
M
A

R
IB

EL Y.  SA
N

TO
S

C
A

R
LO

S C
O

STA

River Publishers Series in Information Science and Technology

ISBN  978‐877‐022‐184‐9

Associate Professor at the Department of 
Information Systems, University of Minho. 
Senior Researcher of the ALGORITMI 
Research Centre and leader of SEMAG, the 
Software-based Information Systems 
Engineering and Management Group. 
Coauthor of the book Business Intelligence – 
Da Informação ao Conhecimento (3.ª Ed. At.), 
also published by FCA.

MARIBEL YASMINA SANTOS

Invited Lecturer in the field of Information 
Systems, at the University of Minho. 
Previous experiences include senior Big 
Data engineer, researcher, and software 
developer. (Co)author of several scientific 
and technical publications in the areas of 
Big Data, Data Warehousing, and Data 
Science.

CARLOS COSTA

Big Data is a concept of major relevance in today’s 
world, sometimes highlighted as a key asset for 
productivity growth, innovation, and customer 
relationship, whose popularity has increased 
considerably during the last years. Areas like smart 
cities, manufacturing, retail, �nance, software 
development, environment, digital media, among 
others, can bene�t from the collection, storage, 
processing, and analysis of Big Data, leveraging 
unprecedented data-driven work�ows and 
considerably improved decision-making processes.

This book addresses models and methods for 
designing and implementing Big Data Systems to 
support mixed and complex decision processes, 
giving special attention to Big Data Warehouses 
(BDWs) as a way of e�ciently storing and 
processing batch or streaming data for structured 
or semi-structured analytical problems. The 
chapters of this book:

• Present fundamental concepts and best 
practices according to the state of the art in the 
multidisciplinary topics of Big Data and
Data Warehousing (DWing);

• Contain suggestions for logical architectures 
and technological infrastructures for Big Data 
Warehousing (BDWing) systems;

• Provide a data modeling method to e�ciently 
design data models for BDWing contexts;

• O�er a unique view of how to ensure high 
performance from BDWs, to provide fast 
retrieval of data, highly detailed ad hoc queries, 
and advanced analytical applications.

This book is useful to DWing and Big Data 
practitioners, as well as teachers, researchers, and 
students focusing on the design, development, and 
implementation of analytical applications 
supported by a BDW. 

TOPICS:
• Big Data Concepts, Techniques, and     
 Technologies

• OLTP-oriented and OLAP-oriented   
 Databases for Big Data Environments

• Design and Implementation of BDWs

• BDWs Modeling: From Theory to   
 Practice

• Fueling Analytical Objects in BDWs

• Evaluating the Performance of BDWs

• BDWing in Smart Cities

9 788770 221849 River Publishers

NOT  FOR  SALE  IN  PORTUGUESE  SPEAKING  COUNTRIES

   

River



BIG DATA
CONCEPTS, WAREHOUSING, AND ANALYTICS



RIVER PUBLISHERS SERIES IN INFORMATION SCIENCE AND TECHNOLOGY

Series Editors:

K. C. Chen     Sandeep Shukla
National Taiwan University, Taipei, Taiwan  Virginia Tech, USA
and     and
University of South Florida, USA   Indian Institute of Technology Kanpur, India

Indexing: All books published in this series are submitted to the Web of Science Book Citation Index 
(BkCI), to SCOPUS, to CrossRef and to Google Scholar for evaluation and indexing.

The “River Publishers Series in Information Science and Technology” covers research which ushers 
the 21st Century into an Internet and multimedia era. Multimedia means the theory and application of 
filtering, coding, estimating, analyzing, detecting and recognizing, synthesizing, classifying, recording, and 
reproducing signals by digital and/or analog devices or techniques, while the scope of “signal” includes 
audio, video, speech, image, musical, multimedia, data/content, geophysical, sonar/radar, bio/medical, 
sensation, etc. Networking suggests transportation of such multimedia contents among nodes in 
communication and/or computer networks, to facilitate the ultimate Internet.

Theory, technologies, protocols and standards, applications/services, practice and implementation 
of wired/wireless networking are all within the scope of this series. Based on network and communication 
science, we further extend the scope for 21st Century life through the knowledge in robotics, machine  
learning, embedded systems, cognitive science, pattern recognition, quantum/biological/molecular 
computation and information processing, biology, ecology, social science and economics, user behaviors 
and interface, and applications to health and society advance.

Books published in the series include research monographs, edited volumes, handbooks and 
textbooks. The books provide professionals, researchers, educators, and advanced students in the field 
with an invaluable insight into the latest research and developments. 

Topics covered in the series include, but are by no means restricted to the following:

• Communication/Computer Networking Technologies and Applications
• Queuing Theory
• Optimization
• Operation Research
• Stochastic Processes
• Information Theory
• Multimedia/Speech/Video Processing
• Computation and Information Processing
• Machine Intelligence
• Cognitive Science and Brain Science
• Embedded Systems
• Computer Architectures
• Reconfigurable Computing
• Cyber Security

For a list of other books in this series, visit www.riverpublishers.com

www.riverpublishers.com
www.riverpublishers.com


BIG DATA
CONCEPTS, WAREHOUSING, AND ANALYTICS

MARIBEL YASMINA SANTOS

CARLOS COSTA

River Publishers



All our books have a strict quality control, however we advise you to periodically check our website (www.fca.pt) to download 
any corrections.

We are not responsible for any error in the hyperlinks of this book, which were checked at publication date.

All trade names refered in this book have registered patent.

Published, sold and distributed by:
River Publishers
Alsbjergvej 10
9260 Gistrup
Denmark

www.riverpublishers.com

ISBN: 978-87-7022-184-9 (Hardback)
          978-87-7022-183-2 (Ebook)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by 
any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers.

Pagination: Alice Paula Simões
Cover design: José M. Ferrão – Look-Ahead

Copyright © 2020, property of FCA – Editora de Informática, Lda. all rights reserved, Copyright © 2020, River Publishers for 
hardcover printed edition, and “NOT FOR SALE IN PORTUGUESE SPEAKING COUNTRIES”.

River Publishers Series in Information Science and Technology

www.fca.pt) to
www.riverpublishers.com


To the ones who are the music of my life.

Maribel Yasmina Santos

To everyone who believed in me and helped me keep going.

Carlos Costa 





Copyright © River Publishers – except portuguese speaking countries

©
 F

C
A

CONTENTS

List of Figures XI

List of Tables XVII

The Authors XIX

Acknowledgments XXI

Foreword XXIII

Notation XXV

1. Introduction 1

1.1. Objectives of this Book 4

1.2. Intended Audience 7

1.3. Book Structure 7

2. Big Data Concepts, Techniques, and Technologies 9

2.1. Big Data Relevance 10

2.2. Big Data Characteristics 12

2.3. Big Data Challenges 16

2.3.1. Big Data General Dilemmas 16

2.3.2. Challenges in the Big Data Life Cycle 17

2.3.3. Big Data in Secure, Private, and Monitored Environments 19

2.3.4. Organizational Change 20

2.4. Techniques for Big Data Solutions 21

2.4.1. Big Data Life Cycle and Requirements 23

2.4.1.1. General Steps to Process and Analyze Big Data 23

2.4.1.2. Architectural and Infrastructural Requirements 25



Big Data: Concepts, Warehousing, and AnalyticsVIII

2.4.2. The Lambda Architecture 27

2.4.3.  Towards Standardization: the NIST Reference  
Architecture    28

2.5. Big Data Technologies 30

2.5.1. Hadoop and Related Projects 30

2.5.2. Landscape of Distributed SQL Engines 32

2.5.3. Other Technologies for Big Data Analytics 35

3. OLTP-oriented Databases for Big Data Environments 37

3.1. NoSQL and NewSQL: an Overview 38

3.2. NoSQL Databases 41

3.2.1. Key-value Databases 41

3.2.1.1. Overview 41

3.2.1.2. Redis 42

3.2.2. Column-oriented Databases 49

3.2.2.1. Overview 50

3.2.2.2. HBase 51

3.2.2.3. From Relational Models to HBase Data Models 57

3.2.3. Document-oriented Databases 69

3.2.3.1. Overview 69

3.2.3.2. MongoDB 71

3.2.4. Graph Databases 79

3.2.4.1. Overview 79

3.2.4.2. Neo4j 82

3.3. NewSQL Databases and Translytical Databases 88

4. OLAP-oriented Databases for Big Data Environments 93

4.1. Hive: the De Facto SQL-on-Hadoop Engine 94

4.1.1. Data Storage Formats 98

4.1.1.1. Text File 99

4.1.1.2. Sequence File 100

4.1.1.3. RCFile 105

4.1.1.4. ORC File 107

4.1.1.5. Avro File 111

4.1.1.6. Parquet 112

4.1.2. Partitions and Buckets 113



Copyright © River Publishers – except portuguese speaking countries

Contents IX
©

 F
C

A

4.2. From Dimensional Models to Tabular Models 119

4.2.1. Primary Data Tables 121

4.2.2. Derived Data Tables 125

4.3. Optimizing OLAP workloads with Druid 131

5. Design and Implementation of Big Data Warehouses 143

5.1. Big Data Warehousing: an Overview 144

5.2. Model of Logical Components and Data Flows 147

5.2.1. Data Provider and Data Consumer 149

5.2.2. Big Data Application Provider 149

5.2.3. Big Data Framework Provider 151

5.2.3.1. Messaging/Communications, Resource 
Management, and Infrastructures 152

5.2.3.2. Processing 153

5.2.3.3. Storage: Data Organization and Distribution 154

5.2.4. System Orchestrator and Security, Privacy, and  
Management 157

5.3. Model of Technological Infrastructure 158

5.4. Method for Data Modeling 163

5.4.1. Analytical Objects and their Related Concepts 164

5.4.2. Joining, Uniting, and Materializing Analytical Objects 167

5.4.3. Dimensional Big Data with Outsourced Descriptive Families 169

5.4.4. Data Modeling Best Practices 171

5.4.4.1. Using Null Values 171

5.4.4.2. Date, Time, and Spatial Objects vs. Separate 
Temporal and Spatial Attributes 172

5.4.4.3. Immutable vs. Mutable Records 173

5.4.5. Data Modeling Advantages and Disadvantages 174

6. Big Data Warehouses Modeling: From Theory to Practice 177

6.1. Multinational Bicycle Wholesale and Manufacturing 178

6.1.1. Fully Flat or Fully Dimensional Data Models 180

6.1.2. Nested Attributes 181

6.1.3. Streaming and Random Access on Mutable Analytical  
Objects 182

6.2. Brokerage Firm 183

6.2.1. Unnecessary Complementary Analytical Objects and  
Update Problems 183



Big Data: Concepts, Warehousing, and AnalyticsX

6.2.1.1. The Traditional Way of Handling SCD-like  
Scenarios 185

6.2.1.2. A New Way of Handling SCD-like Scenarios 185

6.2.2. Joining Complementary Analytical Objects 186

6.2.3. Data Science Models and Insights as a Core Value 186

6.2.4. Partition Keys for Streaming and Batch Analytical Objects 187

6.3. Retail 188

6.3.1. Simpler Data Models: Dynamic Partitioning Schemas 189

6.3.2. Considerations for Spatial Objects 189

6.3.3. Analyzing Non-Existing Events 190

6.3.4. Wide Descriptive Families 190

6.3.5. The Need for Joins in Data CPE Workloads 191

6.4. Code Version Control System 192

6.5. A Global Database of Society – The GDELT Project 193

6.6. Air Quality 194

7. Fueling Analytical Objects in Big Data Warehouses 197

7.1. From Traditional Data Warehouses 198

7.2. From OLTP NoSQL Databases 200

7.3. From Semi-structured Data Sources 202

7.4. From Streaming Data Sources 204

7.5. Using Data Science Models 210

7.5.1. Data Mining/Machine Learning Models for Structured Data 211

7.5.2. Text Mining, Image Mining, and Video Mining Models 216

8. Evaluating the Performance of Big Data Warehouses 219

8.1. The SSB+ Benchmark 220

8.1.1. Data Model and Queries 220

8.1.2. System Architecture and Infrastructure 221

8.2. Batch OLAP 223

8.2.1. Comparing Flat Analytical Objects with Star Schemas 223

8.2.2. Improving Performance with Adequate Data Partitioning 227

8.2.3. The Impact of Dimensions’ Size in Star Schemas 230

8.2.4. The Impact of Nested Structures in Analytical Objects 232

8.2.5. Drill Across Queries and Window and Analytics Functions 234



Copyright © River Publishers – except portuguese speaking countries

Contents XI
©

 F
C

A

8.3. Streaming OLAP 236

8.3.1. The Impact of Data Volume in the Streaming Storage 
Component 236

8.3.2. Considerations for Effective and Efficient Streaming OLAP 239

8.4. SQL-on-Hadoop Systems under Multi-User Environments 242

9. Big Data Warehousing in Smart Cities 245

9.1. Logical Components, Data Flows, and Technological Infrastructure 246

9.1.1. SusCity Architecture 247

9.1.2. SusCity Infrastructure 250

9.2. SusCity Data Model 251

9.2.1. Buildings Characteristics as an Outsourced Descriptive  
Family 254

9.2.2. Nested Structures in Analytical Objects 255

9.3. The Inter-storage Pipeline 255

9.4. The SusCity Data Visualization Platform 256

9.4.1. City’s Energy Consumption 257

9.4.2. City’s Energy Grid Simulations 258

9.4.3. Buildings’ Performance Analysis and Simulation 258

9.4.4. Mobility Patterns Analysis 260

10. Conclusion 263

10.1. Synopsis of the Book 265

10.2. Contributions to the State of the Art 270

References  271

Index 281





Copyright © River Publishers – except portuguese speaking countries

©
 F

C
A

LIST OF FIGURES

Figure 2‑1. Increased interest in Big Data.  10

Figure 2‑2. The 3Vs model.  14

Figure 2‑3. Main Big Data characteristics identified in the literature.  15

Figure 2‑4. Big Data Processing Flow.  23

Figure 2‑5. A shared-nothing architecture. 26

Figure 2‑6. The Lambda Architecture.  27

Figure 2‑7. The NIST Big Data Reference Architecture.  29

Figure 2‑8. The Apache Hadoop ecosystem.  31

Figure 3‑1. The CAP Theorem.  39

Figure 3‑2. Types of NoSQL databases.  40

Figure 3‑3. Horizontal scaling of nodes in a cluster. 41

Figure 3‑4. Key-value stores. 42

Figure 3‑5. Example of a key-value store. 42

Figure 3‑6. Examples of Redis data structures.  43

Figure 3‑7. Row-oriented vs. column-oriented storage. 51

Figure 3‑8. Example of a HBase table. 52

Figure 3‑9. Timestamp in HBase tables. 53

Figure 3‑10. HBase table for the Name column family. 53

Figure 3‑11. HBase table for the Address column family. 54

Figure 3‑12. Entity-Relationship Diagram for the Hotel example.  60

Figure 3‑13. Relational data schema for the Hotel example.  61



Big Data: Concepts, Warehousing, and AnalyticsXIV

Figure 3‑14. Data workflows for the Hotel example.  61

Figure 3‑15. CDM for the Hotel example (based on HBase).  63

Figure 3‑16. Enrichment of the CDM with derived attributes. 64

Figure 3‑17. RDM for the TPC-H data model.  65

Figure 3‑18. Data workflows for the TPC-H dataset.  66

Figure 3‑19. CDM with the descriptive tables for the TPC-H data model.  67

Figure 3‑20. CDM with the analytical tables for the TPC-H data model.  68

Figure 3‑21. Document stores. 69

Figure 3‑22. Example of a JSON document. 70

Figure 3‑23. Structure of a document key in MongoDB.  71

Figure 3‑24. A collection of documents. 72

Figure 3‑25. Aggregation pipeline of MongoDB. 75

Figure 3‑26. A graph data structure.  80

Figure 3‑27. An example of a graph data structure. 80

Figure 3‑28. Different types of relationships in graphs.  81

Figure 3‑29. Node returned to the user in Neo4j. 83

Figure 3‑30. Establishing a relationship between two nodes in Neo4j. 83

Figure 3‑31. Selecting all the nodes and relationships in Neo4j. 84

Figure 3‑32. Selecting a specific relationship in Neo4j. 84

Figure 3‑33. Current nodes and relationships in Neo4j. 85

Figure 3‑34. Finding the shortest path between two nodes in Neo4j. 86

Figure 3‑35. An example of a graph database in Neo4j graphical interface. 87

Figure 3‑36. Tabular representation of two nodes in Neo4j. 88

Figure 3‑37. Calculating the spatial distance in Neo4j. 88

Figure 4‑1. Example of a Hive table without partitions. 94

Figure 4‑2. Example of a Hive table with partitions. 95

Figure 4‑3. Example of a Hive table with partitions and subpartitions. 96

Figure 4‑4. SSB data model.  98

Figure 4‑5. Querying a Hive table (Ambari view). 99



Copyright © River Publishers – except portuguese speaking countries

List of Figures XV
©

 F
C

A

Figure 4‑6. Overview of the text file of a Hive table. 100

Figure 4‑7. Sequence files with no compression or with record compression. 101

Figure 4‑8. Sequence files with block compression. 101

Figure 4‑9. Data organization in sequence files and RCFiles. 105

Figure 4‑10. Data organization in ORC files. 108

Figure 4‑11. Unsorted and sorted data in the stripes of an ORC file. 108

Figure 4‑12. Schemas evolution in an Avro file.  111

Figure 4‑13. The Parquet data format. 112

Figure 4‑14. Data organization in a Parquet file. 112

Figure 4‑15. Partitions and subpartitions in a Hive table. 113

Figure 4‑16. Partitions and subpartitions when querying the data. 114

Figure 4‑17. Analyzing the distribution of the data with the nation bucketing. 116

Figure 4‑18. Analyzing the distribution of the data with the custkey bucketing. 117

Figure 4‑19. Example of an ADMBI. 120

Figure 4‑20. Components of a Hive table. 121

Figure 4‑21. Example of a data model with a constellation schema. 122

Figure 4‑22. Example of a descriptive component. 123

Figure 4‑23. Example of an analytical component. 123

Figure 4‑24. Identification of primary data tables. 124

Figure 4‑25. Example of a dimensions lattice of a star schema: ADMBI  
example data model (top) and dimensions lattice (bottom). 126

Figure 4‑26. ADMBI example data model (two fact tables). 126

Figure 4‑27. Dimensions lattice for a constellation schema. 127

Figure 4‑28. Valid combinations of a dimensions lattice for a constellation  
schema. 127

Figure 4‑29. Example of partitions for the Calendar dimension. 130

Figure 4‑30. Example of the Sales star schema. 130

Figure 4‑31. Example of a lattice of cuboids for a data cube with three  
dimensions. 132

Figure 4‑32. Data granularity, level of detail, storage needs, and querying ability.  133



Big Data: Concepts, Warehousing, and AnalyticsXVI

Figure 4‑33. Example of data segments in Druid. 135

Figure 4‑34. Definition of data shards in Druid. 136

Figure 4‑35. Definition of query granularity in Druid. 137

Figure 4‑36. Inverted indexes in Druid. 141

Figure 4‑37. Integration of Hive and Druid.  142

Figure 5‑1. A conceptual model of the BDW. 146

Figure 5‑2. Model of logical components and data flows.  148

Figure 5‑3. Method for CPE processes. 150

Figure 5‑4. Model of technological infrastructure. 159

Figure 5‑5. General data model. 164

Figure 5‑6. Process of joining analytical objects. 168

Figure 5‑7. Example of immutable and mutable records. 174

Figure 6‑1. Adventure Works BDW data model. 179

Figure 6‑2. Brokerage firm BDW data model. 184

Figure 6‑3. Retail BDW data model. 188

Figure 6‑4. BDW data model for a code version control system. 192

Figure 6‑5. BDW data model for the GDELT project. 194

Figure 6‑6. BDW data model for air quality analysis. 195

Figure 7‑1. CPE workload for traditional DW migration. 198

Figure 7‑2. CPE workload for semi-structured data. 204

Figure 7‑3. Streaming CPE workload using Kafka, Spark Streaming, and 
Cassandra. 205

Figure 7‑4. Example of using data mining/machine learning algorithms  
in CPE workloads. 212

Figure 7‑5. Including unstructured data science models in CPE workloads. 217

Figure 8‑1. SSB+ data model.  220

Figure 8‑2. SSB+ architecture. 222

Figure 8‑3. Small to medium batch SSB+ workloads. 224

Figure 8‑4. Storage size for the SF=300 using different modeling approaches. 224

Figure 8‑5. Large-scale batch SSB+ workload. 226



Copyright © River Publishers – except portuguese speaking countries

List of Figures XVII
©

 F
C

A

Figure 8‑6. Presto CPU time for the star schema and the flat analytical object. 227

Figure 8‑7. Large-scale batch SSB+ SF=300 workload with data partitioning. 229

Figure 8‑8. Large-scale batch SSB+ SF=300 workload with small dimensions. 231

Figure 8‑9. Performance of a nested analytical object in the SSB+ context. 234

Figure 8‑10. Performance of an analytical object (AO) and a star schema (SS)  
in a workload based on drill across queries and window and  
analytics functions. 235

Figure 8‑11. Cassandra and Hive SSB+ streaming results. 237

Figure 8‑12. Spark Streaming monitoring GUI showing resource starvation  
when using Cassandra and Presto simultaneously. 240

Figure 8‑13. Thousands of small files created in HDFS (Hive’s storage  
backend) when using Spark Streaming. 241

Figure 9‑1. The SusCity BDWing architecture. 246

Figure 9‑2. The SusCity BDW data model. 252

Figure 9‑3. SusCity nested structures (example). 255

Figure 9‑4. SusCity data visualization platform – energy consumption  
dashboard. 257

Figure 9‑5. SusCity data visualization platform – energy grid simulation  
dashboard. 258

Figure 9‑6. SusCity data visualization platform – buildings analysis dashboard. 259

Figure 9‑7. SusCity data visualization platform – buildings simulation  
dashboard. 260

Figure 9‑8. SusCity data visualization platform – mobility grid dashboard. 261

Figure 9‑9. SusCity data visualization platform – mobility dashboard  
at street level. 261





Copyright © River Publishers – except portuguese speaking countries

©
 F

C
A

LIST OF TABLES

Table 2.1. Big Data applied in several business areas. 12

Table 2.2. Comparison between an extended RDBMS and Hadoop  
MapReduce. 26

Table 2.3. SQL-on-Hadoop systems.  34

Table 3.1. Data structures in Redis.  44

Table 3.2. Redis commands for strings.  44

Table 3.3. Redis commands for lists.  45

Table 3.4. Redis commands for sets. 46

Table 3.5. Redis commands for hashes.  47

Table 3.6. Redis commands for sorted sets.  48

Table 4.1. Data matrix with the identification of the descriptive () and  
analytical () components. 129

Table 4.2. Example of different segment’s granularities in Druid.  138

Table 4.3. Example of the cache mechanism in Druid (time in seconds).  139

Table 4.4. Example of different query granularities in Druid.  139

Table 4.5. Example of different number of hashed partitions in Druid.  140

Table 4.6. Features of Hive and Druid.  142

Table 8.1. Multi-user SSB+ workload SF=30 (in seconds).  243

Table 9.1. Performance comparison between analytical objects stored in Hive  
and Cassandra.  256





Copyright © River Publishers – except portuguese speaking countries

THE AUTHORS

Associate Professor at the Department of Information 
Systems, University of Minho (http://www.uminho.pt), 
Senior Researcher of the ALGORITMI Research Centre 
(http://algoritmi.uminho.pt), and leader of SEMAG, the 
Software-based Information Systems Engineering and 
Management Group, at ALGORITMI. Her research interests 
include Business Intelligence and Analytics, Big Data 
Analytics, (Big) Data Warehousing and Online Analytical 
Processing. Coauthor of the book Business Intelligence 
– Da Informação ao Conhecimento (3.ª Ed. At.), also 
published by FCA.

Invited Lecturer in the field of Information Systems, at 
the University of Minho (http://www.uminho.pt). Previous 
experiences include senior Big Data engineer, researcher, 
and software developer. (Co)author of several scientific 
and technical publications in the areas of Big Data, 
Data Warehousing, and Data Science. He is constantly 
looking for new ways of contributing to the community of 
researchers and practitioners in these areas.

Maribel Yasmina 
Santos

Carlos Costa

©
 F

C
A

http://www.uminho.pt
http://algoritmi.uminho.pt
http://www.uminho.pt




Copyright © River Publishers – except portuguese speaking countries

ACKNOWLEDGMENTS

It was such a challenging and amazing journey the one that 
drove us to this book. During this journey, we received the 
help and support of many institutions, colleagues, friends, 
and family. It is now the time to thank you all, recognizing 
your valuable support and help. In particular, our special 
acknowledgments to:

• The University of Minho, our home for so many years. 
Thank you for giving us the resources, the problems, the 
students, and the context to carry out this project. A special 
recognition to the Department of Information Systems, to 
all our colleagues there, for supporting our enthusiasm and 
our work in this research field, to the ALGORITMI Research 
Centre, and Centro de Computação Gráfica;

• The various organizations that gave us so many challenges, 
allowing us to work on them and advance the state of the 
art in this field. We are particularly grateful to BOSCH Car 
Multimedia Portugal in Braga, for the excellent partnership 
and for providing the context for maintaining a remarkable 
working team;

• Our partners in the SusCity Project, and the many 
scientific and technical challenges we faced in such a 
multidisciplinary project; 

• The amazing group of LID4/Lynx Lab, researchers that 
contributed every day to the work materialized in this 
book, addressing different research lines, ideas, projects, 
and discussions. Many thanks to João Galvão, Carina 
Andrade, Bruno Martinho, Francisca Lima, Eduarda Costa, 

©
 F

C
A



Big Data: Concepts, Warehousing, and AnalyticsXXIV

Guilherme Moreira, José Correia, João Martins, Cristiano 
Miranda, Fábio Teixeira, and Nuno Silva. Without you, this 
project would not have been possible. Thank you for the 
great work, but also for the lunches, dinners, cakes, and 
happiness we shared throughout these years; 

• Our friends, a fundamental pillar in our lives;

• Our families, who are always by our side, supporting, 
encouraging, and giving us the strength to carry on;

• The open source community who provides valuable access 
to state-of-the-art technologies. Otherwise, research and 
development of most institutions would not be possible. 
Furthermore, we also acknowledge the relevance of people/
entities who provide free access to useful resources, such 
as Freepick from www.flaticon.com that made available 
icons included in some figures of this book.

www.flaticoncom


Copyright © River Publishers – except portuguese speaking countries

FOREWORD

These are exciting times for our database community, 
from theory to practice, with many emerging and changing 
technologies trying to keep pace with the exponential data 
growth and heterogeneity of data sources, especially as 
we go through the evolving challenges of building scale-
out architectures and complex analytical queries. Big Data: 
Concepts, Warehousing, and Analytics presents this diverse 
and shifting landscape comprehensively and thoroughly, while 
remaining accessible and welcoming to students, instructors, 
practitioners, and researchers. 

It is not necessary for the readers to have an extensive 
knowledge of Big Data Warehousing (BDWing) to benefit from 
this book. It focuses on well-defined methods for designing, 
modeling, and querying to develop data flowing through 
different logical/physical components as well as analytical 
applications. The chapters have been written with a particular 
eye toward BDWing, and they meet the right balance 
between fundamental concepts and best practices related 
to the state of the art in Big Data and the multidisciplinary 
field of Data Warehousing (DWing). Many chapters contain 
suggestions for technological infrastructures as well as 
data modeling guidelines, offering the readers a unique 
view of BDWing performance for fast retrieval, ad hoc query 
granularities, and advanced analytical algorithms.

The authors of this book, Maribel Yasmina Santos and Carlos 
Costa, have contributed to the BDWing field for many years. 
Maribel has worked as a researcher, educator, and project 
leader. She has contributed for many decades in the areas 

©
 F

C
A



Big Data: Concepts, Warehousing, and AnalyticsXXVI

of Business Intelligence and Analytics, Big Data Analytics, 
(Spatial) Data Mining, Spatio-temporal Data Models, and 
Spatial Reasoning. Carlos is an Invited Lecturer in the area 
of Big Data and Data-oriented Systems. Both have played an 
important role in the development of major prototypes, working 
in collaboration with industry and government sectors. This 
book has immensely gained from their innovative research 
and solid experience, and will be an influential contribution to 
benchmarking, prototyping, and data modeling discussion in 
this exciting field. 

Monica Wachowicz

Full Professor in Data Science
Cisco Innovation Chair in Big Data

NSERC/Cisco Industrial Research Chair in Real-time Mobility Analytics
University of New Brunswick, Canada



Copyright © River Publishers – except portuguese speaking countries

3NF – Third Normal Form

ACID – Atomicity, Consistency, Isolation, and Durability

ADM – Analytical Data Model

ADMBD – Analytical Data Model in Big Data contexts

ADMBI – Analytical Data Model in traditional Business 
Intelligence contexts

AGPL – Affero General Public License

API – Application Programming Interface

BASE – Basically Available, Soft state, and Eventual 
consistency 

BDW – Big Data Warehouse

BDWing – Big Data Warehousing

BI – Business Intelligence

BI&A – Business Intelligence and Analytics

BSON – Binary JavaScript Object Notation

CAP – Consistency, Availability, and Partition tolerance

CDM – Columnar Data Model

CLI – Command Line Interface

CPE – Collection, Preparation, and Enrichment

CPU – Central Processing Unit

CRUD – Create, Read, Update, and Delete

DBMS – Database Management System

NOTATION

©
 F

C
A



Big Data: Concepts, Warehousing, and AnalyticsXXVIII

DDL – Data Definition Language

DDM – Dimensional Data Model

DML – Data Manipulation Language

DW – Data Warehouse

DWing – Data Warehousing

ELT – Extract, Load, and Transform

ETL – Extract, Transform, and Load

FK – Foreign Key

GFS – Google File System

GUI – Graphical User Interface

HDFS – Hadoop Distributed File System

HiveQL – Hive Query Language

HTAP – Hybrid Transaction-Analytical Processing

HTML – Hypertext Markup Language

IaaS – Infrastructure-as-a-Service

I/O – Input/Output

IoT – Internet of Things

JBOD – Just a Bunch of Disks

JDBC – Java Database Connectivity

JSON – JavaScript Object Notation

MPP – Massively Parallel Processing

NBD-PWG – NIST Big Data Public Working Group

NBDRA – NIST Big Data Reference Architecture

NIST – National Institute of Standards and Technology

NK – Natural Key

NoSQL – Not Only SQL

ODBC – Open Database Connectivity

OLAP – Online Analytical Processing

OLTP – Online Transaction Processing



Copyright © River Publishers – except portuguese speaking countries

Notation XXIX

ORC – Optimized Row Columnar

PK – Primary Key

RAID – Redundant Array of Independent Disks

RCFile – Record Columnar File

RDBMS – Relational Database Management System

RDD – Resilient Distributed Dataset

RDM – Relational Data Model

SCD – Slowly Changing Dimension 

SF – Scale Factor

SK – Surrogate Key

SOA – Service-Oriented Architecture

SQL – Structured Query Language

SSB – Star Schema Benchmark

SSD – Solid State Drive

TPC – Transaction Processing Performance Council

TPC-DS – TPC Benchmark DS

TPC-E – TPC Benchmark E

TPC-H – TPC Benchmark H

UDF – User-Defined Function

UTC – Coordinated Universal Time

WGS84 – World Geodetic System 1984

XML – Extensible Markup Language

YARN – Yet Another Resource Negotiator

©
 F

C
A





INTRODUCTION1



Big Data: Concepts, Warehousing, and Analytics2

Our world is generating data at unprecedented rates, mainly due to recent technological 
advancements in cloud computing, internet, mobile devices, and embedded sensors 
(Dumbill, 2013; Villars, Olofson, & Eastwood, 2011). Collecting, storing, processing, 
and analyzing all this data is increasingly challenging, but organizations able to do it and 
extract business value from it will gain significant competitive advantages. They will be 
able to better analyze and understand their products, stakeholders, and transactions. Big 
Data is frequently regarded as a buzzword for smarter and more insightful data analyzes, 
but arguably, it is more than that; it is about new, challenging, and more granular data 
sources, which require the use of advanced analytics to create or improve products, 
processes, and services, as well as adapting rapidly to business changes (Davenport, 
Barth, & Bean, 2012).

Over the last years, there has been a growing interest in Big Data (Google Trends, 2018), 
which is sometimes highlighted as a key asset for productivity growth, innovation, and 
customer relationship, benefiting business areas such as healthcare, the public sector, 
retail, manufacturing, and modern cities, among others (Manyika et al., 2011; M. Chen, 
Mao, & Liu, 2014). The definition of Big Data is ambiguous and it is difficult to determine 
the point at which data becomes “big” (Ward & Barker, 2013). Therefore, Big Data is 
frequently defined by its characteristics (e.g., its volume, variety, and velocity) and the 
consequent technological limitations it imposes to organizations, i.e., data that is “too 
big, too fast, or too hard for existing tools to process” (Madden, 2012, p. 4). It can be 
said that if Big Data is data that creates technological limitations, then it has always 
existed, and it always will. Currently, there is a paradigm shift in the way we collect, 
store, process, and analyze data. Organizations need to be aware of these technological 
trends and other strategies that may improve business value. Consequently, research 
and practice in Big Data have major relevance to ensure that organizations have 
rigorous proofs that emergent techniques and technologies can help them to succeed in  
data-driven business environments. 

Big Data brings numerous research challenges, which can be divided into four main 
categories: i) general dilemmas, such as the lack of consensus and rigor in the definition 
of the concept, models, and architectures; ii) challenges related to the Big Data life cycle, 
from collection to analysis; iii) challenges related to security, privacy, and monitoring;  
iv) organizational change, such as new required skills (e.g., data scientists) or changes 
in workflows to accommodate the data-driven mindset. Working with Big Data requires 
knowledge from multiple disciplines. The term “data science” is frequently used to 
designate the area responsible for dealing with Big Data in all the stages of its life cycle, 
which relies on the scientific method (defining hypotheses and validating conclusions) and 
on knowledge related to areas such as machine learning, programming, and databases, 
to name a few. Therefore, in this book, data science is referred to as the act of extracting 
patterns and trends from data, using certain data-related techniques, regardless of its 



Introduction 3

Copyright © River Publishers – except portuguese speaking countries

characteristics or challenges. These insights can then be communicated or used to 
create data artifacts or to optimize existing ones, improving business management and 
performance through data-driven decision-making (C. Costa & Santos, 2017b). In this 
book, the term data science is used with the meaning afore-mentioned; terms such as 
data mining, for example, are seen as embedded in the knowledge of data scientists  
and are therefore referred to as “data science techniques” (C. Costa & Santos, 2017b).

The traditional Data Warehouse (DW) is a fundamental enterprise asset, which leverages 
data access, analysis, and presentation in appropriate forms to support fact-based 
decision-making in organizations (Kimball & Ross, 2013). Recently, however, the data 
science community has started to question what is the role of the DW in the current era of 
Big Data? Which considerations for Big Data environments will lead to the redesign of the 
traditional DW based on relational databases? Which are the main characteristics of a Big 
Data Warehouse (BDW) and how it can be designed and implemented? These questions 
are of major relevance to understand the role of such data asset in current data-driven 
environments, which are dominated by volume, variety, velocity, and advanced data 
analytics, which impose difficulties to traditional techniques and technologies (Russom, 
2014, 2016). Organizations in today’s world need to understand if their current DWs 
are limited by the amount, structure, or velocity of data they can process, as well as to 
consider leveraging data science capabilities throughout their daily activities.

A BDW can be defined by its characteristics, including parallel/distributed storage and 
processing, real-time capabilities, scalability, elasticity, high performance, flexible storage, 
commodity hardware, interoperability, and support for mixed and complex analytics. 
BDW is a recent concept, and research on the topic is emerging but remains scarce.  
A critical gap identified in the literature is the lack of an integrated and validated approach 
for designing and implementing both the logical layer (data models, data flows, and 
interoperability between components) and the physical layer (technological infrastructure). 
The divergence regarding the concept of BDW is alarming. Moreover, a prescriptive 
approach in which models, methods, and instantiations are tightly coupled is still needed 
(thus providing a cohesive way of building BDWs).

The current trend in BDW design and implementation mainly consists in finding the best 
technology to meet Big Data demands (use case driven approach), instead of following 
a data modeling approach (data-driven approach) (Clegg, 2015). Although there are 
already some best practices, non-structured guidelines, and implementations in specific 
contexts, they do not cover many of the characteristics of a BDW identified in the literature. 
Since works related to the BDW concept are multidisciplinary, certain approaches 
focus on general guidelines and best practices, while others focus on the technological 
advancements in storage and analytics. However, as previously mentioned, there is no 
integrated approach focusing on both the logical and the physical layers to implement 
the characteristics of a BDW with adequate evaluation (e.g., benchmarking, prototypes, ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics4

and data modeling discussion), which could provide a general-purpose approach, and 
prescribe models and methods for researchers and practitioners.

1.1. OBJECTIVES OF THIS BOOK
The main problem identified in the literature is that there is a significant gap between this 
is what a BDW should be and this is how it must be designed and implemented, leading 
to a use case driven approach primarily concerned with finding the best technology to 
meet demands. The proposal of a prescriptive approach to design and implement BDWs 
contributes to the development of new initiatives in a rigorously justified manner, wherein 
models (representations of logical and infrastructural components), methods (structured 
practices), and instantiations (prototypes or implemented systems) are tightly coupled 
and grounded on evaluated practices. Such contribution aims to enrich data-driven 
approaches in Big Data environments, in which the models and methods are so general 
that the context of the instantiations becomes as irrelevant as possible, similarly to what 
usually happens in traditional DWs. Big Data brings major changes in the way one is used 
to build traditional DWs, including different techniques and technologies. However, this 
book assumes that such changes do not imply discarding the relevance of data models 
and methods in favor of a use case driven approach. Consequently, the main goal of this 
book is presenting a general-purpose approach for designing and implementing BDWs, 
wherein models and methods are adequately integrated and validated, while providing 
practitioners a broad overview of Big Data technologies that can be used in these analytical 
contexts, as well as examples of real-world applications.

The approach shown in this book is the result of an extensive design science research 
process (Hevner, March, Park, & Ram, 2004; Peffers, Tuunanen, Rothenberger, & 
Chatterjee, 2007), and provides a set of models and methods to guide practitioners 
working in this area. Also, it aims to foster future research related to BDWs, by inviting 
researchers and practitioners to further evaluate it in several implementation contexts. 
This work is not focused on “lift and shift” strategies, therefore, the coexistence of the 
traditional DW with Big Data technologies is not considered here. Consequently, we 
foresee the use of the proposed approach in the following scenarios: i) the organization 
does not currently have a traditional DW and wants to implement a modern data asset, 
namely a BDW; ii) the organization has a traditional DW and wants to replace it (“rip and 
replace” strategy); iii) or, finally, the organization relies on a use case driven approach, 
maintaining a complex and not interoperable federation of different technologies, and 
wants a data-driven approach with high interoperability between components and well-
defined methods, data models, and data flows.

BDWs have major relevance for the scientific community and practitioners in the area 
of data engineering and data science. Developing an approach in which models, 



Introduction 5

Copyright © River Publishers – except portuguese speaking countries

methods, and instantiations are tightly coupled and scientifically evaluated will provide 
a structured guide to DW practitioners and promote future research on the concept of 
BDW. Taking the former into consideration, the objectives of this book are the following:

1.  Present the main Big Data concepts, techniques, and technologies (with practical 
examples when applicable), such as:

a)  Big Data definition, relevance, and challenges;

b)  Design guidelines/techniques such as the National Institute of Standards and 
Technology (NIST) Big Data Reference Architecture (NBDRA) (NBD-PWG, 2015), 
the Big Data Processing Flow (Krishnan, 2013), the Data Highway Concept 
(Kimball & Ross, 2013), and the Lambda Architecture (Marz & Warren, 2015);

c)  Big Data technologies like Hadoop and its ecosystem, distributed Structured 
Query Language (SQL) engines (e.g., SQL-on-Hadoop systems), and Not Only 
SQL (NoSQL) or NewSQL databases.

2.  Disseminate models and methods for BDW design and implementation:

a)  A model of the logical components and their interoperability, representing how 
data flows through the different components and detailing how they interchange 
data according to the proposed data modeling method;

b)  A method for collecting, preparing, and enriching data flowing to the BDW, 
including structured, semi-structured, and unstructured data. Data science 
techniques (e.g., data mining and text mining) are taken into consideration, in 
order to give structure to the data and deliver predictive capabilities. This method 
also includes concerns regarding batch data and streaming data (low latency and 
high frequency);

c)  A technological infrastructure model, representing how the Big Data technologies 
can be used, organized, and deployed in a shared-nothing architecture;

d)  A data modeling method that can accommodate all types of data regardless 
of their structure and subject. Obviously, unstructured data does not fit into 
predefined data models and, therefore, in this case, data mining and text mining 
techniques are used to extract value from data, giving structure to the relevant 
findings, and storing those in the BDW. Consequently, the BDW will not only have 
historical data, but also real-time data and predictive capabilities.

3.  Elucidate the intended audience regarding the use of the aforementioned models and 
methods using demonstration cases:

a)  Demonstrate the proposed data modeling method when applied to different  
real-world problems (e.g., retail, manufacturing, finance, sensor-based analysis, 
and digital media). This objective is focused on creating a set of BDW data models ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics6

and examples of data modeling guidelines available, which practitioners can take 
into consideration when building their own applications;

b)  Present the design and implementation details regarding batch and streaming data 
Collection, Preparation, and Enrichment (CPE) processes. Batch processes do 
not aim for low latency and high frequency, unlike streaming processes, in which 
each event should be loaded into the BDW with a latency between milliseconds 
and a few seconds. This demonstration case also considers how several data 
science techniques (e.g., data mining and text mining) can be efficiently included 
in batch and streaming data CPE processes, as the approach aims to support  
the design and implementation of both descriptive and predictive BDWs;

c)  Discuss the benchmark of various workloads and scenarios, including different 
Scale Factors (SFs) and dimensions size for batch data, use of data partitioning, 
use of nested attributes, drill across, window and analytics functions, concurrent 
workloads, and stream processing. This will allow for the evaluation of how a BDW 
created using the proposed approach handles large scans needed for ad hoc 
analysis, reporting, and data visualization, compared to a traditional dimensional 
DW, as well as how it handles streaming scenarios, concurrent workloads, and 
semi-structured analytics (e.g., analysis using nested arrays, key-value pairs, or 
geometry objects);

d)  Disseminate the suitability of the proposed approach for solving real-world BDWing 
problems, by presenting the implementation of a BDWing system for smart cities 
that follows the proposed models and methods. In this case, the SusCity research 
project is used. This focuses on the development and integration of new tools and 
services to improve the efficiency of urban resources, reducing the environmental 
impact and promoting economic development and reliability (SusCity, 2016). 
The main goal is to advance the science of urban systems modeling and the 
data representation supported by the collection and processing of Big Data. This 
allows the creation of new services to explore economic opportunities and the 
sustainability of urban systems. The SusCity project has a testbed in Lisbon that 
includes several data sources (e.g., sensors, census, buildings characteristics, 
and geolocation data related to mobility), generating data at different velocities 
(e.g., batch and streaming), with significant volume. Moreover, data science 
techniques, such as data mining (e.g., clustering and time series forecasting) and 
data visualization, are crucial to create new services to improve urban systems. 
Therefore, this research project is used to instantiate the approach, discussing and 
evaluating the proposed models and methods for collecting, storing, processing, 
and analyzing Big Data, thus proving the suitability of the approach to solve real-
world problems.



Introduction 7

Copyright © River Publishers – except portuguese speaking countries

1.2. INTENDED AUDIENCE
This book is intended for DWing and Big Data practitioners, teachers, researchers, 
and students focusing on the design, development, and implementation of analytical 
applications supported by a DW. As prerequisite knowledge, the audience should be 
familiar with DWs modeling strategies (e.g., dimensional modeling and third normal form 
“3NF” DWs).

1.3. BOOK STRUCTURE
After this introductory chapter, this book is structured as follows: Chapter 2 presents the 
relevance, definition, and challenges in Big Data, and the techniques and technologies for 
designing and implementing Big Data solutions, including relevant Big Data architectures. 
Chapter 3 describes data systems oriented towards transactional workloads in Big Data, 
such as NoSQL databases, while Chapter 4 is dedicated to analytical data systems, such 
as Hive and Druid. Chapter 5 describes an approach for the design and implementation 
of BDWs, presenting the general models and methods, the suggested technological 
infrastructure, and the data modeling method. Chapter 6 presents several BDW data 
models and data modeling considerations that practitioners can follow to implement 
BDW applications. Chapter 7 shows several workloads for collecting, preparing, and 
enriching data, facilitating the understanding of the adequate mechanisms for handling 
data throughout these three stages. Chapter 8 evaluates the performance of BDWs  
by benchmarking various design patterns introduced in Chapter 5 and in Chapter 6. 
Chapter 9 presents a real-world BDW application in the context of smart cities, namely 
discussing the implementation of the SusCity project, from data collection to data 
visualization. Chapter 10 concludes with a synopsis of the book and the contributions  
to the state of the art in this field. 

©
 F

C
A





INTRODUCTION

BIG DATA CONCEPTS, 
TECHNIQUES, AND 
TECHNOLOGIES2

We live in a world where data is constantly produced and  
consumed, so understanding the value that can be extracted 
from it is a priority. Organizations need to understand and 
analyze relevant data flows, join data analytics with  
product/process development, and move it closer to 
the core business (Davenport et al., 2012). This chapter 
shows the relevance Big Data has in today’s world, various 
attempts to define it, the related challenges, and several 
techniques and technologies to efficiently design and 
implement Big Data solutions (C. Costa & Santos, 2017a). 



Big Data: Concepts, Warehousing, and Analytics10

2.1. BIG DATA RELEVANCE
Over the last years, the interest in Big Data has increased considerably (Google Trends, 
2018), particularly after 2012, as can be seen in Figure 2-1. In a McKinsey Global Institute’s 
report, Manyika et al. (2011) argue that Big Data will become fundamental among 
organizations for productivity growth, innovation, and customer relationship, highlighting 
its relevance in healthcare, public sector, retail, manufacturing, and personal-location 
contexts, stating that value can be generated in each one of them. Nowadays, data has 
a strong presence in the daily activities of almost every industry, alongside labor and 
capital, as Manyika et al. (2011) also demonstrated by estimating that in 2009 almost all 
economic sectors in the United States had nearly 200TB of stored data per organization 
with more than 1000 employees. Other statistics similarly show that the amount of data 
available in today’s world is growing exponentially (Chandarana & Vijayalakshmi, 2014). 

Figure 2‑1. Increased interest in Big Data. Reprinted from Google Trends (2018).

Nevertheless, as human beings tend to resist to changes, there are still those who ask 
themselves: “Why Big Data? Why Now?” (Krishnan, 2013). According to Krishnan (2013), 
the concept of Big Data is about leveraging access to a vast volume of data, which 
can help retrieving value for organizations, with minimal human intervention, due to the 
advancements made in data processing technologies. The author also claims that Big 
Data always existed in many industries, but the emergence of autonomous, fast, flexible, 
and scalable processes created a new paradigm shift, often resulting in a cost reduction 
when compared to traditional data processing approaches.

Organizations find themselves facing this new data-driven way to conduct business, and 
a paradigm shift in their infrastructure and way of thinking is, understandably, something 
that requires serious consideration. However, they need to foresee the value that Big Data 
can bring to their business (Manyika et al., 2011): 

• The use of Big Data can make information more transparent and usable across the 
organization;

• Business performance can be increased with more accurate and detailed facts, turned 
possible by collecting and processing more transactional data;



Big Data Concepts, Techniques, and Technologies 11

Copyright © River Publishers – except portuguese speaking countries

• Better management decisions can be made through data analysis;

• The use of Big Data has the ability to refine and reinvent products and services.

Even so, the evidence that using Big Data intelligently will improve business performance 
can still be questioned, as McAfee, Brynjolfsson, Davenport, Patil, and Barton (2012) 
highlight by discussing the inadequacy of the business press to demonstrate the real 
value of being data-driven and testing the hypothesis that data-driven organizations 
are better performers than traditional ones. The authors interviewed executives in 330 
organizations and also gathered performance data about their respective organizations. 
McAfee et al. (2012) came to an interesting conclusion: organizations that see themselves 
as data-driven achieved better performance regarding financial and operational goals. 
The authors highlight increased productivity and profitability in top organizations that 
used data-driven decision-making, even when taking into consideration other factors 
like labor and capital, for example. The results shown by McAfee et al. (2012) rigorously 
corroborate the current trend for Big Data value within organizations. The use of Big 
Data will become inevitable for competitive advantages across most industries, from 
electronic and information industries to finance, insurance, or government. Big Data can 
leverage increasing productivity and better customer relationship (Manyika et al., 2011), 
and can potentially be used in several business areas to generate significant value for 
organizations (Chandarana & Vijayalakshmi, 2014; Manyika et al., 2011; Villars et al., 
2011), as Table 2.1 shows.

According to Brown, Chui, and Manyika (2011), other business areas are worth 
mentioning, such as finance, insurance, and real estate. The authors present an approach 
that analyzes several business areas by the ease-of-capture Big Data and its potential to 
generate value. The apparent trend is for organizations to perceive value in data-driven 
decision-making and start collecting more data, contributing to the continuous growth 
in data volume. Big Data will have a significant impact in value creation and competitive 
advantage for organizations, such as new ways to interact with customers or to develop 
products, services, and strategies, consequently raising profitability. Another area where 
the concept of Big Data is of major relevance is the Internet of Things (IoT), seen as a 
network of sensors embedded into several devices (e.g., appliances, smartphones, cars), 
which is a significant source of Big Data, bringing many business environments (e.g., 
cities) into the era of Big Data (M. Chen et al., 2014).

As noted above, Big Data brings competitive advantages to organizations, but there are 
particular characteristics that define it, although most of the times they are unquantifiable 
(Ward & Barker, 2013), as will be discussed in the next section. Big Data creates a new 
paradigm shift in the way we collect, store, process, and analyze data, but organizations 
can be data-driven and explore the potential of data from innumerous sources without 
dealing with Big Data techniques and technologies. In that case, they are just dealing 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics12

with new data, data that was not previously processed within the organization, but does 
not bring severe difficulties for the capabilities of traditional techniques and technologies. 

In the next section, the definition of Big Data will be discussed following the perspective 
of different authors.

Table 2.1. Big Data applied in several business areas.

Business Area Examples of Application

Healthcare

 y Personalize medication and understand causes of diseases, using techniques to 
extract value from vast amounts of data on medical history, medication, and drug 
manufacturing, for example;

 y Analyze genetic variations and the effectiveness of potential treatments, using 
vast amounts of data;

 y Other Big Data sources can include nutrition and training data or even more 
unstructured data like medical images.

Environment
 y Find a correlation between the measured values and the implications for the 
environment through the collection of data from multiple sensors (e.g., air and 
water quality, meteorology, and gas emissions).

Public sector

 y Use Big Data to prevent tax fraud and errors;

 y Customize actions by segmenting population;

 y Create more transparency through data availability.

Retail

 y Event forecasting and customer segmentation, creating personalized products 
or services;

 y Location based marketing, sentiment analysis, and cross-selling;

 y Logistics optimization.

Manufacturing
 y Demand forecasting for supply planning;

 y Use of sensors in manufactured products to offer proactive maintenance.

2.2. BIG DATA CHARACTERISTICS
Technological advancements have opened the way for the generation of unprecedented 
amounts of data each day, at ever-increasing rates. In 2011, around 1.8 zettabytes of data 
were produced every other day, that is more than it was produced since the beginning of 
civilization until 2003 (M. Chen et al., 2014). As a result, storage capacity must increase, 
and new ways of dealing with such amounts of data need to be developed. At this point, 
the relevance of Big Data, the way it is changing how organizations operate, and the 
opportunities that data-driven approaches bring are clear, but what does Big Data actually 
mean?

First of all, there is no widely accepted threshold for classifying data as Big Data. Ward 
and Barker (2013), in an attempt to clearly define Big Data, present several notorious 
definitions among the community, highlighting that Big Data is predominantly and 



Big Data Concepts, Techniques, and Technologies 13

Copyright © River Publishers – except portuguese speaking countries

“anecdotally” associated with data storage and data analysis, terms dating back to 
distant times, and argue that the adjective “big” implies significance, complexity, and 
challenge, but it also makes it difficult to quantitatively define Big Data. Ward and Barker 
(2013) present several definitions: some define Big Data by its characteristics, others 
based on the augmentation of traditional data with more unstructured data sources, 
and some using quantitative thresholds. They also present definitions which rely on the 
inadequacy of traditional technologies to deal with this new type of data, presenting 
various perspectives from the industry, including Gartner, Oracle, Intel, Microsoft, and 
IBM, for example. Ward and Barker (2013) note that all definitions include at least one of 
the following aspects: size, complexity, or techniques and technologies to process large 
and complex datasets.

For his part, Dumbill (2013, p. 1) provides a definition based on technological constraints: 
“Big Data is data that exceeds the processing capacity of conventional database systems. 
The data is too big, moves too fast, or does not fit the strictures of your database 
architectures. To gain value from this data, you must choose an alternative way to process 
it”. M. Chen et al. (2014) corroborate this definition by focusing on the fact that traditional 
software and hardware cannot recognize, collect, manage, or process this new type of 
data in reasonable time. Krishnan (2013) also agrees with these perspectives, defining Big 
Data by its complexity, creation speed, and several levels of ambiguity, whose processing 
is inadequate for traditional methods, algorithms, and technologies. Although Ward and 
Barker (2013) are slightly critical of both the lack of quantification in Big Data’s definition 
and the use of data storage and analysis terms when defining the Big Data concept, they 
conclude that the same includes storage and analysis of large and complex datasets, 
using a set of novel techniques. 

The actual origins of the concept of Big Data are relatively unknown, and its definition 
evolved rapidly. Gandomi and Haider (2015) state that size is the characteristic that stands 
out the most, but other features became more common to define Big Data. In 2001, Doug 
Laney, from Gartner, presented the 3Vs model (Figure 2-2) to characterize Big Data by its 
volume, variety, and velocity (Laney, 2001). IBM and Microsoft based their definitions of 
Big Data on this model for at least ten more years (M. Chen et al., 2014).

According to Gandomi and Haider (2015), volume is a characteristic which indicates the 
magnitude of data, noting that it is frequently reported between Terabytes and Petabytes, 
citing the survey of Schroeck, Shockley, Janet, Romero-Morales, and Tufano (2012), 
wherein just over half of the respondents consider datasets bigger than 1TB to be Big 
Data. However, the authors argue that data size is relative and varies according to the 
periodicity and the type of data. It is impractical to define a specific threshold for Big Data 
volume, as different types of data require different technologies to deal with it (e.g., tabular 
data and video data), as Gandomi and Haider (2015) exemplify. The volume in the 3Vs 
model characterizes the amount of data that is continuously generated (Krishnan, 2013), ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics14

and the main cause for the ever-increasing volume is the fact that we currently store all our 
interactions with the majority of services available in our world (Zikopoulos & Eaton, 2011).

Figure 2‑2. The 3Vs model. Adapted from Zikopoulos & Eaton (2011).

Regarding variety, Big Data can be classified as structured (e.g., transactional data, 
spreadsheets, and relational databases), semi-structured (e.g., Web server logs, Extensible 
Markup Language – XML, and JavaScript Object Notation – JSON), and unstructured 
(e.g., social media posts, audio, video, and images) (Chandarana & Vijayalakshmi, 2014; 
Gandomi & Haider, 2015). Traditional technologies can have significant difficulties storing 
and processing Big Data, such as content from Web pages, click-stream data, search 
indexes, social media posts, emails, documents, and sensor data. Most of this data does 
not fit well in traditional databases, hence, there must be a paradigm shift in the way 
organizations perform analyzes to accommodate raw structured, semi-structured, and 
unstructured data, in order to take advantage of the value in Big Data (Zikopoulos & 
Eaton, 2011).

The final characteristic covered by the 3Vs model is velocity, which refers either to the 
rate at which data is generated or to the required speed of analysis and decision support 
(Gandomi & Haider, 2015). Data can be generated at different rates, ranging from batch 
to real-time (streaming) (Chandarana & Vijayalakshmi, 2014; Zikopoulos & Eaton, 2011). 
It is preferable to apply the definition of velocity to data in motion, instead of the rate at 
which data is collected, stored, and retrieved from storage. Continuous data streams can 
create competitive advantages in contexts where the identification of trends must occur 
in short periods of time, as in financial markets, for example (Zikopoulos & Eaton, 2011).

Over time, two additional characteristics associated with Big Data were identified: value 
and veracity. Value represents the expected result of processing and analyzing Big Data 



Big Data Concepts, Techniques, and Technologies 15

Copyright © River Publishers – except portuguese speaking countries

(Chandarana & Vijayalakshmi, 2014), which is usually low in raw data, since this is mainly 
extracted with an adequate analysis (Gandomi & Haider, 2015). According to Chandarana 
and Vijayalakshmi (2014), value can be obtained by integrating different data types to 
improve efficiency and gain competitive advantages. On the other hand, veracity draws 
attention to possible imprecise data, as the analysis can be based on datasets with varying 
degrees of precision, authenticity, and trustworthiness (Chandarana & Vijayalakshmi, 
2014). Gandomi and Haider (2015) corroborate this definition, highlighting the unreliability 
of certain data sources (e.g., customer sentiments extracted from social media), although 
recognizing that they can be valuable when adequate techniques and technologies are 
used.

Other characteristics, which according to the literature often go unnoticed, are the variability 
and complexity, introduced by SAS (Gandomi & Haider, 2015). Variability is related to the 
different rates at which data flows, according to different peaks and inconsistent data 
velocity. Complexity highlights the challenges of dealing with data from multiple sources, 
namely connecting, matching, cleaning, and transforming them. Besides the former, 
Krishnan (2013) also proposes three other characteristics: ambiguity, concerning the lack 
of appropriate metadata, resulting from the combination of volume and variety; viscosity, 
when the volume and velocity of data cause resistance in data flows; virality, which 
measures the time of data propagation among peers in a network. Figure 2-3 presents a 
summary of all these characteristics identified in the literature.

Figure 2‑3. Main Big Data characteristics identified in the literature. Adapted from C. Costa & Santos (2017a).

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics16

At this point, it seems that trying to quantify any of these characteristics is an impossible 
task. Big Data remains an abstract concept (M. Chen et al., 2014). It can be the 
combination of different characteristics or it can be mostly the presence of one of them, 
but it is data that requires changes to the techniques and technologies needed to process 
it. It may be a database or a DW that cannot be scaled accordingly on a shared-everything 
architecture (Krishnan, 2013), or data mining tasks that cannot be accomplished without 
parallel computing. Again, Big Data is “too big, too fast, or too hard for existing tools 
to process” (Madden, 2012, p. 4). Defining Big Data by the inadequacy of traditional 
technologies is relatively dangerous, as advancements are constantly being made (e.g. 
quantum computing); furthermore such definition implies that Big Data has always 
existed and will continue to exist (Ward & Barker, 2013). The current definitions of Big 
Data are relatively dependent on the techniques and technologies for collecting, storing, 
processing, and analyzing it. These techniques and technologies will evolve over time 
and we need to learn to adapt ourselves to those changes. Analyzing new technological 
trends that may benefit business and reconsider new strategies related to data will always 
be important. Currently, a new paradigm shift is happening and it does not need to impact 
all organizations. Nevertheless, scientific progress in this field will continue providing to 
organizations evaluated and efficient techniques and technologies for addressing data-
driven environments. The state of the art regarding Big Data techniques and technologies 
will be presented later in this book. The next section presents the challenges regarding 
Big Data.

2.3. BIG DATA CHALLENGES
This section presents several challenges associated with handling Big Data, including 
general dilemmas, challenges in the Big Data life cycle, issues concerning security, 
privacy, and monitoring, as well as the changes organizations may need to undergo. 
These challenges also serve to identify relevant research topics across various fields.

2.3.1. Big Data General Dilemmas
General dilemmas may include challenges such as the lack of consensus and rigor in 
Big Data’s definition, models, and architectures. For example, M. Chen et al. (2014) 
claim that the concept of Big Data often has more to do with commercial speculation 
than with scientific research. The authors also mention the lack of standardization in Big 
Data, such as data quality evaluation and benchmarking. In fact, the lack of standard 
benchmarks to compare different technologies is seriously aggravated by the constant 
technological evolution of Big Data environments (Baru, Bhandarkar, Nambiar, Poess, 
& Rabl, 2013). 



Big Data Concepts, Techniques, and Technologies 17

Copyright © River Publishers – except portuguese speaking countries

How to take full advantage of Big Data in areas such as scientific research, engineering, 
medicine, finance, education, government, retail, transportation, or telecommunications 
remains an open question (M. Chen et al., 2014). Discussions about how to select the 
most appropriate data from several sources or how to estimate their value are major 
issues (Chandarana & Vijayalakshmi, 2014). Another issue regularly discussed is how Big 
Data helps representing the population better than a small dataset does (Fisher, DeLine, 
Czerwinski, & Drucker, 2012). The answer obviously depends on the context, but the 
authors make the important point that one should not assume that more data is always 
better.

2.3.2. Challenges in the Big Data Life Cycle
The following challenges are related to technical difficulties when performing tasks such as 
Big Data collection, integration, cleansing, transformation, storage, processing, analysis, 
and governance:

• The need to rethink storage devices, architectures, mechanisms, and networks, in order 
to achieve more efficient input/output (I/O), data accessibility, and data transmission  
(C. L. P. Chen & Zhang, 2014);

• Scalability becomes crucial to store and analyze data. Handling increasing amounts of 
data requires redesigning databases and algorithms to extract value from it (Hashem 
et al., 2015). Distributed/parallel computing becomes crucial to deal with Big Data, 
assuring availability, cost efficiency, and elasticity (M. Chen et al., 2014);

• Guaranteeing data quality and adding value through data preparation becomes 
challenging in Big Data environments (C. L. P. Chen & Zhang, 2014). Different data 
sources may have different data quality problems (Hashem et al., 2015). These 
problems and vast amounts of redundancy can also make data integration more difficult 
(M. Chen et al., 2014). The heterogeneity resulting from multiple sources augments 
these challenges, since traditional data analysis techniques expect homogeneous 
data (Jagadish et al., 2014). Heterogeneity has implications over data integration 
(Cuzzocrea, Song, & Davis, 2011) and the analysis of Big Data, as the unstructured 
nature of data sources presents several challenges regarding transformations for 
supporting adequate analytical tasks;

• Visualizing Big Data requires rethinking traditional approaches due to the volume of 
data, thus combining appearance and functionality is crucial (C. L. P. Chen & Zhang, 
2014). Advanced data visualizations are needed to extract value from Big Data  
(Russom, 2011), providing the capacity to scale to thousands or millions of data points, 
handle multiple data types, and enhancing ease of use to accomodate multiple users. 
Krishnan (2013) argues that manipulating Big Data is challenging due to the difficulty 
of executing drilldowns or rollups. In these visualizations, data from multiple sources ©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics18

is typically integrated into a single picture. The author indicates that technological 
evolutions would be made to address the challenge of manipulating Big Data 
interactively, as discussed later in this document;

• Searching, mining, and analyzing Big Data is a challenging and relevant research 
trend, including Big Data searching algorithms, recommendation systems, real-time 
Big Data mining, image mining, text mining, among others (M. Chen et al., 2014). As 
Gandomi and Haider (2015) claim, size is frequently the main concern in Big Data, but 
the unstructured nature of certain data also deserves attention (e.g., text, audio, and 
video) and imposes significant challenges on these tasks;

• Big Data governance faces challenges regarding control and authority over massive 
amounts of data from different sources (Hashem et al., 2015). Managing such 
heterogeneous environment to plan access policies and ensure traceability can quickly 
become almost impossible without adequate governance tools.

Organizations face several challenges in the Big Data life cycle. New business problems 
require technological innovations concerning the way data flows throughout the 
organization. Overcoming these challenges will depend on the organization’s maturity, 
since legacy applications and the use of incompatible formats can impose several 
limitations for an adequate integration and extraction of value from Big Data. Collecting 
data, namely gaining access to it, may also be a challenge, as integrating data from 
multiple sources, including external ones, raises questions about other actor’s reasons for 
sharing it free of charge (Manyika et al., 2011). 

M. Chen et al. (2014) state that the efficiency in data flows is a key factor for ensuring 
an adequate processing of Big Data. The authors also highlight the challenge of building 
effective real-time computing models and online applications to analyze Big Data. Other 
challenges related to processing Big Data may include the reutilization and reorganization 
of data, which become laborious at large scales. Due to its characteristics, Big Data 
requires a paradigm shift in databases and analytical technologies, since handling Big 
Data throughout its life cycle can potentially create severe bottlenecks in networks, 
storage devices, and relational databases. Technology is evolving to execute these stages 
across distributed environments, thus increasing dependency on high storage capacity 
and processing power. 

Relational databases are evolving and adapting to the above trends, increasing query 
performance and including capabilities to deal with more data variety (Davenport et al., 
2012). Combining the benefits of a Relational Database Management System (RDBMS) 
with the new trends in data systems for handling Big Data is a current research trend, 
as well as query optimization mechanisms for Big Data technologies (Cuzzocrea et al., 
2011). Furthermore, advancements are constantly being made in scalable storage and 
algorithms. Ji, Li, Qiu, Awada, and Li (2012) argue that processing queries in Big Data may 



Big Data Concepts, Techniques, and Technologies 19

Copyright © River Publishers – except portuguese speaking countries

take significant time, as it is challenging to sequentially iterate through the whole dataset in 
a short amount of time. Consequently, the authors highlight the importance of designing 
indexes and implementing adequate preprocessing technologies. Hashem et al. (2015) 
identify the need to study adequate models to store and retrieve data as a crucial factor 
to successfully implement Big Data solutions. Models and algorithms for scalable data 
analysis also remain an open research issue, as well as the integration and analysis of 
data arriving continuously from streams. Mining data streams has been identified as an 
emergent research topic in Big Data analytics (H. Chen, Chiang, & Storey, 2012).

2.3.3.  Big Data in Secure, Private, and Monitored Environments
Nowadays, keeping data secure and private is one of the most important tasks for 
organizations (M. Chen et al., 2014; Jagadish et al., 2014). Users want to be sure that 
their data will not be leaked or stolen (Chandarana & Vijayalakshmi, 2014). Sagiroglu and 
Sinanc (2013), citing a survey from (Intel IT Center, 2012), claim that security and privacy 
are frequently mentioned among the Big Data concerns of IT managers. It is thus important 
to plan a Big Data driven security model so that organizations can accurately specify 
risks and prevent illegal activities or cyber threats. Among the relevant considerations 
mentioned by the literature are authentication, authorization, network traffic analysis, data 
protection laws, and data mining related to security. M. Chen et al. (2014) also discuss the 
potential for Big Data applications related to security concerns. 

Due to the characteristics of Big Data, more security and privacy risks arise, and traditional 
data protection methods must be redesigned. M. Chen et al. (2014) argue that Big Data 
applications face multiple challenges related to security, privacy, and monitoring: protection 
of personal privacy not only during data collection, but also in subsequent storage and 
flows; Big Data quality and its influence on the appropriate and secure use of data; the 
performance of security mechanisms like encryption is largely influenced by the scale and 
variety of data; and other aspects related to secure communications, administration, and 
monitoring in environments with multiple users and services. Another relevant challenge, 
as highlighted by Hashem et al. (2015), is ensuring Big Data integrity, i.e., that data can be 
modified only by the owner or authorized third parties. 

Policies related to data handling are more relevant nowadays, when there is a significant 
amount of sensitive data about individuals, such as that concerning their health and 
finances (Manyika et al., 2011). Legal issues are being raised by how easy it is to copy, 
integrate, and recurrently use data by different people. Intellectual property, data ownership, 
and responsibility regarding inaccurate data deserve proper attention from policy-makers 
(Manyika et al., 2011). Legal and regulatory issues also deserve attention (Ji et al., 2012) 
in several aspects, like analyzing whether current laws and regulations adequately protect 
data about individuals (Hashem et al., 2015). Even the constant tracking of employees ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics20

within an organization can raise issues regarding adequate work policies (Michael & Miller, 
2013). 

Aside from the above issues, Brown et al. (2011) address the implications of having data 
widely and transparently available. Organizations that rely on costly proprietary data to 
leverage their competitive advantages will face challenges due to the promises of more 
accessible Big Data sources, as they become widely available in some contexts. The 
authors also discuss the inherent difficulties that organizations face when sharing data 
across departments and forming a coherent view of the organization, which is additionally 
aggravated with Big Data. Organizations need to integrate data from multiple sources 
and promote collaboration, not only among departments, but also among suppliers and 
customers (Brown et al., 2011).

Ensuring privacy is both a technical and a sociological problem, as Jagadish et al. (2014) 
argue. The inadequate availability of location-based data makes it possible to infer a 
person’s residence, office location, and identity, for example. Moreover, many other data 
sources can contain personal identifiers, and even if they do not, when the data is rich 
enough, reasonable inferences can be drawn from it (Wigan & Clarke, 2013). Currently, we 
tend to share more data online, most of the times without knowing the implications. Data 
ownership is another relevant topic, as organizations want to share or sell data, due to its 
value, without losing its control (Jagadish et al., 2014). Data ownership is often discussed 
regarding social media websites, since the users’ data is not owned by the organizations 
although they are the ones storing it (Chandarana & Vijayalakshmi, 2014). As Wigan and 
Clarke (2013) note, these organizations tend to assume that they hold the rights of the 
data, and sometimes the current legislation benefits them, allowing them to keep the data, 
even when users explicitly ask for it to be deleted.

Big Data security, privacy, and monitoring in cloud environments is also a relevant topic for 
discussion. Organizations frequently recognize that using Big Data technologies in cloud 
environments helps reducing their IT costs (Ji et al., 2012), although raising concerns 
about Big Data storage and processing infrastructures. Therefore, as Ji et al. (2012) claim, 
one of the challenges lies in guaranteeing adequate monitoring and security without 
exposing users’ data when processing it.

2.3.4. Organizational Change
Big Data may sound appealing to most organizations, but frequently leaders lack knowledge 
concerning its value and how to extract it (Manyika et al., 2011). Occasionally, the lack 
of knowledge on how to use analytics is mentioned as the main obstacle to become 
more data-driven (LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011). Within several 
business areas, organizations need to monitor trends and gain advantages compared to 
their competitors, but as Manyika et al. (2011) discuss, many lack the talent, the rigorous 



Big Data Concepts, Techniques, and Technologies 21

Copyright © River Publishers – except portuguese speaking countries

workflows structure, and the incentives for implementing Big Data initiatives to support 
their decision-making. Leaders and policy-makers must understand how Big Data can 
create value, as well as critically think about IT capabilities, data strategies, analytical  
talent, and data-driven approaches. This paradigm shift in organizations requires them  
to place analytics in the core business and operational functions (Davenport et al., 2012), 
changing business processes, and delivering insights related to customers, products, 
services, and other transactions. McAfee et al. (2012) describe five challenges that 
organizations will face in management, caused by Big Data initiatives:

• Ensure adequate leadership for a Big Data project; 

• Find suitable data scientists (Provost & Fawcett, 2013), computer scientists, and other 
professionals to deal with Big Data, design experiments, and overcome business 
challenges; 

• Understand and adequately use Big Data technology; 

• Pair problem-solvers with the right data for decision-making; 

• Change organizational culture and rethink how data-driven the organization really is. 

Big Data initiatives require a multidisciplinary approach and collaboration to deliver useful 
results that will be understandable by the organization (Jagadish et al., 2014), but to 
accomplish this, challenging organizational changes must occur.

2.4. TECHNIQUES FOR BIG DATA SOLUTIONS
As previously mentioned, the concept of Big Data is often used to sell something (Fan 
& Bifet, 2013), denoting a lack of common understanding about the concept itself, and 
opening the way for the proposal of an almost infinite set of techniques and technologies. 
Unfortunately, this raises significant challenges for understanding, adopting, or designing 
techniques to work with Big Data, since they are tightly coupled with a specific technology. 
The opposite problem can also occur, since most of the times, in conceptual models, it 
is not clear which technology should be employed in a given component of the model. 
This is mainly due to Big Data’s variety, but even discarding unstructured data (e.g., text, 
video, image, and audio), it seems that almost everyone is trying to sell their solutions, 
mainly following a use case driven approach, without concerns regarding a common way 
to design and implement solutions.

The age of Big Data can generate significant controversy. For example, Fan and Bifet 
(2013), citing Boyd and Crawford (2012), claim that it is not necessary to distinguish 
Big Data analytics from data analytics, as data volume will continue to grow and never 
decrease. The transition from traditional techniques and technologies is a radical paradigm ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics22

shift, which can lead to abandoning shared-everything architectures (Krishnan, 2013), 
RDBMSs, common Extract, Transform, and Load (ETL) mechanisms, or SQL, for example. 
The ambiguity in Big Data’s definition, the lack of formal and recognized techniques, and 
the vast set of available technologies do not contribute to a widespread adoption of Big 
Data. It can be argued that the Big Data analytics area needs approaches like the widely 
accepted work from Kimball and Ross (2013) that focuses on how to store and analyze 
data in a relational DW. Guaranteeing that businesses do not refrain from progress due to 
uncertainty or lack of resources is of major relevance.

Regarding the question of when it would be an appropriate moment for an organization to 
rethink the techniques and technologies that it normally employs, a survey from Russom 
(2011) suggests that most organizations tend to replace traditional platforms when:

• Massive performance and scalability are required, such as the need to scale to Big Data 
contexts with a large volume of data, speed up data collection and queries, or ensure 
concurrent workloads;

• Business users need advanced analytics (e.g., data mining, statistical analysis, text 
analytics, and ad hoc SQL queries), and the current platform is Online Analytical 
Processing (OLAP) only;

• Organizations need self-service and rich visualization tools for end users;

• The platform lacks modern capabilities, such as support for a Service-Oriented 
Architecture (SOA), cloud infrastructures, or in-memory processing.

This section aims to present several techniques to understand and deal with Big Data 
throughout its life cycle, from collection to analysis, including storage and mining. These 
techniques mainly represent a collection of guidelines to help designing Big Data solutions, 
their components, the relationship between them, and some necessary changes in 
traditional approaches for dealing with data. According to C. L. P. Chen and Zhang 
(2014), citing Marz and Warren (2012) and Garber (2012), a Big Data solution generally 
contemplates the following principles: 

• Present high-level architectures, addressing the distinct role of specific technologies; 

• Include a variety of data science tasks, such as data mining, statistical analysis, machine 
learning, real-time visualization, and in-memory analysis; 

• Combine the benefits of different tools for different tasks; 

• Bring analysis closer to the data, in order to avoid moving data; 

• Distribute processing and storage across different nodes in a cluster; 

• Ensure coordination between data and processing nodes to improve scalability, 
efficiency, and fault-tolerance.



Big Data Concepts, Techniques, and Technologies 23

Copyright © River Publishers – except portuguese speaking countries

2.4.1. Big Data Life Cycle and Requirements
There are several aspects of the life cycle of Big Data, which significantly differ from 
traditional environments and thus need to be considered. Dealing with Big Data requires 
new approaches, which are discussed in this subsection.

2.4.1.1. General Steps to Process and Analyze Big Data

According to a survey conducted on analysts at Microsoft (Fisher et al., 2012), Big Data 
analytics tasks can be divided into five steps: acquiring data; choosing the architecture 
based on cost and performance; shaping the data according to the architecture; writing 
and editing code; and reflecting and iterating on the results. Processing Big Data for 
analysis differs from processing traditional transactional data. As Krishnan (2013) claims, in 
traditional environments, data is explored, a model is designed, and a database structure is 
created. However, in Big Data environments, data is first collected and loaded into a certain 
storage system, a metadata layer is applied, and then a structure is created. There is no 
need to start by transforming data to properly fit a relational model, since transformations 
only occur after having everything stored within efficient storage systems. This represents 
a shift from a traditional ETL approach to an Extract, Load and Transform (ELT) approach. 
Figure 2-4 illustrates the Big Data Processing Flow according to Krishnan (2013).

Figure 2‑4. Big Data Processing Flow. Adapted from Krishnan (2013) and C. Costa & Santos (2017a).

The Big Data Processing Flow starts by gathering data from multiple sources, such as 
Online Transaction Processing (OLTP) systems, multiple files, sensors, and the Web. This 
data is then stored in a landing zone capable of handling the volume, variety, and velocity 
of the data, which is typically a distributed file system. Data transformations must occur on 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics24

data stored in the landing zone, fulfilling the requirements of efficiency and scalability, and 
the subsequent results can then be integrated into analytical tasks, operational reporting, 
databases, or raw data extracts. Regarding this process, Kimball and Ross (2013) mention 
relevant best practices for the Big Data life cycle:

• Plan a “data highway” with multiple caches – raw source (immediate), real-time cache 
(seconds), business activity cache (minutes), top line cache (24 hours), and DW or long 
time series cache (daily, periodic, and annual). Data will flow through these different 
caches, according to the business needs;

• Use Big Data analytics to enrich data before moving it to the next cache. For example, 
produce numeric sentiments from mining unstructured tweets. The opposite is also true, 
so that earlier caches can benefit from the less granular ones. Kimball and Ross (2013) 
claim that the performance implications of this enrichment should be further evaluated, 
as data should be moved from the raw source to the real-time cache according to 
the established time thresholds. Also, we can store multiple data sources, make them 
available for querying, manipulate them, use them to serve business, and then archive 
them;

• Adjust the data quality needs according to the latency requirements, i.e., complex data 
quality jobs take more time to complete than simpler ones focusing on individual values. 
However, Kimball and Ross (2013) also suggest that value should be added to data as 
soon as possible, for example using data integration tasks and including results from 
data mining. There must be a balance between latency and business value;

• Big Data streaming analytics can be relevant for certain data flows, analyzing data and 
taking actions as it flows through continuous data streams (Kambatla, Kollias, Kumar, 
& Grama, 2014). In-database analytics can also be a relevant capability to exploit, as 
Kimball and Ross (2013) highlight.

Begoli and Horey (2012) complement these perspectives, stating that several analytical 
mechanisms should be included in Big Data solutions, ranging from statistical analysis to 
data mining and visualization. Moreover, processed data and insights can be made available 
using open and recognized standards, interfaces, and Web services. Regarding Big Data 
analytics, there is a vast set of available techniques that can be used to extract value from 
data. Data mining techniques, such as clustering, association rules, classification, and 
regression (Han, Pei, & Kamber, 2012), are still present in Big Data environments (Manyika 
et al., 2011), now with the challenge of distributing them to perform at scale (C. L. P. 
Chen & Zhang, 2014; Fan & Bifet, 2013). Achieving scalability in these techniques is what 
makes Big Data analytics different from traditional data analytics. The range of analytical 
mechanisms and the ambiguous terms to define them may lead to a completely new 
buzzword: data science. Techniques such as sentiment analysis, time series analysis/         
forecasting, spatial analysis, optimization, visualization, or unstructured analytics (e.g., 



Big Data Concepts, Techniques, and Technologies 25

Copyright © River Publishers – except portuguese speaking countries

text, audio, and video) (Gandomi & Haider, 2015), can all be part of a data scientist’s 
knowledge base (C. Costa & Santos, 2017b).

2.4.1.2. Architectural and Infrastructural Requirements

The different steps required to process Big Data, presented above, must be performed in 
Big Data environments, following the requirements identified by Krishnan (2013):

• Absence of fixed data models to adequately accommodate the complexity and size of 
data, regardless of its characteristics;

• Scalable and high-performance systems to collect and process data either in real-time 
or in batches;

• The architecture should support data partitioning due to the volume of data;

• Data transformations should use scalable, efficient, and fault-tolerant mechanisms.  
The results should be stored in adequate systems, such as distributed file systems or 
non-relational database systems. Data reads should be efficient;

• Data should be replicated and shared across multiple nodes, to support fault-tolerance, 
multistep processing, and multipartitioning. 

Kimball and Ross (2013) corroborate most of the requirements from Krishnan (2013), and 
also include the following capabilities expected from Big Data environments: possibility 
to implement User-Defined Functions (UDFs) in several programming languages and to 
execute them over large datasets within minutes; load and integrate data at high rates; 
execute queries on streaming data; schedule tasks on large clusters; and support mixed 
workloads, including ad hoc queries or strategic analysis from multiple users, while loading 
data in batches or in a streaming fashion. 

Big Data solutions should be supported by an adequate infrastructure. Regarding this 
requirement, organizations can currently rely on cloud computing, either by using private, 
public, or hybrid clouds (Tien, 2013) to provide the underlying resources for massive 
computations (Hashem et al., 2015). Cloud models, such as Infrastructure-as-a-Service 
(IaaS), become relevant to accomplish several requirements in Big Data infrastructures, 
including scalability, commodity hardware, elasticity, fault-tolerance, self-manageability, 
high throughput, fast I/O, and a high degree of parallelism (Cuzzocrea et al., 2011;  
Krishnan, 2013). Commodity hardware also plays a relevant role in Big Data infrastructures, 
namely due to the lower costs of building shared-nothing architectures (Figure 2-5). 
Google’s own papers about the Google File System (GFS) (Ghemawat, Gobioff, & Leung, 
2003), MapReduce (Dean & Ghemawat, 2008), and Bigtable (F. Chang et al., 2008) served 
as inspiration for most of these requirements and for several Big Data technologies that 
will be presented later.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics26

Figure 2‑5. A shared-nothing architecture. Adapted from Krishnan (2013).

Kimball and Ross (2013) argue that traditional RDBMSs are not suitable for a wide range 
of Big Data use cases due to the requirements identified above (e.g., search ranking, 
sensors, social customer relationship management, document similarity testing, and loan 
risk analysis). Krishnan (2013) also claims that DWs based on traditional RDBMSs have 
several design limitations that imply architectural and infrastructural changes to process 
Big Data, since they cannot be distributed as efficiently as non-relational systems due to 
Atomicity, Consistency, Isolation, and Durability (ACID) compliance rules, and due to the 
fact that data partitioning in these systems often does not translate into more scalability 
or workload reduction. Furthermore, the author mentions the fact that, in many of these 
systems, the Central Processing Unit (CPU) and memory are often underused, and the 
way queries are designed typically increases the workload, such as executing queries 
with a star schema pattern on a 3NF database model, generating significant volume of 
I/O and inadequate network throughput. Kimball and Ross (2013) present the capabilities 
that existing RDBMSs vendors are including to extend their solutions for Big Data 
environments. The authors compare these extended versions with the most commonly 
recognized open source implementation of MapReduce, namely Apache Hadoop. This 
comparison is presented in Table 2.2.

Table 2.2. Comparison between an extended RDBMS and Hadoop MapReduce. Adapted from Kimball & Ross 

(2013).

Characteristic Extended RDBMS Hadoop MapReduce

Proprietary Mostly proprietary Open source

Cost Expensive Less expensive

Variety Data must be structured Does not require structure

Type of operations Adequate for fast indexed lookups Adequate for massive scans

Relational semantics Deep support Indirect support (e.g., Hive)

Complex data structures Indirect support Deep support

Transaction processing Deep support Little or no support



Big Data Concepts, Techniques, and Technologies 27

Copyright © River Publishers – except portuguese speaking countries

2.4.2. The Lambda Architecture
The main idea behind the Lambda Architecture (Marz & Warren, 2015) is to think of a Big 
Data system as a series of layers that satisfy particular needs. As Figure 2-6 shows, the 
architecture is divided into three main components: batch, serving, and speed layers. In 
the batch layer, a master dataset stores all the data. Since it is sometimes inefficient to 
load a dataset that may contain Petabytes of data every time a query is executed, the 
architecture stores batch views in the serving layer, which are pre-computations of the 
master dataset. Instead of scanning the entire master dataset, the results are returned 
from batch views with indexing support, thus obtaining random reads is also possible. 
Therefore, the batch layer is not only responsible for storing an immutable and constantly 
growing master dataset, but also for computing functions on it. As Marz and Warren (2015) 
highlight, creating the batch views is a high latency operation and should be performed 
in scalable systems. Then, the serving layer stores these batch views in a distributed 
database supporting batch updates and random reads. 

Figure 2‑6. The Lambda Architecture. Adapted from Marz & Warren (2015) and C. Costa & Santos (2017a).

However, with only these two layers, batch views would be quickly outdated, as new 
data takes time to propagate from the batch layer into the serving layer. This does not 
meet the requirements of low latency (real-time) environments. Consequently, the authors 
propose the speed layer, which aims to compute functions on data in real-time. Rather 
than processing all the data at once, like the batch layer, the speed layer only processes 
recent data. To achieve the smallest possible latency, it does not even look at all the 
new data at once. Instead, it updates real-time views as new data becomes available, 
which is described as incremental computation. In order to retrieve current results, 
queries are answered by looking at the batch and real-time views, merging both results. 
Consequently, low latency updates are taken into consideration, and as batch views are 
updated, real-time views can be discarded, since the authors claim that the speed layer 
is far more complex than the other two. Marz and Warren (2015) describe how to develop 
Big Data systems according to the principles of the Lambda Architecture, highlighting 
several technological aspects, as well as other guidelines:

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics28

• Store the rawest data to answer as many questions as possible, obtaining different 
summarizations and insights. Since Big Data technologies are scalable by nature, they 
can handle this requirement;

• Store untransformed data, since data integration and quality algorithms can be improved 
in the future;

• Make the master dataset immutable, i.e., only adding more data, without update or 
delete operations. By doing this, Marz and Warren (2015) claim that human fault-
tolerance and simplicity are ensured;

• Within the master dataset, the raw data must be stored as atomic, timestamped, and 
uniquely identifiable units called facts. The authors describe how to strengthen the fact-
based model with information about the types of facts and relationships between them 
using a graph schema. Moreover, Marz and Warren (2015) also give guidelines about a 
possible folder and file structure for the master dataset, which would be typically stored 
in a distributed file system.

2.4.3.  Towards Standardization: the NIST Reference 
Architecture

The NIST Big Data Public Working Group (NBD-PWG), namely the Reference Architecture 
Subgroup, has been working on an open reference architecture for Big Data (NBD-PWG, 
2015), in order to create a tool to facilitate the discussion of requirements, design structures, 
and operations for Big Data environments. According to the authors, the NBDRA is not a 
system architecture, but rather a common reference, which is not coupled with specific 
vendors, services, implementations, or any specific solutions. The NBDRA is presented in 
Figure 2-7, and the proposed taxonomy for its components is as follows:

• System orchestrator – provides requirements regarding policy, governance, 
architectural design, resources, business requirements, monitoring, and auditing 
activities. The system orchestrator may include actors such as business leadership, 
consultants, data scientists, and architects concerned with tasks involving information, 
software, security, privacy, and network;

• Data provider – makes data available through different interfaces, including several 
data sources (e.g., raw data or previously transformed data). The data provider can be 
internal or external to the organization;

• Big Data application provider – executes the manipulations in the data life cycle to 
meet the requirements established by the system orchestrator. In this component, 
several capabilities are combined to create specific data solutions. While the general 



Big Data Concepts, Techniques, and Technologies 29

Copyright © River Publishers – except portuguese speaking countries

activities may remain similar to traditional data processing contexts, Big Data methods 
and techniques are considerably different due to scalability issues;

• Big Data framework provider – is composed of general resources or services to 
be used by the Big Data application provider. According to NBD-PWG (2015), this 
is the most changed role due to Big Data, taking into consideration the relevance of 
the infrastructure, data platforms, and processing frameworks. Different technologies 
can be used and hybrid approaches can emerge, providing flexibility and meeting the 
requirements of the Big Data application provider;

• Data consumer – benefits from the value of the Big Data system. The same type of 
interfaces used by the data provider can also be exposed to the data consumer, after 
value has been added to the original data sources.

Figure 2‑7. The NIST Big Data Reference Architecture. Adapted from NBD-PWG (2015) and C. Costa & Santos 

(2017a).

The NBDRA has two fabrics encapsulating the aforementioned components: a security 
and privacy fabric, which affects all the components of the NBDRA and interacts with 
the system orchestrator (policy, requirements, and auditing), the Big Data application 
provider, and the Big Data framework provider (development, deployment, and 
operation); and a management fabric responsible for tasks such as provisioning, 
software management, or performance monitoring, which involves considerations at 
scale about the system, data, security, and privacy, while maintaining a high level of data 
quality and accessibility.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics30

The NBDRA contains five components connected by interoperable interfaces (services) 
and enveloped by the two fabrics mentioned above. It supports a variety of business 
environments and facilitates the understanding of how Big Data solutions complement 
existing approaches and differ from them. To develop this proposal, the authors analyzed a 
wide range of existing Big Data architectures from the industry, academy, and government 
(NBD-PWG, 2015).

2.5. BIG DATA TECHNOLOGIES
This subsection highlights several technologies related to Big Data, including Apache 
Hadoop and related projects, several distributed SQL engines, and other tools for Big 
Data analytics.

2.5.1. Hadoop and Related Projects
As already mentioned, Hadoop is an open source Apache project based on GFS and 
MapReduce (Bakshi, 2012). Hadoop has two main components: the Hadoop Distributed 
File System (HDFS) and a distributed processing framework named Hadoop MapReduce. 
Hadoop can store and process vast amounts of data by distributing storage and processing 
across a scalable cluster of multiple nodes built with commodity hardware. In HDFS, 
files are divided into blocks distributed and replicated across nodes. HDFS ensures that 
many requirements identified above are fulfilled, such as fault-tolerance and availability, 
for example. Hadoop MapReduce is a programming model and an execution engine for 
processing large datasets stored in HDFS, based on the divide and conquer method, 
dividing a complex problem into many simpler problems, and then combining each simpler 
solution into an overall solution to the main problem. These are called the Map and Reduce 
steps (C. L. P. Chen & Zhang, 2014). Regarding HDFS, there are two types of nodes in 
the cluster: a NameNode, which is responsible for storing metadata about blocks and 
nodes; and a DataNode, which stores data blocks (Bakshi, 2012). Regarding Hadoop 
MapReduce, there are also two types of nodes, namely a JobTracker that schedules jobs 
and distributes tasks across slaves called TaskTrackers (C. L. P. Chen & Zhang, 2014). 

Over the years, Hadoop has evolved considerably; changes include the transition 
from MapReduce to Yet Another Resource Negotiator (YARN) (Hashem et al., 2015). 
YARN rethinks the JobTracker and TaskTracker components, replacing them with a 
ResourceManager, a NodeManager, and an ApplicationMaster, to solve some problems 
in Hadoop MapReduce, such as scalability on large clusters or support for alternative 
programming paradigms (Krishnan, 2013). Apart from that, Hadoop has several related 
projects, as Figure 2-8 demonstrates, also highlighting their main features (Apache 
Hadoop, 2018).



Big Data Concepts, Techniques, and Technologies 31

Copyright © River Publishers – except portuguese speaking countries

Figure 2‑8. The Apache Hadoop ecosystem. Adapted from C. Costa & Santos (2017a).

Other related projects not present in Figure 2-8 may include: Flume, a service to collect, 
aggregate, and move large amounts of log data; Oozie, a workflow and coordination 
system for jobs in Hadoop; HCatalog, a metadata layer for data stored in Hadoop, built 
on top of the Hive Metastore; Sqoop, a connector to integrate data from other existing 
platforms, such as the DW, metadata engines, enterprise systems, and transactional 
systems (Krishnan, 2013). There are also more projects that can interact with Hadoop’s 
interfaces or be co-located with it, such as projects for real-time stream processing or 
interactive ad hoc analysis. Since real-time data processing is becoming increasingly 
relevant to organizations (Chandarana & Vijayalakshmi, 2014), Storm is a real-time 
computation system to process streams with high throughput and low latency. Kafka, 
on the other hand, is a messaging/queuing system to produce and consume messages 
between processes, in an asynchronous and fault-tolerant manner (Marz & Warren, 2015).

Still related to Hadoop, there are several security projects. Hortonworks (2016) identifies five 
pillars for security in Hadoop: administration, authentication, authorization, auditing, and 
data protection. Kerberos, Apache Knox, and Apache Ranger are highlighted as projects 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics32

related to these five pillars, in order to ensure a secure Hadoop environment. Kerberos 
can be used to authenticate users and resources within Hadoop clusters. Apache Knox 
complements Kerberos, by blocking services at the perimeter of the cluster and hiding 
the cluster’s access points from end users, thus adding another layer of protection for 
perimeter security. Finally, Ranger provides a centralized platform for policy administration, 
authorization, auditing, and data protection (e.g., encrypted files in HDFS).

2.5.2. Landscape of Distributed SQL Engines
Interactive and low latency ad hoc analysis over large datasets is a relevant scenario 
in organizations. Occasionally, users do not know the queries in advance and need 
to execute ad hoc queries within milliseconds or seconds, even at scale. There is a 
trend named SQL-on-Hadoop (Floratou, Minhas, & Özcan, 2014) that is related to 
the implementation of distributed SQL engines for interactive ad hoc analysis of large 
datasets stored not only in Hadoop, but also in distributed databases (e.g., NoSQL 
databases, described in more detail in section 3.2). Many SQL-on-Hadoop systems are 
available under open source licenses, including: Hive on Tez (Huai et al., 2014); Presto 
(2018); Impala (Kornacker et al., 2015); Drill (Hausenblas & Nadeau, 2013); HAWQ  
(L. Chang et al., 2014); and Spark SQL (Armbrust et al., 2015), among many others. 
These systems are able to combine data from multiple sources like HDFS files, Hive tables 
(section 4.1), NoSQL databases (section 3.2), SQL databases, and Kafka, for example, 
which means that in a single query they can combine not only data from different systems, 
but also batch and streaming data. Consequently, SQL-on-Hadoop systems play a 
relevant role in BDWing systems, as shown later in this book. A brief description of the 
main characteristics of these tools is provided in this subsection, whereas a more detailed 
description of these tools can be found in Rodrigues, Santos, and Bernardino (2018). 

Drill (2018) is a system that supports data-intensive distributed applications for interactive 
analysis of large-scale datasets. It provides low latency and fast processing for interactive 
queries. Drill supports several file systems and databases, like HDFS, Hive, or HBase, and 
uses SQL to query data. It can scale-up to a significantly large cluster with thousands of 
nodes and offers connectivity and compatibility with BI tools like Tableau, MicroStrategy, 
QlikView, and Tibco. Among its various components, the core is named Drillbit. This 
service is responsible for accepting requests from the clients, processing the queries, and 
returning the results to the clients (Rodrigues et al., 2018).

HAWQ (2018), Hadoop With Query, is a Hadoop native SQL engine that combines 
Massively Parallel Processing (MPP) with the scalability of Hadoop, delivering adequate 
performance when querying large datasets. For performing complex queries, HAWQ splits 
the queries into small tasks and distributes them to the MPP execution units (Szegedi, 
2014). Applications and external tools can interact with HAWQ using standard protocols 



Big Data Concepts, Techniques, and Technologies 33

Copyright © River Publishers – except portuguese speaking countries

such as Open Database Connectivity (ODBC) or Java Database Connectivity (JDBC). 
In addition, HAWQ can be used with MADlib (Pivotal, 2017), an open source library for 
scalable in-database analytics, making machine learning capabilities available through a 
SQL interface.

Hive (2018a) supports the processing and analysis of data stored in HDFS and it 
is considered the DW storage system for Big Data. Hive was the first processing tool 
supporting SQL-on-Hadoop and has been used by many organizations, such as Amazon, 
to store and process large amounts of data. Being frequently considered as a high-latency 
system, oriented for batch workloads instead of interactive querying, Hive has improved 
its performance adopting new storage formats like the Optimized Row Columnar (ORC) 
file format (described in more detail in subsection 4.1.1) and the Tez execution engine, 
optimizing the execution of Hive jobs (Gates, 2014). Hive gives structure to data stored 
in HDFS and performs ad hoc querying and analysis using the Hive Query Language 
(HiveQL), a SQL-like query language.

Impala (2018) is an MPP SQL query engine that provides adequate performance, real-
time processing, low latency, and high concurrency processing. Impala combines SQL-
based queries with multi-user performance in Hadoop environments, which can include 
hundreds of machines. Data can be stored in HDFS or HBase, using the same metadata, 
SQL syntax, ODBC driver, and user interface as Hive, providing a unified platform for 
batch-oriented and real-time query processing.

Presto (2018) is a distributed SQL query engine for running interactive analytical queries. 
It was developed by Facebook and it is optimized for low latency and interactive queries. 
Presto supports several SQL features including joins, aggregations, and subqueries, as 
well as other features that include the manipulation of JSON documents, URL functions, 
strings, and regular expressions. A query in Presto can integrate data from multiple 
sources, allowing data analytics across several data sources, meaning it can query data 
available in HDFS, as well as in other data sources, including relational or non-relational 
databases.

Spark (2018) is a highly distributed processing framework that provides efficient analytics 
on heterogeneous data. Spark provides full access and compatibility with existing Hive 
data and uses the concept of Resilient Distributed Dataset (RDD), which describes an 
immutable collection of objects that are partitioned and distributed across multiple nodes 
in a cluster, allowing for distributed processing. Spark includes Spark SQL, a module for 
processing structured data with DataFrames/Datasets (equivalent to tables in relational 
databases), organizing data in named columns. 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics34

Given the specificities of each tool, Table 2.3 presents a brief comparison of these 
SQL-on-Hadoop technologies (Rodrigues et al., 2018), looking into the following set of 
characteristics, considered as main requirements in a Big Data processing architecture 
(Grover et al., 2015; Jethro, 2018; Landset, Khoshgoftaar, Richter, & Hasanin, 2015; 
MapR, 2018), such as SQL support, latency, scalability, processing performance, 
supported use cases, points of failure, fault-tolerance, and support for machine learning 
or data visualization tools.

Table 2.3. SQL-on-Hadoop systems. Adapted from Grover et al. (2015); Jethro (2018); Landset et al. (2015); 

MapR (2018); and Rodrigues et al. (2018).

Feature Drill HAWQ Hive Impala Presto Spark SQL

SQL 
support

ANSI SQL ANSI SQL HiveQL HiveQL ANSI SQL
ANSI SQL 
(limited) & HiveQL

Latency Low Low Medium Low Low Low

Scalability High High High Very high Very high High

Processing 
speed

Fast Very fast Fast Very fast Very fast Fast

Use cases

Real-time 
interactive 
queries and 
analysis/BI

Batch 
processing 
and 
interactive 
queries

Batch 
processing

Real-time 
interactive 
queries and 
analysis/BI

Real-time 
interactive 
queries

Batch and stream 
processing, 
interactive queries 
and machine 
learning

Single point 
of failure 
in query 
execution

No Yes

Yes, if 
failure at 
the master 
node

Yes, if any 
host quits 
query 
execution 

Yes, if any 
host quits 
query 
execution 

No

Fault-
tolerance

Yes Yes Yes No No Yes

Machine 
learning 

No Yes No Yes No Yes

Data 
visualization

No native 
support, 
compatibility 
with BI tools

No native 
support, 
compatibility 
with BI tools

No native 
support, 
compatibility 
with BI tools

No native 
support, 
compatibility 
with BI tools

No native 
support, 
compatibility 
with BI tools

No native 
support, 
compatibility 
with BI tools

Moreover, besides SQL-on-Hadoop systems, there are other similar technologies 
targeting interactive ad hoc querying, such as Druid (see section 4.3), a columnar store 
that provides real-time aggregation and indexing at data ingestion time (Yang et al., 
2014).



Big Data Concepts, Techniques, and Technologies 35

Copyright © River Publishers – except portuguese speaking countries

2.5.3. Other Technologies for Big Data Analytics
By describing Hadoop and its related projects, several technologies for Big Data analytics 
were already inherently identified: streaming analytics (e.g., Spark Streaming and Storm); 
data mining and machine learning (e.g., Spark and Mahout); DWing (e.g., Hive); interactive 
ad hoc analysis (e.g., Hive on Tez, Impala, Presto, Drill, and Spark SQL) (Santos et al., 
2017; Soliman, 2017); data flow (e.g., Pig). However, no data visualization tools have been 
introduced yet.

Regarding Big Data visualization, several mashup tools can be highlighted, such as 
Datameer, FICO Big Data Analyzer (former Karmasphere), Tableau, and TIBCO Spotfire 
(Krishnan, 2013). These mashup tools can bring together data from multiple sources into 
a single picture. As Krishnan (2013) highlights, there is also the possibility of visualizing 
Big Data with statistical tools, like R or SAS, for example, taking advantage of their 
capabilities. Other tools are also briefly mentioned in the literature, such as Jaspersoft 
Business Intelligence (BI) Suite and Pentaho Business Analytics (C. L. P. Chen & Zhang, 
2014). Certainly, many other visualization tools exist and may be adequate for Big 
Data visualization, such as Excel and Power BI, JavaScript libraries, or Python’s plot 
capabilities. 

Besides data visualization, there are other tools to extract, load, transform, and integrate 
data before carrying out analytical tasks. Talend Open Studio for Big Data is an example 
of such tool (C. L. P. Chen & Zhang, 2014). Moreover, apart from the aforementioned 
tools related to Hadoop for data mining and machine learning, other alternatives 
identified in the literature include: MADLib and EMC Greenplum (Begoli & Horey, 2012); 
R, MOA, WEKA, and Vowpal Wabbit (Fan & Bifet, 2013); data mining tools from SAS or 
IBM (Krishnan, 2013); Rapidminer; and KNIME (M. Chen et al., 2014). Some of these 
tools, like R and WEKA, are not scalable by default, and they are also used in traditional 
data mining and machine learning environments, where processing large training sets 
is not a significant concern. Over time, these tools have been extended with several 
connectors for scalable Big Data stores and packages for distributed processing 
(e.g., SparkR, RHadoop, RHive, distributedWekaBase, distributedWekaHadoop, and 
distributedWekaSpark), but, by default, without these extensions, they are better suited 
for small to moderate datasets. This does not mean that they are not useful in Big 
Data mining, quite the opposite, but the volume of data that serves as training and 
testing sets should be considered (preprocessing large datasets can be useful in these 
cases). The same principle applies to other non-distributed algorithms implemented in 
any other languages, like Python or Java, for example. It should be remembered that 
one of the main challenges regarding the Big Data life cycle is scaling the algorithms to 
extract value from data (Hashem et al., 2015). 

©
 F

C
A





OLTP‑ORIENTED 
DATABASES FOR BIG 
DATA ENVIRONMENTS3

INTRODUCTION Over the last years, the NoSQL movement has 
revolutionized the way we think about databases that 
support large-scale enterprise applications. NoSQL 
databases can be classified according to different types 
and can also have various data models, being frequently 
recognized as schema-less storage systems capable of 
serving low latency applications that handle huge amounts 
of data. This chapter presents an overview of the NoSQL 
movement and the various types of NoSQL databases, 
including practical examples for Redis (key-value store), 
HBase (wide column store), MongoDB (document store), 
and Neo4j (graph database). Moreover, the chapter 
concludes with some insights regarding NewSQL 
databases, a relatively recent movement focused on 
bridging the gap between SQL and NoSQL databases by 
trying to combine the advantages of both.



Big Data: Concepts, Warehousing, and Analytics38

3.1. NOSQL AND NEWSQL: AN OVERVIEW
Database technology has evolved significantly to handle datasets at different scales and 
support applications that may have high needs for random access to data (M. Chen et al.,  
2014; Hashem et al., 2015). NoSQL databases became popular mainly due to the lack 
of scalability in RDBMSs, since this new type of databases provides mechanisms to 
store and retrieve large volumes of distributed data (Hashem et al., 2015). The relevant 
factors that motivated the appearance of NoSQL databases were the strictness of the 
existing relational model and, consequently, its inadequacy for storing Big Data. NoSQL 
databases are regarded as distributed, scalable, elastic, and fault-tolerant storage 
systems. They satisfy an application’s need for high availability, even when nodes fail, 
appropriately replicating data across multiple machines (Kambatla et al., 2014). Relational 
databases will certainly evolve and some organizations, such as Facebook, are using 
mixed database architectures (M. Chen et al., 2014). Combining the benefits of both 
storage systems is a current research trend, as was previously mentioned (Cuzzocrea 
et al., 2011). A recent term is emerging, “NewSQL”, which combines the relational data 
model with certain benefits of NoSQL systems, such as scalability, for example (Grolinger, 
Higashino, Tiwari, & Capretz, 2013). According to Cattell (2011), NoSQL and NewSQL 
databases are mainly designed to scale OLTP-style workloads over several nodes, hence 
fulfilling the requirements of environments with millions of simple operations (e.g., key 
lookups and reads/writes of one record or a small number of records).

This phenomenon changed the way databases are now designed. While a RDBMS 
complies to ACID properties (Krishnan, 2013), a NoSQL database, being a distributed 
system, typically follows the principle of the Consistency, Availability, Partition tolerance 
(CAP) Theorem: “any networked shared-data system can have only two of three  
desirable properties” (Brewer, 2012, p. 23). In the case of the NoSQL databases, these 
properties include: consistency, equivalent to a single up-to-date copy of the data; high 
availability of that data; and tolerance to network partitions. As Brewer (2012) claims, CAP 
served its purpose of leveraging the design of a wider range of systems and trade-offs, and 
the NoSQL movement is a clear example of that. The fact that two of the three properties 
should be chosen was always misleading, states the author, as it tends to simplify the 
“tensions among properties”. These properties are more continuous than binary and, 
therefore, they can have many intermediate levels. CAP only proscribes perfect availability 
and perfect consistency in the presence of network partitions (Figure 3-1). 

Consequently, the CAP Theorem serves to consider combinations of consistency and 
availability that fit a given scenario. The choices between consistency and availability can 
vary within a certain system, for example, according to specific data or users. Brewer 
(2012) clarifies this misunderstanding and discusses the relationship between ACID and 
CAP, stating that choosing availability only affects some of the ACID’s guarantees. These 



OLTP-oriented Databases for Big Data Environments 39

Copyright © River Publishers – except portuguese speaking countries

design considerations are intrinsic to NoSQL databases and each may be designed 
differently regarding these choices.

Figure 3‑1. The CAP Theorem. Adapted from Hewitt (2010).

There are many NoSQL databases, so enumerating and evaluating all of them is virtually 
impossible. Tudorica and Bucur (2011) state that over 120 NoSQL databases were 
known in 2011. In addition, other sources point to the existence of more than 225 NoSQL 
databases (NoSQL, 2018). This number increases so fast that it is almost impossible 
to follow the evolution of databases in terms of their characteristics, advantages, and 
disadvantages. 

Regarding their types, NoSQL databases are usually divided into four data models, which 
are described as follows along with examples (more detailed explanations are provided in 
the next subsections of this chapter):

• Key-value model – data is typically stored in key-value pairs. The key uniquely identifies 
a value of an arbitrary type. These data models are known for being schema-free, but 
may lack the capability to adequately represent relationships or other structures, since 
queries and indexing depend on the key (Grolinger et al., 2013). Every key is unique 
and queries are tightly coupled with the keys (M. Chen et al., 2014). Examples: Redis, 
Memcached, BerkeleyDB, Voldemort, Riak, and Dynamo;

• Column-oriented model – a column-oriented data model can be seen as an extension of 
the key-value model that adds columns and column families, thus providing more powerful 
indexing and querying (Krishnan, 2013). This design was largely inspired by Bigtable  
(M. Chen et al., 2014; Grolinger et al., 2013), although not all column-oriented databases 
are completely inspired by it (e.g., Cassandra adopts design aspects from both Dynamo 
and Bigtable). Examples: Bigtable, HBase, Cassandra, and Hypertable;

• Document-oriented model – suitable for representing data in a document format, 
typically using JSON. It can contain complex structures, such as nested objects, and 
also typically includes secondary indexes, thus providing more query flexibility than the 
key-value data model (Grolinger et al., 2013). Examples: MongoDB, CouchDB, and 
Couchbase;©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics40

• Graph model – based on graph theory, in which objects can be represented as nodes, 
and relationships between them can be represented as edges (Krishnan, 2013). 
Graphs are specialized in handling interconnected data with several relationships 
(Grolinger et al., 2013). Examples: Neo4j, InfiniteGraph, GraphDB, AllegroGraph, and 
HyperGraphDB.

These different NoSQL database types vary in terms of the data models they support, 
as was previously mentioned, but also in the data volume each one is most suited 
to handle. When the complexity of the data models increases, the data volume each 
database can handle decreases. As shown in Figure 3-2, key-value databases 
are more appropriate for large volumes of non-complex data, which are stored as  
key-value pairs. Each value can range from a single attribute to a list of attributes without 
any predefined relationship between them. As data models begin to include relationships 
between attributes or some type of data organization (like columns in tables or nested 
structures in documents), the complexity of the data models increases, hence decreasing 
the capability to handle more data volume. NoSQL graph databases are considered the 
most appropriate for storing and processing relationship-heavy data.

Figure 3‑2. Types of NoSQL databases. Adapted from Hewitt (2010).

NewSQL databases are based on the relational model (Grolinger et al., 2013), offering 
either a pure relational view of the data (e.g., VoltDB, Clustrix, NuoDB, MySQL Cluster, 
ScaleBase, ScaleDB) or something similar (e.g., Google Spanner). According to 
Grolinger et al. (2013), sometimes interactions with these databases rely on tables 
and relations, but they might use different internal representations. Such is the case 
of NuoDB. Different NewSQL databases support different SQL compatibility, such as 
unsupported clauses or other incompatibilities with the standard. Similar to NoSQL, 



OLTP-oriented Databases for Big Data Environments 41

Copyright © River Publishers – except portuguese speaking countries

NewSQL databases can scale by adding nodes to a cluster, using a horizontal scaling 
approach (Figure 3-3).

Figure 3‑3. Horizontal scaling of nodes in a cluster.

3.2. NOSQL DATABASES
The following subsections describe in more detail each one of the different types of  
NoSQL databases, providing some guidelines about their data models and some 
examples of their use.

3.2.1. Key‑value Databases
This subsection provides an overview of the key-value stores and presents the Redis 
database in more detail, with some examples of its data model and functionalities.

3.2.1.1. Overview

Key-value stores, or key-value databases, are the most flexible storage mechanism 
available in NoSQL databases, being an alternative to traditional databases with  
pre-defined data schemas. This storage paradigm relies on the concepts of key and value. 
The key can be mapped to a value or to a complex version of a value, which may include 
a list of values for several attributes (Sadalage & Fowler, 2012).

The keys can be stored in a hash table, or similar structure, and the values are identified 
and accessed using the keys (Figure 3-4). Values can include a wide variety of data 
types or data structures, expressed using numbers, strings, images, videos, maps, 
or JSON, XML, and Hypertext Markup Language (HTML) objects. Since there is no  
pre-defined data model or data structure, the application layer provides the semantics 
for what is stored in the values. This flexibility implies an overhead effort in developing 
the application layer for processing and analyzing the stored data.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics42

Figure 3‑4. Key-value stores.

The data model of a key-value store is based on these two components, the key and the 
value, where the value is only available for a lookup after knowing the corresponding key. 
Constrained by the specific selected database, some size limitations may exist for the 
value component. Apart from those limitations, there is complete freedom to store data 
in the value. This type of repository is optimized for querying using the keys. As shown in 
Figure 3-5, the value component may vary from record to record, and this also applies to 
the number of elements or attributes.

Figure 3‑5. Example of a key-value store.

This type of database enables high performance and availability, with efficient query 
processing and easy distribution of data across a cluster; however, it does not support 
processing of complex query filters, join operations, or foreign key constraints. Consistency 
can only be verified in operations on single keys. 

3.2.1.2. Redis

Redis (2018b) is a non-relational database that stores a mapping of keys pointing to 
values. Its key-value approach supports data structures with different values such as 
strings, hashes, lists, sets, stored sets, bitmaps, and hyperLogLogs. The five fundamental 



OLTP-oriented Databases for Big Data Environments 43

Copyright © River Publishers – except portuguese speaking countries

data structures of Redis are shown in Figure 3-6. In them, a string key can map a string 
value or a more complex data structure, such as:

• Lists – collections of string elements stored by order of insertion;

• Sets – collections of unique and unsorted string elements;

• Hashes – maps composed of fields and their corresponding values, in which both fields 
and values are strings;

• Sorted sets – sets where each string element includes a score represented by a floating 
number value, allowing the retrieval of a range of elements, such as five of the top or 
bottom elements. This kind of selection is not possible in sets.

Figure 3‑6. Examples of Redis data structures. Adapted from Redis (2018a).

Besides these five fundamental data structures, Redis allows:

• Bit arrays or bitmaps – arrays of bits that can be used to handle string values. Individual 
bits can be set or cleared, can be counted (0’s or 1’s), can be searched, among other 
special operations;

• HyperLogLogs – a probabilistic data structure that can be used to count the number 
of distinct values and obtain the cardinality of a set.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics44

Regarding the fundamental data structures, Table 3.1 summarizes the values each 
structure can handle, as well as the common operations for that structure.

Table 3.1. Data structures in Redis. Adapted from Redis (2018a).

Data Structure Values Operations

Strings
Strings, integers, or floating-
point values

Operate on strings; increment/decrement integers and 
floats

Lists Lists of strings
Push or pop items; read individual or multiple items; find 
or remove items by value

Sets
Unordered collection of unique 
strings

Add, fetch, or remove individual items; check membership, 
intersect, union, or difference; fetch random items

Hashes
Unordered hash table of keys 
to values

Add, fetch, or remove individual items; fetch the whole 
hash

Sorted sets
Ordered mapping of string 
members with floating-point 
scores, ordered by score

Add, fetch, or remove individual values; fetch items based 
on score ranges or member value

Redis is an in-memory storage solution with the capability of persistent storage on disk, 
which supports replication to scale read performance, and client-side sharding to scale 
write performance. This sharding option partitions the data based on some component of 
the key (such as an ID) and/or based on the hash of the keys, storing and fetching data 
from multiples nodes in a cluster (Redis, 2018a).

The keys in Redis are binary safe, meaning that any binary sequence can be used as a key. 
Keys must not be too long, because the lookup of the key may require several costly key 
comparisons, neither too short to save storage space. Readable keys are preferred and 
usually do not add a significant amount of space. It is recommended to follow a pattern 
when defining keys, for instance, object-type:id, for assigning the following keys: 
student:0001, student:0002, student:0003, etc. When the data volume increases, 
maintaining unique values for keys can be difficult, it is therefore advisable to define a 
pattern for generating strings that remain unique within extremely large sets of keys. The 
maximum key size is 512MB (Redis, 2018b).

To provide an overview of Redis’ data structures and the operations that can be 
performed on them, some illustrative examples are now offered. Starting with strings, 
three manipulation commands are available, as shown in Table 3.2.

Table 3.2. Redis commands for strings. Adapted from Redis (2018a).

Command Action

get Fetches the data associated with a key

set Sets the value of a given key

del Deletes the value of a given key



OLTP-oriented Databases for Big Data Environments 45

Copyright © River Publishers – except portuguese speaking countries

Using redis-cli, the Redis Command Line Interface (CLI), the following listing code 
presents an example where the value myValue is assigned to the v001 key. The value is 
then fetched and deleted using the key. After the removal, Redis returned the nil value 
when trying to fetch the value again (Redis, 2018a).

$ redis-cli

redis> set v001 myValue

OK

redis> get v001

“myValue”

redis> del v001

(integer) 1

redis> get v001

(nil)

In lists, Redis supports a linked-list structure in which it is possible to store a sequence of 
strings as the value of a key. The available operations allow to push items to the front or 
to the back of the list, to pop items from the front or from the back of the list, to fetch an 
item at a given position or to fetch a range of items (Table 3.3). 

Table 3.3. Redis commands for lists. Adapted from Redis (2018a).

Command Action

lindex Fetches an item available at a given position in the list

lpop/rpop Pops the value from the left/right end of the list and returns it

lrange Fetches a range of values from the list

lpush/rpush Pushes the value into the left/right end of the list

As an example, the following listing code shows how the list-001 list is filled with three 
items (item01, item02, item03) that are inserted at the right with a rpush. As the items 
are incrementally inserted, Redis returns the current length of the list. Afterwards, the 
entire list is fetched with lrange, using 0 for the start index and -1 for the last index. 
The lindex command is used to fetch an item from the list, namely the one referenced 
by index 1. The removal of an item from the list can be done with lpop, which in this 
case is deleting item01 from the list. Using again the lrange command shows the two 
remaining items in the list. Besides the generic example on the left side of the listing code 
(Redis, 2018a), a specific one is shown on the right side of the listing code, indexed to a 
“countries” instance.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics46

redis> rpush list-001 item01 redis> rpush list-countries Portugal

(integer) 1 (integer) 1

redis> rpush list-001 item02 redis> rpush list-countries Spain

(integer) 2 (integer) 2

redis> rpush list-001 item03 redis> rpush list-countries France

(integer) 3 (integer) 3

redis> lrange list-001 0 -1 redis> lrange list-countries 0 -1

1) “item01”

2) “item02”

3) “item03”

1) “Portugal”

2) “Spain”

3) “France”

redis> lindex list-001 1 redis> lindex list-countries 1

“item02” “Spain”

redis> lpop list-001 redis> lpop list-countries

“item01” “Portugal”

redis> lrange list-001 0 -1 redis> lrange list-countries 0 -1

1) “item02”

2) “item03”

1) “Spain”

2) “France”

Sets are very similar to lists, but the sequence of strings is managed by a hash table that 
ensures all strings are unique. Because sets are unordered, it is not possible to push or 
pop items from the top or bottom sections, as in lists. However, items can be added or 
removed, items can be searched to verify if they exist in the set, or the entire set can be 
fetched (Table 3.4). 

Table 3.4. Redis commands for sets. Adapted from Redis (2018a).

Command Action

sadd Adds an item to the set

smembers Returns all the items in the set

sismember Checks if an item belongs to the set

srem Removes the item from the set, if it exists

To illustrate how sets work, the following listing code starts by adding three items 
(item01, item02, item03) to the set-001 set. For each new successfully inserted item, 
the returned value is 1. If the item already exists in the set, the returned value is 0. Then, 
smembers is used to fetch all the items within that set. To verify if an item is in a set, 
sismember returns 1 or 0 for yes and no, respectively. To remove items, srem is used, 
returning 1 or 0 when the item is successfully removed (for items that do exist in the 
set), or not, respectively. The following listing code shows the generic example (Redis, 
2018a), alongside one indexed to a “countries” instance.



OLTP-oriented Databases for Big Data Environments 47

Copyright © River Publishers – except portuguese speaking countries

redis> sadd set-001 item01 item02 
item03

redis> sadd set-countries Portugal 
Spain France

(integer) 3 (integer) 3

redis> sadd set-001 item03 redis> sadd set-countries France

(integer) 0 (integer) 0

redis> smembers set-001 redis> smembers set-countries

1) “item01”

2) “item02”

3) “item03”

1) “Portugal”

2) “Spain”

3) “France”

redis> sismember set-001 item07 redis> sismember set-countries Greece

(integer) 0 (integer) 0

redis> sismember set-001 item02 redis> sismember set-countries Spain

(integer) 1 (integer) 1

redis> srem set-001 item03 redis> srem set-countries France

1 1

redis> srem set-001 item03 redis> srem set-countries France

0 0

redis> smembers set-001 redis> smembers set-countries

1) “item01”

2) “item02”

1) “Portugal”

2) “Spain”

In Redis, hashes are used for mapping keys to values, which can be string values or 
numeric values. In this last case, numeric values can be incremented or decremented. An 
hash can be seen as a set of pairs, where the hash includes subkeys to index its several 
values (Redis, 2018a). 

Regarding commands, hashes allow the storage of the keys, fetching the value of a 
given hash key, fetching the entire hash and removing a key from the hash in case it 
exists (Table 3.5).

Table 3.5. Redis commands for hashes. Adapted from Redis (2018a).

Command Action

hset Stores a value in a hash key

hget Fetches the value of a given hash key

hgetall Fetches the whole hash

hdel Removes a key from the hash, if the key exists

In the following example, the h001 hash is created using the hset command with three 
elements. The subkeys of these elements follow a pattern that uses the hash label and a 
number as a sub-label, only to show the hierarchical dependence between the hash and 
its members (h001-001, h001-002, …). The hgetall shows all the subkeys and values 
included in the hash, whereas the hdel is used to delete a specific member in the hash 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics48

structure and the hget is used to fetch a specific value for a subkey in the hash. Along 
the generic example (Redis, 2018a), a specific one is shown indexed to a “countries” 
instance.

redis> hset h001 h001-001 item01 redis> hset h-countries pt Portugal

(integer) 1 (integer) 1

redis> hset h001 h001-002 item02 redis> hset h-countries sp Spain

(integer) 1 (integer) 1

redis> hset h001 h001-003 item03 redis> hset h-countries fr France

(integer) 1 (integer) 1

redis> hset h001 h001-003 item03 redis> hset h-countries fr France

(integer) 0 (integer) 0

redis> hgetall h001 redis> hgetall h-countries

1) “h001-001”

2) “item01”

3) “h001-002”

4) “item02”

5) “h001-003”

6) “item03”

1) “pt”

2) “Portugal”

3) “sp”

4) “Spain”

5) “fr”

6) “France”

redis> hdel h001 h001-002 redis> hdel h-countries sp

(integer) 1 (integer) 1

redis> hget h001 h001-003 redis> hget h-countries fr

“item03” “France”

redis> hgetall h001 redis> hgetall h-countries

1) “h001-001”

2) “item01”

3) “h001-003”

4) “item03”

1) “pt”

2) “Portugal”

3) “fr”

4) “France”

The last data structure, sorted sets or zsets, is similar to hashes in the sense that the 
several keys (members of the sorted set) are unique and point to a value (called score) 
that is a floating-point number. The several members can be accessed using the key, 
which corresponds to the member itself, or can be accessed by the sorted order or by the 
values of the scores (Redis, 2018a). Members can be added, removed, or fetched from 
a sorted set (Table 3.6).

Table 3.6. Redis commands for sorted sets. Adapted from Redis (2018a).

Command Action

zadd Adds a member with a given score to a sorted set

zrange Fetches a member in the sorted set, given its position in the sorted order

zrangebyscore Fetches members in the sorted set, given a range of scores

zrem Removes a member from the sorted set, if it exists



OLTP-oriented Databases for Big Data Environments 49

Copyright © River Publishers – except portuguese speaking countries

In the following example, the zset-001 sorted set is created using zadd with three 
members, item01, item02, and item03, each one with its respective score, 7, 12 and 15. 
The zrange fetches all the members of the sorted set, and the zrangebyscore fetches 
all the members inside the interval of scores. For deleting a specific member, zrem is 
used. Besides the generic example (Redis, 2018a), a specific one is shown indexed to a 
“countries” instance.

redis> zadd zset-001 7 item01 redis> zadd z-countries 17 Portugal

(integer) 1 (integer) 1

redis> zadd zset-001 12 item02 redis> zadd z-countries 54 Spain

(integer) 1 (integer) 1

redis> zadd zset-001 15 item03 redis> zadd z-countries 75 France

(integer) 1 (integer) 1

redis> zadd zset-001 15 item03 redis> zadd z-countries 75 France

(integer) 0 (integer) 0

redis> zrange zset-001 0 -1 
withscores

redis> zrange z-countries 0 -1 
withscores

1) “item01”

2) “7.0”

3) “item02”

4) “12.0”

5) “item03”

6) “15.0”

1) “Portugal”

2) “17.0”

3) “Spain”

4) “54.0”

5) “France”

6) “75.0”

redis> zrangebyscore zset-001 0 10 redis> zrangebyscore z-countries 0 20

“item01” “Portugal”

redis> zrem zset-001 item03 redis> zrem z-countries France

1 1

redis> zrange zset-001 0 -1 
withscores

redis> zrange z-countries 0 -1 
withscores

1) “item01”

2) “7.0”

3) “item02”

4) “12.0”

1) “Portugal”

2) “17.0”

3) “Spain”

4) “54.0”

The previous sections introduced the main concepts of key-value stores along with brief 
examples of the use of Redis, a specific key-value database. For further details, see the 
Redis detailed documentation available at Redis (2018a; 2018b).

3.2.2. Column‑oriented Databases
This subsection provides an overview of the column-oriented stores and describes HBase 
in more detail, along with some examples of its data model and functionalities.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics50

3.2.2.1. Overview

As the name implies, in a column-oriented store, or column-oriented database, data is 
stored using a column-oriented model, which, depending on the physical organization 
of the data, may be very efficient for compressing it or processing it using aggregation 
operations (George, 2010). One of the possible physical views of the data that ensures 
these capabilities is based on storing data from the same column together as a continuous 
disk entry, hence the reason why it is very efficient for compression or even for data 
processing. Read and write operations are done using columns, not the traditional  
row-oriented organization strategy found in most relational databases (George, 2010). 

This is one of the main physical views of the data found in column-oriented databases. 
However, since the term column-oriented is widely used, sometimes to describe 
different physical views of the data, not all “column-oriented” databases fit under this 
strategy to physically store the data. Some column-oriented databases may physically 
store the columns as a continuous disk entry, others on a per column family basis 
(groups of columns), among other strategies. For this reason, very often, the term  
“column-oriented” is used as an umbrella both for pure columnar physical views of the 
data and for other strategies found on a set of databases typically named “wide column 
stores” that, despite being often tagged as “column-oriented”, frequently store the data 
on a row-by-row fashion that allows for different rows to have different columns, on a 
highly dynamic manner, hence the coined term “schema-less”.

Consequently, whenever practitioners see a database labeled as “column-oriented”, 
further clarification is needed regarding the way it physically stores the data, since 
depending on the strategy, different databases leverage different aggregation, random 
access, and compression capabilities. For example, databases that store columns as 
a continuous disk entry provide excellent sequential access capabilities for efficient 
aggregations, while more row-oriented wide column stores allow for very efficient random 
writes or random reads.

Looking at the table shown in Figure 3-7, the row-oriented data model groups the data 
by row, whereas the column-oriented data model groups the data by column, taking 
advantage of data types for compacting and processing data (George, 2010). 

At the conceptual level, one of the typical logical views for the data model of this type of 
databases relies on a keyspace as the outermost data organization level, representing 
a specific database. Tables inside a keyspace include a key, which is a unique value 
that is used for the identification of a specific record. Tables include columns that can 
be grouped into column families. Although the available elements (keyspace, columns, 
column families, among others) will depend on the chosen database, many column-
oriented stores use this fundamental set of elements or some subset of it.



OLTP-oriented Databases for Big Data Environments 51

Copyright © River Publishers – except portuguese speaking countries

Figure 3‑7. Row-oriented vs. column-oriented storage.

In the case of column-oriented databases that allow column families, each column belongs 
to one column family, which is used for reading and writing, since data from a specific 
column will be usually accessed together (Sadalage & Fowler, 2012). Different rows can 
have data from different columns, since most databases allow adding new columns over 
time without the need to fill in default values for the existing rows in the new cells. Data 
schemas can change over time, accommodating new data requirements.

The following subsection presents in more detail the concept of column-oriented database 
and the available elements, using as an example the HBase NoSQL database.

3.2.2.2. HBase

A well-known column-oriented database is HBase (2018a), a distributed database built 
on Hadoop and its distributed file system. In this context, column-oriented means that 
HBase makes use of an on-disk column family-oriented storage format. With it, HBase 
provides key-based access to a specific cell of data or to a sequential range of cells 
(George, 2010). Moreover, HBase can be classified as a column family-oriented storage, 
as it groups columns into column families (George, 2010). Inside each column family, data 
is stored in a row-oriented format, as the examples of this subsection will show. Next 
chapter (subsection 4.1.1) will further detail these differences when presenting the several 
data storage formats. 

HBase allows real-time read/write random access to very large datasets and is designed 
to scale linearly just by adding nodes to a cluster (horizontal scalability). HBase provides 
fault-tolerant storage of large quantities of data in a cluster made of commodity hardware, 
with high availability and high performance (White, 2015). ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics52

Since it is non-relational, HBase does not support SQL, although nowadays the Apache 
Phoenix project (Phoenix, 2018) provides a layer that implements a transactional SQL 
database on top of HBase (2018b).

Regarding the logical data model, data is stored in tables integrating rows and columns. 
Columns for a specific instance, or row, are addressed uniquely by a row key. All the cells 
in a table are automatically versioned by HBase, adding an auto-assigned timestamp 
when the cell is inserted (the timestamp can also be explicitly set by the user). The cell 
content is an array of bytes. Tables are grouped into namespaces that improve the 
organization of the data supporting a specific application, for instance.

All row keys must be unique because these keys are used to sort the data in a 
lexicographical manner. In this sorting process, each key is compared on a binary level, 
one byte at a time, from left to right. The resulting sorted set provides a kind of primary 
key index that enhances data management tasks, such as updating or searching for data.

Columns in tables are grouped into column families, which adds a semantic layer useful 
not only to model the data but also to physically organize it, as all columns in a column 
family are stored together in the same low-level storage file: the HFile (HBase, 2018b). 
Column families are defined when the table is created, and it is advisable not to change 
them too often nor defining too many of them in a table. 

To exemplify, Figure 3-8 shows a table of students along with two column families: name 
and address; each one holding two columns which define the students’ first and last 
names and their city and country, respectively. In this table, it is possible to see the row key 
and the timestamp that is automatically assigned by the system. Afterwards in this chapter, 
more details about the creation of the tables’ key will be given, taking into consideration  
the relevance of the key to maintain an adequate performance for data manipulation tasks. 
For now, the examples maintain the keys as abstract and simple as possible.

Figure 3‑8. Example of a HBase table.



OLTP-oriented Databases for Big Data Environments 53

Copyright © River Publishers – except portuguese speaking countries

HBase tables are usually sparse, as different rows may have different column families with 
data. Moreover, since data can be updated, the timestamp keeps multiple versions of a 
cell, as it changes over time. Different versions of a cell are stored in decreasing timestamp 
order, with the newest value in the first place, privileging current values over historical 
ones. The user can specify the number of versions that should be kept in the system, 
limiting the historical values to a certain period of time (HBase, 2018b).

When storing data, columns are often referenced with a family:qualifier pair, where 
the qualifier is any arbitrary array of bytes, corresponding to the name of the column in the 
column family. Figure 3-9 shows how a cell’s history is recorded by HBase, tracking the 
changes undergone by the data as time passes.

Figure 3‑9. Timestamp in HBase tables.

Putting together the previous example, with the rows included in Figure 3-8 (table of 
students) and some versions of row 1, shown in Figure 3-9, two structures are physically 
created in HBase; one for storing all the rows belonging to the Name column family, and 
the other for storing all rows in the Address column family. The first table (Figure 3-10) 
includes two rows per record, one for storing the information about the FirstName, and 
the other for the LastName, since both components are included in the Name column family.

Figure 3‑10. HBase table for the Name column family.©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics54

In the second table (Figure 3-11) one of the records had several changes over time (record 
with the row key 1). The table includes two rows per record at a given timestamp for storing 
the initial information about the City and the Country, plus a row per change, namely in 
the City column. The record with row key 1 presents changes at timestamps t5 and t9.

In the previous example, the timestamp was represented by an abstract value to keep 
the example as simple as possible. Nevertheless, it is important to mention that the 
timestamp is a long integer value representing the number of seconds since midnight, 
January 1, 1970 UTC (Coordinated Universal Time), value known as the Unix time or Unix 
epoch (HBase, 2018b).

Having introduced the main concepts related to data models in HBase, the hbase 
shell is now used to create the students table with its two column families, name and 
address. For this table, the command line is also used to fill the sample records in the 
table. Using the hbase shell, the following code lines show how the students table is 
created (create command) with the two column families. For the address column family, 
the number of versions is set to 5, meaning that the cells’ history for this column family will 
keep up to five different values at most. After creating the table, the content of HBase is 
listed (list command), showing the available tables, and data about two rows is inserted 
in the table using the put command.

Figure 3‑11. HBase table for the Address column family.



OLTP-oriented Databases for Big Data Environments 55

Copyright © River Publishers – except portuguese speaking countries

$ hbase shell

hbase> create ‘students’, ‘name’,  {NAME => ‘address’, VERSIONS => 5}

0 row(s) in 1.2310 seconds

=> Hbase::Table - students

hbase> list

TABLE 

students

1 row(s) in 0.0140 seconds

=> [“students”]

hbase> put ‘students’, ‘1’, ‘name:firstname’, ‘Anne’

hbase> put ‘students’, ‘1’, ‘name:lastname’, ‘Smith’

hbase> put ‘students’, ‘1’, ‘address:city’, ‘Lisboa’

hbase> put ‘students’, ‘1’, ‘address:country’, ‘Portugal’

hbase> put ‘students’, ‘2’, ‘name:firstname’, ‘Bruce’

hbase> put ‘students’, ‘2’, ‘name:lastname’, ‘Jones’

hbase> put ‘students’, ‘2’, ‘address:city’, ‘Madrid’

hbase> put ‘students’, ‘2’, ‘address:country’, ‘Spain’

At this moment, it is possible to inspect the table and see the inserted data. To do that, the 
scan command is used, listing 8 lines; 4 for each available record. In the obtained result, 
the sort command applied by HBase to the rows is shown, as the various columns of a 
record are sorted on disk by row key and column key, in a descending order by timestamp.

hbase> scan ‘students’

ROW     COLUMN+CELL                                                                                                                 

 1      column=address:city, timestamp=1522750997363, value=Lisboa                                                                  

 1      column=address:country, timestamp=1522750997474, value=Portugal                            

 1      column=name:firstname, timestamp=1522750997300, value=Anne                                                                  

 1      column=name:lastname, timestamp=1522750997337, value=Smith                                                                  

 2      column=address:city, timestamp=1522750997582, value=Madrid                                                                  

 2      column=address:country, timestamp=1522750999662, value=Spain                                                                

 2      column=name:firstname, timestamp=1522750997517, value=Bruce                                                                 

 2      column=name:lastname, timestamp=1522750997547, value=Jones                                                                  

2 row(s) in 0.0320 seconds

The example continues updating the city of row key 1 and listing the table content to see 
the updated value as the current one.

hbase> put ‘students’, ‘1’, ‘address:city’, ‘Sintra’

hbase> scan ‘students’

ROW     COLUMN+CELL

 1      column=address:city, timestamp=1522751761541, value=Sintra                                                                                                   

 1      column=address:country, timestamp=1522750997474, value=Portugal

 1      column=name:firstname, timestamp=1522750997300, value=Anne                

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics56

 1      column=name:lastname, timestamp=1522750997337, value=Smith                                                                                                   

 2      column=address:city, timestamp=1522750997582, value=Madrid                                                                                                   

 2      column=address:country, timestamp=1522750999662, value=Spain                                                                                                

 2      column=name:firstname, timestamp=1522750997517, value=Bruce                                                                                                 

 2      column=name:lastname, timestamp=1522750997547, value=Jones                                                                                                   

2 row(s) in 0.1050 seconds

Now, the record with the row key 1 is fetched using the get command following two 
different approaches. The first one fetches the current value of the record, for both column 
families, while the second one fetches the two versions of the city already available in the 
table for the address column family.

hbase> get ‘students’, “1”

COLUMN                 CELL                                         

 address:city          timestamp=1522751761541, value=Sintra                                                                                       

 address:country       timestamp=1522750997474, value=Portugal                                                                                     

 name:firstname         timestamp=1522750997300, value=Anne                                                                                         

 name:lastname         timestamp=1522750997337, value=Smith                                                                                        

4 row(s) in 0.0330 seconds

hbase> get ‘students’, “1”, {COLUMN => ‘address’, VERSIONS => 2}

COLUMN                 CELL                                     

 address:city          timestamp=1522751761541, value=Sintra                                                                                       

 address:city          timestamp=1522750997363, value=Lisboa                                                                                     

 address:country       timestamp=1522750997474, value=Portugal                                                                                                                                  

3 row(s) in 0.0230 seconds

The remaining of the table is filled with the data previously shown in Figures 3-10 and 
3-11, adding two more records (with row key 3 and row key 4), and with the additional 
update of the city for the student with the row key 1.

hbase> put ‘students’, ‘3’, ‘name:firstname’, ‘Mary’

hbase> put ‘students’, ‘3’, ‘name:lastname’, ‘King’

hbase> put ‘students’, ‘3’, ‘address:city’, ‘Paris’

hbase> put ‘students’, ‘3’, ‘address:country’, ‘France’

hbase> put ‘students’, ‘1’, ‘address:city’, ‘Faro’

hbase> put ‘students’, ‘4’, ‘name:firstname’, ‘Peter’

hbase> put ‘students’, ‘4’, ‘name:lastname’, ‘Ralph’

hbase> put ‘students’, ‘4’, ‘address:city’, ‘Coimbra’

hbase> put ‘students’, ‘4’, ‘address:country’, ‘Portugal’

To conclude the example, the content of the table is shown with the scan command, and 
the three versions of the city for the student to which it was assigned the row key 1 are 
shown with the get command. The students table is disabled afterwards with the disable 
command so it can be removed from HBase with the drop command.



OLTP-oriented Databases for Big Data Environments 57

Copyright © River Publishers – except portuguese speaking countries

hbase> scan ‘students’

ROW    COLUMN+CELL                                                                                                                 

 1     column=address:city, timestamp=1522752674191, value=Faro                                                                    

 1     column=address:country, timestamp=1522750997474, value=Portugal                                                             

 1     column=name:firstname, timestamp=1522750997300, value=Anne                                                                  

 1     column=name:lastname, timestamp=1522750997337, value=Smith                                                                  

 2     column=address:city, timestamp=1522750997582, value=Madrid                                                                  

 2     column=address:country, timestamp=1522750999662, value=Spain                                                                

 2     column=name:firstname, timestamp=1522750997517, value=Bruce                                                                 

 2     column=name:lastname, timestamp=1522750997547, value=Jones                                                                  

 3     column=address:city, timestamp=1522752674146, value=Paris                                                                   

 3     column=address:country, timestamp=1522752674168, value=France                                                               

 3     column=name:firstname, timestamp=1522752674075, value=Mary                                                                  

 3     column=name:lastname, timestamp=1522752674122, value=King                                                                   

 4     column=address:city, timestamp=1522752674264, value=Coimbra                                                                 

 4     column=address:country, timestamp=1522752675368, value=Portugal                                                             

 4     column=name:firstname, timestamp=1522752674217, value=Peter                                                                 

 4     column=name:lastname, timestamp=1522752674239, value=Ralph                                                                  

4 row(s) in 0.0420 seconds

hbase> get ‘students’, “1”, {COLUMN => ‘address:city’, VERSIONS => 5}

COLUMN           CELL                                                                                                                        

 address:city    timestamp=1522752674191, value=Faro                                                                                         

 address:city    timestamp=1522751761541, value=Sintra                                                                                       

 address:city    timestamp=1522750997363, value=Lisboa                                                                                       

3 row(s) in 0.0350 seconds

hbase> disable ‘students’

hbase> drop ‘students’

3.2.2.3. From Relational Models to HBase Data Models

After presenting the characteristics of column-oriented data models, and HBase in more 
detail, this subsection highlights how the transformation from a relational data model to a 
columnar data format, based on HBase, can be achieved. 

As highlighted previously in this book, in a Big Data context the ability to collect, 
process, and store data increases with the use of NoSQL databases. These databases 
are characterized by being schema-free, allowing the storage of huge amounts of data 
without worrying excessively about the data structure. Issues usually emerge later on a 
schema-on-read approach, in which data is parsed, formatted, and cleansed at runtime. 
Although it avoids certain issues at the beginning of the collection phase, this increases 
the number of tasks later, when there is the need to develop specific applications to 
store, process, and analyze the data. At some point, these schema-free repositories 
need to be transformed into a structured data model that allows users to manipulate 
the data. 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics58

In order to transform a relational data model into a columnar data model, namely for 
HBase, it is necessary to consider that a column-oriented database is composed of a 
set of tables integrating rows, but organized by groups of columns usually referred to as 
column families. This organization partitions the data vertically. Thus, each column family 
may contain a variable number of columns, even allowing missing columns between rows 
within the same table (HBase, 2018b). 

Given the former contexualization, the following definitions formalize the concepts of 
relational data model and columnar data model.

Definition 1 – A Relational Data Model (RDM), RDM = (T, A), includes a set of tables  
T T T T= { }1 2, ,..., n  

and the corresponding attributes, A = {A1, A2,..., An}, where A1  is the 
set of attributes for table T1, A A A Ak

1 1
1

1
2

1= { }, ,..., . Tables in a database schema are linked 
with each other through relationships, with cardinalities of type 1:n, m:n or 1:1, with the 
optional 0 when needed. Each table includes an attribute that represents the primary key 
(PK) and may include one or more attributes representing foreign keys (FKs), linking this 
table to other tables in the database.

Definition 2 – A Columnar Data Model (CDM), CDM = (T, CF), includes a set of tables  
T T T Tn= { }1 2, ,..., . Each table integrates a key and a set of column families, as  
T key CF CFi i m= { }, ,...,1 . Each column family integrates a set of columns representing the 
atomic values to be stored, CF C Cj j j

k= { }1 ,..., .

Considering these definitions, the following rules (C. Costa & Santos, 2017a; Santos & 
Costa, 2016a) can be adopted for transforming a RDM into a CDM. This set of rules can 
also be used to make the necessary transformations for other NoSQL databases based 
on the columnar format, such as Cassandra. This is possible as long as the necessary 
adaptations are performed, since the organization of the columns, or the way the key 
attribute of each table is defined, may vary.

Rule CDM.1 – Identification of column families. Identifying the column families of a 
CDM requires a two-step approach (see rules CDM.1.1 and CDM.1.2).

Rule CDM.1.1 – Identification of descriptive column families. All tables that do not 
include any FK in the RDM represent descriptive column families in the CDM, since these 
“core tables” store data associated with the main entities in the application domain, like 
Students, Teachers, Facilities, among others. These are the core descriptive column 
families that may also help to identify the complementary descriptive column families. 
These complementary column families are derived from tables that are linked to core 
tables through a 1:n relationship between the core table and the complementary table, 
and are usually split during the normalization process. Usually, these tables are used 
to complement the description of the core entities or are tables that need those core 
entities to wholly describe themselves. As an example, in the relationship a Department 
has many Teachers, Department is the core table and Teachers the complementary 
table, since only with Department it is possible to know the teachers’ department. These 



OLTP-oriented Databases for Big Data Environments 59

Copyright © River Publishers – except portuguese speaking countries

complementary tables remain mostly static over time, since the set of Teachers of a 
Department does not change daily, for instance. This represents a type of relationship 
that is different from a Student has many Evaluations, for example, since, over time, 
any given Student will undergo many Evaluations. Rule CDM.1.1 does not handle this 
type of relationship, in which the entities are used to feed business processes instead of 
describing the main entities of the application domain. After identifying the descriptive 
column families, both core and complementary, their columns must also be identified. The 
columns of a descriptive column family are constituted by the set of non-key attributes 
(excluding primary or foreign keys) of the corresponding tables in the RDM.

Rule CDM.1.2 – Identification of analytical column families. All tables present in the 
RDM not identified by rule CDM.1.1 as descriptive column families give origin to analytical 
column families, integrating the day-by-day activities of an application domain or the 
main changes in the characterization of the core entities of the application domain. These 
analytical column families will be stored, processed, and analyzed taking into account the 
various descriptive column families. Rule CDM.1.2 excludes tables from the RDM that 
lack any attributes beside keys (PK or FK). The columns of analytical column families are 
constituted by the set of non-key attributes (excluding PKs or FKs) of the corresponding 
tables in the RDM.

Rule CDM.2 – Identification of tables. Two types of tables are proposed for a CDM, 
namely descriptive and analytical tables.

Rule CDM.2.1 – Descriptive tables. Descriptive tables are those that support specific 
data management tasks within an operational system. Each descriptive column family 
identified by rule CDM.1.1 gives origin to a descriptive table. 

Rule CDM.2.2 – Analytical tables. To identify the set of analytical tables, the data 
workflows present in the RDM must be identified first. To do so, all tables present in the 
RDM which have not yet been identified by rule CDM.1.1 as descriptive column families 
start a data workflow following their corresponding n:1 relationships, and all subsequent 
n:1 relationships. The data workflow halts when no more n:1 relationships can be found; 
it follows that it is possible to rejoin coherent pieces of information that are related to 
each other but were split in the RDM during the normalization process. This means, for 
example, that a specific table in the RDM starts a data workflow and two or more tables 
without any FK end it. All identified workflows give origin to analytical tables.

Rule CDM.3 – Integration of column families into tables. A specific table integrates a 
key, a very important component of a table in a CDM, and a set of column families, which 
may vary depending on the table’s type.

Rule CDM.3.1 – Column families of descriptive tables. A descriptive table derived 
from a core descriptive column family will incorporate this core descriptive column family 
as its unique column family. A descriptive table derived from a complementary descriptive 
column family will include as column families the complementary and the core descriptive ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics60

column families to which it is associated. In case there are multiple 1:n relationships 
between various core descriptive column families and a complementary descriptive 
column family, the related set of column families will be integrated in the descriptive table.

Rule CDM.3.2 – Column families of analytical tables. An analytical table includes as 
column families the descriptive column families and, if applicable, the analytical column 
families included in the data workflow that gave origin to the specific analytical table 
according to rule CDM.2.2. 

Rule CDM.4 – Definition of the tables’ key. A table’s key should be able to ensure an 
adequate performance throughout all read and write access patterns from applications. 
The key represents a set of one or more (concatenated) attributes that can form a natural 
key that properly identifies each row in the CDM. This key must serve the applications’ 
get, scan and put patterns, keeping them as short as possible, while remaining potentially 
adequate for access patterns (HBase, 2018b). The order in which the attributes are 
concatenated plays a relevant role in the key’s design, since HBase stores keys in a sorted 
order (Khurana, 2012).

To illustrate the usefulness of the proposed set of rules, the sample data model available 
in Hewitt (2010) is used as an example, where a set of HBase tables that fully complement 
each other while providing support for business applications is derived. The RDM used 
as starting point is based on the entity-relationship diagram shown in Figure 3-12, which 
integrates eight tables with several attributes, including PKs and FKs, as also shown in 
Figure 3-13.

Figure 3‑12. Entity-Relationship Diagram for the Hotel example. Adapted from Hewitt (2010).

In the above example, starting with rule CDM.1, specifically rule CDM.1.1, two types 
of descriptive column families are identified. The core descriptive column families 
are Hotels

CF
, POIs

CF
, Guests

CF
 and Amenities

CF
 because these tables only accept 

relationships with cardinality 1 and do not integrate any FK. A complementary 
descriptive column family, associated with the Rooms table, is then identified, giving 
origin to the Rooms

CF
. A table in the model gives origin to an analytical column family (rule 

CDM.1.2), namely Reservations
CF

. In this model, HotelPOIs and RoomAmenities are 



OLTP-oriented Databases for Big Data Environments 61

Copyright © River Publishers – except portuguese speaking countries

not identified as analytical column families because they do not include any attribute 
besides keys. The attributes of the identified column families are the attributes of the 
corresponding tables in the RDM, without the keys (either PKs or FKs).

Figure 3‑13. Relational data schema for the Hotel example. Adapted from Hewitt (2010) and C. Costa & Santos 

(2017a).

Regarding rule CDM.2, the descriptive tables are Hotels
T
, Rooms

T
, POIs

T
, Guests

T
, and 

Amenities
T
 associated with the identified descriptive column families (rule CDM.2.1); 

to identify the analytical tables the data workflows in the RDM (rule CDM.2.2) first need 
to be identified. Using all the remaining tables in the RDM that were not identified as 
descriptive column families, HotelPOIs, RoomAmenities, and Reservations, three 
data workflows are identified (Figure 3-14) following the n:1 relationships starting in 
these tables and following this type of relationship until no other n:1 relationships are 
found. With this procedure, the three workflows generate three analytical tables, now 
called Reservations

T
, RoomAmenities

T
, and HotelPOIs

T
.

Figure 3‑14. Data workflows for the Hotel example. Adapted from C. Costa & Santos (2017a).

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics62

After identifying the column families and the various tables, it is now necessary to assign 
the respective column families to each table (rule CDM.3.1). Each descriptive table 
integrates the core column family, or a set of column families including the core and 
the complementary descriptive column families, from which it was derived. Rooms

T was 
derived from the complementary descriptive column family Rooms

CF
; besides this column 

family, the HBase table also needs to include the column family associated with the 
Hotels

CF
, because it is the core descriptive column family. Hotels

T
, POIs

T
, Guests

T
, and 

Amenities
T
 include the corresponding core column families, namely Hotels

CF
, POIs

CF
, 

Guests
CF

, and Amenities
CF

.

For the analytical tables (rule CDM.3.2), Reservations
T
 integrates four column families, 

Hotels
CF

, Rooms
CF

, Reservations
CF

, and Guests
CF

; RoomAmenities
T
 integrates three 

column families, Hotels
CF

, Rooms
CF

, and Amenities
CF

; and HotelPOIs
T
 integrates two 

column families, Hotels
CF

 and POIs
CF

.

After following the proposed rules, the identified CDM for HBase includes five descriptive 
tables and three analytical tables, as shown in Figure 3-15, which also shows the proposed 
keys (rule CDM.4) and columns.

The resulting data model allows managing all the data in the descriptive tables, for 
example, inserting/updating/deleting hotels, rooms, guests, amenities and POIs, as well 
as updating and including new facts generated by the organization’s daily activities, such 
as new reservations, new amenities for the available rooms, or new POIs near the hotels’ 
surroundings. Besides incorporating these new facts, it is possible to query the available 
data, answering questions from operational or tactical managers, thus supporting 
decision-making processes.

When the above model is compared to the one presented in Hewitt (2010), we can see 
that although both models have almost the same number of tables (7 vs. 8), these are 
organized in different ways. Whereas the model here presented includes descriptive 
tables for inserting new POIs or amenities, the model proposed in Hewitt (2010) only 
includes base tables for hotels, guests, and rooms. Reservations and POIs by hotel are 
organized in a similar way in both models. The main difference between the model we 
obtained and the one proposed by Hewitt (2010) is that in our model all the available data 
can be manipulated; whereas in the latter, some tables are included to provide answers 
to specific queries, such as available rooms or hotels sorted by city. Nevertheless, both 
data models can answer the same questions, as they include the same base columns. 

At this point, it is important to mention that while the data model here obtained is adequate 
for HBase, the one proposed in Hewitt (2010) is best suited for Cassandra, noting the 
many different ways of organizing a column-oriented data schema.



OLTP-oriented Databases for Big Data Environments 63

Copyright © River Publishers – except portuguese speaking countries

Figure 3‑15. CDM for the Hotel example (based on HBase). Adapted from C. Costa & Santos (2017a).

When we think about a context of implementation where different queries can be used to 
analyze the available data, it is important to identify different analytical attributes that can be 
added to the analytical tables to provide a richer data model. Regarding the three previous 
analytical tables, HotelPOIs

T
, Reservations

T
, and RoomAmenities

T
, there are different 

column families, either descriptive or analytical, which can be combined to derive new 
attributes with enhanced analytical capabilities. Using HotelPOIs

T
 as example, it would ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics64

be interesting to analyze whether the demand for a specific Hotel correlates, or not, with 
its proximity to a particular POI. For that, the average distance between each Hotel and a 
given POI can be derived during the ETL process, thus making that information available 
to the users. In the case of Reservations

T
, the start and end dates can be used to derive 

the number of nights a guest stayed in a specific hotel; this information can be used later 
to calculate the average number of nights a guest usually stays. For RoomAmenities

T
, it 

would be interesting to know the cost of extra amenities, when applicable, which allows 
the identification of the guests’ profile regarding the money they are willing to pay, or not, 
for those extra features. These are just some examples of the derived data attributes that 
can be integrated in the analytical tables of the model (Figure 3-16), enriching the user 
analytical context.

Figure 3‑16. Enrichment of the CDM with derived attributes.

After showing how the proposed rules can be applied, a similar exercise for transforming 
another RDM into a CDM is now presented. The Transaction Processing Council (TPC) 
Benchmark H (TPC-H) is a decision support benchmark that includes a set of business 
oriented ad hoc queries and concurrent data modifications (TPC, 2017b). It is normally 



OLTP-oriented Databases for Big Data Environments 65

Copyright © River Publishers – except portuguese speaking countries

used for benchmarking decision support systems that process large volumes of data. The 
resulting CDM can be used for benchmarking processing technologies that store data in 
denormalized tables. 

The data model of the TPC-H benchmark is shown in Figure 3-17. This data model 
includes eight transactional tables that contain sales, customers, and suppliers, thus 
modelling a business that manages, sells, and distributes products.

Figure 3‑17. RDM for the TPC-H data model. Adapted from TPC (2017b) and C. Costa & Santos (2017a).

Following the proposed rules, and starting with rule CDM.1, when rule CDM.1.1 is applied, 
two types of descriptive column families are identified. The core descriptive column 
families are Region

CF
 and Part

CF
, because these tables only accept relationships with 

cardinality 1 and do not integrate any FK. Three complementary descriptive column 
families are identified, namely Nation

CF
, Supplier

CF
 , and Customer

CF
. Three other tables 

give origin to analytical column families (rule CDM.1.2), namely PartSupp
CF

, Orders
CF

, and 
LineItem

CF
. The attributes of the identified column families are the same attributes of the 

corresponding tables in the RDM, except for the PKs or FKs.

Regarding rule CDM.2, the descriptive tables are Region
T
, Part

T
, Nation

T
, Supplier

T
, 

and Customer
T
, as they are associated with the identified descriptive column families 

(rule CDM.2.1); but to identify the analytical tables, the data workflows of the RDM (rule 
CDM.2.2) need to be identified first.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics66

To identify the three workflows in Figure 3-18 we used all the tables in the RDM that 
were not previously identified as descriptive column families (PartSupp, Orders, and 
LineItem). We did so by using the n:1 relationships starting in these tables and following 
all the related entities until no more n:1 relationships were found. Following this procedure, 
the three data workflows generate three analytical tables, namely, PartSupp

T
, Orders

T
, 

and LineItem
T
.

Figure 3‑18. Data workflows for the TPC-H dataset. Adapted from C. Costa & Santos (2017a).

Having identified the column families and tables, it is now necessary to assign the 
respective column families to each table. Each descriptive table (rule CDM.3.1) integrates 
a core column family, or a set of column families including the core and the complementary 
descriptive column families from which it was derived.

Customer
T
 was derived from the complementary descriptive column family Customer

CF
. 

Besides this column family, it also needs to include the Nation
CF

 complementary 
descriptive column family and the Region

CF
 core descriptive column family. Region

T
 and 

Part
T
 include the corresponding core column families, Region

CF
 and Part

CF
, respectively. 

Nation
T
 includes the core Region

CF
 and the complementary Nation

CF
; Supplier

T
 

includes Nation
CF

 and Supplier
CF

 as complementary column families and Region
CF

 as 
core column family.

For the analytical tables (rule CDM.3.2), PartSupp
T
 includes five column families, 

PartSupp
CF

, Part
CF

, Supplier
CF

, Nation
CF

, and Region
CF

; Orders
T
 integrates four column 

families, Orders
CF

, Customer
CF

, Nation
CF

, and Region
CF

; and LineItem
T
 integrates the 

eight column families, achieving a complete denormalization of the relational schema: 
LineItem

CF
, PartSupp

CF
, Part

CF
, Supplier

CF
, Orders

CF
, Customer

CF
, Nation

CF
, and 

Region
CF

. Moreover, it is worth mentioning that Nation
CF

 and Region
CF

 have been 
denormalized twice, since it was necessary to specify the suplier’s and the customer’s 
nation and region.



OLTP-oriented Databases for Big Data Environments 67

Copyright © River Publishers – except portuguese speaking countries

After following the proposed rules, the identified CDM for HBase includes five descriptive 
tables, as shown in Figure 3-19, along with the proposed keys (rule CDM.4) and columns. 
Regarding the analytical tables, and also showing the proposed keys (rule CDM.4) 
and columns, Figure 3-20 highlights the three resulting analytical tables and the logical 
aggregation of column families to verify the various denormalizations of Nation

CF
 and 

Region
CF

.

Figure 3‑19. CDM with the descriptive tables for the TPC-H data model. Adapted from C. Costa & Santos 

(2017a).

After following the proposed rules for transforming a RDM into a CDM, several tables were 
obtained, which serve different purposes in terms of data management. Some tables have 
a more operational role, maintaining information about the main entities of an application 
domain, whereas other tables present an analytical profile, allowing the user to answer 
specific questions concerning the business processes of an organization. It is up to the 
data engineers to decide which tables must be implemented, taking into consideration 
the data management and analytical tasks that must be supported. In the case of the 
analytical tables PartSupp

T
 and Orders

T
, they are fully contained in LineItem

T
, therefore, 

all queries can be answered by the latter, making the implementation of the former tables 
redundant. The main difference between the tables is their size, a factor that may influence 
performance when responding to queries.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics68

Figure 3‑20. CDM with the analytical tables for the TPC-H data model. Adapted from C. Costa & Santos 

(2017a).



OLTP-oriented Databases for Big Data Environments 69

Copyright © River Publishers – except portuguese speaking countries

Another aspect that depends on the business context in which these tables are going to 
be used is the definition of their keys. It is important to note that the keys used here are 
merely examples of how keys can be composed and defined for each table. The keys 
can be more appropriate for inserting or searching data, depending on the attributes and 
concatenation order between them.

3.2.3. Document‑oriented Databases
This subsection provides an overview of the document stores and describes MongoDB in 
more detail, with some examples of its data model and functionalities.

3.2.3.1. Overview

Document stores, or document databases, are similar to key-value stores, as they also 
require a key to access the data. However, in their case, the value is stored in a document 
that contains structured or semi-structured data, which can be queried with appropriate 
tools (Figure 3-21). A document usually includes an identifier and a nested structure. 
The fields included in the nested structure can hold a wide variety of data types, such as 
integers, floats, strings, spatial coordinates, among others. One major difference between 
document stores and key-value stores is that in the former it is possible to query both the 
content of the document and the key (Sadalage & Fowler, 2012). 

Figure 3‑21. Document stores.

Documents have a flexible structure (schema-free organization of the data), and each 
document can support a different data model, as different attributes can be added when 
needed. This means the rows in a given dataset do not need to have the same data 
structure, with the same columns. Furthermore, the type of values in the columns can 
vary from row to row. Columns can include a cell value or an array referring to more than ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics70

one value for that row/column. Besides this, rows can have nested structures that embed 
objects inside other existing objects.

Documents are often stored in XML, JSON, or BSON (Binary JSON) formats, although they 
can also store .doc, .docx, .pdf, and many other file types. Instead of including columns 
with names and their respective data types, as is the case in a RDBMS, documents in a 
document store contain the description of the data type (attribute) and the corresponding 
values.

Figure 3-22 exemplifies how a JSON oriented-format is used for storing the values of 
a collection of documents that include the student_number data type and the values 
for a student_name, degree_description, as well as a nested data type called  
curricular_units detailing the students’ curricular units, namely the unit_name, 
unit_year, and unit_grade. Since data schemas are very flexible, it is possible to have 
variations in the data structure, such as the unit_class data type for some curricular 
units. The rationale behind a document-oriented model is that all data about a specific row 
can be stored within the same document, avoiding the need to establish relationships with 
other documents in the database.

Figure 3‑22. Example of a JSON document.

As shown in the previous example, documents describe themselves through the stored 
data and can contain nested structures that give them a hierarchical data structure which 
is useful for establishing explicit semantic relationships among the data. Regarding the 
terminology, a specific database instance can be seen as a collection of documents, each 
one corresponding to a row or entry in that database.



OLTP-oriented Databases for Big Data Environments 71

Copyright © River Publishers – except portuguese speaking countries

Document databases scale horizontally and have fast write performance, since write 
availability is prioritized over data consistency. Writing will remain fast even when a failure 
(in the available hardware or network) delays data replication and, consequently, data 
consistency over the cluster. Aditionally, fast query performance is achieved through 
appropriate query engines (including engines written in Java, JavaScript, or Python, for 
example) and database’s indexing mechanisms, which generally ensure fast and efficient 
querying capabilities.

3.2.3.2. MongoDB

MongoDB (2018) is one of the best known document databases. It provides high 
performance, high availability, and auto-scaling. Each record in MongoDB is a document 
where the value field may include other documents, arrays, or arrays of documents. 
Documents have flexible data schemas, which are dynamically adjusted depending on 
the data requirements. 

MongoDB (2018) includes a query language that supports Create, Read, Update, and 
Delete (CRUD) operations, as well as data aggregations (based on the concept of 
pipelines), text search (looking into strings’ content) and geospatial queries (for performing 
spatial queries on a collection of documents containing geospatial data). 

This type of database also includes a replication facility (the replica set) that provides 
automatic failover and data redundancy. The replica set is a group of MongoDB servers 
that include the same data set, thus increasing data availability. MongoDB stores data 
using the BSON format.

Documents are the working unit of data in MongoDB, similar to a row in a RDBMS, but 
complex enough to allow more flexibility when storing data. Documents are grouped in 
collections. Each document in a collection has a unique key, _id. In case no _id key is 
available when a document is inserted, the system will automatically generate one for 
it (Chodorow, 2013). When the _id is automatically generated, it follows the ObjectId 
default type. This type is designed to be lightweight and easy to generate in a globally unique 
way across different machines. Since MongoDB is a distributed database, the approach 
that is used to generate the key avoids the time-consuming task of synchronizing keys. 
The ObjectId uses 12 bytes to store a timestamp (a 4-byte value representing seconds 
in Unix time), as well as information about the machine (a 3-byte machine identifier), the 
process identifier of the ObjectId-generating process (a 2-byte process identifier) and 
an incrementing counter (a 3-byte counter) (Chodorow, 2013), as shown in Figure 3-23.

Figure 3‑23. Structure of a document key in MongoDB. Adapted from Chodorow (2013).©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics72

To illustrate some of the functionalities of MongoDB and its query language, some examples 
are now shown. These include creating a database and storing a set of documents, which 
are later queried to answer specific questions. In the example database, the students 
collection is stored, along with four documents (Figure 3-24).

Figure 3‑24. A collection of documents.

The MongoDB shell can be invoked using the mongo command and the database can 
be selected with the use command. If the database does not exist, MongoDB will create 
one when data is first stored. In the following example, the database is created along with 
the students collection when documents are inserted. In the command line, db points 
to the current database, and the insertOne command is used to create one document 
at a time. In this example, the student number is filled in the _id field, which also serves 
as the document key. This number must be unique to prevent errors when inserting data 
in the collection.

$ mongo

mongo> use example

mongo> db.students.insertOne(

   {_id:12345,

   student_name:”Peter Ralph”,

   degree_name:”Applied Mathematics”,

   curricular_units:[

      {unit_name:”Introduction to Algebra”,

      unit_year:1,

      unit_grade:16},

      {unit_name:”Integral Calculus”,

      unit_year:1,



OLTP-oriented Databases for Big Data Environments 73

Copyright © River Publishers – except portuguese speaking countries

      unit_grade:18},

      {unit_name:”Finite Mathematics”,

      unit_year:1,

      unit_grade:17,

      unit_class:”Not mandatory”}

      ]

   })

For inserting several records in a specific collection, the insertMany command must be 
used. In the example, three additional students are added to the collection.

mongo> db.students.insertMany(

   [

      {_id:67890,

      student_name:”Anne Smith”,

      degree_name:”Applied Mathematics”,

      curricular_units:[

         {unit_name:”Integral Calculus”,

         unit_year:1,

         unit_grade:12},

         {unit_name:”Introduction to Algebra”,

         unit_year:1,

         unit_grade:14}

         ]},

      {_id:24680,

      student_name:”Bruce Jones”,

      degree_name:”Physics”,

      curricular_units:[

         {unit_name:”Experimental Physics”,

         unit_year:2,

         unit_grade:17},

         {unit_name:”Quantum Physics”,

         unit_year:3,

         unit_grade:20}

         ]},

      {_id:13579,

      student_name:”Mary King”,

      degree_name:”Physics”,

      curricular_units:[

         {unit_name:”Experimental Physics”,

         unit_year:2,

         unit_grade:17},

         {unit_name:”Quantum Physics”,

         unit_year:3,

         unit_grade:20}

         ]}

   ])

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics74

For querying a collection, the find command must be used, with or without conditions. 
Without conditions, it returns all the documents available in the collection. For specifying 
conditions, different matching strategies can be followed:

• A specific value for a field (in the current example, for selecting all students in the degree 
with the “Physics” name);

• An exact document (equality matches), where the whole document needs to match 
exactly all the values embedded in a specific field, including the field order (in the 
example, for selecting all students with the “Quantum Physics” curricular unit from 
year “3” and a grade of “20”);

• A field in an embedded document (where the field unit_name, embedded in the 
curricular_unit, must be equal to the “Introduction to Algebra” string).

mongo> db.students.find({})

mongo> db.students.find({degree_name: ”Physics”})

mongo> db.students.find({curricular_units:

         {unit_name:”Quantum Physics”,

         unit_year:3,

         unit_grade:20}})

mongo> db.students.find({”curricular_units.unit_name”:”Introduction to Algebra”})

Variations of these queries can be performed to obtain a specific element from an array 
or even to obtain an exact match of all the elements a given array should contain. For 
specific examples, please refer to the MongoDB documentation (MongoDB, 2018).

Another querying approach relies on operators such as greater than ($gt), less than ($lt), 
the logical AND (combining several conditions separated by commas), and the logical  
OR ($or). In the following examples, the collection is queried to find all students with 
grades higher than 18 in any curricular unit; with grades lower than 14 in any curricular 
unit; information about a student called Bruce Jones enrolled in the Physics degree; 
and, finally, all students from the Physics or the Mechanics degrees. 

mongo> db.students.find({”curricular_units.unit_grade”:{$gt:18}})

mongo> db.students.find({”curricular_units.unit_grade”:{$lt:14}})

mongo> db.students.find({degree_name: ”Physics”, student_name: ”Bruce Jones”})

mongo> db.students.find({$or:[{degree_name: ”Physics”},{degree_name: ”Mechanics”}]})

For updating data, the updateOne or updateMany commands can be used. Using the 
updateMany, the following code updates the degree name, from Physics to Physics 
Engineering.

mongo> db.students.updateMany(

         {degree_name: ”Physics”},

         {$set:{degree_name: ”Physics Engineering”}})



OLTP-oriented Databases for Big Data Environments 75

Copyright © River Publishers – except portuguese speaking countries

Similar commands may be used to delete data, e.g., deleteOne or deleteMany. In the 
example below, deleteOne will erase the student named Mary King.

mongo> db.students.deleteOne({student_name: ”Mary King”})

Besides being able to deal with different records individually, MongoDB can perform 
several aggregations on data values. To do so, the aggregation pipeline may be applied. 
This is a framework that takes several documents as input and provides aggregated 
values as a result. This aggregation pipeline can be seen as an alternative to MapReduce 
tasks, in cases where the complexity of such tasks is not justified.

Using a simplified version of the students example, Figure 3-25 shows how the 
aggregate function includes a filter to select the students enrolled in the “Applied 
Mathematics” degree, grouping them by student number and calculating each student’s 
average grades. 

Figure 3‑25. Aggregation pipeline of MongoDB.

For this example, the grades collection is created along with five documents. Since no 
_id is manually introduced, MongoDB assigns each document a unique ObjectId, as 
can be seen in the acknowledgment message returned by the system.

mongo> db.grades.insertMany([

         {student:”Peter Ralph”, degree:”Applied Mathematics”,

          unit:”Introduction to Algebra”, grade:16},©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics76

         {student:”Peter Ralph”, degree:”Applied Mathematics”, 

          unit:”Integral Calculus”, grade:18},

         {student:”Anne Smith”, degree:”Applied Mathematics”,

          unit:”Introduction to Algebra”, grade:14},

         {student:”Bruce Jones”, degree:”Physics”,

          unit:”Experimental Physics”, grade:18},

         {student:”Bruce Jones”, degree:”Physics”,

          unit:”Quantum Physics”, grade:20},

  ])

{“acknowledged”: true,

 “insertedIds”: [

      ObjectId(“5c543325090362a9ee2bcd88”),

      ObjectId(“5c543325090362a9ee2bcd89”),

      ObjectId(“5c543325090362a9ee2bcd8a”),

      ObjectId(“5c543325090362a9ee2bcd8b”),

      ObjectId(“5c543325090362a9ee2bcd8c”)

  ]}

To carry out this aggregation, a two-step process is followed using the $match operator, 
which selects all students enrolled in the specified degree. Afterwards the $group 
operator merges the documents corresponding to each student (i.e., those with the same 
student_number) and applies the $avg operator, which returns the requested averages 
(averages of the unit_grade values). This aggregation can be written in the MongoDB 
shell as follows:

mongo> db.grades.aggregate([

         {$match: {“degree”: “Applied Mathematics”}},

         {$group: {_id: “$student”, average: {$avg: “$grade”}}}

  ])

{“_id”: “Anne Smith”, “average”: 14}

{“_id”: “Peter Ralph”, “average”: 17}

Several accumulators can be used during the $group stage. Besides $avg, some of 
the most common include $sum, $min, and $max. For a detailed list, please visit the 
aggregation pipeline quick reference guide in (MongoDB, 2018). The following example 
shows how the $sum accumulator is used to verify the number of occurrences by grade, 
listed first in descending order according to the count variable, and then by ascending 
order according to the count variable.

db.grades.aggregate([

         {$group: {_id: “$grade”, count: {$sum: 1}}},

         {$sort : {count: -1} }

  ])



OLTP-oriented Databases for Big Data Environments 77

Copyright © River Publishers – except portuguese speaking countries

{“_id”: “18”, “count”: 2}

{“_id”: “20”, “count”: 1}

{“_id”: “14”, “count”: 1}

{“_id”: “16”, “count”: 1}

db.grades.aggregate([

         {$group: {_id: “$grade”, count: {$sum: 1}}},

         {$sort : {count: 1} }

  ])

{“_id”: “20”, “count”: 1}

{“_id”: “14”, “count”: 1}

{“_id”: “16”, “count”: 1}

{“_id”: “18”, “count”: 2}

Besides allowing the analysis of documents based on a more structured perspective of 
the data, MongoDB also supports query operators that allow searching text within strings. 
To do so, the $text operator is used along a text index on the fields that are going to be 
queried. Text indexes can be used on fields that contain string values or an array of string 
elements. 

Using once more a simplified version of the students example, the following instructions 
create another students collection with four documents (called tutors), one for each 
student, with the key (_id), the student_name and the degree_name. Afterwards,  
the createIndex command applied to the student_name and degree_name fields 
creates a searching index for the text contained in those fields. 

mongo> db.tutors.insertMany([

   {_id:12345, student_name:”Peter Ralph”, degree_name:”Applied Mathematics”},

   {_id:67890, student_name:”Anne Smith”, degree_name:”Applied Mathematics”},

   {_id:24680, student_name:”Bruce Jones”, degree_name:”Physics”},

   {_id:13579, student_name:”Mary King”, degree_name:”Physics”}])

mongo> db.tutors.createIndex({student_name: ”text”, degree_name: ”text”})

Next, the $text operator can be used to search text in a collection. This can be done in 
different ways, depending on the type of search the user needs. For example, searching 
documents that contain any of the terms provided in a list, can be done as follows. In this 
case, the list includes three terms, “Peter”, “Applied”, and “Mathematics”:

mongo> db.tutors.find({$text: {$search: ”Peter Applied Mathematics”}})

The $search command can be used to query an exact phrase, however, it must be 
wrapped in double quotes, as shown in the following example, where the terms being 
looked for are “Peter” or “Applied Mathematics”:

mongo> db.tutors.find({$text: {$search: ”Peter \”Applied Mathematics\””}})

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics78

Excluding terms is also possible; in this case, explicitly indicating a term that cannot be 
found in a document, while simutaneously pointing to those that could be present. In the 
following example, the search covers all documents that include the terms “Applied”  
or “Mathematics”, but not the term “Peter”.

mongo> db.tutors.find({$text: {$search: ”-Peter Applied Mathematics”}})

The last example related to MongoDB functionalities concerns the use of geospatial data. 
This type of data can be stored as a GeoJSON object or as legacy coordinate pairs. With 
this data, different spatial operators can be applied to carry out tasks such as calculating 
distances, areas, intersections, among many others, depending on the geometry of the 
objects. For legacy coordinate pairs, where data is stored as points in a two-dimensional 
plane, documents include coordinates represented by field values, and a 2d index is 
required to calculate distances in an Euclidean plane or to perform other spatial queries 
on the data. In the following example, the $near operator is used to locate the points 
around a given location.

mongo> db.students_geo.insertOne(

   {_id:12345,

   student_name: ”Peter Ralph”,

   student_degree: ”Applied Mathematics”,

   student_location: [-8.5218107, 41.4128713]})

mongo> db.students_geo.ensureIndex({student_location: ”2d”})

mongo> db.students_geo.find({student_location: {$near: [-8.5, 41]}})

For spherical surface calculations, legacy coordinates first need to be converted to 
GeoJSON data types. The GeoJSON format is used for representing geographic data 
structures, which supports geometry types such as Point, LineString, Polygon, 
MultiPoint, MultiLineString, and MultiPolygon. With GeoJSON, 2dsphere 
supports spatial operations that can be performed on the Point data type, for example. 
In the following code, two documents are inserted in the locations collection, both 
represented by the Point data type and the respective coordinates pair. The 2dsphere 
is used to index the data. For searching the data, findOne returns any document in the 
collection, whereas the find command looks for documents of the Point geometry 
that are near a specific location. The $nearSphere operator calculates distances using 
spherical geometry.

mongo> db.locations.insertMany([

   {name: “Peter Ralph”,

    degree: “Applied Mathematics”,

    location: {coordinates: [-73.856077,40.848447], type: “Point”}},

   {name: “Bruce Jones”,

    degree: “Physics”,

    location: {coordinates: [-73.961704,40.662942], type: “Point”}}

 ])



OLTP-oriented Databases for Big Data Environments 79

Copyright © River Publishers – except portuguese speaking countries

mongo> db.locations.createIndex({location: “2dsphere”})

mongo> db.locations.findOne()

mongo> db.locations.find({location:

   {$nearSphere:

        {$geometry: {type:”Point”, coordinates: [-73.8, 40.7]}}} 

 })

Besides the $nearSphere operator, other geospatial query operators are available 
in MongoDB, such as $geoWithin. For a detailed list, please refer to the MongoDB 
documentation (MongoDB, 2018). For examples on other GeoJSON objects, such as 
LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon, please 
also refer to the MongoDB documentation (MongoDB, 2018). This subsection ends with 
an example that uses the $centerSphere command to identify all documents from the 
locations collection within a 20 km radius of the specified location. As $centerSphere 
uses radians for distances, the distance must be divided by the radius of the sphere  
(in this case, the Earth), which is approximately 6371 km. 

mongo> db.locations.find({location:

   {$geoWithin:

      {$centerSphere: [[-73.8, 40.7], 20/6371]}}

 })

3.2.4. Graph Databases
This subsection provides an overview of graph databases and presents Neo4j in more 
detail, with some examples of its data model and functionalities.

3.2.4.1. Overview

Graph databases are particularly useful for storing rows with a small number of constituting 
attributes but complex interconnections between them (Sadalage & Fowler, 2012).  
A graph data structure includes vertices (or nodes) connected by edges (or relationships); 
it allows to make queries about the data present in the nodes and the semantics of the 
connections explicitly stored in the edges. 

Graph structures model different types of complex relationships between entities in 
the nodes; they are useful for making sense of a wide diversity of real world datasets 
(Robinson, Webber, & Eifrem, 2015). Figure 3-26 shows how the global data model 
behind a graph structure may be understood. The data rows exist both in nodes and 
in relationships. Data about the entities is stored in the nodes, whereas data about the 
relations or connections between the entities is stored in the relationships. Relationships 
thus serve to organize the entities. Both nodes and relationships have specific properties 
that characterize them.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics80

Figure 3‑26. A graph data structure. Adapted from Robinson et al. (2015).

Figure 3-27 shows an example where two types of entities are modeled: curricular units 
and students. For the Algebra curricular unit, the student relationship links all students 
enrolled in the course, whereas the is_student relationship does the opposite, associating 
students with their units and the dates when these relationships began. For students, 
various records (different students) are linked to each other depending on the knows 
relationship and the year it began. In this context, nodes (representing the instances of 
each entity) have attributes (or properties) and so do the relationships (representing how 
these instances are related to each other).

Figure 3‑27. An example of a graph data structure.



OLTP-oriented Databases for Big Data Environments 81

Copyright © River Publishers – except portuguese speaking countries

As shown in the previous example, the most common graph model is the labeled property 
graph, which has the following characteristics (Robinson et al., 2015):

• Graphs contain nodes and relationships;

• Nodes contain properties represented by key-value pairs;

• Nodes can be labeled (using one or more labels);

• Relationships are labeled using a name and have a direction, from a start to an end 
node;

• Relationships contain properties that are also represented by key-value pairs.

Besides these characteristics, it is important to mention that nodes can have more than 
one relationship, since the same nodes can be linked through one or more relationships, 
and self-relationships can also exist, as illustrated in Figure 3-28.

Figure 3‑28. Different types of relationships in graphs. Adapted from Robinson et al. (2015).

Graph databases, or graph database management systems, support CRUD operations, 
being frequently used to implement operational data systems (OLTP), reason why 
they are optimized for transactional performance and transactional integrity. A graph 
database can use a native graph storage system optimized for storing and managing 
graphs or serialize the graph data into a relational database, an object-oriented 
database, or other data store. In terms of processing engine, a graph database can 
use an index-free adjacency. This means the connected nodes physically point to each 
other in the database (an explicit reference that significantly increases the performance 
of the system). Alternatively, the processing engine can expose a graph data model 
through CRUD operations, which have some impact on the performance of the system 
(Robinson et al., 2015). 

The benefits of using a graph database emerge when there is the need to handle highly 
interconnected data, in a context where performance tends to remain constant, even 
when the dataset grows (since queries are usually located in a specific section of the ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics82

graph). Such is not the case with relational databases, where performance costs from 
join-intensive queries increase as the datasets grow. In terms of data model, the dynamic 
structure of the graph allows it to evolve, hence it is possible to add new data requirements 
as soon as they become available in the application domain. New relationships, nodes, 
labels, or subgraphs can be added to a graph structure without damaging any existing 
applications or queries, since these are the features that characterize the schema-free 
nature of graph databases (Robinson et al., 2015).

3.2.4.2. Neo4j

Neo4j (2018) is a native graph storage system with a native graph processing engine 
that optimizes fast storage and management of highly interconnected data represented 
by nodes and relationships. Instead of using joins between tables, as happens in the 
relational data model, Neo4j navigates from one node to another in a linear fashion (a 
type of performance which, as was already mentioned, is not impacted by the size of the 
dataset, as is the case with relational databases). This performance is continuous, since 
most graph searches are carried out in the immediate surroundings of a node and this 
kind of database has an efficient and highly scalable memory management mechanism 
(Neo4j, 2018).

Neo4j is fully compatible with ACID properties; it uses transactions to guarantee data 
persistence in case of a system failure, and supports high-performance applications, 
being able to store hundreds of trillions of entities. Due to its high scalability, Neo4j can 
operate on clusters with dozens of machines, as opposed to hundreds or thousands, to 
handle such amounts of data (Neo4j, 2018). 

The Cypher query language can be used for querying Neo4j. This declarative language 
matches patterns of nodes and relationships to extract or modify data in the graph, 
through CRUD operations and queries.

Cypher is a SQL-inspired language that uses ascii-art syntax to specify the data to be 
selected, created, inserted, updated, or deleted, without the need to specify how to do 
it. In the next example, the relationship knows between two students can be established 
as follows:

(student A): - [:knows] - > (student B)

In this syntax, nodes are surrounded by parentheses (node). These nodes can be assigned 
to variables for later use, e.g., (s:Student A). 



OLTP-oriented Databases for Big Data Environments 83

Copyright © River Publishers – except portuguese speaking countries

The general structure of Cypher includes the MATCH statement for specifying what the 
user is looking for, the conditions of the search, in case they exist, and RETURN to mention 
which fields the user is expecting as a result. When no specific conditions are indicated, 
the syntax is as follows:

MATCH  (node:Label)

RETURN node.property

When using conditions in the WHERE clause, the syntax is as follows: 

MATCH  (node1:Label1) - - > (node2:Label2)

WHERE  node1.property1 = {value}

RETURN node1.property1, node2.property2

In this syntax, the arrow is used to express relationships between nodes. Additional 
information about the relationship, such as a label, can be written between brackets inside 
the arrow: - [:knows] - >. In these cases, a variable can also be assigned for later 
reference in the WHERE and/or RETURN operations.

If the following example, a node is created as an instance of the Student entity, and the 
inserted value is returned to the user (Figure 3-29).

CREATE (peter:Student {name: ’Peter Ralph’})

RETURN peter

Figure 3‑29. Node returned to the user in Neo4j.

To find the instance assigned to peter and simultaneously add a new relationship to a 
new node in the graph (Figure 3-30), the following code uses the MATCH, CREATE, and 
RETURN clauses.

MATCH (peter:Student {name: ’Peter Ralph’})

CREATE (peter) - [student:is_student] - > 

                 (algebra:Unit {name:’Introduction to Algebra’})

RETURN peter, student, algebra

Figure 3‑30. Establishing a relationship between two nodes in Neo4j.©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics84

The CREATE clause can add a single node or a more complex structure, such as 
simultaneously adding several instances to a graph. In this example, various friends are 
linked to a student using the knows relationship.

MATCH (peter:Student {name: ’Peter Ralph’})

FOREACH (friend in [’Anne Smith’, ’Bruce Jones’, ’Mary King’]|

   CREATE (peter) - [:knows] - > (:Student {name:friend}))

Next, a select all operation can be performed to see all the records, showing all the 
nodes and relationships that have been already added to the graph (Figure 3-31). To do 
so, a global MATCH is done.

MATCH (n)

RETURN n

Figure 3‑31. Selecting all the nodes and relationships in Neo4j.

To select a particular relationship (Figure 3-32), the MATCH clause must include the reference 
to that relationship. In this example, a variable is used to store the existing relationships as 
a result; this variable is later used by the RETURN clause.

MATCH (peter:Student {name: ‘Peter Ralph’}) - [:knows] - > (peterFriends)

RETURN peter, peterFriends

Figure 3‑32. Selecting a specific relationship in Neo4j.



OLTP-oriented Databases for Big Data Environments 85

Copyright © River Publishers – except portuguese speaking countries

To create more complex relationships such as a hierarchy in the instances that belong 
to an entity, the existing nodes may be extended. In this example, the Student entity is 
extended to allow instances of the type Tutor, for students who are also tutors. Tutors 
are, in this case, former students of a Unit. For former students, a new relationship is 
established in the data model, was_student.

MATCH (algebra:Unit {name: ’Introduction to Algebra’})

MATCH (anne:Student {name: ’Anne Smith’})

CREATE (anne) -[:knows]- > 

              (:Student:Tutor {name: ’Alex Wang’}) -[:was_student]- > (algebra)

At this point, the graph includes six nodes with data from three different entities: five 
students, one is also a tutor, and one unit. The data model also includes three different 
relationships between the nodes, namely, knows, is_student, and was_student 
(Figure 3-33). 

Figure 3‑33. Current nodes and relationships in Neo4j.

Working with a graph means that existing paths are followed when querying the data. In 
the following example, the path between the nodes is followed to find out the shortest 
path (shortestPath) between a student and a tutor, using the knows relationships, 
considering no more than five edges between them (Figure 3-34).

MATCH (peter {name: ’Peter Ralph’})

MATCH (tutor) - [:was_student] - > (algebra:Unit {name: ’Introduction to 
Algebra’})

MATCH path = shortestPath((peter) - [:knows*..5] - (tutor))

RETURN algebra, tutor, path

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics86

Figure 3‑34. Finding the shortest path between two nodes in Neo4j.

To exemplify other CRUD operations, data can be deleted when looking for a specific 
node or relationship. A node cannot be deleted if it still maintains relationships with other 
nodes. To remove a relationship and, afterwards, a node, the following instructions can 
be used. In this example, the relationship knows between the two students is identified 
and deleted. Afterwards, the node of the student identified by the mary variable is deleted, 
since it no longer maintains any relationship with other nodes in the graph.

MATCH (n1 {name: ’Peter Ralph’}) - [r:knows] - > (n2 {name: ’Mary King’})

DELETE r

MATCH (mary:Student {name: ’Mary King’})

DELETE mary

After running all the previous instructions, the visual display of the resulting nodes and 
relationships is shown in Figure 3-35, using the Neo4j interface. The graph now includes 
five nodes with data from three different entities: four students, one of them is also a tutor, 
and one unit. 



OLTP-oriented Databases for Big Data Environments 87

Copyright © River Publishers – except portuguese speaking countries

Figure 3‑35. An example of a graph database in Neo4j graphical interface.

Neo4j is also suited for storing and querying geospatial data, either using a Cartesian 
reference system with a 2D coordinate system or the World Geodetic System 1984 
(WGS84) for a spheroidal reference surface of the Earth. 

In the following example, the distance between two Cartesian points is calculated; the 
returned value is 7.071:

WITH point({x:5,y:5,crs:’cartesian’}) AS p1, 

     point({x:10,y:10,crs:’cartesian’}) AS p2

RETURN distance(p1,p2) AS dist

In the case of the geographical coordinates longitude and latitude, the geospatial 
coordinates can be added to the nodes, specifying the WGS84 coordinate system. In 
this example, two students were added to the graph and the knows relationship was 
established between them. In this case, the two nodes in the graph can be seen following 
a tabular representation of the data, rather than a graph-based one (Figure 3-36). 

CREATE (peter:Student {name: ’Peter Ralph’, 

                       longitude:-8.53, latitude:41.43, crs:’wgs84’})

RETURN peter

MATCH (peter:Student {name: ’Peter Ralph’})

CREATE (peter) - [k:knows] - > (bruce:Student {name:’Bruce Jones’, 
longitude:-8.79, latitude:41.53, crs:’wgs84’})                                                                 

RETURN peter, k, bruce

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics88

Figure 3‑36. Tabular representation of two nodes in Neo4j.

To calculate the travel distance between two students, the following code can be used; 
it establishes the current location of one of the students as the origin point, and the other 
as the destination point. The totalDistance is calculated and the result is returned in 
meters. In this case, the students stand approximately 24 kms apart from each other 
(Figure 3-37).

MATCH (s1:Student) -[:knows]-> (s2:Student)

WITH point({longitude:s1.longitude, latitude:s1.latitude}) AS origin,    

     point({longitude:s2.longitude, latitude:s2.latitude}) AS destination

RETURN round(distance(origin, destination)) AS totalDistance

Figure 3‑37. Calculating the spatial distance in Neo4j.

Other spatial functions can be applied over geospatial data. For more detailed examples, 
please refer to the Neo4j documentation available at (Neo4j, 2018).

3.3. NEWSQL DATABASES AND TRANSLYTICAL DATABASES
The previous examples of NoSQL databases (see section 3.2) show that this type of 
repositories is mostly schema-free, may not comply with the ACID properties of a relational 
database, and may not have a SQL-based interface for querying data. Nevertheless, 
NoSQL databases have scalability and performance for dealing with the volume, variety, or 
velocity of the data available in some application domains, although they may eventually lack 
consistent data, transactions, and joins, which may need to be implemented by developers.



OLTP-oriented Databases for Big Data Environments 89

Copyright © River Publishers – except portuguese speaking countries

By integrating some of the most representative characteristics of relational and NoSQL 
databases, the scalable SQL or NewSQL paradigm adds performance and scalability 
to databases that are based on a relational paradigm, and comply with ACID properties 
and pre-defined data schemas. Existing database systems such as MySQL Cluster have 
benefited from these performance improvements, while several new database systems 
are also emerging, like VoltDB or Clustrix (Cattell, 2011).

In 2011, the 451 Group (Aslett, 2011, p.1) defined NewSQL as databases “that deliver the 
scalability and flexibility promised by NoSQL while retaining the support for SQL queries 
and/or ACID, or to improve performance for appropriate workloads”. NewSQL databases 
benefit from the value of SQL and ACID properties, and try to avoid the performance 
degradation that may appear when transactional operations need to be performed over 
data spread throughout different nodes in a system (Cattell, 2011). In a distributed system, 
it is a major challenge to scale databases while maintaining the ACID properties.

The Basically Available, Soft state, and Eventual consistency (BASE) properties of NoSQL 
databases pose some difficulties for certain application domains, particularly those that 
rely on data consistency. In these cases, NewSQL systems can be considered. The main 
features of NewSQL databases, according to Pavlo and Aslett (2016), can be summarized 
based on the following criteria:

• Main memory storage;

• Partitioning/sharding;

• Concurrency control;

• Secondary indexes;

• Replication;

• Crash recovery.

One additional characteristic of some NewSQL databases is the ability to perform 
analytical queries on recently obtained data, a feature known as real-time analytics or 
Hybrid Transaction-Analytical Processing (HTAP) that allows to process and analyze 
historical datasets and recently collected data (Pavlo & Aslett, 2016).

In some contexts, HTAP databases are also known as translytical databases, because 
they support transactional to analytical operations. Transactional databases are optimized 
for writing operations, thus requiring data integrity and concurrency; whereas analytical 
databases are optimized for reading operations which usually perform aggregations on 
large amounts of data. A translytical database can support different workloads and 
access patterns in real-time, using a single data tier, hence maintaining transactional 
integrity, performance, and scalability (Yuhanna & Gualtieri, 2016).

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics90

This type of database supports applications that need real-time processing and insights, 
predictive analytics, and transactional processing. The Forrester report (Yuhanna & 
Gualtieri, 2016) lists the following main translytical databases (including NewSQL 
databases, NoSQL databases, or even SQL databases with extended capabilities):

• DataStax Enterprise (DataStax, 2018), a platform based on Apache Cassandra  
(a wide column NoSQL database), for extreme-scale applications, with a masterless 
and shared-nothing architecture with in-memory capabilities;

• IBM DB2 (IBM, 2018), with BLU Acceleration and in-memory technology for better 
performance or Analytics Accelerator (IDAA) for real-time analytics on transactional 
data;

• MemSQL (2018), a distributed in-memory database that runs on commodity hardware 
or in the cloud, which also supports analytical processing with Apache Spark;

• Microsoft SQL Server 2016 (Microsoft, 2018a) with a unified database for using  
in-memory column storage with in-memory processing for high performance and  
real-time analytics. The column store indices add performance advantages in  
analytics and DWing queries;

• Oracle Database In-Memory (Oracle, 2018), extending the Oracle Database 12c, 
supporting transactional and analytical operations on the same database. Tables are 
simultaneously represented in memory using the traditional row format for OLTP queries 
and in columnar format for analytical queries. Consistency is retained between the two 
storage formats;

• SAP HANA (SAP, 2018), which integrates OLTP and OLAP data processing needs, 
delivering low latency data access for real-time analytics, reporting, and forecasting on 
a single in-memory copy of the data;

• VoltDB, considered a mature NewSQL technology, which combines streaming analytics 
and ACID properties for data-intensive applications, offering high-throughput and low 
latency. It uses horizontal partitioning of the data to scale out on commodity hardware 
or in the cloud, supporting data replication for high availability. It can also support 
semi-structured data stored as JSON data structures (VoltDB, 2018). The VoltDB 
Community Edition is distributed in binary and source code forms under the Affero 
General Public License (AGPL), having also commercial licenses with additional features  
(VoltDB, 2018). 

The way these NewSQL databases integrate transactional and analytical needs is different 
from a traditional BI system, where two separate databases are usually implemented, one 
for OLTP (with the newly generated data) and another for OLAP (historical data that is 
periodically refreshed). With the advent of Big Data systems, another approach was set 
by the Lambda Architecture (see subsection 2.4.2), where a separate batch processing 



OLTP-oriented Databases for Big Data Environments 91

Copyright © River Publishers – except portuguese speaking countries

system is used to compute historical data, and a stream processing system deals with 
the newly generated data. Currently, thanks to the HTAP approach, database systems 
can support high throughput and low latency demands for OLTP workloads and perform 
complex long-running OLAP queries on both transactional and historical data. For the 
NewSQL databases that were previously mentioned, SAP HANA and MemSQL classify 
themselves as HTAP systems. SAP HANA uses multiple execution engines, one for  
row-oriented data and transactional processing, and another one for column-oriented 
data and analytical queries. MemSQL also uses two different storage mechanisms, rows 
and columns, which are integrated in a single execution engine (Pavlo & Aslett, 2016). 

©
 F

C
A





INTRODUCTION

4OLAP‑ORIENTED 
DATABASES FOR BIG 
DATA ENVIRONMENTS

Data systems usually assume two main roles regarding data 
workloads: a transactional one, described in Chapter 3, 
and a more analytical one. In the latter, the focus is not  
on low latency processing for OLTP workloads but rather 
on performing complex and long-running OLAP queries on 
historical data. OLAP is a regular analytical task associated 
with DWs, which relies mainly on multidimensional 
structures that are capable of processing vast amounts of 
data. These structures provide interactive data processing 
capabilities that help decision-makers when carrying out 
data analytics or other exploratory tasks.

This chapter focuses on data systems that support  
OLAP-oriented workloads and describes Hive as the de 
facto SQL-on-Hadoop engine for Big Data environments. 
Hive is suited for implementing BDWs, allowing the storage, 
processing, and analysis of vast amounts of data. Due to its 
relevance in the implementation of BDWs, this chapter also 
addresses how dimensional models may be transformed 
into tabular models which can be implemented in Hive (for 
example, when a denormalized data model is preferred over 
a star schema that requires joins between tables). Finally, 
this chapter shows how emerging technologies such as 
Druid can support real-time analytics on large datasets.



Big Data: Concepts, Warehousing, and Analytics94

4.1. HIVE: THE DE FACTO SQL‑ON‑HADOOP ENGINE
Hive, a DWing software project for Big Data environments, facilitates querying and 
managing large datasets stored in a distributed storage system (Hive, 2018a; Thusoo 
et al., 2010). Having the data in a distributed file system, Hive adds structure to the 
data and allows querying it through HiveQL, a SQL-like language (Capriolo, Wampler, & 
Rutherglen, 2012). There are three main elements used in Hive to organize the available 
data: tables, partitions, and buckets.

Tables are common structures with columns and rows that are stored in a HDFS 
directory. Partitions are defined on the tables to slice the data horizontally and speed up 
query processing. Partitions are stored in a sub-directory within a table’s directory. It is 
thus possible to organize the data hierarchically, associating various partitions to a table. 
Partitions are used to prune the data during a specific query; they have a strong impact 
on the time required for a query to be processed. Buckets can be defined and associated 
to tables or partitions; they are stored in a file within the partition or table’s directory, 
depending on whether the table is partitioned or not. Buckets are used to cluster large 
datasets and optimize query performance. When a table is created, the user can specify 
both the number of buckets and the column that will be used for bucketing the data. Once 
again, this technique is used to prune the data in case the user runs a query on a sample 
of the available data (Capriolo et al., 2012).

As an example, one can assume that the table Employees is created in Hive and includes 
five attributes, as illustrated in Figure 4-1. In this case, the available data is stored in a 
single file in HDFS, under the myData database directory, assuming this is the working 
database. 

Figure 4‑1. Example of a Hive table without partitions.



OLAP-oriented Databases for Big Data Environments 95

Copyright © River Publishers – except portuguese speaking countries

If the attribute admissionYear is used as a partition, the directory of the table will contain 
as many subdirectories as the number of years of admission listed in the dataset, splitting 
the data into several files (Figure 4-2). If a where condition is used while querying the 
data, to filter for instance a specific year, only the subdirectory associated to that specific 
condition is searched.

Figure 4‑2. Example of a Hive table with partitions.

Partitions can have subpartitions or buckets. Subpartitions provide a hierarchical division 
of the storage space, whereas buckets organize the available data in files according 
to the predefined number of buckets. Taking as an example the location and the 
admissionYear of the employee, Figure 4-3 shows how data is organized according to 
the available values for the defined partition and subpartition. 

Having shown a few short examples on how data can be organized in Hive, it is important 
to mention that the performance of a Hive data model depends on the partitions and 
buckets. The definition of partitions and buckets is constrained by the available data, for 
instance, the number of different employees, locations, or years. Data should not be over 
partitioned. If partitions are relatively small, compared to the data volume, searching many 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics96

directories with small files typically slows down the processing time of Hadoop. Partitions 
should be of similar size to prevent, for example, that a single long-running operation 
is carried out in an excessively large partition. Returning for a moment to the location 
attribute mentioned above, let us suppose that more than 80% of the employees are from 
two or three different cities. Partitioning the data using this attribute would not be adequate 
because the majority of the data would be stored in only two or three directories. In this 
case, bucketing may not be an alternative as well, as many more rows would be clustered 
in the same bucket. However, bucketing can be useful for attributes with high cardinality 
and a well-balanced distribution within the attributes range. In that case, joining two Hive 
tables using the location attribute, for instance, allows Hive to join bucket by bucket; this 
operation performs even better if the buckets are sorted according to the values of the 
location attribute.

Figure 4‑3. Example of a Hive table with partitions and subpartitions.



OLAP-oriented Databases for Big Data Environments 97

Copyright © River Publishers – except portuguese speaking countries

In general, partitioning helps to reduce the amount of data that must be searched, when 
the user applies a condition in a where clause; whereas bucketing helps to organize the 
data inside each table or partition using multiple files. The same subset of data is always 
written in the same bucket, which facilitates the task of joining columns. Usually, bucketing 
works well when the attribute has high cardinality, and partitioning when the cardinality is 
not too high and the available rows are well distributed by the different attribute’s values. 
Partitioning can be applied to multiple attributes, whereas bucketing can only be applied 
to a single one. Later in this chapter (see subsection 4.1.2), more detailed examples 
of how to create partitions, subpartitions, and buckets are provided. How these design 
patterns impact performance and how the different data models behave are analyzed in 
more detail in Chapter 8.

Tables can be created using the Hive CLI, where the HiveQL supports a SQL-based 
language to perform Data Definition Language (DDL) and Data Manipulation Language 
(DML) operations, but they can also be created through any application that supports data 
preparation and transformation tasks.

Tables in Hive can be internal or external, depending on their goal. Internal Hive tables 
are managed by Hive and their access is restricted to a specific user account, database, 
or even data schema. When an internal table is deleted, both the associated metadata and 
the data are deleted from Hive and from HDFS. These internal tables are recommended 
for storing data temporarily or when the management of the tables’ life cycle and their 
corresponding data is left entirely to Hive. External Hive tables can be accessed by users 
who also have access to HDFS, so security needs to be managed at the HDFS file/folder 
level. When an external table is deleted, Hive only removes its metadata and not the files 
themselves, which remain available in HDFS. External tables are normally used when data 
needs to be managed outside Hive, for instance in ETL/ELT processes. External tables 
are also useful when there is the need to maintain the history of the files used to load or 
refresh a DW, given that temporary tables are deleted after the updating process, but 
all the corresponding files remain within HDFS. The following subsections provide more 
detailed descriptions and examples of Hive tables. 

In the following examples, the Star Schema Benchmark (SSB) data model is used 
(O’Neil, O’Neil, & Chen, 2009). This model includes a central fact table for the line items 
(“lineorder”) associated with the orders, which are related to four dimension tables, 
“supplier”, “customer”, “part”, and “date” (Figure 4-4). The SSB is often used for 
benchmarking purposes, as shown later in this book, because it can be tested using 
different SFs to generate datasets of different sizes.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics98

Figure 4‑4. SSB data model. Adapted from O’Neil et al. (2009).

4.1.1. Data Storage Formats
The SSB data model with a SF of 10 feeds a customer table with 1,500,000 rows. This 
table can be created using the following DDL code, which specifies the table’s name, 
attributes, row delimiter, format (both input and output), and location. In this case, the 
table is stored in text format – the default value – and created as external, as it is later used 
in this subsection to feed other Hive tables with different file formats. The table is stored 
inside a specific location in HDFS, where the hivessb database was made available in the 
/user/lid4/book folder for the lid4 user. 

CREATE EXTERNAL TABLE `customer`(

  `custkey` string, 

  `name` string, 

  `address` string, 

  `city` string, 

  `nation` string, 

  `region` string, 

  `phone` string, 

  `mktsegment` string)

ROW FORMAT DELIMITED 

 FIELDS TERMINATED BY ‘\;’

STORED AS INPUTFORMAT 

  ‘org.apache.hadoop.mapred.TextInputFormat’



OLAP-oriented Databases for Big Data Environments 99

Copyright © River Publishers – except portuguese speaking countries

OUTPUTFORMAT 

  ‘org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat’

LOCATION

‘hdfs://yourservername:8020/user/lid4/book/hivessb.db/customer’

After creating and loading the data, the user can use the DML to make queries. Figure 4-5 
shows a query selecting the customers of a specific nation. In this case, the Ambari view 
for Hive was used both for posting the query and for receiving the results.

Figure 4‑5. Querying a Hive table (Ambari view).

File formats supported by Hive have evolved over time to enhance the analytical capabilities 
of this system, given that file formats have a strong influence over the size of the tables 
and the performance of the queries carried on them. Some example of file formats are 
text file, sequence file, Record Columnar File (RCFile), ORC file, Avro file, and Parquet; 
the custom INPUTFORMAT and OUTPUTFORMAT options allow users to define how to read 
complex files and convert them to other formats.

4.1.1.1. Text File

The text file format was shown in the previous example. In this case, the data contained 
in the Hive table is stored as txt in HDFS. This is the default storage format in Hive and it 
can support any text file with a delimiter set by the user.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics100

Following the previous example, Figure 4-6 shows the location of the file in HDFS, 
alongside a small extract of the table, where some rows, their attributes, and the defined 
delimiter “;” can be seen.

Figure 4‑6. Overview of the text file of a Hive table.

4.1.1.2. Sequence File

Sequence files are flat files with binary key-value pairs, intended for grouping two or more 
smaller files and transforming them into a sequence file. If a file’s size is smaller than a 
typical block size in Hadoop (usually 64MB in Apache Hadoop), it is recommended to 
merge it with other similarly small files to form a larger one, because this will positively 
impact Hadoop’s performance. Using sequence files when creating Hive tables is a good 
method for generating such larger files since they serve as containers for storing smaller 
files (White, 2015). 

Sequence files include a header followed by one or more rows. The header contains 
specific information about the file, such as the names of the key and value classes, 
compression details, user-defined metadata, and the sync marker. The sync marker is 
a randomly generated value for each file, which is spread among rows (records) in the 
sequence file. Since they are designed to add an overall storage overhead of no more 
than 1%, they do not necessarily exist between every pair of records (Figure 4-7). Sync 
points allow files to be split and sent to different maps in MapReduce jobs; they can also 
be used to resynchronize a record after searching a position in the data stream, given that 
sync points are aligned with records boundaries (White, 2015).

When storing data in a sequence file, the internal format of the records depends on factors 
such as whether compression is enabled or not. In case it is, record compression or block 
compression can be applied. No compression is the default value. In this case, each 
record in the sequence file includes the record length, the key length, the key itself, and 
the value. Lengths are usually written as 4-byte integers. When compression is enabled, 
the file format is similar to the above, but the value is compressed using the coder/decoder 
defined in the header (Figure 4-7) (White, 2015).



OLAP-oriented Databases for Big Data Environments 101

Copyright © River Publishers – except portuguese speaking countries

Figure 4‑7. Sequence files with no compression or with record compression. Adapted from White (2015).

In the case of block compression, multiple records are stored together based on their 
similarities, thus providing a more compact way of organizing the data. A block compacts 
records until they reach a given size in bytes (defined in the block size properties), and 
a sync mark is written at the beginning of each block. The format of a block includes 
the number of records contained within itself along with four compressed fields: the key 
lengths, the keys, the value lengths, and the values (Figure 4-8) (White, 2015).

Figure 4‑8. Sequence files with block compression. Adapted from White (2015).

The following example shows how the sequence file can be created and the way it is 
organized. In this case, the customer table that was previously created using the text file 
format is now used to feed a table using the sequence file format. This table is loaded 
using the INSERT OVERWRITE TABLE instruction, which inserts the data selected from the 
text file table in the recently created table.

CREATE TABLE hivessb.customerseq

   LIKE hivessb.customer

   STORED AS SEQUENCEFILE;

INSERT OVERWRITE TABLE hivessb.customerseq 

   SELECT * FROM hivessb.customer;

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics102

Nine different files are created, spreading the data into several files that complement each 
other. The system shell is used to invoke specific HDFS commands such as dfs for running 
a file system command in HDFS and -ls for listing the contents of the customerseq 
folder associated with the table.

$ hdfs dfs -ls /user/lid4/book/hivessb.db/customerseq

Found 9 items

-rwxr-xr-x   2 lid4 18936908 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000000_0

-rwxr-xr-x   2 lid4 18959090 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000001_0

-rwxr-xr-x   2 lid4 18980136 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000002_0

-rwxr-xr-x   2 lid4 18938791 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000003_0

-rwxr-xr-x   2 lid4 18929553 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000004_0

-rwxr-xr-x   2 lid4 18916126 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000005_0

-rwxr-xr-x   2 lid4 18896068 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000006_0

-rwxr-xr-x   2 lid4 18966051 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000007_0

-rwxr-xr-x   2 lid4 20029489 2018-03-14 19:20 /user/lid4/book/hivessb.db/customerseq/000008_0

The -cat command may be used to inspect files and their contents can be listed using 
-ls. In this case, file 000000_0 is inspected; the first 3 bytes (SEQ) tell us this is a sequence 
file that uses the key class org.apache.hadoop.io.BytesWritable and the value class 
org.apache.hadoop.io.Text. In this case, no compression was defined. Otherwise, 
the type of compression would also be listed.

$ hdfs dfs -cat /user/lid4/book/hivessb.db/customerseq/000000_0

SEQ"org.apache.hadoop.io.BytesWritableorg.apache.hadoop.io.Text??s?

                                                                                                    
?FA?sD?????fa18;Customer#000000018;3txGO AiuFux3zT0Z9NYaFRnZ;FRANCE___4;FRANCE;EUROPE;16-155-215-

1315;BUILDINGZU46;Customer#000000046;eaTXWWm10L9;FRANCE___6;FRANCE;EUROPE;16-357-681-

2007;AUTOMOBILEb]50;Customer#000000050;9SzDYlkzxByyJ1QeTI o;FRANCE___5;FRANCE;EUROPE;16-658-112-

3221;MACHINERY]X153;Customer#000000153;kDzx11sIjjWJm1;FRANCE___5;FRANCE;EUROPE;16-342-316-

2815;HOUSEHOLDXS204;Customer#000000204;7U7u2KryFP;FRANCE___4;FRANCE;EUROPE;16-761-837-

4820;BUILDING]X271;Customer#000000271;O,HceV3 XE77Yx;FRANCE___2;FRANCE;EUROPE;16-621-282-

5689;MACHINERY^Y281;Customer#000000281;x5gJ8IGm2Fo9Jigt;FRANCE___0;FRANCE;EUROPE;16-809-382-

6446;BUILDINGid284;Customer#000000284;2ZgAkaBgb6aigORfIfUd3kHbP;FRANCE___2;FRANCE;EUROPE;16-161-235-

2690;AUTOMOBILEZU312;Customer#000000312;cH6XucXV0V;FRANCE___1;FRANCE;EUROPE;16-316-482-

2555;AUTOMOBILE\W …

If we take a longer extract of the listed data, the sync marks between the records, which 
allow the data to be distributed (as was already explained), become visible.

SEQ”org.apache.hadoop.io.BytesWritableorg.apache.hadoop.io.Text??s?

                                                                                                    
?FA?sD?????fa18;Customer#000000018;3txGO AiuFux3zT0Z9NYaFRnZ;FRANCE___4;FRANCE;EUROPE;16-155-215-

1315;BUILDINGZU46;Customer#000000046;eaTXWWm10L9;FRANCE___6;FRANCE;EUROPE;16-357-681-

2007;AUTOMOBILEb]50;Customer#000000050;9SzDYlkzxByyJ1QeTI o;FRANCE___5;FRANCE;EUROPE;16-658-112-

3221;MACHINERY]X153;Customer#000000153;kDzx11sIjjWJm1;FRANCE___5;FRANCE;EUROPE;16-342-316-

2815;HOUSEHOLDXS204;Customer#000000204;7U7u2KryFP;FRANCE___4;FRANCE;EUROPE;16-761-837-

4820;BUILDING]X271;Customer#000000271;O,HceV3 XE77Yx;FRANCE___2;FRANCE;EUROPE;16-621-282-

5689;MACHINERY^Y281;Customer#000000281;x5gJ8IGm2Fo9Jigt;FRANCE___0;FRANCE;EUROPE;16-809-382-

6446;BUILDINGid284;Customer#000000284;2ZgAkaBgb6aigORfIfUd3kHbP;FRANCE___2;FRANCE;EUROPE;16-161-235-

2690;AUTOMOBILEZU312;Customer#000000312;cH6XucXV0V;FRANCE___1;FRANCE;EUROPE;16-316-482-



OLAP-oriented Databases for Big Data Environments 103

Copyright © River Publishers – except portuguese speaking countries

2555;AUTOMOBILE\W319;Customer#000000319; UQ5mF3sdoZT2;FRANCE___3;FRANCE;EUROPE;16-734-928-

1642;FURNITUREid402;Customer#000000402;8Cw4p1m1gKYVUgomkAq,es1Zt;FRANCE___1;FRANCE;EUROPE;16-950-729-

1638;AUTOMOBILEc^413;Customer#000000413;,4Jm5N0ruhJCB7cBR6Kw;FRANCE___5;FRANCE;EUROPE;16-158-285-

7336;FURNITURE_Z431;Customer#000000431;RNfSXbUJkgUlBBPn;FRANCE___3;FRANCE;EUROPE;16-326-904-

6643;HOUSEHOLDa\452;Customer#000000452;,TI7FdTc gCXUMi09qD;FRANCE___3;FRANCE;EUROPE;16-335-974-

9174;BUILDING^Y455;Customer#000000455;sssuscPJ,ZYQ8viO;FRANCE___5;FRANCE;EUR OPE;16-863-225-

9454;BUILDINGhc459;Customer#000000459;CkGH34iK 9vAHXeY7 wAQIzJa;FRANCE___0;FRANCE;EUROPE;16-927-662-

8584;MACHINERYhc516;Customer#000000516;EJwOQMTQnFwvd8r Y7f9i5POy;FRANCE___1;FRANCE;EUROPE;16-947-309-

2690;MACHINERYhc539;Customer#000000539;FoGcDu9llpFiB LELF3rdjaiw;FRANCE___6;FRANCE;EUROPE;16-166-785-

8571;HOUSEHOLDid587;Customer#000000587;J2UwoJEQzAOTtuBrxGVag9iWS;FRANCE___4;FRANCE;EUROPE;16-585-233-

5906;AUTOMOBILE??????s? 

?FA?sD?????id667;Customer#000000667;oQqeEC,OD9XC1JXyOsHqcpv0f;FRANCE___5;FRANCE;EUROPE;16-917-453-

2490;AUTOMOBILEhc683;Customer#000000683;G0, q8c6vBykpiLvcuSJLYvqE;FRANCE___3;FRANCE;EUROPE;16-566-251-

5446;MACHINERY`[686;Customer#000000686;1j C80VWHe ITCVCV;FRANCE___1;FRANCE;EUROPE;16-682-293-

3599;HOUSEHOLDid703;Customer#000000703;ge1GEYt4ewGUiSeqBA4rNB5Jh;FRANCE___0;FRANCE;EUROPE;16-741-513-

6919;AUTOMOBILEa\712;Customer#000000712; 8w2pIiA4wWAhtjAdXR;FRANCE___6;FRANCE;EUROPE;16-843-486-

5087;BUILDINGhc833;Customer#000000833;t3qDCo,Yh MZcJFV6PibeY,MU;FRANCE___6;FRANCE;EUROPE;16-624-307-

4875;FURNITURE\W873;Customer#000000873;XFnr9C2bANXL;FRANCE___4;FRANCE;EUROPE;16-375-385-

5712;AUTOMOBILEb]897;Customer#000000897;nW1X1Hl9uWycuBEu3F3;FRANCE___0;FRANCE;EUROPE;16-988-776-

4568;MACHINERYZU906;Customer#000000906;1Uavkms1A5z;FRANCE___3;FRANCE;EUROPE;16-594-569-

6627;HOUSEHOLDid1021;Customer#000001021;m h2wQbujQnQOrcf109reW0 o;FRANCE___6;FRANCE;EUROPE;16-469-554-

5196;MACHINERYid1097;Customer#000001097;a wMc0lQutcHs6cRomoMCGjvM;FRANCE___6;FRANCE;EUROPE;16-604-758-

5574;MACHINERY]X1111;Customer#000001111;gavpg6eW5lEML;FRANCE___1;FRANCE;EUROPE;16-824-312-

3537;MACHINERY_Z1182;Customer#000001182;pLrF7F1,uoyGaU;FRANCE___1;FRANCE;EUROPE;16-229-473-

7194;AUTOMOBILEhc1238;Customer#000001238;HGCJI27,RIIQcS20,DcJbMQuU;FRANCE___8;FRANCE;EUROPE;16-302-

171-7578;BUILDINGgb1379;Customer#000001379;rqYSBCMywMKnfcp2DwotVqI;FRANCE___6;FRANCE;EUROPE;16-695-

982-9623;MACHINERYfa1402;Customer#000001402;F7 m0JwiCABmbJLPQpCJ2;FRANCE___4;FRANCE;EUROPE;16-713-144-

2780;AUTOMOBILEfa1477;Customer#000001477;nUT6kGEr7tmgpJaPgfFtXY;FRANCE___3;FRANCE;EUROPE;16-407-756-

8079;MACHINERYfa1569;Customer#000001569;4vO9w7ixKJ 5od18LqLvr,;FRANCE___5;FRANCE;EUROPE;16-108-793-

2841;HOUSEHOLD_Z1571;Customer#000001571;akbtXy3o6igP3n8C;FRANCE___5;FRANCE;EUROPE;16-661-716-

6605;BUILDING??????s?

?FA?sD?????id1604;Customer#000001604;DXn5Lr8KjjMebZznHhSsX3n7T;FRANCE___1;FRANCE;EUROPE;16-960-140-

9357;HOUSEHOLDhc1608;Customer#000001608;jGjdmzMbF05pXU5STryOYpL9o;FRANCE___4;FRANCE;EUROPE;16-897-134-

9884;BUILDINGid1669;Customer#000001669;i38,,EDjrqVpk1UKXsl9cCdAw;FRANCE___8;FRANCE;EUROPE;16-172-628-

3560;HOUSEHOLDlg281258;Customer#000281258;O6YY,1W3VB9gZrp5pYT0hG02J;FRANCE___7;FRANCE;EUROPE;16-956-

985-3604;AUTOMOBILElg281291;Customer#000281291;sy2xVPrxxVtEejUXLCGDrExnn;FRANCE___5;FRAN CE;EUROPE;16-

335-832-2943;AUTOMOBILEc^281299;Customer#000281299;Z mkvsf3QptL7BVi1;FRANCE___4;FRANCE;EUROPE;16-753-

579-8545;FURNITURE]X281346;Customer#000281346;KlYhkEcj3T;FRANCE___7;FRANCE;EUROPE;16-420-442-

7414;AUTOMOBILEid281384;Customer#000281384;rv39QThJOsX0nZiUHOdRnlf;FRANCE___0;FRANCE;EUROPE;16-463-

229-2525;FURNITURElg281416;Customer#000281416;d,rYZvEL0TxWtCfzLP 5u,Rq9;FRANCE___0;FRANCE;EUROPE;16-

659-402-2709;AUTOMOBILEkf281441;Customer#000281441;aBLvsY,LioJqE1DzM z8AHdeR;FRANCE___1;FRANCE;EUROPE;16-

947-800-1862;FURNITURE_Z281484;Customer#000281484;qjTGdDEJeZt0O;FRANCE___4;FRANCE;EUROPE;16-396-270-

1594;MACHINERYkf281497;Customer#000281497;uRGeT3IFtorqoUmQg,URmTpkR;FRANCE___4;FRANCE;EUROPE;16-119-

692-8659;HOUSEHOLDhc281540;Customer#000281540;h7mIVxRdaqb3 WLOuXSEpN;FRANCE___4;FRANCE;EUROPE;16-701-

716-3981;HOUSEHOLDje281560;Customer#000281560;fhh2tqN35,Z7FA9SSep0J6Ggy;FRANCE___1;FRANCE;EUROPE;16-

211-553-5607;BUILDINGfa281577;Customer#000281577;IZYOzjuqp Fj7SdsgSv4;FRANCE___8;FRANCE;EUROPE;16-638-

846-8126;HOUSEHOLDa\281605;Customer#000281605;6CtLD,D4Le3gzi;FRANCE___4;FRANCE;EUROPE;16-217-711-

5552;AUTOMOBILEkf281617;Customer#000281617;LvVz,nQCmLD7GR4KsrQMiqkW5;FRANCE___0;FRANCE;EUROPE;16-747-

114-9999;MACHINERY^Y281618;Customer#000281618;QcrXat54b2Q3;FRANCE___8;FRANCE;EUROPE;16-571-692-

3521;FURNITUREkf281642;Customer#000281642;ZWeRT78BcFzUqLhaPVC2cLk61;FRANCE___5;FRANCE;EUROPE;16-641-

903-4096;FURNITURE??????s?

If the dfs command is switched from -cat to –text, the contents of the source file are 
shown in plain text format, however, both the line separators and the sync marks are 
omitted.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics104

$ hdfs dfs -text /user/lid4/book/hivessb.db/customerseq/000000_0

18;Customer#000000018;3txGO AiuFux3zT0Z9NYaFRnZ;FRANCE___4;FRANCE;EUROPE;16-155-215-1315;BUILDING

46;Customer#000000046;eaTXWWm10L9;FRANCE___6;FRANCE;EUROPE;16-357-681-2007;AUTOMOBILE

50;Customer#000000050;9SzDYlkzxByyJ1QeTI o;FRANCE___5;FRANCE;EUROPE;16-658-112-3221;MACHINERY

153;Customer#000000153;kDzx11sIjjWJm1;FRANCE___5;FRANCE;EUROPE;16-342-316-2815;HOUSEHOLD

204;Customer#000000204;7U7u2KryFP;FRANCE___4;FRANCE;EUROPE;16-761-837-4820;BUILDING

271;Customer#000000271;O,HceV3 XE77Yx;FRANCE___2;FRANCE;EUROPE;16-621-282-5689;MACHINERY

281;Customer#000000281;x5gJ8IGm2Fo9Jigt;FRANCE___0;FRANCE;EUROPE;16-809-382-6446;BUILDING

284;Customer#000000284;2ZgAkaBgb6aigORfIfUd3kHbP;FRANCE___2;FRANCE;EUROPE;16-161-235-2690;AUTOMOBILE

312;Customer#000000312;cH6XucXV0V;FRANCE___1;FRANCE;EUROPE;16-316-482-2555;AUTOMOBILE

319;Customer#000000319; UQ5mF3sdoZT2;FRANCE___3;FRANCE;EUROPE;16-734-928-1642;FURNITURE

402;Customer#000000402;8Cw4p1m1gKYVUgomkAq,es1Zt;FRANCE___1;FRANCE;EUROPE;16-950-729-1638;AUTOMOBILE

413;Customer#000000413;,4Jm5N0ruhJCB7cBR6Kw;FRANCE___5;FRANCE;EUROPE;16-158-285-7336;FURNITURE

431;Customer#000000431;RNfSXbUJkgUlBBPn;FRANCE___3;FRANCE;EUROPE;16-326-904-6643;HOUSEHOLD

452;Customer#000000452;,TI7FdTc gCXUMi09qD;FRANCE___3;FRANCE;EUROPE;16-335-974-9174;BUILDING

455;Customer#000000455;sssuscPJ,ZYQ8viO;FRANCE___5;FRANCE;EUROPE;16-863-225-9454;BUILDING

459;Customer#000000459;CkGH34iK 9vAHXeY7 wAQIzJa;FRANCE___0;FRANCE;EUROPE;16-927-662-8584;MACHINERY

516;Customer#000000516;EJwOQMTQnFwvd8r Y7f9i5POy;FRANCE___1;FRANCE;EUROPE;16-947-309-2690;MACHINERY

539;Customer#000000539;FoGcDu9llpFiB LELF3rdjaiw;FRANCE___6;FRANCE;EUROPE;16-166-785-8571;HOUSEHOLD

…

RCFiles (see subsection 4.1.1.3) can be created following the same approach as 
for sequence files. This format is useful for implementing DWing systems based on 
MapReduce (Hive, 2018c).

CREATE TABLE `customerrcf`(

  `custkey` string, 

  `name` string, 

  `address` string, 

  `city` string, 

  `nation` string, 

  `region` string, 

  `phone` string, 

  `mktsegment` string)

ROW FORMAT DELIMITED 

  FIELDS TERMINATED BY ‘\;’ 

STORED AS INPUTFORMAT 

  ‘org.apache.hadoop.hive.ql.io.RCFileInputFormat’ 

OUTPUTFORMAT 

  ‘org.apache.hadoop.hive.ql.io.RCFileOutputFormat’

LOCATION

  ‘hdfs://yourservername:8020/user/lid4/book/hivessb.db/customerrcf’

INSERT OVERWRITE TABLE hivessb.customerrcf 

   SELECT * FROM hivessb.customer;

Sequence files are row-oriented, hence the values in a row are stored contiguously in the 
file; whereas columnar-oriented formats split the rows so the resulting splits may be stored 
in a columnar way. The values of each row in the first column are stored first, followed by 



OLAP-oriented Databases for Big Data Environments 105

Copyright © River Publishers – except portuguese speaking countries

the values of each row in the second column, and so on, continuing this process for all 
available rows/columns (White, 2015).

4.1.1.3. RCFile

Hive’s RCFiles were the first column-oriented file format to be used in Hadoop (White, 
2015) and are implemented through binary key-value pairs. This type of file combines a 
horizontal and a vertical data partition, taking advantage of row-store and column-store 
features for fast data loading and query processing, which also ensures the storage space 
is used efficiently. 

This storage approach first partitions rows horizontally into row splits, and then vertically 
into columns. The metadata of the row split is stored in the key, whereas the data of 
the row split is stored in the value. With horizontal partition, an RCFile ensures all data 
belonging to the same row is stored in the same node. 

Vertical partition allows columnar data compression strategies, which help avoiding 
unnecessary column reads (White, 2015). Figure 4-9 shows the difference between the 
row-oriented layout used by a sequence file and the columnar-oriented layout used by an 
RCFile.

Figure 4‑9. Data organization in sequence files and RCFiles. Adapted from White (2015).

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics106

Thanks to their compact structure, columnar formats allow for greater efficiency in terms 
of file size and query performance. Files in these formats tend to be smaller because 
the values in a column are stored together, thus making their encoding more efficient. 
The encoding of timestamps can follow a pattern that stores the first timestamp and 
the differences in seconds to the following ones, for example. This is normally a small 
difference that decreases storage needs. Since records around the same time are stored 
close to each other, this also decreases processing time. 

In the customer table created in Hive using the RCFile format (DDL code at the end of 
subsection 4.1.1.2) the data is split into nine files. The same number of files was obtained 
when the sequence file was created. 

$ hdfs dfs -ls /user/lid4/book/hivessb.db/customerrcf

Found 9 items

-rwxr-xr-x   2 lid4 15731756 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000000_0

-rwxr-xr-x   2 lid4 15720238 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000001_0

-rwxr-xr-x   2 lid4 15709102 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000002_0

-rwxr-xr-x   2 lid4 15730031 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000003_0

-rwxr-xr-x   2 lid4 15735497 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000004_0

-rwxr-xr-x   2 lid4 15741607 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000005_0

-rwxr-xr-x   2 lid4 15752128 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000006_0

-rwxr-xr-x   2 lid4 15715629 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000007_0

-rwxr-xr-x   2 lid4 16538443 2018-03-14 20:18 /user/lid4/book/hivessb.db/customerrcf/000008_0

When one of the files is inspected, it shows that the organization of the data differs from 
the previous formats (text and sequence files), since data values are grouped in columns 
to optimize storage space and increase performance when processing the data. The 
following example illustrates the transition of the values from the region column to the 
phone column.

$ hdfs dfs -text /user/lid4/book/hivessb.db/customerrcf/000000_0

…

EUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUR 

OPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPE 

EUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUR

OPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPE

EUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUR 

OPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPE 

EUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUR

OPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPEEUROPE 33-952-259-179133-765-257-727833-571-530-437933-877-472-

109233-142-677-600633-375-743-912833-474-727-669433-617-160-576633-419-459-882433-373-790-792233-719-447-

182733-504-255-853333-605-771-468333-309-434-157533-365-620-981233-788-834-754633-388-899-813533-349-354-

728233-998-878-378333-942-761-458133-819-124-949033-829-912-447633-908-345-127233-565-201-340133-801-768-

366033-316-941-562833-982-549-945433-228-977-241233-435-476-494933-829-932-501833-707-219-780433-240-166-

652233-352-130-254333-123-586-746833-398-157-389433-406-209-818333-399-366-995733-448-107-140733-532-932-

544233-966-203-110633-947-537-681433-419-952-996733-904-993-140233-315-169-270933-676-713-777933-583-632-

81123 …

Another approach for inspecting the data uses Hive’s rcfilecat command; in this case, 
the data is displayed in row format, where the values of the columns are grouped according 
to their corresponding row.



OLAP-oriented Databases for Big Data Environments 107

Copyright © River Publishers – except portuguese speaking countries

$ hive --rcfilecat /user/lid4/book/hivessb.db/customerrcf/000000_0

18  Customer#000000018 3txGO AiuFux3zT0Z9NYaFRnZ FRANCE___4 FRANCE EUROPE 16-155-215-1315 BUILDING

46  Customer#000000046 eaTXWWm10L9 FRANCE___6 FRANCE EUROPE 16-357-681-2007 AUTOMOBILE

50  Customer#000000050 9SzDYlkzxByyJ1QeTI o   FRANCE___5 FRANCE EUROPE 16-658-112-3221 MACHINERY

153 Customer#000000153 kDzx11sIjjWJm1 FRANCE___5 FRANCE EUROPE 16-342-316-2815 HOUSEHOLD

204 Customer#000000204 7U7u2KryFP FRANCE___4 FRANCE EUROPE 16-761-837-4820 BUILDING

271 Customer#000000271 O,HceV3 XE77Yx FRANCE___2 FRANCE EUROPE 16-621-282-5689 MACHINERY

281 Customer#000000281 x5gJ8IGm2Fo9Jigt FRANCE___0 FRANCE EUROPE 16-809-382-6446 BUILDING

284 Customer#000000284 2ZgAkaBgb6aigORfIfUd3kHbP FRANCE___2 FRANCE EUROPE 16-161-235-2690 AUTOMOBILE

312 Customer#000000312 cH6XucXV0V FRANCE___1 FRANCE EUROPE 16-316-482-2555 AUTOMOBILE

319 Customer#000000319 UQ5mF3sdoZT2 FRANCE___3 FRANCE EUROPE 16-734-928-1642 FURNITURE

402 Customer#000000402 8Cw4p1m1gKYVUgomkAq,es1Zt FRANCE___1 FRANCE EUROPE 16-950-729-1638 AUTOMOBILE

413 Customer#000000413 ,4Jm5N0ruhJCB7cBR6Kw FRANCE___5 FRANCE EUROPE 16-158-285-7336 FURNITURE

431 Customer#000000431 RNfSXbUJkgUlBBPn      FRANCE___3 FRANCE EUROPE 16-326-904-6643 HOUSEHOLD

452 Customer#000000452 ,TI7FdTc gCXUMi09qD FRANCE___3 FRANCE EUROPE 16-335-974-9174 BUILDING

455 Customer#000000455 sssuscPJ,ZYQ8viO     FRANCE___5 FRANCE EUROPE 16-863-225-9454 BUILDING

459 Customer#000000459 CkGH34iK 9vAHXeY7 wAQIzJa FRANCE___0 FRANCE EUROPE 16-927-662-8584 MACHINERY

516 Customer#000000516 EJwOQMTQnFwvd8r Y7f9i5POy FRANCE___1 FRANCE EUROPE 16-947-309-2690 MACHINERY

539 Customer#000000539 FoGcDu9llpFiB LELF3rdjaiw FRANCE___6 FRANCE EUROPE 16-166-785-8571 HOUSEHOLD

…

4.1.1.4. ORC File

The ORC file format is highly efficient for storing data in Hive, as it significantly improves 
performance when reading and writing data. ORC files are organized in groups of row data 
called “stripes”, which include auxiliary information in each file’s footer. At the end of each 
file, a postscript includes information about the compression parameters and the size of 
the compressed footer. The default size for each stripe is 250MB, however, larger file sizes 
will enable larger and more efficient reads from HDFS. Each stripe includes index data, 
row data, and a stripe footer with a directory of stream locations. The index data includes 
summaries with the min and max values and the row positions for each column. After the 
stripes, a file footer includes a list containing all the stripes in the file, the number of rows 
in each stripe, the columns’ data type, and summaries of the columns using aggregation 
functions such as count, min, max, and sum (Figure 4-10) (Hive, 2018b). 

The aggregated information about the rows stored in each stripe is useful for optimizing 
query performance, since the computed statistics provide valuable information about the 
stripes, which is needed to answer a specific query. Moreover, as can be seen in Figure 
4-11, sorting the data when loading it into the stripes significantly increases the efficiency 
of this storage format because it reduces the number of potential stripes required to 
answer a given query. In the example shown in Figure 4-11, answering a query such as 
“SELECT * FROM customer WHERE customer id = 75” requires three stripes when data 
is unsorted, compared to only one stripe for the sorted version of the data.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics108

Figure 4‑10. Data organization in ORC files. Adapted from Hive (2018b).

Figure 4‑11. Unsorted and sorted data in the stripes of an ORC file.

The DDL code for creating the customer table using the ORC file format is shown below. 
In this case, the txt (text file) shown previously in Figure 4-6 is broken into the several 
stripes, and stored in a compressed format that substantially decreases the size of the 
required storage space. In the example, a 144.9MB text file converted to ORC file format 
distributed over nine files was reduced to approximately 44MB.



OLAP-oriented Databases for Big Data Environments 109

Copyright © River Publishers – except portuguese speaking countries

CREATE TABLE `customerorc`(

  `custkey` string, 

  `name` string, 

  `address` string, 

  `city` string, 

  `nation` string, 

  `region` string, 

  `phone` string, 

  `mktsegment` string)

ROW FORMAT SERDE 

  ‘org.apache.hadoop.hive.ql.io.orc.OrcSerde’ 

STORED AS INPUTFORMAT 

  ‘org.apache.hadoop.hive.ql.io.orc.OrcInputFormat’ 

OUTPUTFORMAT 

  ‘org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat’

LOCATION

  ‘hdfs://yourservername:8020/user/lid4/book/hivessb.db/customerorc’

INSERT OVERWRITE TABLE hivessb.customerorc 

  SELECT * FROM hivessb.customer;

$ hdfs dfs -ls /user/lid4/book/hivessb.db/customerorc

Found 9 items

-rwxr-xr-x   2 lid4  5083477 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000000_0

-rwxr-xr-x   2 lid4  5144168 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000001_0

-rwxr-xr-x   2 lid4  5192411 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000002_0

-rwxr-xr-x   2 lid4  5095599 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000003_0

-rwxr-xr-x   2 lid4  5065174 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000004_0

-rwxr-xr-x   2 lid4  5038219 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000005_0

-rwxr-xr-x   2 lid4  4986501 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000006_0

-rwxr-xr-x   2 lid4  5164945 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000007_0

-rwxr-xr-x   2 lid4  5545497 2018-03-12 19:59 /user/lid4/book/hivessb.db/customerorc/000008_0

In Hive, the orcfiledump command allows to inspect the contents of ORC files and their 
stripes. In case no specific file is indicated, for instance, when using hive --orcfiledump 
/user/lid4/book/hivessb.db/customerorc, all the files in the directory are inspected 
sequentially. When a specific file is inspected, the following result is obtained.

$ hive --orcfiledump /user/lid4/book/hivessb.db/customerorc/000000_0

Processing data file /user/lid4/book/hivessb.db/customerorc/000000_0 [length: 5083477]

Structure for /user/lid4/book/hivessb.db/customerorc/000000_0

File Version: 0.12 with HIVE_13083

18/05/28 18:39:01 INFO orc.ReaderImpl: Reading ORC rows from 

/user/lid4/book/hivessb.db/customerorc/000000_0 with {include: null, offset: 0, length: 

9223372036854775807}

18/05/28 18:39:01 INFO orc.RecordReaderImpl: Reader schema not provided -- using file schema 

struct<_col0:string,_col1:string,_col2:string,_col3:string,_col4:string,_col5:string,_col6:string,_

col7:string>

Rows: 164665

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics110

Compression: ZLIB

Compression size: 262144

Type: 

struct<_col0:string,_col1:string,_col2:string,_col3:string,_col4:string,_col5:string,_col6:string,_

col7:string>

Stripe Statistics:

  Stripe 1:

    Column 0: count: 164665 hasNull: false

    Column 1: count: 164665 hasNull: false min: 10000 max: 999992 sum: 1027099

    Column 2: count: 164665 hasNull: false min: Customer#000000011 max: Customer#001499990 sum: 2963970

    Column 3: count: 164665 hasNull: false min:    0ii8V3kQ max: zzym,0W cT0I sum: 3480035

    Column 4: count: 164665 hasNull: false min: FRANCE___0 max: UNITED KI8 sum: 1646650

    Column 5: count: 164665 hasNull: false min: FRANCE max: UNITED KINGDOM sum: 1402446

    Column 6: count: 164665 hasNull: false min: EUROPE max: EUROPE sum: 987990

    Column 7: count: 164665 hasNull: false min: 16-100-129-9592 max: 33-999-987-8365 sum: 2469975

    Column 8: count: 164665 hasNull: false min: AUTOMOBILE max: MACHINERY sum: 1481816

File Statistics:

  Column 0: count: 164665 hasNull: false

  Column 1: count: 164665 hasNull: false min: 10000 max: 999992 sum: 1027099

  Column 2: count: 164665 hasNull: false min: Customer#000000011 max: Customer#001499990 sum: 2963970

  Column 3: count: 164665 hasNull: false min:    0ii8V3kQ max: zzym,0W cT0I sum: 3480035

  Column 4: count: 164665 hasNull: false min: FRANCE___0 max: UNITED KI8 sum: 1646650

  Column 5: count: 164665 hasNull: false min: FRANCE max: UNITED KINGDOM sum: 1402446

  Column 6: count: 164665 hasNull: false min: EUROPE max: EUROPE sum: 987990

  Column 7: count: 164665 hasNull: false min: 16-100-129-9592 max: 33-999-987-8365 sum: 2469975

  Column 8: count: 164665 hasNull: false min: AUTOMOBILE max: MACHINERY sum: 1481816

Stripes:

  Stripe: offset: 3 data: 5079200 rows: 164665 tail: 211 index: 3438

    Stream: column 0 section ROW_INDEX start: 3 length 21

    Stream: column 1 section ROW_INDEX start: 24 length 483

    Stream: column 2 section ROW_INDEX start: 507 length 484

    Stream: column 3 section ROW_INDEX start: 991 length 1056

    Stream: column 4 section ROW_INDEX start: 2047 length 214

    Stream: column 5 section ROW_INDEX start: 2261 length 248

    Stream: column 6 section ROW_INDEX start: 2509 length 162

    Stream: column 7 section ROW_INDEX start: 2671 length 548

    Stream: column 8 section ROW_INDEX start: 3219 length 222

    Stream: column 1 section DATA start: 3441 length 416253

    Stream: column 1 section LENGTH start: 419694 length 2964

    Stream: column 2 section DATA start: 422658 length 587284

    Stream: column 2 section LENGTH start: 1009942 length 1108

    Stream: column 3 section DATA start: 1011050 length 2691043

    Stream: column 3 section LENGTH start: 3702093 length 91039

    Stream: column 4 section DATA start: 3793132 length 80074

    Stream: column 4 section LENGTH start: 3873206 length 7

    Stream: column 4 section DICTIONARY_DATA start: 3873213 length 84

    Stream: column 5 section DATA start: 3873297 length 274

    Stream: column 5 section LENGTH start: 3873571 length 7

    Stream: column 5 section DICTIONARY_DATA start: 3873578 length 30

    Stream: column 6 section DATA start: 3873608 length 195

    Stream: column 6 section LENGTH start: 3873803 length 6

    Stream: column 6 section DICTIONARY_DATA start: 3873809 length 9



OLAP-oriented Databases for Big Data Environments 111

Copyright © River Publishers – except portuguese speaking countries

    Stream: column 7 section DATA start: 3873818 length 1144397

    Stream: column 7 section LENGTH start: 5018215 length 390

    Stream: column 8 section DATA start: 5018605 length 63980

    Stream: column 8 section LENGTH start: 5082585 length 8

    Stream: column 8 section DICTIONARY_DATA start: 5082593 length 48

    Encoding column 0: DIRECT

    Encoding column 1: DIRECT_V2

    Encoding column 2: DIRECT_V2

    Encoding column 3: DIRECT_V2

    Encoding column 4: DICTIONARY_V2[27]

    Encoding column 5: DICTIONARY_V2[3]

    Encoding column 6: DICTIONARY_V2[1]

    Encoding column 7: DIRECT_V2

    Encoding column 8: DICTIONARY_V2[5]

File length: 5083477 bytes

Padding length: 0 bytes

Padding ratio: 0%

4.1.1.5. Avro File

Avro files can be created and inspected following the same process described above. 
Avro files (Avro, 2018) use a serialization system to support nested schemas, allowing to 
modify a table schema across different compatible schemas, without needing to rewrite 
and convert existing tables. HiveQL can query different Avro files using the current table 
schema (Figure 4-12), since Avro files store the data and the corresponding schema. As 
code generation is optional in Avro, data conforming to a specific schema can be read 
and written, even if the code is not expecting that particular schema. This flexibility allows 
schemas to evolve, hence different schemas can be used for reading and writing data 
(White, 2015). 

Figure 4‑12. Schemas evolution in an Avro file. 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics112

4.1.1.6. Parquet

The Parquet format (Parquet, 2018) is an open source columnar file format for Hadoop that 
uses complex nested data structures to support efficient data compression. Developed 
initially by Google (Melnik et al., 2010), this approach combines multi-level execution trees 
with a columnar data layout for efficient data processing (Figure 4-13). 

Figure 4‑13. The Parquet data format. Adapted from Melnik et al. (2010).

The data structure implemented by the Parquet format allows nested fields to be 
read independently from other fields, improving performance in query processing and 
supporting a very efficient compression mechanism. The file format includes a header that 
is followed by one or more blocks, ending with a footer. The header only includes a 4-byte 
value, PAR1, identifying the beginning of a Parquet format. All the metadata is stored in 
the footer, including the format version, the schema, any extra key-value pairs, and the 
metadata for each specific block. The footer ends with two 4-byte values, including the 
length of the footer metadata and the PAR1. These files can be split for parallel processing, 
as blocks can be located right after the footer has been read. Regarding blocks, each 
block stores a row group containing column chunks with the column data of those rows. 
Column chunks are written in pages (Figure 4-14) (White, 2015).

Figure 4‑14. Data organization in a Parquet file. Adapted from White (2015).



OLAP-oriented Databases for Big Data Environments 113

Copyright © River Publishers – except portuguese speaking countries

4.1.2. Partitions and Buckets
For the different file formats, Hive tables can use partitions (and subpartitions) as well 
as buckets to organize the data, allowing better query performance if the partitions and 
buckets are defined to accommodate the most common queries. Using once again the 
customer table as an example, the DDL instruction to create a table using a partition based 
on the region column and a subpartition based on the nation column is as follows:

CREATE TABLE `customerp`(

  `custkey` string, 

  `name` string, 

  `address` string, 

  `city` string, 

  `phone` string, 

  `mktsegment` string)

PARTITIONED BY ( 

  `region` string, 

  `nation` string)

ROW FORMAT DELIMITED 

  FIELDS TERMINATED BY ‘\;’ 

STORED AS INPUTFORMAT 

  ‘org.apache.hadoop.mapred.TextInputFormat’ 

OUTPUTFORMAT 

  ‘org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat’

LOCATION

  ‘hdfs://yourservername:8020/user/lid4/book/hivessb.db/customerp’

In this case, the data is organized across various files, distributed along different folders 
derived from the possible region values and the nations within each region. Figure 4-15 
shows an overview of the folders structure using the Ambari interface for browsing the 
data. The image shows the various regions alongside the nations available in the dataset 
for a given region (Europe).

Figure 4‑15. Partitions and subpartitions in a Hive table.©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics114

The attributes used to define the partitions and subpartitions are not formal columns 
within the table, as can be seen in the set of instructions for creating the partitioned table, 
which was previously shown. Nevertheless, those attributes are part of the table and, 
for this reason, DML instructions can use them to query the data. As shown in Figure 
4-16, these attributes are also listed in the results as long as the query does not explicitly 
exclude them.

Figure 4‑16. Partitions and subpartitions when querying the data.

The use of the command shell to inspect the folders, subfolders, and corresponding 
files in the partitions is illustrated in the following examples. First, listing the table folder 
(customerp) along its several subfolders; then, the subfolder EUROPE with its various 
nations as subfolders; followed by the subfolder FRANCE with its file (there are no further 
data divisions); and lastly, the inspection of a specific file (000000_0).
$ hdfs dfs -ls /user/lid4/book/hivessb.db/customerp

Found 5 items

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=AFRICA

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=AMERICA

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=ASIA

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=EUROPE

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=MIDDLE EAST

$ hdfs dfs -ls /user/lid4/book/hivessb.db/customerp/region=EUROPE

Found 5 items

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=FRANCE

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=GERMANY

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=ROMANIA

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=RUSSIA

drwxr-xr-x   - lid4 0 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=UNITED KINGDOM

$ hdfs dfs -ls /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=FRANCE

-rwxr-xr-x   2 lid4 5151399 2018-03-12 20:15 /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=FRANCE/000000_0

$ hdfs dfs -text /user/lid4/book/hivessb.db/customerp/region=EUROPE/nation=FRANCE/000000_0



OLAP-oriented Databases for Big Data Environments 115

Copyright © River Publishers – except portuguese speaking countries

18;Customer#000000018;3txGO AiuFux3zT0Z9NYaFRnZ;FRANCE___4;16-155-215-1315;BUILDING

46;Customer#000000046;eaTXWWm10L9;FRANCE___6;16-357-681-2007;AUTOMOBILE

50;Customer#000000050;9SzDYlkzxByyJ1QeTI o;FRANCE___5;16-658-112-3221;MACHINERY

153;Customer#000000153;kDzx11sIjjWJm1;FRANCE___5;16-342-316-2815;HOUSEHOLD

204;Customer#000000204;7U7u2KryFP;FRANCE___4;16-761-837-4820;BUILDING

271;Customer#000000271;O,HceV3 XE77Yx;FRANCE___2;16-621-282-5689;MACHINERY

281;Customer#000000281;x5gJ8IGm2Fo9Jigt;FRANCE___0;16-809-382-6446;BUILDING

284;Customer#000000284;2ZgAkaBgb6aigORfIfUd3kHbP;FRANCE___2;16-161-235-2690;AUTOMOBILE

312;Customer#000000312;cH6XucXV0V;FRANCE___1;16-316-482-2555;AUTOMOBILE

319;Customer#000000319; UQ5mF3sdoZT2;FRANCE___3;16-734-928-1642;FURNITURE

402;Customer#000000402;8Cw4p1m1gKYVUgomkAq,es1Zt;FRANCE___1;16-950-729-1638;AUTOMOBILE

413;Customer#000000413;,4Jm5N0ruhJCB7cBR6Kw;FRANCE___5;16-158-285-7336;FURNITURE

431;Customer#000000431;RNfSXbUJkgUlBBPn;FRANCE___3;16-326-904-6643;HOUSEHOLD

452;Customer#000000452;,TI7FdTc gCXUMi09qD;FRANCE___3;16-335-974-9174;BUILDING

455;Customer#000000455;sssuscPJ,ZYQ8viO;FRANCE___5;16-863-225-9454;BUILDING

459;Customer#000000459;CkGH34iK 9vAHXeY7 wAQIzJa;FRANCE___0;16-927-662-8584;MACHINERY

516;Customer#000000516;EJwOQMTQnFwvd8r Y7f9i5POy;FRANCE___1;16-947-309-2690;MACHINERY

539;Customer#000000539;FoGcDu9llpFiB LELF3rdjaiw;FRANCE___6;16-166-785-8571;HOUSEHOLD

 …

Buckets can be defined with or without partitions to reorganize the data in the physical 
files; they can have a positive or a negative impact on query performance, as they can 
optimize loading time and execution time when the attribute used for bucketing is also 
used in the conditions of the queries. Although there is no strict rule to define the optimal 
number of buckets, it is recommended that a bucket has at least the size of a HDFS block 
or some multiple of that size (E. Costa, Costa, & Santos, 2018). 

To illustrate how buckets are defined, the customer table is once again used. Bucketing 
clusters the data according to a predefined attribute. This task distributes the data 
homogeneously throughout the existing buckets. This is the reason why attributes with 
high cardinality should be considered for bucketing, as this method will concentrate data 
records instead of spreading them across several smaller files.

Considering a scenario in which four buckets are created for the customer table, based 
on the nation column, the customers are distributed in the four buckets, maintaining a 
reasonable distribution of the data. 

CREATE TABLE `customerbn`(

  `custkey` int, 

  `name` string, 

  `address` string, 

  `city` string, 

  `nation` string, 

  `region` string, 

  `phone` string, 

  `mktsegment` string)

CLUSTERED BY ( 

  nation) 

INTO 4 BUCKETS©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics116

In this case, and to understand how bucketing works, the result of the bucketing process 
is now analyzed. The following SQL statements allow the selection of data from a specific 
bucket, in order to verify the distribution of the customers according to the nations, by 
computing the number of rows per nation. 

SELECT nation, count(*) AS totalb1 FROM hivessb.customerbn

 TABLESAMPLE(BUCKET 1 OUT OF 4 ON nation)

 GROUP BY nation;

SELECT nation, count(*) AS totalb2 FROM hivessb.customerbn

 TABLESAMPLE(BUCKET 2 OUT OF 4 ON nation)

 GROUP BY nation;

SELECT nation, count(*) AS totalb3 FROM hivessb.customerbn

 TABLESAMPLE(BUCKET 3 OUT OF 4 ON nation)

 GROUP BY nation;

SELECT nation, count(*) AS totalb4 FROM hivessb.customerbn

 TABLESAMPLE(BUCKET 4 OUT OF 4 ON nation)

 GROUP BY nation;

After running the statements for the four buckets, Figure 4-17 shows the result indicating 
the various nations and the number of records in each bucket. The number of records 
is 419,192 (bucket 1), 240,491 (bucket 2), 359,687 (bucket 3) and 480,630 (bucket 4). 
This type of distribution is useful for performing joins between tables because the 
attributes used for joining can be grouped in a similar way by the different tables.

Figure 4‑17. Analyzing the distribution of the data with the nation bucketing.

The bucket number to which each row should be assigned is identified by the bucketing 
column using a hash function, so it is influenced by the selected column and its 
corresponding data type. In the previous example, a string column was used, so 
the bucket number is derived from the value obtained through some computation on 
the characters within the string. In the case of an integer column, the identification 
of the bucket number is a straightforward process, since it is the result of the function 
hash(column) mod [number of buckets].

Using the custkey column for bucketing, converting the key values stored as string 
values into integer values, and using again 4 buckets to segment the data, the 



OLAP-oriented Databases for Big Data Environments 117

Copyright © River Publishers – except portuguese speaking countries

distribution of the data is very different from the one previously obtained (using nation as 
the bucketing attribute). When the process is completed, the number of records is 375,000 
per bucket. This even distribution of the data is possible thanks to the characteristics of 
the dataset, which is synthetic and whose records are generated following a specific 
pattern of replication from the base data. 

CREATE TABLE `customerb`(

  `custkey` int, 

  `name` string, 

  `address` string, 

  `city` string, 

  `nation` string, 

  `region` string, 

  `phone` string, 

  `mktsegment` string)

CLUSTERED BY (`custkey`)

   INTO 4 buckets

INSERT OVERWRITE TABLE hivessb.customerb 

   SELECT CAST(custkey AS INT), name, address, city, nation, region, phone, 

          mktsegment FROM hivessb.customer;

In this case, although the buckets have exactly the same number of rows and all of them 
include all the nations available in the dataset, the distribution along the different nations 
and regions is not exactly the same, as shown in Figure 4-18.

Figure 4‑18. Analyzing the distribution of the data with the custkey bucketing.©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics118

The files can also be inspected using the shell, allowing to verify their contents. In the 
following example, four files (one per bucket) are listed in the table folder (customerb), 
and two buckets are inspected, namely the ones stored in the 000000_0 file and in the 
000001_0 file.

$ hdfs dfs -ls /user/lid4/book/hivessb.db/customerb

Found 4 items

-rwxr-xr-x   2 lid4 37975257 2018-03-12 20:03 /user/lid4/book/hivessb.db/customerb/000000_0

-rwxr-xr-x   2 lid4 37981386 2018-03-12 20:03 /user/lid4/book/hivessb.db/customerb/000001_0

-rwxr-xr-x   2 lid4 37967729 2018-03-12 20:03 /user/lid4/book/hivessb.db/customerb/000002_0

-rwxr-xr-x   2 lid4 37973177 2018-03-12 20:03 /user/lid4/book/hivessb.db/customerb/000003_0

$ hdfs dfs -text /user/lid4/book/hivessb.db/customerb/000000_0

938296Customer#000938296kVF6B4ARJxm,YZmhm49NDFLkGINDIA____1INDIAASIA18-431-610-8456BUILDING

844232Customer#000844232dy1T1u4WqvtvhenJxnjAZXk71INDONESIA3INDONESIAASIA19-438-399-6517FURNITURE

844184Customer#000844184oC31zbkosFcAmQ2yMINDONESIA5INDONESIAASIA19-591-932-4673FURNITURE

241704Customer#0002417040kDzyjcpKVv3VIETNAM__4VIETNAMASIA31-652-416-7050FURNITURE

844624Customer#000844624ZmTmS4ynFpvRJ95ae JZvx1FRINDIA____7INDIAASIA18-152-759-8002BUILDING

844168Customer#0008441688jnyZAjtkNcVYrqYkTuINDONESIA4INDONESIAASIA19-696-630-6239MACHINERY

843960Customer#000843960qrNJRQQVXTRydINDONESIA7INDONESIAASIA19-357-221-8775AUTOMOBILE

337884Customer#000337884OQz,55I2tRVIETNAM__0VIETNAMASIA31-283-606-8508AUTOMOBILE

337772Customer#000337772YdjeohUMojR3PmgSPp1nt37AMVIETNAM__2VIETNAMASIA31-330-219-2336HOUSEHOLD

844716Customer#000844716cV40afO89qbn3BlINDIA____6INDIAASIA18-384-726-9402BUILDING

337708Customer#0003377088TfPUUHpQ7xUVIETNAM__6VIETNAMASIA31-172-553-5905AUTOMOBILE

337700Customer#000337700l5McFMtGIZfHlMdOHfSnsKUWHVIETNAM__4VIETNAMASIA31-408-487-7177MACHINERY

843916Customer#000843916kNtAo2e4MmlnYaKINDONESIA0INDONESIAASIA19-192-860-8416FURNITURE

844772Customer#0008447720oxdzEEySOOMyHZ721xzyZdmOINDIA____8INDIAASIA18-310-804-3145FURNITURE

843876Customer#0008438761k6aR8WK,lINDONESIA5INDONESIAASIA19-521-896-1267HOUSEHOLD

585760Customer#000585760ymqcZ1SisIz1IsxmcJOTFmGCmVIETNAM__7VIETNAMASIA31-826-291-2379AUTOMOBILE

…

$ hdfs dfs -text /user/lid4/book/hivessb.db/customerb/000001_0

99697Customer#000099697gznfJlqEM536YMLkrXyerT EGYPT____4EGYPTMIDDLE EAST14-279-267-6722FURNITURE

638237Customer#00063823701iQWar2eAS Bu9CANADA___4CANADAAMERICA13-182-296-4100HOUSEHOLD

638405Customer#000638405hyu3lh6S74esamHVPCANADA___5CANADAAMERICA13-293-435-5992BUILDING

638437Customer#000638437,W6oSIbN5sLcuYNwRA5ICANADA___3CANADAAMERICA13-617-152-1396FURNITURE

638445Customer#000638445FgGEoTPxvDBF1HKI,nEi5ymsKCANADA___2CANADAAMERICA13-934-500-9274FURNITURE

638485Customer#000638485CrD jk0CQTwQ2m6eLI27HSfYpCANADA___0CANADAAMERICA13-948-906-1051HOUSEHOLD

728237Customer#0007282371c7LeAQyKX YxAEYaIUZWCANADA___3CANADAAMERICA13-359-484-5191MACHINERY

728433Customer#000728433pTXe5oMTlp13GK2XYyCANADA___5CANADAAMERICA13-291-993-9522AUTOMOBILE

728465Customer#000728465LRKq0PPgdL,vqYFfJ4VAkH6JQCANADA___2CANADAAMERICA13-180-7311824AUTOMOBILE

728621Customer#000728621TR9l,MFEfcoXCANADA___4CANADAAMERICA13-879-335-7798BUILDING

728749Customer#000728749djqfal9A3lIhOfvWUFyJ9hgMiCANADA___1CANADAAMERICA13-408-552-3228FURNITURE

728909Customer#000728909NpUGPh2xKOWxnc3Vc9S oophdCANADA___7CANADAAMERICA13-829-655-4740MACHINERY

728945Customer#000728945ix1wtUO7K4a4aHNv,67F,T8YLCANADA___3CANADAAMERICA13-828-461-6602HOUSEHOLD

728981Customer#000728981m32u6ogVHTF,xRplwip, ECaaCANADA___1CANADAAMERICA13-946-7541989AUTOMOBILE

546645Customer#000546645W62WN8lCBH60syg,2pC3xNsytCANADA___2CANADAAMERICA13-908-326-3171BUILDING

546673Customer#000546673U4UOtjbLhBxNz20BMy4wnIa89CANADA___7CANADAAMERICA13-501-100-9099MACHINERY

…



OLAP-oriented Databases for Big Data Environments 119

Copyright © River Publishers – except portuguese speaking countries

As will be shown in Chapter 8, partitioning can play an important role in the organization 
of a Hive table when the different design patterns are benchmarked. Regarding the 
processing time needed to run a query, the attributes normally used in the “where” clause 
of a query are the most appropriate ones for partitioning and/or subpartitioning. 

Bucketing is advantageous for sampling when the volume of data imposes processing 
limitations. In these cases, data analyzes may occur on a sample of the data. This sample 
can be obtained through the bucket table sampling strategy, which is optimized for this 
type of tables. Another advantage of bucketing is the use of bucket map joins in Hive.  
This is an appropriate strategy for joining large tables bucketed by the join attribute, as 
long as the number of buckets in one table is a multiple of the number of buckets in the 
other table (Du, 2015).

4.2. FROM DIMENSIONAL MODELS TO TABULAR MODELS
Business Intelligence and Analytics (BI&A) in Big Data environments can be enhanced 
with appropriate data systems. In those contexts, the volume, variety, or velocity of data 
can justify the adoption of different databases, such as NoSQL, as storage repositories 
supporting operational or analytical applications (H. Chen et al., 2012). 

Regarding analytical applications, the Dimensional Data Model (DDM) is used widely 
to model data requirements that guide the implementation of a DW using traditional 
environments such as relational or multidimensional databases. However, when the 
data volume justifies the implementation of a DW in a Big Data context, a data model 
also needs to be identified to define the structure of the tables in Hive. Due to Hive’s 
characteristics, the data schemas must be defined taking into account the queries that 
need to be answered, specifying the analytical requirements.

Dimensional modeling is widely used in traditional BI environments, and many DWs are 
already available to support organizational decision-making processes. As previously 
stated, this book addresses the definition of an automatic process for transforming a 
DDM into tables that can be implemented in Hive. Following this, the definition of the 
analytical requirements for a BDW can be achieved by adopting common and well-known 
practices of the BI community, such as the DDM. An advantage of this approach is that the 
elicitation process for identifying the BDW data requirements can follow a combination of 
a goal-driven, a user-driven, or a data-driven approach (Vieira, Pedro, Santos, Fernandes, 
& Dias, 2019). This combination ensures that no important data requirements are left 
behind; and, furthermore, an integrated representation of the data model, the DDM, 
warrants a common understanding of the organizational business processes, business 
indicators, and dimensions of analysis. 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics120

In case a DDM exists, the guidelines proposed in this section may be followed. If that is 
not the case, or if organizations and practitioners want to look into the BDW in a global 
perspective, Chapter 5 addresses the design and implementation of BDWs with an 
approach where logical components and data flows, technological infrastructures, and 
data modeling are seen as being part of an integrated process. 

In the transformation process described below, a DDM is regarded as an Analytical Data 
Model (ADM), which can be implemented in a traditional BI environment (ADMBI), or in a 
Big Data environment (ADMBD). In a traditional BI environment, relational databases are 
usually used as storage technologies, whereas in a Big Data environment, Hive is the 
most common DWing storage technology. 

For identifying a possible data model for a BDW, the definition of ADMBI is presented 
and the definition of ADMBD is proposed based on tabular data models (Santos & Costa, 
2016b).

Definition 1  – An ADM in a BI context, ADM D F R MBI = ( , , , ) , includes a set of dimension 
tables, D D D Dn= { }1 2, ,..., , a set of fact tables, F F F Fn= { }1 2, ,..., , a set of relationships, 
R R c c R c c R c cF

D
f d F

D
f d F

D
f dm

l= ( ) ( ) ( ){ }1

1

1

2: , : ,..., : , associating fact tables to dimension tables. The 
cardinality of the relationship c cf d:( ) of n:1 stands between a fact table and the dimension 
tables. An ADMBI includes a set of measures for each fact table, M M Mj j j

k= { }1 ,..., , used 
for analyzing the business processes. An abstract example of an ADMBI is provided in 
Figure 4-19.

Figure 4‑19. Example of an ADMBI.

Definition 2 –  An ADM in a Big Data context for Hive, ADM T C ABD = ( ), , , includes a set 
of tables, T T T Tn= { }1 2, ,..., , where each table integrates one or more components, as 

T C C Ci n= { }1 2, ,..., , which can be descriptive or analytical. Each component integrates 



OLAP-oriented Databases for Big Data Environments 121

Copyright © River Publishers – except portuguese speaking countries

different columns representing the attributes with the atomic values that will be stored in 
the Hive tables, C A Aj j j

k= { }1 ,..., , as shown in Figure 4-20. 

Figure 4‑20. Components of a Hive table.

The following subsections describe a set of guidelines defined as rules that can be used 
to transform a DDM into an ADMBD using an ADMBI as input. We begin by proposing the 
identification of primary data tables based on raw data. These tables are organized in such 
a way that a few highly denormalized tables are obtained. After that, derived data tables 
with aggregates from the raw data can be identified, reducing the number of data records 
to be analyzed. These derived data tables can then be implemented as materialized views 
that provide ad hoc querying capabilities. 

In this process, the identification of tables (either primary or derived) is done after identifying 
the descriptive components, including the descriptive attributes that will add meaning to 
the business measures under analysis (analytical components with analytical attributes). 

4.2.1. Primary Data Tables
The identification of the primary data tables and the associated components is achieved 
through the following set of rules.

Rule ADMBD.1 – Identification of primary data tables. The identification of primary data 
tables begins with the fact tables present in the ADMBI. Each fact table originates a primary 
data table, integrating the raw data that will allow the computation of queries in an ADMBD. 

Figure 4-21 shows a constellation schema with two fact tables; two primary data tables 
are identified: Fact

1
 and Fact

2
.

Rule ADMBD.2 – Identification of components. The identification of components of an 
ADMBD follows a two-step approach; one for the descriptive components and one for the 
analytical components.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics122

Figure 4‑21. Example of a data model with a constellation schema.

Rule ADMBD.2.1 – Identification of descriptive components. All the dimensions present 
in the ADMBI will lead to descriptive components, one per dimension, providing in turn 
the descriptive attributes that add semantics to the analytical components, representing 
the different analytical perspectives in a DDM. The attributes of a descriptive component 
include all the attributes present in the corresponding dimension of the ADMBI. Following 
the best practices for designing a DDM, the dimensions’ key must be a durable surrogate 
key (SK), which belongs to the DW and not to the original data sources, thus ensuring the 
consistency of the DW. In the case of a BDW, these keys may or may not exist depending 
on how the BDW updates are foreseen, in other words, depending on the types of Slowly 
Changing Dimensions (SCDs) to be implemented. 

Showing an abstract example and also a specific example associated with the Calendar 
dimension, Figure 4-22 shows the identification of the corresponding descriptive 
components. In this example, the Calendar dimension includes a SK, which is the 
PK of the dimension and a natural key (NK) that helps to implement SCD Type 2 within 
dimensions that require this type of SCD.

Rule ADMBD.2.2 – Identification of analytical components. All the fact tables present 
in the ADMBI lead to analytical components, one per fact table, providing the analytical 
attributes that will be analyzed according to the related descriptive components. The 
attributes of an analytical component are composed of the set of non-key attributes 
(excluding all PKs and/or FKs) present in the corresponding fact table within the ADMBI. 
Those attributes are the measures or business indicators considered in the DDM.



OLAP-oriented Databases for Big Data Environments 123

Copyright © River Publishers – except portuguese speaking countries

Figure 4‑22. Example of a descriptive component.

Figure 4-23 shows two examples where the analytical components are identified for both 
an abstract example and for the Sales fact table. All key attributes are ignored, as the 
descriptive components will include the necessary information regarding the dimensions’ 
SKs. 

Figure 4‑23. Example of an analytical component.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics124

Rule ADMBD.3 – Association of components to primary tables. A primary data table 
includes a set of descriptive components and one analytical component, which vary 
depending on the table. For identifying the descriptive components and the analytical 
component, the DDM must be split into star schemas, when dealing with constellation 
schemas, in order to denormalize each star schema. After each star schema is identified, 
the primary data table will treat all the components derived from the association between 
dimensions and the fact table as descriptive. The analytical component is the one derived 
from the star schema’s fact table. Each one of these components, either descriptive 
or analytical, provides the various attributes (columns) that must be considered for the 
physical implementation of the Hive tables. 

Returning to the constellation schema previously shown in Figure 4-21, two star 
schemas integrate this constellation and, for each one, a primary data table is derived. 
Figure 4-24 shows the denormalization process that must be followed. Although this is 
a straightforward denormalization, these steps are afterwards extended for identifying 
the derived data tables (subsection 4.2.2), showing how they aggregate data, and how 
they impact data volume and query performance (section 4.3).

Figure 4‑24. Identification of primary data tables.



OLAP-oriented Databases for Big Data Environments 125

Copyright © River Publishers – except portuguese speaking countries

4.2.2. Derived Data Tables
After identifying the primary data tables, derived data tables can be generated to 
group descriptive and analytical components. It is important to bear in mind that when 
they are grouped according to a descriptive component, analytical components are 
aggregated/summarized using aggregation functions. This means that derived tables 
are optimized to answer specific queries, as they pre-compute aggregates on data, 
hence decreasing the number of available records. Although primary data tables can 
answer any query, at any level of detail, as long as the granularity of the model complies 
with them, derived data tables do not, as pre-aggregations of data are computed for 
optimizing performance.

The following rules can be observed for identifying the derived data tables and their 
components.

Rule ADMBD.4 – Identification of derived data tables. The identification of derived 
data tables considers the dimension tables present in the ADMBI, and computes the 
dimensions lattice to verify the different combinations of dimensions. This lattice will 
identify analytical contexts where different fact tables can be integrated in the same 
derived data table, as those fact tables share a subset of dimensions defining an 
analytical context. Moreover, for a specific fact table, different levels of detail determine 
different analytical contexts. 

Considering an abstract example in which a star schema integrates a fact table (Fact
1
) 

and three dimensions (Dimension
1
, Dimension

2
, and Dimension

3
) as shown in  

Figure 4-25 (top), the dimensions lattice, shown in Figure 4-25 (bottom), integrates the 
seven possible tables with all the combinations between dimensions. This lattice includes 
the primary data table (gray rectangle) and the six derived data tables with aggregated 
data, at different levels of detail, providing different analytical perspectives on the data. 
This lattice excludes the level of detail where a single row summarizes all the data, as can 
be seen later in section 4.3.

When considering a constellation schema, that is when more than one fact table is 
available in the data model, the number of tables must take into account the combination 
of dimensions as well as the fact tables to which they are related, since fact tables can 
share different dimensions. This is an important point to bear in mind, because this will 
allow to merge different fact tables with complementary analytical measures into the same 
derived table.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics126

Figure 4‑25. Example of a dimensions lattice of a star schema: ADMBI example data model (top) and dimensions 

lattice (bottom).

Considering a data model with a constellation schema, as shown in Figure 4-26, where two 
fact tables (Fact

1
 and Fact

2
) share two dimension tables (Dimension

1
 and Dimension

2
), 

the number of possible combinations that can be obtained is 15 (as shown in Figure 
4-27), however, the total number of derived tables is lower. Since fact tables usually do 
not share all the available dimension tables in a data model, combinations that propose 
integrating dimensions that are not shared by the fact tables must be removed. 

Figure 4‑26. ADMBI example data model (two fact tables).



OLAP-oriented Databases for Big Data Environments 127

Copyright © River Publishers – except portuguese speaking countries

Figure 4-27 shows the combinations that must be excluded as dashed rectangles, 
whereas the two primary data tables are represented by gray rectangles. In this example, 
all combinations including Dimension

3
 and Dimension

4
 must be excluded from the final 

set of derived tables, since they are not shared by the two fact tables. 

Figure 4‑27. Dimensions lattice for a constellation schema.

After removing these impossible combinations, 11 different tables are effectively identified, 
as shown in Figure 4-28; 2 are associated with the primary data tables and the remaining 
nine with the derived data tables at different levels of detail.

Figure 4‑28. Valid combinations of a dimensions lattice for a constellation schema.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics128

After a set of valid derived tables is identified, it is possible to continue assigning the 
descriptive and analytical components to each table. To do so, the following rules must 
be followed.

Rule ADMBD.5 – Association of components to derived tables. A derived data table 
integrates a set of descriptive components and one or more analytical components. 

Rule ADMBD.5.1 – Descriptive components. Taking into account the dimensions lattice 
identified in rule ADMBD.4, each derived table will integrate the descriptive components of 
the corresponding dimensions. For example, the table integrating data from Dimension

1
 

and Dimension
3
 will include the corresponding descriptive components from these two 

dimensions, whereas the table that only includes data from Dimension
3
 will integrate only 

this descriptive component. This process must be followed for all derived tables.

Rule ADMBD.5.2 – Analytical components. To identify the analytical components, 
it is useful to analyze the corresponding ADMBI to check the fact tables associated to 
each derived table. Considering the existing relationships between the fact tables and 
the dimension tables of the ADMBI, each table in the ADMBD will include as analytical 
components those inherited from the relationships expressed in the ADMBI. For example, 
in Figure 4-26, the table derived from Dimension

1
 will include the analytical components 

derived from Fact
1
 and from Fact

2
, whereas the table derived from Dimension

2
 and 

Dimension
4
 will only include the analytical component derived from Fact

2
. 

As was previously mentioned, all these derived tables include data at a particular level of 
detail, hence the reason why they need aggregation functions for the attributes present 
in the analytical components, as different measures summaries need to be calculated, 
according to the descriptive components present in a specific derived table. By default, 
it is assumed that the aggregation function is SUM, although other functions can be used, 
for instance, AVG, COUNT, MIN, or MAX.

In order to guide the assignment of the descriptive and analytical components to the 
primary and derived data tables identified by the rules already described in this section, 
it is advisable to identify the data matrix that summarizes the association between them. 
This prevents potential mistakes from happening when the number of tables increases the 
complexity of this task. Considering the example previously shown in Figure 4-26, Table 
4.1 lists the resulting data matrix, which assigns to each derived table its corresponding 
descriptive and analytical components. The matrix also includes the primary data tables, 
providing an overall overview of all tables.

After identifying all primary or derived tables, as well as their corresponding descriptive 
or analytical components, the modeling of the DW can proceed with the identification of 
partitions and buckets.



OLAP-oriented Databases for Big Data Environments 129

Copyright © River Publishers – except portuguese speaking countries

Table 4.1. Data matrix with the identification of the descriptive () and analytical () components.

Dimension1 Dimension2 Dimension3 Dimension4 Fact1 Fact2

Derived1   

Derived2   

Derived3  

Derived4  

Derived5    

Derived6   

Derived7   

Derived8   

Derived9   

Primary1    

Primary2    

Rule ADMBD.6 – Identification of partitions and buckets. The identification of partitions 
and buckets will consider the necessary balance between the cardinality of the attributes 
and their distribution. For each descriptive attribute, its cardinality and distribution must be 
analyzed. Since a table in an ADMBD can integrate one or more descriptive components, it 
is necessary to analyze the cardinality and distribution of all the columns, to identify which 
ones should be partitioned or bucketed. 

The attribute that defines the granularity of the descriptive component is the one that 
provides the highest level of detail to the table, so the cardinality and distribution of 
those attributes must be analyzed. Considering different descriptive columns and their 
characteristics in terms of cardinality and distribution, a column with lower cardinality and 
uniform distribution should be used as the partitioning attribute, whereas a column with 
higher cardinality should be used as the bucketing attribute. These suggestions aim to 
balance the data and enhance query performance. Nevertheless, the suggested model 
can be fine-tuned by the user or database modeler to add other attributes to the partitions 
or to adapt these suggestions to the required queries. 

This rule aims to be as general as possible, although it is suggested that the Calendar 
dimension (or Time or a combination of both Time/Calendar) be used as the partition 
component taking into consideration the hierarchy of its attributes, following a partition 
path from the most aggregated level to the most detailed one. Afterwards, the partitions 
can be complemented with a bucketing attribute.

Considering the Calendar dimension or a descriptive component with the attributes 
shown in Figure 4-29, several hierarchies including these attributes can be defined. Using 
the one that includes all the available attributes, from the most aggregated one to the 
most detailed one, the partitions can be defined using Year as the first division, followed ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics130

by Semester, Quarter, Month, and, finally, Day. This is usually a useful approach since 
many analytical queries include calendar or time restrictions, and thus benefit from this 
kind of data organization strategy. 

Figure 4‑29. Example of partitions for the Calendar dimension.

Figure 4-30 presents a star schema with the Sales fact table linked to four dimension 
tables, namely Calendar, Customer, Product, and Store. Assuming a scenario 
where data from 30 years are stored, and considering that the organization has 50,000 
products, 10,000 customers, and 500 stores, if 10% of the customers buy per day 0.1% 
of the products in each store, the fact table will have more than 273 billion records for 
these years. Instead of having all the data in the same Hive partition, it can be split into 
approximately 10,950 partitions (as shown in Figure 4-29) for 30 years, meaning that each 
partition would have an average value of aproximately 25 million records. 

Figure 4‑30. Example of the Sales star schema.

To clarify how the number of records was estimated for the proposed scenario, the 
following equation considers all the dimensions and provides the number of facts (rows) 
for the considered years: 

(30 x 365)Calendar x 1000Customers x 50Products x 500Stores = 273,750,000,000 
records



OLAP-oriented Databases for Big Data Environments 131

Copyright © River Publishers – except portuguese speaking countries

Following the same line of reasoning, and considering the Calendar attributes, the 
following equation shows how to estimate the number of partitions for splitting the 
data: 

30Years x 365Days = 10,950 partitions

In a context where such a level of detail is not required, a different distribution of the files 
and rows can be achieved considering, for instance, a monthly distribution:

30Years x 12Months = 360 partitions

With 10,950 partitions, each partition will include an average value of 25 million records, 
whereas for 360 partitions, each one is expected to have an average value of 760 million 
records.

The organization of the Hive files, in the defined partitions, has an important impact 
in the time needed for processing queries; it is thus possible to significantly improve 
performance when partitions are properly defined. To better explain this impact, Chapter 
8 offers a benchmark comparing the performance of several queries with and without 
partitions.

4.3. OPTIMIZING OLAP WORKLOADS WITH DRUID
One of the main advantages of OLAP workloads is its capability to perform ad hoc 
querying on a dataset, thus providing a wide range of queries for analyzing the data. In 
many cases, if the data model is properly defined, a user can analyze the data from many 
different perspectives through a user-friendly interface that supports decision-makers in 
analytical tasks (Correia, Santos, Costa, & Andrade, 2018).

OLAP tools support the interactive process of creating, managing, analyzing, and 
reporting data, allowing users to analyze large quantities of data in real-time. In this 
context, data is perceived and manipulated as if it is stored in a multidimensional array. 
In OLAP, data cubes allow data to be modeled and viewed in multiple dimensions, 
enabling the analysis of various measures (present in the fact table) through the 
considered dimensions (Han et al., 2012).

Traditional BI systems benefit from this interactive analytical environment, using the 
DDM as input for OLAP servers. This ad hoc analytical capability is not common in 
BDWs, since data models in Hive follow, in most cases, a use case driven approach, 
where tables are defined according to the queries that need to be answered. The ad 
hoc approach means that new tables can be defined and added to the BDW as new 
analytical tasks emerge.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics132

Given the advantages of dimensional models, which are normally used to implement DWs 
in traditional BI environments, we can see that extending them to a Big Data context allow 
us to benefit from OLAP-based queries for BDWs. 

The previous section discussed a set of rules for transforming dimensional models into 
suitable ADMs for Hive (ADMBD). Although those rules help practitioners to define Hive 
models for BDWs, the number of identified tables is usually too high, particularly those 
associated with derived data tables, because it depends on the number of dimensions of 
the model.

Given the potentially high number of tables, the question is to decide which tables need 
to be implemented or materialized following the concept of OLAP cube and the ad hoc 
querying capabilities it provides. For understanding how much impact the level of detail 
has when analyzing the data, it is essential to recall the concept of cube and the related 
cuboids, a concept similar to the dimensions lattice discussed in subsection 4.2.2. 

In a lattice of cuboids, the cuboid that has the lowest level of summarization is the 
base cuboid. The 0-D cuboid, which includes the highest level of summarization, is 
the apex cuboid, usually denoted by all (Han et al., 2012). Between the base (n-D) 
cuboid, and the apex (0-D) cuboid, the remaining cuboids are identified as members 
of level n

-1
-D, n

-2
-D, and so on, as shown in Figure 4-31, where n is the number of 

dimensions.

Figure 4‑31. Example of a lattice of cuboids for a data cube with three dimensions.



OLAP-oriented Databases for Big Data Environments 133

Copyright © River Publishers – except portuguese speaking countries

The lattice of cuboids represents all the possible combinations of facts available in a 
fact table, aggregated by the associated dimensions. In the base cuboid, detailed data 
provides the highest level of detail, whereas in the apex cuboid, a row aggregates all the 
data and provides the lowest level of detail. The intermediary cuboids provide different 
summaries of the data, which are influenced by the granularity of the data and the 
considered dimensions.

To highlight the tradeoff between the level of detail and the volume of data, which affects 
the capability to answer different queries, Figure 4-32 shows the effect of data granularity 
on the storage needs and the querying capability. When data granularity rises, and hence 
detail is lost, the capacity to answer queries decreases because data is more aggregated. 
The user normally benefits from lower granularities since they offer the highest levels of 
detail and ensure more analytical support for decision-making processes.

Figure 4‑32. Data granularity, level of detail, storage needs, and querying ability. Adapted from Correia et al. 

(2018).

In a traditional OLAP environment, when a multidimensional database is used, the 
OLAP server can materialize all cuboids (full materialization), materialize a subset of the 
possible cuboids (partial materialization) or not pre-compute any non-base cuboid (no 
materialization) (Han et al., 2012). In the last case, the processing engine can be slow 
when answering queries because the aggregates over the data are computed as users 
require them. In the opposite circumstance, all aggregates are pre-computed and thus 
require huge amounts of storage capacity. 

When moving to a Big Data context, the full materialization of a cube is possible because 
storage capacity and processing capabilities are not usually a problem. Nevertheless, 
in a modest scenario where a fact table is linked to 10 dimension tables, the number of 
cuboids can be calculated as 210, i.e., 1024 different tables. This number excludes the 
hierarchies normally included in the dimension tables so, in a real scenario, the number of 
possible cuboids is considerably higher.

Materializing some views plays an important role in increasing the performance of data 
processing, therefore, it is essential to identify which views should be materialized. An ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics134

alternative to view materialization is provided by some specific types of databases, such 
as Druid, which can store and organize data while providing online analytical capabilities 
over data. This is achieved through the time (and/or calendar) dimension that organizes 
the data (Yang et al., 2014).

Druid (http://druid.io) is a column-oriented data store intended for sub-second ad hoc 
interactive queries for grouping, filtering, and aggregating data. It is designed for real-time 
exploratory analytics of large datasets. Its efficiency is enhanced by an advanced indexing 
structure and a low latency data ingestion. Tables in Druid are called “data sources” 
and include time-stamped events, usually partitioned into segments. Segments typically 
include a collection of 5 to 10 million rows spanning over a period of time and are the 
fundamental organization unit in terms of storage, distributing the data (Yang et al., 2014).

Druid uses a timestamp column to distribute data along the segments, which is also useful 
for implementing data retention policies and query pruning. The time interval required for 
partitioning the data depends on the data volume and its time range, since a data source 
can be partitioned by hour, day, week, month, or another time frame that adequately 
distributes the data. The timestamp column used by Druid simplifies data distribution, 
as Druid’s tables are partitioned by a specific time granularity, forming data segments 
or “data shards”. Time granularity is called the “segment granularity”. If data is spread 
across a year, the dataset can use a daily, monthly, or quarterly segment granularity, for 
instance. If timestamps are spread across a day, the dataset is better partitioned by hour, 
for example (Correia et al., 2018). Segments are immutable blocks of data allowing data 
consistency and data concurrency, so multiple users can simultaneously use the same 
data.

An example of the application of a daily segment granularity can be seen in Figure 4-33. 
In this case, the data is distributed according to different data segments that enhance 
performance, hence only the required segments are accessed for data processing.

Segments in Druid are identified by a data source identifier, the time interval of the data, 
and a versioning string (which increases when a new segment is created). This versioning 
string shows where the new data is, since later versions have the more recent data. This 
metadata is used by the system for concurrency control, ensuring that read operations 
always access data of a specific time range from the latest version (Yang et al., 2014). 
The next listing code shows a JSON object that includes a segment’s metadata (for a 
SSB table, with a SF of 300, detailed later in this section) partitioned in the time frame 
by Quarter, which includes information about the data source itself (the dimensions and 
metrics available in the dataset), the time interval of this specific segment, its size, location, 
and identifier. 

http://druid.io
http://druid.io) is


OLAP-oriented Databases for Big Data Environments 135

Copyright © River Publishers – except portuguese speaking countries

Figure 4‑33. Example of data segments in Druid.

{“dataSource”:”analytical_obj300_SQuarter”,

 “interval”:”1992-01-01T00:00:00.000Z/1992-04-01T00:00:00.000Z”,

 “version”:”2018-07-03T23:46:51.020Z”,

 “loadSpec”:{“type”:”hdfs”,

  “path”:”hdfs://host:port/apps/druid/warehouse/analytical_obj300_SQuarter/

  19920101T000000.000Z_19920401T000000.000Z/2018-07-03T23_46_51.020Z/0_index.zip”},

  “dimensions”:”c_city, c_nation, c_region, s_city, s_nation, s_region, p_mfgr,

                p_category, p_brand1, od_year, od_yearmonthnum, od_yearmonth”,

  “metrics”:”quantity, extendedprice, discount, revenue, supplycost”,

  “shardSpec”:{“type”:”none”},

  “binaryVersion”:9,

  “size”:1337536085,

  “identifier”:”analytical_obj300_SQuarter_1992-01-01T00:00:00.000Z_1992-04-

                01T00:00:00.000Z_2018-07-03T23:46:51.020Z”}

Besides time, other attributes may be used to further partition the data and increase 
performance. This may be needed to match the optimal segment’s size. Druid’s 
documentation refers the optimal segment’s size as including around 5 million records 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics136

and a storage space between 500MB and 1GB (Yang et al., 2014). After the segments 
are defined, two types of partitioning can be used: hashed partitions (based on the 
hash of all the dimensions in each row) or dimension partitions (based on value ranges 
for a single dimension). Druid’s documentation recommends hashed partitions over 
dimension partitions, since in most cases the former improves indexing performance  
and creates more homogeneous data segments (Druid, 2018). As can be seen in Figure 
4-34, following the previous example for identifying data segments, defining three 
shards (hashed partitions) will distribute the data of each segment across three files 
with an approximate data volume. 

Figure 4‑34. Definition of data shards in Druid.

Distributing the data across various segments or shards balances the size of the 
files, but also provides a first level of data pruning when querying the data, since only 
the required segments or shards are processed. Druid also allows the use of query 
granularity during the former process. When using query granularity, Druid applies a 
data aggregation mechanism (a data roll-up) during data ingestion which compacts the 
raw data according to a predefined level of detail. Consequently, the volume of data is 
reduced, since similar records are grouped together. Nonetheless, this method reduces 
the capacity to carry out more detailed analyzes, because certain details about the 
aggregated data are lost during grouping. Query granularity has a strong impact on the 
overall performance, since reducing data volume usually increases query performance, 
but may compromise some data analysis tasks, due to the reasons previously given. 
Figure 4-35 shows the impact of applying a daily query granularity during data ingestion. 
Details about the hours are lost; therefore, in the future, this level of detail cannot be 
used when querying the data.

Since using query granularity in Druid allows creating materialized views of the data, 
these are tables that are useful for answering frequently repeated queries. To understand 
the impact of the different organization strategies for analyzing data, an example is now 
presented using data segments, data shards (for hashed partitions), and query granularity.



OLAP-oriented Databases for Big Data Environments 137

Copyright © River Publishers – except portuguese speaking countries

Figure 4‑35. Definition of query granularity in Druid.

For querying the SSB (a data model introduced in section 4.1), 13 different queries are 
available (O’Neil et al., 2009). In this subsection, a subset of these queries is highlighted, 
using a denormalized version of the original SSB queries (because Druid does not support 
joins). Druid’s performance with all of them was already tested and the detailed results 
are available in Correia et al. (2018). To illustrate Druid’s performance with different data 
organization strategies, three queries from the second query group are used:

Q2.1
SELECT SUM(REVENUE), ORDERDATE_YEAR, P_BRAND
FROM LINEORDER_FLAT
WHERE P_CATEGORY = ‘MFGR#12’ AND S_REGION = ‘AMERICA’
GROUP BY ORDERDATE_YEAR, P_BRAND
ORDER BY ORDERDATE_YEAR, P_BRAND

Q2.2
SELECT SUM(REVENUE), ORDERDATE_YEAR, P_BRAND
FROM LINEORDER_FLAT 
WHERE P_BRAND BETWEEN ‘MFGR#2221’ AND ‘MFGR#2228 AND S_REGION = ‘ASIA’
GROUP BY ORDERDATE_YEAR, P_BRAND
ORDER BY ORDERDATE_YEAR, P_BRAND

Q2.3
SELECT SUM(REVENUE), ORDERDATE_YEAR, P_BRAND
FROM LINEORDER_FLAT 
WHERE P_BRAND= ‘MFGR#2239’ AND S_REGION = ‘EUROPE’ 
GROUP BY ORDERDATE_YEAR, P_BRAND
ORDER BY ORDERDATE_YEAR, P_BRAND

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics138

This example uses a SF of 300, meaning that the “lineorder” table has around 18 x 
106 rows for seven years of data. Table 4.2 shows the number of created segments, the 
needed storage space, and the average number of rows per segment using two segment 
granularities, Month and Quarter. Here, the Day segment’s granularity is omitted because it 
would require more than 2400 small-sized segments for the seven years, and such outcome 
would normally have a negative impact on performance (Correia et al., 2018). SMonth 
(segment by month) or SQuarter (segment by quarter) provide less detail, but also a lower 
number of segments and, therefore, larger file’s sizes. When executing queries (Q2.1, Q2.2, 
and Q2.3), the impact of each granularity can be seen in the time required to process 
the data. As also shown in Table 4.2, in one of the heaviest groups of queries from the 
SSB, the segments using the monthly granularity perform better. Readers interested in the 
performance of Druid using other queries and SFs, where a time reduction of up to 80% can 
be achieved by selecting a specific segment granularity, should see (Correia et al., 2018).

Table 4.2. Example of different segment’s granularities in Druid. Adapted from Correia et al. (2018).

Table
Number of 
Segments

Average Size per 
Segment (MB)

Average Rows per 
Segment (x 106)

Q2.1 
(sec)

Q2.2 
(sec)

Q2.3 
(sec)

SMonth 80 1060 22.50 4.63 1.57 0.98

SQuarter 27 3150 66.67 5.21 2.07 1.01

Another important feature of Druid is its ability to cache the results of previous queries, 
reusing previously computed results and hence substantially decreasing query response 
time. In Druid, when a query is received it is automatically mapped to a set of segments. 
If the results already exist in the system cache, no recomputation is done. If the results 
are not available yet, the query is processed using the corresponding historical or real-
time data. In the case of historical data, the results will be cached in the segment history 
for later use. For real-time data, no caching approach is implemented, because this data 
is continuously changing. Furthermore, Druid uses a memory-mapped storage engine, 
which relies on the operating system to page segments in and out of memory. Given 
that segments can only be scanned if they are loaded into memory, recent segments are 
retained in memory whereas segments that have never been queried are paged out of 
memory (Yang et al., 2014). In this way, newer queries can benefit if they need segments 
used by previous queries. Druid uses HDFS as a deep storage component to store 
data indexes. Druid’s historical nodes download the data segments from HDFS, before 
querying the data. 

The effects of Druid’s cache mechanism are visible in Table 4.2 for Q2.1, Q2.2, and Q2.3. 
As previously shown in the listing code, these three queries are very similar. Nevertheless, 
Q2.1 needs more time to be computed, since this is the first query of this group computed 
by the system. Once its results are computed, Q2.2 and Q2.3 benefit from the cache, 



OLAP-oriented Databases for Big Data Environments 139

Copyright © River Publishers – except portuguese speaking countries

reusing the results previously computed by previous similar queries. This is one of Druid’s 
most important characteristics because it significantly increases the overall performance 
of an analytical system.

To better understand this cache mechanism, these results are now analyzed in more detail 
for SMonth. Listed in Table 4.2 is the average time obtained after four runs of each query. 
Looking at the individual time it took for each query to run, the results in Table 4.3 show 
that Run 2 of Q2.1 required 45% less time than Run 1, whereas Run 4 required 81% 
less time than Run 1. The effect of the cache is also visible in Q2.2 and Q2.3. In these 
cases, Run 2, Run 3, and Run 4 required less time than Run 1, but also Run 1 from Q2.2 
required 76% less time than Run 1 of Q2.1; whereas Run 1 of Q2.3 required 89% less 
time than Run 1 of Q2.1. The effect of the cache is propagated throughout the various 
runs, substantially decreasing the time needed to obtain the results.

Table 4.3. Example of the cache mechanism in Druid (time in seconds). Adapted from Correia (2018).

Query Run 1 Run 2 Run 3 Run 4 Average

Q2.1 8.76 4.83 3.26 1.68 4.63

Q2.2 2.12 1.28 1.28 1.62 1.57

Q2.3 0.95 0.95 0.94 1.06 0.98

Using the same monthly segments, but this time applying a query granularity when 
ingesting the data, Table 4.4 shows how different querying granularities affect data 
processing performance. Considering this specific dataset, if the segments are set to the 
Month level, the query granularity can in turn be set to Day or Week. If Quarter segments 
are chosen, the query granularity could be set to Day, Week, or Month. For comparison, 
Table 4.4 includes the characteristics and query processing time obtained with the use 
of the SMonth table and the corresponding ones when aggregating this table to the Day 
(SMonth_QDay) or Week (SMonth_QWeek) query granularity. As can be seen, the use of the 
query granularity has a positive impact on the required storage space. Reducing storage 
space has, in turn, a positive impact on performance, decreasing the time needed to 
process the queries. There is, however, one downside to this data organization strategy, 
namely, the loss of detail for some drill-down interactive analyzes. This happens because 
the raw data is aggregated and stored in that level of detail.

Table 4.4. Example of different query granularities in Druid. Adapted from Correia et al. (2018).

Table
Number of 

Segments

Average Size per 

Segment (MB)

Average Rows per 

Segment (x 106)

Q2.1 

(sec)
Q2.2 

(sec)

Q2.3 

(sec)

SMonth 80 1060 22.50 4.63 1.57 0.98

SMonth_QDay 80 630 22.33 3.96 1.84 0.91

SMonth_QWeek 80 574 21.70 4.20 1.89 0.88

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics140

As was already mentioned, besides segments and query granularity, partitions (hashed or 
dimension based) can also be used. Following the previous example, the effect of applying 
hashed partitions over the data is shown in Table 4.5. For both query granularities, Day 
and Week, five and 10 partitions were used, splitting the original segments into five or 10 
smaller shards, respectively. Once again, the previously shown scenarios are maintained 
in the table to facilitate the comparison of the different data organization strategies.

Table 4.5. Example of different number of hashed partitions in Druid. Adapted from Correia et al. (2018).

Table
Number 

of 
Segments

Number 
of 

Shards

Average Size 
per Segment/
/Shard (MB)

Average Rows 
per Segment 

(x 106)

Q2.1 
(sec)

Q2.2 
(sec)

Q2.3 
(sec)

SMonth 80 1060 22.50 4.63 1.57 0.98

SMonth_QDay 80 630 22.33 3.96 1.84 0.91

SMonth_QDay_HP5 400 141 4.47 2.40 1.44 0.77

SMonth_QDay_HP10 800 74 2.23 9.30 1.48 0.87

SMonth_QWeek 80 574 21.70 4.20 1.89 0.88

SMonth_QWeek_HP5 400 124 4.34 2.23 1.30 0.86

SMonth_QWeek_HP10 800 64 2.17 8.95 1.65 0.87

Using hashed partitions increases the storage space needed, when compared to the 
query granularity scenario without any partitions. When five partitions are defined, 
query granularities improve the performance, reducing the time needed to process the 
data. When data is over-partitioned, which happens when 10 hashed partitions are 
used, the time needed to process the queries usually increases, specifically for the 
first query of the group, Q2.1. For this query, the time required to process the data 
when five to 10 hashed partitions are used is around four times higher. Therefore, it is 
important to balance the distribution of the data. Partitions can be beneficial as long as 
using them does not result in an excessive number of small files which then need to 
be processed in order to answer a specific query. Regarding this point, it is important 
to recall the recommendations available in Druid’s documentation, which mentions that 
segments or shards should have around 5 million records and take up an average 
of 500MB to 1GB of storage space (Druid, 2018). In the above results, although the 
best scenarios (SMonth_QDay_HP5 and SMonth_QWeek_HP5) have shards smaller than 
500MB, the average number of rows per shard is much closer to the recommended 
value, suggesting that this indicator seems to be more relevant for query performance 
than the required storage space.

Given Druid’s capacity to enhance OLAP-querying capabilities over large datasets, 
integrating it with Hive seems advantageous for implementing a BDW. Hive can store the 
detailed data and support heavy large-scale brute force analytics, while Druid can store 



OLAP-oriented Databases for Big Data Environments 141

Copyright © River Publishers – except portuguese speaking countries

materialized views of the data, for processing very specific and detailed queries over a 
large number of dimensions, increasing the performance of a low latency data analytics 
system. Druid is usually better than most SQL-on-Hadoop systems such as Hive when it 
comes to answering specific queries involving finding a few rows within a file with millions 
of them (Shanklin, 2017).

Druid’s performance on low latency analytics is due to the combination of column-oriented 
storage and inverted indexing. While column-oriented storage minimizes I/O costs, 
inverted indexes allow drill-down operations at extremely fine levels of detail (Shanklin, 
2017). As can be seen in Figure 4-36, specific rows that are needed to answer a query 
can be loaded using an inverted index.

Figure 4‑36. Inverted indexes in Druid.

Druid and Hive can complement each other to support SQL-based analytical capabilities. 
While Hive provides a standard SQL functionality with HiveQL, Druid’s SQL native 
implementation is very recent and does not aim to support operations such as heavy 
joins. Druid can join its internal data using small dimension tables loaded from an external 
system, using a functionality called query-time lookup, but does not support large-scale 
joins (Shanklin, 2017).

Integrating both technologies, Druid can take advantage of the SQL functionality of 
Hive, as Druid’s data can be queried using Hive or linked to external applications using  
Hive-based ODBC/JDBC connections, while Hive can take advantage of the historical 
or real-time data in Druid, stored in a column-oriented store using inverted indexes  
(Shanklin, 2017). As shown in Figure 4-37, raw data based on a star schema (for instance) 
can be stored in Hive, whereas the pre-aggregated views, based on the most common 
queries, can be stored in Druid, taking advantage of the processing capabilities of this 
tool.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics142

Figure 4‑37. Integration of Hive and Druid. Adapted from Shanklin (2017).

To end this chapter, Table 4.6 lists the main features of Hive and Druid, highlighting the 
strongest access pattern of each technology, namely Hive’s large-scale brute-force 
analytics and Druid’s very specific queries with large number of dimensions.

Table 4.6. Features of Hive and Druid. Adapted from Shanklin (2017).

Tool Strongest Access Pattern Features

Hive Large-scale brute-force analytics

Joins
Subqueries
Windowing functions
Transformations
Complex aggregations
Advanced sorting
UDFs

Druid
Very specific queries with large number 
of dimensions

Dimensional aggregates
Top-N queries
Min/Max values
Time series queries



5DESIGN AND 
IMPLEMENTATION OF 
BIG DATA WAREHOUSES

INTRODUCTION With the appearance of Big Data techniques and 
technologies, practitioners started looking for ways of 
exploring the advantages that Big Data could bring to 
their businesses. However, the community faced a severe 
lack of well-defined approaches for building structured 
analytical repositories capable of storing and processing 
huge amounts of data, with different formats, and flowing 
at different velocities. Taking this into consideration, 
this chapter presents the concept of BDW and, more 
importantly, a scientifically evaluated approach for designing 
and implementing these complex systems. The proposed 
approach contains a set of models and methods to help 
practitioners in this area. There is a special focus on various 
aspects: i) the logical components of the BDW;  
ii) the way data flows throughout these components; 
iii) the technologies that can be used to implement the various
components of a BDWing system; and iv) efficient data 
modeling to ensure the adequate storage and retrieval of 
Big Data for advanced decision-making within organizations.



Big Data: Concepts, Warehousing, and Analytics144

5.1. BIG DATA WAREHOUSING: AN OVERVIEW
The DW concept has a long history, and the need to access, analyze, and present data in 
appropriate forms to support fact-based decision-making has existed across organizations 
for a long time (Kimball & Ross, 2013). A DW is a repository that consolidates information 
about the organization, leveraging a vast range of analyzes developed by several users. 
Traditionally, it consists in a database that maintains a historical record of the organiza-
tion, which is periodically extracted from OLTP sources. The DW is designed to access  
multiple records at a time and it is optimized to support analytical tasks (e.g., predefined 
or ad hoc queries, reports, OLAP, and data mining). OLAP is a common analytical task  
associated with the DW, mainly consisting in multidimensional structures capable of  
executing several tasks designed to obtain a desired perspective on the data (Santos & 
Ramos, 2009). In short, the DW concept is commonly defined as a “subject-oriented,  
integrated, non-volatile, and time-variant collection of data in support of management’s  
decisions” (Inmon & Linstedt, 2014, p. 315), as well as a “single version of the truth”  
(Kimball & Ross, 2013, p. 407).

Over the last decades, traditional DWs have been recognized as an enterprise data asset, 
but the evolution of advanced analytics (e.g., data mining, statistics, and complex queries), 
the growth of data volume, and real-time needs to analyze fresh data are driving changes 
in DW architectures (Russom, 2014). Nowadays, the DW is evolving, it is being extended 
and modernized to support advancements in technologies and business requirements, 
to prove its relevance in the era of Big Data. DW modernization is a top priority for 
professionals; and surveys show that DWs are evolving dramatically and there are several 
opportunities to improve and modernize them, since organizations view them as key 
assets in today’s businesses (e.g., analytics, data-driven decision-making, operational 
efficiency, and competitive advantages) (Russom, 2016). 

In this modernization process, however, some challenges arise, such as inadequate 
data governance, lack of skills, cost of implementing new technologies, and difficulties in 
conceiving a modern solution that can ingest and process the ever-increasing amounts 
or types of data. According to Russom (2016), the average DW stores between 1TB and 
3TB of data and it was predicted that it would store between 10TB and 100TB by 2018. 
Organizations need to consider the modernization of their DW architectures whenever 
some of the following questions emerge (Chowdhury, 2014):

• Is the current platform limited by the amount of data that needs to be processed?

• Is the DW a useful repository for all the data that is generated and acquired? Or is some 
data being left unprocessed due to current restrictions?

• Do we want to analyze non-operational data and use new types of analytics?

• Do we need to ingest data quicker?

• Do we need to lower the overall cost of analytics?



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 145

Research related to the BDW is mainly divided into five topics: the characteristics and 
design changes of DWs in Big Data environments; DWs on NoSQL databases; storage 
technologies, optimizations, and benchmarking for BDWs; advancements in OLAP, query, 
and integration mechanisms for BDWs; and implementations within specific contexts. 

Some of the main features that define a BDW are:

• Parallel/distributed storage and processing of large amounts of data; 

• Scalability (capacity to accommodate more data, users, and analyzes); 

• Elasticity to provide a more efficient way of scaling-out and scaling-in depending on the 
organizational needs;

• Flexible storage, including semi-structured and unstructured data; 

• Real-time capabilities (stream processing, low latency, and high frequency updates);

• High performance with near real-time response;

• Mixed and complex analytics (e.g., ad hoc or exploratory analysis, data mining, text 
mining, statistics, machine learning, reporting, visualization, advanced simulations, and 
materialized views); 

• Interoperability in a federation of multiple technologies; 

• Fault-tolerance, mainly achieved through data partitioning and replication;

• The use of commodity hardware to reduce the costs of implementation, maintenance, 
and scalability.

Hadoop and NoSQL databases are typically mentioned either as a replacement for 
traditional DW or as a mean to augment its capabilities (e.g., ETL, data staging, and 
preprocessing of unstructured data), thus forming a federation of different technologies 
that provide the aforementioned characteristics. Figure 5-1 presents a conceptual 
model of the BDW, which illustrates the features previously discussed and the strategies 
discussed in the following text. 

Designing a BDW should focus both on the physical layer (technological infrastructure) 
and the logical layer (data models, data flows, and interoperability between components). 
Augmenting the capabilities of traditional DWs with new technology is a valid approach 
and, arguably, the one currently preferred by most organizations; this strategy is known as  
“lift and shift”. However, “rip and replace” strategies wherein traditional DWs are fully 
replaced due to their limitations in Big Data environments will become more common 
(Russom, 2014, 2016). The “lift and shift” strategy creates a federation of different 
technologies and may represent a change of perspective from a data-driven view of the 
DW to a use case  driven view (Clegg, 2015). Whereas data modeling was previously 
the main concern, it is now replaced with finding the right technology to meet emerging 
demands, and this can increase the risk of ending up with uncoordinated data silos.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics146

Figure 5‑1. A conceptual model of the BDW.

Although current research has significant value, it only contributes to improve specific 
characteristics of a BDW by promoting some existent technology, proposing a new one, or 
developing a specific implementation for a particular use case. This phenomenon among 
research on Big Data is conspicuous with most of the contributions focusing on “selling” 
their technique or technology. As a result, there is little prescriptive research on BDW, 
since there is no integrated approach for designing BDWs, such as those developed for 
traditional DWs, like the well-known approaches from Kimball or Inmon. This gap can 
be mainly attributed to a change of perspective: a shift from a data-driven view of the 
DW to a use case driven view, and also due to the fact that Big Data is still a relatively 
young research topic. However, as Clegg (2015) claims, it would be a mistake to discard 
decades of architectural best practices based on the assumption that storage for Big 
Data is not relational nor driven by data modeling principles or guidelines. 

The fact that there is a significant number of works related to SQL-on-Hadoop proves that 
the data structures that have been implemented for many years are more relevant than 
ever, although they need to be modified and optimized for Big Data contexts. Of course, 
there is unstructured data that does not adequately fit into these data structures, but there 
are also techniques to extract value from it, and then use it to fuel a BDW (e.g., data mining, 
text mining, and machine learning). The problem, however, is rather the significant gap 
between “this is what a BDW should be” and “this is how one designs and implements it”, 
which then leads to a use case driven approach, which is primarily concerned with choosing 
the right technology to meet specific demands. Since approaches are normally use case 
driven, the knowledge and guidelines that can be retrieved from one implementation and 
applied to another one are only possible because the circumstances are more or less the 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 147

same. As a result, there is little gradual and iterative knowledge being created, which is 
crucial for fundamental advancements in this area.

Among the scientific contributions related to this topic, there are already some best practices 
and general guidelines, but they do not focus on both the physical layer (technological 
infrastructure) and the logical layer (data models, data flows, and interoperability between 
components) to implement the characteristics of a BDW, with adequate and detailed 
demonstration, discussion, and evaluation. Doing so would have a major impact on the 
scientific and technical community related to BDWing, since it would lead to a contribution 
in which models (representation of data structures and components), methods (structured 
practices) and instantiations (prototypes and implemented systems) are tightly coupled. 
Such approach can lead to a prescriptive contribution for designing and implementing 
BDWs according to their features of parallel/distributed storage and processing, scalability, 
elasticity, real-time, high performance, mixed and complex analytics, flexible storage, 
interoperability, fault-tolerance, and commodity hardware.

The approach proposed in this book is prescriptive: it aims to help researchers and 
practitioners to build BDWs and provides background knowledge for future research. It 
significantly extends the current research on BDWing, which is scarce and scattered, by 
including prescriptive models and methods that can be used as a guide for designing and 
implementing these complex analytical systems. The approach is based on the “rip and 
replace” strategy (Russom, 2016), which involves discarding traditional RDBMS-based 
DWs and replacing them with state-of-the-art Big Data techniques and technologies. It is 
an approach that aims to address the characteristics of a BDW (see Figure 5-1), focusing 
on both the logical and physical layers. This chapter describes the proposed approach, 
presenting its prescriptive models and methods, namely: a model of logical components 
and data flows; a method for data CPE processes; a model for the technological 
infrastructure; and a method for data modeling focusing on data storage and analytics.

5.2. MODEL OF LOGICAL COMPONENTS AND DATA FLOWS
The logical components included in the proposed approach (Figure 5-2) are defined 
according to the components present in the NBDRA (NBD-PWG, 2015), since our approach 
complies with current standards and trends set by the Big Data community. Obviously, our 
approach presents some significant modifications and also extends the NBDRA with new 
components, since the latter is a general architecture for Big Data solutions and, therefore, 
not specifically designed towards BDWs like our proposed approach. The approach 
hereby proposed also takes into consideration relevant guidelines provided by previous 
published works, such as the Big Data Processing Flow by Krishnan (2013) and the Data 
Highway Concept by Kimball and Ross (2013). Furthermore, our approach encourages 
compliance with three of the main principles of the Lambda Architecture (Marz & Warren, ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics148

2015): first, one should store data at the highest level of detail (e.g., raw data in the 
distributed file system component), since it may serve future analytical purposes that have 
not yet been planned; second, whenever possible, one should model data structures to 
store a set of immutable events, avoiding updates to existing data, in order to simplify the 
BDWing system; finally, data at different speeds certainly has different requirements and, 
therefore, different logical components for batch and streaming data must be taken into 
consideration. The model of logical components and data flows (Figure 5-2) is divided into 
six main components: data provider; data consumer; Big Data application provider; Big 
Data framework provider; system orchestrator; and security, privacy, and management. 

Figure 5‑2. Model of logical components and data flows. 

Dashed components are seen as optional depending on the implementation goals.



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 149

5.2.1. Data Provider and Data Consumer
The data provider component represents each actor introducing new data into the BDW 
(e.g., every person, sensor, computer, smartphone, and Web stream). Therefore, this 
component represents several data sources, external or internal, online or offline, collected 
automatically or manually. Some of the main responsibilities of the data provider are the 
following: ensure adequate data privacy and security; enforce access rights; make data 
available through suitable interfaces; and provide adequate metadata. In contrast, a data 
consumer represents an end-user or an external system that can perform the following 
actions: search and download data; analyze data (e.g., execute ad hoc queries, and train/
test data science models); construct or consume reports and other data visualization 
mechanisms (e.g., dashboards); and include data in business processes. To access the 
data available in the implemented BDWing system and protected by the security, privacy, 
and management component (e.g., authentication and authorization mechanisms), the 
data consumer is able to use the interfaces made available by the Big Data application 
provider through demand-based interaction, where the data consumer initiates the 
interaction and waits for a response (NBD-PWG, 2015).

5.2.2. Big Data Application Provider
The Big Data application provider component is responsible for ensuring three relevant 
stages undergone by the data flowing throughout the different BDW components:

1. Collection – in this stage, the data is collected from data providers, arriving at the 
BDWing system in the rawest state possible. The data can arrive at the system at two 
different velocities, batch or streaming. Data arriving in batches is immediately stored 
in a distributed file system, since one of the main challenges in Big Data is variety 
(different structures, types, and sources), and this file system is a component that 
allows the storage of any variety and volume of data. This data will be processed in the 
next stage. In contrast, if the data is arriving in a streaming fashion, it will not need to be 
stored yet, it will flow to the preparation and enrichment stage. However, an alternative 
route in the streaming flow can exist, storing streaming raw data in the distributed file 
system, as Figure 5-2 shows, making this data available for further tasks, such as 
disaster recovery or to train data science models on unmodified streaming data.

2. Preparation and enrichment – the batch data previously stored is extracted from the 
distributed file system to prepare it and enrich it to provide analytical value. The same 
happens with the streaming data, although it arrives at this stage directly from the 
collection stage, as previously explained. The preparation and enrichment of data can 
include all sorts of cleansing, integration, transformation, and aggregation processes. 
New attributes can also be created and derived from the raw data, without any limitation, ©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics150

as well as the extraction of hidden patterns in unstructured data (e.g., image, video, and 
text). These processes cannot only take as input the new data arriving at the system, but 
also read the data already stored in the BDW, establishing comparisons and trends, for 
example. Besides finding patterns in unstructured data using data science techniques 
(e.g., text mining), these processes can also include predictions from previously trained 
data science models based on problems such as classification, regression, clustering, 
and time series forecasting. It must be remembered that the goal at this stage is to 
prepare and enrich data to serve the current business goals and expectations, whether 
they are based on facts or on predictions made by previously trained data science 
models (this data flow is surrounded by a dashed circle in Figure 5-3). 

Figure 5‑3. Method for CPE processes.



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 151

The way to implement these processes differs according to the velocity of the data 
(batch or streaming), since different velocities typically require different paradigms and 
technologies, but the essential steps are similar. In the proposed approach, batch and 
streaming data follow different routes, but are prepared and enriched with the same goal 
in mind: fuel the analytical objects to which the data belongs, structuring data according 
to their granularity key, descriptive attributes, and analytical attributes, whether they are 
facts or predictions extracted from the raw data being collected. The method for data 
modeling detailed in section 5.4 explains these concepts, detailing how data should be 
modeled in the BDW. After this stage, the data is stored in its corresponding indexed 
storage component: batch data is stored in the batch storage; and streaming data is 
stored in the streaming storage. Figure 5-3 illustrates the proposed method for CPE 
processes, summarizing the steps described above. 

3. Access, analytics, and visualization – this is the third and final stage of the data 
in a BDWing system. In this stage, the data consumers have access to the data in 
two fundamental ways: batch and interactive access. A batch access can be used 
for complex visualization tasks (e.g., deep and complex reporting) or for training and 
testing data science models, which typically require intensive computation. The data 
science sandbox (see Figure 5-2) is a crucial component of the BDW, where data 
scientists can explore the data stored in the distributed file system and indexed storage 
components, create models, extract useful insights, and use the results to improve or 
create new analytical objects. Therefore, preparation and enrichment processes can 
also begin with batch jobs originated in the data science sandbox, without the need for 
a collection stage, basically meaning that the data science sandbox is just considered 
as another data provider in this context. These are tasks that do not necessarily require 
an interactive response time and, therefore, can be seen as batch-oriented. In contrast, 
tasks such as ad hoc querying, OLAP, and exploratory data visualization require an 
interactive behavior to keep the data consumer engaged in the current analysis and 
exploration of data. The tasks enumerated previously are relatively similar to the ones 
performed in a traditional DW (e.g., reporting, data visualization, and exporting data 
to run data mining algorithms). Obviously, there are some particularities to take into 
consideration in Big Data environments (volume, variety, and velocity), but there is no 
need to propose a specific method to perform these tasks, since Figure 5-2 is self-
explanatory.

5.2.3. Big Data Framework Provider
This logical component includes the subcomponents related to the resources that are 
necessary to provide an adequate distributed storage and processing platform for the 
BDW, as well as an adequate communication with external actors (e.g., data providers ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics152

and data consumers). Therefore, this component is mainly related to infrastructural 
concepts, such as messaging/communications, resource management, infrastructures 
(physical or virtual), data processing paradigms (batch, interactive, and streaming), and 
data organization and distribution paradigms (distributed file system and indexed storage).

5.2.3.1.  Messaging/Communications, Resource Management, and 
Infrastructures

The messaging/communications component  responds to the need of ensuring reliable 
queuing and data transmission between nodes in a cluster that scales horizontally 
(NBD-PWG, 2015). An important point to remember is that scalability is one of the main 
characteristics of BDWs. Messaging/communications techniques must also ensure 
adequate fault-tolerance when nodes fail. In the design and implementation of BDWs, 
this component is relatively transparent to the stakeholders involved in the project, since 
it is directly related to the technologies chosen to implement the logical components 
of the BDWs (see section 5.3). Each technology may implement different messaging/
communications techniques, and, depending on the application context, one may prefer 
a specific technique that better meets the requirements of the project. This is something 
that stakeholders should be aware of, but it is often transparent to the team installing and 
configuring these technologies.

Regarding the resource management component, it represents a relevant concern with 
the technologies that ensure distributed storage and processing, which are an adequate 
way of achieving scalability in a BDW. These technologies must efficiently manage the 
resources available in the cluster, namely CPU and memory. Inadequate management of 
resources may severely impact the performance of the BDW. One of the main concepts 
to bear in mind regarding this component is “data locality”, since data is too big to 
be transferred from the storage nodes to the processing nodes through the network  
(NBD-PWG, 2015). Therefore, the processing needs to be closer to the storage (C. L. P. 
Chen & Zhang, 2014), this is typically achieved co-locating the processing and storage 
nodes in the cluster. Like the messaging/communications component, the resource 
management component is directly related to the technology chosen to implement a 
specific logical component. Each technology may use different techniques to manage 
resources.

Finally, the logical component related to the infrastructures highlights all the physical  
and/or virtual elements necessary to run the tasks assigned to each component in the 
BDW, including the network for transfering data, the CPU and memory for providing 
adequate data processing, and the storage for providing data persistence. Physical 
resources represent the hardware used across the different nodes in a horizontally 
scalable cluster. In contrast, virtual resources are frequently used to achieve an elastic 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 153

and flexible allocation of physical resources, typically referred to as IaaS. Although Big 
Data technologies can be deployed on virtualized environments, the majority of them are 
designed to run directly on physical commodity resources (NBD-PWG, 2015), providing 
efficient I/O by distributing multiple CPUs, memory units and disks across a cluster of 
commodity machines based on a shared-nothing architecture.

5.2.3.2. Processing

In a BDW built using the proposed approach, there are three types of processing according 
to the different levels of latency, namely batch, interactive, and stream processing. 
Generally, the boundaries between these three types of processing are not clear. However, 
in this book, they are defined as follows:

• Batch processing – this type of processing involves latencies ranging between several 
minutes and hours. Examples of batch processing may include: the periodic CPE of vast 
amounts of historical data from data providers; the processing of deep and complex 
reports or ad hoc queries; and the training of data science models, which involves 
complex and processing-intensive data mining and text mining algorithms. These tasks 
are ideal for running in the background without the need for user intervention;

• Interactive processing – this type of processing is used to provide query execution times 
ranging from milliseconds to a few tens of seconds, depending on the infrastructure and 
data volume. There are a few data organization, distribution, and modeling strategies 
used in this work that allow for this level of latency even with ever-increasing amounts of 
data. Such strategies include: data denormalization; data partitioning; and inter-storage 
and materialization pipelines (see subsection 5.2.3.3 and section 5.4);

• Stream processing – in this work, this type of processing only concerns the latency 
in data CPE processes, meaning that data consumers do not have direct access to 
the data being streamed. Instead, streaming data is stored in the streaming storage 
component and it becomes immediately available to the data consumers through 
interactive processing supported by this data storage component. Regarding the levels 
of latency, streaming data should arrive at the streaming storage within milliseconds or 
a few seconds, in order to be immediately available to data consumers. However, when 
preparing and enriching streaming data, sometimes it is useful to create micro batch 
jobs to perform specific operations, such as small aggregations, window operations, 
application of data science models, and merging streaming data with batch data to 
establish trends. Micro batches can be seen as having a significantly small batch of 
data records, instead of handling them individually. The size of a micro batch job is 
often customizable in several streaming technologies. When this type of operations is 
needed, the data arrives into the BDWing system in a streaming fashion, but may only ©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics154

be available within a few tens of seconds or even minutes, depending on the size of the 
micro batch. Micro batches can also help improving the throughput of the data flow, 
only requesting an insert operation on the streaming storage component when a micro 
batch is completed, instead of creating a request for each data record.

5.2.3.3. Storage: Data Organization and Distribution

Data organization and distribution is a crucial aspect in the proposed approach. It is 
designed to provide a flexible and scalable data storage solution that is aware of data 
volume, variety, and velocity, without discarding a data modeling method. In this context, 
the storage design philosophy presented here is based on two relevant components: 
the distributed file system, which is an unstructured data storage solution, wherein data 
does not necessarily need to have a specific schema nor does it need to be modeled in 
a specific way; and the indexed storage component, wherein the data must comply with 
specific structures, although they are based on a flexible modeling technique suitable for 
BDWs, as detailed in section 5.4. These two components are also related to the logical 
component that provides all the metadata for the data stored in the file system and in the 
indexed storage components (e.g., file locations, data types, descriptions, and relevant 
timestamps).

Distributed File System 

Making an analogy with the traditional DWs, the distributed file system can be seen as 
an empowered staging area, wherein raw data is not only stored for later preparation and 
enrichment, but also for training data science models based on structured or unstructured 
data, since a file system adequately supports schema-less data sources. Therefore, data 
scientists can use this file system as a sandbox to explore the data and discover hidden 
patterns, providing useful insights to support the decision-making process. Taking a closer 
look at Figure 5-2, it can be observed that data scientists can also use this component 
to store the results of queries submitted to the indexed storage component, and use 
these results to create or improve data science models based on several techniques 
and algorithms. These models and insights can then be included in further data CPE 
processes, combining them with data arriving at the BDW and storing the result in the 
analytical objects (see section 5.4) stored within the indexed storage component. 

This approach provides adequate flexibility to freely explore the data in its raw state, to 
combine it with previously stored data, if applicable, and to make sure that the sandbox 
findings flow to the indexed storage component, which ensures that the analytical 
requests from data consumers are fulfilled. Take as an example a company that sells 
jewelry in several countries. This company collects data from its point of sale systems 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 155

using batch processing, as well as unstructured text from social media using stream 
processing. Data scientists use the unstructured data stored in the distributed file system 
to train a text mining model for extracting sentiments about the different types of jewelry 
in several countries. In the indexed storage, the company stores an analytical object for 
the sales data and an analytical object for the sentiments expressed about the different 
types of jewelry in each country. Meanwhile, after days of querying the data stored in the 
indexed storage component and saving the findings in the distributed file system, a certain 
data scientist can begin classifying a sale as “expected” or “unexpected”, which results 
from the comparison between the jewelry being sold and the sentiments expressed for 
that product in the country in which the sale is being made. This is an example of the 
usefulness and flexibility of the distributed file system in a BDWing system built using the 
proposed approach, to complement or create analytical objects stored in the indexed 
storage component.

Indexed Storage 

In contrast to the distributed file system, the indexed storage is a component intended 
for data modeling, i.e., data needs to be structured according to a specific data model. 
However, in this work, the data model based on analytical objects offers significant 
flexibility, while maintaining a structured schema suitable for querying and OLAP. This 
modeling method is further discussed in section 5.4. In this subsection, the focus is on 
the logical components responsible for storing these analytical objects. The indexed 
storage component is divided into two main storage types, namely the batch storage 
and the streaming storage. Nevertheless, the data modeling approach is the same for the 
two types of storage, storing all the data in analytical objects and their descriptive and 
analytical attributes. 

The batch storage component represents a repository of analytical objects that are 
refreshed less frequently, since the data only arrives in a batch-oriented fashion and, 
therefore, the time interval between updates is usually of several minutes, hours, days, 
weeks or months, for example. In contrast, the streaming storage component stores 
analytical objects that are refreshed frequently, since the data arrives through streaming 
mechanisms and, therefore, updates usually happen within time intervals of milliseconds, 
seconds, or a few minutes (for large micro batches). A relevant component related to these 
two storage types is the inter-storage pipeline, which is responsible for transferring data 
between the streaming storage and the batch storage. Consequently, the same analytical 
object may exist simultaneously in these two storage components. This may happen if the 
technology being used to support the streaming storage has fast random access to data, 
but it is not optimized for fast sequential access. In contrast, if the technology is the same 
for both storage types, so either balanced or more optimized for fast sequential access 
and not for fast random access, frequently, the inter-storage pipeline may only need to ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics156

execute background jobs to distribute data in a more efficient way, such as, for example, 
merging many small files originated by the streaming process into one larger file, since small 
files can become a problem in Hadoop (Mackey, Sehrish, & Wang, 2009). An important 
point to remember is that, internally, indexed storage systems also persist data as files. 
The inter-storage pipeline is optional, depending on the infrastructure being deployed to 
support the BDW, since technology is constantly evolving, and there is increasing interest 
in exploring storage systems that adequately support both fast sequential access and fast 
random access in Big Data environments, as discussed in section 5.3.

Other optional subcomponents included in the indexed storage component are the 
materialization pipeline and the materialized objects. A materialized object is an object 
that stores the results of a query executed over one or more analytical objects. The 
materialization pipeline is the logical component that ensures this materialization process. 
Materialization can be significantly helpful for improving execution times in contexts where 
the data consumer consistently submits similar queries to the BDWing system. Moreover, 
materialization also helps storing the results of deep and complex requests like long-
running reports, which would otherwise take a significant amount of time to complete. 
Materialization may typically impose a trade-off between data timeliness and response 
times, but there are several contexts where the data consumers do not need the most 
recent data available in the BDW. Nevertheless, materialized objects can be refreshed 
when a new batch of data arrives into the system or when the inter-storage pipeline runs 
a background job (see Figure 5-2). Consequently, the materialization pipeline can either 
re-process the whole materialized object, or perform an incremental change by reading it 
and complementing it with new data.

To conclude this subsection regarding the indexed storage component, it is important to 
highlight that the analytical objects stored either in the batch storage or in the streaming 
storage can be organized and distributed using two relevant concepts: partitioning and 
bucketing/clustering (Thusoo et al., 2010). These two concepts can have a strong influence 
over query performance in certain contexts. When relying on an indexed storage that uses 
partitioning, all the data belonging to an analytical object is stored as many small pieces 
of data inside the storage system, dividing a large dataset into many small and more 
manageable parts that can be accessed individually, without the need to search the entire 
dataset. An example of partitioning involves storing an analytical object such as sales 
transactions using a separate storage location for each year, month and/or day. If one 
needs to analyze the sales of the previous month, the indexed storage system only has 
to scan the partition corresponding to that month. Partitioning can be significantly helpful 
when data consumers have a well standardized access to data, such as querying the 
data stored in analytical objects for a certain period (e.g., year, month, and day) or place 
(e.g., country, region, and city). Consequently, partitioning improves the performance of 
queries when the typical filtering attributes are used to partition the dataset. Partitioning 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 157

can also be significantly useful when data is loaded in periodic batches or in batches 
corresponding to certain places, since a partition can be assigned for each batch.

Bucketing/clustering is a technique that ensures that a range of records are stored in 
the same group/bucket or sorted in a certain way, according to the attribute(s) used for 
bucketing/clustering. The way bucketing is physically implemented differs according to the 
technology, i.e., some storage technologies may group a range of values in the same file, 
whereas others can organize the values and make sure they are stored in a sorted fashion. 
Following the example of sales transactions, if a certain organization has several sales 
employees, using a bucketing/clustering technique with the identification of the employee, 
the indexed storage can store the transactions of the same employee in the same bucket, 
or make sure the transactions are sorted according to the identification of the employee. 
Partitioning and bucketing/clustering can be used together, and query performance can 
be significantly impacted when adequate strategies are taken into consideration (E. Costa 
et al., 2018).

5.2.4. System Orchestrator and Security, Privacy, and 
Management

The system orchestrator has an overarching role, involving various actors (humans and/or 
software) that manage and orchestrate the daily operations of the BDWing system. The 
system orchestrator aims to configure and manage other components of the architecture, 
to sustain the workloads that are being constantly executed. Its tasks include: assigning/
provisioning the Big Data Framework Provider (see subsection 5.2.3) to physical or virtual 
nodes; provide Graphic User Interfaces (GUIs) for specifying and managing workloads; 
and monitor the system and its workloads through the security, privacy, and management 
component, taking into account requirements and constraints such as business 
requirements, policies, architectural design choices, and resources (NBD-PWG, 2015).

In the proposed approach, the security, privacy, and management component is 
an overarching aspect that is related to all other components in the BDWing system. 
Managing such complex system typically involves several considerations at a massive 
scale, while the system performs multiple tasks in a production cluster with various  
nodes. Among the tasks concerning this component, the following can be highlighted 
(NBD-PWG, 2015): 

• Policy, metadata, and access management (authentication and authorization);

• Provide adequate encryption capabilities at networking or storage levels (if needed);

• Provide adequate auditing capabilities;

• Disaster recovery in case of data loss;©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics158

• Provide adequate monitoring mechanisms for the resources and performance of the 
system;

• Make adequate platforms available for resource allocation and provisioning, as 
automated as possible;

• Configure and manage the installed software.

5.3. MODEL OF TECHNOLOGICAL INFRASTRUCTURE
The model of logical components and data flows is an artifact for the design of BDWing 
systems, whereas the technological infrastructure model is an artifact to implement the 
former. It focuses on the technologies that can instantiate each logical component, as well 
as on the hardware that can be used to deploy the BDWing system. In this section, Figure 
5-4 presents the technological infrastructure model, including several state-of-the-art 
technologies for each logical component of the BDW presented in Figure 5-2. Therefore, 
a direct association can be made between the two figures, providing a coherent view and 
simplifying the design and implementation phases of BDWing initiatives. The colors (blue, 
orange, and green) correspond to the types of processing depicted in Figure 5-2 (batch, 
interactive, and streaming, respectively). The technologies presented in Figure 5-4 are 
merely suggestions, which are based on several Hadoop-related projects, and should 
not be seen as preferences over any other technology that researchers and practitioners 
may find better suited for implementation. This is why the model explicitly shows there is 
space for other possibilities. For each logical component, several suitable technologies 
are presented, which must be seen as alternatives or complements, not as mandatory 
implementations. Finally, Figure 5-4 also shows how these technologies are supported by 
a scale-out infrastructure, deployed on-premises or in the cloud, either using physical or 
virtual resources.

Starting with data collection, Flume and Kafka are suitable technologies that can be used 
to collect data in a streaming fashion. In contrast, Sqoop can be used to move batches 
of data from relational databases into HDFS. There are also ETL tools oriented towards 
Big Data contexts (e.g., Talend Big Data), which include components for both batch and 
streaming data collection. However, frequently, these tools, in their open source versions 
at least, only provide an integrated GUI for submitting tasks to systems such as Flume, 
Kafka, and Sqoop. Therefore, the technologies mentioned above still have to be deployed 
on the infrastructure. Furthermore, for specific data collection scenarios, one may need 
to implement custom collectors developed using well-known programming languages,  
such as Java, Python, and Scala, either for batch or streaming scenarios. 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 159

Figure 5‑4. Model of technological infrastructure.

Hadoop-related projects like Pig, Hive, and Spark are adequate technologies for data 
preparation and enrichment using batch processing. Native MapReduce code, although 
complex, can also be used for that purpose, as well as Talend Big Data. Storm, Spark 
Streaming, and Talend Big Data can be used for preparation and enrichment via streaming. 
Nevertheless, as previously mentioned, Talend’s open source version typically relies on 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics160

other components to ensure adequate distributed processing, since its native components 
may not be scalable. Since these tools comprise a vast set of storage connectors and 
data processing components, some of them are also adequate for supporting the 
implementation of the inter-storage and materialization pipelines (namely, the technologies 
marked with an asterisk in Figure 5-4). The chosen technology will depend on the choice 
of the storage technologies.

Storage technologies are a crucial aspect of the BDWing system, and maybe one of 
the most difficult to understand. Regarding Big Data technologies for the distributed file 
system, HDFS is a simpler choice, since it provides a way to store all kinds of data, whether 
structured or not. The choice depends on the indexed storage component, i.e., on the 
batch storage and on the streaming storage. There are two main approaches to choose 
from: the first one is based on infrastructural simplicity, which alleviates management 
burden for system orchestrators; the second one is a hybrid approach, which may lead 
to more efficient refresh processes, but can also bring more challenges for managing the 
infrastructure. 

Assuming one aims for infrastructural simplicity, the same storage technology is reused 
as many times as possible. Therefore, since HDFS is used as the distributed file system, it 
can also be used for historical and streaming storage. Hive relies on HDFS to store data, 
so, technically, using Hive tables to store the analytical objects is as complex as using 
raw HDFS files. Consequently, using HDFS with file formats intended for analytics such as 
Parquet and ORC (Huai et al., 2014), or using Hive tables stored in these formats, is the 
approach with maximum infrastructural simplicity. However, this approach may sacrifice 
data refresh rates, since streaming mechanisms will have to group data records in larger 
micro batches, to avoid creating multiple small files, which can cause problems for Hadoop 
(e.g., a larger metadata footprint in RAM and unsatisfactory NameNode performance) 
(Mackey et al., 2009), as was briefly mentioned in section 5.2. This phenomenon occurs 
because HDFS and Hive are currently oriented towards fast sequential access instead of 
fast random access (more details related to streaming scenarios are provided in section 
8.3). The problem is that increasing the micro batch size also increases the interval between 
data collection and its availability for querying in the BDWing system. Nonetheless, there 
are many streaming contexts where it is less problematic if data is available only after a 
few minutes after being collected.

To achieve shorter time intervals between the collection of data and its availability for 
querying, one can use storage systems oriented towards fast random access, such as 
NoSQL databases. Another advantage of these systems is their ability to perform random 
reads or updates on data, which can be useful for certain BDW applications. For instance, 
these systems enable efficient update operations on records, in cases where it is not 
feasible to model data as a set of immutable events. However, since these databases 
are mainly used for OLTP-based workloads (Cattell, 2011), they typically do not perform 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 161

as well as the fast sequential access systems for OLAP-based workloads. Consequently, 
choosing NoSQL databases solves the small files problem in Hadoop, but may also 
bring more infrastructural complexity and slower query execution times for OLAP-based 
workloads (see results discussed in section 8.3).

Among NoSQL databases, one can also highlight the relevance and possible use of in-
memory NoSQL databases like Redis (2018b), or even NewSQL databases like Apache 
Ignite (2018), if the chosen querying and OLAP system supports these technologies. 
Some of these technologies may provide faster query execution times, as they sometimes 
have more optimized in-memory architectures. Again, the modularity of the approach 
permits flexible implementation choices without changing any significant architectural 
construct or data modeling guideline. Another adequate technology for streaming 
scenarios is Druid (Yang et al., 2014), a columnar store that can be used to support 
interactive and concurrency-heavy applications focusing on slicing-and-dicing, drilling 
down, and aggregating event data. Druid achieves this by aggregating and indexing 
time-based data as soon as it arrives to the system, providing sub-second queries over 
vast amounts of streaming data (Correia et al., 2018). Another adequate use case for 
Druid is the storage of materialized objects due to its on-the-fly aggregation mechanisms. 
Although Druid can be used for the batch storage component as well (Correia et al., 
2018), this book focuses on its use for streaming and materialization scenarios containing 
aggregated data indexed by temporal attributes. Like many other Big Data technologies, 
Druid has limitations (e.g., lack of support for random access operations), and users 
should conduct a preliminary analysis when choosing storage technologies, because the 
ecosystem is evolving rapidly.

There are other technologies offering a middle ground between fast sequential access 
and fast random access, such as Kudu, which supports both scenarios without requiring 
different storage systems (Lipcon et al., 2015). Kudu can be co-located with other 
components from the Hadoop ecosystem and, therefore, can be used along with HDFS. 
Using the same storage system for both batch data and streaming data can also reduce 
infrastructural complexity, although HDFS should continue to be used as the distributed 
file system. Furthermore, as previously noted, technology is evolving rapidly, and with 
the community advancing Hive transactions and streaming support (Apache Hive, 2018), 
streaming scenarios and update operations in Hive are becoming more streamlined. 
Currently, when considering implementing BDWing systems, practitioners should 
spend some time studying how these systems work, as well as their advantages and 
disadvantages for implementing an adequate and stable storage system for the BDW, 
since there is no optimal solution for all implementation contexts.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics162

Regarding data access, analytics, and visualization, there are several technologies that 
can be used for specific tasks. Spark MLlib and Mahout are two machine learning 
and data mining libraries that rely on distributed processing to extract patterns from 
a large volume of data. R, Python, and WEKA, for example, can also be used for this 
purpose, but one should be aware of their limitations in Big Data environments, as 
was previously discussed in subsection 2.5.3. However, during the last years, these 
technologies began to include processing components that can establish connections 
to distributed systems such as Spark and Hadoop. Technically, any machine learning 
and data mining technology able to process large amounts of data and with adequate 
connectors to Hadoop-related systems can be used in a BDW data science sandbox. 
In these terms, technologies such as Tableau, Microsoft Power BI, or TIBCO Spotfire 
can be used to visualize data. Customized visualizations can be created with custom-
made JavaScript applications (e.g., intensive geospatial analytics – see the SusCity 
data visualization platform in section 9.4). The data visualization tool being implemented 
needs to provide adequate connectors for querying and OLAP technologies. However, 
in certain scenarios wherein direct access is required, bypassing the querying and OLAP 
engine is acceptable. This could be done using native storage drivers (e.g., HDFS, Hive, 
NoSQL/NewSQL, Kudu, and Druid), or by developing custom-made Web services (e.g., 
REST Web services), to prevent some incompatibilities, or to ensure higher concurrency 
and efficiency for certain scenarios demanded by data consumers (e.g., concurrent 
custom-made Web data visualizations).

The querying and OLAP systems are crucial for BDWing, since they provide an interactive 
SQL interface to query the data stored in the batch storage and the streaming storage. 
These systems are frequently mentioned as SQL-on-Hadoop systems, although they also 
support other data sources like NoSQL databases. There are several alternatives, such as 
the following: Hive (on Tez) (Huai et al., 2014); Drill (Hausenblas & Nadeau, 2013); Impala 
(Kornacker et al., 2015); Spark SQL (Armbrust et al., 2015); Presto (2018); and HAWQ 
(L. Chang et al., 2014). Benchmarking different SQL-on-Hadoop systems is advisable 
when implementing a BDWing system (Rodrigues et al., 2018; Santos et al., 2017), since 
it helps evaluating whether response times, scalability, and SQL compatibility meet the 
established requirements. Furthermore, evaluating their connectivity with the storage and 
data visualization systems is crucial in order to implement an adequate and interoperable 
BDWing system.

Such complex technological infrastructure needs to be secured and properly managed, 
ensuring compliance with security and privacy policies, as well as providing a set 
of mechanisms to monitor the behavior of the infrastructure and respond to threats 
accordingly, if necessary. In this context, Ambari can be used to provision, manage, and 
monitor a Hadoop cluster supporting the BDWing system. Regarding security, there are 
several technologies that can be used depending on the specific requirements: Kerberos 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 163

can provide secure authentication for users and resources; Knox can provide perimeter 
security, hiding the details of the cluster’s access points and blocking services; Sentry can 
be used to define adequate authorization policies to access data; and Ranger, which is 
similar to Sentry, provides a centralized platform for policy administration, authorization, 
auditing, and data protection (HDFS encryption). There are other ways of ensuring data 
security and privacy, such as using specific encryption mechanisms or access control lists 
provided by different technologies.

To conclude this section, there are some relevant guidelines that should be taken into 
consideration when deploying an adequate infrastructure for BDWing:

1. Plan the infrastructure focusing on horizontal scalability scale out to reduce costs and 
leverage the full potential of emergent Big Data technologies like Hadoop. “Because 
Hadoop uses industry-standard hardware, the cost per Terabyte of storage is, on 
average, ten times cheaper than a traditional relational DW” (Krishnan, 2013, p. 273). 

2. Co-locate storage and processing nodes in the cluster to avoid moving data between 
nodes, causing bottlenecks in the network (C. L. P. Chen & Zhang, 2014). As can be 
seen in Figure 5-4, storage and processing nodes are always co-located. This means 
that querying and OLAP technologies should be installed in all the storage nodes, thus 
data is not moved across nodes when data consumers submit a request.

3. Implement a Just a Bunch of Disks (JBOD) configuration for each storage node. If a 
Redundant Array of Independent Disks (RAID) configuration must be used, implement 
a RAID-0 strategy (Xu, Luo, & Woodward, 2012).

4. Implement at least a 1-gigabit Ethernet network infrastructure (Shvachko, Kuang, 
Radia, & Chansler, 2010).

5.4. METHOD FOR DATA MODELING
This section presents the data modeling method for designing the data structures stored 
in the indexed storage component of the BDW. It discusses how data should be modeled 
according to specific data structures denominated analytical objects, which include 
descriptive and analytical attributes (and families). Other concepts discussed in this 
section include materialized objects, granularity keys, atomic values, collections, partition 
keys, and bucketing/clustering keys. All these concepts are presented in the general data 
model (Figure 5-5). Finally, this section also discusses the concept of complementary 
analytical object, proper ways of joining and uniting batch and streaming analytical objects, 
strategies to handle dimensional data (outsourced descriptive families), and some data 
modeling best practices.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics164

Figure 5‑5. General data model.

5.4.1. Analytical Objects and their Related Concepts
In this work, an analytical object is defined as an isolated subject of interest for analytical 
purposes. Analytical objects are highly denormalized and autonomous structures that can 
answer queries without constantly needing to join dimension and fact tables. The benefits 
of full denormalized structures in terms of performance and ETL simplicity is a topic 
periodically discussed and evaluated by the DWing community (Jukic, Jukic, Sharma, 
Nestorov, & Korallus Arnold, 2017; Santos et al., 2017; Santos & Costa, 2016b; J. P. 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 165

Costa, Cecílio, Martins, & Furtado, 2011). Typical analytical objects found in organizations 
may include: sales; purchases; inventory management; employee vacations; employee 
performance; (potential) customer interactions; customer complaints; transactions during 
manufacturing processes. To identify an analytical object, one only needs to identify a 
subject of interest in a specific analytical context. Analytical objects might be found in 
traditional business processes or in new organizational contexts, such as social media 
interactions and initiatives, recommendation systems, or sensor-based decision-making, 
for example. An organization can identify analytical objects by either looking at the data 
currently being produced (data-driven), or by looking at its current goals and start collecting 
data to fuel these analytical objects (requirements-driven). 

An analytical object includes descriptive and analytical families, as well as descriptive 
and analytical attributes, respectively. Families are just a logical representation for 
grouping related attributes, and there is no need to physically implement them in the 
storage system. Descriptive attributes provide a way of interpreting analytical attributes 
through different perspectives, using aggregation or filtering operations, for example.  
One can associate them with the attributes found in the traditional dimensions of a DW 
(Kimball & Ross, 2013). Natural keys (e.g., product code, employee code, and customer 
code) can also be included as descriptive attributes, if the practitioner foresees an 
application for these attributes (e.g., specific analyzes or update operations on records). 
In contrast, analytical attributes provide numeric values (sometimes embedded in 
complex/nested data structures that also contain text data) that can be analyzed through 
different descriptive attributes (e.g., grouped or filtered), including factual and predictive 
attributes. Factual attributes represent numeric evidences of something that happened in 
a specific record of the analytical object, and can be associated with facts in a traditional 
fact table (Kimball & Ross, 2013). Predictive attributes provide insights retrieved from 
the application of data science models and, therefore, they do not represent numeric 
evidences of something that happened, but rather an estimate of what happened or 
a prediction of what could happen in a near future. Predictive attributes are a crucial 
concept to adequately integrate predictive capabilities in the BDW, and can also store 
relevant patterns extracted from unstructured data (e.g., text, images, and video).

A record of an analytical object stores all the values corresponding to an event associated 
with that object, taking into consideration its different attributes. Descriptive and analytical 
attributes can contain atomic values or collections. Atomic values are stored as simple 
data types, such as an integer, float, double, string, or varchar. Collections store more 
complex structures like arrays, maps, or JSON objects. These complex and nested data 
structures, together with a flexible denormalized model without rigid relationships between 
tables, allow to explore the full potential of Big Data storage systems.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics166

The granularity key is a relevant concept associated with an analytical object. The 
granularity key is tightly coupled with the analytical object, identifying the level of detail of 
the data that will be stored in each record. The granularity key of an object is defined by 
one or more descriptive attributes that uniquely identify a record, although this constraint 
does not have to be physically implemented in the storage system through a primary key, 
since some Big Data storage systems may not support such concept. One only needs to 
make sure that each record matches the granularity key of the object, which defines its 
level of detail.

Take as an example the analytical object “sales”. Its granularity key can be defined solely 
by the unique identifier of the sales order. In this case, each record stores the general 
data about the sales order. The data about products sold in this order can be stored 
in a collection, or not stored at all, if for some reason there is no interest in carrying out 
that analysis. However, if the granularity key of the analytical object “sales” is defined by 
the identifier of the sales order and the identifier of the product, one record per product 
will be stored. There is no rigorous rule for choosing collections over redundant data 
stored across records, and vice versa. System orchestrators should consider their current 
preferences, skills, and technological or infrastructural constraints (e.g., certain querying 
technologies may not support collections, or the size limitations in collections may not be 
suitable for that context). This will depend on the implementation context. In the proposed 
approach, the granularity of the analytical object is never considered a limitation, nor does 
one apply any specific rule or guideline.

As discussed in subsection “Indexed Storage”, an analytical object can be partitioned 
and bucketed/clustered according to specific descriptive attributes (technically, using 
analytical attributes is perfectly possible as well, although not as usual). The attributes 
that are used to partition the analytical object form the partition key, which fragments the 
analytical object into more manageable parts that can be accessed individually. This book 
does not provide a rigorous rule for partitioning analytical objects, but encourages system 
orchestrators to use time and/or geospatial attributes as the partition key (E. Costa et 
al., 2018), since data can be typically loaded and filtered in hourly/daily/monthly batches 
for specific places (e.g., cities, regions, and countries). Depending obviously on the 
implementation context, this is typically an adequate strategy for several contexts. Another 
advantage of partitions emerges in scenarios wherein data should be updated (e.g., when 
performing a batch update because some records were modified or were previously 
incorrect), which allows practitioners to recompute just the required partitions instead of 
the entire analytical object. In contrast, the attributes used as bucketing/clustering key 
ensure that a range of records are stored in the same group/bucket or sorted in a certain 
way. However, system orchestrators need to plan this strategy according to frequent 
access patterns requested by data consumers. The proposed approach highlights the 
relevance of this concept, but does not aim to provide any rule in this area, because 
factors may vary significantly according to the implementation context.



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 167

5.4.2. Joining, Uniting, and Materializing Analytical Objects
In the proposed approach, analytical objects can complement each other. Although 
there are no physical relationships implemented in the storage system, Big Data querying 
technologies (e.g., SQL-on-Hadoop systems) can join different datasets according to 
specific attributes. Therefore, an analytical object may contain in its descriptive attributes 
those that correspond to the granularity key (or part of it) of another object. In this case, an 
object is considered a complementary analytical object if its granularity key (or part of 
it) is included in another analytical object (e.g., the “customer account” object in section 
6.2, whose granularity key is partially referenced by another object, and the “product” 
object in section 6.1, whose granularity key is fully referenced by another object). Such 
integration allows to associate two analytical objects through a join operation. Another 
type of association can be made using descriptive attributes that do not correspond 
to the granularity key of the analytical objects. In this case, analytical objects can be 
joined using regular descriptive attributes, such as a simple date, for example. A date 
may not define the granularity key of an analytical object, but it can be used as a join 
attribute between analytical objects. If many-to-many associations are identified between 
analytical objects, one can use collections instead, i.e., one analytical object contains a 
collection in its descriptive attributes that stores the association with many records of 
another analytical object. Once again, it must be highlighted that there is no physical 
relationship between analytical objects, neither is it mandatory to prepare and enrich data 
to create these associations between analytical objects. Technically, analytical objects 
can be joined by any attribute and practitioners do not need to be concerned about FK 
relationships and indexes. Certainly, there are many contexts in which analytical objects 
are analyzed independently, with no need to ever join them. However, whenever necessary, 
this approach offers such possibility.

At this point, a question begins to take form: If a new denormalized approach is being 
proposed to solve the complexity in join-dependent data models, how can one perform 
efficient join operations between analytical objects if they can potentially store Gigabytes, 
Terabytes, or Petabytes of data?. To answer this question, Figure 5-6 presents the 
process of joining analytical objects, which highlights the need to execute all the required 
operations in each analytical object through subqueries, or relying on efficient query 
optimizers to adequately and automatically process both sides of the join operation 
before the join itself occurs. Then, and only then, the results of these subqueries (or 
pre-join processing from query optimizers) are joined accordingly. This approach vastly 
reduces the complexity of join operations, since each subquery on both sides of the join 
is already as aggregated (or filtered) as possible. Figure 5-6 provides an example SQL 
query showing how to perform this type of join operations. If the “WITH” keyword is not 
compatible with the current querying and OLAP technology, one can also use subqueries 
in the “FROM” or “JOIN” clause. The same concepts are also valid for union operations.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics168

This process of joining analytical objects should be applied in each join operation, 
including not only complementary analytical objects, but also materialized objects 
and analytical objects across different storage systems (see Figure 5-5). Since analytical 
objects can have a significant number of records, joining them can become a time-
consuming task, even when using the join approach presented in Figure 5-6. It is in 
this context that materialized objects are useful and efficient. Complex and long-running 
queries can be materialized through the materialization pipeline (see Figure 5-5), giving 
origin to the materialized objects, which can be further joined with other analytical objects. 
The materialization pipeline also ensures materialized objects are updated with new 
data. Materialized objects can be stored either in the batch storage or in the streaming 
storage, depending on the access patterns of data consumers (e.g., using NoSQL 
databases for the streaming storage can provide adequate random access capabilities 
for specific analytical scenarios). Summarizing the concept of materialized objects, it can 
be concluded that they are able to store the results of time-consuming queries, increasing 
the performance of the BDWing system, since several data consumers can access 
this materialized object much faster than the original analytical objects. Consequently, 
materialized objects may be analogous to OLAP cubes in traditional DW environments, 
containing pre-aggregated data meant to be consumed in faster and more efficient ways.

Figure 5‑6. Process of joining analytical objects.



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 169

Besides join operations, this book also considers using union operations, typically useful 
for combining analytical objects stored in the batch storage and analytical objects stored 
in the streaming storage. Uniting analytical objects in different storage systems enables 
the visualization of batch and streaming data using a single query. Also relevant is the fact 
that queries can take advantage of union operators while the inter-storage pipeline does 
not transfer the records from a streaming analytical object to the corresponding batch 
analytical object.

5.4.3. Dimensional Big Data with Outsourced Descriptive Families
In certain contexts, data remains highly relational and dimensional, i.e., different analytical 
objects will share common descriptive families. One example is “sales transactions”,  
which can be analyzed using several descriptive families such as “customer”,  
“product”, and “supplier”, for example. These descriptive families can be included 
in several other analytical objects, such as “customer complaints”, “purchases”, 
“inventory management”, among others. 

As discussed previously in this section, the proposed approach allows using joins 
between analytical objects. However, it does not include the concept of dimensions. 
Typically, flat structures are preferred to avoid the cost of join operations and to achieve 
better performance, as demonstrated in Chapter 8. However, completely flat structures 
vastly increase the storage size of the BDW when compared to dimensional structures 
(e.g., star schema). The problem becomes worse if multiple analytical objects share the 
same descriptive families, because the increase in storage size can get out of control, 
especially if these descriptive families have a significant number of attributes. Obviously, 
one may be able to sacrifice storage space, which is cheaper than processing power, 
in exchange for better performance. Taking into consideration the insights provided in 
Chapter 8, it may be advantageous to use a flat analytical object that is 3 times bigger 
than the corresponding star schema. However, if one considers contexts with several flat 
analytical objects that share the same descriptive families, the BDW size can grow at a 
rate that the organization cannot sustain. Furthermore, there are certain contexts in which 
star schemas can outperform flat analytical objects (see subsection 8.2.3).

For the above reasons, and supported by the results presented in Chapter 8, this book 
promotes the following guidelines for modeling dimensional Big Data using the concept of 
outsourced descriptive family:

1. A descriptive family should be outsourced to a complementary analytical object if the 
following conditions (or the majority of them) is verified: 

a)  The descriptive family is frequently included in other analytical objects (a 
phenomenon that is relatively similar to the conformed dimensions concept in ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics170

Kimball’s approach), avoiding extreme redundancy in the BDW, especially if the 
descriptive family has a considerable number of attributes. Otherwise, outsourcing 
frequently reused descriptive families with few attributes may not be justified; 

b)  The descriptive family has low cardinality, i.e., its distinct records will form a  
low-volume complementary analytical object that easily fits into memory, enabling 
the capability to perform broadcast/map joins in SQL-on-Hadoop engines (see 
subsections 8.2.1 and 8.2.3);

c)  The frequency of data ingestion of the complementary analytical object is equivalent 
to the other analytical objects to which it is related. For example, if one is using the 
BDW to store and process streaming data from social networks, having a “user” 
complementary analytical object is only practical if the users’ data is also streamed 
to the BDW as soon as a customer signs up for the social network, otherwise the 
BDW will suffer from problems such as the late arriving dimensions phenomenon 
in dimensional DWs (Kimball & Ross, 2013). If such design requirement cannot 
be fulfilled for some reason, then flat analytical objects represent a better option;

d)  The descriptive family alone can provide considerable analytical value when analyzed 
independently, forming a real analytical object. For example, “customer” may serve 
as a complementary analytical object when outsourced from a descriptive family 
of another object, but it can also be used independently to measure customer 
performance if it contains analytical attributes related to average sales, average 
returns, current reviews, among other factual or predictive data.

2. Complementary analytical objects resulting from the outsourcing of descriptive families 
should use natural granularity keys, since maintaining surrogate keys is not practical in 
most BDW storage technologies, both for batch and streaming scenarios (e.g., lack of 
proper support for auto-increments). Searching for the surrogate keys corresponding 
to the natural keys flowing through CPE workloads also becomes very inefficient and 
unpractical, especially in streaming workloads.

3. The records of complementary analytical objects resulting from the outsourcing of 
descriptive families should also be designed to be immutable, whenever possible, 
similarly to the records of regular analytical objects. If meeting this requirement is not 
possible, these complementary analytical objects should be at least efficient to update 
or easy to recompute using a CPE workload (fully or partially using partitions), to avoid 
dealing with complex SCD-like scenarios. Despite this guideline, practitioners should 
feel free to create mutable complementary analytical objects (as well as mutable 
analytical objects) whenever the technologies storing the batch/streaming object 
support proper updates. Again, BDWing technology is evolving in this matter, and this 
guideline must not be seen as absolutely mandatory if performance is not severely 
compromised (see subsection 6.2.1 for further discussion on this topic).



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 171

4. By simply outsourcing descriptive families to complementary analytical objects, 
only descriptive attributes are considered. This means the resulting complementary 
analytical objects do not hold any analytical families and attributes, and, therefore, 
any analytical value. Although this is possible in the proposed approach, it somehow 
violates the principle that analytical objects should be autonomous structures that 
can answer some queries without needing any join operations. This principle will 
not be true for a complementary analytical object “customer” that will only be used 
to complement other analytical objects, as previously exemplified in this section. 
Consequently, this book encourages practitioners to use the concept of “aggregated 
facts as dimension attributes”, described in Kimball’s approach (Kimball & Ross, 
2013). Although not mandatory, this technique allows practitioners to include 
analytical attributes (facts or predictions) in these complementary analytical objects, 
hence, these attributes can be used not only for filtering or labelling records, but 
also to perform calculations, since one is modeling an analytical object, not a 
traditional dimension. Using this strategy, the “customer” analytical object can be 
used to independently answer specific queries, such as what is the average revenue 
generated by certain customers?, without needing to query both the “sales” 
analytical object and the “customer” analytical object. Following this example, the 
“customer” analytical object can include predictive attributes, such as a cluster label 
based on the customer’s value to the organization (see subsection 7.5.1). Obviously, 
in line with Kimball and Ross (2013), these pre-aggregations make the processes that 
make data flow to the system burdensome, but also provide more analytical value 
and, sometimes, eliminate the need for complex and costly queries. Such trade-offs 
still hold true in the proposed approach.

5.4.4. Data Modeling Best Practices
This subsection introduces some best practices that can be applied to a BDW data model, 
to clarify some questions that may arise during its design and implementation, including 
the use of null values, the preparation of spatial and temporal attributes, and the modeling 
of records as immutable events.

5.4.4.1. Using Null Values

Using null values in the BDW is not forbidden, and in certain occasions it is even advisable. 
However, there are some relevant practices that must be taken into consideration. 
Regarding analytical attributes, one advises the use of null to indicate the absence of a 
value, since null values are often ignored in querying, OLAP, and visualization technologies, 
which do not take them into account when performing aggregations on data. If numbers ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics172

like 0 or -999, for example, are used to indicate the absence of a value, every time an 
aggregation is performed, filters need to be applied first to ignore these values, since they 
affect an average/sum calculation.

In contrast, regarding descriptive attributes with a text data type, the use of “Unknown” 
or “Not Applicable” is more user-friendly and appropriate when using these attributes 
to aggregate analytical attributes. However, there are certain data types for which using 
null values is still preferable (or the only solution) to indicate the absence of values in 
descriptive attributes; namely types such as boolean, arrays, or maps.

5.4.4.2.  Date, Time, and Spatial Objects vs. Separate Temporal and 
Spatial Attributes

The date and time objects presented in Figure 5-5 include several temporal attributes that 
complement the analytical objects stored in the BDW. Including these attributes (e.g., “is 
holiday”, “is weekend”, “month”, and “year”) in the analytical objects can dramatically 
increase their storage size and consequently affect the stability and performance of the 
BDWing system. These objects are considerably small and will not significantly affect the 
performance of the BDW by requiring a join operation, as seen in Chapter 8.

This book encourages using date and time objects to store a vast set of temporal 
attributes that can be used by the analytical objects. An adequate practice would be 
using standard dates (e.g., “yyyy-mm-dd”) and standard time representations (e.g., 
“hh:mm”) in all analytical objects, which would then allow to join them with the date and 
time objects.

Following this approach, practitioners can also use several UDFs to interact with the single 
date or time attributes stored in the analytical objects, to create new attributes not present 
in the date and time objects. Extracting attributes at runtime may not impact the query 
execution time significantly, sometimes just showing negligible increases. Nevertheless, 
this book does not discourage using separate temporal attributes (e.g., “day”, “month”, 
“year”, “hour”, and “minutes”), quite the contrary, since they are still useful in certain 
contexts. One particular example is the specification of partition keys, given that, frequently, 
only simple data types like strings or integers can be used in the partition key. Therefore, 
if one needs to use “month” as the partition key, it may be necessary to have a separate 
temporal attribute “month”. Concluding, using date and time objects or separate temporal 
attributes depends on the context of implementation, and system orchestrators should 
evaluate the most adequate solution for each context.

Regarding spatial objects, they prove to be significantly useful for standardizing spatial 
attributes across the analytical objects of the BDW, such as ensuring that a city and 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 173

a country have the same exact meaning (and characteristics) throughout the entire 
data model. However, practitioners should be careful with large and detailed spatial 
objects (e.g., “building number”, “street name”, and “coordinates”), because join 
operations can certainly create performance bottlenecks in Big Data contexts. Therefore, 
one should maintain these highly detailed characteristics (e.g., “building number” 
and “coordinates”) in the analytical object in a denormalized form, while creating less 
granular spatial objects like “city”, for example, which can also include the corresponding 
countries in a denormalized form (see subsection 6.3.2). However, highly detailed spatial 
objects are acceptable in scenarios with a predictable growth, because the number of 
records they can have is known or expected a priori. 

5.4.4.3. Immutable vs. Mutable Records

As previously discussed, this book encourages practitioners to model analytical objects as 
a set of immutable events. As Marz and Warren (2015) discuss, simpler implementations 
can be achieved by eliminating the complexity associated with update operations, which 
can sometimes raise concurrency issues. This modeling style will probably suit most 
analytical scenarios in organizations, since the granularity of each analytical object can be 
rethought to treat each record as an immutable event.

Take as an example an analytical object to store customer complaints (Figure 5-7).  
A certain organization knows that a customer complaint has several states over time. 
A possible approach, which allows the records to be updated, is to have one analytical 
object that stores a customer complaint in each record. When a recently opened 
customer complaint arrives at the BDW, it is stored in a record with the status “open”, 
not having a due date yet. Meanwhile, this record will have to be updated when the 
customer’s complaint is “finished”. Another approach is to model the analytical objects 
according to a set of events related to customer complaints. When a recently opened 
customer complaint arrives at the BDW, a record is created containing the status 
and the date associated with that status. When the status of the customer complaint 
changes, new data arrives at the BDW, and a new record for each state change is 
stored. This second approach ensures that each record is immutable, eliminating the 
need for update operations. 

Despite the fact that queries need to be structured in different ways, the two analytical 
objects presented in Figure 5-7 can answer the same analytical questions. Furthermore, 
one can argue that the immutable analytical object is more oriented towards ad hoc 
querying, wherein data consumers can discover relevant patterns and delays among 
processes related to customer complaints. However, the proposed approach does 
not forbid the use of mutable analytical objects, considering that practitioners plan 
the BDW’s technological infrastructure  taking into account the random access trade-©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics174

offs and limitations of the several technologies presented in section 5.3. Modeling 
analytical objects as a set of immutable events is a suggestion, not a rigorous rule, 
since updates can be performed on storage systems that adequately support random 
access operations, as previously discussed in subsection “Indexed Storage” and further 
explored in subsections 6.1.3, 6.2.1 and 6.2.4. As previously discussed, technology is 
constantly evolving, and these trade-offs or limitations may not be an issue in certain 
implementation contexts. The proposed approach does not aim to restrict any use 
of specific functionalities, giving practitioners an adequate flexibility regarding data 
modeling. However, this book highlights the need to ensure that the logical components, 
data flows, infrastructure, and data model are properly integrated and coordinated to 
serve the business goals. 

Figure 5‑7. Example of immutable and mutable records.

5.4.5. Data Modeling Advantages and Disadvantages
This modeling approach based on denormalized and nested data is a crucial step to 
achieve a flexible storage in the BDW. When compared to relational data modeling 
approaches found in traditional DWs, this work exchanges less redundancy and smaller 
DW sizes for the following advantages:

1. Better performance during query execution, due to the lack of constant join operations 
between dimensions and fact tables imposed by traditional dimensional and 3NF data 
models. 

2. A flexible denormalized model without the need to perform complex surrogate key 
maintenance and lookups for each insert, allowing simpler and more efficient batch 



Copyright © River Publishers – except portuguese speaking countries

 Design and Implementation of Big Data Warehouses 175

and streaming CPE processes, by avoiding known-problems such as SCDs and late 
arriving dimensions (especially in streaming scenarios).

3. A focus on modeling analytical objects as a set of immutable events and, therefore 
avoiding dealing frequently with concepts such as SCDs (Kimball & Ross, 2013). 
However, as explored in subsection 6.2.1, this does not mean that mutable objects 
are forbidden, and when using them, some of the SCDs considerations still hold true. 

4. Avoids other traditional dimensional data modeling, ETL, and DW maintenance 
problems like having to consider several types of dimensions (e.g., mini dimensions, 
junk dimensions, shrunken dimensions, and bridge tables), which in Big Data contexts 
are arguably unnecessary, since saving storage space and achieving less-redundant 
data models may come at the cost of spending a considerable amount of time in 
data modeling, implementing ETL processes, and maintaining the DW (not to mention 
performance costs), which may be a compelling reason why, nowadays, practitioners 
pursue more flexible analytical contexts. Consequently, despite some data redundancy, 
in several contexts, the proposed approach provides simpler data models than a 
dimensional or 3NF DW, reducing the time needed from collection to analytics.

5. Highlights nested structures as relevant constructs in certain BDW data models and 
applications, which can be useful in certain contexts (see Chapter 6 and Chapter 9),  
such as when storing geospatial objects for intensive geospatial analysis, and solving 
many-to-many relationship issues typically found in relational databases (e.g., 
a customer complaint may have several responsible employees, which are also 
responsible for several customer complaints).

Nevertheless, the proposed data modeling method has some characteristics that may 
be considered disadvantageous when compared to the aforementioned methods for 
designing DWs, which include:

1. The total size of certain BDWs (typically the ones whose data sources are highly 
dimensional with frequently reused dimensions) may increase drastically due to 
extreme denormalization, hence why the approach introduces the concept of  
date/time objects, spatial objects, complementary analytical objects, and outsourced 
descriptive families. Consequently, practitioners should take into consideration the 
guidelines provided in subsections 5.4.4.2 and 5.4.3, as well as the data models 
explored in Chapter 6, mainly in sections 6.1 and 6.3, as the original data sources 
tend to be highly dimensional, with the same dimensions being reused frequently 
by different business processes/analytical subjects. Without these strategies, the 
resulting BDWs would be significantly larger than the DWs based on star schemas or 
3NF data models. Nowadays, storage size is cheap, but may often lead to unnecessary 
concerns and costs regarding systems administration, which can be prevented by 
using the constructs discussed above, whenever practical and applicable.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics176

2. If the data source fueling an analytical object is based on a relational database, the 
CPE workloads for that object may need to include a considerable amount of join 
operations, either being performed in the source (as a SQL query for example), or in 
the technology supporting the workloads. However, in Big Data contexts, many of the 
data sources are non-relational (e.g., sensor data, NoSQL databases, spreadsheets, 
XML files, and JSON files), making the proposed method for data modeling significantly 
more compelling and simpler for BDWs.



6
INTRODUCTION

BIG DATA WAREHOUSES 
MODELING: FROM 
THEORY TO PRACTICE

After presenting the general data modeling method 
in section 5.4, this chapter explores its use in several 
BDWing contexts, since more practical examples and 
real-world applications may be required for practitioners to 
master some of the proposed data modeling guidelines. 
Consequently, this chapter aims to provide several 
examples of BDWing applications using the proposed data 
modeling method, to clarify some of the guidelines provided 
previously, and to evaluate their suitability in a broader scope 
of analytical applications focused on: traditional enterprise 
setups with human resource management, purchases, 
sales, promotions, goods returns, inventory management, 
and production process; financial market; retail; code 
version control systems; media events (broadcast, printed 
and Web news); and air quality measurement systems.



Big Data: Concepts, Warehousing, and Analytics178

6.1. MULTINATIONAL BICYCLE WHOLESALE AND 
MANUFACTURING

As already seen, Big Data can be defined as data whose characteristics impose severe 
difficulties for traditional DWing platforms. Frequently, there may be a misconception 
regarding the need to satisfy all Big Data characteristics when deploying a BDW, such as 
the need to process vast amounts of unstructured data arriving at theoretically unlimited 
velocities. However, in this section, we will discuss how a BDW can be modeled to 
encompass traditional business processes like human resources management, sales, 
purchases, production, among others. 

Traditional DWs have long been the backbone of analytics over traditional and structured 
business processes; this section provides a way of modeling such complex scenario in 
a BDW created using the proposed approach, to provide more data modeling simplicity, 
less ETL effort without complex dimension maintenance and SK lookups, and more 
processing efficiency by reducing the constant need to join several tables. Such benefits 
can attract organizations that are starting their analytical platforms based on shared-
nothing and open source Big Data technologies, as well as organizations looking to 
replace their expensive DW appliances or limited relational databases.

For this example, we use the Adventure Works database, a relational OLTP database 
from a fictitious company that manufactures and sells bicycles, included as part of the 
Microsoft SQL Server samples (Microsoft, 2018b). This database has a relatively complex 
schema that covers a wide spectrum of business processes and entities (e.g., employees, 
vendors, customers, stores, departments, products, work/production orders, purchases, 
sales, and inventories). The complete representation of the Adventure Works database is 
available in (Dataedo, 2017).

After applying the data modeling method, the resulting BDW data model can be seen in 
Figure 6-1. It contains seven analytical objects (“employee history”, “sales line”, 
“product review”, “product vendor history”, “purchase line”, “product 
inventory”, and “work order”), three complementary analytical objects (“product”, 
“vendor”, and “special offer”), one date object, one time object, and two spatial 
objects (“city” and “territory”). Descriptive attributes are divided into descriptive 
families, whereas analytical attributes are divided into analytical families, when applicable. 
Analytical objects can also contain outsourced descriptive families that are linked to a 
complementary analytical object through a unique identifier (granularity key) of that object, 
identifying a specific record. Several of these constructs and design guidelines, which 
were already discussed in section 5.4, are detailed and exemplified here, not only for this 
specific example, but also for the other BDW examples in the following sections.

The data model presented in Figure 6-1 sometimes omits certain attributes of the 
original Adventure Works database, in order to simplify its presentation in this work; 



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 179

these omissions include the attributes in the “header” analytical family of the “sales 
line” analytical object due to its similarity with the “purchase line” analytical object 
or the attributes from the “customer” and “sales person” descriptive families of the 
“sales line” analytical object, due to the wide spectrum of available attributes (different 
practitioners may choose to incorporate different attributes). Therefore, the main idea is to 
exemplify the modeling approach without extensively enumerating the attributes. 

Figure 6‑1. Adventure Works BDW data model.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics180

6.1.1. Fully Flat or Fully Dimensional Data Models
The example in Figure 6-1 demonstrates the use of outsourced descriptive families and 
complementary analytical objects (subsection 5.4.3), using them to overcome extreme 
redundancy and storage size increase. By revisiting the arguments for using these 
concepts in subsection 5.4.3, we highlight the following:

1. “product” is an adequate candidate for a complementary analytical object because its 
attributes would otherwise appear repeated in several analytical objects, since in this 
context a product is a core business entity. A “product” object allows to standardize 
the products’ information across the BDW, and since in this context new products 
are not added rapidly, this is an adequate design choice, because it will not affect 
join performance, as broadcast/map joins will remain efficient for a long time. The 
“product” object by itself holds a significant analytical value, distinguishing it from 
a traditional dimension to avoid redundancy, as one can be interested in analyzing 
several metrics regarding products, without needing any additional analytical objects. 
Therefore, this is a valuable construct in the approach, and it resembles the concept of 
“aggregated facts for dimensions” from Kimball and Ross (2013). In subsection 6.1.3, 
we will detail how this concept can be implemented.

2. For the same reasons, “vendor” is also an adequate complementary analytical object 
that serves two outsourced descriptive families from the “product vendor history” 
and the “purchase line” analytical objects. However, in contrast to “product”, 
“vendor” does not have any evident analytical attributes, although “is preferred 
vendor” and “credit rating” could be considered analytical attributes as well. The 
proposed approach offers this flexibility due to the denormalization process, allowing 
the execution of aggregate functions over any attribute present in the analytical 
object without involving any kind of join operation. Moreover, as explained above, 
other analytical attributes can be created (e.g., average monthly purchases). Another 
relevant consideration is the fact that “vendor” is related to the spatial objects, so we 
can conclude that, since there is no need to define FKs in BDWs created using the 
proposed approach, objects in the data model can be flexibly joined, as long as there 
are common unique identifiers between them (simple or composed).

3. “special offer” is considered a complementary analytical object, although it is only 
related to the “sales line” analytical object and, therefore, it does not necessarily 
serve the purpose of avoiding extreme redundancy. However, theoretically, it represents 
a standard analytical object that happens to be joinable with the sales information by a 
unique identifier. Consequently, as seen in subsection 5.4.2, two analytical objects can 
be joined together, being the designation of complementary analytical object assigned 
to the object whose granularity key (or part of it) is included in other objects, in this case 
making “special offer” a complementary analytical object of “sales line”.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 181

4. Other potential candidates for complementary analytical objects could be the 
“employee” and “customer” objects. Regarding a possible “employee” complementary 
analytical object, there is employee information in the “employee history” and “sales 
line” objects but, in this model, one can consider that only a subset of the employee 
attributes are relevant for each analytical object, thus denormalization and redundancy 
is appropriate and, therefore, there is no need for a complementary analytical object 
integrating the employee information. In the case of the “customer” analytical object, 
since customer information only appears in the “sales line” analytical object, there 
is no apparent need for a complementary analytical object that can be shared by other 
analytical objects, being the level of denormalization presented in Figure 6-1 appropriate 
for this context. However, creating a “customer” analytical object is possible and 
sometimes encouraged, as can be seen in the data model depicted in section 6.3.

6.1.2. Nested Attributes
Nested attributes are a valuable construct in the proposed modeling method, as they offer 
considerable flexibility and a new set of analytical possibilities. As can be seen in Figure 
6-1, considering the “work order” analytical object, one can observe that although this 
object stores information at the work order level, the routing attribute stores more granular 
information at the work order route level, detailing the several production steps involved 
in a specific order. This allows a broader range of ad hoc queries to inspect routing 
information, without needing heavy drill across operations. 

As discussed in subsection 8.2.4, lambda or explode functions can be used to explore 
nested data. Nested attributes are also used in the “product” complementary analytical 
object to store the history of prices and product costs. These attributes are arrays of structs/
rows (or similar data structures), and can serve to analyze price/cost history of a specific 
product, again, without the need to join tables. These constructs are powerful for ad hoc 
exploration of data, but require some attention when performing heavy aggregations or 
filtering operations based on nested values, as seen in subsection 8.2.4. Another relevant 
aspect to consider is the size of the collections, as they are not meant to grow rapidly, 
due to the fact that some Big Data technologies may present limitations when performing 
insert, read, or update operations on large nested attributes. Consequently, they are more 
adequate in scenarios wherein practitioners can estimate their initial size and potential 
growth.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics182

6.1.3. Streaming and Random Access on Mutable Analytical 
Objects

As noted in Chapter 5, this book encourages the storage of immutable events, not only 
because some of the core concepts of the approach take inspiration from the Lambda 
Architecture, but also due to some current limitations of Big Data storage technologies 
when performing update operations (e.g., HDFS/Hive). However, this guideline does not 
prevent practitioners from modeling and implementing mutable (complementary) analytical 
objects. In this subsection, we will discuss how mutable objects can be incorporated in a 
BDW, considering “product” and “product vendor history” as examples.

As previously noted, some of the analytical attributes from the “product” complementary 
analytical object resemble the concept of aggregated facts for dimensions (Kimball & 
Ross, 2013) (e.g., “avg month sales” and “avg month sold qty” attributes). However, 
without proper support for update operations, each month this analytical object would 
need to be completely reconstructed to store the new monthly values. In contrast, if 
needed, as discussed in section 5.3, practitioners may opt for storage systems that are 
suitable for random reads and writes. When choosing a NoSQL database, for example, 
one does not need to recompute the “product” object, just update the average monthly 
metrics for each product.

The proposed approach assumes that this type of design choice follows the streaming 
data flow shown in Figure 5-2, because this book only suggests NoSQL databases for the 
streaming storage component, not the batch storage component. However, in this case, 
the updates happen in relatively large batch intervals, which may or may not be supported 
by streaming technologies depending on the CPE workload execution frequency (e.g., 
every time a customer purchases something, each day, or each month). Such assumption 
forces these analytical objects to be stored in the streaming storage component, regardless 
of whether the CPE workload is based on a batch or stream processing. This is a design 
choice in the proposed approach, as the batch data flows remain considerably similar to 
constantly inserting/updating values on a streaming analytical object stored in a NoSQL 
database.

Nevertheless, with the rapidly evolving Big Data technological landscape, support for 
update operations and ACID transactions is an issue for several storage technologies, 
and Hive is no exception. Therefore, if practitioners choose a Hive transactional table to 
store products data, this scenario can be adequately supported by the batch storage 
component, without needing to store the “product” analytical object in a NoSQL 
database (streaming storage). Transactional tables have been significantly optimized in 
Hive version 3 (Apache Hive, 2018), hence they are a relevant feature to explore in future 
prototypes and production systems. Consequently, nowadays, practitioners do not have 
to choose NoSQL databases to adequately perform random insert/update operations 
with moderate frequency.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 183

The context for the “product vendor history” is almost identical to the previous one. 
In contrast, “employee history” is an example of how a potentially mutable object can 
be transformed into an immutable object, since each time some employee data changes 
(e.g., personal information, department, shift, or salary), a new record is created, which 
allows to analyze employee history in significantly flexible ways.

6.2. BROKERAGE FIRM
The financial sector has increasingly been considering the adoption of Big Data techniques 
and technologies as part of the Fintech phenomena (Gai, Qiu, & Sun, 2018). A brokerage 
firm that facilitates financial securities trading can represent an appealing application 
context for a BDW, given that it stores and processes vast amounts of daily market 
and news data, as well as trading and watching data from several securities related to 
multiple brokers and customer accounts. Consequently, in this section, we model a BDW 
for a fictional brokerage firm depicted in the TPC Benchmark E (TPC-E) (TPC, 2018), 
which thoroughly details a concurrent transactional database system adapted to financial 
brokerage contexts. 

For this book, we transformed the TPC-E data model into a BDW data model using the 
proposed approach (Figure 6-2). The brokerage firm BDW data model is presented in a 
simplified manner, to avoid the repeated constructs already discussed in this chapter, 
therefore, some (complementary) analytical objects are not detailed at the family or 
attribute level. 

6.2.1. Unnecessary Complementary Analytical Objects and 
Update Problems

In the BDW data model depicted in Figure 6-2, there are three complementary analytical 
objects: “customer account”, “broker”, and “security”. In this example, “customer” 
and “company” could theoretically be included as complementary analytical objects, but 
due to their lack of isolated analytical value for this specific context, and to the frequency in 
which they appear related to other objects, they were not considered as complementary 
analytical objects. Hence, we opted for some denormalization steps: “customer” data 
appears denormalized in the “customer account” object; “company” data appears 
denormalized in the “news” and “security” objects. 

The above design decision also means that the “watch list” analytical object, which 
in the original TPC-E model is related to the “customer” table and not to the “customer 
account” table, needs to be indirectly joined with the “customer account”. In this case, 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics184

for example, to retrieve customer information associated with specific watch list data one 
needs to perform a left outer join retrieving the customer information from its last customer 
account. Moreover, if there is a change in some attribute related to the customer and not 
the customer account, one needs to choose an update strategy:

1. Replace the values across all the related customer accounts by scanning the entire 
analytical object or several partitions.

2. Insert a new record for each customer account with the updated values.

3. Update only the last customer account.

4. Update only the customer accounts when a new account is inserted, given that the 
customer created the accounts before this update and such information might be 
somehow valuable for business analysis (immutable events strategy).

Figure 6‑2. Brokerage firm BDW data model.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 185

If practitioners find this design approach suitable for their use cases, the same can be 
implemented to offer more simplicity in CPE workloads, otherwise a new complementary 
analytical object “customer” can also be created, as the approach provides this flexibility 
by delegating some design decisions to practitioners according to their implementation’s 
specificities. Regarding update operations on complementary analytical objects, design 
choices are often influenced by the adoption of a specific technology (see section 5.3 and 
subsection 5.4.4.3), due to their random access or batch update capabilities. However, 
some of these choices and challenges are also somehow related to the concept of SCDs 
(Kimball & Ross, 2013), as some of the underlying challenges of updating denormalized 
dimensions resemble the challenges of updating complementary analytical objects, due 
to data redundancy (scanning vast amounts of data to update certain values) and history 
maintenance.

6.2.1.1. The Traditional Way of Handling SCD‑like Scenarios

Several strategies from multiple SCD types (e.g., SCD types 1, 2, and 3) can also be 
applied to complementary analytical objects, but one needs to consider that the proposed 
approach does not have the concept of SK and, therefore, practitioners should rely on the 
originally defined granularity key, as well as modification dates and flags to indicate the 
current/active records, when needed, in order to appropriately join analytical objects, which 
creates a slightly more complex granularity key (granularity key information on subsection 
5.4.1). In this example, “customer account” would not have a simple “customer account 
id” as granularity key, but a complex granularity key such as “customer account id”, 
“insert date”, “expiration date”, and “is current”, for example.

6.2.1.2. A New Way of Handling SCD‑like Scenarios

Since data engineering practices are constantly evolving, practitioners of the Big Data 
community often share insightful techniques to handle complex scenarios. In this context, 
Beauchemin (2018) shared a technical article regarding a useful perspective on functional 
data engineering. In this article, two techniques related to handling SCDs are highlighted, 
which can be applied within the context of the approach proposed in this book, namely in 
cases where update problems on complementary analytical objects arise:

1. Dimension snapshots (in the context of this book, complementary analytical objects 
snapshots) – a new partition is created at each ETL execution (equivalent to a data 
CPE process in this book), containing a snapshot of the dimension (in the context 
of this book, a snapshot of the complementary analytical object). Consequently, 
the complementary analytical object becomes a collection of snapshots that allows 
inferring its state at a given moment in the past. In this way, one can join analytical 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics186

objects with any snapshot of any complementary analytical object that follows this 
technique. Since complementary analytical objects are typically smaller than analytical 
objects, and since storage is cheap nowadays, this technique can be feasible in many 
contexts. However, for large complementary analytical objects, avoiding this technique 
is probably advisable.

2. Embed the attributes change history in nested structures – Beauchemin (2018) 
states that another modern technique is to store the change history in nested data 
types. In the context of this book, this will enable practitioners to track changes to 
attributes without changing the granularity of the complementary analytical object. In 
this way, one does not need to create several attributes to track change history, since 
a complex and nested structure can be used.

6.2.2. Joining Complementary Analytical Objects
As has been discussed throughout this book, the approach considers all tables analytical 
objects, which can be complementary, or not, depending on whether or not they contain 
descriptive attributes outsourced from other objects. Frequently, as seen in this brokerage 
firm, complementary analytical objects may resemble traditional dimensions, despite 
the fact that one encourages practitioners to provide analytical attributes for these 
complementary objects. This is the case for the “broker” and “security” objects in 
this example. Considering the guidelines provided in subsection 5.4.3, for BDW data 
models with significantly large complementary analytical objects created with the purpose 
of supporting outsourced descriptive families, if interactive query execution is a priority, 
one should consider denormalizing data even further. This task can be accomplished 
by including attributes from the “security” object in the “trade” object for example, 
taking into consideration the data model of this brokerage firm. This may be the case 
for the “security” complementary analytical object, which can grow significantly large 
depending on the securities being traded in this context.

6.2.3. Data Science Models and Insights as a Core Value
One of the main design concerns in the proposed approach involves closing the gap 
between data science models/results and the BDW data structures that store data 
for later use. Throughout this book, we discussed this topic on several ocasions (see 
subsection 5.2.2 and section 7.5). For the brokerage firm, we can apply the concept of 
predictive attributes to make data science results available to other analytical applications 
(e.g., dashboards, ad hoc querying, custom-made applications, and simulations). Such 
examples may include: i) the “recommended securities” and the “list cluster” in 
the “watch list” object, which can be derived from a recommendation engine and a 



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 187

clustering algorithm respectively; and ii) the “polarity” attribute from the “news item” 
object, which may be the result of a sentiment analysis process that classifies a news item 
as being positive or negative, to enrich the decision-making processes that the BDW can 
support.

In contexts where custom-made applications may need to access data stored in the 
BDW, such as a brokerage firm website that recommends securities to millions of 
customers based on the “watch list” recommendations, the “watch list” analytical 
object becomes an adequate candidate for a streaming analytical object that is stored in a 
NoSQL database. That decision offers adequate random access to millions of concurrent 
users, a use case wherein NoSQL databases thrive (strategy already discussed in 
subsection “Indexed Storage”, section 5.3, and subsection 6.1.3).

6.2.4. Partition Keys for Streaming and Batch Analytical Objects
Considering this financial brokerage context, the “trade” object is noticeably the analytical 
object where most of the decision-making process will be focused. Analyzing a stream 
of trading data can provide significant business value, accelerating the decision-making 
process in various ways. However, a trade follows different stages (e.g., request, cash 
transaction, and settlement), and as modeled in Figure 6-2, it may have different attributes 
filled in depending on its type (e.g., cash or margin trade).

One of the constructs that can be used in this context is the partition key. By using 
this construct, practitioners can use the same analytical object to store both batch and 
streaming records, in this case, trading data. For example, if one partitions the “trade” 
object using the “status” attribute (or any other attribute available in the transactional 
system indicating different states of the trade), both batch and streaming data can be 
stored in the same analytical object and in the same storage technology (e.g., Hive), 
wherein the trade can be constantly updated until it reaches a state of completion. By 
using different Hive partitions to divide batch and streaming records of the same table, 
one can have different schemas for each partition, which means that some attributes of 
the “trade” analytical object may only be included in specific partitions, depending on the 
state of the trade (e.g., requested or settled). This is only possible for technologies that 
can handle schemas defined at the partition level.

This capability also means that frequent use of update operations (e.g., Hive 
transactions) can be restricted to streaming partitions, because once the trade reaches 
completion, the chances of it being updated are slim. This demonstrates the flexibility 
of the proposed approach, which allows a seamless integration between batch and 
streaming data, and efficient ways of conducting update operations, even though it 
encourages the modeling of immutable objects whenever possible. However, in this ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics188

case, to provide a timely and interactive analysis, the “trade” analytical object can be 
made mutable without sacrificing efficiency, due to technological evolutions like Hive’s 
transactions (Apache Hive, 2018).

6.3. RETAIL
In this section, we provide an example of a BDW that supports a retail organization 
derived from the TPC Benchmark DS (TPC-DS) (TPC, 2017a), with store, catalog, and 
Web sales. This section provides some specific details regarding retail contexts that may 
be useful for practitioners, and that were possibly overlooked in the Adventure Works 
BDW (see section 6.1), since it represents a broader organizational context. The retail 
BDW data model presented in Figure 6-3 comprises various analytical objects (including 
complementary) in a highly dimensional model, focusing on sales, returns, promotions, 
customers, items, and warehouses.

Figure 6‑3. Retail BDW data model.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 189

6.3.1. Simpler Data Models: Dynamic Partitioning Schemas
Similarly to the concepts demonstrated in subsection 6.2.4, the retail BDW data model 
presented in Figure 6-3 also uses the partition key to provide simplicity and agility when 
collecting, preparing, and enriching the data that flows to the BDW. However, considering 
this example, one does not use the partition key and dynamic partitioning schemas to 
simplify batch and streaming analytics in the same analytical object, but rather to provide 
simpler data models. By using different schemas for different partitions, one can efficiently 
store what would otherwise be three separate analytical objects into just one, i.e., store, 
catalog, and Web sales into the “sale” analytical object partitioned by “sales type”. 
Each partition can have different attributes, which provides a centralized and efficient way 
of storing each type of sales. This phenomenon also happens for the “return” object, as 
it is almost identical in structure when compared to the “sale” object, according to this 
specific retail context. This is only possible for combinations of storage and processing 
technologies and file formats that can handle different schemas defined at the partition 
level. Otherwise, practitioners will need to consider the following: i) use the same schema 
for the entire analytical object and use null values (or unknown values) when specific 
partitions do not have values for specific attributes; or ii) do not use different schemas for 
different partitions and, instead, use various analytical objects as needed (three objects in 
this case: store, catalog, and Web sales).

Furthermore, in this example, “sale” is considered as a complementary analytical 
object, since the “return” object includes the granularity key of the “sale” object 
in its descriptive families, due to the fact that a return is related to a “sale order/
ticket number” and an “item”. Such relationship may resemble scenarios in which 
practitioners use degenerate dimensions for drilling across fact tables, first aggregating 
the two result sets, as much as possible, and then combining the results, as discussed 
in subsection 5.4.2. 

6.3.2. Considerations for Spatial Objects
According to the proposed approach, a priori designed spatial objects are not mandatory. 
However, as seen in the previous data models, they are encouraged in predictable 
scenarios. Considering this retail context, despite the fact that customers have specific 
addresses, sales are frequently not billed nor shipped to the default customer address 
and, therefore, they end up being also attached to the sale itself, not only to the customer. 
It is possible, and perfectly plausible to include a spatial object (e.g., city) in the data 
model depicted in Figure 6-3, but, for this example, we show that it is not mandatory to 
have one. One may choose to perform the analysis at the city and country level only, i.e., 
without other standardized spatial attributes across the BDW (e.g., county, region, and 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics190

continent), which makes the effort of having to join the “sale” or “customer” analytical 
objects with a “city” spatial object with more attributes almost useless.

Choosing adequate attributes suitable for analyzes should always be a relevant  
consideration (see Figure 6-3), and it will influence the use of wide spatial objects 
with several attributes or a few denormalized attributes in the analytical objects. Both 
possibilities are adequate for this context, but this example only serves to highlight that 
in specific contexts spatial objects may not be particularly useful. Furthermore, one 
aspect that practitioners should take into consideration is avoiding large spatial objects 
(e.g., denormalized hierarchies ranging from building numbers to country names). In 
this case, some of the more granular geospatial information can be contained within a 
descriptive family of the analytical object (e.g., building number and building type), and 
the less granular information can be stored in the spatial object (e.g., city and country).

6.3.3. Analyzing Non‑Existing Events
Considering a traditional DW, if one uses a “customer” transactional table to directly load 
a “customer” dimension, the DW will be able to answer queries such as the following: 
“which customers have not returned a single item?”. However, considering 
a BDW with a fully denormalized analytical object “return”, such analysis would not 
be possible; that is why practitioners have the option of using complementary analytical 
objects like “customer”. The same consideration holds true for spatial objects, as one may 
want to analyze the cities in which the organization did not sell any item. Consequently, 
for such analytical use cases, practitioners should definitely consider complementary 
analytical objects, as well as date, time, and spatial objects, since fully denormalized 
analytical objects only store the events (records) that actually occur.

6.3.4. Wide Descriptive Families
Previously, in subsection 6.3.2, we highlighted the importance of adequately choosing the 
attributes that are relevant for the expected analyzes. This does not imply that queries that 
will be submitted to the system have to be known in advance. Nevertheless, frequently, 
there are certain attributes that are considered irrelevant for the analytical use cases of 
the BDW being implemented. In such cases, adequately choosing the attributes allows 
smaller descriptive families, which is relevant when using fully denormalized structures. 
With larger descriptive families, more redundant data would be stored throughout 
several records, instead of just one or few attributes that allow for join operations with 
complementary analytical objects.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 191

Regarding the retail context illustrated in this section, the “store” descriptive family from 
the “sale” object can, in theory, hold a considerable number of attributes. However, 
certain attributes may be considered irrelevant depending on the analytical use cases, 
such as the store’s “GMT offset” or “tax percentage”, if the decision-making process 
of the organization does not consider such information. Consequently, narrow descriptive 
families should be used whenever possible without sacrificing analytical value. Despite 
this guideline, if wide descriptive families are mandatory for a specific case, columnar file 
formats (e.g., ORC and Parquet) with compression techniques can be an efficient way of 
storing analytical objects with hundreds or thousands of columns.

Furthermore, if needed, one can create a “store performance” complementary analytical 
object related to sales, outsourcing the “store” descriptive family, since this object would 
provide significant analytical value at the store level, including several ratios between 
number of workers, floor space, and sales numbers. The flexibility of the approach 
regarding dimensional data allows to delegate some design decisions to practitioners, 
depending on the intended analysis and data characteristics.

6.3.5. The Need for Joins in Data CPE Workloads
Considering the TPC-DS data model (TPC, 2017a), information like customer  
demographics, customer household demographics, customer income, and customer 
address appears related using FK relationships between the dimensions containing this 
information and the “customer” dimension. In the BDW presented in Figure 6-3, all this 
information is denormalized into the “customer” complementary analytical object. Again, 
if one needs to answer queries such as is there any customer demographic class in which 
the organization does not have any customer?, this design choice is not appropriate, and 
the “customer demographics” descriptive family inside the “customer” object will need 
to be outsourced to a complementary analytical object. However, we assume this is not 
the case in the retail context. 

Considering this denormalization process, with a “customer” complementary analytical 
object that includes demographics, household, address, and income information, at first 
glance, the data CPE process may appear simpler than maintaining several separate 
dimensions. However, the degree of simplicity depends on the transactional source that 
fuels the “customer” object:

• If the transactional source is a relational database whose information comes from several 
tables, then the data CPE workload corresponding to the loading and refreshment of 
the “customer” object will need to perform several joins to achieve a fully denormalized 
structure;

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics192

• In contrast, regarding large-scale retail scenarios using NoSQL databases to 
support the vast amount of transactions being generated, this data may arrive at the 
BDW already denormalized (e.g., column-oriented and document-oriented NoSQL 
databases), representing the opposite situation and providing a high degree of 
simplicity without the need to perform join operations, which considerably simplifies 
the data CPE workload.

6.4. CODE VERSION CONTROL SYSTEM
The software industry is under constant evolution, and open source or subscription-based 
remote version control systems such as GitHub have become a pillar of current software 
management and dissemination. GitHub is one of the main collaboration platforms for 
software development, whose activity generates vast amounts of data. In this section, 
we explore the GitHub public dataset available on Google BigQuery (Google, 2018) 
comprising 2.9 million public software repositories, to model a BDW that supports 
decision-making process concerning the activity and metrics of these repositories’ 
commits and content in large-scale environments. The BDW data model illustrated in 
Figure 6-4 includes the “commit” and “repository” analytical objects, where the latter 
complements the former, and also includes the date and time objects. 

Figure 6‑4. BDW data model for a code version control system.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 193

The “commit” analytical object stores data about the commits that have been made to 
the several repositories, including information concerning the author and the committer. 
This analytical object does not contain any relevant analytical attribute and, therefore, 
count operations will be the primary focus of analysis. The “repository” complementary 
analytical object stores information regarding the current state of the 2.9 million public 
repositories, including the license, an array containing the information of several files for 
each branch, an array containing the code (in bytes) of each programming language in the 
repository, and the number of issues classified by type (possibly extracted by scrapping 
and mining the text from the issues page of each repository, for example). 

Both the “commit” and the “repository” objects can be implemented as streaming 
analytical objects, in which they are updated as soon as each commit or any other file 
activity takes place. However, due to the chosen data model, the streaming implementation 
may differ, since the “commit” object is an immutable append-only object, in which each 
commit originates a new record, whereas the “repository” object is a mutable object, 
because the nested analytical attributes should be updated (e.g., code in bytes and 
number of files) instead of originating a new record. Consequently, the “repository” 
object can be implemented using a NoSQL database with adequate support for fast 
random access to nested objects. Hive transaction tables can also be an option depending 
on specific implementation details such as update frequency, latency requirements, and 
update throughput, as previously discussed. 

6.5. A GLOBAL DATABASE OF SOCIETY – THE GDELT 
PROJECT

The GDELT project comprises an open database that monitors worldwide broadcast, 
print, and Web news, identifying the people, locations, organizations, topics, sources, 
emotions, among many other information about news (GDELT, 2018). The data model 
presented in Figure 6-5 represents a BDW to support decision-making processes using 
worldwide event data from the GDELT project, which is composed of date and time 
objects, a “city” spatial object (also including denormalized data about the countries of 
the stored cities), and an “event” analytical object. This analytical object is responsible 
for storing news/events, with data regarding the event and the actors involved in it. The 
actors’ data regarding name, city (attribute related to the spatial object “city”), group (e.g., 
United Nations or World Bank), ethnic and religion information, geocoordinates, among 
others, is stored in a complex data type (e.g., row or struct) for organization purposes, 
which can also contain other complex data types (e.g., “religions” and “types” arrays). 
Consequently, the “event” object supports several analytical applications to process and 
analyze worldwide news/events. 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics194

Figure 6‑5. BDW data model for the GDELT project.

6.6. AIR QUALITY
The final BDW example in this chapter focuses on air quality analysis through sensors 
spread across different locations. The example presented in this section is based on 
the open air quality platform (OpenAQ, 2018). The BDW data model depicted in Figure 
6-6 integrates a spatial object “city”, date and time objects, and a “measurement” 
analytical object corresponding to the measured value of a specific parameter from a 
specific location, date, and time. The “measurement” analytical object has geospatial 
coordinates which are not present in the spatial object. This is a design choice that is 
always encouraged, due to the high cardinality of geospatial coordinates. Consequently, 
space is broken down into levels of detail, the lower levels being typically stored in spatial 
objects, whereas higher levels are stored in the analytical object, as already explored in 
subsection 6.3.2.

Real-time aggregations on sensor data are an adequate use case for specific technologies 
like Druid, a columnar storage that provides aggregations and indexing at ingestion time. 
Such design and implementation choice can fuel a “measurement” analytical object 
modeled at a higher level of detail, since, for example, the “value” attribute can be an 
average of each minute, instead of the raw sensor readings produced each second. 
Besides Druid, this scenario can also be supported, for example, by a Spark Streaming 
CPE workload using window operations or micro batch aggregations, storing the resulting 
data in the streaming storage system of the BDW.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehouses Modeling: From Theory to Practice 195

Figure 6‑6. BDW data model for air quality analysis.

Nevertheless, when using Druid (or similar technologies), one should pay attention to the 
specificities of the data models required by these technologies, because, for example,  
Druid currently handles descriptive and analytical attributes in fully denormalized structures, 
that do not correspond entirely to the data model presented in Figure 6-6. However, as 
seen in this work, the proposed approach for BDWing is relatively flexible and, if that is the 
case, practitioners can adopt a fully denormalized “measurement” analytical object without 
spatial, date, and time objects. After these considerations, this section can be seen as a 
collection of insights that practitioners can use to design streaming analytics on sensor 
data, particularly for air quality analysis in this case, but also with further applications for 
other sensor-based analytical workloads. 

©
 F

C
A





INTRODUCTION

FUELING ANALYTICAL 
OBJECTS IN BIG DATA 
WAREHOUSES7

One of the most laborious stages in the implementation of 
DWs, whether they are traditional or oriented for Big Data 
environments, is the development of ETL processes. As 
discussed in the previous chapters, we do not use this 
terminology, to avoid confusing ETL and ELT processes, 
which can cause several unnecessary discussions. Thus, 
this approach prefers the friendlier NIST terminology 
(collection and preparation), extending it with the term 
“enrichment”, due to the relevance of derived attributes 
(feature engineering) for more impactful and actionable 
insights. As previously discussed, in the proposed 
approach, these processes are known as CPE processes/ 
workloads. This chapter presents various examples of 
CPE workloads that practitioners could find useful when 
implementing BDWs. In these examples, Spark and 
Talend Open Studio for Big Data are used. Designing and 
developing CPE workloads for BDWs is arguably one of 
the most time-consuming and difficult tasks in BDWing. 
Therefore, structuring various examples that demonstrate 
typical tasks in these environments is a relevant contribution 
for the community of practitioners.



Big Data: Concepts, Warehousing, and Analytics198

7.1. FROM TRADITIONAL DATA WAREHOUSES
Migrations from traditional DWs to BDWs will typically become more common (Russom, 
2016). In BDWing implementations, one of the potential workloads will be the migration of 
the organization’s current relational DW to a BDW. This section presents how this task can 
be achieved using Sqoop, HDFS, Spark, and Hive, four technologies depicted in Figure 
7-1. The guidelines here provided are also useful for CPE workloads that read data from 
relational OLTP databases to fuel the BDW. Sqoop is used to transfer data from relational 
databases to HDFS, and Spark is used to prepare and enrich the data before storing it in 
the batch storage component (Hive in this example).

Figure 7‑1. CPE workload for traditional DW migration.

Figure 7-1 illustrates the data flow between the components of a possible technological 
infrastructure. The first step in this process consists in transferring the data from the 
RDBMS that currently supports the DW to HDFS. This task can be done using Sqoop’s 
import functionality:

sqoop import --connect <db_connection_string> {authentication_details} --table 
<table_name> --target-dir <path_to_data_folder>

In this example, the data from a traditional sales DW modeled according to the SSB 
benchmark is used, containing one fact table (“lineorder”) and four dimensions: 
“customer”, “supplier”, “part”, and “date” (O’Neil et al., 2009). After transferring 
the data and storing it in the distributed file system (HDFS), we can start preparing and 
enriching this data according to the desired analytical object. In this case, the analytical 
object is a fully denormalized structure containing all the resulting attributes from the join 
between the fact table and each dimension, despite the fact that, as seen in section 
5.4, analytical objects are flexible and efficient structures that can be more than just a 
full denormalization of fact tables. The following Spark 2 Python code illustrates a typical 
script to perform this task:

1. Import Spark packages and classes.

from pyspark.sql import SparkSession, Row

from pyspark.sql.types import *   



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 199

2. Define two variables: “hdfsPath” and “hiveDbName”.

hdfsPath = “hdfs://<servername>:8020/<path_to_data_folder>/”

hiveDbName = “ssb”   

3. Create Spark session.

spark = SparkSession \

        .builder \

        .appName(“Create SSB Analytical Object”) \

        .config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”) \

        .enableHiveSupport() \

        .getOrCreate() 

4. Create the Hive database for the BDW.
spark.sql(“DROP DATABASE IF EXISTS “ + hiveDbName + “ CASCADE”)

spark.sql(“CREATE DATABASE “ + hiveDbName) 

5. Create a Spark DataFrame and a Spark Temporary View for each table imported from 
Sqoop. This will allow the execution of SQL-based instructions on top of the data that 
has been stored on HDFS.

...

dfSchema = StructType([

            StructField(“custkey”, IntegerType(), True),

            StructField(“name”, StringType(), True),

            StructField(“address”, StringType(), True),

            StructField(“city”, StringType(), True),

            StructField(“nation”, StringType(), True),

            StructField(“region”, StringType(), True),

            StructField(“phone”, StringType(), True),

            StructField(“mktsegment”, StringType(), True)])

customerDF = spark.read \ 

             .csv(hdfsPath + “customer”, header=False, schema=dfSchema)

customerDF.createGlobalTempView(“customer”)

...

6. Create the Hive table to store the analytical object. In this example, the table uses the 
ORC file format, which is an optimized columnar format that considerably improves 
Hive’s performance (Huai et al., 2014). The Parquet file format can also be used for Hive 
tables to achieve adequate performance (Parquet, 2018).

spark.sql(“CREATE TABLE ssb.analytical_obj (c_custkey int, c_name 

varchar(25), ...) STORED AS ORC”)

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics200

7. Join the five tables (one fact table and four dimensions) and store the result in the 
previously created Hive table. If the Hive table is partitioned, the insert statement should 
reflect the partition scheme, and the adequate HiveQL constructs should be used. This 
example illustrates a table without partitions.

spark.sql(“INSERT INTO ssb.analytical_obj SELECT ... FROM 

global_temp.lineorder LEFT OUTER JOIN global_temp.customer ON ...”)

8. Depending on the total size of the resulting table and the number of partitions in the 
DataFrame, Spark can generate several small ORC files, which can interfere with the 
performance and adequate operation of Hive and Hadoop. Consequently, the following 
Hive DDL statement may be useful to concatenate these small ORC files into larger 
ones. Practitioners may consider this statement in their CPE workloads. Note: there 
are other ways of manipulating the number of output files, including some Spark 
configurations and functions (e.g., coalesce and repartition).

ALTER TABLE ssb.analytical_obj CONCATENATE

9. Finally, it is relevant to highlight the need to ensure that after every CPE workload, the 
table and column statistics in Hive are adequately computed and refreshed, taking the 
maximum advantage of this query optimization mechanism. The following Hive DDL is 
also significantly relevant in these scenarios.

ANALYZE TABLE ssb.analytical_obj COMPUTE STATISTICS

ANALYZE TABLE ssb.analytical_obj COMPUTE STATISTICS FOR COLUMNS

7.2. FROM OLTP NOSQL DATABASES
In Big Data environments, NoSQL databases are typically the main driver for OLTP 
workloads, ensuring adequate scalability in intensive random access scenarios (Cattell, 
2011). Organizations are currently using NoSQL databases for several applications, for 
example: massive online sales services (e.g., Amazon); IoT applications; search engines 
(e.g., Google); and mobile applications.

This section presents a workload for collecting, preparing and enriching data from 
Cassandra, which is used to store millions of sensor records. Sensors send a record 
to Cassandra every 15 minutes, which include the following attributes: “sensor id”; 
“date” – a timestamp containing the date and time of the record; “building id” – the 
building in which the sensor is located; and “kwh” – the energy consumption recorded 
at that moment. The goal of this workload is to collect Cassandra’s data for a specific 
month and store it in the BDW’s batch storage (Hive). The Hive analytical object used for 
this purpose will be partitioned by year and month. Throughout the workload, the data 
will be aggregated to match an hourly aggregation level, instead of the original “quarter 



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 201

of an hour” aggregation level. This workload can be written using the following Spark 
Java code:

1. Import Spark packages and classes. In this example, we use the DataStax open source 
Spark Cassandra connector.

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Row;

import org.apache.spark.sql.SaveMode;

import org.apache.spark.sql.SparkSession;

import static org.apache.spark.sql.functions.col;

...

2. Create the main Java class and method to include the tasks for this workload. As is 
already known, the first task defines the Spark Session.

SparkSession spark = SparkSession

   .builder()

   .appName(“Read sensor records from Cassandra”)

   .config(“spark.cassandra.connection.host”, <hostname(s)>)

   .config(“spark.cassandra.auth.username”, <username>)

   .config(“spark.cassandra.auth.password”, <password>)

   .config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”)

   .config(“hive.exec.dynamic.partition.mode”, “nonstrict”)

   .enableHiveSupport()

   .getOrCreate();

3. Create a Spark Dataset that reads data from the Cassandra table. Spark Datasets are an 
abstraction introduced in Spark 1.6, which combine the benefits of Spark DataFrames 
(Spark SQL’s optimized execution engine) with the benefits of RDDs, namely strong 
typing and the ability to use powerful lambda functions (Spark, 2017).

Dataset<Row> ds = spark.read().format(“org.apache.spark.sql.cassandra”)

   .option(“keyspace”, <keyspace_name>)

   .option(“table”, <table_name>)

   .load();

4. Filter the Dataset to select a specific month (January), and aggregate the Dataset to 
match an hourly aggregation level.

Dataset<Row> dsFiltered = ds.filter(month(col(“date”)).equalTo(1));

        

Dataset<Row> dsGrouped = dsFiltered

   .groupBy(

      col(“sensor_id”),

      date_format(col(“date”), “YYYY-MM-DD HH:00:00”).as(“moment”),

      col(“building_id”))

   .sum(“kwh”);©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics202

5. Store the Dataset into the corresponding Hive table and partition. Since dynamic 
partitioning is enabled in the Spark Session configurations, Spark will figure out the 
partitioning scheme automatically. One needs to be aware that when using the method 
presented below, the columns of the Dataset must be ordered according to the 
columns of the Hive table, with the partitioning columns being the last ones. Similarly 
to the previous section, after this task, one can concatenate small files and recompute 
table and column statistics.

dsGrouped.select(

      col(“sensor_id”), 

      col(“moment”),

      col(“building_id”),

      col(“sum(kwh)”),

      year(col(“moment”)), 

      month(col(“moment”)))

   .write().mode(SaveMode.Overwrite).insertInto(<hive_database.table>);

7.3. FROM SEMI‑STRUCTURED DATA SOURCES
The variety of data is one of the major characteristics for defining Big Data. As was 
previously highlighted, data may be more or less structured depending on the underlying 
source. The previous CPE workloads focused on relatively structured data, namely 
relational and column-oriented schemas. This section focuses on semi-structured data 
sources, which typically produce data in formats that are not completely detached from a 
schema, but are flexible or nested, such as server logs, JSON, or XML files. 

Take as an example the following GeoJSON file, which is basically a JSON file that, among 
other attributes, holds geospatial information about buildings in Lisbon:

“features”: [

   {“type”: “Feature”,

    “properties”: {

       “Shape_Leng”: 68.663877, 

       “Shape_Area”: 276.535056, 

       “L_HtRf”: 21,

       “Building_Occupation”: 3, ...

    }, 

    “geometry”: {

       “type”: “MultiPolygon”,

       “coordinates”: [ [ [ 

          [ -9.095283006673773, 38.75460513863176, 0.0 ], 

          [ -9.095298222128497, 38.754405797462653, 0.0 ], ...] ] ] 

    }

   }, ...



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 203

In the proposed approach, we highlight the use of analytical objects that can contain 
nested structures. Extracting useful attributes for analysis and implementing an analytical 
object that adequately handles semi-structured data is key in this specific scenario. In 
order to handle semi-structured data, one needs to ensure two relevant aspects: i) that the 
technology used to implement the CPE workload can process these data structures; and 
ii) that the technology for storing the results of the workload can handle semi-structured 
data. Regarding the first point, in this section, Talend Open Studio for Big Data is used 
to build the CPE workload. However, there are many other suitable technologies for this 
purpose (including Spark). Regarding the second point, Hive is used again as the batch 
storage for the BDW, since it can adequately handle flexible and nested data structures 
such as arrays and maps, providing not only ways to store them, but also ways to query 
and perform analytics on them.

Figure 7-2 illustrates a Talend job used to collect the aforementioned GeoJSON file 
from HDFS, preparing and enriching it with supplementary GeoJSON files. This job is 
responsible for fueling a previously created analytical object storing several buildings 
indicators in Lisbon, including, for example, geospatial information, associated services 
(e.g., gyms and restaurants), occupation, and construction characteristics.

This job starts by reading the content of the GeoJSON file. Talend Open Studio for Big 
Data automatically deduces its schema by inspecting a sample of the records within the 
file. Then, one is able to join the buildings file with supplementary files, such as parishes, 
neighborhoods (subsections), and services within the building or in its surroundings. The 
service list can be extracted from the Google Maps Application Programming Interface 
(API) and, afterwards, one can use several Talend components (e.g., list aggregations and 
custom java code) to create a list of services associated with each building and make it 
available in the appropriate format.

Finally, after all the previous tasks are completed, the data is sent to HDFS and a temporary 
Hive table is created to store the data in text format. As previously noted, Hive tables in 
ORC or Parquet format are more suitable for analytical purposes, so one needs to move the 
data from this temporary table into a table using the ORC format. This procedure involving 
the use of a temporary table is common in Hive-based DWs. However, practitioners may 
find other ways to directly move the data to ORC tables without a temporary table, for 
example, using the ORC API. The final result is an analytical object stored as a Hive table, 
which can handle a variety of structures, including arrays and maps.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics204

Figure 7‑2. CPE workload for semi-structured data.

7.4. FROM STREAMING DATA SOURCES
So far, only the use of the BDW’s batch storage component was demonstrated. When a 
source generates data through streaming mechanisms, one needs to rely on the BDW’s 
streaming storage. Data velocity is another relevant characteristic of Big Data environments 
and, in this section, we will discuss the development of a streaming CPE workload to fuel 
the BDW. Kafka is used for data collection, Spark Streaming is used for data preparation 
and enrichment, and Cassandra is used as the NoSQL database responsible for the 
BDW’s streaming storage. Figure 7-3 summarizes this CPE workload.



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 205

Figure 7‑3. Streaming CPE workload using Kafka, Spark Streaming, and Cassandra.

1. The first step is to develop a Kafka producer. In this example, the producer generates 
a record every five seconds, corresponding to a random product sale in a simulated 
e-commerce environment. Each record contains a key (“sales id”) and a value (“URL” 
of the webpage where the product was purchased). The following Java code snippets 
demonstrate this scenario, and can be used as a guide for other Kafka producers.

a)  Import the Java packages and classes. For this producer, the Apache Kafka API 
is used.

...

import org.apache.kafka.clients.producer.KafkaProducer;

import org.apache.kafka.clients.producer.ProducerRecord;

import org.apache.kafka.clients.CommonClientConfigs;

import org.apache.kafka.clients.producer.Callback;

import org.apache.kafka.clients.producer.ProducerConfig;

import org.apache.kafka.clients.producer.RecordMetadata;

b)  Create the Java class and its variables. Generally, this class needs the topic in 
which the producer will publish the records, the producer object, and several 
properties that reflect the infrastructure in use and the application requirements 
(e.g., secure/unsecure cluster and the number of acknowledgments to consider a 
request as being completed). In this example, there is also one variable containing 
random products used to generate random online sales URLs.

public class DummyProducer extends Thread {  

    private final String topic;

    private final KafkaProducer<String, String> producer;

    private final Properties props;

    private final String[] products;

...

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics206

c) Create the constructor that initializes the variables mentioned above.

public DummyProducer(String topic, String kafkaServerUrl, int 
kafkaServerPort) 

{

   this.products = new String[] {

      “smartphonex7”, “pc4”, “keyboardy”, “monitorpro”

   };

        

   this.props = new Properties();

   this.props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,

      kafkaServerUrl + “:” + kafkaServerPort);

   this.props.put(ProducerConfig.CLIENT_ID_CONFIG, “DummyProducer”);

   this.props.put(CommonClientConfigs.SECURITY_PROTOCOL_CONFIG,

      “SASL_PLAINTEXT”);

   this.props.put(ProducerConfig.ACKS_CONFIG, “all”);

   this.props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, 

      “org.apache.kafka.common.serialization.StringSerializer”);

   this.props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, 

      “org.apache.kafka.common.serialization.StringSerializer”);

        

   this.producer = new KafkaProducer<>(props);

   this.topic = topic;

}

d)  Create the run method responsible for executing the main task, i.e., generating 
an URL for a random online sale every five seconds for an infinite timespan. In this 
example, a random product is selected from a set of four available products (see 
code snippet above). Each sale also contains a random flag indicating whether the 
sale was the result of a recommendation based on a previous visualized product 
(“redirected” attribute).

@Override

public void run() {

   Random random = new Random();

   String message;

   

   while(true) {

      String salesID = “” + random.nextInt() + System.currentTimeMillis();

      message = String.format(

         “\”http://mywebstore.com/?product=%s&redirected=%s\””,

         this.products[random.nextInt(4)], random.nextBoolean());

      

      ProducerRecord<String, String> data = new ProducerRecord<>(

         this.topic, salesID, message);

      this.producer.send(data);

      try {

         Thread.sleep(5000);

http://mywebstore.com/?product=%s&redirected=%s


Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 207

      } catch (InterruptedException ex) {

         System.err.println(ex.getMessage());

      }

   }

}

e)  Finally, create the main method for the “DummyProducer” class, which will simply 
run the Kafka producer with the given Kafka topic, broker, and port. 

public static void main(String args[]) {

   DummyProducer producer = new DummyProducer(<topic>, <kafka_broker>, <port>);

   producer.start();

}

2. Having a streaming producer is just part of the CPE workload, specifically it represents 
the collection stage of the workload. Consequently, in BDWing environments, one 
typically needs to prepare and enrich the data before making it available for analytical 
purposes. One way to achieve this goal is using the powerful and stable Spark 
Streaming API, which allows to use multiple functions (e.g., filter, join, count, and map) 
on streaming sources like Kafka, ensuring adequate scalability and fault-tolerance.  
The following Java code snippets demonstrate a Spark Streaming application that 
uses regular expressions to extract information from the Kafka messages and storing 
the results in the BDW’s streaming storage component. In this example, Cassandra is 
used to store a streaming analytical object containing the “sales id”, the “product”, 
and the “redirected” attributes.

a)  Import the required packages for this Spark Streaming application. The key APIs 
are the Spark Core API, the Spark Streaming API, the Spark Streaming Kafka API, 
and the DataStax Cassandra connector.

...

import static com.datastax.spark.connector.japi.CassandraJavaUtil.javaFunctions;

import static com.datastax.spark.connector.japi.CassandraJavaUtil.mapToRow;

import org.apache.spark.SparkConf;

import org.apache.spark.streaming.api.java.*;

import org.apache.spark.streaming.kafka010.*;

import org.apache.kafka.clients.consumer.ConsumerRecord;

import org.apache.kafka.common.serialization.StringDeserializer;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.streaming.Durations;

b)  After creating the main class and the main method for the Spark Streaming 
application, configure the Kafka connector, including the consumer configurations 
and the list of topics to be consumed. The following code snippet illustrates the 
configuration of a Kerberized cluster, in which the Spark consumer informs Kafka 
when it has finished consuming a certain offset; that is why one disables Kafka 
auto commits and uses the “offsetRanges” variable. This ensures that the ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics208

Spark consumer only acknowledges the processing of certain offsets when the 
records are already stored in Cassandra. We will clarify this functionality later in 
this subsection.

Map<String, Object> kafkaParams = new HashMap<>();

   kafkaParams.put(“bootstrap.servers”, <kafka_broker>:<port>);

   kafkaParams.put(“key.deserializer”, StringDeserializer.class);

   kafkaParams.put(“value.deserializer”, StringDeserializer.class);

   kafkaParams.put(“group.id”, “spark.events”);

   kafkaParams.put(“auto.offset.reset”, “latest”);

   kafkaParams.put(“enable.auto.commit”, false);

   kafkaParams.put(“security.protocol”, “SASL_PLAINTEXT”);

   Collection<String> topics = Arrays.asList(<topic(s)>);

   final AtomicReference<OffsetRange[]> offsetRanges = new AtomicReference<>();

c)  Create the Spark configuration and the Spark Streaming object. Since we are 
storing the results in Cassandra, the Cassandra connection properties are also 
needed, just like in the previous OLTP NoSQL-based CPE workload. In this 
example, the streaming application processes data arriving from Kafka in 10 
seconds micro batch intervals. As noted in subsection 5.2.3.2, micro batches 
are configurable, and they are often a trade-off between latency, throughput, and 
flexibility.

SparkConf conf = new SparkConf()

   .setAppName(“StreamingCPEWorkload”)

   .set(“spark.cassandra.connection.host”, <host(s)>)

   .set(“spark.cassandra.auth.username”, <username>)

   .set(“spark.cassandra.auth.password”, <password>);

        

JavaStreamingContext jssc = new JavaStreamingContext(

   conf, Durations.seconds(10));

JavaInputDStream<ConsumerRecord<Integer, String>> stream =

   KafkaUtils.createDirectStream(

      jssc,

      LocationStrategies.PreferConsistent(),

      ConsumerStrategies.Subscribe(topics, kafkaParams));

d)  As previously stated, this application is using manual Kafka commits and, 
therefore, one needs to inform Kafka when the data has been processed. 
Consequently, the first step after creating the stream is to store the Kafka offset 
range in the Spark application, to commit the processed offsets after the data 
has been successfully stored in Cassandra. The following function needs to be 
the first one called after creating the stream, since it does not work once the 
transformations to the “stream” object have been applied. This ensures the 
application has “exactly-once” semantics instead of “at-least-once” semantics, 



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 209

which makes sure the data arriving from Kafka is not processed and stored 
twice.

stream.foreachRDD((JavaRDD<ConsumerRecord<Integer, String>> rdd) -> {

   OffsetRange[] offsets = ((HasOffsetRanges) rdd.rdd()).offsetRanges();

   offsetRanges.set(offsets);

});

e)  To extract the “product” and “redirected” attributes arriving from 
Kafka’s messages, one can use regular expressions on the URL. The “map” 
transformation can be used to extract these attributes. Spark Streaming offers 
several transformations, window, join, and output functions that can be used for 
streaming contexts. For example, joining a stream with an historical dataset can 
be significantly useful for BDWing purposes, to prepare and enrich data for certain 
analytical objects.

JavaDStream<DummySale> transformedStream = stream

   .map((ConsumerRecord<Integer, String> event) -> {

      String[] fields = event.value().split(“\”;\””);

      Matcher m = Pattern.compile(“product=(.*)&redirected=(.*)”).matcher(fields[1]);

      m.find(); 

      return new DummySale(

         fields[0], m.group(1), Boolean.parseBoolean(m.group(2)));

   });

f)  Once all the processing tasks in this example are completed, the results can be 
stored in Cassandra, and the Spark Streaming application can then commit the 
offsets to Kafka, acknowledging that the specific records have been processed 
and stored. It should be noted that, in this example, “DummySale” is a typical Java 
Bean containing the same attributes as the analytical object stored in Cassandra. 
This Java Bean is used to apply a schema to each row in the Spark RDD.

transformedStream.foreachRDD((JavaRDD<DummySale> rdd) -> {

   javaFunctions(rdd).writerBuilder(

      <topic>, <cassandra_database>, mapToRow(DummySale.class)

   ).saveToCassandra();

   ((CanCommitOffsets) stream.inputDStream()).commitAsync(offsetRanges.get());

});

g)  Finally, the last task consists in simply starting the application and waiting for its 
termination.

try {

   jssc.start();

   jssc.awaitTermination();

} catch (InterruptedException ex) {

   System.err.printf(“The application ‘%s’ has stopped! “, conf.getAppId());

}

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics210

7.5. USING DATA SCIENCE MODELS
One of the main aspects in the proposed approach (previously described in Chapter 5) 
 is the inclusion of data science models in CPE workloads fueling the BDW. This book 
considers data science as an umbrella term for several related and more specific subareas, 
including: data mining/machine learning; text mining; image mining; and video mining. 
Regarding data mining, traditional DWs are frequently considered a relevant data source 
for the algorithms used in this area, since they typically contain an extensive record of 
historical data regarding the organization. Since these algorithms need a vast training 
set to extract patterns, traditional DWs are natural sources of data for feeding these 
algorithms, which can be considered “clients of the DW” (Kimball & Ross, 2013). This 
is also true for a BDW (Figure 5-2), wherein it can be queried by data scientists that are 
“playing” with the data in the data science sandbox. However, this book extends this 
idea by inviting practitioners to include data mining/machine learning algorithms in CPE 
workloads, in order to create new predictive attributes and include them in the analytical 
objects stored in the BDW (Figure 5-3).

The same strategy remains valid for unstructured data science techniques like text mining, 
image mining, or video mining. These techniques are not frequently seen in traditional 
DWing environments. One could argue that raw unstructured data has almost no value 
for analytical purposes. Patterns should be extracted using data science techniques and 
then, since these results are already relatively structured, they can follow their path to an 
OLAP-oriented system like the BDW. Another argument that can be made is that the rigid 
structure of relational DWs is a significant barrier in these scenarios, since most of the 
time it is unnatural, time-consuming, and inefficient to model dimensions, fact tables, and 
relationships for this type of analytical workloads.

For example, when an organization is collecting images in real-time and instantaneously 
using an algorithm to predict the occurrence of a certain pattern in that image (e.g., 
template matching for manufacturing quality control), it becomes really inefficient to fuel a 
relational DW via streaming mechanisms. For each image being analyzed, a typical ETL 
process has to scan the several dimensions for any changes since the last DW refresh 
(e.g., new rows to add/update in dimension tables), or to retrieve each dimension’s SK 
for matching the FK of each new row in the fact table, for example. In these contexts, 
relational DWs are not the most adequate solution, and fully denormalized structures 
(analytical objects), are arguably more efficient and simpler to implement, since their 
corresponding CPE workloads are considerably easier to develop and maintain compared 
to traditional ETL processes.

In Big Data environments, there is the need to integrate both structured and unstructured 
sources (Kimball & Ross, 2013). As previously discussed, predictive analytics is also a 
relevant use case that BDWs must consider among their set of mixed and complex 



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 211

analytical workloads. This is the reason why including structured and unstructured data 
science models in CPE workloads can be seen as a way of extracting value hidden 
in Big Data, which can then be used to make predictions about future events and to 
fuel the analytical objects stored in the BDW. This section discusses two types of CPE 
workloads including data science models, using data mining/machine learning models 
for structured data and using text mining, image mining, and video mining models for 
unstructured data.

7.5.1. Data Mining/Machine Learning Models for Structured Data
Predictive attributes are the key for predictive analytics within BDWs. We focus on the 
use of data science models to create these attributes. The data stored either in the 
file system or in the indexed storage of the BDW can be used to train these predictive 
models, which can then be used to enrich data arriving at the system with new predictive 
attributes. In these contexts, data mining/machine learning models can be useful for 
CPE workloads dealing with structured data. This subsection uses the Spark MLlib 
API to demonstrate one of many data mining techniques that can be used in BDWing 
systems, namely clustering.

Clustering can be used when the training dataset is not previously labeled with the attribute 
one wants to predict. In this case, this is also mentioned as an unsupervised learning 
task. There are many other techniques available in Spark MLlib, both unsupervised (e.g., 
association rules) or supervised (e.g., classification and regression), offering scalable 
ways to train, test, and apply data mining/machine learning models. The following Java 
code snippets demonstrate the use of clustering algorithms in Spark, namely the very 
broadly used K-means algorithm. Figure 7-4 presents an overview of the CPE workload 
implemented in this subsection.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics212

Figure 7‑4. Example of using data mining/machine learning algorithms in CPE workloads.

1.  Import the java packages needed for the application.

...

import org.apache.spark.sql.SparkSession;

import org.apache.spark.ml.clustering.KMeansModel;

import org.apache.spark.ml.clustering.KMeans;

import org.apache.spark.ml.feature.MinMaxScaler;

import org.apache.spark.ml.feature.MinMaxScalerModel;

import org.apache.spark.ml.feature.VectorAssembler;

import org.apache.spark.ml.linalg.Vector;

import org.apache.spark.sql.Dataset;

import org.apache.spark.sql.Encoders;

import org.apache.spark.sql.Row;

2.  Create the main class and the main method, which starts by initiating the Spark 
Session. In this example, one will be segmenting customers according to their buying 
behavior (following the example of section 7.1): how many orders do they place? How 
much revenue do they bring to the company? Are they regular monthly customers? 



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 213

SparkSession spark = SparkSession

   .builder()

   .appName(“Segmenting Customers using K-means”)

   .config(“spark.sql.warehouse.dir”, “/apps/hive/warehouse/”)

   .config(“hive.exec.dynamic.partition.mode”, “nonstrict”)

   .enableHiveSupport()

   .getOrCreate();

3.  To accomplish this goal, the analytical object created in subsection 7.1 can be used, 
which, as already seen, is based on the SSB dataset (O’Neil et al., 2009). Since the 
analytical object corresponds to data that is already stored in the BDW, this workload 
does not include a data collection stage from an external data provider. This is a 
workload that uses the models, insights, and results derived from the data science 
sandbox component of the BDW and, therefore, the data science sandbox can be 
regarded as a data provider. In this example, using Spark SQL, one can submit a query 
to the Hive batch storage component, to retrieve the training set needed to segment 
customers. 

Dataset<Row> customerSales = spark.sql(“

WITH

customerSales AS (

SELECT c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment, 

od_monthnuminyear, sum(quantity) as monthly_quantity, sum(revenue) as 

monthly_revenue, count(1) as monthly_orders

FROM ssb_analytical_objects.analytical_obj10

GROUP BY c_custkey, c_name, c_city, c_nation, c_region, c_mktsegment, 

od_monthnuminyear

), 

minmax AS (

SELECT c_custkey, MIN(monthly_revenue) min_monthly_revenue, 

MAX(monthly_revenue) max_monthly_revenue

FROM customerSales

GROUP BY c_custkey)

SELECT customerSales.c_custkey, c_name, c_city, c_nation, c_region, 

c_mktsegment, stddev((monthly_revenue - 

min_monthly_revenue)/(max_monthly_revenue - min_monthly_revenue)) 

revenue_monthly_stddev, sum(monthly_revenue) revenue, sum(monthly_orders) 
total_orders, sum(monthly_quantity) quantity

FROM customerSales

LEFT OUTER JOIN minmax ON customerSales.c_custkey = minmax.c_custkey

GROUP BY customerSales.c_custkey, c_name, c_city, c_nation, c_region, 

c_mktsegment

“);

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics214

4.  One of the main tasks in data mining/machine learning processes is feature engineering. 
In this example, the previous query created a training set with customers and their 
respective orders, revenue, and standard deviation regarding monthly revenue. However, 
one way to improve the efficiency of learning algorithms is called feature scaling, i.e., 
providing a standard scale for all features. Moreover, in Spark MLlib 2, all features must 
be contained in a Vector object and, therefore, one can use the VectorAssembler to 
transform the original data from Hive, while at the same time replacing null values with 
zeros, so that the VectorAssembler can be properly used. The following code snippet 
illustrates these simple feature engineering tasks. Nonetheless, Spark offers several 
other functions for these purposes.

VectorAssembler assembler = new VectorAssembler()

   .setInputCols(new String[]{“revenue_monthly_stddev”, “revenue”, “total_orders”})

   .setOutputCol(“vectors”);

Dataset<Row> vectorizedData = assembler.transform(customerSales.na().fill(0));

MinMaxScaler scaler = new MinMaxScaler()

   .setInputCol(“vectors”)

   .setOutputCol(“features”);

MinMaxScalerModel scalerModel = scaler.fit(vectorizedData);

5.  The next step consists in training and testing the K-means model with the previously 
prepared features. After training the model, data scientists can evaluate its performance, 
by changing the number of clusters that will be created and analyzing the behavior of 
the cluster sum of squared errors, and by manually inspecting the clusters’ centers, for 
example. This evaluation allows to understand what each cluster means. For example: 
one cluster may represent customers with less orders, but who bring more revenue 
for the company in steady monthly rates; in contrast, another cluster may represent 
irregular customers with several orders, but bringing low income for the company. In 
this workload, for demonstration purposes, the selected number of clusters is 2. 

KMeans kmeans = new KMeans().setK(2).setSeed(1L);

KMeansModel model = kmeans.fit(trainingSet);

double wssse = model.computeCost(trainingSet);

System.out.println(“Within Set Sum of Squared Errors = ” + wssse);

Vector[] centers = model.clusterCenters();

System.out.println(“Clusters Centers: ”);

for (Vector center : centers) {

   System.out.println(center);

}

6.  Despite the fact that in this workload we trained, tested, and applied the model in the 
same Spark application, both the feature engineering models and the K-means  model 
can be permanently saved and used for later executions of this or other workloads. 
This means that the models do not need to be trained each time that they are applied.



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 215

try {

   model.write().save(“<path_in_hdfs>”);

} catch (IOException ex) {

   System.err.println(“Error saving the model!”);

}

7.  The last step is storing the results into the new Hive analytical object. The inclusion 
of data science models in CPE workloads does not always involve generating new 
analytical objects. Sometimes, the workload simply refreshes existing analytical 
objects with new data. On other ocassions, existing analytical objects can be updated 
with new attributes (e.g., Hive supports different schemas for different partitions in a 
table). In this workload, since one is training, testing, and applying the learning model 
using a single application, each time the workload is executed the analytical object is 
created/overwritten. This analytical object contains attributes similar to those in the 
“customerSales” Spark Dataset used to train the K-means model, but with the addition 
of the cluster to which the customer belongs, along with a user-friendly description of 
the cluster according to its centroid. This is possible by applying the predict method 
from the K-means model. Having an analytical object containing the customers’ buying 
behavior allows to carry out interesting analyzes, even allowing the join between this 
analytical object and the original one containing all sales transactions. It should be 
noted that, in this example, “customerSale” is a typical Java Bean containing the 
same attributes as the analytical object stored in Hive.

Dataset<CustomerSale> analyticalObject = trainingSet.map((Row r) -> {

   int cluster = model.predict((Vector) r.get(11));

   String levConstantIncome;

   String levRevenueGenerated;

   String levTotalOrders;

   switch (cluster) {

      case 0:

         levConstantIncome = “Buys more frequently”;

         levRevenueGenerated = “Low”;

         levTotalOrders = “Low”;

         break;

      case 1:

         levConstantIncome = “Buys less frequently”;

         levRevenueGenerated = “Average-Higher”;

         levTotalOrders = “Average-Higher”;

         break;

      default:

         levConstantIncome = “NA”;

         levRevenueGenerated = “NA”;

         levTotalOrders = “NA”;

         break;

   }

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics216

   CustomerSale c = new CustomerSale();

   c.setC_custkey(r.getInt(0));

   c.setC_name(r.getString(1));

   c.setC_city(r.getString(2));

   c.setC_nation(r.getString(3));

   c.setC_region(r.getString(4));

   c.setC_mktsegment(r.getString(5));

   c.setRevenue_monthly_stddev((int) r.getDouble(6));

   c.setRevenue((int) r.getDouble(7));

   c.setTotal_orders(r.getLong(8));

   c.setCluster(“cluster” + cluster);

   c.setLev_constant_income(levConstantIncome);

   c.setLev_revenue_generated(levRevenueGenerated);

   c.setLev_total_orders(levTotalOrders);

   return c;

}, Encoders.bean(CustomerSale.class));

analyticalObject.write().mode(SaveMode.Overwrite).insertInto(“<hive table>”);

7.5.2. Text Mining, Image Mining, and Video Mining Models
Although unstructured data mining is relatively different from structured data mining, the 
general steps presented in the previous subsection can still be applied. For this reason, as 
Figure 5-3  demonstrates, the proposed method for CPE is fairly similar for both structured 
and unstructured data. Obviously, while one can use classification, regression, clustering, 
association rules, or time series forecasting to extract patterns and make predictions in 
structured environments (Pujari, 2001), in unstructured contexts, the techniques may be 
significantly different (although sometimes they overlap). Regarding the technologies to be 
used in these contexts, they depend on the specific use case. For example, Spark MLlib 
does not have an extensive set of text mining algorithms, but it offers some text-based 
feature extraction and clustering algorithms (e.g., TF-IDF, Word2Vec, and LDA). However, 
currently, Spark does not offer adequate support for image or video mining algorithms. 
In these contexts, choosing complementary technologies (such as Python, which offers 
some interesting libraries oriented towards image mining) in the data science sandbox is 
appropriate.

In BDWing environments, including unstructured data science models in CPE workloads is 
intented to extract structured predictive attributes, which are structured findings extracted 
from unstructured sources. These attributes can be considered the structured value that 
can be extracted from unstructured data, which by itself, in its raw state, would not be 
significantly relevant for BDWing purposes. The data has to be prepared and enriched 
using adequate techniques and technologies capable of mining the value from these 
sources. Only then the results of these tasks will provide analytical value. 



Copyright © River Publishers – except portuguese speaking countries

Fueling Analytical Objects in Big Data Warehouses 217

Figure 7-5 presents a workflow based on Figure 5-3, including several techniques useful in 
these scenarios. As can be seen, despite the challenges and complexity of unstructured 
data mining, the general tasks remain similar to a CPE workload that includes data mining/
machine learning algorithms for structured data. First, the data is collected using batch or 
streaming mechanisms. For a specific source and a specific technique, a previously trained 
model is used to extract structured patterns from text, images, or video, depending on the 
use case. Complementary datasets can also be used for data enrichment, if applicable. 
After all the (descriptive, factual, and predictive) attributes of the analytical object are 
created, the analytical object is ready to be used. So far, there is no difference compared 
to the CPE workload discussed in the previous subsection.

Figure 7‑5. Including unstructured data science models in CPE workloads.

That being said, the difference relies solely on the use of new and challenging techniques: 
for text mining, techniques such as information extraction and sentiment analysis can 
be significantly useful for extracting entities (e.g., people and dates), relationships (e.g., 
events), and sentiments from raw text (Gandomi & Haider, 2015). This will allow fueling 
analytical objects which can be significantly useful for many organizations; for image 
mining purposes, techniques such as object recognition (e.g., template matching) and 
image classification can also be significantly useful (Zhang, Hsu, & Lee, 2001); finally, 
for video mining, video classification and video clustering can be used (Vijayakumar ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics218

& Nedunchezhian, 2012), which have similar goals as their structured data mining 
counterparts, although, of course, with different specifications. These are just some 
examples of possible techniques, since the list can be considerably extended. However, 
to demonstrate their role in BDWing environments, these techniques provide adequate 
examples of the capabilities of unstructured analytics in BDWs.



INTRODUCTION

EVALUATING 
THE PERFORMANCE OF 
BIG DATA WAREHOUSES8

This chapter discusses the evaluation of BDWs built using 
the proposed approach. To evaluate the performance of a 
BDW, several related benchmarks can be used, such as the 
TPC-DS benchmark (TPC, 2017a) or the SSB benchmark 
(O’Neil et al., 2009), for example. In this work, an extension 
of the SSB benchmark, named SSB+ (C. Costa & Santos, 
2018), which combines batch and streaming data, was 
specifically created for BDWing contexts. An extension of the 
original SSB benchmark was needed due to the lack of 
workloads that combine volume, variety, and velocity of data, 
with adequate customization capabilities and integration with 
current versions of different Big Data technologies. Moreover, 
one needs to evaluate different modeling strategies (e.g., flat 
structures, nested structures, and star schemas) and different 
workload considerations (e.g., partitioned analytical objects 
and dimensions’ size in star schema-based BDWs) and, 
therefore, an adaptation of the SSB benchmark is required. 
This chapter presents the SSB+ Benchmark, discussing the 
performance, advantages, and disadvantages of several 
design and implementation choices in the proposed approach, 
extending and integrating previously published scientific works 
(C. Costa & Santos, 2018; E. Costa, Costa, & Santos, 2017).



Big Data: Concepts, Warehousing, and Analytics220

8.1. THE SSB+ BENCHMARK
This section details the SSB+ Benchmark, namely the data model, queries, system 
architecture, and infrastructure. Besides serving as a proof-of-concept validation, 
presenting several insights related to relevant design decisions for BDWs, the SSB+ 
Benchmark is useful for practitioners who want to evaluate the performance of their own 
implementations. 

8.1.1. Data Model and Queries
The SSB+ Benchmark data model (C. Costa & Santos, 2018), presented in Figure 8-1, is 
based on the original SSB benchmark (O’Neil et al., 2009), so all the original tables remain 
the same (“lineorder”, “part”, “supplier”, and “customer”), with the exception of the 
“date” dimension, which has been streamlined to remove the temporal attributes that 
are not used in the 13 original SSB queries. These 13 queries were not modified besides 
the replacement of “where clause” joins for ANSI SQL joins with an explicit join operator. 
This measure is taken to ensure an optimal execution plan for the optimizers of the query 
engines. 

Figure 8‑1. SSB+ data model. Adapted from O’Neil et al. (2009) and C. Costa & Santos (2018) with extended 

content.

Since the original SSB benchmark only takes into consideration a star schema-based 
DW, the SSB+ also includes jobs for transforming the “lineorder” star into a flat 
“lineorder” analytical object. The original 13 SSB queries are also modified to match 
the new flat analytical object. These changes allow us to compare the advantages and 
disadvantages of star schemas and flat structures for BDWs. Moreover, the SSB+ also 
considers two different sizes in the dimensions: the original TPC-H sizes (TPC, 2017b) 
(benchmark in which the original SSB is based), which includes larger “part”, “customer”, 



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 221

and “supplier” tables; and the original SSB sizes, in which these tables are smaller to 
represent more traditional dimensions in the retail context. This SSB+ feature allow us to 
understand the impact of the dimensions’ size in star schema-based BDWs. Furthermore, 
the SSB+ also includes a “returns” table (flat analytical object and star schema fact 
table) and four new queries to evaluate the performance of drill across operations, as well 
as window and analytics functions.

Regarding the streaming workloads of the SSB+ Benchmark, a new “time” dimension 
table is included, as the data stream has a “minute” granularity. This new dimension can 
then be joined with the new “social part popularity” fact table, as well as other existing 
dimensions such as “part” and “date”. A flat version of this fact table is also available 
for performance comparison purposes. The “social part popularity” table contains 
data from a simulated social network, where users express their sentiments regarding the 
parts sold by the organization represented in the SSB and SSB+ Benchmark. Along with 
these new tables, three new streaming queries were developed for both the star schema-
based BDW and the flat-based BDW, performing several aggregation, filtering, union, and 
join operations on streaming data. All the applications, scripts, and queries for the SSB+ 
Benchmark can be found in (C. Costa, 2017).

8.1.2. System Architecture and Infrastructure
The SSB+ Benchmark takes into consideration various technologies to accomplish 
different goals, from data CPE workloads to querying and OLAP tasks. These 
technologies are presented in Figure 8-2. Starting with the CPE workloads, for batch 
data, the SSB+ considers a Hive script with several beeline commands that load the data 
from HDFS to the Hive tables stored in the ORC format, an efficient columnar file format 
for data analytics. Several SFs can be generated using the original SSB generator. This 
book considers the SF=30, SF=100, and SF=300 for the batch performance evaluation. 
Regarding streaming data, a Kafka producer generates simulated data at configurable 
rates, and this data is processed by a Spark Streaming application that finally stores 
it in Hive and Cassandra. Streaming data is stored both in Hive and Cassandra for 
benchmarking purposes (see section 8.3).

For querying and OLAP, this book considers both Hive on Tez and Presto, which are two 
robust and efficient SQL-on-Hadoop engines (Santos et al., 2017). Obviously, practitioners 
can run the SSB+ Benchmark with any SQL-on-Hadoop engine of their choosing, as 
long as they develop the adequate scripts to run the workloads. Currently, the repository 
mentioned in the previous subsection contains only applications and scripts supporting 
the technologies mentioned in Figure 8-2. However, all the contents of the repository are 
open to the public to facilitate changes or extensions. Hive and Presto are used to provide ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics222

insights from different SQL-on-Hadoop engines, to see if the conclusions hold true for 
more than one engine, since one of them may perform better under certain data modeling 
strategies. However, in the streaming workloads, only Presto is used, since it targets 
interactive SQL queries over different data sources, including NoSQL databases, which 
is not a very proclaimed feature in Hive, although it can also be used for this purpose. 
Moreover, despite Tez’s tremendous improvements to Hive’s performance, Hive on Tez 
may not be considered a low latency engine, as the results presented in this chapter may 
suggest.

Figure 8‑2. SSB+ architecture. Adapted from C. Costa & Santos (2018).

The infrastructure used in this work is a 5-node Hadoop cluster with one HDFS  
NameNode (YARN ResourceManager) and four HDFS DataNodes (YARN NodeManagers). 
The hardware used in each node includes:

• 1 Intel Core i5, quad-core, with a clock speed ranging between 3.1GHz and 3.3GHz;

• 32GB of 1333MHz DDR3 RAM, with 24GB available for query processing;

• 1 Samsung 850 EVO 500GB Solid State Drive (SSD), with up to 540MB/s read speed 
and up to 520MB/s write speed;

• 1 Gigabit Ethernet card connected through Cat5e Ethernet cables and 1 Gigabit  
Ethernet switch.



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 223

The operative system is CentOS 7 with an XFS file system, and the Hadoop distribution is 
the Hortonworks Data Platform 2.6. Besides Hadoop, a Presto coordinator is also installed 
on the NameNode, as well as four Presto workers on the four remaining DataNodes. All 
configurations are left unchanged, apart from the HDFS replication factor, which is set 
to 2, as well as Presto’s memory configuration, which is set to use 24GB of the 32GB 
available in each worker (identical to the memory available for YARN applications in each 
NodeManager). 

8.2. BATCH OLAP
Batch OLAP queries take as input vast amounts of data stored in the batch storage 
component of the BDW. This section discusses the performance of batch OLAP queries for 
BDWs using two modeling approaches: star schemas and flat analytical objects. Moreover, 
this section also addresses the impact of the dimensions’ size on star schemas, the use 
of nested structures in analytical objects, the improvement of the BDW’s performance by 
using adequate data partitioning, and the performance of drill across queries and window, 
as well as analytics functions. 

8.2.1. Comparing Flat Analytical Objects with Star Schemas
This first evaluation consists in analyzing the performance, storage size, CPU usage, and 
memory requirements of flat analytical objects and star schemas, using the 13 SSB+ 
batch queries. Regarding the star schema, all the workloads depicted in this subsection 
use the larger dimensions instead of the smaller ones, which will be discussed in 
subsection 8.2.3. 

Analyzing the small to medium SFs, illustrated in Figure 8-3, we can conclude that the 
performance advantage of flat analytical objects is quite noticeable. For the majority 
of the queries, the flat object visibly outperforms the star schema, especially in the 
SF=100 workload, wherein the performance of a star schema with a high number of 
rows starts to degrade. Interestingly, such phenomenon does not hold true for Hive’s 
Q2.2, and the star schema shows better performance in this scenario, possibly due 
to some performance problems in Hive’s ability to process string range comparisons  
(“p_brand1 between ‘MFGR#2221’ and ‘MFGR#2228’”) with significantly larger 
amounts of data (see Figure 8-4 to understand the storage size impact of the flat 
analytical object). This phenomenon does not occur in the Presto SQL-on-Hadoop 
engine.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics224

Figure 8‑3. Small to medium batch SSB+ workloads.

Star schema (SS); analytical object (AO). Hive’s results are based on E. Costa et al. (2017).

Figure 8‑4. Storage size for the SF=300 using different modeling approaches.



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 225

Moreover, looking into Hive’s Q1.1, Q1.2, and Q1.3, the flat analytical object and 
the star schema performance are fairly similar, which is comprehensible, since for 
these queries, the star schema only needs to join the fact table “lineorder” with the 
dimension “date”. Given that the flat analytical object is around 2.5 times bigger than 
the corresponding dimensional DW stored in the ORC file format (see Figure 8-4), it 
balances out the cost of the join operation. However, in Presto’s SF=100 workload, 
despite this fact, the flat analytical object still outperforms the star schema. At this 
point, Presto started exhibiting a significantly satisfactory performance when using 
completely flat structures.

Regarding the large-scale batch workload (SF=300), depicted in Figure 8-5, the trend 
continues, specifically the overall performance advantage of using flat structures. The 
performance of a Hive star schema for most of the queries is not satisfactory for interactive 
scenarios, often being more than 3 to 4 times slower than a flat structure. There are some 
exceptions (Hive/Presto’s Q1.1, Q1.2, and Q1.3; and Hive’s Q4.3), mainly due to the 
aforementioned reasons, i.e., the storage size of the flat structure causes a significant 
overhead in the I/O tasks of the queries, which turns them into I/O bound queries, and 
causes the flat analytical object to perform worse than the star schema. Consequently, 
even though flat structures tend to perform significantly better than star schemas in these 
environments, there are certain queries wherein joining a fact table with a small dimension 
(e.g., “date” dimension) is faster than executing the same queries on flat structures. 
However, one also needs to consider the storage size of these two data sources. Looking 
at Figure 8-4, the entire star schema DW using the ORC file format has around 51GB, 
whereas its flat counterpart has around 139GB. Considering the infrastructure used for 
this book and previously described in subsection 8.1.2, the entire star fits into memory, 
whereas the flat analytical object significantly surpasses the total amount of memory 
available for querying.

Smaller dimensions allow an efficient type of join, known as broadcast join (or map 
join in Hive) (Floratou et al., 2014). When using broadcast joins, the smaller tables 
involved in the join operation are broadcasted to the memory of the nodes involved in 
the computation, which means that the large table (traditionally a fact table) is joined 
with all these structures in memory, while it is being processed throughout the nodes. 
The effects of using broadcast joins can be seen in Figure 8-5, in which Presto exhibits 
a significant decrease in query execution times, compared to the more conventional 
distributed hash join. However, despite this advantage, Presto is even faster when 
using flat structures that do not require joins. Such results do not favor the dimensional 
approach for DWs in Big Data environments.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics226

Figure 8‑5. Large-scale batch SSB+ workload.

Star schema with broadcast joins (SS BJ); analytical object (AO); star schema with distributed hash joins (SS DJ). 

Hive’s results are based on E. Costa et al. (2017).

Doing broadcast joins is not always possible, since this technique requires that the 
dimensions fit into a fraction of the memory available for query processing, which is 
not always the case if the dimensions are naturally large or become larger through the 
application of type 2 SCD techniques (Jukic et al., 2017; Kimball & Ross, 2013). Certain 
query optimizers do not automatically select the most appropriate join technique according 
to the size of the tables, which is the case of Presto’s optimizer in version 0.180. For this 
book, the two join techniques (distributed and broadcast) were manually selected. When 
enforcing broadcast joins, one must be aware that if the broadcasted input is too large, 
“out of memory” errors can occur, due to the lack of memory to process all inputs. Hive 
1.2.1, included in the Hortonworks Data Platform used for this book, automatically selects 
the most appropriate type of join. Nevertheless, since all configurations are set to their 
default values, Hive does not trigger a map join in the SF=300 workload (and for certain 
SF=100 queries as well), since the threshold regarding the fraction of memory dedicated 
for map join is probably surpassed. This causes a severe performance degradation for 
the star schema implemented in Hive. Such phenomenon raises a relevant discussion 
concerning the effect of the dimensions’ size in the star schema modeling approach, 
which will be further discussed in subsection 8.2.3.



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 227

Besides these memory requirements, during the benchmark, we analyzed the cumulative 
and peak memories for each query running in Presto, and we observed that the star 
schema tends to achieve a higher peak memory when processing queries. The total 
amount of memory used for star schema-based queries is also substantially higher than 
flat-based queries in Presto’s workloads. Regarding CPU usage, Figure 8-6 shows that in 
addition to being slower, the star schema tends to have a significantly higher CPU usage 
than a flat analytical object. On average, in Presto’s workloads, the star schema uses 
considerably more CPU time. Consequently, higher CPU usage can also be seen as a 
drawback of star schema-based BDWs.

Figure 8‑6. Presto CPU time for the star schema and the flat analytical object.

8.2.2. Improving Performance with Adequate Data Partitioning
Data partitioning can significantly impact the performance of storage systems. DWs are 
typically partitioned by date, or parts of a date (e.g., year, month, and day). However, there 
are other attributes that can be used for partitioning, related to specific implementation 
contexts. Depending on the attributes frequently used in the where clause of the queries, 
data partitioning can reduce query execution times, since the amount of data that 
needs to be processed will be much smaller. Another benefit of this technique is the 
simplification of CPE workloads, because one can make specific changes to previously 
loaded partitions without affecting the entire dataset. For example, if CPE workloads for 
sales data are executed each day, and there was a mistake in the data that was loaded 
yesterday, today’s workloads can correct these mistakes by completely overwriting 
yesterday’s partition without affecting the entire dataset. Sometimes, especially in Big Data 
environments, completely overwriting partitions is more efficient than updating multiple 
records. Furthermore, frequently, Big Data storage systems do not provide adequate 
updating capabilities (e.g., HDFS/Hive without ACID transactions enabled).©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics228

The workloads presented in the previous subsection do not rely on partitioning strategies, 
which is uncommon in real-world contexts. However, it allows to evaluate queries on 
large amounts of data. In certain organizations and contexts, even daily batches of data 
are significantly large and, therefore, it is relevant to understand how well flat analytical 
objects and star schemas can handle a large volume of data for certain infrastructures. In 
contrast, the workloads presented in this subsection use the SSB+ dataset partitioned by 
“order year”, which is the attribute that appears more frequently in the where clause of 
the 13 SSB+ batch queries.

Figure 8-7 presents the results of the SF=300 workload using data partitioning, including 
a flat analytical object and a star schema, and comparing them with the results achieved 
in the SF=300 workload of the previous subsection. The performance advantage of using 
partitions is noticeable when the queries include the “order year” attribute as a filter. 
This is the main reason why the dataset was partitioned in the first place. This is true 
both for Presto and Hive. However, while Presto typically presents the expected behavior 
when the query does not benefit from the partition scheme, i.e., there is an increase in 
query execution or any difference is negligible, Hive presents an odd and unexpected 
behavior at first glance. The Q2 and Q3 variants are not supposed to benefit from this 
partitioning scheme, since they do not take advantage of any relevant “order year” 
filtering operations in the where clause. The Q3 variants tend to filter “order year” using a 
range of values, but the range is so wide that it is almost equivalent to scanning the entire 
dataset. Despite this, Hive’s execution times for Q2 and Q3 variants (except Q2.2) drop 
drastically for the star schema using partitions, which is not expected at all. 

After inspecting the execution of the queries more closely, we observe that using data 
partitioning, generally, some of the query plans for the Q2 and Q3 variants changed, and 
more mappers and reducers were produced. This number is affected by the organization 
of the ORC files in the system, as the partitioned Hive table may contain a different number 
of files with different sizes. Since the number of mappers and reducers is automatically 
derived in this work, this new number seems to drastically affect the query performance, 
resulting in a massive drop in query execution times for the star schema. These benefits 
are also present in the flat analytical object, but with much less predominance, since the 
query execution times for the Q2 and Q3 variants did not drop as significantly as in the star 
schema workload. 

Presto does not behave like Hive for the star schema Q2 and Q3 variants, presenting 
expected results, i.e., results similar to the workload without partitions, even demonstrating 
small increases in execution times. This is to be expected, since there is the overhead 
of scanning multiple partitions when the query does not take advantage of the data 
partitioning scheme. In contrast, there is a significant performance advantage when 
running the Q2 and Q3 variants over the flat analytical object with partitions, which again 
is an unexpected behavior.



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 229

Figure 8‑7. Large-scale batch SSB+ SF=300 workload with data partitioning.

Star schema (SS); star schema partitioned (SS-P); analytical object (AO); analytical object partitioned (AO-P). 

Hive’s results are based on E. Costa, Costa, & Santos (2017).

Investigating the issue in depth, we argue there are certain scenarios where natural 
hierarchies between attributes can cause ORC files to distribute data in such a way that 
it unintentionally improves query performance. This phenomenon happens because of a 
feature known as predicate pushdown at the ORC file/stripe level, together with file/stripe 
level statistics. For example, if one partitions a table by “supplier region”, the queries 
that filter the data by “supplier nation” will also benefit from this partitioning scheme. 
The attributes “supplier region” and “supplier nation” form a natural hierarchy, 
and a specific partition will only contain countries that belong to the corresponding region. 
Consequently, the ORC files/stripes within this partition will provide statistics regarding the 
countries contained in them, and the query execution engine (e.g., Presto or Hive) can 
completely ignore files/stripes that do not contain the countries being filtered in the query, 
which makes query processing much faster, since it scans less data. However, this does 
not happen in the partitioning scheme used in this benchmark, as the Q2 variants do not 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics230

filter the data by any attribute hierarchically related to “order year”, and Q3.1, Q3.2, and 
Q3.3 only discard 1 in 8 years of data. Therefore, as previously explained, we can only 
conclude that the different organization of ORC files when using partitions may also affect 
stages, tasks, and drivers that are planned in Presto’s queries, resulting in a performance 
boost, similar to the one caused by having different numbers of mappers and reducers in 
Hive, but with less predominance.

Overall, data partitioning is a mechanism that BDWing practitioners need to seriously take 
into consideration, as the performance advantage it brings is noticeable. One needs to 
understand recurrent query patterns, particularly the attributes that appear more frequently 
in “where” clauses, as well as understand specific needs for CPE workloads where data 
partitioning can be helpful.

8.2.3. The Impact of Dimensions’ Size in Star Schemas
Large dimensions can have a considerable impact in star schema-based DWs, as 
they require more time to compute the join operations between the fact tables and the 
dimension tables. In previous workloads, one used larger dimensions’ sizes. Although this 
may not be the usual scenario for many traditional contexts, such as store sales analysis, 
for example, larger dimensions are typically found in various Big Data contexts. Let us take 
into consideration a very large Web sales company such as Amazon, which has hundreds 
of millions of customers and products. In these contexts, the size of the dimensions may 
be very similar to those evaluated in subsection 8.2.1. In Big Data environments, there 
may be many other use cases that rely on very large dimensions, such as the set of 
Facebook users, which easily surpasses the 1 billion mark currently.

Nevertheless, there are many contexts where dimensions are small, because organizations 
can generate several sales transactions based on a small set of products, customers, and 
suppliers, for example. For this reason, it is interesting to analyze the performance impact 
caused by dimensions with different sizes. Figure 8-8 illustrates the results of the SF=300 
workload for large and small dimensions.

The workloads for the flat analytical object were executed again, since smaller dimensions 
in the star schema also imply less cardinality in the descriptive attributes of a fully 
denormalized structure, e.g., if there are less rows in the customer dimension, there are 
also less distinct values in the “customer name” attribute. The cardinality of the attributes 
can also affect the performance of “group by” and “order by” operators and, therefore, 
the flat analytical object was reconstructed and evaluated again. 



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 231

Figure 8‑8. Large-scale batch SSB+ SF=300 workload with small dimensions.

Star schema with large dimensions (SS-LD); star schema with small dimensions (SS-SD); analytical object with large 

dimensions (AO-LD); analytical object with small dimensions (AO-SD). Adapted from C. Costa & Santos (2018).

At first glance, looking at Hive’s workloads, the result was relatively unexpected. The flat 
analytical object, which until now was the modeling approach with the best performance 
in almost every query and workload, was surpassed by the star schema with small 
dimensions. This shows that when using Hive as the SQL-on-Hadoop engine, practitioners 
may sometimes benefit from modeling the BDW using dimensional structures, saving not 
only a considerably amount of storage size but, as Figure 8-8 demonstrates, also gaining 
considerable performance advantages. In this scenario, we conclude that if Hive is able 
to perform a map join, having a larger denormalized structure may not be appropriate 
for highly dimensional data, such as that generated by sales. The overhead caused by a 
storage size that is approximately 2.5 times larger (see Figure 8-4) causes a performance 
drop, and may turn into a bottleneck for the Hive query engine. Consequently, in these 
cases, practitioners may opt for the strategy presented in subsection 5.4.3, which 
discusses the modeling of traditional dimensions as complementary analytical objects for 
dimensional BDWing contexts.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics232

Considering Hive’s results exclusively in a small dimensions scenario, they would favor the 
dimensional approach for modeling BDWs, particularly in the context of traditional DWing, 
where data is structured as fact tables and dimension tables (Kimball & Ross, 2013). Also, 
in the context of the proposed approach, where data is structured as analytical objects 
and complementary analytical objects. Consequently, given Hive’s results, it sometimes 
makes sense to model parts of the BDW’s data that way. However, Big Data often does 
not adequately fit into the strictures of dimensional and relational approaches (e.g., 
high volume/velocity sensor data or social media data). Taking a closer look at Presto’s 
workloads, which are typically much faster than Hive’s workloads, we observe that the 
star schema with smaller dimensions is significantly slower than the corresponding flat 
table. Furthermore, the star schema with smaller dimensions is frequently slower than 
the flat table with the higher attributes’ cardinality (corresponding to larger dimensions). 
Overall, the star schema with smaller dimensions takes 61% more time to complete the 
workload when compared to the equivalent flat table. The discussion in this subsection 
illustrates why we use two SQL-on-Hadoop systems in each workload, as the insights 
retrieved from these specific tests sometimes differ depending on the system.

In summary, there are no strict rules to follow. In certain BDWing contexts, practitioners 
need to consider their limitations concerning storage size and the characteristics of a 
particular dataset. Relevant questions that need to be addressed are, for example: is the 
data highly dimensional? Do the dimensions have a high number of rows or a large storage 
footprint and, therefore, not allow map/broadcast joins? Are these dimensions frequently 
reused by other analytical contexts? In this book, these issues are discussed in subsection 
5.4.3, which is the result of relevant insights provided by this evaluation. Furthermore, 
practitioners may need to perform some preliminary benchmarks with sample data before 
fully committing to either an extensive use of complementary analytical objects or flat 
analytical objects without any complementary joins.

8.2.4. The Impact of Nested Structures in Analytical Objects
Nested structures such as maps, arrays, and JSON objects can be significantly 
useful in certain contexts. Chapter 9 discusses one of these contexts, describing the 
implementation of a BDW for smart cities, wherein geospatial analytics is a priority, 
including several geometry attributes that are typically complex and nested. There are 
many contexts where nested structures can be seamlesly integrated in the data modeling 
approach. As exemplified in subsection 5.4.1, sales analysis is another context where 
practitioners may find the application of nested structures appealing, particulary using 
a less granular analytical object “orders” with the granularity key “order key”, and 
using a nested structure to store the data about the products sold in a particular order 
(e.g., “product name”, “quantity”, and “revenue”). The proposed approach promotes 



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 233

the use of nested structures when feasible; however, it is important to ask oneself: is 
this always the most efficient solution? Does processing less rows and having a smaller 
storage footprint always bring tangible advantages?

To answer these questions, let us consider Figure 8-4, which compares the storage size 
(SF=300) of the different modeling approaches used in this work. Considering the nested 
analytical object created for this evaluation, we can conclude that it represents 68% of 
the equivalent flat analytical object’s storage size, and roughly 186% of the equivalent 
star schema’s size. Moreover, this new modeling approach reduces the number of rows 
from 1.8 billion to just 450 million, since the granularity of this analytical object is “order”, 
instead of “lineorder”. The data concerning the lines of the order is stored in a nested 
structure, namely an array of struct values called “lines” (similarly to the row datatype in 
certain SQL-on-Hadoop systems). 

At first glance, these numbers look promising, but Figure 8-9 shows a different perspective 
with the results of executing the SF=300 Q4.1 in all modeling approaches. Q4.1 was chosen 
because it involves all the dimensions, representing a scenario wherein practitioners will 
need to aggregate and filter data that is stored in the nested attribute “lines”. This allows 
to assess the effects of applying different operators to nested attributes, like the array 
of structs used in this context. Since one is dealing with nested structures, to achieve 
the same results as the remaining modeling approaches, other SQL operators, such as 
lambda expressions, must be used, as the following modification of the Q4.1 SQL query 
demonstrates:

SELECT od_year, c_nation, SUM(profit) AS profit

FROM (SELECT od_date, c_custkey,

      REDUCE(lines,

             CAST(0.0 AS real),

             (s, x) -> IF(x.s_region = ‘AMERICA’ AND (x.p_mfgr = ‘MFGR#1’ 

             OR x.p_mfgr =        

             ‘MFGR#2’), s + (x.revenue - x.supplycost), s), s -> s) AS profit

      FROM <db_name>.<table_name>)

WHERE c_region = ‘AMERICA’ GROUP BY od_year, c_nation ORDER BY od_year, 

c_nation;

Despite saving storage space and having much less rows, the nested analytical object is 
the modeling approach with the lowest performance. It can be concluded that storing a 
large number of attributes in a complex structure may result in a large overhead for query 
processing times. After all, one is storing all the attributes of the “part” and “supplier” 
dimension in this array of structs, along with the various facts about the orders. Such 
data modeling choice requires lambda expressions or lateral views to answer Q4.1. In 
this particular test and looking into the query execution, Presto spends the majority of 
the time computing the lambda expression, which leads to a significant increase in query 
execution time.©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics234

Figure 8‑9. Performance of a nested analytical object in the SSB+ context.

Star schema with small dimensions (SS-SD); star schema with large dimensions (SS-LD); analytical object with 

large dimensions (AO-LD); analytical object with small dimensions (AO-SD); nested analytical object (NAO). 

Adapted from C. Costa & Santos (2018).

These results do not imply that processing nested structures is always detrimental for 
performance. It depends on the complexity of the structure and the kind of operators 
that will be applied. As shown in this evaluation, highly complex nested structures that 
are accessed sequentially to answer most queries may not be an adequate design 
pattern. However, as will be shown in Chapter 9, nested structures offer great flexibility, 
are significantly efficient for certain access patterns, and allow introducing new analytical 
workloads in the BDW, such as intensive geospatial simulations and visualizations.

8.2.5. Drill Across Queries and Window and Analytics Functions
In a traditional DWing context, submitting queries to combine data from multiple fact 
tables is a frequent phenomenon, which can also be described as drilling across fact 
tables. On the other hand, window and analytics functions (e.g., over clause, partition by, 
and rank) also play a relevant role in the ad hoc exploration of the data. Consequently, 
this subsection explores the performance of BDWs when using drill across and window 
and analytics functions, following the same strategies already presented above, i.e.,  
using a flat analytical object and a star schema with Hive and Presto (with broadcast 
joins) as the SQL-on-Hadoop engines. Figure 8-10 summarizes the results for the four 
queries in this SF=300 workload, which are available in (C. Costa, 2017). The first three 
queries focus on drill across operations and the last one focuses on window and analytics 
functions, using the following questions: 

• (Q5) Sum of the quantities ordered from the top 20 suppliers that had complaints from 
American customers within the last 4 years;



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 235

• (Q6.1) Number of times the company has sold parts from the manufacturer ‘MFGR#3’, 
provided by Asian suppliers, with an average selling price over 1000 USD in America, 
and which have been returned more than one time;

• (Q6.2) Top 10 parts with an average selling price over 1000 USD that were returned 
more than one time;

• (Q7) Top 5 parts of every market segment according to the generated revenue.

Figure 8‑10. Performance of an analytical object (AO) and a star schema (SS) in a workload based on drill across 

queries and window and analytics functions.

The results of this workload revealed that, overall, the performance of a completely 
flat analytical object is more satisfactory than a star schema, although Q6.1-Hive is an 
exception. Considering Presto’s results, which was the SQL-on-Hadoop engine that 
revealed greater differences, we can observe that the flat analytical object frequently 
completes the query in approximately half the time required by the star schema. 
Considering Hive’s results, the star schema is faster in one of the four queries, although 
less significant than Presto’s results (only 10 seconds). In contrast, considering  
Q6.2-Hive, one of the queries in which the star schema is slower than the flat analytical 
object, the difference in performance is noticiable. This shows that certain queries using 
subqueries with large (less filtered) intermediate results may significantly impact the 
performance when drilling across fact tables from a star schema. Consequently, we can 
conclude that, based on overall performance, flat analytical objects provide significantly 
lower execution times than star schemas in scenarios with drill across queries and 
window and analytics functions.

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics236

8.3. STREAMING OLAP
Streaming scenarios are common in BDWing contexts. The BDW must be able to 
adequately deal with the high velocity and frequency of the CPE workloads. Daily or 
hourly batch CPE workloads may not always be the most effective or efficient solution to 
solve specific problems, and streaming CPE workloads can be significantly useful in these 
cases. This section evaluates the performance of BDWs created using the proposed 
approach in streaming scenarios, while discussing several concerns that practitioners 
must take into consideration.

Using the SSB+ Benchmark, one can observe the performance of the streaming 
storage of the BDW. As illustrated in Chapter 5, there are several technologies that can 
be used to implement this storage component, which is responsible for storing data 
that flows continuously to the BDW with low latency requirements. In section 5.3, the 
trade-offs between these different technologies were also discussed. For example, Hive 
adequately deals with sequential access workloads, typically found in OLAP queries, but 
it is not adequate for random access, which is often suitable for storing streaming data. 
In contrast, NoSQL databases like Cassandra are efficient in random access scenarios, 
but typically fall short in sequential access workloads required for analytical contexts. 
Consequently, this subsection evaluates the performance of these two technologies 
using the two main data modeling strategies previously explored: a flat analytical object 
and a traditional star schema approach, as detailed in section 8.1. The data flow is the 
following:

1. A Kafka producer generates 10,000 records every 5 seconds.

2. A Spark Streaming application with a 10 seconds micro batch interval consumes the 
data for that interval and stores it in Hive and Cassandra.

3. Presto is used to query both streaming storage systems, every hour, over a period of 
10 hours.

8.3.1. The Impact of Data Volume in the Streaming Storage 
Component

The performance of the streaming storage system of a BDW typically starts degrading as 
the amount of stored data increases. This is the main reason why the proposed approach 
includes an inter-storage pipeline to transfer the data from the streaming storage system 
into the batch storage system. Consequently, in this subsection, we are interested in 
analyzing how the data volume affects the performance of the streaming storage 
component of the BDW.



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 237

Figure 8-11 illustrates the total execution time for all streaming queries (Q8, Q9, and Q10) 
during a 10-hour workload with constantly increasing data volume. Each hour, all queries 
are executed using Presto, both for the flat analytical object and the star schema, and for 
Hive and Cassandra as well. The queries Q8, Q9, and Q10 focus on the following analytical 
questions:

• (Q8) The two countries that have the most positive average sentiment polarity united 
with the two countries that have the most negative average sentiment polarity;

• (Q9) The count of sentiments that were expressed by females in Portugal or Spain, 
grouped by product (part) category and period of the day (e.g., dawn, morning, 
afternoon, and night);

• (Q10) The groups of product (part) categories and genders with an average sentiment 
polarity greater than the total average sentiment polarity.

Figure 8‑11. Cassandra and Hive SSB+ streaming results.

Star schema (SS); analytical object (AO). Adapted from C. Costa & Santos (2018).

There are several relevant insights that emerge from this evaluation. The first one concerns 
the overall effect of data volume on both systems. Looking into the trend exhibited by this 
10-hour workload, we can conclude that both Hive and Cassandra are affected in a linear 
fashion, i.e., as hours pass by (and data volume grows), the increase in the execution time 
of the workload can be modeled as a linear function. A significant drop in performance as 
the data volume increases is to be expected in Cassandra, since as previously argued, 
sequential access over large amounts of data is not one of its strong features. However, 
this is not expected in Hive because, as the batch workloads demonstrate, when using 
Presto to query Hive, one is able to achieve much faster execution times than those 
obtained in this streaming workload, even with significantly higher SFs (e.g., SF=30 with 
180,000,000 rows).©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics238

Despite this observation, which will be detailed afterwards, it can also be concluded that 
Hive is always considerably faster than Cassandra, until the mark of 50 million rows is 
reached. After this point, the Spark Streaming micro batch interval is too short for the 
demand, and the application also generates thousands of small files in HDFS (storage 
backend for Hive). Therefore, after the 50 million rows mark, hundreds of micro batches 
are being delayed, which makes the results for Hive inconclusive, as the number of stored 
rows does not match those in Cassandra. Overall, we can conclude that having small 
micro batch intervals when using Hive may severely deteriorate the performance of the 
system, complementing the conclusion made before regarding the overhead of having 
many small files stored in HDFS. 

Cassandra also shows some delay in write operations when being queried by Presto, 
which causes the Spark Streaming application to queue a few micro batch jobs. However, 
this phenomenon is significantly less concerning than the one in Hive’s scenario, and the 
streaming system is able to control the load without too much delay. Moreover, this is 
not caused by an increase in data volume, but rather a concurrency issue and resource 
starvation while Presto queries are running. One can always sacrifice data timeliness 
by increasing the micro batch interval, but comparing the results between Cassandra 
and Hive, the write latency and throughput should be identical. In this case, Cassandra 
adequately handles 20,000 rows every 10 seconds without significant delays, despite 
being slower, whereas Hive fails to do so, despite being faster for all workloads under 
the 58 million rows mark. This efficiency problem is discussed in more detail in the next 
subsection, among other relevant considerations for streaming scenarios in BDWing 
systems.

In this analysis, it is also interesting to evaluate the performance of a flat analytical object 
and a star schema. In this streaming context, the performance is relatively similar in 
both cases. The star schema is typically faster when using Cassandra, whereas the flat 
analytical object is typically faster when using Hive. In the SSB+ Benchmark, the star 
schema for the streaming scenario is not very extensive nor complex, which in this case 
favors this modeling approach, since queries do not have to join an extensive set of 
tables. Despite this, we can conclude that both modeling strategies are feasible, without 
any significant performance drawback. In the star schema’s case, where the dimension 
tables are stored in Hive, we can also conclude that using a SQL-on-Hadoop system 
like Presto is also feasible for combining complementary analytical objects stored in Hive  
(e.g., “part” and “time”) with streaming analytical objects stored in Cassandra. It is 
important to remember that the proposed approach uses the concept of complementary 
analytical objects to model dimensions, when practitioners prefer the use of dimensional 
structures for certain contexts (see subsection 5.4.3).



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 239

8.3.2. Considerations for Effective and Efficient Streaming OLAP
A successful streaming application can be seen as an adequate balance between data 
timeliness and resource capacity. To explain these trade-offs, this subsection is divided 
into three main problems that emerged from the evaluation of the SSB+ Benchmark, 
offering possible solutions to overcome these issues:

1. High concurrency in multi-tenant clusters (multiple users and multiple technologies) 
can cause severe resource starvation.

2. Storage systems oriented towards sequential access (e.g., Hive) may present some 
problems when using small micro batch intervals.

3. Inter-storage pipeline operations and CPE workloads should be properly planned, and 
the adequate amount of resources should be reserved.

Starting with the first problem, the proposed approach promotes a shared-nothing 
and scale-out infrastructure that is usually capable of multi-tenancy, i.e., adequately 
handling the storage and processing needs of multiple BDWing technologies and users. 
Streaming applications, like the one discussed in the previous section, normally require 
a constant allocation of CPU and memory for long periods of time. Data arrives at the 
system continuously, thus it needs to ensure that the workload has the required amount 
of resources available. 

A common setup, like the one evaluated in this chapter, would comprise a producer 
(e.g., Kafka), a consumer (e.g., Spark Streaming), a storage system (e.g., Cassandra 
and Hive), and a query and OLAP engine (e.g., Presto). At first glance, the first three 
components of this setup may seem to work perfectly fine. However, once the query 
and OLAP engine is added, resource consumption can become significantly high, and 
the performance of the streaming application may suffer when the adequate trade-off 
between data timeliness and resource capacity is not chosen. Take as an example 
Figure 8-12. If carefully observed, in certain periods of time coinciding with the time 
interval when Presto queries are running, there is a significant increase in the processing 
time of the micro batches, thus causing an increase in the scheduling time of further 
micro batches.

In this case, this happens because there is not enough resource capacity in the current 
infrastructure to handle the processing demands of Spark Streaming, Cassandra, and 
Presto running simultaneously. In these periods of time, these technologies are competing 
for CPU usage, and the initial micro batch interval of 10 seconds is not enough to maintain 
the demands of the streaming application. Again, these insights bring us back to the 
previously discussed trade-off: either resource capacity is increased, in this case using 
more CPU cores, or the micro batch time interval is raised, which inevitably affects data 
timeliness. In this benchmark, the queries are only executed each hour, thus the system ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics240

is only affected during these periods. However, in real-world applications, users are 
constantly submitting queries, which makes this consideration difficult to ignore. 

Figure 8‑12. Spark Streaming monitoring GUI showing resource starvation when using Cassandra and Presto 

simultaneously. Adapted from C. Costa & Santos (2018).

As seen in the previous subsection, using storage systems like Hive for streaming 
scenarios has its advantages, specifically reduced query execution times, since this 
system can be considerably faster than Cassandra. Nevertheless, this performance 
advantage comes at a cost: as data volume increases, the number of small files stored 
in HDFS rises considerably, generating a significant load on the infrastructure. One small 
file is created for each RDD partition, in this case each 10 seconds, due to the chosen 
micro batch interval. In a matter of hours, the Hive table stores thousands of small files 
(see Figure 8-13). The problem is that, as the number of files increases, HDFS metadata 
operations take more time, thus affecting the time it takes for Spark Streaming to save 
the data in the Hive table. A write operation in HDFS includes steps like searching for  
existing files and checking user permissions (White, 2015); with thousands of files, this 
process can take longer than usual. Nevertheless, such problem can be solved by 
applying an adequate partition scheme to streaming Hive tables, e.g., partitioning by 
“date” and “hour”, which creates a folder structure containing fewer files in each folder 
and, therefore, reducing the time to execute metadata operations (Vale Lima, Costa, & 
Santos, 2019). 



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 241

Figure 8‑13. Thousands of small files created in HDFS (Hive’s storage backend) when using Spark Streaming.

At this point, the system can be under intensive load and the Spark Streaming 
application queues hundreds of micro batches. Micro batches are queued when the 
Spark application cannot process them before the defined micro batch interval, in this 
case 10 seconds. Again, this predefined micro batch interval cannot ensure that the 
data is processed before the next micro batch, and the performance of the streaming 
application is thus compromised. In Hive’s case, this is much more severe than the 
concurrency issue shown by running Cassandra and Presto simultaneously. In Hive’s 
case, even increasing resource capacity is not the best solution, and one should opt for 
higher micro batch intervals, which will create bigger files. Moreover, the inter-storage 
pipeline is significantly relevant to periodically consolidate these small files into bigger 
files, or move them into another analytical object which contains historical data. It must 
be remembered that Hadoop prefers large files, which are then partitioned, distributed, 
and replicated as blocks. 

Finally, and taking into consideration the phenomena discussed above, the inter-storage 
pipeline and CPE workloads should also be carefully planned when streaming applications 
are using the cluster’s resources. These operations can be heavy on CPU and memory, 
and can unexpectedly cause resource starvation, as seen with Presto and Cassandra 
running simultaneously. Practitioners should not take this lightly. Linux Cgroups, YARN 
queues, and YARN CPU isolation can be extremely useful to ensure that the current 
infrastructure guarantees a rich, complex, and multi-tenant environment such as a 
BDW. These techniques make sure that resources are adequately shared by multiple 
applications, by assigning portions of the resources according to the expected workloads. 
Moreover, practitioners should evaluate their requirements regarding data timeliness, and ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics242

avoid small micro batch intervals for streaming applications when they are not needed, 
as well as avoiding the execution of complex inter-storage pipelines or CPE workloads 
when business users are intensively using the BDW. More resource capacity may not 
always be the most efficient solution to the problem, since even in commodity hardware 
environments buying hardware always comes at a cost, whereas making some of these 
changes may increase efficiency without any significant cost.

8.4. SQL‑ON‑HADOOP SYSTEMS UNDER MULTI‑USER 
ENVIRONMENTS

In real-world environments, the BDW will not be queried by a single business user. The 
system may have to support several decision-makers at different organizational levels. 
Single-user benchmarks allow us to understand the raw performance of a certain system 
without considering concurrency. However, one should design and implement a BDW 
capable of supporting several simultaneous users.

Since the proposed approach promotes the use of SQL-on-Hadoop engines as the 
frontend for querying and OLAP, the way these systems handle concurrency is a key factor 
for a BDW that adequately supports several users. Consequently, this section discusses 
the performance of Hive and Presto in a SF=30 concurrent workload, wherein four users 
execute the 13 SSB+ batch queries simultaneously. In this case, the smaller SF=30 was 
used to balance the concurrency requirements, the size of the dataset, and the available 
infrastructure (subsection 8.1.2). In this evaluation, the SQL-on-Hadoop systems were set 
to their default configurations. 

Looking at Table 8.1, Presto stands out as the fastest engine. However, since one is 
looking into multi-user efficiency, execution time may not be the only metric to take into 
account. Obviously, if Presto is the fastest engine to retrieve the results to the concurrent 
users submitting the queries, it can perfectly be considered the most adequate system. 
The problem is that, in single-user workloads, Presto already tends to be significantly 
faster than Hive, which gives it a severe advantage in this multi-user test. Taking a closer 
look at Table 8.1, one of the most interesting insights is Hive’s increase in execution 
time from single-user to multi-user queries. Despite its inferior performance in single-user 
workloads when compared to Presto, Hive is the system that gets less affected by having 
multiple users submitting queries simultaneously. An increase below the 3x mark means 
that, in a concurrent environment with four users, the system is able to execute the query 
faster than executing the same query four times in a single-user environment. 



Copyright © River Publishers – except portuguese speaking countries

Evaluating the Performance of Big Data Warehouses 243

Table 8.1. Multi-user SSB+ workload SF=30 (in seconds). 

Multi-user execution (M); single-user execution (S). 

Queries Hive (S) Hive (M) Presto (S) Presto (M)

Q1.1 23 42 4 20

Q1.2 24 45 5 20

Q1.3 24 43 4 18

Q2.1 26 66 3 18

Q2.2 36 99 3 13

Q2.3 24 80 4 13

Q3.1 28 63 4 17

Q3.2 28 64 3 16

Q3.3 25 57 4 14

Q3.4 25 63 5 17

Q4.1 28 85 5 20

Q4.2 28 69 5 20

Q4.3 28 64 5 19

Total 347 839 (Increase: 1.4x) 52 225 (Increase: 3.3x)

These results aim to provide an overview regarding the performance of SQL-on-Hadoop 
systems under concurrent environments. Generally, it can be concluded that SQL-on-
Hadoop systems are able to handle concurrent queries on relatively modest hardware, 
such as the one used for this book. Obviously, not all the configurations were changed, 
which does not always represent the best setup for these systems, especially since 
concurrency configurations are one of the aspects that may need some tuning to achieve 
optimal performance in production systems. However, performing a benchmark using 
the vanilla version of the systems also means that any kind of over-fitting does not occur 
and they are on the same level, without any misconfigurations. Depending on the SQL-
on-Hadoop system practitioners end up choosing for their BDWs, it is advisable and 
necessary to read the documentation and adjust any relevant configuration. It must also 
be remembered that each version of the systems brings a number of improvements, and 
if concurrency performance is a critical factor for choosing the SQL-on-Hadoop system, 
then an on-site benchmark may be needed before making any decision.

©
 F

C
A





INTRODUCTION

9BIG DATA 
WAREHOUSING 
IN SMART CITIES

This chapter discusses the implementation of the SusCity 
BDW in the context of smart cities (C. Costa & Santos, 
2017c; Monteiro, Costa, Pina, Santos, & Ferrão, 2018; 
SusCity, 2016), which is built upon the proposed models 
and methods as a demonstration case. In the context 
of smart cities, vast amounts of heterogeneous data are 
constantly being produced by an extensive network of 
interconnected things, including smartphones, smart 
meters, temperature sensors, noise sensors, smart 
appliances, location sensors, among many others. 
Moreover, there are also other data sources like the cities’ 
transactional database systems, geospatial files, census 
data, and data provided by private companies responsible 
for certain city services. This phenomenon is typically 
associated with the concepts of IoT and Big Data (Jara, 
Bocchi, & Genoud, 2013). Consequently, smart cities are 
seen as rich BDWing contexts, given this extensive set of 
data sources and its relevance in the cities’ decision-making 
process.



Big Data: Concepts, Warehousing, and Analytics246

9.1. LOGICAL COMPONENTS, DATA FLOWS, AND 
TECHNOLOGICAL INFRASTRUCTURE

In the context of smart cities, an adequate BDWing approach is crucial to support 
the decision-making process at scale, complying with the characteristics of a BDW.  
Figure 9-1 presents the SusCity BDWing architecture, following the proposed approach. 
The logical layer helps researchers and practitioners understand the logical components 
of the system and how data flows throughout these components. It uses the taxonomy of 
the proposed approach, partially inherited from the NBDRA (NBD-PWG, 2015), since the 
lack of concepts standardization can be an issue in Big Data research. The technological 
infrastructure focuses on the technologies used for instantiating the logical components and 
on the infrastructure in which these technologies are deployed (detailed in subsection 9.1.2).

Figure 9‑1. The SusCity BDWing architecture. Adapted from C. Costa & Santos (2017c).



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 247

9.1.1. SusCity Architecture
Regarding the logical layer, the first component is the data provider, which makes data 
available for further storage and processing. In a typical smart city context, which is the 
case of the SusCity research project (SusCity, 2016), the data provider component can 
include several actors:

• Municipality – the municipality itself can make available several data sources relevant for 
analytical tasks. For example, information about buildings or geospatial representations 
of the city’s infrastructures. The city’s transactional systems are also valuable data 
sources;

• IoT infrastructure – includes different kinds of sensors reporting electricity consumption, 
temperature, noise, and mobility patterns, for example. This data is relevant to 
understand events and real-time patterns in the city;

• Private companies – the city’s infrastructures are not always public and, therefore, 
interactions with private companies are of major relevance in smart cities, for collecting 
historical energy consumption, buildings certificates, water consumption, census data, 
among many other data sources;

• Researchers and citizens – research projects conducted in the city are important 
data sources for the BDW; these include simulation data about different phenomena in 
the city (e.g., buildings’ energy efficiency and mobility patterns), or any other relevant 
insights corresponding to scientific studies impacting the city. Moreover, citizens 
engaged in the initiatives promoted by researchers or by the municipality can provide 
useful data for the decision-making process, such as personal energy consumptions, 
mobility patterns, and service consumption habits.

Taking into consideration the data sources presented in Figure 9-1, data may arrive at the 
BDW via batch or streaming mechanisms. For data arriving in batches, we use Talend 
Open Studio for Big Data (Talend, 2017) and a HDFS client to upload it to the distributed 
file system. Before any preparation and enrichment process, data is first uploaded to 
HDFS, since raw data may serve further analytical purposes (e.g., training and testing 
data mining models) or may be useful for disaster recovery, should any problems occur 
in the storage component. HDFS is capable of handling large amounts of structured, 
semi-structured, and unstructured data, distributing them across several nodes in the 
cluster for further preparation and enrichment. For data arriving in a streaming fashion, 
Kafka (2018) is used to ensure highly scalable and robust data collection. Periodically, one 
can optionally move data from Kafka to HDFS, using systems such as LinkedIn’s Gobblin 
(Qiao et al., 2015), in cases where streaming raw data is also useful for further purposes.

To prepare and enrich batch data, the SusCity BDWing architecture takes into 
consideration the volume of data. If the dataset being processed fits in the constraints ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics248

of non-distributed technologies, Talend Open Studio for Big Data is used to prepare and 
enrich data, since it offers a wide set of processing components (e.g., filtering, aggregation, 
joins, and type parsing) in a user-friendly graphical interface. However, when the volume 
of the dataset requires distributed processing, Spark (Shanahan & Dai, 2015) is used to 
carry out preparation and enrichment tasks. 

In streaming scenarios, one can use Spark Streaming to process data as it arrives at the 
BDWing system. Previously trained data mining models can also be applied in this phase, 
using WEKA (Hall et al., 2009) for small-scale algorithms (e.g., classification/regression 
of previously aggregated data or time series forecasting problems) and Spark MLlib for 
large-scale algorithms, i.e., when the training set contains vast amounts of very detailed 
data, not previously aggregated. Relevant data mining use cases in smart cities contexts 
may include forecasting and segmenting energy consumption (C. Costa & Santos, 2015); 
predicting attendance at the city’s events; or segmenting buildings according to their 
characteristics and energy consumption. The same logic applies to unstructured data, 
since text mining algorithms, for example, can also be applied using WEKA, Spark or any 
other suitable technology, in order to extract structured patterns to be further stored in 
the BDW.

Once the data is prepared and enriched, it is stored in the storage component. The storage 
component comprises three subcomponents. The distributed file system (HDFS) acts as 
a staging area and sandbox, storing raw batch and streaming data, and temporary files 
needed in the data science sandbox component. It is a crucial component for ensuring 
a flexible storage capable of handling varied data from several sources. HDFS is also the 
underlying storage system for Hive, the technology used in the batch storage component 
of the proposed architecture. Hive is a DWing system on Hadoop, frequently mentioned 
as the de facto SQL-on-Hadoop solution. In the SusCity BDWing architecture, Hive tables 
stored as ORC files (Huai et al., 2014) are used to store large amounts of structured data, 
using the proposed data modeling method (the SusCity data model is presented in section 
9.2). For this book, Hive only stores data arriving in batches, since it is mainly designed for 
fast sequential access to data. For fast random access, Cassandra is used as the NoSQL 
database supporting the streaming storage component, since one can ensure hundreds 
or thousands of concurrent writes frequently required by typical streaming applications. 
Previous benchmarks reveal that Cassandra is a suitable distributed database for 
intensive random read and random write scenarios (C. Costa & Santos, 2016b). Moreover, 
Cassandra tables are also modeled according to the data modeling method proposed in 
this book (section 9.2).

Regarding the use of Hive as a streaming storage system, if practitioners overlook some 
configuration and management aspects (e.g., ensuring efficient compaction techniques), 
Hive tends to generate several small files in HDFS, which can become a bottleneck in the 
system. Despite the current advancements regarding Hive’s transactions (Apache Hive, 



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 249

2018), Hive’s suitability for a large number of concurrent and continuous writes needs to 
be tested in prototype or production systems. As mentioned, Hive is a DWing system on 
Hadoop mainly used to scale OLAP applications. Since NoSQL databases are mainly 
designed to scale OLTP applications (Cattell, 2011), they are not as effective and efficient 
as Hive in sequential access scenarios, typically required by OLAP applications, as can 
be further seen in section 9.3. Therefore, the SusCity BDWing system considers these 
trade-offs and maintains two separate storage technologies for batch and streaming data. 
As techniques and technologies evolve and stabilize, the same technology may be able to 
adequately support both scenarios, as discussed in section 5.3.

The goal of the BDW is to support analytical tasks. Consequently, the access, analytics, 
and visualization component is crucial to deliver adequate insights for data-driven 
decision-making processes. The querying and OLAP component, using Presto, ensures 
an adequate communication between the batch storage, the streaming storage, and the 
data visualization component. Presto was open sourced by Facebook, and it is considered 
as a SQL-on-Hadoop system providing low latency query execution over large amounts of 
data (Presto, 2018). In fact, it is more than a SQL-on-Hadoop system, since it can provide 
a SQL interface for a vast set of storage technologies besides Hive (Hadoop), including 
NoSQL databases like Cassandra and MongoDB. Therefore, in the proposed architecture, 
Presto is used to query Hive tables and Cassandra tables. As previously discussed, since 
Cassandra is less efficient than Hive for fast sequential access (section 9.3), we also 
use Presto to transfer data between Cassandra and Hive, avoiding the accumulation of 
vast amounts of historical data in the Cassandra tables. For more complex queries that 
surpass the interactivity threshold defined for the SusCity data visualization component 
(10 seconds), Presto is also used to create materialized views stored in Hive tables.

Although several improvements have been made in Hive, such as the Tez execution engine 
(Floratou et al., 2014; Huai et al., 2014), Presto achieves significantly faster execution 
times when querying Hive tables (as can be seen in Chapter 8), hence why it is used as 
the querying and OLAP engine in the proposed architecture. Interactive query execution 
is one of the main requirements of the SusCity data visualization component, in order to 
engage users through a responsive interface. Therefore, the data visualization component 
(discussed in section 9.4) uses Presto to submit SQL queries to the batch and streaming 
storage systems. Presto can also combine data from these two components using a 
single query (e.g., joins and unions), which is of major importance for combining historical 
and streaming data into a unified view of the data.

Although some benchmarks demonstrated that interactive SQL-on-Hadoop systems 
similar to Presto (e.g., Impala) may struggle with datasets that do not fit into memory 
(Floratou et al., 2014), we did not feel the need to use the Hive execution engine in the 
SusCity project. Presto was able to execute all the workloads requested by the SusCity 
testbed, processing several Gigabytes of data from energy grid simulations, buildings ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics250

information, geospatial files, historical energy consumption data, and more than one 
hundred smart meters. However, if certain scalability issues arise, the Hive execution 
engine is always available for more demanding workloads. Scalability will certainly not be 
an issue, since Presto is being used by Facebook to perform queries over its Petabyte-
scale Hive DW, thus it is possible to scale the cluster to accommodate growing data in a 
smart cities context.

The application of data science models (e.g., data mining and text mining models) is 
only possible with an adequate sandbox where data scientists can explore the data, 
training and testing models to support their hypotheses (C. Costa & Santos, 2017b). 
Therefore, the proposed architecture includes a dedicated component, named data 
science sandbox, which interacts with HDFS. Since raw batch and streaming data can 
be stored in HDFS, data scientists can interact with this data to produce models capable 
of extracting patterns and making predictions when new data arrives at the preparation 
and enrichment component. WEKA and Spark are the driving forces for this purpose, as 
previously discussed.

Security, privacy, and management constitute a relevant component in the SusCity BDWing 
architecture. There are certain Hadoop-related technologies that can be used to ensure a 
secure environment that is properly managed. For this book, Kerberos is used to provide 
a secure authentication protocol in Hadoop. For an extra-layer of security and privacy, 
Ranger can be used to deploy rigorous authorization policies, defining which users have 
access to certain files or tables (Hortonworks, 2016). Regarding Cassandra’s security, 
TLS/SSL encryption can be used for client-to-node or node-to-node communications. 
Cassandra also provides simple password authentication and an internal authorization 
model. In a smart city context, data privacy is a main concern and, therefore, whenever 
possible, we encourage anonymization of sensitive data before storing it in the BDW  
(C. Costa & Santos, 2016a). Finally, Ambari can be used to manage and monitor the 
Hadoop components deployed in the cluster (Apache Hadoop, 2018).

9.1.2. SusCity Infrastructure
All the components and technologies discussed in the previous subsection are deployed 
in 5 commodity hardware machines installed on-premises, which have been capable of 
supporting the workloads demanded by the SusCity testbed. In this demonstration, each 
machine has 16GB of RAM, 1 Intel Core i5 quad-core CPU, and 500GB 7,200rpm hard 
disks (except node 1, which has an Intel Core i7 quad-core CPU and a 256GB SSD). All 
the machines are connected using a 1 Gigabit Ethernet switch and Ethernet CAT6 cables, 
since Hadoop clusters should be deployed using at least a 1 Gigabit Ethernet network 
(Shvachko et al., 2010). The use of Big Data technologies like Hadoop, Spark, and 



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 251

Cassandra, which rely on commodity hardware and shared-nothing infrastructures, allows 
to scale the cluster as data volume increases and workloads become more demanding. 

Due to resource limitations, Hadoop/Hive and Cassandra nodes are co-located (node 3, 
node 4, and node 5). Presto and Spark are also deployed in these nodes for co-located 
processing. Distributed processing technologies should be co-located with storage 
nodes, since in Big Data environments the processing should be brought closer to the 
storage, to avoid moving large amounts of data through the network (C. L. P. Chen & 
Zhang, 2014). The collection technologies (Kafka, Talend Open Studio, and HDFS client), 
non-distributed processing technologies (Talend Open Studio and WEKA), and the Web 
Server providing dashboards with Chart.js (2017) and the Google Maps API (Google 
Maps, 2017) are all deployed within node 1, again due to resource limitations. Ideally, in a 
production environment, these elements should have dedicated nodes and Kafka should 
be distributed across several nodes in the cluster. Node 2, besides being the Hadoop 
NameNode, enables tasks related to the security, privacy, and management of the cluster, 
containing the Kerberos Key Distribution Center and Ambari.

9.2. SUSCITY DATA MODEL
The main concept in the proposed data modeling method is the analytical object, 
representing a subject of interest to be analyzed. Typical analytical objects in smart cities 
may include: general indicators about buildings; buildings energy consumption; losses in 
the energy grid; indicators about the nodes in the energy grid; and the energy consumption 
recorded by smart meters.

Making an analogy with traditional DWs, analytical objects have the same capabilities 
as fact tables. But unlike fact tables, they typically are fully denormalized structures, in 
which all the attributes needed for analyzing the subject of interest are included in one 
single analytical object, without the need for dimension tables, avoiding constant and 
demanding join operations. Join operations in Big Data environments are costly (Floratou 
et al., 2014; Marz & Warren, 2015; NBD-PWG, 2015; Wang, Qin, Zhang, Wang, & Wang, 
2011), since tables may store vast amounts of data. Joining several dimensions with fact 
tables for each query can be significantly resource-demanding (see subsections 5.4.2 
and 5.4.3 for concepts focusing on efficient dimensional patterns and join operations, and 
subsection 9.2.1 for their specific application in the SusCity BDW).

Guided by the approach proposed in this work, each analytical object of the SusCity 
data model contains two types of attributes: descriptive attributes (top half of the 
analytical objects in Figure 9-2) and analytical attributes (bottom half of the analytical 
objects in Figure 9-2). Moreover, outsourced descriptive families (see subsection 5.4.3) 
for each analytical object are also presented in Figure 9-2. Descriptive attributes support ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics252

typical OLAP tasks by providing different perspectives for aggregations and filtering 
operations. These are analogous to the attributes of the dimension tables in traditional 
DWs, and allow to interpret the analytical attributes through different perspectives. 
Analytical attributes are analogous to the facts in a traditional fact table, but with the 
particularity that they can not only contain facts (historical indicators), but also predictions 
derived from applying of data science models. Take as an example the analytical object 
“buildings energy consumption” in Figure 9-2, which contains a cluster defining the 
consumption behavior of each building and a forecast of its energy consumption (kWh) 
for the following days, information obtained using the WEKA’s clustering and time series 
forecasting algorithms, as proposed in (C. Costa & Santos, 2015). 

Figure 9‑2. The SusCity BDW data model. Adapted from C. Costa & Santos (2017c) with extended content.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 253

Descriptive and analytical attributes can store simple data types (e.g., integer, float, 
and varchar) or complex types (e.g., arrays, maps, and GeoJSON objects). The use 
of complex types to extend the capabilities of BDWs is detailed in subsection 9.2.2. 
Descriptive attributes are also relevant to define partition keys and granularity keys. Some 
descriptive attributes can be used to control certain aspects of data locality. In Hive, a 
partition key distributes the data throughout different folders according to the value of 
the attribute. In Cassandra, the partition key helps determining which node should be 
used to store/read the data, since it tries to evenly spread the data across different 
nodes in the cluster. There is no rigorous rule for defining partition keys, and one should 
evaluate the patterns of the queries and/or the refreshing rates of the analytical objects. 
For example, in the SusCity BDW, we use the “simulation scenario” attribute for the 
partition key in the “energy grid losses” and “energy grid nodes indicators” 
Hive tables, since one loads the data in batches corresponding to yearly simulations for 
each stress scenario in the energy grid. Moreover, the “simulation scenario” is an 
attribute frequently used in the where clause of the queries that refer these analytical 
objects. Regarding the “smart meters records” Cassandra table, it is possible to 
use “sm id” as the partition key, balancing the data throughout the nodes in the cluster 
according to the identifier of the smart meter. In Cassandra, the partition key is the first 
part of the PK (read primary key), which in this case is a compound key using “sm id” 
and “record date”. In Hive, one does not need to define PKs (read primary keys). 

As can be seen in Figure 9-2, analytical objects can be joined together to answer certain 
queries. These join operations are optional, because analytical objects can be modeled 
without any external references to other objects, which is the case for most of the analytical 
objects in the SusCity BDW. There is no need for declaring FKs at object creation, and 
analytical objects can be joined using all the attributes whose values match. This approach 
is detailed in subsection 9.2.1. 

Complementing what was already mentioned regarding querying and OLAP, it is possible 
to use Presto to perform joins and unions between batch analytical objects (Hive tables) 
and streaming analytical objects (Cassandra tables), providing useful insights extracted 
from historical and real-time data, as can be seen in Figure 9-2. The size of the tables being 
joined is of major relevance for an adequate query performance, and it should be taken 
into consideration. This is the reason analytical objects should not be joined in their raw 
state. First, one needs to aggregate and filter (as much as possible) each analytical object 
involved in the join operation. The larger the inputs on each side of the join operation, the 
more complex and slower the query becomes. In this case, materialized views stored 
in Hive tables are significantly helpful for maintaining interactive response times in query 
execution and the responsiveness of the data visualization platform (see subsection 5.4.2 
for more details on join operations and materialization processes).

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics254

Regarding this modeling approach, we can highlight three major strategies: using fully 
denormalized structures to avoid the cost of join operations in Big Data environments; 
using nested structures, which are not typically found in traditional modeling techniques, 
can provide more flexibility and performance advantages in specific scenarios; dividing 
data flows and storage components into batch and streaming, as discussed by Marz and 
Warren (2015), but that does not imply following different data modeling strategies, as the 
proposed data modeling method demonstrates, since it can be used both for batch and 
streaming contexts.

9.2.1. Buildings Characteristics as an Outsourced Descriptive 
Family

Looking at Figure 9-2, it can be seen that the Hive table “buildings general 

indicators” can be joined with the “buildings energy consumption” table. This 
capability is useful to understand relationships between the characteristics of buildings 
and their energy consumption, addressing questions such as: to what degree does the 
number of occupants influence the building’s energy consumption?

These join operations are different from the join operations required between fact tables 
and dimension tables, since one only uses them in queries that relate different analytical 
objects, which is less frequent than joining fact tables and dimensions for each query. 
Considering the SusCity BDW, the “building id” attribute is present, among others, 
in three analytical objects: “buildings general indicators”; “buildings energy 
consumption”; and “smart meters records”. Instead of replicating the information 
about buildings in these three objects and creating unnecessary redundancy, taking 
into consideration that the “buildings general indicators” object is relatively small 
(around 60,000 records for the city of Lisbon), it can be easily joined with the other two 
objects, to answer specific questions. Consequently, one can outsource the buildings 
characteristics to the “buildings general indicators” complementary analytical 
object, and only place the “building id” in the “buildings energy consumption” 
and “smart meters records” analytical objects as a link to the outsourced descriptive 
family (similarly to a FK in traditional DWs).

Nevertheless, when there is no need to relate energy consumption with buildings 
characteristics, all three objects are completely independent and can answer different 
queries without relying on any join operation. Such flexibility is one of the strongest points 
of the proposed approach, which provides constructs and structured guidelines that 
practitioners can follow to solve specific problems, depending on the considerations and 
trade-offs previously discussed in section 5.4.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 255

9.2.2. Nested Structures in Analytical Objects
In the SusCity BDW, complex types are used to store nested structures that will be later 
interpreted by the data visualization component. For example, a large building can be 
associated to more than one service (e.g., laundry, supermarket, restaurant, and gym). 
Using a nested complex type like a map (e.g., HashMap), one can store this data using a 
single record associated with that building. Saving geometry objects in GeoJSON strings 
is also relevant for geospatial analysis in a smart city context. Figure 9-3 exemplifies 
this data modeling technique, showing how the “services” map and the “geometry” 
GeoJSON are stored. As can be seen in Figure 9-3, following the proposed approach, 
one can arrange the number of services by distance and type nested in the “buildings 
general indicators” analytical object, without having to create a new object to store 
the services for each building. This provides significant flexibility when creating custom-
made data visualizations (see subsection 9.4), avoiding the need to perform complex 
queries to join different tables.

Figure 9‑3. SusCity nested structures (example).

9.3. THE INTER‑STORAGE PIPELINE
The need to transfer the data between storage components was already highlighted in 
section 9.1, but it will be quantitatively evaluated in this section. As mentioned, NoSQL 
databases are OLTP-oriented (Cattell, 2011), unlike Hive, which is an OLAP-oriented 
technology. Typically, OLTP systems relax sequential access efficiency for random 
access efficiency. Therefore, systems like Cassandra are suited for constant random 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics256

write operations frequently demanded by real-time collection of data from thousands 
of smart meters. However, these systems lack efficiency to process (e.g., aggregate) 
large amounts of historical data, which is frequently demanded by OLAP queries. Table 
9.1 presents the results from an experiment conducted in the infrastructure and testbed 
of the SusCity research project, evaluating the response times when submitting Presto 
queries to Hive tables and Cassandra tables. As demonstrated in Table 9.1, given the 
same analytical object and the same amount of data, Presto OLAP queries on Hive 
tables (ORC file format) perform significantly faster than the queries on Cassandra 
tables. This corroborates previous observations and the decision to periodically move 
historical data from Cassandra to Hive, maintaining only the most recent data in 
Cassandra. The periodicity of this data transfer depends on the specific requirements 
regarding interactivity in response times, the volume of data being stored, and the 
available infrastructure. In this setup, data can be transferred on an hourly, daily, weekly 
or monthly basis, for example. 

Table 9.1. Performance comparison between analytical objects stored in Hive and Cassandra. Based on 

C. Costa & Santos (2017c).

Query Input Rows Output Rows Hive Cassandra

Show the last 10 smart meters records ~2.8 million 10 0.56s 3.08s

Calculate the average of kWh grouped by smart 
meter

~2.8 million 214 0.56s 4.2s

Count how many records a certain smart meter 
contains

~2.8 million 1 0.74s 0.98s

9.4. THE SUSCITY DATA VISUALIZATION PLATFORM
Throughout this chapter, we focused on the logical and physical layers of the BDW. In 
this section, we highlight some relevant use cases in which the data visualization platform 
can help the city’s stakeholders in the decision-making process. As previously noted, the 
SusCity data visualization platform was developed using modern JavaScript libraries like 
the Google Maps API V3 and Chart.js. Obviously, since it is a Web-based platform, core 
languages are also present (HTML, CSS, and pure JavaScript), as well as other supporting 
JavaScript libraries like jQuery (2017). It is a platform purely based on a service-oriented 
architecture, using Java REST Web services to ensure the communication between the 
JavaScript components of the platform and the querying and OLAP engine instantiated 
by Presto. Each query submitted to the BDW goes to this REST backend for an adequate 
modularity of the platform. Using this service-oriented and modular approach, it is easier 
to update or replace components and technologies, if that need arises in the future.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 257

In this section, we will present various dashboards developed in the SusCity research 
project, which also represent interesting applications for other smart cities initiatives. The 
following dashboards are just a few examples of the SusCity data visualization platform’s 
capabilities, and the SusCity demonstration case itself considers other data sources 
and experiments (e.g., data mining and machine learning insights) that were not fully 
developed and implemented in the visualization platform. Furthermore, due to security 
and privacy issues, the visualizations illustrated in this section are built upon incomplete, 
omitted and/or changed testbed data and, therefore, results are not conclusive for any 
real-world based decision-making process.

9.4.1. City’s Energy Consumption
The first dashboard (Figure 9-4) is based on the energy consumption of each parish in the 
city (two parishes in the SusCity testbed). Decision-makers can understand the energy 
consumption in each parish and analyze the city’s consumption by the hour, time period 
(e.g., morning or afternoon) or by quarter. Users can interact with multiple parishes by 
clicking on them, revealing the energy consumption for specific parishes, and comparing 
it with the overall consumption of the city, with the goal of extracting insights regarding 
critical zones in the city. In the SusCity data visualization platform, one can also make 
available the predictive capabilities of the SusCity BDW, such as the segmentation 
(clustering) of buildings according to their energy consumption, and the respective energy 
forecasting for the next days or weeks, as conceptually explored in this book (section 9.2) 
and as also discussed in C. Costa and Santos (2015).

Figure 9‑4. SusCity data visualization platform – energy consumption dashboard. Adapted from C. Costa & 

Santos (2017c).

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics258

9.4.2. City’s Energy Grid Simulations
A dashboard to simulate and analyze stress scenarios in the energy grid can be significantly 
useful in the context of smart cities, as depicted in Figure 9-5. Each scenario corresponds 
to a set of input parameters (e.g., number of electrical vehicles, photovoltaic area, and 
number of charging stations) that may affect the behavior of the energy grid, such as 
energy losses, load, and maximum peak power. In the SusCity BDW, the results of the 
simulations for these scenarios are stored in analytical objects, as presented in section 
9.2, and the data visualization platform can use the querying and OLAP engine to extract 
and provide useful insights for stakeholders interested in the impact that certain initiatives 
have on the energy grid. Due to the modular and service-oriented nature of the SusCity 
data visualization platform, and the flexible and scalable SusCity BDW, one can provide 
dashboards for decision-makers, regardless of data volume, variety, and velocity, without 
being held back by rigid data modeling techniques and complex data CPE pipelines.

Figure 9‑5. SusCity data visualization platform – energy grid simulation dashboard. Adapted from C. Costa & 

Santos (2017c).

9.4.3. Buildings’ Performance Analysis and Simulation
Understanding the buildings’ efficiency is a crucial aspect for a smart and sustainable 
city. One of the SusCity platform main focuses is the geospatial analysis of the buildings 
in Lisbon, based on an extensive set of characteristics, such as: geometry; construction; 
energy consumption and efficiency; envelope properties (e.g., type of window and type of 
window frame); heating and cooling systems in use; and occupation schedule.



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 259

The flexible data model and storage components of the SusCity BDW, i.e., the lack of a 
strict relational data model and the efficient use of GeoJSON objects, together with a rich 
API for geospatial analytics like the Google Maps API, provide an extensive set of analytical 
capabilities for the city’s government. As can be seen in Figure 9-6, stakeholders can 
visualize the general distribution of the energy classes across Lisbon, the thermal inertia 
of the buildings, type of window and window frame, among other metrics georeferenced 
by building. Each chart is interactive and can be used as a filter to analyze how buildings 
are related to a certain property (e.g., metal window frame, double glass window, and low 
thermal inertia). As a consequence, the dashboard in Figure 9-6 is not only useful for the 
city’s government, also for private companies interested in promoting retrofitting initiatives 
to modernize buildings.

Figure 9‑6. SusCity data visualization platform – buildings analysis dashboard.

Similarly to the energy grid simulations (subsection 9.4.2), the SusCity BDW can also 
support simulations at the building level. Figure 9-7 demonstrates the use of simulation 
data to evaluate the impact of specific retrofitting initiatives (e.g., change the windows 
in 25% of the buildings in Lisbon). Besides analyzing the impact of retrofitting initiatives, 
decision-makers can also use the dashboard in Figure 9-7 to analyze the archetype of 
a specific building, among many other characteristics previously mentioned: geometry; 
construction; heating and cooling systems; and occupation schedule. Consequently, 
having a BDW whose data model facilitates the integration of a vast set of data sources, 
without rigid structures, is one of the main aspects that allows the development of these 
Big Data analyzes in the context of smart cities. 

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics260

Figure 9‑7. SusCity data visualization platform – buildings simulation dashboard. Adapted from Monteiro et al. 

(2018).

9.4.4. Mobility Patterns Analysis
Studying mobility is a crucial aspect in a smart city. Understanding how people or goods 
travel within the city, or how citizens tend to use private or public transports, for example, 
is an interesting subject for decision-makers, including the city’s government and public/
private transportation companies. Another interesting scenario is the footprint analysis 
of the city’s streets, according to several indicators, such as CO2 emissions or average 
speed.

Figure 9-8 focuses on the analysis of the city’s mobility patterns, to foresee future initiatives 
to facilitate the use of either private or public transportation. The analysis follows these 
steps:

1. The city is modeled as a grid with several sections.

2.  Every section is colored in the map according to one of three indicators: number of 
daily trips; job transport accessibility; and average travel time.

3.  By clicking in one section of the grid, decision-makers can understand how that section 
performs regarding the three indicators mentioned above.

Analyzing the data at the grid level is interesting for understanding the mobility behavior 
within different sections of the city. However, the flexible data model of the SusCity BDW 
and the geospatial capabilities of the SusCity data visualization platform also allow the 
analysis of several indicators at the street level. To demonstrate these capabilities, Figure 



Copyright © River Publishers – except portuguese speaking countries

Big Data Warehousing in Smart Cities 261

9-9 presents several streets colored according to the ratio between average speed and 
maximum allowed speed, so that stakeholders can understand in which streets citizens 
tend to drive over the speed limit. The analysis in Figure 9-9 focuses on security concerning 
mobility patterns, but there are several other potential use cases for this kind of analysis, 
such as identifying the busiest or more polluting streets, for example.

Figure 9‑8. SusCity data visualization platform – mobility grid dashboard.

Figure 9‑9. SusCity data visualization platform – mobility dashboard at street level.

©
 F

C
A





10CONCLUSION



Big Data: Concepts, Warehousing, and Analytics264

Throughout this work, Big Data proved to be a concept of major relevance in today’s world, 
whose popularity has increased considerably during the last years. Areas like smart cities, 
manufacturing, retail, finance, software development, environment, digital media, among 
others, can benefit from the collection, storage, processing, and analysis of Big Data, 
leveraging unprecedented data-driven workflows, and considerably improving decision-
making processes. This new type of data is being defined not only by its characteristics 
(e.g., volume, variety, and velocity), but also by the limitations it imposes on traditional 
storage and processing technologies. Organizations seeking Big Data initiatives face 
several challenges, such as the lack of consensus in definitions, models, and architectures, 
and difficulties concerning the Big Data life cycle design and implementation.

Since the DW concept has a long history as one of the most valuable enterprise 
data assets, this book aimed to describe its role, design, and implementation in Big 
Data environments. The concept of BDW is emerging as either an augmentation or a 
replacement of the traditional DW. Research in this topic is still in its infancy, and as Big 
Data is often synonymous with ambiguity, the same happens for the concept of BDW. 
After analyzing the scientific and technical literature, this book shows that the BDW can 
be defined using the following characteristics:

• Parallel/distributed storage and processing of large amounts of data, including fault-
tolerance issues;

• Scalability (accommodate more data, users, and analyzes) and elasticity, using 
commodity hardware to lower the costs of implementation and maintenance;

• Flexible storage, including unstructured data;

• Real-time capabilities (stream processing, low latency, and high frequency updates);

• High performance with near real-time response;

• Interoperability in a federation of multiple technologies;

• Mixed and complex analytics (e.g., ad hoc or exploratory analysis, data mining, text 
mining, statistics, machine learning, reporting, visualization, geospatial analytics, 
advanced simulations, and materialized views).

Considering the state of the art in BDWing, we conclude that there is no common 
approach to building BDWs. There are numerous Big Data technologies to choose 
from, each trying to stand out, which creates barriers in the design and implementation 
of Big Data solutions like BDWing systems, since these technologies’ role is mostly 
misunderstood, eventually overlapping each other. Current logical architectures and non-
structured contributions only solve part of the problem by providing some general and 
relatively unstructured constructs and guidelines. However, ambiguity regarding the BDW 
techniques and technologies that are more adequate for several contexts still prevails, 



Copyright © River Publishers – except portuguese speaking countries

Conclusion 265

mainly due to the lack of general-purpose, detailed, integrated, and adequately evaluated 
approaches.

Currently, the design and implementation of BDWs is mainly seen as a use case driven 
approach, instead of a data-driven one, which used to be the case for traditional DWs. 
Previously, data modeling was the primary concern, but, nowadays, practitioners are mainly 
concerned with finding the right technology to meet the demands of Big Data, leading to 
possible uncoordinated data silos. It would be a mistake to discard years of architectural 
best practices based on the assumption that storage for Big Data is not driven by data 
modeling (Clegg, 2015). Works related to the SQL-on-Hadoop movement are a suitable 
proof that the data structures known for a long time are still relevant, although modified 
and optimized. Obviously, unstructured data does not adequately fit into these structures, 
but, as this book has demonstrated, there are data science techniques for extracting value 
from data and subsequently fuel the BDW (e.g., data mining and text mining). Complex 
systems like BDWs require changes in different logical and technological components, 
data flows, and data structures, but this does not imply discarding previously useful 
models and methods in favor of a use case driven approach. 

Until now, there was no structured and general-purpose approach describing how to 
design and implement BDWs, with adequately evaluated models (representations of logical 
and technological components, data flows, and data structures), methods (structured 
practices), and instantiations (e.g., demonstration cases through prototyping and 
benchmarking). This scientific and technical gap was the main motivation for this book. In 
our opinion, the existing logical architectures, non-structured guidelines, best practices, 
and implementations in specific contexts, although relevant, do not provide the complete, 
general-purpose, detailed, and thoroughly evaluated approach that practitioners require 
to design and implement BDWs according to their characteristics. The gap between 
this is what a BDW should be and this is how you design and implement it motivated 
our approach: an integrated, detailed, and general-purpose prescriptive contribution to 
design and implement BDWs, using models and methods that were adequately evaluated 
through different demonstration cases. Practitioners and researchers have now a set of 
artifacts available to be used to build BDWs and to foster future research as techniques 
and technologies continue to evolve. 

10.1. SYNOPSIS OF THE BOOK
This book begins by presenting an overall perspective of the Big Data concept, its 
relevance, characteristics (pointing the several Vs and their evolution over time), and 
challenges, which are mainly associated with general dilemmas, the data life cycle, 
security and privacy concerns, and the organizational changes this concept imposes. Big ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics266

Data techniques and technologies are also highlighted, from architectural to infrastructural 
requirements, presenting in more detail the Lambda or NIST architectures, or describing 
the Hadoop ecosystem and some of its main related projects. Distributed SQL engines 
are also addressed, providing an overview of some existing systems, namely Drill, HAWQ, 
Hive, Impala, Presto, and Spark. 

After this overall perspective of Big Data, this book describes in more detail several 
databases for Big Data environments, both for OLTP and OLAP workloads. In OLTP-
oriented workloads, NoSQL databases following the key-value, column-oriented, 
document, or graph models are described, indicating the characteristics of each type of 
database and presenting technical examples for each one of them, namely using Redis, 
HBase, MongoDB, and Neo4j. Also, for OLTP contexts, the concept of NewSQL databases 
and some of their characteristics are briefly explained. In OLAP-oriented workloads, Hive is 
presented and described as the de facto SQL-on-Hadoop engine, facilitating the querying 
and management of large datasets that are stored in a distributed storage. For Hive, its 
main data organization elements – tables, partitions, and buckets – are presented, as 
well as the different storage formats for Hive tables (text file, sequence file, RCFile, ORC 
file, Avro file, and Parquet). Also, for OLAP-oriented workloads, Druid is presented as a 
column-oriented data store optimized for ad hoc interactive query processing, enhanced 
for grouping, filtering, and aggregating data.

Besides describing and exemplifying these databases, this book also addresses the issue 
of defining columnar or tabular data models in Big Data contexts, proposing specific 
guidelines for transforming a RDM into a CDM suitable for HBase, and for transforming a 
DDM into an ADM suitable for Hive (ADMBD). In both cases, organizations and practitioners 
can take as input existing data models, with the data requirements elicited in a traditional 
technological environment, and move towards data models that can be implemented in 
a Big Data environment. In the case of an ADM, the objective is to help in the process of 
implementing a BDW. 

In cases where the organizations and practitioners want to follow a “rip and replace” 
strategy for designing and implementing BDWs, this book describes an approach 
integrating several models and methods to build these complex systems. These models 
and methods were subjected to a continuous refinement process, wherein the various 
demonstration cases helped to facilitate the evaluation of the approach, and to iteratively 
improve it. The following models and methods were developed:

1.  A model of logical components and data flows (section 5.2), which can be used to 
understand the components that should be considered in the design of a BDW, how 
they interoperate, and how data flows through the system. The model comprises 
several components related to BDW storage, processing, access, analytics, system 
administration and management, and security and privacy, detailing how they form a 
BDWing system that follows the constructs of Big Data standards such as the NBDRA.



Copyright © River Publishers – except portuguese speaking countries

Conclusion 267

2.  A method for collecting, preparing, and enriching batch and streaming data (subsection 
5.2.2), so that practitioners can understand the different steps involved from data 
collection to data storage in BDWing contexts. The method not only clarifies batch and 
streaming data flows, but also details how data science models and insights can be 
incorporated into data CPE workloads, enabling predictive capabilities and allowing the 
extraction of value from unstructured data (e.g., text, video, and image).

3.  A model of the technological infrastructure (section 5.3), resulting from an extensive 
research and development process that took place to identify and test several 
technologies suitable to instantiate the different components proposed in the model 
of logical components and data flows. The technological infrastructure model offers 
various alternatives for implementing a BDWing system, including data CPE workloads, 
storage, querying and OLAP, data mining/machine learning, and data visualization 
technologies. Moreover, this model also provides some guidelines on how to deploy 
BDWing systems on cloud environments or on-premises.

4.  A method for BDW data modeling (section 5.4), which, together with the aforementioned 
contributions, represents a relevant artifact to tackle one of the main problems in Big Data 
environments, i.e., lack of standard data modeling contributions. The method presents 
several constructs. These include: analytical objects; descriptive and analytical families; 
descriptive, factual, and predictive attributes (resulting from data science models 
and insights); nested attributes; granularity key; partition key; bucketing/clustering 
key; date, time, and spatial objects; materialized objects; complementary analytical 
objects; and outsourced descriptive families. The data modeling method provides a 
way to structure batch and streaming data using the same constructs regardless of 
the underlying technology supporting the storage system, providing an abstraction 
layer that practitioners can rely on to model BDWs supported by HDFS/Hive, NoSQL/
NewSQL databases, Kudu, Druid, among other systems (see section 5.3).

The models and methods described in this book form a set of artifacts for the design 
and implementation of BDWing systems, and consider both structured, semi-structured, 
and unstructured batch and streaming data, providing adequate ways to collect, store, 
process, and analyze this data. These can be used by practitioners and researchers as 
a structured, integrated, and general-purpose approach that can be prescribed to solve 
several real-world BDWing problems, aiming to support structured analytics on Big Data 
environments while taking advantage of the BDW characteristics. Four demonstration 
cases helped to evaluate and enhance these models and methods.

The first demonstration case consisted in modeling six BDW data models to solve potential 
real-world problems. In this demonstration case, one used several artificial datasets (e.g., 
Adventure Works, TPC-DS, and TPC-E), as well as other publicly available datasets, 
including the GitHub repositories dataset, the GDELT event database, and the open-
air quality API. For each dataset, a BDW data model was created using the proposed ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics268

approach, which was significantly useful to thoroughly explain the several proposed models 
and methods. The approach in itself was developed to be relatively simple to follow, but 
one should take into consideration that a “rip and replace” approach like the one proposed 
in this book can be significantly disruptive and potentially confusing when designing and 
implementing specific parts of a BDWing system. Consequently, this demonstration helps 
to clarify when to apply specific guidelines, discussing different contexts and design 
decisions that practitioners may face in the future. Furthermore, this demonstration case, 
together with the considerations from the following data CPE demonstration case, the 
SSB+ Benchmark, and the SusCity demonstration case, was relevant to demonstrate the 
effectiveness and simplicity of our approach. This demonstration case generated several 
BDW data models that, avoiding complexity related to traditional dimensional DWs (e.g., 
different types of dimensions, bridge tables, surrogate keys, SCDs, and late arriving 
dimensions), take less time to structure, fuel, maintain, and extend with new batch and 
streaming data (structured, semi-structured, and unstructured). This inevitably results in 
more storage flexibility and generally more performance, and accelerates the time from 
data collection to analysis. Consequently, these insights offer compelling reasons for 
adopting a BDWing strategy in organizations.

The second demonstration case involved designing and implementing several data CPE 
processes focused on structured, semi-structured, and unstructured batch and streaming 
data, to cover different challenges related to collecting, preparing, and enriching data 
flowing into a BDW. Different data characteristics require different strategies, hence why 
this demonstration offers adequate examples to practitioners, showing the effectiveness of 
the proposed data CPE method. This demonstration case also highlighted the differences 
in complexity between traditional ETL processes and data CPE workloads, namely:

• The use of denormalized structures allows simpler processes when the underlying data 
source is already flat or nested, such as that generated by sensors, NoSQL databases, 
Excel/CSV files, XML/JSON files, Web APIs, among many others sources frequently 
seen in Big Data environments. Not having to develop and maintain complex workloads 
to fuel several types of dimension tables/concepts (e.g., mini dimensions, shrunken 
dimensions, junk dimensions, bridge tables, late arriving dimensions) is definitively a 
compelling advantage. Moreover, avoiding the need to perform constant SK lookups 
while loading a fact table is another advantage, especially in Big Data environments 
wherein one is focusing on accelerating the time to insight, instead of spending a 
significant amount of time trying to model and maintain the BDW. Nevertheless, if the 
underlying source is already relational, the contrasting phenomenon occurs, i.e., one 
may need to perform several join operations to fuel a certain denormalized analytical 
object;

• The lack of dimension tables also means that streaming scenarios are possible without 
complex operations like SK lookups, or complex concepts such as SCDs or late arriving 



Copyright © River Publishers – except portuguese speaking countries

Conclusion 269

dimensions. The descriptive attributes of an immutable analytical object behave like a 
SCD type 2 scenario, in which each record is associated with the current values of the 
descriptive attributes. When using outsourced descriptive families and complementary 
analytical objects, practitioners can consider different updating approaches, as 
discussed in subsections 5.4.3 and 6.2.1, to overcome some challenges similar to 
SCDs and late arriving dimensions.

The third demonstration case shows an extension of the SSB benchmark (O’Neil et al., 
2009), the SSB+. This benchmark served to evaluate several design and implementation 
guidelines of the described approach, in terms of effectiveness and efficiency (e.g., latency 
and resource usage), using as baseline, when appropriate, a star schema DW. The results 
demonstrated that, generally, a fully denormalized analytical object can outperform a star 
schema throughout different SFs (some of them exceeding the available memory), different 
SQL-on-Hadoop engines, and different descriptive attributes cardinality (dimension tables 
size). This means that even in contexts wherein dimension tables were relatively small to 
fit into memory (allowing efficient map/broadcast joins), a fully denormalized analytical 
object was more efficient (faster execution times and less CPU usage and memory 
dependability), surpassing the need for constant join operations between the fact table 
and the corresponding dimension tables. Analytical objects were also generally faster in 
drill-across and window analytics scenarios. Nevertheless, this demonstration case also 
shows that there is space for relational structures (see subsections 5.4.3 and 5.4.4.2), 
which can be beneficial for reducing the storage footprint of the BDW, avoiding extreme 
and unnecessary redundancy and, in certain contexts, increasing processing efficiency 
(see subsection 8.2.3). This last insight enabled the creation of spatial, date, and time 
objects, and outsourced descriptive families.

Still in this demonstration case, other workloads were also evaluated in terms of query 
latency, including nested attributes, data partitioning, and concurrent workloads, which 
provided several guidelines that practitioners can take into consideration. Furthermore, 
the SSB+ Benchmark also served to evaluate the streaming performance of a BDW, 
showing that using a single query submitted through the querying and OLAP engine, one 
can combine batch and streaming data into a “unified picture”. The streaming workload 
was relevant to understand the limitations of technologies like HDFS/Hive (e.g., random 
access disadvantages and small files problem) and NoSQL databases (e.g., Cassandra’s 
sequential access disadvantages) when storing and retrieving vast amounts of data, and 
the effects they can have on query performance. These insights corroborated previous 
assumptions, but also complemented them with further guidelines for practitioners, which 
are discussed throughout Chapter 5.

Finally, the fourth demonstration case applied the approach in a smart city context, 
namely the SusCity research project (C. Costa & Santos, 2017c; SusCity, 2016). The 
SusCity BDWing system was a prototype developed in this project, in which we followed ©

 F
C

A



Big Data: Concepts, Warehousing, and Analytics270

the described models and methods, proving the suitability of the BDWing approach 
to solve real-world problems. The architecture of the system follows the described 
logical components and data flows, the supporting technologies are compliant with the 
described technological infrastructure model, and the SusCity data model is guided by the 
described data modeling method. The SusCity BDW was able to support an interactive 
Web-based data visualization platform focusing on several smart cities concerns, such 
as energy, buildings efficiency, and mobility, providing adequate response times, ranging 
from milliseconds to a few seconds over millions of records. The SusCity data visualization 
platform made available several geospatial and simulation capabilities in smart cities 
contexts (e.g., buildings retrofitting measures and energy grid stress scenarios), in a BDW 
able to support new mixed and complex analytical workloads. 

10.2. CONTRIBUTIONS TO THE STATE OF THE ART
According to the described work and achieved results presented above, to the best of 
our knowledge, this approach is a relevant contribution for the scientific and technical 
community, making available a set of artifacts for BDW design and implementation that not 
only can foster future research but, above all, can help practitioners build these complex 
systems, which otherwise would typically fall into a use case and ad hoc driven process. 
The models and methods described in this book were applied in four demonstration cases 
that allowed the evaluation of the approach mainly in terms of effectiveness, complexity, 
latency, and, when applicable, resource considerations (CPU usage, memory constraints, 
and storage footprint). 

Despite the relative novelty of the topic, the approach described in this book took into 
consideration previously existing contributions. As such, it is built upon some general 
constructs and guidelines provided by the Lambda Architecture (Marz & Warren, 2015), 
the NBDRA (NBD-PWG, 2015), the Big Data Processing Flow (Krishnan, 2013), the 
Data Highway Concept (Kimball & Ross, 2013), and even some data denormalization 
encouragements discussed in previous works (Jukic et al., 2017; Santos et al., 2017; 
Santos & Costa, 2016b; Dehdouh, Bentayeb, Boussaid, & Kabachi, 2015; J. P. Costa 
et al., 2011). Scientific progress is often made by disruptive approaches, but it is also 
relevant to try to build something with a solid foundation, which was relatively difficult in this 
book, considering the lack of maturity and contributions related to BDWing. However, this 
work’s contribution to the state of the art in BDWing was only possible due to previously 
explored paths and the relevant contributions of several related works, including the vast 
amounts of scientific and technical works related to traditional DWing systems, shaping 
several academic and professional formations, whose absence would otherwise make 
unfeasible the advancements regarding DWs in Big Data environments.



Copyright © River Publishers – except portuguese speaking countries

REFERENCES 

Apache Hadoop. (2018). Welcome to Apache Hadoop. Retrieved July 3, 2018, from https://
hadoop.apache.org/.

Apache Hive. (2018). Hive Transactions. Retrieved July 27, 2018, from https://cwiki.apache.org/
confluence/display/Hive/Hive+Transactions.

Apache Ignite. (2018). Open source memory-centric distributed database, caching, and processing 
platform – Apache IgniteTM. Retrieved August 7, 2018, from https://ignite.apache.org/.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., … others. (2015). Spark sql: 
Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD International 
Conference on Management of Data (pp. 1383–1394). ACM. Retrieved from http://dl.acm.org/
citation.cfm?id=2742797.

Aslett, M. (2011). How will the database incumbents respond to NoSQL and NewSQL? The 451 
Group, https://451research.com/.

Avro. (2018). Apache Avro Homepage. Retrieved December 27, 2018, from https://avro.apache.
org/.

Bakshi, K. (2012). Considerations for big data: Architecture and approach. In 2012 IEEE Aerospace 
Conference (pp. 1–7). https://doi.org/10.1109/AERO.2012.6187357.

Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., & Rabl, T. (2013). Benchmarking Big Data Systems 
and the BigData Top100 List. Big Data, 1(1), 60–64. https://doi.org/10.1089/big.2013.1509.

Beauchemin, M. (2018). Functional Data Engineering – A modern paradigm for batch data 
processing. Retrieved July 23, 2019, from https://medium.com/@maximebeauchemin/functional-
data-engineering-a-modern-paradigm-for-batch-data-processing-2327ec32c42a.

Begoli, E., & Horey, J. (2012). Design Principles for Effective Knowledge Discovery from Big Data. 
In 2012 Joint Working IEEE/IFIP Conference on Software Architecture (WICSA) and European 
Conference on Software Architecture (ECSA) (pp. 215–218). https://doi.org/10.1109/WICSA-
ECSA.212.32.

Boyd, D., & Crawford, K. (2012). Critical Questions for Big Data. Information, Communication & 
Society, 15(5), 662–679. https://doi.org/10.1080/1369118X.2012.678878.

Brewer, E. (2012). CAP twelve years later: How the “rules” have changed. Computer, 45(2), 23–29. 
https://doi.org/10.1109/MC.2012.37.©
 F

C
A

https://hadoop.apache.org/
https://hadoop.apache.org/
https://cwiki.apache.org/
https://ignite.apache.org/
http://dl.acm.org/citation.cfm?id=2742797
http://dl.acm.org/citation.cfm?id=2742797
https://451research.com/
https://avro.apache.org/
https://avro.apache.org/
https://doi.org/10.1109/AERO.2012.6187357
https://doi.org/10.1089/big.2013.1509
https://medium.com/@maximebeauchemin/functionaldata-engineering-a-modern-paradigm-for-batch-data-processing-2327ec32c42a
https://medium.com/@maximebeauchemin/functionaldata-engineering-a-modern-paradigm-for-batch-data-processing-2327ec32c42a
https://doi.org/10.1109/WICSAECSA.212.32
https://doi.org/10.1109/WICSAECSA.212.32
https://doi.org/10.1080/1369118X.2012.678878
https://doi.org/10.1109/MC.2012.37
https://ignite.apache.org/
https://medium.com/@maximebeauchemin/functional-data-
https://medium.com/@maximebeauchemin/functional-data-


Big Data: Concepts, Warehousing, and Analytics272

Brown, B., Chui, M., & Manyika, J. (2011). Are you ready for the era of ‘big data’ (Report). 
Retrieved from http://www.t-systems.com/solutions/download-mckinsey-quarterly-/1148544_1/
blobBinary/Study-McKinsey-Big-data.pdf.

Capriolo, E., Wampler, D., & Rutherglen, J. (2012). Programming hive. O’Reilly Media, Inc.

Cattell, R. (2011). Scalable SQL and NoSQL data stores. ACM SIGMOD Record, 39(4), 12–27. 
https://doi.org/10.1145/1978915.1978919.

Chandarana, P., & Vijayalakshmi, M. (2014). Big Data analytics frameworks. In 2014 International 
Conference on Circuits, Systems, Communication and Information Technology Applications 
(CSCITA) (pp. 430–434). https://doi.org/10.1109/CSCITA.2014.6839299.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., … Gruber, R. E. 
(2008). Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst., 
26(2), 4:1–4:26. https://doi.org/10.1145/1365815.1365816.

Chang, L., Wang, Z., Ma, T., Jian, L., Ma, L., Goldshuv, A., … others. (2014). HAWQ: a massively 
parallel processing SQL engine in hadoop. In Proceedings of the 2014 ACM SIGMOD International 
Conference on Management of Data (pp. 1223–1234). ACM. Retrieved from http://dl.acm.org/
citation.cfm?id=2595636.

Chart.js. (2017). Chart.js | Open source HTML5 Charts. Retrieved March 5, 2017, from http://www.
chartjs.org/.

Chen, C. L. P., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques and 
technologies: A survey on Big Data. Information Sciences, 275, 314–347. https://doi.org/ 
10.1016/j.ins.2014.01.015.

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data 
to Big Impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503.

Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 
171–209. https://doi.org/10.1007/s11036-013-0489-0.

Chodorow, K. (2013). MongoDB: The Definitive Guide: Powerful and Scalable Data Storage (2nd 
ed.). O’Reilly Media.

Chowdhury, S. (2014). Big data and data warehouse augmentation (Data warehouse augmentation). 
IBM Corporation. Retrieved from https://www.ibm.com/developerworks/analytics/library/ba-
augment-data-warehouse1/ba-augment-data-warehouse1-pdf.pdf.

Clegg, D. (2015). Evolving data warehouse and BI architectures: The big data challenge. TDWI 
Business Intelligence Journal, 20(1), 19–24.

Correia, J. (2018). Processamento Analítico de Dados em Contextos de Big Data com o Druid.  
MSc Thesis, Universidade do Minho, Portugal.

Correia, J., Santos, M. Y., Costa, C., & Andrade, C. (2018). Fast Online Analytical Processing  
for Big Data Warehousing. In International Conference on Intelligent Systems (IS) (pp. 435–442). 
https://doi.org/10.1109/IS.2018.8710583.

Costa, C. (2017). SSB+ GitHub Repository. Retrieved from https://github.com/epilif1017a/
bigdatabenchmarks.

Costa, C., & Santos, M. Y. (2015). Improving cities sustainability through the use of data mining 
in a context of big city data. In 2015 International Conference of Data Mining and Knowledge 

http://www.t-systems.com/solutions/download-mckinsey-quarterly-/1148544_1/blobBinary/Study-McKinsey-Big-data.pdf
http://www.t-systems.com/solutions/download-mckinsey-quarterly-/1148544_1/blobBinary/Study-McKinsey-Big-data.pdf
https://doi.org/10.1145/1978915.1978919
https://doi.org/10.1109/CSCITA.2014.6839299
https://doi.org/10.1145/1365815.1365816
http://dl.acm.org/citation.cfm?id=2595636
http://dl.acm.org/citation.cfm?id=2595636
http://www.chartjs.org/
http://www.chartjs.org/
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.1016/j.ins.2014.01.015
https://doi.org/10.2307/41703503
https://doi.org/10.1007/s11036-013-0489-0
https://www.ibm.com/developerworks/analytics/library/baaugment-data-warehouse1/ba-augment-data-warehouse1-pdf.pdf
https://www.ibm.com/developerworks/analytics/library/baaugment-data-warehouse1/ba-augment-data-warehouse1-pdf.pdf
https://doi.org/10.1109/IS.2018.8710583
https://github.com/epilif1017a/bigdatabenchmarks
https://github.com/epilif1017a/bigdatabenchmarks


Copyright © River Publishers – except portuguese speaking countries

References 273

Engineering (ICOMKE) (Vol. 1, pp. 320–325). IAENG. Retrieved from https://repositorium.sdum.
uminho.pt/handle/1822/36713.

Costa, C., & Santos, M. Y. (2016a). BASIS: A big data architecture for smart cities. In 2016 SAI 
Computing Conference (SAI) (pp. 1247–1256). https://doi.org/10.1109/SAI.2016.7556139.

Costa, C., & Santos, M. Y. (2016b). Reinventing the Energy Bill in Smart Cities with NoSQL 
Technologies. In S. Ao, G.-C. Yang, & L. Gelman (Eds.), Transactions on Engineering Technologies 
(pp. 383–396). Springer Singapore. https://doi.org/10.1007/978-981-10-1088-0_29.

Costa, C., & Santos, M. Y. (2017a). Big Data: State-of-the-art concepts, techniques, technologies, 
modeling approaches and research challenges. IAENG International Journal of Computer Science, 
44, 285–301.

Costa, C., & Santos, M. Y. (2017b). The data scientist profile and its representativeness in the European 
e-Competence framework and the skills framework for the information age. International Journal 
of Information Management, 37(6), 726–734. https://doi.org/10.1016/j.ijinfomgt.2017.07.010.

Costa, C., & Santos, M. Y. (2017c). The SusCity Big Data Warehousing Approach for Smart Cities. 
In Proceedings of the 21st International Database Engineering & Applications Symposium. IDEAS 
2017 (pp. 264–273). ACM. https://doi.org/10.1145/3105831.3105841.

Costa, C., & Santos, M. Y. (2018). Evaluating Several Design Patterns and Trends in Big Data 
Warehousing Systems. In J. Krogstie & H. A. Reijers (Eds.), Advanced Information Systems 
Engineering. CAISE 2018 (pp. 459–473). Springer, Cham. https://doi.org/10.1007/978-3-319-
91563-0_28.

Costa, E., Costa, C., & Santos, M. Y. (2017). Efficient Big Data Modelling and Organization for Hadoop 
Hive-Based Data Warehouses. In M. Themistocleous & V. Morabito (Eds.), Information Systems. 
EMCIS 2017 (pp. 3–16). Springer, Cham. https://doi.org/10.1007/978-3-319-65930-5_1.

Costa, E., Costa, C., & Santos, M. Y. (2018). Partitioning and Bucketing in Hive-Based Big Data 
Warehouses. In Á. Rocha, A. Hojjat, L. P. Reis, & S. Costanzo (Eds.), Trends and Advances in 
Information Systems and Technologies. WorldCIST 2018 (pp. 764–774). Springer, Cham. https://
doi.org/10.1007/978-3-319-77712-2_72.

Costa, J. P., Cecílio, J., Martins, P., & Furtado, P. (2011). ONE: A Predictable and Scalable DW 
Model. In Data Warehousing and Knowledge Discovery (pp. 1–13). Springer, Berlin, Heidelberg. 
https://doi.org/10.1007/978-3-642-23544-3_1.

Cuzzocrea, A., Song, I.-Y., & Davis, K. C. (2011). Analytics over large-scale multidimensional data: the 
big data revolution! In Proceedings of the ACM 14th International Workshop on Data Warehousing 
and OLAP (pp. 101–104). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2064695.

Dataedo. (2017). AdventureWorks – Data Dictionary. Dataedo. Retrieved from https://dataedo.com/
download/AdventureWorks.pdf.

DataStax. (2018). DataStax Enterprise | Enterprise Data Management | DataStax. Retrieved 
December 28, 2018, from https://www.datastax.com/products/datastax-enterprise.

Davenport, T. H., Barth, P., & Bean, R. (2012). How big data is different. MIT Sloan Management 
Review, 54(1), 43–46.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. 
Commun. ACM, 51(1), 107–113. https://doi.org/10.1145/1327452.1327492.©
 F

C
A

https://repositorium.sdum.uminho.pt/handle/1822/36713
https://repositorium.sdum.uminho.pt/handle/1822/36713
https://doi.org/10.1109/SAI.2016.7556139
https://doi.org/10.1007/978-981-10-1088-0_29
https://doi.org/10.1016/j.ijinfomgt.2017.07.010
https://doi.org/10.1145/3105831.3105841
https://doi.org/10.1007/978-3-319-91563-0_28
https://doi.org/10.1007/978-3-319-91563-0_28
https://doi.org/10.1007/978-3-319-65930-5_1
https://doi.org/10.1007/978-3-319-77712-2_72
https://doi.org/10.1007/978-3-319-77712-2_72
https://doi.org/10.1007/978-3-642-23544-3_1
http://dl.acm.org/citation.cfm?id=2064695
https://dataedo.com/download/AdventureWorks.pdf
https://dataedo.com/download/AdventureWorks.pdf
https://www.datastax.com/products/datastax-enterprise
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1109/SAI.2016.7556139
https://doi.org/10.1145/3105831.3105841
https://doi.org/10.1007/978-3-319-
https://doi.org/10.1007/978-3-642-23544-3_1


Big Data: Concepts, Warehousing, and Analytics274

Dehdouh, K., Bentayeb, F., Boussaid, O., & Kabachi, N. (2015). Using the column oriented NoSQL 
model for implementing big data warehouses. In Proceedings of the International Conference 
on Parallel and Distributed Processing Techniques and Applications (PDPTA) (p. 469). Retrieved 
from http://search.proquest.com/openview/fb990658e2d8b7f76720b0a6707b9e89/1?pq-
origsite=gscholar.

Drill. (2018). Apache Drill – Schema-free SQL for Hadoop, NoSQL and Cloud Storage. Retrieved 
December 27, 2018, from https://drill.apache.org/.

Druid. (2018). Druid | Interactive Analytics at Scale. Retrieved December 27, 2018, from http://druid.
io/.

Du, D. (2015). Apache Hive Essentials. Packt Publishing.

Dumbill, E. (2013). Making sense of big data. Big Data, 1(1), 1–2. https://doi.org/10.1089/
big.2012.1503.

Fan, W., & Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM SIGKDD 
Explorations Newsletter, 14(2), 1–5. https://doi.org/10.1145/2481244.2481246.

Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012). Interactions with big data analytics. 
Interactions, 19(3), 50–59. https://doi.org/10.1145/2168931.2168943.

Floratou, A., Minhas, U. F., & Özcan, F. (2014). SQL-on-Hadoop: Full Circle Back to Shared-
nothing Database Architectures. Proc. VLDB Endow., 7(12), 1295–1306. https://doi.
org/10.14778/2732977.2733002.

Gai, K., Qiu, M., & Sun, X. (2018). A survey on FinTech. Journal of Network and Computer 
Applications, 103, 262–273. https://doi.org/10.1016/j.jnca.2017.10.011.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. 
International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/ 
j.ijinfomgt.2014.10.007.

Garber, L. (2012). Using In-Memory Analytics to Quickly Crunch Big Data. Computer, 45(10), 16–18. 
https://doi.org/10.1109/MC.2012.358.

Gates, A. (2014). Stinger.next: Enterprise SQL at Hadoop Scale with Apache Hive. Retrieved January 
25, 2019, from https://hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-
hive/.

GDELT. (2018). The GDELT Project. Retrieved August 6, 2018, from https://www.gdeltproject.org/.

George, L. (2010). HBase: The Definitive Guide (2nd ed.). O’Reilly Media, Inc.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. In ACM SIGOPS operating 
systems review (Vol. 37, pp. 29–43). ACM. https://doi.org/10.1145/1165389.945450.

Google. (2018). GitHub Repositories Dataset on Google BigQuery. Retrieved August 6, 2018, from 
https://bigquery.cloud.google.com/dataset/bigquery-public-data:github_repos.

Google Maps. (2017). Google Maps JavaScript API. Retrieved March 5, 2017, from https://
developers.google.com/maps/documentation/javascript/.

Google Trends. (2018). Interest in Big Data over time. Retrieved August 7, 2018, from https://www.
google.pt/trends/explore#q=big%20data.

Grolinger, K., Higashino, W. A., Tiwari, A., & Capretz, M. A. (2013). Data management in cloud 
environments: NoSQL and NewSQL data stores. Journal of Cloud Computing: Advances, 
Systems and Applications, 2(1), 22.

http://search.proquest.com/openview/fb990658e2d8b7f76720b0a6707b9e89/1?pqorigsite=gscholar
http://search.proquest.com/openview/fb990658e2d8b7f76720b0a6707b9e89/1?pqorigsite=gscholar
https://drill.apache.org/
http://druid
https://doi.org/10.1089/
https://doi.org/10.1145/2481244.2481246
https://doi.org/10.1145/2168931.2168943
https://doi
https://doi.org/10.1016/j.jnca.2017.10.011
https://doi.org/10.1016/
https://doi.org/10.1109/MC.2012.358
https://hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/
https://hortonworks.com/blog/stinger-next-enterprise-sql-hadoop-scale-apache-hive/
https://www.gdeltproject.org/
https://doi.org/10.1145/1165389.945450
https://bigquery.cloud.google.com/dataset/bigquery-public-data:github_repos
https://www


Copyright © River Publishers – except portuguese speaking countries

References 275

Grover, A., Gholap, J., Janeja, V. P., Yesha, Y., Chintalapati, R., Marwaha, H., & Modi, K. (2015). SQL-like 
big data environments: Case study in clinical trial analytics. In 2015 IEEE International Conference 
on Big Data (Big Data) (pp. 2680–2689). https://doi.org/10.1109/BigData.2015.7364068.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data 
mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.

Han, J., Pei, J., & Kamber, M. (2012). Data Mining: Concepts and Techniques (3rd ed.). Elsevier.

Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big 
data” on cloud computing: Review and open research issues. Information Systems, 47, 98–115. 
https://doi.org/10.1016/j.is.2014.07.006.

Hausenblas, M., & Nadeau, J. (2013). Apache drill: interactive ad-hoc analysis at scale. Big Data, 
1(2), 100–104.

HAWQ. (2018). Apache HAWQ® Homepage. Retrieved December 27, 2018, from http://hawq.
apache.org/.

HBase. (2018a). Apache HBase – Apache HBaseTM Home. Retrieved June 22, 2018, from https://
hbase.apache.org/.

HBase. (2018b). Apache HBaseTM Reference Guide. Retrieved December 27, 2018, from https://
hbase.apache.org/2.0/book.html.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems 
Research. MIS Q., 28(1), 75–105.

Hewitt, E. (2010). Cassandra: The Definitive Guide (1st ed.). Beijing: O’Reilly Media.

Hive. (2018a). Apache HiveTM. Retrieved December 27, 2018, from https://hive.apache.org/.

Hive. (2018b). LanguageManual ORC – Apache Hive – Apache Software Foundation. Retrieved 
December 27, 2018, from https://cwiki.apache.org/confluence/display/Hive/LanguageManual 
+ORC.

Hive. (2018c). RCFile – Apache Hive – Apache Software Foundation. Retrieved December 27, 2018, 
from https://cwiki.apache.org/confluence/display/Hive/RCFile.

Hortonworks. (2016). Solving Apache Hadoop Security: A Holistic Approach to a Secure Data Lake 
(White paper). Hortonworks. Retrieved from http://hortonworks.com/info/solving-hadoop-security/.

Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Hanson, E. N., O’Malley, O., … Zhang, X. 
(2014). Major Technical Advancements in Apache Hive. In Proceedings of the 2014 ACM 
SIGMOD International Conference on Management of Data (pp. 1235–1246). ACM. https://doi.
org/10.1145/2588555.2595630.

IBM. (2018). IBM Db2 – Data management software – IBM Analytics. Retrieved December 28, 
2018, from https://www.ibm.com/analytics/us/en/db2/.

Impala. (2018). Apache Impala Homepage. Retrieved December 27, 2018, from https://impala.
apache.org/.

Inmon, W. H., & Linstedt, D. (2014). Data Architecture: A Primer for the Data Scientist: Big Data, 
Data Warehouse and Data Vault (1st ed.). Morgan Kaufmann.

Intel IT Center. (2012). Peer Research: Big Data Analytics (Report). Intel. Retrieved from http://www.
intel.com/content/dam/www/public/us/en/documents/reports/data-insights-peer-research-
report.pdf.©
 F

C
A

https://doi.org/10.1109/BigData.2015.7364068
https://doi.org/10.1016/j.is.2014.07.006
http://hawq
https://hive.apache.org/
https://cwiki.apache.org/confluencedisplay/Hive/LanguageManual
https://cwiki.apache.org/confluencedisplay/Hive/RCFile
http://hortonworks.com/info/solving-hadoop-security/
https://doi
https://www.ibm.com/analytics/us/en/db2/
https://impala
http://www


Big Data: Concepts, Warehousing, and Analytics276

Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M., Ramakrishnan, R., & 
Shahabi, C. (2014). Big data and its technical challenges. Communications of the ACM, 57(7), 
86–94. http://dx.doi.org/10.1145/2611567.

Jara, A. J., Bocchi, Y., & Genoud, D. (2013). Determining human dynamics through the internet 
of things. In Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web 
Intelligence (WI) and Intelligent Agent Technologies (IAT)-Volume 03 (pp. 109–113). IEEE Computer 
Society. Retrieved from http://dl.acm.org/citation.cfm?id=2569254.

Jethro. (2018). Hadoop Hive and 11 SQL-on-Hadoop Alternatives. Retrieved December 27, 2018, 
from https://jethro.io/hadoop-hive.

Ji, C., Li, Y., Qiu, W., Awada, U., & Li, K. (2012). Big Data Processing in Cloud Computing 
Environments. Proceedings of the 2012 12th International Symposium on Pervasive Systems, 
Algorithms, and Networks (i-Span 2012), 17–23. https://doi.org/10.1109/I-SPAN.2012.9.

jQuery. (2017). jQuery Homepage. Retrieved March 5, 2017, from https://jquery.com/.

Jukic, N., Jukic, B., Sharma, A., Nestorov, S., & Korallus Arnold, B. (2017). Expediting analytical 
databases with columnar approach. Decision Support Systems, 95, 61–81. https://doi.
org/10.1016/j.dss.2016.12.002.

Kafka. (2018). Apache Kafka Homepage. Retrieved July 3, 2018, from https://kafka.apache.org/.

Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel 
and Distributed Computing, 74(7), 2561–2573. https://doi.org/10.1016/j.jpdc.2014.01.003.

Khurana, A. (2012). Introduction to HBase schema design. Login, 37(5), 29–36.

Kimball, R., & Ross, M. (2013). The data warehouse toolkit: The definitive guide to dimensional 
modeling (3rd ed.). John Wiley & Sons.

Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Choi, A., Erickson, J., … Yoder, M. (2015). 
Impala: A modern, open-source sql engine for hadoop. In 7th Biennial Conference on Innovative 
Data Systems Research (CIDR’15).

Krishnan, K. (2013). Data Warehousing in the Age of Big Data (1st ed.). San Francisco, CA, USA: 
Morgan Kaufmann Publishers Inc.

Landset, S., Khoshgoftaar, T. M., Richter, A. N., & Hasanin, T. (2015). A survey of open source tools 
for machine learning with big data in the Hadoop ecosystem. Journal of Big Data, 2(1), 24. https://
doi.org/10.1186/s40537-015-0032-1.

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety (Report). 
META Group Inc. Retrieved from http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-
Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf.

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and 
the path from insights to value. MIT Sloan Management Review, 52(2), 21–32.

Lipcon, T., Alves, D., Burkert, D., Cryans, J., Dembo, A., Percy, M., … McCabe, C. P. (2015). Kudu: 
Storage for Fast Analytics on Fast Data. Cloudera. Retrieved from http://getkudu.io/kudu.pdf.

Mackey, G., Sehrish, S., & Wang, J. (2009). Improving metadata management for small files in 
HDFS. In 2009 IEEE International Conference on Cluster Computing and Workshops (pp. 1–4). 
https://doi.org/10.1109/CLUSTR.2009.5289133.

Madden, S. (2012). From databases to big data. IEEE Internet Computing, 16(3), 4–6. http://dx.doi.
org/10.1109/MIC.2012.50.

http://dx.doi.org/10.1145/2611567
http://dl.acm.org/citation.cfm?id=2569254
https://jethro.io/hadoop-hive
https://doi.org/10.1109/I-SPAN.2012.9
https://jquery.com/
https://doi
https://kafka.apache.org/
https://doi.org/10.1016/j.jpdc.2014.01.003
http://blogs.gartner.com/doug-laney/files2012/01/ad949-3D-Data-
http://blogs.gartner.com/doug-laney/files2012/01/ad949-3D-Data-
http://getkudu.io/kudu.pdf
https://doi.org/10.1109/CLUSTR.2009.5289133
http://dx.doi


Copyright © River Publishers – except portuguese speaking countries

References 277

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big 
data: The next frontier for innovation, competition, and productivity (Report). McKinsey Global 
Institute. Retrieved from http://www.citeulike.org/group/18242/article/9341321.

MapR. (2018). SQL on Hadoop Details. Retrieved December 27, 2018, from https://mapr.com/
why-hadoop/sql-hadoop/sql-hadoop-details/.

Marz, N., & Warren, J. (2012). Big Data: Principles and best practices of scalable realtime data 
systems (1st ed.). Manning Publications Co.

Marz, N., & Warren, J. (2015). Big Data: Principles and best practices of scalable realtime data 
systems (2nd ed.). Manning Publications Co.

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data. The 
Management Revolution. The Management Revolution. Harvard Bus Rev, 90(10), 61–67.

Melnik, S., Gubarev, A., Long, J. J., Romer, G., Shivakumar, S., Tolton, M., & Vassilakis, T. (2010). 
Dremel: interactive analysis of web-scale datasets. Proceedings of the VLDB Endowment, 3(1–2), 
330–339.

MemSQL. (2018). MemSQL is the No-Limits Database Powering Modern Applications and Analytical 
Systems. Retrieved December 28, 2018, from https://www.memsql.com/.

Michael, K., & Miller, K. W. (2013). Big Data: New Opportunities and New Challenges [Guest editors’ 
introduction]. Computer, 46(6), 22–24. https://doi.org/10.1109/MC.2013.196.

Microsoft. (2018a). SQL Server 2016 | Microsoft. Retrieved December 28, 2018, from https://www.
microsoft.com/en-us/sql-server/sql-server-2016.

Microsoft. (2018b). SQL-server-samples: Official Microsoft GitHub Repository containing code 
samples for SQL Server. Microsoft. Retrieved from https://github.com/Microsoft/sql-server-
samples.

MongoDB. (2018). Open Source Document Database. Retrieved December 27, 2018, from https://
www.mongodb.com/index.

Monteiro, C. S., Costa, C., Pina, A., Santos, M. Y., & Ferrão, P. (2018). An urban building database 
(UBD) supporting a smart city information system. Energy and Buildings, 158, 244–260. https://
doi.org/10.1016/j.enbuild.2017.10.009.

NBD-PWG. (2015). NIST Big Data Interoperability Framework: Volume 6, Reference Architecture 
(Technical Report No. NIST SP 1500-6). National Institute of Standards and Technology. Retrieved 
from http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-6.pdf.

Neo4j. (2018). Neo4j Graph Platform – The Leader in Graph Databases. Retrieved December 27, 
2018, from https://neo4j.com/.

NoSQL. (2018). NOSQL Databases. Retrieved November 1, 2018, from http://nosql-database.org/.

O’Neil, P. E., O’Neil, E. J., & Chen, X. (2009). The star schema benchmark (SSB). Retrieved from 
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF

OpenAQ. (2018). OpenAQ Platform. Retrieved August 6, 2018, from https://openaq.org/.

Oracle. (2018). In-Memory Database | Oracle. Retrieved December 28, 2018, from https://www.
oracle.com/database/technologies/in-memory.html.

Parquet. (2018). Apache Parquet Homepage. Retrieved March 27, 2016, from https://parquet.
apache.org/.

©
 F

C
A

http://www.citeulike.org/group/18242/article/9341321
https://mapr.com/
https://www.memsql.com/
https://doi.org/10.1109/MC.2013.196
https://www
https://github.com/Microsoft/sql-server-samples
https://github.com/Microsoft/sql-server-samples
www.mongodb.com/index
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-6.pdf
https://neo4j.com/
http://nosql-database.org/
https://openaq.org/
https://www
https://parquet


Big Data: Concepts, Warehousing, and Analytics278

Pavlo, A., & Aslett, M. (2016). What’s Really New with NewSQL? SIGMOD Rec., 45(2), 45–55. 
https://doi.org/10.1145/3003665.3003674.

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2007). A Design Science Research 
Methodology for Information Systems Research. J. Manage. Inf. Syst., 24(3), 45–77. https://doi.
org/10.2753/MIS0742-1222240302.

Phoenix. (2018). Overview | Apache Phoenix. Retrieved December 27, 2018, from https://phoenix.
apache.org/.

Pivotal. (2017, January 17). Apache MADlib [text/html]. Retrieved December 27, 2018, from https://
pivotal.io/madlib.

Presto. (2018). Presto Homepage. Retrieved March 18, 2018, from https://prestodb.io.

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven 
Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508.

Pujari, A. K. (2001). Data mining techniques (1st ed.). Universities press.

Qiao, L., Li, Y., Takiar, S., Liu, Z., Veeramreddy, N., Tu, M., … others. (2015). Gobblin: Unifying data 
ingestion for Hadoop. Proceedings of the VLDB Endowment, 8(12), 1764–1769.

Redis. (2018a). EBOOK – Redis in Action. Retrieved December 27, 2018, from https://redislabs.com/
ebook/part-1-getting-started/chapter-1-getting-to-know-redis/1-2-what-redis-data-structures- 
look-like/.

Redis. (2018b). Redis Homepage. Retrieved August 7, 2018, from https://redis.io/.

Robinson, I., Webber, J., & Eifrem, E. (2015). Graph Databases: New Opportunities for Connected 
Data (2 edition). O’Reilly Media.

Rodrigues, M., Santos, M. Y., & Bernardino, J. (2018). Big data processing tools: An experimental 
performance evaluation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 
e1297. https://doi.org/10.1002/widm.1297.

Russom, P. (2011). Big data analytics (Best Practices Report) (pp. 1–35). TDWI Research. Retrieved 
from https://tdwi.org/~/media/0C630BCFD9064A9287148F1FA33460E4.pdf.

Russom, P. (2014). Evolving Data Warehouse Architectures in the Age of Big Data (TDWI Best Practices 
Report). The Data Warehouse Institute. Retrieved from https://tdwi.org/research/2014/04/best-
practices-report-evolving-data-warehouse-architectures-in-the-age-of-big-data.aspx.

Russom, P. (2016). Data Warehouse Modernization in the Age of Big Data Analytics (TDWI 
Best Practices Report). The Data Warehouse Institute. Retrieved from https://tdwi.
org/research/2016/03/best-practices-report-data-warehouse-modernization/asset.
aspx?tc=assetpg.

Sadalage, P. J., & Fowler, M. (2012). NoSQL Distilled: A Brief Guide to the Emerging World of 
Polyglot Persistence (1st ed.). Addison-Wesley Professional.

Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. In 2013 International Conference on Collaboration 
Technologies and Systems (CTS) (pp. 42–47). https://doi.org/10.1109/CTS.2013.6567202.

Santos, M. Y., & Costa, C. (2016a). Data Models in NoSQL Databases for Big Data Contexts. In 
2016 International Conference on Data Mining and Big Data (DMBD) (pp. 1–11). Springer-Verlag, 
LNCS 9714. https://doi.org/10.1007/978-3-319-40973-3_48.

https://doi.org/10.1145/3003665.3003674
https://doi
https://phoenix
https://prestodb.io
https://doi.org/10.1089/big.2013.1508
https://redislabs.com/
https://redis.io/
https://doi.org/10.1002/widm.1297
https://tdwi.org/~/media/0C630BCFD9064A9287148F1FA33460E4.pdf
https://tdwi.org/research/2014/04/best-practices-
https://tdwi.org/research/2014/04/best-practices-
https://tdwi
https://doi.org/10.1109/CTS.2013.6567202
https://doi.org/10.1007/978-3-319-40973-3_48


Copyright © River Publishers – except portuguese speaking countries

References 279

Santos, M. Y., & Costa, C. (2016b). Data Warehousing in Big Data: From Multidimensional to Tabular 
Data Models. In Proceedings of the Ninth International C* Conference on Computer Science & 
Software Engineering (pp. 51–60). ACM. https://doi.org/10.1145/2948992.2949024.

Santos, M. Y., Costa, C., Galvão, J., Andrade, C., Martinho, B. A., Lima, F. V., & Costa, E. 
(2017). Evaluating SQL-on-Hadoop for Big Data Warehousing on Not-So-Good Hardware. In 
Proceedings of the 21st International Database Engineering & Applications Symposium. IDEAS 
2017 (pp. 242–252). ACM. https://doi.org/10.1145/3105831.3105842.

Santos, M. Y., & Ramos, I. (2009). Business Intelligence: Tecnologias da informação na gestão de 
conhecimento (2nd ed.). Lisboa: FCA – Editora de Informática.

SAP. (2018). What is SAP HANA | In Memory Computing and Real Time Analytics. Retrieved 
December 28, 2018, from https://www.sap.com/products/hana.html.

Schroeck, M., Shockley, R., Janet, S., Romero-Morales, D., & Tufano, P. (2012). Analytics: The real-
world use of big data. How innovative enterprises extract value from uncertain data. IBM Institute 
for Business Value. Retrieved from https://www.ibm.com/smarterplanet/global/files/se__sv_se__
intelligence__Analytics_-_The_real-world_use_of_big_data.pdf.

Shanahan, J. G., & Dai, L. (2015). Large scale distributed data science using apache spark. In 
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining (pp. 2323–2324). ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2789993.

Shanklin, C. (2017, May 11). Ultra-fast OLAP Analytics with Apache Hive and Druid. Retrieved 
December 27, 2018, from https://hortonworks.com/blog/apache-hive-druid-part-1-3/.

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File System. 
In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) (pp. 1–10). 
https://doi.org/10.1109/MSST.2010.5496972.

Soliman, M. A. (2017). Big Data Query Engines. In A. Y. Zomaya & S. Sakr (Eds.), Handbook of Big 
Data Technologies (pp. 179–217). Springer, Cham. https://doi.org/10.1007/978-3-319-49340-
4_6.

Spark. (2017). Spark SQL and DataFrames – Spark 2.1.1 Documentation. Retrieved May 30, 
2017, from https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-
dataframes.

Spark. (2018). Apache SparkTM – Unified Analytics Engine for Big Data. Retrieved March 18, 2018, 
from https://spark.apache.org/.

SusCity. (2016). SUSCITY – An MIT Portugal Project. Retrieved May 4, 2016, from http://suscity-
project.eu/inicio/.

Szegedi, I. (2014). Pivotal Hadoop Distribution and HAWQ Realtime Query Engine. Retrieved 
January 25, 2019, from https://dzone.com/articles/pivotal-hadoop-distribution.

Talend. (2017). Talend Open Studio for Big Data Product Details. Retrieved March 5, 2017, from 
https://www.talend.com/download_page_type/talend-open-studio/.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., … Murthy, R. (2010). Hive-a 
petabyte scale data warehouse using hadoop. In IEEE 26th International Conference on Data 
Engineering (ICDE) (pp. 996–1005). IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5447738.©
 F

C
A

https://doi.org/10.1145/2948992.2949024
https://doi.org/10.1145/3105831.3105842
https://www.sap.com/products/hana.html
https://www.ibm.com/smarterplanet/global/filesse__sv_se__
http://dl.acm.org/citation.cfm?id=2789993
https://hortonworks.com/blog/apache-hive-druid-part-1-3/
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1007/978-3-319-49340-
https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
https://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
https://spark.apache.org/
http://suscity-project
http://suscity-project
https://dzone.com/articles/pivotal-hadoop-distribution
https://www.talend.com/download_page_type/talend-open-studio/
http://ieeexplore.ieee.org/xpls/abs_all


Big Data: Concepts, Warehousing, and Analytics280

Tien, J. M. (2013). Big Data: Unleashing information. Journal of Systems Science and Systems 
Engineering, 22(2), 127–151. https://doi.org/10.1007/s11518-013-5219-4.

TPC. (2017a). TPC-DS Homepage. Retrieved August 16, 2017, from http://www.tpc.org/tpcds/.

TPC. (2017b). TPC-H Homepage. Retrieved August 16, 2017, from http://www.tpc.org/tpch/.

TPC. (2018). TPC-E Homepage. Retrieved August 3, 2018, from http://www.tpc.org/tpce/.

Tudorica, B. G., & Bucur, C. (2011). A comparison between several NoSQL databases with 
comments and notes. In Roedunet International Conference (RoEduNet), 2011 10th (pp. 1–5). 
IEEE. Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5993686.

Vale Lima, F., Costa, C., & Santos, M. Y. (2019). Real-Time Big Data Warehousing. In D. Taniar & 
W. Rahayu (Eds.), Emmerging Perspectives in Big Data Warehousing (pp. 28–57). https://doi.
org/10.4018/978-1-5225-5516-2.

Vieira, A. A. C., Pedro, L., Santos, M. Y., Fernandes, J. M., & Dias, L. S. (2019). Data Requirements 
Elicitation in Big Data Warehousing. In Marinos Themistocleous & P. Rupino da Cunha (Eds.), 
Information Systems (pp. 106–113). Springer International Publishing.

Vijayakumar, V., & Nedunchezhian, R. (2012). A study on video data mining. International Journal 
of Multimedia Information Retrieval, 1(3), 153–172. https://doi.org/10.1007/s13735-012-0016-2.

Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). Big data: What it is and why you should care 
(Report). IDC. Retrieved from http://www.tracemyflows.com/uploads/big_data/idc_amd_big_
data_whitepaper.pdf

VoltDB. (2018). In-Memory Database. Retrieved December 27, 2018, from https://www.voltdb.com/.

Wang, H., Qin, X., Zhang, Y., Wang, S., & Wang, Z. (2011). LinearDB: A Relational Approach to Make 
Data Warehouse Scale Like MapReduce. In J. X. Yu, M. H. Kim, & R. Unland (Eds.), Database 
Systems for Advanced Applications (pp. 306–320). Springer, Berlin, Heidelberg. https://doi.
org/10.1007/978-3-642-20152-3_23.

Ward, J. S., & Barker, A. (2013). Undefined By Data: A Survey of Big Data Definitions. ArXiv:1309.5821 
[Cs.DB]. Retrieved from http://arxiv.org/abs/1309.5821.

White, T. (2015). Hadoop: The Definitive Guide (4th ed.). O’Reilly Media.

Wigan, M. R., & Clarke, R. (2013). Big Data’s Big Unintended Consequences. Computer, 46(6), 
46–53. https://doi.org/10.1109/MC.2013.195.

Xu, W., Luo, W., & Woodward, N. (2012). Analysis and Optimization of Data Import with Hadoop. 
In 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops PhD 
Forum (pp. 1058–1066). https://doi.org/10.1109/IPDPSW.2012.129.

Yang, F., Tschetter, E., Léauté, X., Ray, N., Merlino, G., & Ganguli, D. (2014). Druid: a real-time 
analytical data store (pp. 157–168). ACM Press. https://doi.org/10.1145/2588555.2595631.

Yuhanna, N., & Gualtieri, M. (2016). Emerging Technology: Translytical Databases Deliver Analytics 
At The Speed Of Transactions. Forrester Research. Retrieved from http://www.odbms.org/wp-
content/uploads/2017/10/Forrester-report-Translytical-Databases.pdf.

Zhang, J., Hsu, W., & Lee, M. L. (2001). Image Mining: Issues, Frameworks and Techniques. In 
Proceedings of the Second International Conference on Multimedia Data Mining (pp. 13–20). 
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm?id=3012377.3012378.

Zikopoulos, P., & Eaton, C. (2011). Understanding Big Data: Analytics for Enterprise Class Hadoop 
and Streaming Data (1st ed.). McGraw-Hill Osborne Media.

https://doi.org/10.1007/s11518-013-5219-4
http://www.tpc.org/tpcds/
http://www.tpc.org/tpch/
http://www.tpc.org/tpce/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5993686
https://doi
https://doi.org/10.1007/s13735-012-0016-2
http://www.tracemyflowscom/uploads/big_data/idc_amd_big_
https://www.voltdb.com/
https://doi
http://arxiv.org/abs/1309.5821
https://doi.org/10.1109/MC.2013.195
https://doi.org/10.1109/IPDPSW.2012.129
https://doi.org/10.1145/2588555.2595631
http://www.odbms.org/wp-content/
http://www.odbms.org/wp-content/
http://dl.acm.org/citation.cfm?id=3012377.3012378


Copyright © River Publishers – except portuguese speaking countries

INDEX

3Vs model, 14 

A
Analytical object(s), 164 

Analytical attributes, 164, 165
Analytical families, 164, 165
Batch, 164 
Bucketing/clustering key, 164, 166
Descriptive attributes, 164
Descriptive families, 164
Factual attributes, 164, 165
Granularity key, 164, 166
Nested attributes, 181
Partition key, 164, 166, 187
Predictive attributes, 164, 165
Streaming, 164, 182
Wide descriptive families, 190

B
Big Data challenges, 16

Data governance, 18
Data quality, 17
Data visualizations, 17
General dilemmas, 16
Lack of architectures, 16
Lack of models, 16
Organizational change, 20
Privacy, 19
Scalability, 17
Security, 19

Big Data definition, 16
Big Data techniques, 21

Big Data Processing Flow, 23
Data highway, 24
Lambda Architecture, 27
NIST Architecture, 29

Big Data volume, 13
Big Data Warehouse(s), 143, 146

Characteristics, 145, 146
Implementation strategies

Lift and shift, 145
Rip and replace, 145

Big Data Warehousing use cases
Air quality analysis, 195
Brokerage firm, 183, 184
Code version control, 192
Manufacturing, 178
News/events, 193
Retail, 188
Smart cities, 245

Buckets, 94, 113, 115

C
CAP Theorem, 38
Complementary analytical object(s), 167, 170, 

171, 180

D
Data access

Random access, 155©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics282

Sequential access, 155
Data locality, 152
Data mining, 24, 35
Data processing

Batch processing, 153
Interactive processing, 153
Streaming processing, 153

Data science, 2
Models, 210

Data variety
Semi-structured, 14
Structured, 14
Unstructured, 14

Data velocity 
Batch data, 5, 149, 151
Streaming data, 5, 149, 151

Data visualization tools, 35
Data Warehouse(s), 3, 143
Date objects, 172
Distributed SQL engines, 32

Drill, 32, 34
HAWQ, 32, 34
Hive, 32, 33

ACID, 182
HiveQL, 33, 94 
Streaming, 161, 182
Transactional tables, 182

Impala, 32-34
Presto, 32-34
Spark SQL, 32, 33

Drill across, 234
Druid, 131, 134

E
ELT, 23
ETL, 22

F
Fault-tolerance, 22, 25
File formats, 98

Avro file, 111
JSON, 14

ORC file, 107
Parquet, 112
RCFile, 105
Sequence file, 100
Text file, 99
XML, 14

G
General data schemas/models

Dimensional models, 119, 169, 180
Star schema(s), 130, 223

Tabular models, 119
Derived data tables, 125
Flat, 180, 223
Primary data tables, 121

H
Hadoop, 30

Hadoop MapReduce, 26
HDFS, 30
RDBMS, 26
YARN, 30

Horizontal scaling, 41
HTAP, 89

I
Immutable records, 173
Inter-storage pipeline, 156, 164, 236, 239, 255

J
Join operation(s), 167-169, 180, 190
Joins in Big Data environments

Broadcast/map join(s), 170, 180, 225, 226
Distributed hash join(s), 225, 226 

K
Kafka, 31
Kudu, 161



Copyright © River Publishers – except portuguese speaking countries

Index 283

L
Logical components, 147

Big Data application provider, 149
Access, analytics and visualization, 151, 159

Data science sandbox, 151, 159
Querying & OLAP, 159

Collection, 149
Preparation and enrichment, 149

Big Data framework provider, 151
Distributed file system, 154
Indexed storage, 155

Batch storage, 155
Streaming storage, 155, 236

Infrastructures, 152
Messaging/communications, 152
Resource management, 152
Storage: data organization and distribution, 

154
Data consumer, 149
Data provider, 149
Security, privacy, and management, 157
System orchestrator, 157

M
Machine learning, 35
Materialization pipeline, 156, 164, 168
Materialized objects, 168, 172
Methods for BDWs

Method for CPE processes, 150
Method for data modeling, 163

Models for BDWs 
Model of logical components and data flows, 

147, 148
Model of technological infrastructure, 158, 

159
Guidelines, 163

Multi-tenant clusters, 239
Mutable records, 173

N
NewSQL, 38

NewSQL databases, 88
Clustrix, 89
MemSQL, 90
MySQL Cluster, 89
SAP HANA, 90
VoltDB, 89, 90

Non-existing events, 190
NoSQL databases, 39, 41

Column-oriented, 39, 49
Bigtable, 39
Cassandra, 39
HBase, 39
Hypertable, 39

Document-oriented, 39, 69
Couchbase, 39
CouchDB, 39
MongoDB, 39

Graph, 40, 79
AllegroGraph, 40
GraphDB, 40
HyperGraphDB, 40
InfiniteGraph, 40
Neo4j, 40

Key-value, 39, 41
BerkeleyDB,  39
Dynamo, 39
Memcached, 39
Redis, 39
Riak, 39
Voldemort, 39

Null values, 171

O
OLAP, 93

Batch OLAP, 223
Streaming OLAP, 236

OLTP, 37
Outsourced descriptive families, 169

P
Partitions, 94, 95, 113, 114, 227

©
 F

C
A



Big Data: Concepts, Warehousing, and Analytics284

R
Replication, 145

S
Schemas evolution, 111
Shared-nothing architecture, 26
Slowly Changing Dimensions (SCDs), 122, 170, 

175, 185
Spark, 33

Spark MLlib, 211
Spark RDD, 209
Spark SQL, 32, 34
Spark Streaming, 204

Spatial objects, 172
SSB+ Benchmark, 220
Streaming data sources, 204
SusCity, 6, 245

Architecture, 247
Data model, 251, 252
Data sources, 247
Data visualization platform, 256

Buildings, 258, 259
Energy consumption, 257
Energy grid, 258
Mobility, 260, 261

Infrastructure, 250

T
Tables, 94
Time objects, 172

U
Union operation(s), 167-169
Unnecessary complementary analytical objects, 

183
Unstructured data mining, 216, 217

Image mining, 216
Text mining, 216
Video mining, 216

W
Window and analytics functions, 234



M
A

R
IB

EL Y.  SA
N

TO
S

C
A

R
LO

S C
O

STA

River Publishers Series in Information Science and Technology

ISBN  978‐877‐022‐184‐9

Associate Professor at the Department of 
Information Systems, University of Minho. 
Senior Researcher of the ALGORITMI 
Research Centre and leader of SEMAG, the 
Software-based Information Systems 
Engineering and Management Group. 
Coauthor of the book Business Intelligence – 
Da Informação ao Conhecimento (3.ª Ed. At.), 
also published by FCA.

MARIBEL YASMINA SANTOS

Invited Lecturer in the field of Information 
Systems, at the University of Minho. 
Previous experiences include senior Big 
Data engineer, researcher, and software 
developer. (Co)author of several scientific 
and technical publications in the areas of 
Big Data, Data Warehousing, and Data 
Science.

CARLOS COSTA

Big Data is a concept of major relevance in today’s 
world, sometimes highlighted as a key asset for 
productivity growth, innovation, and customer 
relationship, whose popularity has increased 
considerably during the last years. Areas like smart 
cities, manufacturing, retail, �nance, software 
development, environment, digital media, among 
others, can bene�t from the collection, storage, 
processing, and analysis of Big Data, leveraging 
unprecedented data-driven work�ows and 
considerably improved decision-making processes.

This book addresses models and methods for 
designing and implementing Big Data Systems to 
support mixed and complex decision processes, 
giving special attention to Big Data Warehouses 
(BDWs) as a way of e�ciently storing and 
processing batch or streaming data for structured 
or semi-structured analytical problems. The 
chapters of this book:

• Present fundamental concepts and best 
practices according to the state of the art in the 
multidisciplinary topics of Big Data and
Data Warehousing (DWing);

• Contain suggestions for logical architectures 
and technological infrastructures for Big Data 
Warehousing (BDWing) systems;

• Provide a data modeling method to e�ciently 
design data models for BDWing contexts;

• O�er a unique view of how to ensure high 
performance from BDWs, to provide fast 
retrieval of data, highly detailed ad hoc queries, 
and advanced analytical applications.

This book is useful to DWing and Big Data 
practitioners, as well as teachers, researchers, and 
students focusing on the design, development, and 
implementation of analytical applications 
supported by a BDW. 

TOPICS:
• Big Data Concepts, Techniques, and     
 Technologies

• OLTP-oriented and OLAP-oriented   
 Databases for Big Data Environments

• Design and Implementation of BDWs

• BDWs Modeling: From Theory to   
 Practice

• Fueling Analytical Objects in BDWs

• Evaluating the Performance of BDWs

• BDWing in Smart Cities

9 788770 221849 River PublishersRiver Publishers

NOT  FOR  SALE  IN  PORTUGUESE  SPEAKING  COUNTRIES

   

River


	Front Cover 
	Half Title
	Series Page - RIVER PUBLISHERS SERIES IN INFORMATION SCIENCE AND TECHNOLOGY
	Title Page
	Copyright Page
	CONTENTS
	List of Figures
	List of Tables
	The Authors
	Acknowledgments
	Foreword
	Notation
	1. Introduction
	1.1. Objectives of this Book
	1.2. Intended Audience
	1.3. Book Structure

	2. Big Data Concepts, Techniques, and Technologies
	2.1. Big Data Relevance
	2.2. Big Data Characteristics
	2.3. Big Data Challenges
	2.3.1. Big Data General Dilemmas
	2.3.2. Challenges in the Big Data Life Cycle
	2.3.3. Big Data in Secure, Private, and Monitored Environments
	2.3.4. Organizational Change

	2.4. Techniques for Big Data Solutions
	2.4.1. Big Data Life Cycle and Requirements
	2.4.1.1. General Steps to Process and Analyze Big Data
	2.4.1.2. Architectural and Infrastructural Requirements

	2.4.2. The Lambda Architecture
	2.4.3. Towards Standardization: the NIST Reference Architecture

	2.5. Big Data Technologies
	2.5.1. Hadoop and Related Projects
	2.5.2. Landscape of Distributed SQL Engines
	2.5.3. Other Technologies for Big Data Analytics


	3. OLTP-oriented Databases for Big Data Environments
	3.1. NoSQL and NewSQL: an Overview
	3.2. NoSQL Databases
	3.2.1. Key-value Databases
	3.2.1.1. Overview
	3.2.1.2. Redis

	3.2.2. Column-‑oriented Databases
	3.2.2.1. Overview
	3.2.2.2. HBase
	3.2.2.3. From Relational Models to HBase Data Models

	3.2.3. Document-‑oriented Databases
	3.2.3.1. Overview
	3.2.3.2. MongoDB

	3.2.4. Graph Databases
	3.2.4.1. Overview
	3.2.4.2. Neo4j


	3.3. NewSQL Databases and Translytical Databases

	4. OLAP-oriented Databases for Big Data Environments
	4.1. Hive: the De Facto SQL-on-Hadoop Engine
	4.1.1. Data Storage Formats
	4.1.1.1. Text File
	4.1.1.2. Sequence File
	4.1.1.3. RCFile
	4.1.1.4. ORC File
	4.1.1.5. Avro File
	4.1.1.6. Parquet

	4.1.2. Partitions and Buckets

	4.2. From Dimensional Models to Tabular Models
	4.2.1. Primary Data Tables
	4.2.2. Derived Data Tables

	4.3. Optimizing OLAP workloads with Druid

	5. Design and Implementation of Big Data Warehouses
	5.1. Big Data Warehousing: an Overview
	5.2. Model of Logical Components and Data Flows
	5.2.1. Data Provider and Data Consumer
	5.2.2. Big Data Application Provider
	5.2.3. Big Data Framework Provider
	5.2.3.1. Messaging/Communications, Resource Management, and Infrastructures
	5.2.3.2. Processing
	5.2.3.3. Storage: Data Organization and Distribution

	5.2.4. System Orchestrator and Security, Privacy, and Management

	5.3. Model of Technological Infrastructure
	5.4. Method for Data Modeling
	5.4.1. Analytical Objects and their Related Concepts
	5.4.2. Joining, Uniting, and Materializing Analytical Objects
	5.4.3. Dimensional Big Data with Outsourced Descriptive Families
	5.4.4. Data Modeling Best Practices
	5.4.4.1. Using Null Values
	5.4.4.2. Date, Time, and Spatial Objects vs. Separate Temporal and Spatial Attributes
	5.4.4.3. Immutable vs. Mutable Records

	5.4.5. Data Modeling Advantages and Disadvantages


	6. Big Data Warehouses Modeling: From Theory to Practice
	6.1. Multinational Bicycle Wholesale and Manufacturing
	6.1.1. Fully Flat or Fully Dimensional Data Models
	6.1.2. Nested Attributes
	6.1.3. Streaming and Random Access on Mutable Analytical Objects

	6.2. Brokerage Firm
	6.2.1. Unnecessary Complementary Analytical Objects and Update Problems
	6.2.1.1. The Traditional Way of Handling SCD-‑like Scenarios
	6.2.1.2. A New Way of Handling SCD-‑like Scenarios

	6.2.2. Joining Complementary Analytical Objects
	6.2.3. Data Science Models and Insights as a Core Value
	6.2.4. Partition Keys for Streaming and Batch Analytical Objects

	6.3. Retail
	6.3.1. Simpler Data Models: Dynamic Partitioning Schemas
	6.3.2. Considerations for Spatial Objects
	6.3.3. Analyzing Non-‑Existing Events
	6.3.4. Wide Descriptive Families
	6.3.5. The Need for Joins in Data CPE Workloads

	6.4. Code Version Control System
	6.5. A Global Database of Society • The GDELT Project
	6.6. Air Quality

	7. Fueling Analytical Objects in Big Data Warehouses
	7.1. From Traditional Data Warehouses
	7.2. From OLTP NoSQL Databases
	7.3. From Semi-structured Data Sources
	7.4. From Streaming Data Sources
	7.5. Using Data Science Models
	7.5.1. Data Mining/Machine Learning Models for Structured Data
	7.5.2. Text Mining, Image Mining, and Video Mining Models


	8. Evaluating the Performance of Big Data Warehouses
	8.1. The SSB+ Benchmark
	8.1.1. Data Model and Queries
	8.1.2. System Architecture and Infrastructure

	8.2. Batch OLAP
	8.2.1. Comparing Flat Analytical Objects with Star Schemas
	8.2.2. Improving Performance with Adequate Data Partitioning
	8.2.3. The Impact of Dimensions’ Size in Star Schemas
	8.2.4. The Impact of Nested Structures in Analytical Objects
	8.2.5. Drill Across Queries and Window and Analytics Functions

	8.3. Streaming OLAP
	8.3.1. The Impact of Data Volume in the Streaming Storage Component
	8.3.2. Considerations for Effective and Efficient Streaming OLAP

	8.4. SQL-on-Hadoop Systems under Multi-User Environments

	9. Big Data Warehousing in Smart Cities
	9.1. Logical Components, Data Flows, and Technological Infrastructure
	9.1.1. SusCity Architecture
	9.1.2. SusCity Infrastructure

	9.2. SusCity Data Model
	9.2.1. Buildings Characteristics as an Outsourced Descriptive Family
	9.2.2. Nested Structures in Analytical Objects

	9.3. The Inter-storage Pipeline
	9.4. The SusCity Data Visualization Platform
	9.4.1. City’s Energy Consumption
	9.4.2. City’s Energy Grid Simulations
	9.4.3. Buildings’ Performance Analysis and Simulation
	9.4.4. Mobility Patterns Analysis


	10. Conclusion
	10.1. Synopsis of the Book
	10.2. Contributions to the State of the Art

	References
	Index
	Back Cover 



