
as well as all its counterparts, the map p−1 acts on all λi in the following way:17

p−1(λi) = (ψλi,fα1...αn(λi)) ∈ Hλi × C,

∀λi ∈ M,λi = φ(Ki),∀Ki ∈ Def (K0).

Recall that ∀Ki ∈ Def (K0) means for all spacetime structures Ki belonging to
some family of deformations of some spacetime structure K0. More importantly,
ψλi denotes the quantum state of a system (either Q or any of its counterparts)
dynamically unfolding in λi , and, as I said earlier, fα1...αn(λi) are the corresponding
values taken by the physical properties {Oα1Oα2 . . . Oαn}.

Finally, few more thoughts about how this fiber bundle structure is used in my
past work to prove two theses of string theory background independence. As I said,
the reason for including these two theses is that they play a role in the tentative
extension of Lewisian nomological accessibility proposed in Section 14.3.3.

Through the fiber bundle on the topological structure of the moduli spaceM it is
possible to “compare” the expectation values of all Q’s dynamical properties with

17 The general structure of the action of p−1, i.e., that maps a point of the base space to a fiber of the fiber
bundle, is built into the definition of a fiber bundle’s section.
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those of all its counterparts. Those “paths” over M along which Q and its coun-
terparts show to obey the same quantum string laws, are special orbits of moduli
points. Each type of orbit turns out to be connected to some type of string duality,
because each orbit is made by moduli points parameterizing spacetimes whose
spatiotemporal inequivalences, and sometimes even topological ones, do not affect
strings dynamics. In other words, different spatiotemporal structures parameterized
by the same orbit all have the same strings dynamical laws. The two main types of
orbits support two claims of background independence for quantum strings laws.

The first claim is with respect to spacetime geometry, and it says something
along this line: some type of local family of different spacetime geometries, still
topologically equivalent, can be taken as the data for constructing the same string
theory laws without prejudice to choice of a particular member. What type of
local family? By looking at the fiber bundle H , one claims that for any family of
topologically equivalent spacetimes, if they are parameterized by a Weyl invariant
orbit of points λi over the moduli space, then,18

fα1...αn(λi) = fα1...αn(λj ).

The second claim is instead with respect to a more radical type of deforma-
tions, that is, those producing geometrically inequivalent spacetimes that are also
topologically inequivalent: some types of local family of topologically inequivalent
spacetimes can be taken as the data for constructing the same string theory laws
without any prejudice to choice of a particular member. The types of local family
in this case are two. The first is exemplified by any family of geometrically different
spacetimes that are topologically inequivalent, but all share one topological invari-
ant, i.e., vanishing Ricci curvature.19 The second type is constituted by families
of topologically inequivalent spacetimes not sharing any topological invariant.20

Then, the same formula above expressing identities of values of transition functions
applies to these cases.

14.3.2 The Topological-Fiber Bundle Structure as a Plausible Accessibility
Structure: Extending Lewisian Similarity Accessibility

Lewis wrote about modal metaphysics in many places and in many different ways.
Lewisian modal metaphysics is actually an umbrella term to indicate a collection
of theses, each arising from different applications of the formal possible worlds

18 For technical details and philosophical discussion on this first claim of background independence, see
Vistarini (2019, ch. 6). T-duality is a string duality connected to this type of orbits on the moduli spaceM .

19 Vistarini (2019, ch. 6). Mirror symmetries not preserving topological invariants (for example, switching Euler
characteristics of the compact extra dimensions) are connected to this kind of orbits on the moduli spaceM .

20 The AdS/CFT duality is an instantiation of this form of background independence.
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semantics. In this section I consider the thesis obtained via the metaphysical appli-
cation producing the similarity accessibility structure (or counterpart accessibility
structure). As far as I know, the earliest formulation of this thesis can be found in
“Counterfactuals” and it is succinctly described by this famous passage:

I believe, and so do you, that things could have been different in countless ways. But what
does this mean? Ordinary language permits the paraphrase: there are many ways things
could have been besides the way they actually are. I believe that things could have been
different in countless ways; . . . I therefore believe in the existence of entities that might be
called ways things could have been. I prefer to call them possible worlds.

Lewis, 1973, p. 84

Reality is conceived by Lewis as the sum of the imaginable rather than a sum of
what actually exists. But the imaginable exists as well, just not in the form of our
actuality. As I said in Section 14.1, Lewisian notion of actuality can be read as an
indexical notion whose reference varies with the speaker (Lewis, 1973, pp. 84–91).

A later formulation and defense of the counterpart thesis, regarded by many as
the canonical ones, are in On the Plurality of Worlds. After arguing that we would
be better off in many areas of philosophy if we accept unactualized possibilities,
Lewis describes there what he takes to be the best theory of possible worlds. This
theory must meet a necessary requirement, that is, any part of any world cannot
be spatiotemporally connected to any other part of any other world. The lack of
spatiotemporal relations among worlds is what tags individuals as belonging to
different worlds. Moreover, a further characterization of the theory is that there is a
plenitude of worlds, that is, there is a world for every way things could be (accord-
ing to some suitably restricted principle of recombination). In this metaphysical
context, every way things could be refers to every possible situation more or less
similar to the actual state of affairs, in some sense of similarity. Finally, the worlds
are all concrete.

Although spelling out what the abstract-concrete distinction comes to in this
context is a difficult task, the indexical nature of actuality formulated by Lewis
(1973) contributes to explain the Lewisian notion of concreteness by unveiling what
this notion is not: concreteness is not a prerogative of the actual world. The concrete
nature of possible worlds is a main component of Lewis’s realism about them and
grounds his many arguments against many forms of ersatzism.21

As I said in Section 14.2, my extension of both similarity and nomologically
accessibility structures does not settle the dispute between Lewisian realism and

21 Indeed, nowhere in his works one can find a unique knock-down argument against any form of ersatzism
about the worlds. More precisely, when Lewis looks at alternatives to his own kind of modal realism (1986,
ch. 3) by temporarily dropping the requirement that the possible worlds are concrete, he does not achieve a
single conclusive argument in favor of concreteness of the worlds, and launches different attacks against
different forms of ersatzism.
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ersatzism about possible worlds. However, the methodology used to realize this
extension inevitably perturbs this neutrality, even though slightly. What I mean
with that can be explained in the following way: possible worlds in my extension
are obtained as deformations of physical solutions of quantum string theory. It is
not always the case that a deformation of the theory’s physical solution produces
another physical solution. Sometimes it does, sometimes it does not. Let’s briefly
say that the deformation procedures applied in this context create a metaphysical
landscape in which physical possibilia (predicted by quantum string theory) are
a subset of a broader set of mathematical possibilia, where the mathematical
ones are still connected to quantum string theory because originating from its
formal articulation. Now, this methodology should be also read in light of my
broader metaphysical commitment to the idea that the physical content and the
formal articulation of an empirically adequate physical theory—like quantum
string theory—carry some important weight in defining what it is real, or at least
in defining aspects or layers of reality that can be connected to the theory’s domain
of application.22 So, based on this enlargement of perspective, one may say that
in my extended metaphysical landscape at least a small group of possible worlds
are real. And this is definitely not a metaphysical scenario that an Ersatzer about
worlds would support. However, settling the dispute between Lewis’s realism and
ersatzism about possible worlds is not a topic of this essay.

Now, in the metaphysical setting equipped with the counterpart relation, possible
worlds are concrete worlds more or less similar to the actual one, in some sense of
similarity, and to different extents. Then, Lewisian similarity is the main core of
the notion of metaphysical possibility residing in this setting. For this reason, the
analysis of Lewisian similarity deeply correlates with the analysis of metaphysical
possibility built into this setting. Lewis’s criterion for admitting worlds into the
possible worlds landscape equipped with similarity branches off transversally to
many chapters of Plurality. However, the part of the book in which his analysis
appears to me as coming across most clearly, is chapter two, even though it is not
the main topic of that chapter and needs some work of extrapolation to come to the
surface. There Lewis is answering to several objections that try to prove his modal
realism leads to paradoxes. Here I want to spend few words on his argumentative
line against Martin Davies’s (1981, p. 262) objection since it is exactly from that
Lewisian anti-paradox strategy that I extrapolate a lesson about Lewis’s notion of
metaphysical possibility within the similarity accessibility setting.23

22 The property of being empirically adequate in this context refers to the fact that quantum string theory admits
emergent general relativistic spacetime. For an extensive analysis of this criterion in the general context of
quantum gravity theories see Huggett and Wüthrich (2013), for an analysis in the specific context of quantum
string theory see Vistarini (2019, ch. 3).

23 The objection was originally formulated by David Kaplan, but that version was never published. The version
of the objection to which Lewis answers is that presented by Davies (1981, p. 261).
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As far as I understand, two combined facts mainly conspire to produce the
objection. The first amounts to be an unrestricted reading of the Lewisian claim
about the existence of a one-to-one correspondence between sets of worlds and
propositions; the second fact is the traditional identification between a proposi-
tion and the content of some intentional mental state, widely supported within the
philosophy of language circles.24

Now, the paradox described by Davies arises from the following argumentative
line: on the one side any proposition corresponds to some set of worlds, on the
other side a proposition might be the one being thought by some individual in one
of the worlds composing the set identified by the proposition. Equivalently, for each
proposition there might be one world in the corresponding set of worlds in which
the proposition is thought by someone. And that means, for any set of worlds, there
might be a one-to-one correspondence between the set and only one of its elements.
This conclusion is the paradox pointed by Davies. Lewis’s reply apparently tries to
bypass the paradox by weakening the link between propositions and mental states’
content. In other words, he rejects the idea that every proposition can be thought.
His main strategy to support this rejection would be that of combining a form of
functionalism about beliefs (loosely speaking one defining beliefs in terms of their
causal role rather than in terms of their mental content) with the requirement that
beliefs should attach to natural properties. This combination would produce the
conclusion that most propositions cannot be thought, hence, according to Lewis,
bypassing the paradox.

Now, whether or not this strategy conclusively defeats the paradox is not a topic
of this essay. Recall that the rationale behind this brief presentation of Davies–
Lewis debate is that of extrapolating from the Lewisian anti-paradox strategy a
lesson about his construction (within the similarity setting) of a notion of metaphys-
ical possibility, one that turns out to be informed by ordinary language, but without
ties to the mental states riding that linguistic vehicle. So, paraphrasing the Lewisian
passage quoted earlier, ordinary language provides a “countless” multiplicity of
metaphysical possibilities by providing the “countless” spectrum of ways in which
worlds can be similar. The use of quotation marks here emphasizes that the notion
of “countless” multiplicity in this context is not a quantitative notion, one that refers
to the cardinality of real numbers. Rather, in virtue of its connection to ordinary
language, the notion should be here read as meaning some form of qualitative
multiplicity, one that is not equipped with cardinality. In other words, as far as I
understand, the Lewisian use of the word countless here, intended to characterize

24 The dominant philosophical tradition on this identification is that originating in Brentano’s works, where
beliefs are mainly characterized in terms of intentional mental states, later developed by Russell who coins for
the first time the term propositional attitudes to denote states of belief.
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the many ways in which things can be different, does not really overlap with the
traditional use, one comparing what the word denotes with what it is denoted by the
word countable. Rather, a “countless” multiplicity here appears to be incomparably
different from a countable one.

Now, in my reading, ordinary language equips the Lewisian spectrum of
metaphysical possibilities with some minimal “formal” framework harnessing the
countless variety of ways in which similarity can be conceived. Although it has
been thought for a long time that “ordinary language has not exact logic” (Strawson,
1950) the work made by Chomsky (1957) to develop generative grammar initiated
a robust tradition of studies in linguistics about the possibility of developing a logic
of ordinary language, or at least about the plausibility that some parts of traditional
logic are reflected in ordinary language and its ordinary practice. Then, endorsing
this tradition, one can say that ordinary language has a “formal” framework and that
the latter can be found at the intersections of grammar and logical forms. And it is in
virtue of this property that ordinary language would provide some formal guidelines
to conceive Lewisian similarity relation. Whether the last claim would be explicitly
endorsed by Lewis is an issue that goes beyond the goal of this essay. In any case,
the bottom line for me is that the centrality assigned by Lewisian metaphysics
to ordinary language, produces a characterization of Lewisian similarity that is
sharper and more rigorous than it would be if grounded on the mental content of
ordinary language. Ordinary linguistic games produce some structural distinction
between legitimate and nonlegitimate uses of the notion. Yet, ordinary language
guidelines produce a qualitative spectrum of legitimate uses, hence a qualitative
characterization of similarity.

Now, my extension of the Lewisian similarity relation tries to achieve an
accessibility structure characterizable in quantitative terms. Indeed a main feature
of this extension is that it provides a formal methodology for quantitatively eval-
uating similarity, for some composite sense of similarity that I will soon describe
and call S�-similarity. As we will see, the quantitative evaluation introduced in
this context does not require setting a metric, so it is perfectly consistent with
the nonmetrical nature of the relation. Indeed S�-similarity will be shown to be
an ordering and not a metrical relation. Moreover, it will also turn out that the
spectrum of variation of S�-similarity is a countable one. Then, in the extended
scheme things could have been different only in countable ways. We’ll see the deep
philosophical significance of all this.

Now, to unpack this initial presentation of the extended scheme, I start with
explaining what sense of similarity is denoted by S�. That bring us back to the
earlier construction of a topology for the moduli space of string theory.
S�-similarity can be mainly described by two types of spatiotemporal similar-

ity: a type of spatiotemporal similarity relations between pairs of topologically
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equivalent possible worlds, and another type of spatiotemporal similarity relations
between pairs of topologically inequivalent possible worlds. Possible worlds in the
S�-extended metaphysical scheme are interpreted as spatiotemporal structures, but
the moduli space’s points parameterizing those structures carry the label of possible
worlds.25 This distinction in two types of spatiotemporal similarity between pairs
of worlds is explainable in terms of the topology of the families of spatiotemporal
deformations. More precisely, as I said in the previous section, string theory moduli
spaceM parameterizes families of spatiotemporal deformations via the continuous
map φ:

M ←−φ ⋃
Kj
Def (Kj).

The moduli space gets from the families a topological cover made of local neigh-
borhoods, each neighborhood being image, via φ-related maps, of the topology of
some local family of deformations Def (Kj), for some central family-fiber Kj .
And, as I said earlier, families of spatiotemporal deformations can be basically of
two types: those made of spatiotemporal deformations that are topologically equiv-
alent, and those made of spatiotemporal deformations that are topologically
inequivalent.

Also, recall that any point λi on the moduli spaceM is spatiotemporally isolated
by any other point because M’s topology is not equipped with a spacetime metric
and that this property is inherited from the topology of the families: any topological
family of spatiotemporal structures obtained via deformation functions does not
have by definition a spatiotemporal structure; in fact it does not have by definition
any metric at all.

Then, it appears clearly that in order to analyze the extended similarity, one needs
to dig into the topologies of both sides, as well as into their connection.

When one deforms any spatiotemporal structure Kj (parameterized by λj on the
moduli space M) one gets a different spatiotemporal structure Ki (parameterized
by a different moduli point λi). The resulting structure is related to the original
one by some type of S�-similarity, which is produced by the type of deformation
functions applied. Then, one can say that in general the S�-similarity between pairs
of spatiotemporal structures, one deformation of the other, “is” the nonmetrical
topology of the families, which is produced by the deformation functions.

The S�-similarity between the pair (Kj,Ki) gets transferred onto M as S�-
similarity ordering between the two corresponding moduli points λj and λi

25 Lewisian similarity order among worlds does not explicitly refer to forms of spatiotemporal similarity,
although for Lewis any collection of things can be regarded as a world just in case it has some spatiotemporal
structure. To be precise the Lewisian accessibility structure in which possible worlds are explicitly interpreted
as spacetime wholes is not the similarity one, rather the nomological accessibility. My extension of the latter
(that I will denote with N�) will preserve this interpretation. So, in my extended scheme, both S�-similarity
and N�-nomological accessibility structures share the same interpretation of possible worlds.
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(via maps related to φ that I’m going to introduce).26 In general, the transferred
S�-similarity among moduli points “is” the nonmetrical topology inherited by M
from the families of deformations on the other side of φ. In particular, the S�-
similarity between λj and λi (parameterizing the pair (Kj,Ki)) is understood in
light of the notion of “closeness” brought in by the inherited nonmetrical topology.
Here the quotation marks are used to emphasize that being close on the moduli
space with respect to its topology has nothing to do with being close in ordinary
spacetime, or in any other metrical sense. Indeed the two moduli points represents
distinct and spatiotemporally isolated spacetimes, and if one looks at the points’
fibers in the fiber bundle H on top ofM , one finds two different Hilbert spaces.

Then, let’s unpack the mechanism of inheritance of S�-similarity. This analysis
also allows us to dig into the notion of “closeness” among moduli points.

Given a spatiotemporal structureK0, in how many ways can one deform it to pro-
duce families of S�-similar structures? Preliminary speaking, all the ways in which
one can deform that structure produce an ordering having two opposite sides: on one
side, a family that varies “as much as possible,” on the other, a family that varies “as
little as possible.” Both sides, as well as the intermediate sector of the ordering, are
mapped onto different types of moduli points’ neighborhoods. The formal maps in
charge of these mappings are those explaining the mechanism by whichM inherits
the S�-similarity from the families of deformations. Also, once the mechanism is
explained, it will appear more clearly in what sense the spectrum of variation of
S�-similarity among moduli points is an ordering and not a metrical structure.

As I said, to describe how the nonmetrical topology relating families’ fibers get
transformed into the nonmetrical topology relating moduli points, one needs to
introduce some additional formal maps. The first map is obtained in the following
way: given φ (mapping a family-fiber to a moduli point) it is possible to define its
differential, namely, another map that act on φ like a functional. Taking the differ-
ential of φ in this context means taking its derivative with respect to the variations
of the family-fibers inDef (K0), for some central fiberK0. That is equivalent to say
that the derivative is taken with respect to spatiotemporal variations of the central
family fiber.27

In general, the differential of a function (or map) from space A to space B is a
contravariant function (or map) from B’s tangent bundle to A’s tangent bundle.28

26 Note that the moduli map φ only maps each fiber of any family onto some moduli point. φ does not map
relations among fibers. As we will see, in order to transfer the topological structure relating a group of fibers
to the group of moduli points corresponding to those fibers, one needs to use maps related to φ by reiterated
applications of the differential operator.

27 In general, the derivative of a function (or a map) always introduces a notion of degree of change of that
function with respect to the variation of its variables. In this particular case the variables of the function are
spatiotemporal deformations of some spatiotemporal structure.

28 For readers unfamiliar with this formal notion: a tangent bundle of a space A is the union of all tangent spaces
Ap at each point p of A.
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So, in this particular case the differential of the moduli map φ is the contravariant
map φ� from the tangent bundle of the moduli space M to the tangent bundle of
the family of all possible deformations

⋃
Kj
Def (Kj). By restricting φ to some

local family of infinitesimal deformation Def (K0) of some structure K0, one gets
that the corresponding controvariant map φ� is defined over the tangent space to
M at the point λ0 (parameterizing K0) and it has as codomain the tangent space to
Def (K0) at K0. This contravariant map is also called the Kodaira–Spencer map,
based on Vistarini (2019, ch. 6) and Kodaira (2005, ch. 2):

φ� : TM,λ0 −→ H 1(K0,TK0), (14.1)

where H 1(K0,TK0) is the tangent space (at the central family-fiber K0) of the local
family of deformationDef (K0) and TM,λ0 is the tangent space toM at the point λ0

(parameterizing K0).29

Now, the Kodaira–Spencer map is one of the formal maps in charge of the
mechanism of topology’s inheritance: a specific type of S�-similarity among
spatiotemporal structures is transformed into a specific type of S�-similarity among
moduli points via the pull-back of the Kodaira–Spencer map. What specific types
of S�-similarity are involved here?
H 1(K0,TK0) turns out to be the vector space containing all the first-order

infinitesimal deformations of K0 (see Kodaira [2005]). An element in this vector
space is a spatiotemporal structure (an isomorphism class) that is spatiotemporally
isolated from any other, still any element is comparable to any other with respect
to any arbitrarily chosen base.

In general vector spaces do not have spatiotemporal metrics, or any metric, by
definition. Having bases and coordinate systems does not mean to be equipped with
a metric.30 One can define on a vector space a relational structure that is weaker than
a metrical one, that is, a vector space can be equipped with a topology. Topological
vector spaces (also called linear topological spaces) are vector spaces that are also
topological spaces, thereby they admit notions of convergence, of sets’ closure
with respect to the defined topology, and so on. They are mainly investigated in
functional analysis.

Now, it should appear clearly that in this context the vector spaceH 1(K0,TK0) is
equipped with a topology, one identifiable to the network of S�-similarity relations
(among spatiotemporal deformations) produced by first-order infinitesimal defor-
mation functions. Then, the pull-back of φ� maps such a relational network among

29 For detail about Kodaira–Spencer map and the tangent spaces involved I refer the reader to Vistarini (2019,
ch. 6); there the simplified presentation of the formal procedures heavily relies on Kodaira (2005, ch. 4).

30 Parenthetically, that does not entail that we cannot define a metric on a vector space. We can always define an
inner product among vectors that induces a metric and produces a mathematical space with more internal
structure, but a metric is not definitional of a vector space.
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spatiotemporal structures onto local neighborhoods of moduli points that, in virtue
of this pull-back, turn out to be linear topological neighborhoods characterized by
a specific type of “closeness.” Then, the question is: “what type of ‘closeness’?”

Before answering let me remind that we are exploring how M inherits the
S�-similarity ordering’s sector coming from families of first-order spatiotemporal
deformations. Soon I explore other sectors of this topological ordering by intro-
ducing new maps (still related to φ and to the Kodaira–Spencer map) as well as
families of deformations of order higher than one.

Now, an explicit description of the type of “closeness” characterizing the sector
connected to H 1(K0,TK0) requires me to say a few general facts about ordering
relations in topological vector spaces. In general the latter can be equipped with
forms of ordering among their points (or vectors). In this section I propose a hybrid
form of ordering, something at the intersection between general topological tools
used in algebraic geometry and the specific topological structure of the theory’s
moduli space presented in this essay. The hope is that of proposing a topological
ordering among moduli points that extends the Lewisian notion of closeness among
worlds.

Now, on any topological vector space it is possible to define the specialization
order (. . . ≤ . . .) (or ≥) relating two points when one lies in the closure of the
other (see Hartshorne [1977]). Sticking to Hartshorne’s style of notation, one can
say that x ≤ y just in case cl(x) is contained in cl(y), that is, just in case the closure
of the singleton set {x} belongs to the closure of the singleton set {y}. The notion
of closure is purely topological. The closure of a singleton set {P } is defined as the
intersection of all closed sets containing the singleton set {P }—the notion of close
(or open) sets refers to whatever topology is defined on the space. An equivalent
formulation is the following: x ≤ y if and only if x is contained in all closed sets
that contain y. In this sense one may say that x is a specialization of y. In this
general context one speaks of specialization because the more closed sets contain
a point, the more properties the point has, the more special it is (see Hartshorne
[1977]).31

This general characterization of the specialization ordering (. . . ≤ . . .) is here
calibrated to the specific setting of my topological spaces to produce a suitable
topological ordering, one I denote with (. . . ≺p . . .). I preliminary define this order
in the following way: for each integer p, the ordering characterizes the type of

31 This type of ordering in algebraic geometry is traditionally used to study properties of topological or algebraic
manifolds: studying the specialization of the manifold’s generic points to closed ones carries relevant
information about the manifold’s properties. Generic points of a manifold are those contained in every
nonempty open set of the manifold topology, whereas the closed points are the most specific ones because
contained in every nonempty closed set. For this reason, one can equivalently say that a generic point is a
point at that all generic properties of the manifold are true, a generic property being a property which is true at
almost every manifold’s point (see Hartshorne [1977]).
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“closeness” between any pairs of moduli points (λi,λj ) such that λi parameterizes
a deformation of order p of the spatiotemporal structure parameterized by λj . The
topological nature of this ordering is straightforwardly shown by the fact that, at the
end of the day, it is produced by deformations functions. Such topological ordering
defined on string theory moduli space is shown to preserve specialization’s features,
even though the reading of what specialization means in this context is different
from the original meaning.

Now, before digging into this preliminary characterization, recall that at the
moment I am looking at the sector of the moduli space ordering gained via the pull-
back of the Kodaira–Spencer map. So, for now the deformation order p is set to
1. Let’s consider a moduli point λ0 parameterizing the central fiber K0 of a family
of first-order spatiotemporal deformations Def (K0) contained in the topological
vector space H 1(K0,TK0). Moreover, let’s {λi}i be the set of moduli points param-
eterizing the first-order spatiotemporal deformations {Ki}i of the family Def (K0).
The type of “closeness” inherited by this set of moduli points via the Kodaira–
Spencer map can be formally described by saying that, for all λi in the set,

clh1(λ0) ⊆ clh1(λi).

Here the closure clh1 is taken with respect to the topology pulled back from
H 1(K0,TK0).

32

The moduli point λ0 parameterizing the central fiber K0 of any family in
H 1(K0,TK0) is a sort of specialization point for any moduli point λi parameterizing
some deformation in those families. The justification for this claim is in what
we already know: by construction the topological structure relating the moduli
points of the neighborhood φ(Def (K0)) reflects the relational structure of the
family Def (K0). As we saw in Section 14.3.1 any generic fiber of a family of
deformations is obtained by applying deformation functions to the central fiber
K0. So, one can deduce that for each generic fiber Ki of the family, the central
fiber K0 shares by construction all closed neighborhoods containing Ki . In this
sense one can say that the central fiber K0 is a specialization of Ki , for any
generic fiber Ki in the family—for an exhaustive and general analysis on the
deformation procedures see Kodaira (2005) and for a simplified analysis confined
to spatiotemporal deformations see Vistarini (2019).

Then, consider a moduli point λ0 parameterizing a spatiotemporal structure K0.
Also consider all the families of first order deformations having K0 as central fiber,
i.e., the whole topological vector space H 1(K0,TK0). Now, given any moduli point
λi , one can say that λi is “close” to λ0 according to the S�-similarity induced by
first order deformation functions, that is,

32 Technically speaking, the closure clh1 is taken with respect to the inverse image topology (φ�)−1(T
H1 ).
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λ0 ≺1 λi,

just in case

clh1(λ0) ⊆ clh1(λi).

This is the formal description of the sector of the moduli points ordering cor-
responding to first-order infinitesimal deformations, as well as it is the formal
description of the type of “closeness” characterizing topological neighborhoods of
moduli points in that sector.

Now, I want to explore other sectors of the S�-similarity topological ordering by
introducing new maps and new families of deformations of order higher than one.

Given a spatiotemporal structure K0 admitting a nontrivial H 1(K0,TK0), such a
structure might be deformed by second-order deformations. In this case, to find out
how the corresponding ordering sector looks like on the moduli space, one needs
to introduce the first derivative of the Kodaira–Spencer map (i.e., second derivative
of the moduli map φ). Broadly speaking, a different topological vector space is
involved, one containing all the second-order deformations’ families of K0, i.e.,
H 2(K0,TK0). The vector space’s topology in this case “is” the S�-similarity rela-
tion produced by deformation functions of second order. Whether the topological
vector space H 2(K0,TK0) is different from the empty set is not a trivial fact. Not
any spatiotemporal structure admitting first-order deformations always admits the
existence of second order ones. But skipping any technicality here, which can be
found in Kodaira (2005), and by mimicking more or less the same logic describing
S�-similarity produced by first-order deformations, one can more or less repeat the
process with the second-order ones.

In this case the type of S�-similarity differs from the type analyzed earlier,
because second-order deformation functions, although usually preserving topolog-
ical equivalence, produce families of structures less spatiotemporally similar than
those produced by first-order deformations. Then, repeating the same reasoning
developed in the first-order case, the S�-similarity produced by second-order defor-
mations of the central fiber K0 is a topological relation between the two members
of any pairs {(Ki,K0)}i , where Ki is any generic fiber of any family of second-
order deformations having K0 as central fiber. Through the new map, i.e., the first
derivative of the Kodaira–Spencer map, the moduli space inherits such a topological
network. The latter on the moduli space gets transformed into a patch of topolog-
ical neighborhoods containing moduli points {λi}i , each parameterizing a distinct
generic fiber in {Ki}i , and each having the moduli point λ0 (parameterizing K0) as
specialization point.

Then, given the moduli point λ0 parameterizing a spatiotemporal structure K0,
one can say that λk is “close” to λ0 in relation to the S�-similarity induced by
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second-order deformation functions applied to K0, that is,

λ0 ≺2 λk,

just in case

clh2(λ0) ⊆ clh2(λk).

Virtually this can be repeated at any order of deformation p (for all positive
integer number p). The higher the order of deformation, the lower the S�-similarity
of the possible worlds found in the process. Then a world lying in clh2(λ0) is less
“close” to λ0 than any other world lying in clh1(λ0).

Now, before giving a comprehensive formulation of S�-similarity accessibil-
ity for then moving to the issue of regaining Lewisian similarity, I would like to
introduce a last crucial feature of this extended accessibility structure. This brings
us back to the Kodaira–Spencer maps and to all the other maps obtained as its
derivatives of any order. Recall that each map is connected to a different sector
of the topological ordering on the moduli space, since each map is connected to
a different order of spatiotemporal deformations. Also, in general, different maps
have different ranks. A formal property shared by these maps turns out to be that of
providing a quantitative description of any sector of the S�-similarity order on the
moduli space: the rank of each map either computes or counts in “how many non-
isomorphic ways” pairs of “worlds” (λj,λk) in the corresponding ordering sector
can be S�-similar.

Let me unpack this important point. In general and loosely speaking, the rank of
a map between vector spaces gives the maximum number of linearly independent
vectors in these vector spaces. In our particular case, each map is connected to an
order of deformation, so its rank gives the maximum number of linearly indepen-
dent deformations of that order applicable to some spatiotemporal structure. For
the sake of simplicity let’s set the order of deformation p to one, and let K0 be
the spatiotemporal structure deformed. Then, the rank of the Kodaira–Spencer map
gives the maximum number of linearly independent first order deformations of
K0 in the vector space H 1(K0,TK0), i.e., it gives the cardinality of any arbitrary
base in the vector space. The number of linearly independent deformations of
K0 represents the maximum number of nonisomorphic “ways” in which one
can deforms the spatiotemporal structure without redundancies. Let’s assume the
cardinality is finite and let’s fix an arbitrary base. Then, any arbitrary first-order
deformation in this vector space is either a vector of the base (a linearly independent
deformation) or decomposable in some linear combination of them (a linearly
dependent deformation). Under the assumption of finiteness of the vector space’s
dimension (i.e., of finite cardinality of its bases), the rank of the Kodaira–Spencer
map is an integer showing in “how many nonisomorphic ways” one can deform
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the spatiotemporal structure K0 to get another one connected to the original by
S�-similarity of the first order. However, the H 1(K0,TK0)’s bases can have infinite
cardinality, yet that infinity is countable [see Kodaira [2005]). In this case the
rank of the map (represented by an isomorphism class of infinite matrices) counts
the nonisomorphic “ways” one can deform the spatiotemporal structure K0 to get
another one connected to the original by S�-similarity of the first order. Importantly,
this line of reasoning can be generalized to any other order of deformation p, hence
to any vector space Hp(K0,TK0).

Then, for any order p of spatiotemporal deformation, the spectrum of variation
of the corresponding S�-similarity is countable. This formal property turns out to
have a deep philosophical significance when one looks at the metaphysical property
it calibrates: in the extended metaphysical accessibility structure equipped with
S�-similarity things could have been different in many countable ways.

Now, to wrap things up with the construction of S�-similarity, let’s consider a
spatiotemporal structure K0 deformable in a nontrivial way for any order p of
deformation. K0 is parameterized by the moduli point λ0. Then, for any order of
deformation p, λ0 is the specialization point, with respect to the ordering (≺p),
of any moduli point parameterizing deformations of K0 of order p. Recall that in
this extended scheme possible worlds are interpreted as spatiotemporal structures,
but that the corresponding moduli points carry the labels of possible worlds. Let
K0 be our actual spatiotemporal structure, then the corresponding moduli point
λ0 is labeled as the actual world. Then, for any order p of deformation of K0, the
complete set of families ofK0’s deformations of order p is composed by spatiotem-
poral structures Ki , each parameterized by some moduli point λi , each λi being a
possible world. Then, one can say that

a possible world λi is accessible from the actual world λ0 just in case the former is
S�-similar to the latter for some order p of deformation (i.e., for some type of S�-similarity).
Equivalently, a possible world λi is accessible from the actual world λ0 just in case there
exist some integer p such that λ0 ≺p λi . And that holds just in case clhp(λ0) ⊆ clhp(λi).

Now, interestingly, S�-similarity has the same basic formal properties as Lewisian
similarity: it is nontransitive and non-Euclidean. To briefly show the nontransitivity,
let’s assume that a spatiotemporal structure K0 admits deformations of orders one
and two at least, that is, it admits the existence of a nontrivial Hp(K0,TK0) at least
for p = 1,2. A first-order deformation K ′ of K0 belongs to the H 1(K0,TK0). Now,
any deformation of K0 in H 2(K0,TK0) can be seen as first-order deformation of
K ′, but by definition they are second-order deformation of K0. The same can be
shown for any order p of deformation. So, the property of being a deformation
of some fixed order p is not transitive. This formal fact produces a nontransitive
S�-similarity that then gets transformed into a nontransitive S�-similarity on the
moduli space.
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Also “being a deformation of some fixed order p” cannot be Euclidean: ifK ′ and
K ′′ are two first-order deformations of K0, they cannot be first-order deformations
of each other. This formal fact produces a non-Euclidean S�-similarity. Also this
formal property is straightforwardly transferred to the S�-similarity on the moduli
space.

Now, the connection between S�-similarity and Lewisian similarity is much
stronger than simply satisfying this basic formal features. Indeed I claim that
Lewisian similarity order supervenes on S�-similarity. This is the sense in which the
S�-similarity accessibility structure I propose here is an extension of the Lewisian
one. Then, I need to unpack this notion of supervenience to finally describe the
nature of this extension.

As I said, Lewisian theory of Humean supervenience develops around the central
thesis that there is nothing to reality except the spatiotemporal distribution of local
natural properties. And he argued for this thesis by showing how laws, causation,
chances, counterfactual dependence, dispositions and so on, could be located within
this Humean mosaic.33

Now, I want to endorse momentarily this thesis and to consider two possible
worlds λi and λj in the extended metaphysical landscape. These two possible
worlds are interpreted as spatiotemporal structures, and let’s say they are related
by some type of S�-similarity produced by somehow deforming the spatiotemporal
structure of one into the other.

Now, both possible worlds λi and λj can be seen as two Humean mosaics, since
both fit the Lewisian identikit of such structure. These two Humean mosaics are
different but S�-similar because obtained by somehow deforming one into the other.
Still, because of Humean supervenience, each mosaic is basis of supervenience for
laws, causation and so on. In other words each mosaic is basis of supervenience for
a Lewisian world.

The two Lewisian worlds supervening on the two Humean mosaics λi and λj
are similar in the Lewisian sense of closeness in virtue of the S�-similarity order
of their respective underlying Humean mosaics. Speaking of supervenient features
like laws for example, the laws supervening on one mosaic λi may be the same
as those supervening on the mosaic λj , in which case this supervenient feature
would contribute to a strong overall similarity between the two Lewisian worlds.
Nevertheless, the laws supervenient on one mosaic λi may not be the same as those
supervening on the mosaic λj . In this case the spatiotemporal deformations of the

33 Nevertheless, for the sake of accuracy, I would like to say that this statement might be understood in the
wrong way, i.e., as if Lewis would confine the notion of reality to a world. But this is not what I mean, as well
as it’s not what Lewis does. Reality for Lewis is far more extensive than a world. It contains all worlds, and
that statement applies to each of them.
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underlying Humean mosaics would produce deformations of the supervening laws,
hence an overall weaker similarity between the two Lewisian worlds.

The bottom line here is that any qualitative “amount” of Lewisian closeness
between pairs of Lewisian worlds supervenes the “closeness” of their Humean
mosaics, which is associated to some order p of deformation. Then, in this sense the
Lewisian similarity accessibility structure, with its countless variation of worlds’
closeness, can be regained by the S�-similarity one. And it can be regained in virtue
of Lewisian Humean supervenience. Then, S�-similarity order might be regarded
as a plausible extension of the Lewisian one.

Now, at a first glance the previous paragraph might be considered to be self-
defeating. The extension of Lewisian similarity accessibility structure has been built
by using core aspects of the formal articulation and physical content of quantum
string theory, namely, a quantum gravity theory denying the fundamental nature
of spatiotemporal relations. Then, to show how to regain Lewisian similarity or-
der from the S�-similarity extension, I use Lewisian Humean supervenience, i.e.,
a thesis assigning to spatiotemporal relations a fundamental nature. Should this
combination of strategies produce an internal tension?

There are basically two points I can make here to dissolve this apparent ten-
sion. The first is about the special status of quantum string theory. As any other
existing approach to quantum gravity, quantum string theory delivers a descrip-
tion of reality at the Planck scale, one in which gravity, the only fundamental
force left not quantized by quantum field theory, is quantized. Quantizing grav-
ity is quantizing or discretizing the world’s geometry. Differently from any other
quantum gravity approach, in quantum string theory quantization of geometry is
produced by laws that once applied far from the Planck scale (by taking some
low energy limits of their structural equations) morph into many of the empirically
tested low-energy laws. For example, some low-energy limit of quantum strings
laws reproduces general relativity laws governing classical gravity, i.e., govern-
ing the collective behaviors of the gravity’s quanta found in the quantum string
spectrum of states at the Planck scale.34 Now, physical laws far from the Planck
scale, like general relativity, quantum field theory, the Standard model, and so
on, do have the property of supervening on the Humean mosaic of our world.
That means, quantum string theory laws far from the Planck scale morph into the
physical laws supervening on the Humean mosaic of our world. However, because
of their special status of being fundamental laws of our world, they do not supervene
the Humean mosaic. Yet this fact would not require a total rejection of Humean
supervenience thesis, rather a limitation of its domain of application. Indeed phys-
ical laws at the Planck scale have a special metaphysical status not shared with

34 See Polchinski (2005), Witten (1996), and Huggett and Vistarini (2015)
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physical laws far from the Planck scale: quantum string laws do not fit any Humean
mosaic.

Then, to unpack this last claim, I need the second point. At the Planck scale
quantum string physics is background independent. Quantum string laws are
more fundamental than any spatiotemporal structure (any geometry with positive,
negative, and zero curvatures). Equivalently, the string physical lesson coming from
the Planck scale tells that any Humean mosaic (any spatiotemporal structure) is
itself an emergent structure. Now, the fact that any Humean mosaic in any Lewisian
possible world is more fundamental than laws governing those worlds far from the
Planck scale, does not entail that Humean mosaics cannot be emergent. Quantum
string laws cannot fit any Humean mosaic because they are the special status
laws in charge of predicting and explaining those mosaics, as well as in charge
of predicting and explaining their supervenient physical laws. In this context,
Humean supervenience is regarded as a metaphysical thesis about an emergent
reality.

Now, although the nonapplicability of Lewisian Humean supervenience to
quantum strings laws, the particular features of quantum string theory background
independence partially support a tentative formulation of a different thesis of
supervenience applicable to quantum strings laws in some case. This analysis is
part of my tentative extension of the Lewisian metaphysical scheme in which the
interpreted accessibility structure is the nomological one. This is the topic of next
section.

14.3.3 The Topological-Fiber Bundle Structure as a Plausible Accessibility
Structure: Extending Lewisian Nomological Accessibility

Lewisian nomological accessibility among worlds was briefly described in
Section 14.2. Let’s recall that in this metaphysical setting possible worlds are
mereological spacetimes wholes. Moreover, we saw that saying that world u is
accessible from world w means saying that u obeys the physical laws of w. As I
said, the property of “being symmetric” is not definitional of this relation because
the fact that u obeys the physical laws ofw does not necessarily entail the converse.
For example, world w might be characterized by a Humean mosaic strictly
containing the one characterizing u. Then, because of Humean supervenience,
there might be some physical laws governing w and supervening the nonshared
portion of its mosaic, that are not physical laws of u.

Now, in this section I attempt to extend Lewisian nomological accessibility by
using the topological-fiber bundle structure defined to extend Lewisian similarity
to S�-similarity. But this time it is the fiber bundle component read through the lens
of string dualities that is playing a central role.
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In Section 14.3.1 I introduced the total space of the fiber bundle H formally
defined by the following union:

H =
∐

∀i,λi∈M
(Hλi × C).

Let’s recall that the space base of the fiber bundle is the string theory moduli
spaceM equipped with a nonmetrical topology, one induced by mainly two types of
deformations of spatiotemporal structures: spatiotemporal deformations preserving
topological equivalence among the structures, and spatiotemporal deformations not
preserving topological equivalence:

H

↓p
M ←−φ ⋃

Kj
Def (Kj),

where for all λi ∈M ,

p−1(λi) = (ψλi,fα1...αn(λi)) ∈ Hλi × C,

This diagram more or less combines those presented separately in Section 14.3.1.
Here I am partially relying on the content of that section. As I said there, given a
quantum string system Q, one can choose some set of physical properties of the
system, for example the set {Oα1Oα2 . . . Oαn}, and one can also decide that the
spatiotemporal structure in which the system Q dynamically evolves is the one
parameterized by the moduli point λ0. Then, as we saw, the fiber bundle’s fiber on
top of the moduli point λ0, i.e., the fiber p−1(λ0) = (ψλ0,fα1...αn(λ0)) ∈ Hλ0 × C,

carries information about the values taken by the chosen physical properties of the
systemQ as it dynamically unfolds in the spacetime parameterized by λ0.

Any other fiber of the fiber bundle, each on top of some deformation λi of λ0, is
a separate Hilbert space. Then any other fiber carries information about the values
taken by the chosen physical properties {Oα1Oα2 . . . Oαn} of some counterpart ofQ
dynamically evolving within the corresponding spatiotemporal deformation of the
arena in whichQ evolves.

Now, we saw in Section 14.3.1 that through the fiber bundle structure it is
possible to “compare” the values taken by Q’s physical properties with those of
all its counterparts. And this comparison because of string dualities produces the
interesting result of dividing the moduli space M in sets of orbits made by moduli
points. Each orbit is made of some subset of moduli points λi parameterizing some
family of spatiotemporal deformations of the spacetime in which Q evolves. Each
orbit identifies a family of spacetime deformations in which the corresponding
counterparts of Q dynamically evolve in the exact same way as Q does. In other
words, all Q′s counterparts along an orbit obey the quantum string laws obeyed
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by Q, despite being in different spatiotemporal structures. The following diagram
illustrate what I said so far:

H

↓p
M −→π M

{[ d ]}d .

The map π is the canonical projection onto the quotient space M
{[ d ]}d obtained by

dividing the topological spaceM into the orbits {[ d]}d produced by string dualities
and revealed by the fiber bundle structure. As we saw in Section 14.3.1, these orbits
are equivalence’s classes, where the equivalence relation is defined as dynamical
equivalence among different strings models. Each type of orbit is connected to
some type of string duality, which in turn points to some degree of strings laws
insensitivity to spatiotemporal differences.

Parenthetically, one can in principle imagine nondual worlds obeying the same
quantum string laws. In this case such a set would not be an orbit in the quotient
space above, because not identifiable by a string duality. So, including such a
possibility in this formal analysis would probably require adding some new formal
features to the quotient space. It is hard to tell whether these presumed extra features
can be imported from the formal articulation of quantum string theory because, as a
matter of fact, such a conceptual possibility does not seem to be formally traceable
into the physical content of the theory as it stands. Since in this essay the extension
of the Lewisian nomological accessibility is informed by quantum string theory,
I would like to give priority to orbits of worlds produced by string dualities.

Now, the topological space M
{[ d ]}d is basically the disjunct union of orbits d . Its

topology (the quotient topology) is inherited by that ofM via the projection π that
basically glues together moduli points connected by the duality relations.35

The quotient space might be the appropriate setting in which to extend Lewisian
nomological accessibility. Let’s unpack this point. Recall that, like in the case of
S�-similarity, possible worlds in this extension are interpreted as spatiotemporal
structures parameterized by moduli points λi . The extension of Lewisian nomolog-
ical accessibility is called N�-nomological accessibility. The following claim is the
first of the two claims characterizing this extension:

world λi is N�-nomologically accessible from word λ0 just in case λi obeys the quantum
string laws of λ0.

Because string dualities are the central component around whichN�-nomological
accessibility is constructed, the latter is a symmetric relation by definition. Its
property of being symmetric is inherited from the symmetric nature of string

35 For more details on quotient topologies, see Kodaira (2005).
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dualities. The latter are symmetric because the dynamical equivalence among
string models they establish is an exact one. So, the second claim characterizing
N�-nomological accessibility is the following:

if world λi is N�-nomologically accessible from word λ0, then the converse holds true
because they both obey the same quantum string laws in virtue of being dual, for some type
of string duality.

Now, from the fact that there are mainly two types of spatiotemporal defor-
mations producing the topology of M , one infers that there must be two types of
orbits covering M

{[ d ]}d . The first type is made of possible worlds not sharing the
same spatiotemporal structure, yet sharing the topological one, and all obeying the
same quantum strings laws. This type of orbit is often connected to T-duality. Such
dynamical equivalence “identifies” possible worlds obeying the same strings laws,
but spatiotemporally inequivalent because produced by deformations smoothly
shrinking (or dilating) spatial dimensions of some initial world. However, this type
of deformation does not change the topological invariants of the initial world, so
the worlds produced all share the same topological invariants.

Fixing as usual some spatiotemporal structure K0 parameterized by a moduli
point λ0, orbits of this type originating from such moduli points can be regarded as
possible worlds N�-nomologically accessible from world λ0. Although preserving
topological invariants, the large variety of spatiotemporal differences along an orbit
constitutes an obstacle to a straight application of Lewisian Humean supervenience
to the set of string laws obeyed by the worlds in the orbit. According to this thesis
of supervenience, spatiotemporal deformations in general change the supervenient
laws, even though in some cases they don’t. There might be cases in which the
same physical law supervenes on more than one spatiotemporal “token.” In other
words, Humean supervenience, as many other theses of supervenience formulated
in different philosophical contexts, admits its own form of “multiple realizability.”
But as in many other theses of supervenience, in the Humean one there are implicit
constraints built into the notion of multiple realizability in play. In general, such
constraints prevent the relation between the base and the presumed supervenient
property from becoming too weak to qualify as supervenience. For example, a
claim that mental properties can supervene any physical substratum, including blue
cheese, endorses a notion of supervenience that is self-defeating, because the mul-
tiple realizability in play here seems actually to set a dualistic agenda. Mutatis
mutandis, within the context of Humean supervenience, a claim that the same
physical laws supervene many varieties of spatiotemporally inequivalent structures
seems to undermine the very notion of Humean supervenience, because it appears
to set a scenario in which those laws are more fundamental than spatiotemporal
relations. So, the bottom line here is that Humean supervenience is not applicable
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to quantum string laws, at least in its original formulation, because the kind of
insensitivity shown by these laws to spatiotemporal deformations has nothing to
do with the kind of multiple realizability compatible with Humean superveninece.
Indeed that insensitivity sets a scenario in which quantum string laws are more
fundamental than spatiotemporal structures.

However, as I said, the type of deformations applied in this first case (mainly
connected to T-duality) does not change the underlying topology of the original spa-
tiotemporal structure K0. Even more interestingly, modifying even just one topo-
logical invariant of one world residing in the orbit would break theN�-nomological
accessibility to that world. Then, some notion of supervenience applicable to string
laws might be formulated in this case. The mosaic would be defined in terms of a
topological distribution of local properties and the set of fundamental strings laws
governing those worlds would supervene on it.

The second type of orbit made of worlds N�-nomologically accessible from
world λ0 is instead made of possible worlds not sharing the same spatiotemporal
structure, but also topologically inequivalent. Two subtypes are included here. The
first subtype contains those orbits parameterizing spatiotemporal structures geomet-
rically inequivalent, as well as topologically inequivalent, but all having vanishing
Ricci curvature. Without unpacking technical details let’s just say that constant
Ricci curvature is basically a property characterizing a specific set of topological
structures, those which are differentiable.36 Then for this set of topological struc-
tures, the constant value of the Ricci curvature is a topological invariant. So, the
fact that the worlds in the orbit all share the same vanishing Ricci curvature means
that the deformations of the central structure K0 change all topological invariants
except one. The string dualities connected to this subtype of orbits are called string
mirror symmetries.

Again, a deformation of any of the orbit’s worlds done without preserving van-
ishing Ricci curvature would produce a world not nomologically accessible from
world λ0, hence an outsider. In this case trying to formulate a thesis of superve-
nience applicable to the fundamental strings laws governing those worlds is much
more difficult. It is highly non trivial to figure out what a mosaic would be in
this case. One cannot use the same strategy used earlier, one that replaces the
notion of geometrical distribution of local facts with that of purely topological
distribution. All one has here is a single shared topological property allowing for
N�-nomological accessibility from world λ0 to the worlds in this subtype of orbits.

Things get even worse with the second subtype, where the worlds
N�-nomological accessible from λ0 are produced by deformations not preserving

36 A differentiable manifold is not equipped with a metrical (spatiotemporal) structure by definition. It is instead
a topological manifold. However, not every topological manifold is a differentiable one.
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any topological invariant. Orbits of this type are connected to dualities like anti–de
Sitter spacetime conformal field theory (AdS/CFT) correspondence. In this case
there is no room for formulating any thesis of supervenience applicable to quantum
string laws involving an ad hoc notion of mosaic.

Now, if λi is N�-nomologically accessible from λ0, then the Lewisian world w
supervening world λi might be nomologically accessible from the Lewisian world
v supervening word λ0. Let’s unpack this claim.

By using the same line of reasoning developed in the previous section, worlds
λi and λ0 satisfy by definition all the Lewisian requirements for being Humean
mosaics—indeed they are interpreted in the extended accessibility relation as spa-
tiotemporal structures. Then the notion of worlds-supervenience mentioned here is
that of Humean supervenience. A Lewisian world is not just a Humean mosaic, but
also everything else that supervenes on that mosaic. Let’s be focused only on the
supervenient feature represented by physical laws far from the Planck scale.

Now, λi and λ0 are two different spatiotemporal structures, and λi is N�-
nomologically accessible from λ0 because obeying the quantum string laws of
the latter. Also, the extended accessibility relation is symmetric by definition. For
example, it cannot be the case that λi obeys a set of quantum string laws strictly
containing that obeyed by λ0. The two Humean mosaics λi and λ0 obey the same
quantum string laws. Then, as I said in the previous section, such quantum string
laws are more fundamental than the two mosaics and in charge of predicting them.

Now, when applying those quantum string laws far from the Planck scale (by
taking suitable low-energy limits of their structural equations) they reproduce a set
of physical laws at low energy supervening on the Humean mosaics λ0 and λi .
Since Humean supervenience applies to these physical laws, the two supervening
Lewisian worlds in general would not share all of them, even though in some cases
they would.

In the case that two supervening Lewisian worlds share all of the supervening
physical laws, Lewisian nomological accessibility is straightforwardly regained
from the N�-nomologically accessibility connecting λi and λ0. In the more general
case in which the two Lewisian worlds share instead only some of the supervening
physical laws, Lewisian nomological accessibility might be regained. One gets the
Lewisian accessibility back at the supervenient level in all those cases in which one
of the two supervenient worlds obeys a subset of the low-energy laws obeyed by the
other. For example, let {L1,L2} be the complete set of supervenient physical laws,
if one of the two Lewisian worlds, say, w supervening λi , obeys all of them and the
other obeys at least L1 or L2, one can claim that the Lewisian world w supervening
λi is nomologically accessible from the Lewisian world v supervening λ0.

However, Lewisian nomological accessibility might not be always regained from
N�-nomologically accessibility. For example, let {L1,L2,L3} be the complete set
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of supervenient physical laws. The Lewisian world w obeys (L1,L2), whereas the
Lewisian world v obeys (L2,L3). The two Lewisian worlds only share one law. One
cannot say that world w is nomologically accessible from world v because world
w does not obey L3. In the same way one cannot say that world v is nomologically
accessible from world w because world v does not obey L1. So, in this setting
Lewisian nomological accessibility between the two supervenient worlds cannot
be regained from the N�-nomologically accessibility connecting their underlying
mosaics.

14.4 Conclusion

In this essay I propose a metaphysical model of extension of Lewisian modal meta-
physics in light of the physical content and formal articulation of quantum string
theory. The broad rationale behind the project is that of showing that, although
endorsing the metaphysical commitment of quantum string theory to the nonfunda-
mentality of space and time, an attempt of preserving crucial features of Lewisian
modal metaphysics (assigning a fundamental role to spatiotemporal relations) is
not only possible but also has interesting philosophical implications. My extension
applies to two Lewisian accessibility structures, the similarity accessibility and the
nomological one. As it turned out in the essay, the formal scheme, constructed by
extrapolating parts of the theory’s formal articulation and physical content, cali-
brates a metaphysical accessibility structure extending Lewisian similarity, because
of fully carrying its structural properties. It also calibrates a metaphysical acces-
sibility structure tentatively extending Lewisian nomological accessibility, because
of only partially carrying its structural properties. So, the two Lewisian accessibility
structures can be regained from the two extensions, even though the nomological
one only partially. Then, the bottom line is that the extended metaphysical acces-
sibility structures (especially the one extending Lewisian similarity) appear to be
somehow “more fundamental” than the Lewisian ones in virtue of the fact that
some of their crucial properties smoothly reflect the discreteness of the fundamental
quantum nature of reality.

Appendix 14.A

For details about general relativistic spacetime independence I refer the reader to
Vistarini (2019, ch. 3). Perturbative string theory arises from the quantization of
classical string theory performed via perturbative techniques. Classical string
theory is a toy model, that is, it is an unphysical representation of fictional
dynamics: there are no such things like classical strings out there. It is widely held
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that the perturbative formulation of quantum string theory is background dependent,
because the perturbative procedure applied to the classical action would put
geometry by hand. I argue that this is not the case: some contingent methodological
features applied to the toy classical string action are wrongly regarded as revealing
the metaphysical commitment of the quantum string theory eventually obtained
through that methodology of quantization. Indeed, the “geometry” appearing in
the classical action is an arbitrary, free parameter, whose arbitrariness expresses its
unphysical nature, and the unphysical nature of the classical string theory in which
formally shows up. A uniquely determined class of physical geometries is the result
of the quantization of the classical toy action, and the underlying physical quantum
string theory dictates the derived, emergent nature of that physical geometry.
Perturbative quantum string theory does not posit any geometry at the quantum
string scale, rather it admits general relativistic spacetime emergence.

Appendix 14.B

For details about my argument in favor of the emergent nature of the compact
extra dimensions I refer the reader to chapters four and five of Vistarini (2019).
It was in 1997 when Edward Witten produced strong evidence in support of
the idea that physicists could explore the string land beyond the small coupling
constants regime. Witten (1996) argued that whenever the coupling constants
in any one of the many formulations of string theory become very large, that
formulation turns into one of those having small coupling constants. This phys-
ical equivalence exchanging different perturbative regimes also transforms their
related geometries. This simple and powerful set of findings introduced the
notion of string dualities. Over time, the increasingly sophisticated control over
different string physical scenarios morphing into each other, produced theoretical
findings about dualities pointing to the emergent nature of the compact extra
dimensions. The emergence of the compact extra dimensions is a thesis of
background independence complementary to that of general relativistic spacetime
emergence.
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15

What Can (Mathematical) Categories Tell Us about
Spacetime?

ko sanders

15.1 Introduction

There are good reasons to believe that the classical structure of spacetime, as it
appears in general relativity, breaks down at small length scales of the order of the
Planck scale (Doplicher, Fredenhagen, and Roberts, 1995). This poses a problem
in particular for any theory of quantum gravity, which should extend to such short
length scales. Assuming that the classical concept of spacetime (described as a
manifold) is no longer viable as a fundamental concept in such a theory, one needs
to explain how it emerges as an approximate concept in the appropriate (long
distance) limit.

In order to understand what is required of such an explanation, it is necessary
to have a good understanding of the classical structure of spacetime. In this essay I
will therefore focus on the concept of spacetime as it appears in the axiomatic
framework called locally covariant quantum field theory (LCQFT) (Brunetti,
Fredenhagen, and Verch, 2003). This framework provides a language to formulate
quantum field theories in the presence of gravitational background fields, and it
encompasses some of the most precise physical theories that one can formulate
without quantizing gravity. A key aspect of LCQFT is the way that it implements
the conditions of locality and general covariance.1 These conditions have been
crucial for a consistent, perturbative treatment of interacting quantum field theories
(Hollands and Wald, 2015), and they have even led to a perturbative description of
quantum gravity (Brunetti, Fredenhagen, and Rejzner, 2016).

The axiomatic framework of LCQFT is precise, flexible, and quite general.
On the one hand it is similar to algebraic quantum field theory (AQFT) (Haag,

1 There are several papers before Brunetti et al. (2003) that combined the locality and covariance of quantum
fields in a fruitful way, but mostly without employing the language of category theory (Kay, 1979, 1992;
Hollands and Wald, 2001; Verch, 2001).
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1991), an axiomatic framework for quantum field theories in Minkowski space,
which has also been used by philosophers of physics because of its suitability
for studying the foundations of quantum field theory (Halvorson, 2007). On
the other hand, it relies heavily on basic tools from category theory, which are
used to formulate locality and general covariance. To the best of my knowledge,
the use of category theory in this context, to express covariance and especially
locality, has not been investigated by philosophers of physics before (see, however,
Halvorson and Tsementzis [2017] for the use of categories in general philosophy
of science and Weatherall [2017] for related applications in physics). Such an
investigation is warranted, because it lies at the basis of some of the most profound
results in LCQFT (Fewster and Verch, 2012; Fewster, 2015), which address the
question: “How do we know that a theory describes the same physics in all
spacetimes?”

I argue in this essay that the language of category theory, as used in LCQFT,
carries more significance than a mere bookkeeping tool. It is used to give a precise
and explicit statement of how a physical theory gives rise to a kind of model for
modal logic, expressing a systems view of the world, and how spacetime acts as an
organizing principle that brings structure to our understanding of the world. This
aspect of spacetime is tightly related to locality and general covariance. However,
it is not so directly related to the manifold structure, which means that this aspect
of spacetime might be generalized and need not be lost in a quantum theory of
gravity.

The argument that I present is to be viewed as a proposal, coming from a math-
ematical physicist. I focus on philosophical aspects to the best of my ability. It is
my intention that this essay serves as an invitation to the philosophical community
to take up a more thorough investigation of the use of category theory to describe
spacetime in physical theories like LCQFT.

The structure of this essay is as follows. I first review the basic concepts of
LCQFT in Section 15.2. In Section 15.3, I then review the argument that categories
can be used in physics as a kind of models for modal logic and how the categorical
formulation of locality and general covariance in LCQFT can be viewed as an
organizing principle. In Section 15.4, I argue that this organizing principle has some
nontrivial content. For that purpose, I review how it reflects on the identity problem
(“How do we know that a theory describes the same physics in all spacetimes?”).
In Section 15.5, I revisit the structure of the category of localization regions, a
key category in LCQFT. In Section 15.6, I formulate two proposals to characterize
the notion of spacetime in a general context, which, in a generalized sense, should
also apply to theories of (quantum) gravity. Section 15.7 contains some concluding
remarks.
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15.2 Categories in Locally Covariant Quantum Field Theory

The framework of LCQFT, first introduced by Brunetti et al. (2003), is quite flexible
and has since appeared in different variations, adapted to differing circumstances
(Sanders, 2010; Fewster and Verch, 2012; Sanders, Dappiaggi, and Hack, 2014;
Zahn, 2014; Fewster and Schenkel, 2015). The subject of my argument is the use
of category theory to implement locality and general covariance, which is common
to all of these variations. In this section I first present the main parts of the original
framework, which are relevant for this essay, followed by a discussion of some of
the possible variations. I freely make use of basic notions from category theory (see
MacLane [1971] for a general reference).

In the spirit of AQFT (Haag, 1991), it is assumed that a quantum system can
be described by a C∗-algebra A with unit, whose self-adjoint operators correspond
to observable quantities. A state ω of the system is a normalized positive linear
functional ω : A → C, and one may recover a Hilbert space formulation by using
the Gelfand–Naimark–Segal (GNS)-construction. Instead of focusing on a single
system, LCQFT uses many of them: one for each globally hyperbolic Lorentzian
manifold. For this reason one introduces a category, Alg, whose objects are C∗-
algebras A with unit, and whose morphisms are injective2 ∗-algebra homomor-
phisms α : A1 → A2 that preserve the unit. The composition of morphisms is
simply the composition of maps.

A LCQFT should describe a quantum field theory in every globally hyperbolic
Lorentzian manifold M . Here M consists of a smooth, connected manifold M of
dimension 4, together with a smooth Lorentzian metric g, an orientation and a
time orientation, and M admits a Cauchy surface. The collection of all globally
hyperbolic Lorentzian manifolds, where the theory can be localized, also forms a
category, Loc, whose morphisms are isometric embeddings ψ:M1 → M2, which
preserve the orientation, time orientation, and the causal structure. The latter means
in particular that any causal curve γ in M2 that connects points in ψ(M1) must lie
entirely in ψ(M1).

There are several pragmatic reasons to impose global hyperbolicity on the class
of Lorentzian manifolds. First, it ensures the well-posedness of initial value prob-
lems for normally hyperbolic partial differential equations, which is helpful when
constructing quantum field theories. Indeed, it implies the existence of a diffeo-
morphism M � R × �, where each hypersurface {t} × � is a Cauchy surface
and t defines a global time coordinate (which is highly nonunique). Second, in
the mentioned diffeomorphism, � can be any oriented, paracompact manifold, so
the class of globally hyperbolic Lorentzian manifolds is rather large. It certainly

2 The injectivity assumption is not very well motivated, and it is known to fail for free electromagnetism, due to
Gauss’s law (Sanders et al., 2014). For this reason Sanders et al. (2014) suggested to drop it.
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includes many physically interesting situations, such as cosmological scenarios
and black holes. The question whether there are also more fundamental reasons
to impose global hyperbolicity is not fully clarified. It has been pursued especially
by Kay (1992, 1997), whose investigations (predating the categorical framework of
LCQFT) strongly suggest the necessity of certain constraints on the global causal
structure of the Lorentzian manifold, including, e.g., time orientability.

Let me comment at this point on the relation between the category Loc and
the notions of locality and general covariance in general relativity. It is often said
that the symmetry group of general relativity is the diffeomorphism group of the
underlying manifold M. In some sense, the category Loc refines this symmetry
statement by including locality. Indeed, a general morphism ψ: M1 → M2 in
Loc can be written as a composition ψ = ι ◦ φ of morphisms of a special kind.
Here φ : M1 → ψ(M1) is a diffeomorphism, as used in the formulation of general
covariance. ι : ψ(M1)→ M2 corresponds to the canonical inclusion of a subset of
the Lorentzian manifoldM2, expressing locality.

The fundamental definition of Brunetti et al. (2003) states that a LCQFT is a co-
variant functor A : Loc→ Alg. This means that it associates to every Lorentzian
manifold M in Loc a C∗-algebra A(M) in Alg, and that it associates to every
morphism ψ : M1 → M2 in Loc a morphism A(ψ): A(M1) → A(M2) in Alg.
The algebra A(M) describes the quantum theory in the localization regionM . The
morphisms A(ψ) describe how an embedding of Lorentzian manifolds gives rise to
an embedding of the corresponding quantum systems. The requirement that A is a
functor expresses the locality and general covariance of the theory. The simplest
example of a LCQFT is the free scalar field with given mass and scalar curvature
coupling (Brunetti et al., 2003).

On top of the requirement that a LCQFT is a functor A, one may impose ad-
ditional axioms. Let me mention here the time-slice axiom, which encodes the
existence of a dynamical law, and local commutativity. A morphism ψ : M1 → M2

is called a Cauchy morphism when its range ψ(M1) contains a Cauchy surface
of M2. Using a dynamical law it should then be possible to predict the behavior
of the system throughout M2 using information available in ψ(M1). Accordingly,
A is said to satisfy the time-slice axiom whenever A(ψ) is an isomorphism for
all Cauchy morphisms ψ . For local commutativity one considers two morphisms
ψ1 : M1 → M and ψ2 : M2 → M into the same target Lorentzian manifold M ,
such that the rangesψ1(M1) andψ2(M2) are spacelike separated. A is said to satisfy
local commutativity whenever all operators in the range of A(ψ1) commute with all
operators in the range of A(ψ2).

In addition to an algebra of observables, the specification of a quantum system
requires the choice of a set of states. For a C∗-algebra one could take the set of all
algebraic states, but in physical applications this set often contains many states with
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bad behavior. This suggests that the theory should also specify a subset of states,
S(M), on the algebra A(M) for each Lorentzian manifold M . These sets of states
are subjected to some conditions as well. E.g., they should be closed under taking
mixtures (i.e., convex combinations) and for any morphism ψ : M1 → M2 the
pullback A(ψ)∗ω : = ω◦A(ψ) of a state in S(M2) should be a state on S(M1). This
means that the criterion that selects the sets of admissible states S(M)must be local
and generally covariant as well. For free fields one typically uses the Hadamard
condition (Wald, 1994).

Whereas Minkowski space has a group of symmetries, the structure of the cat-
egory Loc is much more complicated. This has important consequences for the
formulation of LCQFTs. Under quite general circumstances, there is no choice
of a well-behaved natural state on all Lorentzian manifolds (Fewster and Verch,
2012), so there is no substitute for the Minkowski vacuum. Nevertheless, it is
possible to treat interacting quantum field theories in curved Lorentzian manifolds
in a perturbative way (see Hollands and Wald [2015] for a review). This requires
the definition of renormalized (Wick) powers and time-ordered products of the
quantum fields. The crucial insight here is that the freedom available in choosing
a regularization and renormalization procedure is severely restricted by impos-
ing the conditions of locality and general covariance (Hollands and Wald, 2001).
Proceeding in this way, mathematical physicists have also formulated perturbative
Yang–Mills theories and even a perturbative description of quantum gravity in a
categorical framework (Hollands, 2008; Fredenhagen and Rejzner, 2013; Brunetti
et al., 2016). Note that this formulation of perturbative general relativity is by
construction local and generally covariant.

As I mentioned, the framework of LCQFT is quite flexible and has appeared in
different variations. One type of variation is to replace the category Loc by another
category BkGrnd, encoding the non-dynamical background structures for the the-
ory. Sanders (2010) uses a category of Lorentzian manifolds with spin structure in
order to describe the free Dirac field. External source fields can also be included
(Zahn, 2014; Fewster and Schenkel, 2015), leading, e.g., to a quite natural formu-
lation of the Aharonov–Bohm effect in electromagnetism (Sanders et al., 2014).
If one can include external source fields into the description of the background
structure, one can also imagine removing the metric from the background structure
and including it with the dynamical fields. In that case, one would replace the
category Loc of globally hyperbolic Lorentzian manifolds by a suitable category
Man of manifolds, e.g., in order to obtain a description of general relativity com-
bined with other classical fields. I address this approach, and any conceptual issues
surrounding it, in Section 15.6.

In a similar way one can replace the target category without losing any of
the core ideas. Brunetti et al. (2003) themselves used a category of more general
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topological ∗-algebras in the description of the free scalar field, which is convenient
to make contact with the Wightman axioms. In a general analysis of locally
covariant theories, Fewster and Verch (2012) go much further and replace the
target category by a quite general category Phys, which is restricted only by
requiring a few basic properties.3 The objects of Phys are supposed to give a
full description of the physical system. (They could consist, e.g., of a C∗-algebra
together with a set of admissible states.) The consequences that Fewster and Verch
(2012) derive in this categorical approach rely on almost nothing except locality
and general covariance, which lends them a very wide range of validity.

15.3 Categories, Modal Logic and Spacetime

From the review of the basic structure of LCQFT in Section 15.2 it is apparent that
the language of category theory plays an important role. At the very least it is a
convenient bookkeeping device, which exhibits the structure of locally covariant
theories in a conceptually clear language. This is an advantage that has contributed
to the recent theoretical development of perturbatively interacting quantum field
theories in curved Lorentzian manifolds. However, one may wonder whether the
effectiveness of category theory has a deeper cause than mere bookkeeping. In
this section I argue that this is the case, by relating the categorical structure to a
systems view of the world and the corresponding modal logic. I then conclude that
spacetime in LCQFT acts as an organizing principle that brings structure to our
understanding of the world.

Let us first follow Fewster and Verch (2012) and consider the general target cat-
egory, Phys, whose objects are (mathematical) descriptions of physical systems.
Each system describes a part of the world. More precisely, we can think of the
specification of an object in Phys as tantamount to the specification of (1) certain
boundary conditions, like the localization region and external fields as well as (2)
the physical operations that can be performed on the system and (3) the states
that the system can be in. The morphisms in this category may be thought of as
expressing a subsystem relation. The statement that Phys is a category imposes
some relations on the morphisms, which can be seen as a consistency criterion that
is needed to properly express the notion of subsystem. E.g., when α : P1 → P2 and
α′ : P2 → P3 are morphisms, expressing how P1 is a subsystem of P2 and how P2

is a subsystem of P3, then α′ ◦ α expresses the way in which P1 is a subsystem of
P3. Thus category theory provides a convenient way to express the systems view of
the world.

3 To be precise, the morphisms of Phys are required to be monomorphisms (which essentially means they are
injective), and the category is required to have equalizers, intersections and unions in the categorical sense.
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It is a crucial part of the categorical language of LCQFT, and of theoretical
physics in general, that theories can also describe situations that are not actually
the case. The branch of logic that studies the truth values of statements and the
validity of arguments that involve such situations is called modal logic (Forbes,
1985). Modal logic makes use of models in order to decide whether an argument is
valid or not. I now recall how the categorical structure of LCQFT makes it a kind
of model in the sense of modal logic (Sanders, 2009).

The most common type of model theory makes use of possible worlds: com-
plete alternatives for how things might be. Objects may or may not exist at a
certain possible world and propositions and predicate statements may or may not
hold. A typical system as described earlier can be embedded into a larger system,
however, so it provides at best only an incomplete description of circumstances.
For this reason it is appropriate to use a less-well-known model theory for modal
logic, which makes use of incomplete sets of circumstances, so-called possibilities
(Forbes, 1985, pp. 18–22). Due to its incompleteness, a possibility may not assign a
truth value to every logical sentence. However, the described circumstances do act
as truthmakers for some logical sentences. Furthermore, possibilities can be refined
by extending the set of circumstances that they specify, thereby extending the set of
logical sentences that are assigned a truth value. This refinement is perfectly aligned
with the structure of a category like Phys.

To be precise, we think of each object in Phys as a possible system that
a given physical theory can describe and that plays the role of a possibility in
the sense of modal logic. The morphisms of the category, which express the
subsystem relation, then correspond to a refinement of such possibilities. I do not
claim that every category must be a viable model for modal logic in this way,
but I do claim that this should hold for any category like Phys, which expresses
the systems view of the world in a physical theory. The possibility semantics
not only fits well with the systems view of the world, it also corresponds with
experimental praxis: we would like to be able to make predictions for a certain
laboratory experiment, without prescribing a complete set of circumstances for
the entire world; making assumptions about the system in question should be
enough.

Let me point out here that the extension of a system to a supersystem is usually
not the only kind of refinement of possibilities that can occur in physics. Given a
possible system, its state also specifies a set of circumstances (e.g., initial condi-
tions). The states should, therefore, describe a model for modal logic in their own
right. However, given the choice of a system, the state is supposed to describe a
complete set of conditions, so the use of possible worlds is more appropriate in
this case. Combing the two kinds of modalities, a possibility in general comprises
the choice of a possible system together with the choice of a possible state. A
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refinement then consists of the embedding into a supersystem, together with an
extension of the state.

I return to the distinction between the two modalities in Section 15.6, but let
me note here that their interplay should be subject to certain restrictions, which are
motivated by physics. It is clear that the refinements of a possibility are typically
not unique. Concerning their existence, note that if a system is known to be in
a state that admits no extension to any supersystem, then one would expect the
system to be the whole universe. Now let us consider the case where a state ad-
mits extensions to some of the possible supersystems but not to others. Implicitly,
such a state contains information about the nature of any possible supersystems
as well as about the system itself. It is desirable to prohibit this kind of behav-
ior, because it indicates that we have made a poor choice in determining what
information is needed to specify the system. In the context of LCQFT, the term
local physical equivalence has been introduced to describe the assumption that
essentially every state of a possible system can be extended to every supersystem
(Fewster, 2007).

Let me now come to the use of functors in LCQFT. For a general morphism
α : P1 → P2, P1 is a subsystem of P2, so it describes less degrees of freedom.
There may be many ways in which this can occur, e.g., when P2 describes a system
consisting of several fields and P1 focuses only on one of these. The subsystems
appearing in LCQFT are of a very specific type, however, because they are in the
image of a functor A : Loc → Phys. We have seen in Section 15.2 that this
functorial structure expresses the fact that the description of the system A(M)
should depend in a local and covariant way on the localization region M . The
systems localized in different Lorentzian manifolds are, therefore, not independent.
Because the principles of locality and general covariance are closely tied to the
notion of spacetime, the functorial structure is characteristic for how spacetime
enters into LCQFT.

In more general terms, if a physical theory gives rise to a category Phys of
possible systems, the existence of the functor A (and the validity of other axioms of
LCQFT) may be viewed as a condition on the category Phys. It states that a possi-
ble system A(M) can be determined from its localization regionM: it describes the
degrees of freedom localized in that region. The subsystem relation corresponds to
a possible enlargement of the region M (or rather, a morphism in Loc). LCQFT,
therefore, stipulates in a precise and explicit way that spacetime is to be viewed as
an organizing principle, which brings additional structure to the category Phys of
systems that a theory describes.

I will not attempt to place this statement in the appropriate philosophical
or epistemological context—as a mathematical physicist this lies well outside
my expertise. Instead I will address the possible criticism that the conclusions
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I have drawn about the notion of spacetime in LCQFT are not very useful,
because they rely only on elementary concepts of category theory and they do
not contain any deep statements. In response it should be noted that the morphisms
of the category Loc have a rich structure, which is much more complicated than
the diffeomorphism group of a single manifold. I illustrate in the next section
how this structure can be used to analyze deep questions and prove nontrivial
results.

15.4 On Doing the Same Physics in All Spacetimes

One of the most successful theories in theoretical physics is the standard model
of elementary particles, which describes a wide range of physical phenomena to
a very high accuracy. This model is normally formulated in Minkowski space,
which models the complete absence of gravity. This is a very good approximation
to actual experiments, where the gravitational fields are extremely weak and the
detectors are located at large distances compared to the size of the interaction
region. However, as a matter of principle it seems desirable to be able to formulate
the model also in the presence of (weak) gravitational fields, just to emphasize that
the absence of gravity is really an approximation and not an essential assumption.
Following this reasoning ultimately leads us to the question how to include gravity
as a dynamical (and quantized) theory in the standard model. At an intermediate
step, however, where the gravitational fields are weak but not negligible, it leads to
the question how to formulate the standard model in a fixed curved Lorentzian
manifold. One aspect of this question is the following: given a theory in some
Lorentzian manifold, how can we identify it as the standard model, despite the
influence of the background gravitational field?

In the general framework of LCQFT, Fewster and Verch (2012) investigated
this question, which they formulated as follows: “What does it mean for a the-
ory to describe the same physics in all spacetimes?” They point out that this is a
difficult question, which is not adequately answered by specifying a Lagrangian.
The question seems similar to a fundamental problem of identity that arises in
philosophy: “How do we know that object A is the same as thing as object B, but at
a different place and time and under different circumstances?” In everyday life we
seem reasonably good at identifying objects, despite changing circumstances, but
it is difficult to provide a clear theoretical explanation of why this is so. One of the
arguments that may be presented in this context relates to the notion of spacetime:
two objects that occupy the same region in spacetime are identical. Such arguments
seem problematic in the context of classical field theory and quantum theory, let
alone for theories in which spacetime is not a fundamental concept. Nevertheless,
it is interesting to note that the analysis of Fewster and Verch (2012) also invokes
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spacetime, because it makes essential use of the functorial structure of LCQFT,
as I now briefly review. (See Fewster [2015] for a more detailed and accessible
presentation.)

Let us consider two LCQFTs, A and B, given as functors from Loc to some
category Phys. Fewster and Verch (2012) call A a subtheory of B, whenever there
is a natural transformation ζ : A → B between the functors. This means that the
following holds: for every Lorentzian manifold M in Loc there is a morphism
ζM : A(M) → B(M) in Phys, and for every morphism ψ : M1 → M2 in Loc
there holds:

ζM2 ◦ A(ψ) = B(ψ) ◦ ζM1 . (15.1)

The first condition states that on each Lorentzian manifold M , the system A(M)
is a subsystem of B, so it describes less degrees of freedom. The second condition
essentially requires that the degrees of freedom from B that are left out in A are
independent of the localization region that is being considered. Thus, it makes sense
to restrict B(M2) to A(M1), without the need to prescribe the order in which the
localization region and the degrees of freedom are being restricted.

Two theories are said to be equivalent when all the ζM are isomorphisms
in Phys. In the language of category theory this means that ζ : A → B is a
natural isomorphism. When B is the same functor as A, the natural isomorphisms
ζ : A → A form a group, which is interpreted as the global gauge transformations
of the theory (Fewster, 2013).

It should be emphasized that, from a physical point of view, it is not sufficient
to require only the existence of the isomorphisms ζM , without imposing Equa-
tion (15.1). Fewster (2015) points out that this weaker condition is already satisfied
in an analogous situation when A : BkGrnd→ Alg is a free scalar quantum field
with an external source term J (which is part of the background structure included
in the objects of BkGrnd) and when B : BkGrnd → Alg is the same field with
a source term λJ for any constant λ. It is desirable that a nontrivial rescaling of
the coupling to the external sources leads to an inequivalent theory, and this is
achieved by also requiring (15.1). In fact, an analogous issue had already appeared
in AQFT, where it has been recognized that the information of the theory is encoded
in the subsystem relationship of the theory (Haag, 1991).4 The main difference
between AQFT and LCQFT is that the morphisms in the latter case have a much
richer structure, because the category includes Lorentzian manifolds with nontrivial
gravitational background fields and nontrivial topology.

4 In AQFT, and also for C∗-algebraic LCQFTs, the local algebras are typically expected to be isomorphic to the
unique, hyperfinite von Neumann factor of type III1 (Buchholz et al., 1987; Halvorson, 2007). The algebras by
themselves, without their morphisms, therefore carry very little information.
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Fewster and Verch now propose the following line of reasoning. Suppose that
we had a criterion to decide whether an LCQFT A describes the same physics in
all spacetimes. Assume that two theories A and B satisfy this criterion, and that
there exists a Lorentzian manifold M such that A(M) and B(M) are equivalent.
Then both theories should describe the same physics in all Lorentzian manifolds,
i.e., A should be equivalent to B. More technically, a criterion C on the class of
LCQFTs has the same physics in all spacetimes (SPASs) property if and only if for
any natural transformation ζ : A → B between LCQFTs satisfying this criterion,
ζ is a natural isomorphism as soon as ζM is an isomorphism for some M . The
requirement that the isomorphism ζM is part of a natural transformation ζ : A → B
prevents the isomorphism at M from being an accidental pathology that does not
respect locality and general covariance.

Perhaps surprisingly, Fewster and Verch (2012) show that the axioms of LCQFT
by themselves (including the time-slice axiom and local commutativity) are not
sufficient to ensure that a theory describes the same physics in all spacetimes. For
rather general LCQFTs A, Fewster (2015) constructs a natural transformation ζ to
another theory B such that ζM is an isomorphism for some Lorentzian manifolds
M , but not for all of them. This signals the need for an additional criterion C to
supplement the axioms of LCQFT.

Fewster and Verch (2012) goes on to propose a criterion C that does enjoy the
SPASs property: dynamical locality. Once again this criterion makes essential use
of the categorical structure of the theory, combined with the time-slice axiom and
local commutativity. I will not give a full description of this criterion but only
indicate its main points, which should suffice to show that the categorical language
of LCQFT allowed Fewster and Verch to prove nontrivial statements that address
their identity problem .

Dynamical locality is defined for LCQFTs A whose target is the category Alg
of C∗-algebras and that satisfy local commutativity and the time-slice axiom. Using
the time-slice axiom one can study how the system A(M) responds to a perturbation
δg of the metric, or of another external source field, supported in any compact
region of the Lorentzian manifold M . This response is encoded in the relative
Cauchy evolution,

rceM,δg : A(M)→ A(M),

which is defined in Brunetti et al. (2003). Consider, e.g., a morphism ψ : M1 → M

and define the kinematic subalgebra:

Akin(ψ(M1)) : = A(ψ)(A(M1)),
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of A(M). For any operator X in Akin(ψ(M1)) and any perturbation δg supported in
a compact region that lies space-like to ψ(M1) one may show that:

rceM,δg(X) = 0,

due to local commutativity. This follows naturally from the localization of X and
δg and the fact that the theory has a dynamical law that respects the causal structure
of the Lorentzian manifold.

The idea of dynamical locality is that one can also determine the localization
region of an operatorX ∈ A(M) dynamically. The dynamical algebra Adyn(ψ(M1))

is essentially generated by operators X ∈ A(M) such that rceM,δg(X) = 0 for all
perturbations δg with compact support space-like to ψ(M1). Dynamical locality
requires that the kinematical and dynamical ways of localizing operators agree:

Adyn(ψ(M1)) = Akin(ψ(M1)).

Dynamical locality has the SPASs property (Fewster and Verch, 2012). Thus, draw-
ing a parallel to the philosophical identity problem, Fewster and Verch replace the
claim that an object may be identified by the spacetime region that it occupies, with
a precise mathematical result that suggests that a quantum field theory in different
Lorentzian manifolds may be identified when it is dynamically local, a property
that depends on locality, general covariance, the causal behavior of the theory and
its response to perturbations of the metric (or other external source fields).

This is not the place to try to disentangle the role of the metric and the role of
manifold in this study, so let me conclude this section instead with the following
remark. It is known that dynamical locality holds for the free scalar field, but it fails,
e.g., for free electromagnetism due to Gauss’s law (Fewster, 2015; cf. footnote 2).
Indeed, Fewster and Verch do not claim that the dynamical locality criterion is a
fully satisfactory solution to their identity problem. However, their arguments do
show that LCQFT provides a suitable language to address the problem and to prove
nontrivial results that can contribute to its clarification.

15.5 The Structure of the Category Loc

In LCQFT, spacetime enters only through a functor A : Loc → Phys, which
essentially represents the category Loc in the category Phys of systems that a
certain physical theory can describe. It is, therefore, worthwhile to have a closer
look at the key category Loc.

We have already seen that Loc has sufficiently many objects to describe a wide
range of physical situations. Instead of fixing a single Lorentzian manifold to model
the universe, LCQFT treats all the objects in Loc on an equal footing. Paraphrasing
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Brunetti et al. (2003), fixing a background manifold seems artificial and at variance
with the principles of general relativity. It would essentially impose a prejudice
on the global shape of the universe, even though such global aspects should be
irrelevant for all local physical processes. The use of a category theoretical language
to eliminate any such prejudice is analogous to the use of a differential geometric
language to eliminate any prejudice for a choice of (local) coordinates.

We have also seen that the morphisms of Loc encode the symmetries of general
relativity, comprising both general covariance and locality, and I have mentioned
some ramifications, e.g., for the (non-)existence of natural vacuum states (Fewster
and Verch, 2012) and for the renormalization ambiguities in perturbatively inter-
acting theories (Hollands and Wald, 2001). Indeed, the importance of Loc can be
highlighted even more by an analogy with AQFT. There it is known that the local
algebras are almost entirely fixed by a few physically relevant conditions (Buchholz
et al., 1987; Halvorson, 2007), so they do not carry much information. Instead, most
of the nontrivial information of a QFT is encoded in the embeddings between the
local algebras. A similar argument should apply to LCQFT, where the embeddings
arise, via the functor A, from the category Loc, which has a much richer structure
than, say, the Poincaré group.

The category Loc was defined in terms of Lorentzian manifolds. It is interesting
to note, however, that much of its structure can probably be characterized directly
in terms of objects and morphisms, which lends itself to an interpretation in terms
of localized systems and subsystems. Loc has a non-empty class of objects, and all
morphisms are monomorphisms (i.e., “injective”). The category also has a notion of
subobjects, i.e., a distinguished class of morphisms, denoted by M1 ⊂ M2. Every
object has a proper subobject (i.e., a noninvertible subobject morphism into the
given object), which essentially means that there is no smallest size for systems.
Let me also sketch some ideas that lead to less elementary properties. First, it
should be possible to define a point in an object M as a suitable infinite filtration
of sub-objects, . . . ⊂ M3 ⊂ M2 ⊂ M1 ⊂ M . Note, however, that a functor A
need not assign a physical system to a point, in line with the idea that quantum
fields are distributional in nature and require an open region to be well defined.
Second, for the set of all points in M it should be possible to define a topology,
using the subobjects of M to define a topological basis. Proceeding in this way, it
should be possible to formulate the necessary topological and differential geometric
properties to recover the smooth manifold structure of each object M of Loc, and
the fact that morphisms are smooth embeddings.

The Lorentzian metric enters the definition of Loc through the causal structure,
which is required to be preserved by all morphisms. It is unclear if the causal
structure can be recovered from the structure of the morphisms, but the metric
itself seems beyond such an approach, because we can transform it in a conformal
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rescaling without affecting the causal structure. Of course this is not surprising: the
metric should be related to the fields or matter of a physical theory, so it seems
much more promising to try to recover the metric and the causal structure from the
functor A, using the physical properties of the theory under consideration, in the
spirit of, e.g., Ehlers, Pirani, and Schild (2012).

In conclusion, starting with an abstract category C to model the localization
regions of physical systems, it could be feasible to formulate a list of properties of
C, directly in terms of its objects and morphisms, that make it equal (or equivalent)
to a category Man of smooth (paracompact) manifolds with smooth embeddings.
This already suffices to capture some typical aspects of LCQFT: locality, diffeomor-
phism invariance and the absence of a prejudice on the global shape of the universe.
The metric (and causal) structures in Loc can probably not be fully explained in
such abstract terms, but they might be recovered instead from the physical theory
at hand via the functor A.

15.6 On the Notion of Spacetime

I have argued that the use of category theory in LCQFT has a deeper meaning than
mere bookkeeping and that it allows to analyze deep questions. In this section I
discuss the question what the categorical point of view can tell us about the notion
of spacetime in the context of very general physical theories, including theories of
quantum gravity.

In classical general relativity (GR), we use a manifold as the background on
which physical fields, including the metric field, are defined. The role of this man-
ifold is somewhat puzzling, due to the following paradox. Although it is com-
monly understood that the individual points of a manifold in GR do not have
any intrinsic physical meaning, the manifold does seem to be indispensable when
formulating a field theory. Classically, the resolution is that we can use the values
of the fields to identify points in the manifold, in principle with infinite accuracy.
Unfortunately this resolution is no longer available in quantum gravity, where we
expect all fields (including the metric) to be quantum fields. Instead of sharp field
values, we have unsharp measurement results, making the viability of an under-
lying manifold structure highly questionable and making the paradox above all
the more urgent. I think that the categorical perspective may help to clarify this
paradox.

Let me first discuss a conceptual issue that already arises in classical GR. In
LCQFT we assume the existence of a functor A : BkGrnd → Phys, where
the category BkGrnd encodes the available background structure, which always
consists of a globally hyperbolic Lorentzian manifold with a fixed metric, possibly
with additional source fields. More general theories, such as pure GR or quantum
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gravity, will not have so much nondynamical background structure. For those
theories it seems natural to replace the category Loc by, e.g., a category of
manifolds, Man.

Suppose that there were a description of classical GR (in vacuum) as a functor
GR : Man → Phys for a suitable category of (paracompact) manifolds and a
category of physical systems. This means that the choice of a manifold M in
Man determines a physical system. There is certainly no problem in the claim
that M determines a set of solutions to Einstein’s equation, or other mathematical,
geometric objects. However, in order to do physics, the description of the system
should normally include a class of observables, which may be more problematic. If
we were to model the observables by test functions (or test tensors), as is usually
done in field theory, then we would think of these observables as being localized in
the region M. However, the physical interpretation of this model is that we should
set up an experimental device that is localized in M. In order to do this, we need to
have some way of physically identifying the points of M. This is prohibited by the
common understanding that the individual points of a manifold in GR do not have
any intrinsic physical meaning.

One viable attempt to circumvent this problem is to include nondynamical back-
ground fields in the category Man, while keeping the metric dynamical. The back-
ground fields may be used to identify points of the manifold and they give rise
to a stress tensor, which need not, however, admit any metric solving Einstein’s
equations, due to the nonlinearity of these equations. We will not be concerned with
the mathematical difficulty of determining when the set of solutions is nonempty,
because this approach has a more serious drawback: it cannot capture the dynamics
of all fields simultaneously.

A better resolution can be sought in a change of the nature of the category Phys.
We saw in Section 15.3 that the systems view of the world is captured by the use of
suitable categories Phys associated to physical theories. This immediately raises
the question: “Which categories are suitable for this purpose?” Some issues that one
may wonder about, and that are worthy of further investigation, are the following:
Should it be allowed that systems can be proper subsystems of themselves? Do we
insist that the morphisms have to be monic (i.e., injective), or does that exclude
Gauss’s law (Fewster and Verch, 2012; Sanders et al., 2014)? For the purpose
of doing GR or quantum gravity, one may argue that the category Phys should
follow the usual strategy of using partial observables, rather than observables, to
circumvent the lack of local observables (see, e.g., Rovelli [2008] and Brunetti et al.
[2016]). States should then assign (expectation) values to suitable combinations of
partial observables. It would be worthwhile to formulate this idea in a categorical
setting, consistent with the systems view of the world, and to motivate the structure
of the objects of this category Phys in as general setting as possible. I expect that
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this should lead to a satisfactory formulation of classical GR and other classical
Lagrangian field theories as a functor A : Man→ Phys.

Let me now come to the notion of spacetime. I propose to mathematically char-
acterize the notion of a classical spacetime by a functor A : Man → Phys. This
places the dynamical metric in the category Phys, which is the most natural choice
in the context of GR and quantum gravity, and it rephrases the manifold aspects only
in terms of a functor. In this way, spacetime acts as an organizing principle, which
brings structure to the theory with the category of systems Phys. Theories that do
not admit such a functor, do not have a classical spacetime in this sense. To put this
characterization of spacetime into context, note that it suggests a shift in emphasis.
The most fundamental aspect of spacetime may not be that the objects of Man are
manifolds, consisting of points with local charts etc. Instead, it might be how we
can use the spacetime: we use the manifolds to label systems in Phys, and we use
the shrinking of the spacetime region to label a corresponding subsystem relation.
It may be of interest to find a direct characterization of those categories Phys that
admit a classical spacetime, or even better, to construct a spacetime functor from a
given category Phys.

It is likely that quantum gravity theories do not admit a classical space-
time in this sense. Nevertheless, we can still use the categorical framework and
replace the category Man by guessing a suitable alternative, e.g., a category Set of
discrete sets (in analogy to a category of discrete causal sets, as briefly suggested
in Fewster [2015]). Alternatively, if the structure of Man can be recovered from
a list of properties on systems and subsystems, we may take the systems view
of the world as more fundamental than the manifold structure and eliminate
manifolds as fundamental objects. We could then critically analyze the list of
properties sketched in Section 15.5 and remove or replace all those properties
that seem unfounded, e.g., all those referring to points and perhaps also to
subobjects. In this way one may retain a well-motivated, but weaker organizing
principle.

To explain spacetime as an emergent notion, one needs to argue that a quantum
gravity theory admits at least an approximate notion of spacetime in some sense.
One may try to show, e.g., that procedures allowing us to reconstruct the functor
A : Man → Phys for classical field theories may fail in the case of quantum
gravity, but that they still lead to a functor QG : C → Phys with a category C
that is close to Man, in some sense. More importantly, one will need to show that
the functor QG admits suitable limits, which describe a classical field theory or
a LCQFT. These limits should allow us to somehow recover the category Man
or Loc from C, so they should be properly formulated as the convergence of a
family of functors QGλ : C → Phys, as the parameter λ goes to 0, to a functor
A0 : Man→ Phys or A0 : Loc→ Phys.
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The key point in these limits is that it is presumably much harder to approximate
a functor like A : Man → . . ., with the full structure of Man, rather than a single
manifold M or the diffeomorphism group Diff(M). E.g., if the metric becomes
nondynamical, a single system can give rise to many background configurations.
Moreover, the morphisms in Loc need to know about the causal structure of the
objects, which may become available only in the limit. All this means that the
limiting procedure for functors needs to be carefully considered. In short, including
locality (i.e., the subsystem relation) in the picture when requiring spacetime to
arise as an emergent concept may impose very stringent constraints on quantum
gravity theories.5

To conclude this section, let me also propose a characterization of spacetime that
is more verbal rather than mathematical. For this purpose I try to rephrase some of
the preceding discussion in the terms of modal logic used in Section 15.3. There
we saw that the specification of a possibility consists of two parts: the specification
of a possible system, which corresponded to a choice of a Lorentzian manifold,
together with the choice of a possible state on the system. In LCQFT, it is the
interplay between these two types of modalities that seems to be characteristic
for the way that spacetime enters. Both the choice of system and the choice of
state specify some circumstances (like boundary or initial conditions), but they
are not on an equal footing. In LCQFT, the possible system must be chosen first,
because it determines not only a set of boundary conditions for the system, but
it determines the set of observables, which essentially make up the system. The
choice of a state, on the other hand, does not alter the set of observables, but only
assigns probability distributions to them. On top of that, the distinction between
these two kinds of circumstances should be subject to certain conditions, such as
local physical equivalence, as indicated in Section 15.3.

The formulation in terms of modal logic also applies to theories of the form
A : Man → Phys. The category Phys may be quite different from the case of
LCQFT, e.g., it may specify only partial observables. Nevertheless, the choice of a
possibility should still consist of two parts: the choice of a possible manifold and the
choice of a state. This discussion leads to a second proposal on the characterization
of spacetime (perhaps in a somewhat generalized sense). It is closely related to
the mathematical characterization given earlier, but it is formulated in terms of the
possibilities semantics: The notion of spacetime (in a generalized sense) can be
characterized as those circumstances that need to be specified in order to determine

5 In this regard it is interesting to point out a previous proposal to describe quantum gravity as a topological
quantum field theory (Barrett 1995; see also Atiyah [1988]). This framework does make use of an elegant
category theoretic formulation, but in a way that does not reflect locality very well, because it does not allow
for a comparison of open subsets in different manifolds. Barrett (1995) does not investigate local observables
in a systematic way. I thank one of the referees for bringing this proposal to my attention.
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a system (e.g., the partial observables) of a theory. A state can be characterized
as those circumstances that need to be specified in order to determine expectation
values for combinations of partial observables. Theories for which the possibilities
admit a precise distinction in these two aspects, admit a (generalized) notion of
spacetime.

15.7 Conclusions

The original reason for Brunetti et al. (2003) to introduce the language of category
theory in LCQFT, was to express the requirements of locality and general covari-
ance. However, I have argued that this language is appropriate quite generally to
express a systems view of the world, in which a physical theory gives rise to a
category of possible systems, which can serve as a kind of model for modal logic.
The category of Lorentzian manifolds Loc, and the requirement that theories are
functors A : Loc → Phys, are a concrete expression of how spacetime acts as
an organizing principle that brings structure to our understanding of the world. I
have also argued that the functorial structure of spacetime may be highly nontrivial,
because the source category may have many morphisms that lead to a rich structure.
To illustrate this point I have used the work of Fewster and Verch (2012), who use
the structure of Loc to shed light on the deep question of identifying a quantum
field theory in different spacetimes. However, I did not attempt to disentangle the
roles of locality, general covariance, the metric, and the causal behavior of the
theory in their argument.

I have considered the notion of spacetime without a metric in Section 15.6 as
an organizing principle in the general context of the systems view of the world,
expressed in the language of category theory. In this context I have formulated
two proposals to characterize the notion of spacetime. The first is a mathematical
condition: the existence of a functor A : Man→ Phys, where Man is a category of
manifolds. This raises the interesting question when such a functor exists and under
what conditions we can reconstruct it from the category Phys. Furthermore, if the
structure of Man can be formulated entirely in terms of relations between objects
and morphisms, as I argued in Section 15.5, this may help clarify how quantum
gravity can be about quantized fields without having underlying manifolds as a
fundamental notion. The second proposal is formulated in more abstract terms:
spacetime can be characterized as the set of circumstances that specify a system
of a theory. Although both formulations are somewhat analogous, I do not expect
them to be fully equivalent, nor do I expect either of them to be the last word. I
do hope, however, that they at least illustrate that the categorical language intro-
duced by Brunetti et al. (2003) is also suitable for the discussion of conceptual and
philosophical questions, like those surrounding spacetime and quantum gravity.
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Along the way I have mentioned several additional questions. How can we split
the possibilities of modal logic into possible systems and possible states? Which
categories can act as a category of possible systems Phys? What does a category
Phys look like that uses partial observables instead of observables? An inves-
tigation of these and of the proposals that I formulated will require input from
philosophers of science as well as from mathematicians and physicists. It is the
purpose of this essay to raise these questions to the philosophical community, and
to promote a dialogue with the mathematics and physics communities.
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