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Preface

Brain network analysis is an emerging field that utilizes various noninvasive
brain imaging modalities such as magnetic resonance imaging (MRI), func-
tional MRI (fMRI), positron emission tomography (PET), diffusion tensor
imaging (DTI), and electroencephalography (EEG) in mapping out the four-
dimensional (4D) spatiotemporal dynamics of the human brain networks in
both normal and clinical populations at the macroscopic level. There has been
substantial progress in the past decade on this topic. A major challenge in
the field is caused by the massive amount of nonstandard high-dimensional
network data that are difficult to analyze using available standard techniques.
This requires new computational approaches and solutions.

The main goals of this book are to provide a coherent overview of various
statistical and mathematical approaches used in brain network analysis to
a wide range of researchers and students, and to articulate important yet
technically challenging topics further. It is hoped that the book presents the
coherent mathematical treatment of underlying methods. The book is mainly
focused on methodological issues beyond widely used graph theory–based
approaches. We wish to provide methodological understanding in a manner
immediately usable to researchers and students. Concepts and methods are
illustrated with brain imaging applications and examples. Some of the brain
network data sets along with MATLAB and R codes used in the book can
be downloaded from the author’s website. The web links are provided in
appropriate places. By making some of the data and codes available, we tried
to make the book more accessible to a wide range of readers.

Although I am indebted to many colleagues and students in writing this
book, I would particularly like to thank the following individuals, in no
particular order. Richard Davidson, Andrew Alexander, Seth Pollak, Hill
Goldsmith of the University of Wisconsin–Madison; David Zald of Vanderbilt
University; and Benjamin Lahey of the University of Chicago provided various
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xii Preface

brain imaging data used in illustrating the methods. Hyekyoung Lee of Seoul
National University and Yuan Wang of University of South Carolina helped me
write chapters related to persistent homology and topological distances. Her-
nando Ombao of the King Abdullah University of Science and Technology and
Dustin Pluta of the University of California–Irvine helped me write chapters
related to the dynamic network models. Andrey Gritsenko of the University of
Wisconsin–Madison performed some of basic image processing on the resting-
state fMRI from Human Connectome Project data and helped compile the
list of Automatic Anatomical Labeling (AAL) parcellation. Although most
figures are produced by myself using MATLAB, some figures are generated
by my current and former students, postdocs, and colleagues. Such figures
are identified in figure captions and the proper credits are given. I am also
indebted to Fred Boehm of the University of Wisconsin–Madison and Feng
Liu of Harvard University for proofreading a few chapters.



1
Statistical Preliminary

This chapter covers the basic statistical methods that are mostly used in univari-
ate voxel-level approaches. However, these basic methods are equally useful
in brain network analysis as well. Most of network modeling techniques are
based on the voxel-level methods. Readers familiar with univariate statistical
methods can skip this chapter.

1.1 General Linear Models

General linear models (GLM) have been widely used in brain imaging and
network studies. The GLM is a very flexible and general statistical framework
encompassing a wide variety of fixed-effect models such as multiple regres-
sions, the analysis of variance (ANOVA), the multivariate analysis of variance
(MANOVA), the analysis of covariance (ANCOVA), and the multivariate
analysis of covariance (MANCOVA) (Timm and Mieczkowski, 1997). More
complex multilevel or hierarchical models such as the mixed-effects models
and structural equation models (SEM) are also viewed as special cases of
general linear models.

GLM provides a framework for testing various associations and hypotheses
while accounting for nuisance covariates in the model in a straightforward
fashion. The effect of age, sex, brain size, and possibly IQ may have severe
confounding effects on the final outcome of many brain network studies.
Older populations’ reduced functional activation could be the consequence of
age-related atrophy of neural systems (Mather et al., 2004). Brain volumes
are significantly larger for children with autism 12 years old and younger
compared with normally developing children (Aylward et al., 1999). Therefore,
it is desirable to account for various confounding factors such as age and
sex. This can be done using GLM automatically. The parameters of GLM are
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2 Statistical Preliminary

mainly estimated by the least squares estimation and have been implemented
in many statistical packages such as R1 (Pinehiro and Bates, 2002), statistical
parametric mapping (SPM)2 and fMRI-STAT.3

We assume there are n subjects. Let yi be the response variable at a node
or edge, which is mainly coming from images and xi = (xi1, · · · ,xip) to
be the variables of interest and zi = (zi1, · · · ,zik) to be nuisance variables
corresponding to the ith subject. Then we have GLM

yi = ziλ+ xiβ + εi,

where λ = (λ1, · · · ,λk)
� and β = (β1, · · · ,βp)� are unknown parameter

vectors to be estimated. We assume ε to be the usual zero mean Gaussian
noise.

The significance of the variable of interests xi is determined by testing the
null hypothesis

H0 : β = 0 vs. H1 : β �= 0.

The fit of the reduced model corresponding to β = 0, i.e.,

yi = ziλ, (1.1)

is measured by the sum of the squared errors (SSE):

SSE0 =
n∑

i=1

(yi − zi λ̂0)
2,

where λ̂0 is the least squares estimation obtained from the reduced model. The
reduced model (1.1) can be written in a matrix form⎛⎜⎝ y1

...
yn

⎞⎟⎠
︸ ︷︷ ︸

y

=

⎛⎜⎝ z11 · · · z1k

...
. . .

...
zn1 · · · znk

⎞⎟⎠
︸ ︷︷ ︸

Z

⎛⎜⎝ λ1
...

λn

⎞⎟⎠
︸ ︷︷ ︸

λ

.

By multiplying Z� on the both sides, we obtain

Z�y = Z�Zλ.

Now the matrix Z�Z is a full rank and can be invertible if n ≥ k, i.e., there are
more subjects than the number of parameters. The matrix equation then can be
solved by performing a matrix inversion

λ̂0 = (Z�Z)−1Z�y.

1 www.r-project.org
2 www.fil.ion.ucl.ac.uk/spm
3 www.math.mcgill.ca/keith/fmristat
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Similarly the fit of the full model corresponding to β �= 0, i.e.,

yi = ziλ+ xiβ

is measured by

SSE1 =
n∑

i=1

(yi − zi λ̂1 − xi β̂1)
2,

where λ̂1 and β̂1 are the least squares estimation from the full model. The full
model can be written in a matrix form by concatenating the row vectors zi and
xi into a larger row vector (zi,xi ), and the column vectors λ and β into a larger
column vector (λ�,β�)�, i.e.,

yi = (zi,xi )

(
λ

β

)
.

Then the parameters of the full model can be estimated in the least squares
fashion. Note that

SSE1 = min
λ1,β1

n∑
i=1

(yi − ziλ1 − xiβ1)
2

≤ min
λ0

n∑
i=1

(yi − ziλ0)
2 = SSE0.

So the larger the value of SSE0 − SSE1, more significant the contribution of
the coefficients β is. Under the assumption of the null hypothesis H0, the test
statistic is the ratio

F = (SSE0 − SSE1)/p

SSE0/(n− p − k)
∼ Fp,n−p−k . (1.2)

The larger the F value, it is more unlikely to accept H0.

1.1.1 T-Statistic

When p = 1, the test statistic F is distributed as F1,n−1−k , which is the square
of the student t-distribution with n− 1− k degrees of freedom, i.e., t2

n−1−k . In
this case, it is better to use t-statistic. The advantage of using the t-statistic is
that the test statistic can provide the direction of the group difference that the
F -statistic cannot provide.

Let

c = (0, · · · ,0︸ ︷︷ ︸
k

,1, 0, · · · ,0︸ ︷︷ ︸
p−1

)�



4 Statistical Preliminary

be the contrast vector of size k + p. The incorporation of the contrast vector
makes the algebraic derivation straightforward. Consider testing the signifi-
cance of H0 : β1 = 0. The least squares estimation of β1 can be written as

β̂1 = c

(
λ̂

β̂

)
.

Under the assumption εi ∼ N(0,σ 2),

Eβ̂1 = β1.

Further, the variance

Vβ̂1 = cV

(
λ̂

β̂

)
c� = σ 2c�

(
[ZX]�ZX

)−1
c.

Thus, the unbiased estimator of σ 2 is given by

SSE1/(n− 1 − k).

We plug this estimator into σ 2. Then the test statistic under the null
hypothesis is

T = β̂1√
Vβ̂1

∼ tn−1−k .

1.1.2 R-Square

The R-square of a model explains the proportion of variability in measurement
that is accounted by the model. Sometime R-square is called the coefficient
of determination and it is given as the square of a correlation coefficient for a
very simple model. For a linear model involving the response variable yi , the
total sum of squares (SST) measures total total variation in response yi and is
defined as

SST =
n∑

i=1

(yi − ȳ)2,

where ȳ is the sample mean of yi .
On the other hand, SSE measures the amount of variability in yi that is not

explained by the model. Note that SSE is the minimum of the sum of squared
residual of any linear model, SSE is always smaller than SST. Therefore, the
amount of variability explained by the model is SST-SSE. The proportion of
variability explained by the model is then

R2 = SST − SSE

SST
,
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which is the coefficient of determination. The R-square ranges between 0 and
1 and the value larger than 0.5 is usually considered significant.

1.1.3 Sum of T-Statistics

Often there is a situation such as a meta-analysis, where we have to sum the
t-statistic images or networks (Chung et al., 2017b). Note that a t-statistic for
large degrees of freedom (above 30) is very close to standard normal, i.e.,
N(0,1). For n identically distributed possibly dependent t-statistics t1, · · · ,tn,
the variance of sum

∑n
j=1 tj is approximately given by (Billingsley, 1995)

V

⎛⎝ n∑
j=1

tj

⎞⎠ ≈ n+
∑
i �=j

E(t i tj ),

Figure 1.1 (a)–(c) t-statistic results of group difference between maltreated
children and normal controls for three different connectivity methods (Chung
et al., 2017b). Only the connections at the p-value less than 0.01 (uncorrected) are
shown. (d) The three t-statistic maps are aggregated to form a single t-statistic.
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where E(t i tj ) is the correlation between t i and tj . We used the fact Etj = 0.
Then, we have the aggregated t-statistic given by

T =
∑n

j=1 tj√
n+∑

i �=j E(t i tj )
∼ N(0,1).

If the statistics tj are all independent, since tj are close to standard normal,
E(t i tj ) ≈ 0. The dependency increases the variance estimate and reduces
the aggregated t-statistic value. Unfortunately, it is difficult to estimate the
correlations directly since only one t-statistic map is available for each tj .
E(t i tj ) can be empirically estimated by computing correlations over the entries
of t-statistic maps t i and tj (see Figure 1.1).

1.2 Logistic Regression

Logistic regression is useful for setting up a probabilistic model on the strength
of connectivity and performing classification (Subasi and Ercelebi, 2005).
Suppose k regressors X1, · · · ,Xk are given. These are both imaging and
nonimaging biomarkers such as gender, age, education level, and memory test
score. Let xi1, · · · ,xik denote the measurements for the ith subject. Let the
response variable Yi be the probability of connection modeled as a Bernoulli
random variable with parameter πi , i.e.,

Yi ∼ Bernoulli(πi).

Yi = 0,1 indicates the edge connected (assigned number 1) or disconnected
(assigned number 0) respectively. πi is then the likelihood (probability) of the
edge connected, i.e., πi = P(Yi = 1).

Now consider linear model

Yi = x�i β + εi, (1.3)

where x�i = (1,xi1, · · · ,xik) and β� = (β0, · · · ,βk). We may assume

Eεi = 0, Vεj = σ 2.

However, linear model (1.3) is no longer appropriate since

EYj = πi = x�i β

but x�i β may not be in the range [0,1]. The inconsistency is caused by trying
to match continuous variables xij to categorical variable Yi directly. To address
this problem, we introduce the logistic regression function g:
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πi = g(xi) =
exp(x�i βi)

1 + exp(x�i βi)
. (1.4)

Using the logit function, we can write (1.4) as

logit(πi) = log
πi

1 − πi

= x�i βi .

1.2.1 Maximum Likelihood Estimation

The unknown parameters β are estimated via the maximum likelihood estima-
tion (MLE) over n subjects at each edge. The likelihood function is

L(β|y1, · · · ,yn) =
n∏

i=1

π
yi

i (1 − πi)
1−yi

=
n∏

i=1

[
exp(x�i βi)

1 + exp(x�i βi)

]yi n∏
i=1

[
1

1 + exp(x�i β)

]1−yi

.

The loglikelihood function is given by

log L(β) = const. +
n∑

i=1

yi log πi + (1 − yi) log(1 − πi)

= const. +
n∑

i=1

yix�i β + log(1 − πi)

and its maximum is obtained when

∂ log L(β)

∂β
=

n∑
i=1

xi (yi − πi) = 0.

In simplifying the expression, we used the following identities

∂πi

∂β0
= πi(1 − πi)

and
∂πi

∂β1
= xiπi(1 − πi).

Since the logistic regression function π is in complicated form, the maximum
is obtained numerically. Define the information matrix I (β) to be

I (β) = −∂2 log L(β)

∂β ′∂β
−

n∑
i=1

πi(1 − πi)xix�i .
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Then the Newton–Raphson algorithm is used to find the MLE in an iterative
fashion. Starting with an arbitrary initial vector β0, we estimate iteratively

βj+1 = βj + I (βj )−1 ∂ log L(β)

∂β
(βj ).

Many computational packages such as R and MATLAB have the logistic
regression model fitting procedure.

Although we do not have the explicit formulas for the MLE, using the
asymptotic normality of the MLE, the distributions of the estimators can be
approximately determined. For large sample size n, the distribution of β̂ is
approximately multivariate normal with means β with the covariance matrix
I (β̂)−1.

1.2.2 Best Model Selection

Consider following full model:

logit(πi) = β0 + β1x1 + β2x2 + · · · + βpxp.

Let β(1) = (β0, · · · ,βq)� and β(2) = (βq+1, · · · ,βp)�. The parameter β(1)

corresponds to the parameters of the reduced model. Then we are interested in
testing

H0 : β(2) = 0.

Define the deviance D of a model as D = −2 log L(π̂), which is distributed
asymptotically as χ2

n−p−1. Let π̂ (p) and π̂ (q) be the estimated success proba-
bilities for the full and reduced models, and let Dp and Dq be the associated
deviances. Then the log-likelihood ratio statistic for testing β(2) = 0 is

2[log L(π̂(p))− log L(π̂(q))] = Dq −Dp ∼ χ2
p−q .

1.2.3 Logistic Discriminant Analysis

Discriminant analysis resulting from the estimated logistic model is called the
logistic discrimination. We classify the ith subject according to a classification
rule. The simplest rule is to assign the ith subject as group 1:

P(Yi = 1) > P (Yi = 0).

This statement is equivalent to πi > 1/2. Depending on the bias and the error
of the estimation, the value 1/2 can be adjusted. For the fitted logistic model,
we classify the ith subject as group 1 if x�i βi > 0 and as 0 if x�i βi < 0.
The plane x�i β = 0 is the classification boundary that separates two groups.
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The performance of classification technique is measured by the error rate γ ,
the overall probability of misclassification. The cross-validation is used to
estimate the error rate. This is done by randomly partitioning the data into
the training and the testing sets. In the leave-one-out scheme, the training set
consists of n−1 subjects, while the testing set consists of one subject. Suppose
the ith subject is taken as the test set. Then using the training set, we determine
the logistic model. Using the predicted model, we test if the ith subject is
correctly classified. The error rate obtained in this fashion is denoted as e−i .
Note that e−i = 0 if the subject is classified correctly while e−i = 1 if the
subject is misclassified. The leave-one-out error rate is then given by

γ̂ = 1

n

n∑
i=1

e−i .

To formally test the statistical significance of the discriminant power, we
use Press’s Q statistic (Hair et al., 1998), which is given by

n(2γ − 1)2 ∼ χ2
1 .

Press’s Q statistic is asymptotically distributed as χ2 with one degree of
freedom.

1.3 Random Fields

At the voxel level, it is often necessary to model measurements at each voxel as
a random field. For instance, the deformation field of warping a brain to another
brain is often modeled as a continuous random field (Chung et al., 2001b).
The generalization of a continuous stochastic process defined in R to a higher
dimensional abstract space is called a random field. For an introduction to
random fields, see (Yaglom, 1987; Dougherty, 1999; Adler and Taylor, 2007).
In the random field theory as introduced in (Worsley, 1994; Worsley et al.,
1996b), measurement Y at voxel position x ∈M is modeled as

Y (x) = μ(x)+ ε(x),

where μ is the unknown functional signal to be estimated and ε is the
measurement error, which is modeled as a random variable at each fixed x.
Then the collection of random variables {ε(x) : x ∈ M} is called a stochastic
process or random field. The more precise measure-theoretic definition can
be found in (Adler and Taylor, 2007). Random field modeling can be done
beyond the usual Euclidean space to curved cortical and subcortical manifolds
(Joshi, 1998; Chung et al., 2003a). Most of concepts in random fields are the
continuous generalization of random vectors.
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Definition 1.1 Given a probability space, a random field T (x) defined in Rn

is a function such that for every fixed x ∈ Rn, T (x) is a random variable on
the probability space.

Definition 1.2 The covariance function R(x,y) of a random field T is
defined as

R(x,y) = E
[
T (x)− ET (x)

][
T (y)− ET (y)

]
.

If the joint distribution of T at points x1, · · · ,xm

P
(
T (x1) ≤ z1, · · · ,T (xm) ≤ zm

)
is invariant under the translation

(x1, · · · ,xm) → (x1 + τ, · · · ,xm + τ),

T is said to be stationary or homogeneous.

For a stationary random field T , its covariance function is

R(x,y) = f (x − y)

for some function f . A special case of stationary fields is an isotropic field,
which requires the covariance function to be rotation invariant, i.e.,

R(x,y) = f (|x − y|)
for some function f (Yaglom, 1987).

1.3.1 Gaussian Fields

The most important class of random fields is Gaussian fields. A more rigorous
treatment can be found in Adler and Taylor (2007). Let us start defining a
multivariate normal distribution from a Gaussian random variable.

Definition 1.3 A random vector T = (T1, · · · ,Tm) is multivariate normal if∑m
i=1 ciTi is Gaussian for every possible ci ∈ R.

Then a Gaussian random field can be defined from a multivariate normal
distribution.

Definition 1.4 A random field T is a Gaussian random field if T (x1), · · · ,
T (xm) are multivariate normal for every (x1, · · · ,xm) ∈ Rm.

An equivalent definition to Definition 1.4 is as follows. T is a Gaussian random
field if the finite joint distribution

P(T (x1) ≤ z1, · · · ,T (xm) ≤ zm)

is a multivariate normal for every (x1, · · · ,xm).
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T is a mean zero Gaussian field if ET (x) = 0 for all x. Because any mean
zero multivariate normal distribution can be completely characterized by its
covariance matrix, a mean zero Gaussian random field T can be similarly
determined by its covariance function R. Two fields T and S are independent
if T (x) and S(y) are independent for every x and y. For mean zero Gaussian
fields T and S, they are independent if and only if the covariance function

R(x,y) = E
[
T (x)T (y)

]
vanishes for all x and y, which is a very strong assumption.

The Gaussian white noise is a Gaussian random field with the Dirac-delta
function δ as the covariance function. Note the Dirac delta function is defined
as δ(x) = ∞ if x = 0 and δ(x) = 0 if x �= 0. Further,

∫
δ(x) = 1. Numerically

we can simulate the Dirac-delta function as the limit of the sequence of
Gaussian kernel Kσ when σ → ∞. The Gaussian white noise is simulated
as an independent and identical Gaussian random variable at each voxel.

1.3.2 Derivative of Gaussian Fields

Suppose G is a collection of Gaussian random fields. For given X,Y ∈ G, we
have c1X + c2Y ∈ G again for all c1 and c2. Therefore, G forms an infinite-
dimensional vector space. Any linear combination of Gaussian fields is again
a Gaussian field. We can show that the derivatives of Gaussian fields are also
Gaussian. To see this, we define mean-square convergence.

Definition 1.5 A sequence of random fields Th, indexed by h, converges to T

as h → 0 in mean-square if

lim
h→0

E
∣∣Th − T

∣∣2 = 0.

We will denote the mean-square convergence using the usual limit notation:

lim
h→0

Th = T .

The convergence in mean square implies the convergence in mean. This can be
seen from

E
∣∣Th − T

∣∣2 = V
[
Th − T

]2 + (
E|Th − T |)2.

Now let Th → T in mean square. Each term in the right-hand side should also
converge to zero, proving the statement.

Now we define the derivative of the field in the mean-square sense as

dT (x)

dx
= lim

h→0

T (x + h)− T (x)

h
.
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If T (x) and T (x+ h) are Gaussian, T (x+ h)− T (x) is again Gaussian. Thus,
the limit on the right-hand side is also Gaussian. If R is the covariance function
of the mean zero Gaussian field T , the covariance function of its derivative field
is given by

E

[dT (x)

dx

dT (y)

dy

]
= ∂2R(x,y)

∂x∂y
.

1.3.3 Integration of Gaussian Fields

The integration of Gaussian fields is also Gaussian. To see this, define the
integration of a random field as the limit of Riemann sum. Let ∪n

i=1Mi be a
partition of M, i.e.,

M = ∪n
i=1Mi and Mi ∩Mj = ∅ if i �= j .

Let xi ∈Mi and μ(Mi ) be the volume of Mi . Then we define the integration
of field T as ∫

M
T (x) dx = lim

n→∞

n∑
i=1

T (xi)μ(Mi ),

where the limit is taken as n → ∞ and μ(Mj ) → 0 for all j . When we
integrate a Gaussian field, it is the limit of a linear combination of Gaussian
random variables so it is again a Gaussian random variable. In general, any
linear operation on Gaussian fields will result in Gaussian fields with different
covariance structures.

We can use a collection of Gaussian fields to construct χ2-, t-, F -fields
(Worsley, 1994; Worsley et al., 1996b, 2004; Cao and Worsley, 1999a). The
χ2-field with m degrees of freedom is defined as

T (x) =
m∑

i=1

X2
i (x),

where X1, · · · ,Xm are independent, identically distributed Gaussian fields
with zero mean and unit variance. Similarly, we can define t and F fields as
well as Hotelling’s T 2 field (Thompson et al., 1997; Collins et al., 1998; Joshi,
1998; Cao and Worsley, 1999a; Gaser et al., 1999).

1.3.4 Simulating Gaussian Fields

We show how to simulate smooth Gaussian fields by performing Gaussian
kernel smoothing on white noise. This is perhaps the easiest way of simulating
Gaussian fields.
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White noise is defined as a random field whose covariance function is
proportional to the Dirac-delta function δ, i.e.,

R(x,y) ∝ δ(x − y).

For instance, we may take

R(x,y) = lim
σ→0

Kσ (‖x − y‖),

the limit of the usual isotropic Gaussian kernel. White noise is usually
characterized via generalized functions. One example of white noise is the
generalized derivative of Brownian motion (Wiener process) called Gaussian
white noise.

Definition 1.6 Brownian motion (Wiener process) B(x),x ∈ R+ is a zero
mean Gaussian field with covariance function

RB(x,y) = min(x,y).

Following Definition 1.6, we have VB(x) = x. The increments of Wiener
processes in nonoverlapping intervals are independent identically distributed
(i.i.d.) Gaussian. Further, the paths of the Wiener process are continous while
they are not differentiable (Øksendal, 2010). Higher-dimensional Brownian
motion can be generalized by taking each component of vector fields to be
i.i.d. Brownian motion.

Although the path of the Wiener process is not differentiable, we can define
the generalized derivative via integration by parts with a smooth function f

called a test function in the following way

f (x)B(x) =
∫ x

0
f (y)

dB(y)

dy
dy +

∫ x

0

f (y)

dy
B(y) dy.

Taking the expectation on both sides, we have∫ x

0
f (y)E

dB(y)

dy
dy = 0.

It should be true for all smooth f so E
dB(y)

dy
= 0. Further, it can be shown that

the covariance function of process

dB(y)/dy ∝ δ(x − y).

The Gaussian white noise can be used to construct smooth Gaussian random
fields of the form

X(x) = K ∗W(x) = K ∗ dB(x)

dx
,
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where K is a Gaussian kernel and W is the generalized derivative of Brownian
motion. Since Brownian motion is a zero-mean Gaussian process, X(x) is
obviously a zero-mean field with the covariance function

RX(x,y) = E[K ∗W(x)K ∗W(y)] (1.5)

∝
∫

K(x − z)K(y − z) dz. (1.6)

The case when K is an isotropic Gaussian kernel was investigated by Sieg-
mund and Worsley with respect to optimal filtering in scale space (Siegmund
and Worsley, 1996).

In numerical implementation, we use the discrete white Gaussian noise,
which is simply a Gaussian random variable.

Example 1.1 Let w be a discrete version of white Gaussian noise given by

w(x) =
m∑

i=1

Ziδ(x − xi),

where i.i.d. Zi ∼ N(0,σ 2
w). Note that

K ∗ w(x) =
m∑

i=1

ZiK(x − xi). (1.7)

The collection of random variables K ∗ w(y1), · · · ,K ∗ w(yl) forms a
multivariate normal at arbitrary points y1, · · · ,yl . Hence, the field K ∗ w(x)

is a Gaussian field.

The covariance function of the field (1.7) is given by

R(x,y) =
m∑

i,j=1

E(ZiZj )K(x − xi)K(y − xj ) (1.8)

=
m∑

i=1

σ 2
wK(x − xi)K(y − xi). (1.9)

As usual, we may take K to be a Gaussian kernel. Let us simulate some
Gaussian fields.

Example 1.2 Gaussian white noise is generated using w ∼ N(0,0.42),
which is shown in the top-left of Figure 1.2. With a Gaussian kernel with
bandwidth 1, iteratively smoother versions of Gaussian random fields are
constructed by

K=inline(’exp(-(x.ˆ2+y.ˆ2)/2/sigmaˆ2)ˆ{\top})
[dx,dy]=meshgrid([-10:10])
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sigma=1
K=K(sigma,dx,dy)/sum(sum(K(sigma,dx,dy)))

w=normrnd(0,0.4,101,101)
smooth_w=w
for i=1:10
figure; imagesc(smooth_w)
smooth_w=conv2(smooth_w,K,’same’)

end;

Figure 1.2 shows one, four, and nine iterations.

Figure 1.2 Gaussian random field simulation. Starting with Gaussian white noise
N(0,0.42) (top-left), we iteratively apply Gaussian kernel smoothing one, four,
and nine times with bandwidth σ = 1.
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1.4 Statistical Inference on Fields

Given functional measurement Y , we have model

Y (x) = μ(x)+ ε(x), (1.10)

where μ is unknown signal and ε is a zero-mean unit variance Gaussian field
(Worsley et al., 1996b; Miller et al., 1997; Joshi, 1998; Kiebel et al., 1999;
Friston, 2002). We assume x ∈ M ⊂ Rn. The unknown signal is usually
estimated by various spatial smoothing techniques over M. The most widely
used smoothing method is kernel smoothing and its variants because of their
simplicity, and because they provide the theoretical basis for scale spaces and
Gaussian random field theory (Worsley et al., 1995, 1996b).

In the usual SPM framework (Friston, 2002; Kiebel et al., 1999; Worsley
et al., 1996b), inference on the model (1.10) proceeds as follows. If we
denote an estimate of the signal by μ̂, the residual f − μ̂ gives an esti-
mate of the noise. One then constructs a test statistic T (x), corresponding
to a given hypothesis about the signal. As a way to account for spatial
correlation of the statistic T (x), the global maximum of the test statistic
over the search space M is taken as the subsequent test statistic. Hence
a great deal of the neuroimaging and statistical literature has been devoted
to determining the distribution of supx∈M T (x) using random field theory
(Worsley et al., 1996b; Taylor and Worsley, 2008), permutation tests (Nichols
and Hayasaka, 2003) and the Hotelling–Weyl volume of tubes calculation
(Naiman, 1990).

1.4.1 Type-I Error

In brain imaging and network analysis, one of the most important problems
is that of signal detection, which can be stated as the problem of identifying
the regions of statistical significance. So it can be formulated as an inference
problem

H0 : μ(x) = 0 for all x ∈M
vs.

H1 : μ(x) > 0 for some x ∈M.

Let

H0(x) : μ(x) = 0
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at a fixed point x. Then the null hypothesis H0 is a collection of multiple
hypotheses H0(x) over all x. Therefore, we have

H0 =
⋂

x∈M
H0(x).

We may assume that M is the region of interest consisting of the finite
number of voxels in a 3D volume and edges in network data. We also have
the corresponding pointwise alternate hypothesis

H1(x) : μ(x) > 0

at each fixed point x. The alternate hypothesis H1 is then constructed as

H1 =
⋃

x∈M
H0(x).

If we use Z-statistic as a test statistic, for instance, we will reject each H0(x) if
Z > h for some threshold h. So at each fixed x, for level α = 0.05 test, we need
to have h = 1.64. However, if we threshold at α = 0.05, 5% of observations are
false positives. Note that the false positives are pixels where we are incorrectly
rejecting H0(x) when it is actually true. However, these are the false positives
related to testing H0(x). For determining the true false positives associated
with testing H0, we need to account for multiple comparisons.

Definition 1.7 The type-I error is the probability of rejecting the null hypoth-
esis (there is no signal) when the alternate hypothesis (there is a signal) is
true.

The type-I error, denoted as α, is also called the familywise error rate (FWER)
and given by

α = P(reject H0 | H0 true )

= P( reject some H0(x) | H0 true )

= P
( ⋃

x∈M
{Y (x) > h}

∣∣∣ EY = 0
)

. (1.11)

Given α level, we often find threshold h. Any voxels or edges that are above
the threshold are considered a signal. Unfortunately, Y (x) is correlated over x,
and it makes the computation of the type-I error almost intractable for random
fields other than Gaussian.
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1.4.2 Bonferroni Correction

One standard method for dealing with multiple comparisons is to use the
Bonferroni correction. Note that the probability measure is additive so that
for any event Ej , we have

P
( ∞⋃

j=1

Ej

)
≤

∞∑
j=1

P(Ej ).

This inequality is called the Bonferroni inequality, and it has been used in the
construction of simultaneous confidence intervals and multiple comparisons
when the number of hypotheses is small. From (1.11), we have

α = P
( ⋃

x∈M
{Y (x) > h}

∣∣∣ EY = 0
)

(1.12)

≤
∑
x∈M

P
(
Y (xj ) > h | EY = 0

)
(1.13)

So by controlling each type-I error separately at

P
(
Y (xj ) > h | EY = 0

)
<

α

#M
we can construct the correct level α test. Here #M is the number of voxels or
edges, where the test statistic is defined.

The problem with the Bonferroni correction is that it is too conservative.
The Bonferroni inequality (1.13) becomes exact when the measurements
across voxels/edges are all independent, which is unrealistic. Since the mea-
surements are expected to be strongly correlated across voxels/edges, we
have highly correlated statistics. So in a sense, we have a smaller number of
comparisons to make.

Consider 100× 100 image Y of standard normal distributions (Figure 1.3).
The threshold corresponding to the significance α = 0.05 is 1.64. By
thresholding the image at 1.64, we obtain approximately about 5% of pixels as
false positives. To account for the false positives, we perform the Bonferroni
correction. For an image of size 100×100, there are 10,000 pixels. Therefore,

α

#M = 0.05

10000
= 0.000005

is the corresponding pointwise p-value and the corresponding threshold is
4.42. In this example, there is no pixel that is higher than 4.42 so we are
not detecting any false positives as expected. In MATLAB, the threshold is
found by



1.4 Statistical Inference on Fields 19

Figure 1.3 Image consisting of Gaussian white noise N(0,1) at each pixel. At
the thresholding 1.64 corresponding to the significance level α = 0.05, 5% of all
pixels are false positives.

norminv(1-0.05/10000,0,1)
ans =

4.4172

Other less stringent multiple comparison corrections such as the false
discovery rate (FDR) are also available and implemented in most packages
such as SPM, AFNI, FSL, and MATLAB (Benjamini and Hochberg, 1995;
Benjamini and Yekutieli, 2001; Genovese et al., 2002).

1.4.3 Random Field Correction

We can obtain a less conservative estimate for (1.11). Under H0, assuming
EY = 0, we have

α(h) = P
( ⋃

x∈M
{Y (x) > h}

)
= 1 − P

( ⋂
x∈M

{Y (x) ≤ h}
)

= 1 − P
(

sup
x∈M

Y (x) ≤ h
)

= P
(

sup
x∈M

Y (x) > h
)

. (1.14)

In order to construct the α-level test corresponding to H0, we need to know the
distribution of the supremum of field Y . The corresponding p-value based on
the supremum of the field, i.e., supx∈M Y , is called the corrected p-value to
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distinguish it from the usual p-value obtained from the statistic Y . Note that
the p-value is the smallest α-level at which the null hypothesis H0 is rejected.

Analytically computing the exact distribution of the supremum of random
fields is hard in general. The distribution of supremum of Brownian motion
is somewhat simple due to its independent increment properties. However,
for smooth random fields, it is not so straightforward (Adler, 2000). In
Keith Worsley’s random field theory, the supremum distribution is based
on the expected Euler characteristic (EC). The Euler characteristic approach
reformulates the geometric problem as a topological problem (Adler, 1981;
Cao and Worsley, 2001; Worsley, 2003; Taylor and Worsley, 2007). For
sufficiently high threshold h, it is known that

P
(

sup
x∈M

Y (x) > h
)
≈ Eχ(Ah), (1.15)

where Ah = {x ∈M : Y (x) > h} is the excursion set above x. This indirectly
links the problem of statistical inference to that of topology (Figure 1.4).

Figure 1.4 Given fields fi = μ+ εi , we are interested in detecting the regions of
significant signal μ > 0. In the random field theory (Worsley, 2003), we construct
a test statistic T out of the fields fi and determine the topological change of the
excursion set Ah = {x ∈ M : T (x) > h} as we increase the threshold h. This
determines the type-I error associated with the hypothesis testing. On the other
hand, we can determine the topological change of the individual excursion sets
Bi,h = {x ∈ M : fi(x) > h} first. Then we construct a statistical test on the
topological change of Bi,h through persistent homology (Chung et al., 2009a).
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Compared to other approximation methods such as the Poisson clump heuristic
and the tube formulae, the advantage of using the Euler characteristic formu-
lation is that the exact expression can be found for E χ(Ah) (Worsley et al.,
1998; Schmidt and Spodarev, 2005).

There has been a parallel development that tried to link topology to
statistical analysis via persistence homology (Bubenik and Kim, 2007; Chung
et al., 2009a,b). The use of the mean signal is one way of performing data
reduction; however, this may not necessarily be the best way to characterize
complex multivariate imaging data. Instead of using the mean signal, we
can use topological features such as persistent homology, which pairs local
critical values (Edelsbrunner et al., 2002; Zomorodian and Carlsson, 2005;
Edelsbrunner and Harer, 2008). It is intuitive that local critical values of
μ̂ approximately characterizes the shape of the continuous signal μ using
only a finite number of scalar values. By pairing these local critical values
in a nonlinear fashion and plotting them, one constructs the persistence
diagram (Cohen-Steiner et al., 2007; Edelsbrunner and Harer, 2008; Morozov,
2008; Zomorodian, 2001). Persistent homology and its application to network
modeling will be discussed in Chapter 7.

1.4.4 Type-II Error

Statistical power is an often used measure for determining the necessary
sample sizes to achieve a certain statistical significance. The statistical power
computation for dependent data or random fields is fairly complicated due to
multiple comparisons. The power computation relies on type-II error, which is
somewhat involving under the multiple comparisons setting (Hayasaka et al.,
2007). Given the null hypothesis H0 and the alternate hypothesis H1, type-I
and -II errors are defined as follows.

Definition 1.8 The probabilities of type-II error, denoted as β, is defined as

β = P(Type II error)

= P(not reject H0 | H0 false )

= 1 − P(reject H0 | H1 true).

Definition 1.9 The power of the test is defined as 1 − β.

Power = P(reject H0 | H1 ture).

The power of a statistical test is given as the probability of rejecting the null
hypothesis that there is no signal when there is an actual signal. When the
test procedure has the power of 0.9, it implies that we can correctly reject the
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null hypothesis 90% of the time when the alternate hypothesis is true. The
sample size computation is then based on the power. The power is usually
given as a function of sample size and α level. In designing an experiment
or collecting data, we are interested in the minimum number of samples in
achieving a specific power that is usually set at 85 to 90%.

1.4.5 Statistical Power for T-Test

Let us start with the power computation for scalar measurement at an edge.
Consider two samples

X1, · · · ,Xn1 ∼ N(μ1,σ
2),

Y1, · · · ,Yn2 ∼ N(μ2,σ
2).

We are interested in testing

H0 : μ1 − μ2 = 0 vs. H1 : μ1 − μ2 = cσ �= 0.

The constant c represents the effect size, which measures the mean difference
with respect to the standard deviation. The effect size c is usually estimated
from the sample mean and the standard deviation. For a test statistic, we use
the t-statistic with the equal variance assumption:

T = X̄ − Ȳ

Sp

√
1/n1 + 1/n2

,

where X̄ and Ȳ are the sample means and S2
p is the pooled sample variance.

If the sample variance of the ith group is denoted by S2
i , the pooled sample

variance is given by

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

For computing the power, the α-level of the test has to be specified first.
Under H0, the test statistic T follows

T ∼ tn1+n2−2,

the student t-distribution with n1 + n2 − 2 degrees of freedom. The rejection
region corresponding to the α-level is given by

|X̄ − Ȳ |
Sp

√
1/n1 + 1/n2

> t∗α/2,
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where t∗α/2 is the quantile satisfying

P(T ≥ t∗α/2) = α/2.

Under H1, Xi ∼ N(μ1,σ
2) and Yi ∼ N(μ1 − cσ,σ 2). Subsequently,

under H1

T ′ = X̄ − Ȳ − cσ

Sp

√
1/n1 + 1/n2

∼ tn1+n2−2.

Then the power is given by

Power = 1 − P( none rejection region |H1)

= 1 − P
(
− t∗α/2 < T < t∗α/2

∣∣∣H1

)
= 1 − P

(
− t∗α/2 −

c√
1/n1 + 1/n2

< T ′ < t∗α/2 −
c√

1/n1 + 1/n2

)
.

We approximated σ with Sp.
For sufficiently large n1 and n2, we may assume T ∼ N(0,1). Let  be the

cumulative distribution for the standard normal distribution. Note that

(x) = 1√
2π

∫ x

−∞
e−t2/2 dt .

In MATLAB,  is implemented using normcdf. In other nonstatisical
computing environments, the error function is more often used. The error
function erf is defined as

erf(x) = 2√
π

∫ x

0
e−t2/2 dt .

The relationship between normcdf and erf is

normcdf(x) = 1

2
+ 1

2
erf(x/

√
2).

Then using , the power is approximated as

Power(n1,n2) = 1+
(
−z∗α/2−

c√
1/n1+1/n2

)
−

(
z∗α/2−

c√
1/n1+1/n2

)
,

where z∗α/2 is the quantile corresponding to

(z∗α/2) = 1 − α

2
.

Figure 1.5 displays the power plot for various sample size and the effect size.
In general, we should design a method that achieves at least 85% power.
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Figure 1.5 Statistical power plot for the two-sample t-test with the effect sizes
between 0.1 and 0.5. For the effect size of 0.5, we need at least 50 samples in each
group to achieve 80% power.

1.4.6 Power under Multiple Comparisons

In the previous section, the power computation was done at a fixed edge.
Assume we have two functional measurements

X1(t), · · · ,Xn1(t) ∼ N(μ1,σ
2
1 ),

Y1(t), · · · ,Yn2(t) ∼ N(μ2,σ
2
2 )

over an edge indexed by t ∈ M over the whole brain network. Xi and Xj are
treated as random fields over M. The usual pointwise hypotheses at each edge
t ∈M are given by

H0(t) : μ1(t)− μ2(t) = 0

vs.

H1(t) : μ1(t)− μ2(t) = cσ > 0.
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Instead of the edge-level inference, we need a global inference for the whole
network M. The usual global hypotheses accounting for multiple comparisons
are then given by

J0 : μ1(t)− μ2(t) = 0 for all t ∈M
vs.

J1 : μ1(t)− μ2(t) = cσ > 0 for some t ∈M.

The relationship between the edge-level hypotheses H0(t),H1(t) and the
global hypotheses J0,J1 are

J0 =
⋂

t∈M
H0(t), J1 =

⋃
t∈M

H1(t).

In order to compute the power over M, it is necessary to determine the type-I
error first. Let

T (t) = X̄(t)− Ȳ (t)

Sp(t)
√

1/n1 + 1/n2

be the test random field. Under J0, T (t), this is a t-random field with n1+n−2
degrees of freedom over the whole network M (Adler, 1981).

We reject J0 if T (t) > h for some thresholding h for all t ∈ M. This is
equivalent to supt∈M T (t) > h. Hence, the type-I error computation requires
knowing the distribution of the random variable supt∈M T (t), which can be
very involving:

α = P
(

sup
t∈M

T (t) > t∗α
)
,

where t∗α is the quantile corresponding to the random variable supt∈M T (t).
If necessary, the quantile can be determined numerically using the resampling
technique (Chung et al., 2014). The rejection region of J0 corresponding to the
α level is given by

M1 =
{
t ∈M : sup

t∈M
T (t) > t∗α

}
.

Under J1, we have

Xi(t) ∼ N(μ1,σ
2) and Yi(t) ∼ N(μ1 + cσ,σ 2)

at t ∈M1. In M0 =M/M1, we do not reject J0 and have

Xi(t),Yi(t) ∼ N(μ1,σ
2).
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Figure 1.6 Power vs. sample size for the two sample t-test. Solid line is for each
voxel and the dotted line is for whole brain surface accounting under multiple
comparisons. To obtain power of 0.8 at significance α = 0.05, in differentiating
the group difference 0.2σ , we need a significantly smaller sample size under
multiple comparisons. This is the reason why we usually need smaller sample
sizes in imaging studies.

In M1, we have

T ′(t) = T (t)− cσ

Sp(t)
√

1/n1 + 1/n2

= T (t)− c√
1/n1 + 1/n2

∼ tn1+n2−2

pointwisely. Under the assumption of equal variance field, we have Sp(t) = σ .
Note that T ′ is not a t-field in M/M1 but a noncentral t-field (Hayasaka

et al., 2007). Then the overall power over M is given as

Power = P
(

sup
t∈M

T (t) > t∗α
∣∣∣J1

)
= P

(
sup

t∈M1

T ′(t) > t∗α −
c√

1/n1 + 1/n2

)
.

(See Figure 1.6.)
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Brain Network Nodes and Edges

The human brain consists of many functionally and structurally distinct areas,
each receiving and sending various neuronal projections from and to each
other (Young, 1992). The brain forms a very complex network of connections
(Young, 1992). Neuroanatomical connectivity places structural constraints on
the functional connectivity of the cerebral cortex (Sporns et al., 2000). It
is crucial to understand functional connectivity in relation to the underlying
structural connectivity. In the usual brain connectivity studies, we usually have
to either manually or automatically define regions of these distinct areas that
can serve as network nodes. In this chapter, we review various technique for
identifying network nodes and constructing network edges using structural
brain images.

2.1 Brain Templates

Brain network nodes are often defined through existing template and manual
parcellations on top of the templates. In the past, the Talairach atlas was
used as the standard template. The Talairach atlas has Brodmann’s areas
labeled in an approximate fashion (Talairach and Tournoux, 1988). Due to
many limitations, the Montreal Neurological Institute (MNI) defined a new
standard brain by using a large cross-sectional magnetic resonance images
(MRI) of adult normal subjects. Brain processing and analysis packages such
as Statistical Parametric Mapping (SPM), Analysis of Functional Neuroimages
(AFNI), and FMRIB Software Library (FSL) all use the standard brains from
the MNI. However, over the years, there are many variations and improvements
in the MNI template. So care should be taken to understand what the specific
MNI template is in the software packages and studies.

27
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The current standard MNI template is the ICBM152, which is the average
of 152 MRI scans of normal subjects. The International Consortium for
Brain Mapping adopted this as its standard template. Colin Holmes, an
MNI researcher, was scanned 27 times, and the scans were coregistered
and averaged to create a detailed single-subject MRI. This average was also
matched to the MNI305, to create the image known as colin27.

2.2 Brain Parcellations

The whole brain is often parcellated into p disjoint regions, where p is between
50 to 200 (Hagmann et al., 2007; Gong et al., 2009; Fornito et al., 2010;
Zalesky et al., 2010). Harvard–Oxford atlas is a probabilistic parcellation
covering 48 cortical and 21 subcortical areas (Desikan et al., 2006). T1-
weighted images of 21 male and 16 female subjects (ages 18 to 50) were indi-
vidually segmented semiautomatically. The T1-weighted images were affine-
registered to MNI152 space using FMRIB’s linear image registration tool
(FLIRT) in FSL, and the individual labels were aligned using the same affine
transformation. The transformed labels were then combined across subjects to
form a population probability map for each label. LONI (Laboratory of Neuro
Imaging) probabilistic brain atlas (LPBA40) is constructed similar to Harvard–
Oxford atlas but using different processing pipelines and using 40 subjects
(Shattuck et al., 2008).

Although most existing parcellations are based on the parcellation of gray
matter, diffusion-tensor based white matter parcellations such as ICBM-DTI-
81 are also available (Mori et al., 2008).

2.2.1 Anatomical Automatic Labeling (AAL)

Anatomical Automatic Labeling (AAL) is probably the most often used
parcellation scheme in automatically identifying multiple regions of interest
(ROI) in the brain. AAL parcellation provides 116 labels for all the cortical
and subcortical structures in the MNI template space (Figures 2.1 and 5.4)
(Tzourio-Mazoyer et al., 2002). AAL parcellation in MATLAB format is
also available.1 Inside the package, the structured array ROI.ID contains the
integer label for parcellations. The first five integer labels are 2001, 2002,
2101, 2102, and 2111. The structured array ROI.Nom L.mat contains the

1 http://neuro.imm.dtu.dk/wiki/Automated Anatomical Labeling
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Figure 2.1 AAL parcellation with 116 disjoint regions. Each region is colored
differently. AAL mainly parcellate gray matter regions.

corresponding anatomical labels for 116 regions as strings. The first five labels
are the following:

’Precentral_L’
’Precentral_R’
’Frontal_Sup_L’
’Frontal_Sup_R’
’Frontal_Sup_Orb_L’

where Precentral L and Precentral R are the left and right precentral
gyri. For convenience, a short-hand notations are available in ROI.Nom C.
The first five short-hand notations for the aforementioned regions are ’FAG’,
’FAD’, ’F1G’, ’F1D’, ’F1OG’. AAL labels are often used in reporting
findings in brain network analysis. AAL labels are often used to report the
node-level findings in neuroimaging literature (Chung et al., 2017b). The
complete list of ROI labels and names are given in Table 2.1.2

One may superimpose functional activations such as fMRI and PET on top
of parcellation ROI and can set up a model of how activation in one region
is related to other regions. For instance, we can set up linear models of how

2 Table was complied by Andrey Gritsenko of University of Wisconsin–Madison.
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Table 2.1. AAL parcellation short-hand notation and labels.

Index Notation Brain region

1 FAG Left precentral gyrus
2 FAD Right precentral gyrus
3 F1G Left superior frontal gyrus, dorsolateral
4 F1D Right superior frontal gyrus, dorsolateral
5 F1OG Left superior frontal gyrus, orbital part
6 F1OD Right superior frontal gyrus, orbital part
7 F2G Left middle frontal gyrus, lateral part
8 F2D Right middle frontal gyrus, lateral part
9 F2OG Left middle frontal gyrus, orbital part
10 F2OD Right middle frontal gyrus, orbital part
11 F3OPG Left opercular part of inferior frontal gyrus
12 F3OPD Right opercular part of inferior frontal gyrus
13 F3TG Left area triangularis
14 F3TD Right area triangularis
15 F3OG Left orbital part of inferior frontal gyrus
16 F3OD Right orbital part of inferior frontal gyrus
17 ORG Left rolandic operculum
18 ORD Right rolandic operculum
19 SMAG Left supplementary motor area
20 SMAD Right supplementary motor area
21 COBG Left olfactory cortex
22 COBD Right olfactory cortex
23 FMG Left superior frontal gyrus, medial part
24 FMD Right superior frontal gyrus, medial part
25 FMOG Left superior frontal gyrus, medial orbital part
26 FMOD Right superior frontal gyrus, medial orbital part
27 GRG Left gyrus rectus
28 GRD Right gyrus rectus
29 ING Left insula
30 IND Right insula
31 CIAG Left anterior cingulate gyrus
32 CIAD Right anterior cingulate gyrus
33 CINMG Left middle cingulate
34 CINMD Right middle cingulate
35 CIPG Left posterior cingulate gyrus
36 CIPD Right posterior cingulate gyrus
37 HIPPOG Left hippocampus
38 HIPPOD Right hippocampus
39 PARA HIPPOG Left parahippocampal gyrus
40 PARA HIPPOD Right parahippocampal gyrus
41 AMYGDG Left amygdala
42 AMYGDD Right amygdala
43 V1G Left calcarine sulcus
44 V1D Right calcarine sulcus
45 QG Left cuneus
46 QD Right cuneus
47 LINGG Left lingual gyrus
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Table 2.1. (cont.)

48 LINGD Right lingual gyrus
49 O1G Left superior occipital
50 O1D Right superior occipital
51 O2G Left middle occipital
52 O2D Right middle occipital
53 O3G Left inferior occipital
54 O3D Right inferior occipital
55 FUSIG Left fusiform gyrus
56 FUSID Right fusiform gyrus
57 PAG Left postcentral gyrus
58 PAD Right postcentral gyrus
59 P1G Left superior parietal lobule
60 P1D Right superior parietal lobule
61 P2G Left inferior parietal lobule
62 P2D Right inferior parietal lobule
63 GSMG Left supramarginal gyrus
64 GSMD Right supramarginal gyrus
65 GAG Left angular gyrus
66 GAD Right angular gyrus
67 PQG Left precuneus
68 PQD Right precuneus
69 LPCG Left paracentral lobule
70 LPCD Right paracentral lobule
71 NCG Left caudate nucleus
72 NCD Right caudate nucleus
73 NLG Left putamen
74 NLD Right putamen
75 PALLG Left globus pallidus
76 PALLD Right globus pallidus
77 THAG Left thalamus
78 THAD Right thalamus
79 HESCHLG Left transverse temporal gyri
80 HESCHLD Right transverse temporal gyri
81 T1G Left superior temporal gyrus
82 T1D Right superior temporal gyrus
83 T1AG Left superior temporal pole
84 T1AD Right superior temporal pole
85 T2G Left middle temporal gyrus
86 T2D Right middle temporal gyrus
87 T2AG Left middle temporal pole
88 T2AD Right middle temporal pole
89 T3G Left inferior temporal gyrus
90 T3D Right inferior temporal gyrus
91 CERCRU1G Left crus I of cerebellar hemisphere
92 CERCRU1D Right crus I of cerebellar hemisphere
93 CERCRU2G Left crus II of cerebellar hemisphere
94 CERCRU2D Right crus II of cerebellar hemisphere
95 CER3G Left lobule III of cerebellar hemisphere
96 CER3D Right lobule III of cerebellar hemisphere
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Table 2.1. (cont.)

97 CER4 5G Left lobule IV, V of cerebellar hemisphere
98 CER4 5D Right lobule IV, V of cerebellar hemisphere
99 CER6G Left lobule VI of cerebellar hemisphere
100 CER6D Right lobule VI of cerebellar hemisphere
101 CER7BG Left lobule VIIB of cerebellar hemisphere
102 CER7BD Right lobule VIIB of cerebellar hemisphere
103 CER8G Left lobule VIII of cerebellar hemisphere
104 CER8D Right lobule VIII of cerebellar hemisphere
105 CER9G Left lobule IX of cerebellar hemisphere
106 CER9D Right lobule IX of cerebellar hemisphere
107 CER10G Left lobule X of cerebellar hemisphere (flocculus)
108 CER10D Right lobule X of cerebellar hemisphere (flocculus)
109 VER1 2 Lobule I, II of vermis
110 VER3 Lobule III of vermis
111 VER4 5 Lobule IV, V of vermis
112 VER6 Lobule VI of vermis
113 VER7 Lobule VII of vermis
114 VER8 Lobule VIII of vermis
115 VER9 Lobule IX of vermis
116 VER10 Lobule X of vermis (nodulus)

fMRI in an ROI is dependent on all other ROI (Lee et al., 2012; Chung et al.,
2015a). From the linear models, we can further obtain correlations that can be
used to build a connectivity matrix that characterizes the whole brain network.
Unlike other static imaging modalities such as FDG-PET and diffusion tensor
imaging (DTI), fMRI has the temporal component so it is possible to code
the cause and effect as directional information in the connectivity matrix
as well.

The major shortcoming of using the existing parcellations including AAL
is the lack of refined spatial resolution. Even if we detected connectivity
differences between large chunks of brain regions, it is not possible to localize
what parts of parcellations are affected without additional analysis. There is a
strong need to develop a higher-resolution parcellation scheme.

It is possible to subdivide existing parcellations into smaller disjoint
subregions. Mostly based on spectral clustering (Craddock et al., 2012; Pepe
et al., 2015) and graph cuts (Shen et al., 2010), many algorithms have been
proposed for subdividing parcellations mostly in fMRI studies. However, many
of these methods do not preserve the hierarchical nestedness. Parcellations at
one scale will topologically conflict with parcellations at different scales.

Numerous methods have been proposed for automatically identifying ROI
that are often based on clustering algorithms or region growing methods that
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increase the similarity of functional activation within cluster (Craddock et al.,
2012). Among all clustering algorithms, spectral clustering including graph
cuts seems to be most popular and effective in producing ROI of uniform size.

2.2.2 Supervoxel Functional Parcellation

It is also possible to parcellate the brain regions using the resting-state (rs-
fMRI) (Thirion et al., 2014). For clustering fMRI, we can use the simple
linear iterative clustering (SLIC) supervoxel algorithm that adopts k-means
clustering but has lower computational complexity O(k) (Achanta et al., 2012;
Gritsenko, 2018). The standard k-means clustering searches the entire brain
images while SLIC searches a limited region. A search for similar voxels
is done in a cubical region around the supervoxel center. Depending on
applications, various modifications to the distance used in k-means clustering
are possible. This requires computing the similarity measure or distance

Figure 2.2 Supervoxel segmentation via SLIC with k = 500, 700, and 1,000
parcellations on rs-fMRI (Gritsenko, 2018). The figure was generated by Andrey
Gritsenko of University of Wisconsin–Madison.
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between fMRI in two different voxels, a topic we will discuss in a later chapter.
Figure 2.2 shows the results of supervoxel segmentation using a subset of
100 resting-sate fMRI from the human connectome project (HCP) (Van Essen
et al., 2012). The correlation between rs-fMRI signals is used in constructing
the distance, a topic we will study in a later chapter. Although segmentation
obtained using SLIC does not follow AAL parcellation, there are still well-
marked correspondences between them.

2.3 Deterministic Connectivity

Structural connectivity studies have been popular in recent years due to the
advancement of DTI, which is an MRI technique that has been used to char-
acterize the macrostructure of biological tissues using magnitude, anisotropy,
and anisotropic orientation associated with water diffusion in the brain (Basser
et al., 1994). DTI provides directional and connectivity information that the
standard MRI usually does not provide and estimates the patterns of white
matter connectivity. The white matter fibers pose a physical constraint on the
movement of water molecules along the direction of fibers. It is assumed that
the direction of greatest diffusivity is most likely aligned to the local orienta-
tion of the white matter fibers. White matter fibers consist mostly of myelinated
axons that connect gray matter regions of the brain to each other. The axons
are filled with neuronal filaments running along its longitudinal axis, which
contributes to the anisotropy of water diffusion (Mori and van Zijl, 2002).

DTI can be used to characterize the structural connectivity of the human
brain noninvasively by tracing white matter fiber tracts. DTI tractography
algorithms can trace up to a half million tracts per brain, which serve as edges
in network construction. The whole brain has been traditionally parcellated
into p disjoint regions, where p is between 50 to 200. White matter fibers
provide information of how one region is connected to another via a p-by-p
connectivity matrix. The connectivity matrix is then thresholded to produce a
binarized adjacency matrix, which is often used in graph theory–based analysis
(Hagmann et al., 2007; Fornito et al., 2010; Gong et al., 2009; Zalesky et al.,
2010; Chung et al., 2017b).

Structural brain connectivity can be modeled as a network graph using white
matter fiber bundles obtained from DTI tractography algorithms. White matter
tractography offers the unique opportunity to characterize the trajectories of
white matter fiber bundles noninvasively in the brain. Various deterministic
tractographies have been used to visualize and map out major white matter
pathways in individuals and brain atlases (Conturo et al., 1999; Mori et al.,
1999; Basser et al., 2000; Catani et al., 2002; Mori and van Zijl, 2002;
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Lazar et al., 2003; Thottakara et al., 2006; Yushkevich et al., 2007); however,
tractography data can be challenging to interpret and quantify. Recent efforts
have attempted to cluster (O’Donnell et al., 2006) and automatically segment
white matter tracts (O’Donnell and Westin, 2007) as well as characterize
tract shape parameters (Batchelor et al., 2006). Many of these techniques
can be quite computationally demanding. Efficient methods for extracting
tracts, representing tract shape, regional tract segmentation and clustering, tract
registration, and quantification would be of tremendous value to researchers.

DTI registration. DTI usually goes through image preprocessing before
overlaying the fiber tracts to existing parcellations (Hanson et al., 2013; Kim
et al., 2015). DTI needs to be corrected for eddy current–related distortion and
head motion. FSL software3 can be often used for the purpose. The distortions
from field inhomogeneities need to be corrected before performing a tensor
estimation (Jezzard and Clare, 1999; Cook et al., 2006). CAMINO is often
used for the nonlinear tensor estimation. Spatial normalization of DTI plays
a key role in constructing brain network graphs that are spatially compatible
across different subjects. The quality of spatial normalization determines the
extent to which white matter tracts are aligned. It has direct impacts on the
successful removal of shape confounds and consequently on the validity,
specificity, and sensitivity of the subsequent statistical inferences of group
differences. Inadequate normalization with coarse registration algorithms can
result in insufficient removal of shape differences that is necessary for obtain-
ing topologically invariant network graph. Spatial normalization of DTI data
often requires a diffeomorphic registration strategy (Joshi et al., 2004; Zhang
et al., 2007a). DTI-ToolKit (DTI-TK)4 can be used (Zhang et al., 2007b). This
approach combines full tensor coregistration and high-dimensional diffeomor-
phic spatial normalization. The registration is based on an iterative strategy
(Joshi et al., 2004; Zhang et al., 2007b) where the initial template is computed
as the average of original DTI. Then DTI is first affinely aligned to the
template. The tensor images after the affine alignment are then provided as the
input to the registration algorithm. The algorithm leverages full tensor-based
similarity metrics while optimizing tensor orientation explicitly. The metric is
based on the L2-distance between the anisotropic parts of diffusion profiles
associated with the diffusion tensors (Zhang et al., 2006). The algorithm
then approximates smooth transformations using a dense piecewise affine
parameterization, which is sufficient when the required deformations are not
large. Now compute a refined template as an average of the normalized images.
If the change between templates from consecutive iterations is sufficiently

3 www.fmrib.ox.ac.uk/fsl
4 www.nitrc.org/projects/dtitk
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small, we stop the iteration; otherwise we continue the iterative process of
getting a new template and refitting.

Streamline tractography. The white matter connectivity is mainly obtained
by the streamline based tractography, in which a continuous path of connection
between two brain regions is estimated as a streamline whose tangential veloc-
ity field is given by the principal eigenvectors. Most of current white matter
tractography is based on streamlines (Conturo et al., 1999; Mori et al., 1999;
Basser et al., 2000) or its variations such as tensor deflection (TEND) method
(Lazar et al., 2003). Whole brain tractography studies routinely generate up to
a half million tracts per brain, which serves as edges in an extremely large 3D
graph. The directional information of water diffusion is usually represented as
a symmetric positive definite 3 × 3 matrix D = (dij ) which is usually called
as the diffusion tensor or diffusion coefficients. The diffusion tensors are often
normalized by its transpose, i.e., D/trD. This normalization guarantees that
the sum of eigenvalues of D equals 1. The eigenvectors and eigenvalues of D

are obtained by solving

Dv = λv,

which results in three eigenvalues λ1 ≥ λ2 ≥ λ3 and the corresponding
eigenvectors v1,v2,v3. We may assume that the eigenvectors are normalized
as ‖vj‖ = 1. The principal eigenvector v1, the eigenvector corresponding to
the largest eigenvalue, usually determines the direction of the water diffusion,
and is mainly used in streamline-based tractography.

For the given principal vector fields v1, the corresponding streamline p =
ψ(t) satisfies the ordinary differential equation

dψ

dt
= v1 ◦ ψ(t) (2.1)

This ordinary differential equation gives a family of integral curves whose
tangent vector is v1 (Betounes, 1998). By integrating (2.1) with respect to the
parameter t , we obtain the equivalent integral tranform

ψ(t) =
∫ t

0
v1 ◦ ψ(t) dt + ψ(0). (2.2)

The most common numerical methods for solving (2.1) and (2.2) are Euler’s
method and the Runge–Kutta algorithm (Basser et al., 2000).

The streamline-based techniques for obtaining fiber tracts have three main
steps: (1) defining seed points, (2) performing integration (2.2), and (3)
determining stopping criteria (Vilanova et al., 2004). The stopping criteria
avoids the area where the principal vector fields cannot be robustly obtained.
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Note that streamlines have been encountered in the context of estimating
cortical thickness using the Laplace equation (Jones et al., 2000; Chung, 2012).

2.3.1 Electrical Circuit Model

In this section, we present an electrical circuit model for constructing connec-
tivity matrices. The electrical circuit model can be viewed as a generalization
of the simple tract counting method. Let’s start with the arithmetic and
harmonic means. Given measurements R1, · · · ,Rk , their arithmetic mean
A(R1, · · · ,Rk) is given by the usual sample mean, i.e.,

A(R1, · · · ,Rk) = 1

k

k∑
i=1

Ri .

The tract count and its mean are based on the arithmetic addition. The
harmonic mean H(R1, · · · ,Rk) of R1, · · · ,Rk is given by

H(R1, · · · ,Rk) = k

1
R1
+ 1

R2
+ · · · + 1

Rk

.

The harmonic mean is given by the reciprocal of the arithmetic mean of
reciprocal of measurements:

H(R1, · · · ,Rk) = 1
/( 1

R1
, · · · , 1

Rk

)
.

The harmonic mean has been mainly used in measuring the rates of physical
systems such as the speed of a car (Zhang et al., 1999) or resistance of
electrical circuits (Chung, 2012). Beyond physical systems, it has been used
in k-means clustering (Zhang et al., 1999), where the harmonic k-mean is
used instead of the usual arithmetic mean. The harmonic mean has been also
used in the integrated likelihood for the Bayesian model selection problem
(Raftery et al., 2006). Whenever we deal with rates and ratio-based measures
such as resistance, the harmonic mean provides more robust and accurate
average compared to the arithmetic mean and often is used in various branch
of sciences. The use of harmonic means can naturally incorporate the length of
tracts in connectivity.

Motivated by Doyle and Snell (1984), the structural brain network can be
analogously modeled as an electrical system consisting of series and parallel
circuits (Figure 2.3). Each fiber tract may be viewed as a single wire with
resistance R proportional to the length of the wire. If two regions are connected
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Figure 2.3 Examples of series circuit (left) and parallel circuit (right).

through an intermediate region, it forms a series circuit. In the series circuit,
the total resistance R is additive so we have

R = R1 + · · · + Rk,

where Rk is the resistance of the kth tract. If multiple fiber tracts connect two
regions, it forms a parallel circuit, where the total resistance is

1

R
= 1

R1
+ · · · + 1

Rk

. (2.3)

The total resistance of a series circuit is related to the arithmetic mean of tract
lengths. On the other hand, the total resistance (2.3) of a parallel circuit is
related to the harmonic mean. Any complex parallel circuits in an electrical
system can be simplified using a single wire with the equivalent resistance.
Hence, we can simplify whole brain fiber tracts into a smaller number of
equivalent tracts in the model. The reciprocal of the resistance is then taken
as the measure of connectivity. Smaller resistance corresponds to stronger
connectivity. Figure 2.4 shows examples of parallel circuits. If all the tracts
are 10 cm in length, the total resistance becomes 10, 5, and 2 as the number of
tracts increases to 1, 2, and 5. The corresponding connectivities between A and
B are 0.1, 0.2, and 0.5. Thus, if the tract lengths are all the same, the resistance-
based connectivity is proportional to tract counts. Figure 2.5 shows various
toy networks and the corresponding resistance matrices. The corresponding
resistance matrices are as follows:

⎛⎜⎜⎝
0 1 1 ∞
1 0 ∞ ∞
1 ∞ 0 ∞
∞ ∞ ∞ 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 1/2 1/2 ∞
1/2 0 ∞ ∞
1/2 ∞ 0 ∞
∞ ∞ ∞ 0

⎞⎟⎟⎠
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Figure 2.4 Multiple fiber tracts connecting the regions A and B are modeled as a
parallel circuit. The resistance in a wire is proportional to the length of the wire.
As more tracts connect the regions in parallel, the resistance decreases and the
strength of connection increases. In this example, we let the resistance of each
tract equal to the length of the tract. If all the tracts are 10 cm in length, the total
resistance becomes 10, 5, and 2 as the number of tracts increases to 1, 2, and 5.
The connectivity between A and B is defined as the reciprocal of resistance. The
corresponding connectivities are 0.1, 0.2, and 0.5.

Figure 2.5 Toy networks with different connectivity resistance. The numbers
between nodes are the length of tracts.

⎛⎜⎜⎝
0 1 1 ∞
1 0 2 ∞
1 2 0 ∞
∞ ∞ ∞ 0

⎞⎟⎟⎠
⎛⎜⎜⎝

0 1/2 1/2 ∞
1/2 0 1 ∞
1/2 1 0 ∞
∞ ∞ ∞ 0

⎞⎟⎟⎠ .

The resistance between indirectly connected nodes is ∞. The most redun-
dant network has the smallest resistance. The reciprocal of the resistance is
taken as the strength of connectivity.

The electronic circuit model can be used in constructing a simplified but
equivalent brain network. The two end points of tracts are identified. All the
parallel tracts between any two regions are identified and replaced with a
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single tract with the equivalent resistance. This process completely removes
all the parallel circuits. At the end, the simplified circuit forms a graph with
the resistances as the edge weights.

Consider a tract M consisting of n control points p1, · · · ,pn obtained
through tractography algorithms. Consider an inverse map ζ−1 that maps the
control point pj onto the unit interval as

ζ−1 : pj →
∑j

i=1 ‖pi − pi−1‖∑n
i=1 ‖pi − pi−1‖ = tj (2 ≤ j ≤ n), (2.4)

where ‖ ·‖ is the Euclidean distance. This is the ratio of the arc length from the
point p1 to pj , to p1 to pn. We let this ratio be tj . We assume ζ−1(p1) = 0.
The ordering of the control points is also required in obtaining smooth one-to-
one mapping. We parameterize the tract on a unit interval:

ζ : [0,1] →M.

Then the total length L(M) of the tract M is given by

L(M) =
∫ 1

0
dζ(t)

and discretely approximated as

L(M) =
n−1∑
i=1

‖ζ(ti+1)− ζ(ti)‖ =
n−1∑
i=1

‖pi+1 − pi‖.

The connectivity matrices are subsequently determined by computing the
resistance between parcellations (Figure 2.6-middle). We took the reciprocal
of the resistance between the nodes as entries of the connectivity matrix.
Smaller resistance corresponds to stronger connection. The method replaces
a collection of parallel circuits with a single equivalent circuit. This process
completely removes all the parallel circuits and simplifies complex parallel
circuits to a simple circuit. The simplified circuit naturally forms a 3D graph
with the resistances as the edge weights. Figure 2.7-middle shows the mean
connectivities using the graph representation.

Fractional anisotropy (FA) can be also used in constructing the connectivity
matrix. FA may provide additional structural information that the tractography
alone may not provide. Note that most parcellations are located in the gray
matter regions, where the fiber tracts starts and ends, so FA-values are expected
to be very low at the nodes. The mass center of each parcellation is taken as a
node of the network. The mean FA value at the node positions is 0.18±0.10. In
fact, at each node position, the two-sample t-statistic did not yield any group



2.3 Deterministic Connectivity 41

Figure 2.6 Top: mean connectivity matrices for first 32 nodes for normal controls
(left) and maltreated children (right) using tract counts (Chung et al., 2017b).
Middle: the electrical resistance based connectivity matrices. Bottom: resistance-
based mean connectivity matrices that incorporate FA-values.

differences at 0.05 significance. However, along the tracts, it is expected FA-
values are higher and this may influence the connectivity. Figure 2.8 shows an
example of how FA-values change along 108 tracts between the left superior
motor area (SMAG) to the right superior motor area (SMAD).
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Figure 2.7 Mean connectivity of normal controls and maltreated children (Chung
et al., 2017b). The color of nodes and edges correspond tract counts (top),
electrical resistance (middle), and electrical resistance with FA-values (bottom).
Strong connections are consistently shown in all three models.
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Figure 2.8 FA-values along 108 tracts between the left SMAG to the right SMAD
displayed for a subject. The tracts are reparameterized between 0 and 1 from the
left to right hemisphere. The red line is the average of FA-values of all the tracts.

We incorporate FA-values along the fiber tracts as follows. By identifying
voxels that tracts are passing through, we can linearly interpolate the FA-values
along the tracts. If the FA value is larger at a certain part of a tract, it is more
likely that the segment of the tract has been more stably estimated. Thus, the
resistance of a tract segment can be modeled as inversely proportional to the
FA value but proportional to the length of the segment dζ at point:

dR ∝ dζ

FA
.

Note that we are using the reciprocal of the resistance as a tract connectivity
metric C, i.e.,

C = 1

dR
= FA

dζ
.

So heuristically, the larger the value of FA, stronger the connectivity in the
tract segment. Subsequently, the total resistance R of the whole whole tract is
defined as

R =
∫ 1

0

1

FA(ζ(t))
dζ(t). (2.5)

If the tractography processing is properly done, it is not possible to have zero
FA-values along the obtained tracts so the integral (2.5) is well defined. The
integral (2.5) is discretized as

R =
n−1∑
i=1

‖ζ(ti+1)− ζ(ti)‖
FA(ζ(ti))

.
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We may fix the step size ‖ζ(ti+1)− ζ(ti)‖ at 0.1 mm. Thus,

R =
n−1∑
i=1

0.1

FA(ζ(ti))
.

This is the weighted version of the resistance that incorporates FA-values. The
connectivity matrices are then similarly determined by computing the recip-
rocal of the weighted resistance between parcellations (Figure 2.6-bottom).
Smaller resistance corresponds to stronger connection. The pattern of con-
nectivity matrices is almost identical to the connectivity without FA-values
although the scale and local variations differ slightly. This indicates the
robustness of the resistance-based connectivity metric.

2.3.2 Tract Counts vs. Tract Length–Based Connectivity

In the previous section, we presented various methods for constructing struc-
tural connectivity matrices. However, it is unclear how they are related and
if they will give consistent statistical results at the end. Suppose there are k

tracts between two parcellations. Suppose the tract lengths are all identical as
L. Then the tract count-based connectivity gives the connectivity strength k.
The length-based connectivity gives the connectivity strength k/L. Under the
ideal situation of the same tract length, the tract length-based connectivity is
proportional to tract count-based connectivity. For the incorporation of FA-
values to the connectivity, if we assume the identical FA-values along the
tract, we have FA · k/L as connectivity. All three methods are proportional to
each other. Thus, in the ideal situation of the same tract length and FA-values,
the final statistical analyses for three methods would be identical since most
statistical test procedures are scale invariant.

The difference arises in practice where the tract lengths are all different.
This is a difficult problem we can’t address theoretically. To begin to deal
with this issue, we checked the robustness of the tract length-based method
in relation to the tract count method. To determine the robustness of the
tract length-based metric, we calculated the relative error in comparison to
traditional tract count-based connectivity in the tract mislabeling problem.

Figure 2.9 shows a schematic of a possible tract mislabeling problem.
Assume k number of tracts are passing through between parcellations 2 and
3 (top). In the traditional connectivity metric, tract count is used as the
strength of connectivity. So the expected connectivity is CE = k. However,
m number of tracts might be mislabeled to pass through parcellations 1 and 3
(bottom). So the observed connectivity is given by CO = k − m. The relative
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Figure 2.9 Schematic showing a possible tract mislabeling problem. k number of
tracts are expected to pass through between parcellations 2 and 3 (top). However,
m number of tracts might be mislabled to pass through parcellations 1 and 3
(bottom).

error in the tract count-based connectivity is then (CE − CO)/CE = m/k.
Let us determine the relative error for the tract length-based connectivity
metric.

Suppose the ith tract has length Li . The average tract length between the
parcellations will be denoted as

L̄ = 1

k

k∑
i=1

Li .

The resistance of the ith tract is then given by

Ri = L̄+�Li .

where �Li = Li − L̄ measures the difference from the mean. Subsequently,
the expected total resistance is given by

1

RE

=
k∑

i=1

1

L̄+�Li

= 1

L̄

k∑
i=1

(
1 − �Li

L
+
(�Li

L̄

)2 + · · ·
)

. (2.6)
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Since
∑k

i=1 �Li = 0, the expected total resistance is approximately

1

RE

∼ k

L̄
+ 1

L̄

k∑
i=1

(�Li

L̄

)2
(2.7)

ignoring the cubic and other higher-order terms. Similarly, the observed
resistance for k −m tracts is given by

1

RO

=
k−m∑
i=1

1

L̄+�Li

∼ k −m

L̄
+ 1

L̄

k−m∑
i=1

(�Li

L̄

)2
. (2.8)

Hence the relative error of the new connectivity metric given by

1/RE − 1/RO

1/RE

∼ m+∑k
i=k−m+1

(
�Li/L̄

)2

k +∑k
i=1

(
�Li/L̄

)2
.

The terms
∑k

i=1

(
�Li/L̄

)2 and
∑k

i=k−m+1

(
�Li/L̄

)2 are sufficiently small
and the relative error is approximately m/k, which is the relative error in the
tract count-based connectivity. Thus, we expect the error variability in the tract
length-based connectivity to scale proportionally to that of the tract count-
based method. So most likely all the methods will perform similarly in testing
the connectivity differences at the edge level using the two-sample t-test since
the t-test is scale invariant.

2.4 Probabilistic Connectivity

2.4.1 Diffusion

There are various probabilistic and stochastic models for tracing fibers (Basser
and Pierpaoli, 1996; Hagmann et al., 2000; Batchelor et al., 2001; Behrens
et al., 2007). Tench et al. (2002) introduced a hybrid streamline-based tractog-
raphy where the direction of the principal eigenvector is modeled stochastically
to overcome the shortcomings of DTI. Koch et al. (2002) introduced a Monte
Carlo random walk simulation that uses a different transition probability than
our own. Their algorithm has a certain restrictions built in the random walk
so that it was only allowed to jump in a direction within 90 degrees from the
previous jump direction, which restricts the jump to a very small number of
voxels in the neighborhood. Furthermore, they considered the voxels with the
FA-values (Basser and Pierpaoli, 1996) and sum of the eigenvectors bigger
than certain thresholds. Then based on the Monte Carlo simulation of 4,000
random walks, they computed the probabilistic connectivity measure.
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Hagmann et al. (2000) used a hybrid approach combining the Monte Carlo
random walk simulation with information about the white fiber track curvature
function in the corpus callosum. Then assuming bivariate normal distribution
of the random walk hitting a vertical plane at some distance apart, they
estimated the covariance matrix and performed a statistical hypothesis testing
of the homogeneity of covariance matrix in the different regions of the corpus
callosum.

Batchelor et al. (2001) solved an anisotropic heat equation where the
diffusion coefficients of the heat equation are the diffusion coefficients of DTI.
To get the probabilistic measure of the connectivity, the diffusion equation is
solved with the initial condition where every voxel is zero except some seed
region S where it is given the value 1:

∂f

∂t
(p,t) = ∇ ·D∇f (p,t) (2.9)

f (p,t = 0) = 1 at p ∈ S and 0 elsewhere. (2.10)

The value 1 is then diffused though the white matter, and the numerical values
between 0 and 1 are taken as a probability of white matter connectivity.
Mathematically, it is equivalent as the Monte Carlo random walk simula-
tion without restriction. The boundary condition can be also enforced. The
boundary condition D∇f · n = 0 forces the boundary to be insulated, and
no heat diffuses out of the boundary. The Crank–Nicholson scheme with
Galerkin finite element discretization in space and finite difference in time was
used to solve (2.10) (Babuška et al., 2004). Instead of solving the diffusion
equation (2.10) directly, we can perform an equivalent iterative anisotropic
kernel smoothing scheme (Chung et al., 2003b; Yoruk et al., 2005). Recently,
fast marching-based tratography has been popularized (Parker et al., 2002;
Staempfli et al., 2006; Jbabdi et al., 2008). Unlike probabilistic tractography,
the fast marching methods do not present a computational burden.

The white fiber tracking is prone to cumulative acquisition noise and partial
volume effect so the estimated white fiber tracks might possibly be erroneous
in some cases (Basser et al., 2000; Tench et al., 2002). So it is crucial to
develop a connectivity metric that is robust under the effect of acquisition noise
and partial voluming. Such a robust seed-based probabilistic connectivity can
be used in voxel-based morphometry (VBM) type of voxelwise inference on
connectivity strength (Ashburner and Friston, 2000). In the classical VBM, the
gray and white matter densities are computed and used for inference on tissue
concentration at each voxel. In DTI, instead of the tissue densities, we can use
the probabilistic connectivity that measures the strength of how two regions of
the brain are connected.
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2.4.2 Random Walk

In this section, a probabilistic connectivity based on the transition probability
of diffusion is presented (Chung et al., 2003b; Yoruk et al., 2005). Let Pt (p,q)

be the transition probability density of a particle going from p to q under
diffusion in time t . This is the conditional probability density of the particle
hitting q at time t when the particle is at p at time 0. The transition probability
of going from point p to another region of interest Q is given by

Pt(p,Q) =
∫

Q

Pt(p,x) dx,

where the integral is taken over every another voxel x.
Note that

Pt(p,Rn) =
∫
Rn

Pt (p,x) dx = 1.

The region Q can be a collection of voxels, and it may possibly be consisting
of a single voxel p. So we will interchangeably use Pt(p,q) as either transition
probability density or transition probability if there is no ambiguity. The
transition probability is the most natural probabilistic measure associated with
diffusion. The connectivity measures based on the transition probability are
naturally intuitive.

If the diffusion coefficient D is constant in Rn, it can be shown that

Pt (p,q) = Kt(q − p) = 1

(4πt)n/2(det D)1/2
exp

(
− x�D−1x

4t

)
,

the Gaussian kernel (Stevens, 1995). Since D is varying over the brain regions,
it is only valid when p and q are a short distance apart and we may take D(x)

to be constant in the neighborhood of voxel position x.
The transition probability of a particle going from p to any arbitrary q is

the total sum of the probabilities of going from p to q through all possible
intermediate points x ∈ Rn. Therefore,

Pt (p,q) =
∫
Rn

Ps(p,x)Pt−s(x,q) dx (2.11)

for any 0 < s < t . It is traditionally called the Chapman–Kolmogorov equation
(Paul and Baschnagel, 1999). The equation still hold in the case when s is
either 0 or t , since in that case one of the probability in the integral becomes
the Dirac-delta function and, in turn, the integral collapses to the probability
on the left side.
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Note that the probability P(p,x) decreases exponentially as the distance
between p and x increases, so we approximate (2.11) in a small region Bp

centered around p. For any point x ∈ Bp,

Ps(p,x) = Ks(p − x).

Then for any arbitrary points p and q,

Pt (p,q) =
∫
Bp

Ks(p − x)Pt−s(x,q) dx∫
Bp

Ks(p − x) dx
. (2.12)

When s → 0, the approximation becomes exact since all the weights of the
kernel will be in Bp. The denominator is a correction term for compensating
the underestimation in the numerator. Note that this is the integral version of
Gaussian kernel smoothing of data Pt−s(x,q) for given q. Comparing with the
formulation of Gaussian kernel smoothing, we rewrite (2.12) as

Pt(p,q) = K̃s ∗ Pt−s(p,q), (2.13)

where the convolution is with respect to the first argument p and K̃s is the
truncated Gaussian kernel normalized by

∫
Bp

Ks(p − x) dx. Note that when
s → 0, the equation becomes exact.

The kernel smoothing formulation (2.13) is mainly valid when s is small.
For large s, we borrow the iterative kernel smoothing framework (Chung et al.,
2005b). We discretize t into N equal time intervals t = N�t and let s = �t .
Then (2.13) can be written as

Fj (q) = K̃�t ∗ Fj−1(q), (2.14)

where Fj (q) = Pj�t (p,q) for a given p and the initial condition

F0(q) = P0(p,q) = δ(p − q).

The reason we get the Dirac-delta function is that the transition probability of
a particle at p hitting any point q instantaneously is zero except when q = p.

One important property of our iterative procedure is the conservation of the
total probability at each iteration. From (2.14), we have∫

Rn

Fj+1(x) dx =
∫

Bx

K̃�t (x − y) dy

∫
Rn

Fj (x) dx

=
∫
Rn

Fj (x) dx.

Since

F1(q) = K̃�t ∗ δ(q) = K̃�t (q),
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F1 is a probability function and it will integrate to one so∫
Rn

Fj (x) dx = 1.

Hence Fj is also a probability function at each iteration. As the number of
iteration increases, the total probability will be dispersed over all regions of
white matter from the seed.

If there are one million voxels within the brain, on average, each voxel
will have the connection probability of one over a million, which is extremely
small. So even though the connectivity measure based on the transition
probability is a mathematically sound one, it may not be a good one for
visualization. So what we need is the log scale of the transition probability, i.e.
ρ = ln Pt (p,q), and we propose this as a probabilistic metric for measuring
the strength of the anatomical connectivity. We will refer this metric as the
log-transition probability. For simplicity, we may let p = 0 and let ρ(q) =
ln Pt(0,q) for fixed t . If the diffusion coefficient is constant, the log-transition
probability can be represented in a simple formula

ρ(x) = −x�D−1x −
n∑

i=1

ln λi − n

2
log(4πt),

where λi are the eigenvalues of D. When D = I ,

ρ(x) = −x�x − n

2
log(4πt).

For a region of interest Q, the log-transition probability of reaching Q

would be

ρ(q) = ln
∫

Q

Pt(0,x) dx.

2.5 Parcellation-Free Brain Network

In constructing connectivity matrices, brain parcellations are often used.
However, there is no gold standard for parcellation, so the identification
of node depends on the choice of parcellation. Depending on the scale of
parcellation and the position of the parcellation, the topological properties
of the graph varies considerably up to 95% (Fornito et al., 2010; Zalesky
et al., 2010). Figure 2.10 illustrates how network changes over the use of
different parcellations. A reasonable question to ask is whether it is possible
to construct a connectivity matrix without the usual parcellation scheme. In
this section, we present a parcellation-free, scalable, and iterative connectivity
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Figure 2.10 If different parcellations are used, we may end up with different
networks. Four nodes are partitioned by three regions (top) resulting in a graph
with with one edge and two nodes. Four nodes are partitioned by two regions
(bottom) resulting in a graph with one cycle, three edges, and three nodes.

network construction technique called the ε-neighbor construction that avoids
parcellation (Chung et al., 2011a,c; Lee et al., 2018b).

The ε-neighbor construction is motivated by the Rips complex of point
cloud data (Ghrist, 2008), which is used to characterize the topology of the
point cloud data. The Rips complex is a graph constructed by connecting
two data points if they are within specific distance. The problem of the Rips
complex is that given n data points, it exactly produce a graph with p nodes so
the resulting graph becomes very dense when p becomes large. Unlike the Rips
complex, the ε-neighbor method does not use every data point in constructing a
graph, so it significantly reduces the complexity of the resulting graph. Further,
while the point cloud data does not have any hidden topological constraint, the
two end points of white matter fibers are connected so we are actually dealing
with paired point cloud data. So the ε-neighbor construction is different from
building the Rips complex while offering substantial computational advantage.

2.5.1 Epsilon Neighbor Construction

A graph G consists of a vertex set V and an edge set E, i.e., G = {V,E}. A
point p is the ε-neighbor of G if the shortest distance between p and some
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point q in V is smaller than given ε. Then we identify the point p and q as the
same point.

Definition 2.1 The distance d(p,G) of a point p to the graph G is the shortest
distance between p and points in V , i.e.,

d(p,G) = min
q∈V

‖p − q‖.

We say point p is the ε-neighbor of graph G if d(p,G) ≤ ε.

With these definitions, we construct a connectivity graph iteratively. In con-
structing the brain network, only two end points of the tract were considered
since all other points along the tract are connected to these two points. We
now construct the graph in an iterative fashion by adding one tract at a time
to an existing graph. Initially graph G1 consists of a single tract consisting
of two end points e11 and e12, and an edge e11e12 connecting the end points.
Consider a tract with two end points. The algorithm then starts with the graph
G1 = {V1,E1}, where

V1 = {e11,e12},E1 = {e11e12}.

In the next iteration, we consider how to add the second tract to the existing
graph G1 and obtain a new graph G2. Consider the second tract with two end
points e21,e22 to the existing graph G1. There are six possibilities in adding
the two end points to G1 depending if the end points are the ε-neighbors of G1

(Figure 2.11) (Lee et al., 2018b):

Figure 2.11 Six possibilities of the ε-neighbor construction: (a) e21 and e22 are
all ε-neighbors of G1. (b) Only e21 is an ε-neighbor of G1. (c) Only e22 is an
ε-neighbor of G1. (d) Neither e21 nor e22 is an ε-neighbor of G1. (e) e31 is
an ε-neighbor of e21 in G2 and e32 is an ε-neighbor of e12 in G2. (f) e21 and e22

are ε-neighbors of e11 or e12 in G1. This case is considered to be noise, because
it resulted in a circular tract. The figure was generated by Min-Hee Lee of Yonsei
University (Lee et al., 2018b).
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1. e21 and e22 are all ε-neighbors of G1. Since the end points e21 and e22 are
close to the already existing graph G1, we do not change the vertex set,
i.e., V2 = V1. Now check if the edge e21e22 is in the edge set E1 and add
them if it is not found in the edge set. In this case, we have

E2 = E1 ∪ {e21e22}.
2. Only e21 is an ε-neighbor. We only to add e22 to V1 and let

V2 = V1 ∪ {e21}, E2 = E1 ∪ {e21e22}.
3. Only e22 is an ε-neighbor. We add e21 to V1 and let

V2 = V1 ∪ {e22}, E2 = E1 ∪ {e21e22}.
4. e21 and e22 are not ε-neighbors. We add the end points to the vertex set

and add the edge to the edge set. In this case, e21e22 forms a disjoint edge
and we have

V2 = V1 ∪ {e21,e22}, E2 = E1 ∪ {e21e22}.
Two other additional cases are explained in Figure 2.11 (Lee et al., 2018b).

The procedure is iteratively performed to every tract until we exhaust all the
tracts. The MATLAB code for the ε-neighbor construction is provided.5

The constructed 3D network’s graph can be uniquely parameterized by
transforming the graph into adjacent matrices (Figure 2.12). The adjacency
matrix A = (aij ) of a graph is constructed on the fly at each iteration by
checking if we are adding a new edge to the existing edge set. If nodes i and
j are connected, we let aij = 1 and aij = 0 otherwise. The diagonal terms
aii are assumed to be zero. The adjacency matrix is symmetric. The adjacency
matrix of a graph can be constructed on the fly at each iteration by checking
if we are adding a new edge to the existing edge set. The adjacency matrix
contains sufficient information to construct a graph. Statistical analysis can
be done on the ensemble of adjacency matrices and we can determine if two
groups significantly differ in connectivity.

Using the ε-neighbor construction used in building parcellation-free brain
networks (Chung et al., 2011c), it is possible to build a filtration similar to
the Rips filtration (Zomorodian and Carlsson, 2005; Edelsbrunner and Harer,
2008; Ghrist, 2008; Horak et al., 2009). Similar to the Rips filtration, the ε-
neighbor filtration is a sequence of networks obtained from the ε-neighbor
method. At the kth iteration, we have a network Gk . As the number of iteration
increases, we are generating a sequence of larger networks

G1 ⊂ G2 ⊂ G3 ⊂ · · · ,
5 http://brainimaging.waisman.wisc.edu/∼chung/graph/
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Figure 2.12 (a) White matter fibers are obtained from a streamline algorithm
(Chung et al., 2017b). The end points are colored red. The surface is the isosurface
of the FA-map, so some tracts are expected to be outside of the surface. The ε-
neighbor method will use the proximity of the ends points in constructing the
network graph. (b) The ε-neighbor graph construction on white matter fibers with
20, 10, and 6 mm radius. (c) Corresponding adjacency matrices.
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Figure 2.13 (a) The end points of tracts are identified. Tracts whose end points
are within the ball of ε radius are connected. The fiber tracts and the balls can be
viewed as a complex electronic circuit. (b) All the parallel circuits present in the
system are shown. Each parallel circuit is replaced by a single tract with equivalent
resistance. (c) The simplified circuit then forms a graph where the edge weights
are given by the resistance.

which we call the ε-neighbor filtration, which is much easier to interpret since
it shows the actual process of network construction. It is also possible to
combine the electrical circuit model with the epsilon neighbor construction
(Figure 2.13).

2.6 Structural Covariates

Traditionally structural brain networks are constructed using DTI. However,
it is also possible to construct structural brain connectivity using T1-weighted
MRI without DTI. Such an approach is usually called the structural covariate
approach. It is originally based on the idea of correlating local morpholog-
ical features obtained from MRI in constructing a structural brain network
(Worsley et al., 2005a; Lerch et al., 2006; Chung et al., 2010c; Kim et al.,



56 Brain Network Nodes and Edges

2011, 2012a). The previous works mainly focused on the cortico–cortical
connectivity using cortical thickness, which is defined along the gray matter.
Using the cross-correlation of cortical thickness, we then determine when
the anatomy of one region changes, if there are corresponding morpholog-
ical changes in other regions (Worsley et al., 2005a,b; Lerch et al., 2006).
Cortical thickness was mainly chosen because it reflects the size, density, and
arrangement of neurons (He et al., 2007). However, cortical thickness cannot
be used in directly characterizing the connectivity within the white matter.
To overcome the limitation of the previous studies, it is possible to correlate
the Jacobian determinant obtained from the tensor-based morphometry (TBM)
over different white matter voxels in determining association within the white
matter as well (Chung et al., 2010c; Kim et al., 2011, 2012a).

2.6.1 Jacobian Determinants

TBM has been often used in characterizing tissue volume difference between
populations at the voxel level (Chung et al., 2001b; Thompson et al., 2001). So
far, most TBM studies have performed massive univariate tests in every voxel
mainly using the Jacobian determinant. Such massive univariate approaches
are ill suited for addressing more complex hypotheses about brain net-
work connectivity. Most of structural brain network models involve DTIs in
establishing edges in connectivity graphs (Hagmann et al., 2007; Bullmore
and Sporns, 2009; Li et al., 2009; Zalesky and Fornito, 2009). Instead of
using cortical thickness for constructing structural connectivity maps (Worsley
et al., 2005a,b; Lerch et al., 2006; He et al., 2007), we can use voxelwise
morphometric measures such as tissue density or the Jacobian determinant in
building whole brain 3D connectivity maps. The main innovation is then the
proposed framework, which does not utilize DTI but is still able to construct
the population specific connectivity maps only using T1-weighted MRI.

TBM usually produces the displacement u = (u1,u2,u3)
� of warping a

template image to an individual subject image. With respect to the spatial
coordinates x = (x1,x2,x3)

�, the displacement gradient tensor of u is given
by (Ashburner et al., 2000; Chung et al., 2001b)

∇u = ∂u

∂x�
=

⎛⎜⎜⎜⎜⎜⎜⎝

∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3
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The nine components from scalar fields u measure the second-order morpho-
logical variabilities. The Jacobian matrix J = (Jij (x)) is given by

J (x) = I +∇u,

where I denotes an identity matrix. In brain imaging, a voxel can be considered
as the unit cube; therefore, ∂J

∂t
(x) essentially measures the change in the

volume of voxel x after the deformation. Expanding the Jacobian J , we get

J = det(I +∇u)

= 1 + tr(∇u)+ detr2(∇u)+ det(∇u),

where detr2(∇u) is the sum of 2 × 2 principal minors of ∇U . For relatively
small displacements, which is the case in brain development, we may neglect
the higher-order terms and the Jacobian determinant is linearly approximated
using the volume dilatation (Chung et al., 2001b):

det J ≈ 1 + tr(∇u) = 1 + ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
. (2.15)

In elastic theory, the volume dilatation is defined as (Marsden and Hughes,
1983)

∇ · u = ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
.

When∇·u(x) = 0 in the neighborhood of x, the deformation is incompressible
so there is no volume change. However, if nabla · U(x) > 0, and the volume
increases while ∇ · u(x) < 0, the volume decreases after the deformation.

2.6.2 Correlating Jacobian Determinants

Seed-based connectivity. We can correlate the Jacobian determinants over the
whole brain by fixing one voxel. Figure 2.14 displays the pipeline for the
popular seed-based connectivity analysis. We illustrate the method with MRI
of postinstitutionalized (PI) children, where a seed voxel is identified at the
genu of the corpus callosum. The connectivity maps were computed for normal
controls and PI. The regions of high connectivity are shown in darker red while
the regions of low connectivity are shown in lighter red. Since the seed is taken
at the genu, white matter regions near the genu should have higher connectivity.
The connectivity maps look very similar to probabilistic connectivity maps
often obtained in DTI. One can actually trace the gradient of connectivity maps
by solving the streamline equation and obtain tracts that should behave like
white matter fiber tracts.
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Figure 2.14 Seed-based connectivity. (a) Jacobian determinant map from a sub-
ject to a template. (b) Seed voxel is chosen at the genu of the corpus callosum. (c)
Connectivity maps computed from the seed for postinstitutionalized (PI) children
and controls. (d) Z-statistic showing the connectivity difference. (e) Region of
significant connectivity difference thresholded at p = 0.01.

From the connectivity maps, Z-statistic is constructed by the Fisher trans-
form. The regions of the most significant connectivity difference are localized
by thresholding the p-values of the Z-statistic (PI - controls) at p = 0.01
and overlaid on the white matter boundary. The affected regions are white
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matter regions connecting the anterior prefrontal cortex. We mainly observe
the highly clustered regions of positive correlation difference only. Increase in
the white matter volume in the genu corresponds to increase of white matter
in the anterior prefrontal cortex, indicating the abnormal corpus callosum
connectivity in PI. However, this does not imply that PI has more white matter
volume in these regions.

Cross-correlation. Instead of seed-based connectivity, which fixes one
node, we can compute the cross-correlation ρ of the Jacobian determinants
between different voxels as a way to establish structural connectivity. Since
correlation is invariant under translation, the constant 1 in (2.15) does not
contribute to the cross-correlation computation. Therefore, if K = (Kij ) is
another Jacobian matrix at a different voxel position, the cross-correlation ρ

between the Jacobian determinants is approximated as

ρ(trJ,trK) =
∑
i,j

ρ(Jii,Kjj ).

By fixing one region to be a seed, we can construct a correlation map that looks
similar to seed-based probabilistic connectivity maps in DTI (Batchelor et al.,
2001; Koch et al., 2002). The resulting correlation map measures the strength
of connection from the seed to other white matter regions. Statistical analysis
on connectivity map difference can be done using the Fisher transform. Given
two connectivity maps ρ1 and ρ2, we can construct the Z-statistic using the
Fisher transform

Z = c(tanh−1 ρ1 − tanh−1 ρ2)

with some normalizing constant c.

2.6.3 Correlating Tensors via RV-Coefficients

The problem of using the Jacobian determinant in constructing the connectivity
map is that it summarizes a 3×3 matrix into a single scalar value so we are not
utilizing the full multivariate information. We need a more general approach
in correlating matrices using a multivariate extension of correlation. Instead
of correlating Jacobian determinants, we can correlate Riemmanian metric
tensors induced by the Jacobian matrix (Chung et al., 2008b). The Jacobian
matrix J induces the Riemannian metric tensor

g = (gij ) = J�J .

Then we can use the induced metric tensor instead of the Jacobian determinant
in the log-Euclidean framework (Arsigny et al., 2005; Lepore et al., 2006).
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Note that the volume element
√

det g is identical to the Jacobian determinant
det J .

Since the metric tensor g is symmetric and positive definite, we can use
the RV-coefficient (Robert and Escoufier, 1976; Shinkareva et al., 2006; Abdi,
2007).

Definition 2.2 The RV-coefficient ρ between two positive definite symmetric
matrices g and h is defined as

ρ(g,h) = tr(gh)√
tr(g2) tr(h2)

.

The trace operator tr is equivalent to the vector product if we vectorize the
entries of matrices and tr(g2) is the square of the Frobenius norm of g. If h =
K�K , the numerator represents a generalized covariance between J and K

while the denominator normalized the numerator to have values between 0 and
1. Unfortunately, the statistical distribution of the RV-coefficient is unknown
analytically but the exact permutation distribution can be obtained so that the
exact mean and variance can be computed (Kazi-Aoual et al., 1995; Abdi,
2007). We define a sphericity index of tensor g to be

βg = (trg)2

tr(g2)
.

Note that the sphericity index was mainly used in estimating the degrees of
freedom for multivariate tests (Worsley et al., 1995). Then the mean of RV-
coefficient between tensors g and h is

E(ρ) = βgβh

n− 1
,

where n is the dimension of matrices. The mean is taken over all possible
permutations between g and h. The computation for the variance of RV-
coefficient is more complicated.

V(ρ) = 2(n− 1 − βg)(n− 1 − βh)

(n+ 1)(n− 1)2(n− 2)

[
1 + n− 3

2n(n− 1)
γ
]

for some γ . For n = 3, we do not need to know the value of γ since the term
vanishes in the expression.

The Z statistic for testing the significance of correlation map difference
between two RV-coefficients ρ1 and ρ2 is then given by

Z = ρ1 − Eρ1 − (ρ2 − Eρ2)√
Vρ1 + Vρ2

.

which follows the standard normal distribution.
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Graph Theory

Recent developments in graph theoretic analysis of complex networks have
led to deeper understanding of brain networks. Many complex networks
show similar macroscopic behaviors despite differences in the microscopic
details (Bullmore and Sporns, 2009). Probably the two most often observed
characteristics of complex networks are scale-free and small-world properties
(Song et al., 2005). In this chapter, we will explore whether brain networks
follow scale-free and small-worldness among other graph theory properties.

3.1 Trees and Graphs

Many objects and data can be represented as networks. Unfortunately, net-
works can be very complex when the number of nodes increases. Trees, which
can be viewed as the backbone of the networks, are often used as a simpler
representation of the networks.

Definition 3.1 An (undirected) graph is an ordered pair G = (V ,E) with a
node (vertex) set V and edge (link) set E connecting the nodes. The vertices
belonging to an edge are called the ends or end vertices of the edge. A vertex
may exist in a graph and not belong to an edge. The size of the graph is usually
determined by the number of vertices |V | and the number of edges |E|.

A (weighted) graph with p nodes is often represented as a connectivity
matrix C = (cij ) of size p × p, where cij are usually referred to as edge
weights. A binary graph is a graph with binary edge weights, i.e., (0,1).
An undirected graph yields a symmetric connectivity matrix. For instance,
normalized and scaled data matrix X, Y of size n × p, corr(X,X) gives
an undirected weighted graph while corr(X,Y ) gives a directed weighted
graph.

61
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Definition 3.2 A tree is an undirected graph, in which any two nodes are
connected by exactly one path. Nodes with only one edge in a tree are referred
to as leaves or leaf nodes (Stam et al., 2014). The number of leaves is the leaf
number. A binary tree is a tree, in which each node has at most two connecting
nodes called left or right children. A forest is a disjoint union of trees.

In brain imaging, we often deal with brain cortical mesh vertices. To
distinguish such vertices from the vertices of graphs, we will simply use the
term nodes. Instead of edges, the term links is also used. The term tree was
coined in 1857 by the British mathematician Arthur Cayley. Node degrees are
possibly the most often used feature in characterizing the topology of a tree. In
a tree, there is only one path connecting any two nodes. Thus, the average path
length between all node pairs is easy to compute.

Theorem 3.1 For a tree, we have |V |−|E| = 1. For a forest, the total number
of trees is given by |V | − |E|.
The proof is straightforward enumeration of edges with respect to the nodes.

Definition 3.3 A rooted tree is a tree, in which one node is designated the root.
In a rooted tree, the parent of a node is the node connected to it on the path to
the root. Given node x, a child of x is a node of which x is the parent. A sibling
to node x is any other node on the tree that has the same parent as x.

Definition 3.4 In a rooted tree, the ancestors of a node are the nodes in the
path from the node to the root, excluding the node itself and including the root.
The descendants of node x are those nodes that have x as an ancestor.

Definition 3.5 The height of a node in a rooted tree is the length of the longest
downward path from a leaf from that vertex. The depth of a node is the length
of the path to its root.

We can show that every node except the root has a unique parent. The root
has depth zero, leaves have height zero.

3.2 Minimum Spanning Trees

The trees are mainly used as a simpler representation of more complex graphs.
The computation of graph theory features for trees is substantially easier that
that of graphs. Among all trees, minimum spanning trees (MST) are most often
used in practice.
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Definition 3.6 A spanning tree of a graph G is a tree whose node set is
identical to the node set of G. The minimum spanning tree (MST) is a spanning
tree whose sum of edge weights is the smallest.

Theorem 3.2 If all the edge weights are unique in a graph, there exists one
unique MST.

Proof. We prove by contradiction. Suppose there are two MSTs M1 = (V ,E1)

and M2 = (V ,E2). Since E1 �= E2, there are edges that belongs to one but
not both. Among such edges, let e1 be the one with the least weight. Without
loss of generality, assume e1 ∈ E1. Adding e1 to M2 will create a cycle C.
Since M1 has no cycle, C must have an edge e2 not in M1, i.e., e2 ∈ E2.
Since e1 is the least edge weight among all the edges that belong to one
but not both, the edge weight of e1 is strictly smaller than the weight of e2.
Replacing e2 with e1 will yield a new spanning tree with weights less than
that of M2, which is a contradiction. Thus, there must be only one unique
MST. �

MST is often constructed using Kruskal’s algorithm (Lee et al., 2012).
Kruskal’s algorithm is a greedy algorithm with run time O(|E| log |E|) =
O(|E| log |V |). Note |E| is bounded by |V |(|V |−1)/2. The run time is equiv-
alent to the run time of sorting the edge weights, which is also O(|E| log |E|).
The algorithm starts with an edge with the smallest weight. Then add an
edge with the next smallest weight. This sequential process continues while
avoiding a loop and generates a spanning tree with the smallest total edge
weights (Figure 3.1). Thus, the edge weights in MST correspond to the order,
in which the edges are added in the construction of MST. It is known that the
single linkage hierarchical clustering is related to Kruskal’s algorithm of MST
(Gower and Ross, 1969).

Consider two graphs C1 and C2 shown in Figure 3.1. In Matlab, the edge
weights can be encoded as weighted adjacency matrices

C1= [0 0.2 0.7 0
0.2 0 0.5 0.7
0.7 0.5 0 0.5
0 0.7 0.5 0]

C2= [0 0.2 0 0
0.2 0 0.5 0.4
0.7 0.5 0 0.7
0 0 0.4 0]
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Figure 3.1 MST construction using Kruskal’s algorithm. C1: The edge weights of
MST are 0.2, 0.5, and 0.5. Even though we have identical edge weights of 0.5, we
can numerically still have a unique MST by putting infinitesimally small weight
ε, which results in C′

1. C2: The edge weights of MST are 0.2, 0.4, and 0.7.

The diagonals are assigned value zero. The minimum spanning tree is obtained
using graphminspantree.m, which inputs a sparse connectivity matrix.

C1=sparse(C1)
C2=sparse(C2)
[treeC1,pred]=graphminspantree(C1)
[treeC2,pred]=graphminspantree(C2)

treeC1 =
(2,1) 0.2000
(3,2) 0.5000
(4,3) 0.5000

treeC2 =
(2,1) 0.2000
(3,2) 0.5000
(4,3) 0.4000

By connecting all the nonzero entries in the output treeC1 and treeC2,
which are given as sparse matrices, we obtain MST.
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Figure 3.2 MST of the brain networks of (a) attention-deficit hyperactivity
disorder, (b) autism spectrum disorder, and (c) pediatric control subjects. The
number of nodes are 1,056 in all networks. The color represents the 97 regions of
interest based on the predefined anatomical parcellations. Figure was generated
by Hyekyoung Lee of Seoul National University (Lee et al., 2012).

When some edges have equal weight as shown in Figure 3.1, we may not
have a unique MST. Thus, there are at most q! possible MSTs. Given a binary
graph with p nodes, any spanning tree is an MST. Given a weighted graph with
q identical edge weights, we can assign infinitesimally small weights ε, 2ε,

. . . ,qε to the identical edge weights. This results in a graph with unique edge
weights and there exists a single MST. There are at most q! ways to assign
infinitesimally weights to q edges. For a complete graph with p nodes, the
total number of spanning tree is pp−2. For an arbitrary binary graph, the total
number can be calculated in polynomial time as the determinant of a matrix
from Kirchhoff’s theorem (Chaiken and Kleitman, 1978).

Theorem 3.3 Suppose ρ1, . . . ,ρp−1 are the ordered edge weights of the MST
of a graph G. If ρ′1, . . . ,ρ

′
p−1 are the ordered edge weights of any other

spanning tree of G. Then we have

ρj ≤ ρ′j

for all j .

Theorem 3.3 shows the ordered edge weights of MST are extremely stable
relative to any ordered edge weights of a spanning tree, and thus they can be
used as a stable multivariate feature for quantifying graphs (see Figure 3.2).

3.3 Node Degree

Probably the most important network complexity measure is node degree.
Many other graph theory measures are related to node degree (Bullmore and
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Figure 3.3 The node size and color correspond to the mean degree of normal
controls (a) and maltreated children (b) (Chung et al., 2017b). The edges are the
average of the mean degrees of the two nodes thresholded at 0.5. (c) The two-
sample t-statistic of the degree differences (controls – maltreated). (d) t-statistic
of age effect while accounting for sex and group variables.

Sporns, 2009). The degree k of a node is the number of edges connected
to it. It measures the local complexity of network at the node (Figure 3.3).
Once we have the adjacency matrix of a network, the node degree can be
computed easily by summing up the corresponding rows or columns in the
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adjacency matrix. The average node degree is simply given in terms of |E|
and |V |.
Theorem 3.4 For a undirected network, the average degree Ek is

Ek = 2|E|
|V | ,

where |V | is the total number of nodes and |E| is the total number of edges in
the graph.

Proof. The total number of the node degree is 2|E|. Thus, the average node
degree is 2|E|/|V |. �

3.3.1 Scale-Free Networks

The degree distribution P(k), probability distribution of the number of edges k

in each node, does not have heavy tails. The usual two-sample t-tests will not
work in the tail regions since the variance is too large due to small sample
size. Inference on tail regions requires extreme value theory, which deals
with modeling extreme events and has seen applications in environmental
studies (Smith, 1989) and insurance (Embrechts et al., 1999). One main
tool in extreme value theory is the use of generalized Pareto distribution in
approximating the tail distributions at high thresholds. A standard technique is
to estimate tail regions with parametric models and perform inferences on the
parameters of the model fit. For low degrees, since the sample size is usually
large, a two-sample t-test is sufficient.

The degree distribution P(k) can be represented by a power law with a
degree exponent γ usually in the range 2 < γ < 3 for diverse networks (Song
et al., 2005; Bullmore and Sporns, 2009):

Pp(k) ∼ k−γ .

Such networks exhibit gradual decay of tail regions (heavy tail) and are said
to be scale-free. In a scale-free network, a few hub nodes hold together many
nodes, while in a random network, there are no highly connected hub nodes.
The smaller the value of γ , the more important the contribution of the hubs in
the network.

Previous studies have shown that the human brain network is not scale-free
(Hagmann et al., 2008; Gong et al., 2009; Zalesky et al., 2010). Hagmann et al.
(2008) reported that degree decayed exponentially, i.e.,

Pe(k) ∼ e−λk,
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where λ is the rate of decay (Fornito et al., 2016). The smaller the value of λ,
the more important the contribution of the hubs in the network.

Gong et al. (2009) and Zalesky et al. (2010) found the degree decayed in a
heavy-tailed manner following an exponentially truncated power law

Petp(k) ∼ k−γ e−λk,

where 1/λ is the cutoff degree at which the power law transitions to an
exponential decay (Fornito et al., 2016). This is a more complicated model
than the previous two models.

The estimated best model fit can be further used to compare the model fits
among the three models. However, existing literature on graph theory features
mainly deal with the issue of determining if the brain network follows one of
the aforementioned laws (Hagmann et al., 2008; Gong et al., 2009; Zalesky
et al., 2010; Fornito et al., 2016). However, such model fit was not often used
for actual group-level statistical analysis.

3.3.2 Estimating Degree Distributions

Directly estimating the parameters from the empirical distribution is challeng-
ing due to small sample size in the tail region. This is probably one of the
reasons we have conflicting studies. To avoid the issue of sparse sampling in
the tail region, the parameters are often estimated from cumulative distribution
functions (CDF) that accumulate the probability from low to high degrees
and reduce the effect of noise in the tail region. To increase the sample size
further in the tail region, we combine all the degrees across the subjects. For
the exponentially truncated power law, for instance, the two parameters γ,λ

are then estimated by minimizing the sum of squared errors (SSE) using the
L2-norm between theoretical CDF Fetp and empirical CDF F̂etp:

(γ̂ ,̂λ) = arg min
γ≥0,λ≥0

∫ ∞

0

∣∣Fetp(k)− F̂etp(k)
∣∣2
2 dk.

We propose a two-step procedure for fitting node degree distribution. The
underlying assumption of the two-step procedure is that each subject follows
the same degree distribution law but with different parameters. In the first step,
we need to determine which law the degree distribution follows at the group
level. This is done by pooling every subject to increase the robustness of the
fit. In the second step, we determine subject-specific parameters.

Step 1. This is a group-level model fit. Figure 3.4(a) shows the degree
distributions of the combined subjects in a group (Chung et al., 2017b). To
determine if the degree distribution follows one of the three laws, we combine
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Figure 3.4 (a) Degree distributions of all the subjects combined in each group
(Chung et al., 2017b). (b) The cumulative distribution functions (CDF) of all the
subjects in each group. (c) Three parametric model fit on the CDF of the combined
54 subjects. (d) The exponential decay model is fitted in each group. The estimated
parameters are significantly different (p-value < 0.02).

all the degrees across subjects in the group. Since high-degree hub nodes
are very rare, combining the node degrees across all subjects increases the
robustness of the fit. This results in much more robust estimation of degree
distribution. At the group-level model fit, this is possible.

Step 2. This is the subject-level model fit. Once we determine that the group
follows a specific power law, we fit the same model for each subject separately.

3.3.3 Hub Nodes

Hubs or hub nodes are defined as nodes with a high degree of connections
(Fornito et al., 2016). Table 3.1 shows the list of the 13 most connected nodes
in a DTI study of maltreated children versus normal controls. The numbers



70 Graph Theory

Table 3.1. Thirteen most connected hub regions obtained from a
DTI study comparing normal controls and maltreated children
(Chung et al., 2017b). AAL regions are sorted in the descending
order of the node degree. The controls have more connections
without an exception compared to maltreated children.

Label Parcellation name Combined Controls Maltreated

PQG Precuneus-L 16.11 16.87 15.09
NLD Putamen-R 14.96 15.26 14.57
O2G Occipital-Mid-L 14.44 15.52 13.00
T2G Temporal-Mid-L 14.30 15.16 13.13
HIPPOG Hippocampus-L 13.15 13.94 12.09
FAD Precentral-R 12.85 14.00 11.30
ING Insula-L 12.56 13.61 11.13
FAG Precentral-L 12.43 13.45 11.04
PQD Precuneus-R 12.00 12.03 11.96
PAG Postcentral-L 11.89 12.52 11.04
NLG Putamen-L 11.39 11.68 11.00
F1G Frontal-Sup-L 11.22 12.13 10.00
HIPPOD Hippocampus-R 11.15 11.90 10.13

are the average node degrees in each group. All 13 nodes showed higher-
degree values in the controls without an exception. The probability of this event
happening by random chance alone is 2−13 = 0.00012. This is an unlikely
event and we conclude that the controls are more highly connected in the hub
nodes compared to the maltreated children.

3.4 Shortest Path Length

Definition 3.7 In a weighted graph, the shortest path between two nodes in a
graph is a path whose sum of the edge weights is minimum. The path length
between two nodes in a graph is the sum of edge weights in a shortest path
connecting them (Bullmore and Sporns, 2009).

When the weighted graph becomes binary, the path length is the number of
edges in the shortest path. The shortest path is traditionally computed using
Dijkstra’s algorithm, which is a greedy algorithm with run time O(|V |2)
invented by E. W. Dijkstra. The algorithm builds a shortest path tree from
a root node, by building a set of nodes that have minimum distance from the
root. The algorithm requires two sets, S and N . S contains nodes included in
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the shortest path tree, and N contains nodes not yet included in the shortest
path tree. At every step of the algorithm, we find a node that is in N and has
minimum distance from the root.

Functional integration in the brain is the ability to combine information
from multiple brain regions (Lee et al., 2018b). A measure of this integration
is often based on the concept of path length. Path length measures the
ability to integrate information flow and functional proximity between pairs
of brain regions (Sporns and Zwi, 2004; Rubinov and Sporns, 2010). When
the path length becomes shorter, the potential for functional integration
increases.

3.5 Clustering Coefficient

Clustering coefficient describes the ability for functional segregation and
efficiency of local information transfer.

The clustering coefficient of a node measures the propensity of pairs of
nodes to be connected to each other if they are connected to another node
in common (Watts and Strogatz, 1998; Newman et al., 2001). There are two
different definitions of the clustering coefficients, but we will use the one
originally given in Watts and Strogatz (1998).

Definition 3.8 The clustering coefficient cp at node p is a fraction of the
number of existing connections between the neighbors of the node divided by
the number of all possible connections of the graph.

Let kp be the node degree at p. At most, kp(kp−1)/2 edges can exist among
kp neighbors if they are all connected to each other. The clustering coefficient
cp of the node p is the fraction of allowable edges that actually exists over the
theoretical limit kp(kp − 1)/2, i.e.,

cp = number of edges among neighbors of p

kp(kp − 1)/2
.

The overall clustering coefficient of a graph G, c(G), is simply the average of
the clustering coefficient cp over all nodes, i.e.,

c(G) = 1

|V |
∑
p∈V

cp,

where |V | is the total number of nodes in the graph. Note that 0 ≤ c(G) ≤ 1.
Random graphs are expected to have a smaller clustering coefficient

compared to more structured one (Sporns and Zwi, 2004). For a complete
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Figure 3.5 The numbers are the average clustering coefficients (top) and average
path lengths (bottom). More complete the network becomes, it has shorter average
path length and larger clustering coefficients.

graph, where all nodes are connected to each other, c(G) obtains the maximum
1 and tends to zero for a random graph as the graph becomes large (Figure 3.5)
(Newman et al., 2006). Definition 3.8 is biased for a graph with low degree
nodes due to the factor kp(kp − 1) in the denominator. Unbiased definition of
the clustering coefficient is computed by counting the total number of paired
nodes and dividing it by the total number of such pairs that are also connected.
Compared to random networks, the brain network is known to have a higher
clustering coefficient and shorter path length. These are the characterization of
small-world networks (Sporns and Zwi, 2004).

3.6 Small-Worldness

If most nodes can be connected in a very small number of paths, the network
is said to be small-world. Small-world networks have dense short-range
connections with a relatively small number of long-range connections (Watts
and Strogatz, 1998). The small-worldness of networks is usually defined with
clustering coefficient c(G) and average path length El.

Let l be the shortest path between two nodes, and let |V | be the number of
nodes in a graph. If we take the average of l for every pair of nodes and over
all realizations of the randomness in the model, we have the mean path length
El. The mean path length El measures the overall navigability of a network.
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El is related to the diameter of the network, which is the maximum l (longest
path) (Newman, 2003).

A network G is considered to be a small-world network if it meets the
following criteria:

γ = c(G)

c(R)
� 1

λ = El(G)

El(R)
≈ 1

σ = γ

λ
> 1,

where R denotes a random network that preserves the number of nodes, edges,
and node degree distributions present in G. Often hundreds of random net-
works needed to be simulated for each network G to obtain stable estimates for
the average path lengths and clustering coefficient. Network small-worldness
is often quantified by ratio σ .

For regular lattices, El scales linearly with the number of nodes |V |,
while for random graphs, El is proportional to ln |V | (Watts and Strogatz,
1998; Newman and Watts, 1999). The small-world network is somewhere
between regular lattice and random graphs. Therefore, the small-worldness is
mathematically expressed as follows (Song et al., 2005):

El ∼ ln |V |. (3.1)

The relation (3.1) links over the size of the graph to the number of nodes
and implies that as |V | increases, the average path length is bounded by the
logarithm of |V |. The model (3.1) can be rewritten as

|V | ∼ eEl .

The relation (3.1) implies that the small-world networks are not self-similar,
since self-similarity requires a power-law relation between l and |V |. However,
Song et al. (2005) was able to show that the model (3.1) might be biased for
inhomogenous networks. Using a scale-invariant renormalization procedure
through the box counting method, Song et al. (2005) was able to show that
diverse, complex networks are in fact self-similar.

3.7 Fractal Dimension

The fractal dimension is often used to measure self-similarity. Benoit B. Man-
delbrot named the term fractal in 1960 (Mandelbrot, 1982). Mathematically,
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a fractal is a set with a nonintegral Hausdorff dimension (Hutchinson, 1981).
While classical geometry deals with objects with an integer dimension, fractals
have a nonintegral dimension. Fractals have infinite details at all points of
the object, and have self-similarity between parts and overall features of the
object. The smaller-scale structure of fractals are similar to the larger-scale
structure. Hence, fractals do not have a single characteristic scale. Many
anatomical objects, such as cortical surfaces and the cardiovascular system,
are self-similar. The complexity of such objects can be quantified using the
fractal dimension (FD). The main question is if brain networks exhibit the
characteristic of self-similarity. To answer this question, we need to compute
the FD.

Let ε be the scale and Nε be the number of self-similar parts that can cover
the whole structure. Then FD is defined as

FD = lim
ε→0

ln Nε

ln 1
ε

.

In practice, we cannot compute the limit as ε goes to zero for real anatomical
objects, so we resort to the box-counting method (Hutchinson, 1981; Mandel-
brot, 1982). For k different scales ε1, . . . ,εk , we have a corresponding number
of covers Nε1, . . . ,Nεk

. Then we draw the log–log plot of (Nεi
,1/εi) and fit

a linear line in a least squares fashion. The slope of the fitted line is the
estimated FD. We can also estimate the FD locally using finite differences
with neighboring measurements as

FD = −� ln Nε

� ln ε
,

where � is the second-order finite difference (Figure 3.6).
For networks, we avoided using the box-counting method to the space

where the network is embedded and the graph itself (Song et al., 2005). Rather,
we have applied the method to the structure that defines link connections,
i.e., the adjacency matrix. The use of the adjacency matrix simplifies a lot of
computation. The Erdös–Rényi random graph G(n,p) is defined as a random
graph generated with n nodes where two nodes are connected with probability
p (Figure 3.6) (Erdös and Rényi, 1961). The FD characteristic of the brain
networks is different from that of random graphs.

Other graph theory features. Although we do not discuss them in detail
here, other various popular graph theoretic measures are also proposed:
entropy (Sporns et al., 2000), hub centrality (Freeman, 1977), and modularity.
A review of various graph measures can be found in Bullmore and Sporns
(2009). The centrality of a node measures the number of shortest paths between
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Figure 3.6 The plots of ln Nε and −� ln Nε

� ln ε
over scale ln ε. The first column is for

14 normal control subjects and the second column is for 14 Erdös–Rényi random
graphs G(200,0.01). The FD characteristic of the random graph is different from
the brain networks.

all other nodes that pass through the given node, and is motivated in part by
modeling the social network (Freeman, 1977). Nodes with high centrality,
which are likely to be with high degree, are called hubs. The modularity of
a network measures the number of components or modules and is related to
hierarchical clustering (Girvan and Newman, 2002; Lee et al., 2012).



4
Correlation Networks

Correlation-based networks are probably the most often used network model in
brain imaging. In this chapter, we study Pearson’s product-moment correlation
(Fisher, 1915), in short Pearson correlation. In sciences, Pearson correlation
has been widely used as a simple index for measuring dependency and the
linear relationship between two variables. In human brain mapping research, it
has been mainly used to map out functional or anatomical connectivity (Friston
et al., 1993a; Worsley et al., 2005b; Chung et al., 2015a).

4.1 Pearson Correlations

Definition 4.1 Consider two data vectors x = (x1,x2, · · · ,xn)
� and y =

(y1,y2, · · · ,yn)
�. The Pearson correlation coefficient ρ between two vectors

x and y is defined as

ρ(x,y) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

, (4.1)

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are the sample means.

Then algebraic manipulation can show that

ρ(x,y) = ρ(ax + b,cy + d) (4.2)

for any nonzero a,c ∈ R and any b,d ∈ R. Thus, the correlation is scale and
translation invariant. The correlation (4.1) can be factored as a vector product:

ρ(x,y) = [x′]�y′, (4.3)

76
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where x′ = αx + β and y′ = γ y + δ such that

α = 1√∑n
i=1(xi − x̄)2

, β = − x̄√∑n
i=1(xi − x̄)2

,

γ = 1√∑n
i=1(yi − ȳ)2

, δ = − ȳ√∑n
i=1(yi − ȳ)2

.

Then trivially, correlations under any nontrivial linear transformation, i.e.,
a,c �= 0, can be represented as vector products due to the invariance (4.2).

Among all linear transformations, following linear transformation is the
most often used in relation to sparse models (Chung et al., 2015a, 2017a).
Consider a transformation that center and scale x and y such that

n∑
i=1

xi =
n∑

i=1

yi = 0,

‖x‖2 = x�x = ‖y‖2 = y�y = 1. (4.4)

This projects n-dimensional vectors x,y ∈ Rn onto a n-dimensional unit
sphere Sn−1. Thus the centering and scaling operations can be viewed as data
embedding from higher Euclidean space Rn onto unit sphere Sn−1.

Then the correlation between x and y is simply the cosine similarity often
used in engineering and computer science literature:

cos θ = x�y,

where θ is the angle between vectors x and y.
Assuming x and y are centered and scaled, consider the following linear

model

y = βx + e,

where e is a mean zero error vector and β is the unknown scalar parameter
we need to estimate. The least squares estimation (LSE) of β is given by
minimizing the sum of the squared residuals:

e�e = (y − βx)�(y − βx).

Trivially we can show that LSE of β is

β̂ = x�y,

the Pearson correlation. Even if x and y are not centered and scaled, there is a
relationship between correlations and the regression coefficients.
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4.2 Partial Correlations

Let Y = (Y1,Y2) be two variables of interests and X = (X1, · · · ,Xp) be a row
vector of variables that should be removed in a data analysis. For instance, we
may let Y1 and Y2 be functional activity at two different voxels, and X1 and X2

be the age and gender. The covariance matrix of (Y,X)� is denoted by

V(Y,X)� =
(

�YY �YX

�XY �XX

)
. (4.5)

Note �XY is the cross-covariance matrix of X and Y . �YX, �XX, and �YY are
defined similarly. Then the partial covariance of Y given X is

(σij ) = �YY −�YX�−1
XX�XY.

The partial correlation ρYi,Yj |X is the correlation between variables Yi and Yj

while removing the effect of variables X, and it is defined as

ρYi,Yj |X = σij√
σiiσjj

.

The conditional notation | is used in defining the partial correlation since the
partial correlation is equivalent to conditional correlation if

E(Y |X) = a + BX

for some vector a and matrix B, which is true under the normality of data.
This is the formulation we used to compute the partial correlation. If vector X

consists of a single measurement, i.e., X = X1, the partial correlation can be
computed from the simple correlation via

ρY1,Y2|X = ρY1,Y2 − ρY1,XρY2,X√
(1 − ρ2

Y1,X
)(1 − ρ2

Y2,X
)
.

The preceding definition assumes ρY1,X and ρY2,X are not exactly −1 or 1.
The sample partial correlation rY1,Y2|x is defined similarly by replacing the
covariance with the sample covariance in (4.5).

The MATLAB codes for computing the partial correlation are as follows.
Let rho be the sample partial correlation between time series fMRI1 and
fMRI2 while removing the effect of age (age) and gender (gender) effects.
For n subjects in the group, all variables are row vectors of size 1 × n. Then
we compute the partial correlation rho as

x=[age; gender];
y=[fMRI1; fMRI2];
a=cov([x;y]’);
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b=a(1:2,1:2)-a(1:2,3:4)*inv(a(3:4,3:4))*a(3:4,1:2);
rho=b(1,2)/sqrt(b(1,1)*b(2,2));

Here x and y are 2× n matrices, and the covariance matrix a is the size 4× 4.

4.3 Averaging Correlations

In brain imaging, it frequently happens that the addition is not a well-defined
concept. Correlation is such an example. Given two correlations r1 and r2, it is
possible to have r1 + r2 < 1 or r1 + r2 > 1. Thus, the sum of correlations may
not be correlation. Subsequently, the average of correlation may not be a well-
defined concept. In this section, we show how to properly average correlations
and correlation matrices. We start with vector space.

4.3.1 Vector Spaces

Definition 4.2 A vector space S is a collection of objects satisfying various
axioms of algebraic rules. Given x,y,z ∈ S , we need to have

x + y = y + x ∈ S (commutative),

x + (y + z) = (x + y)+ z ∈ S (associative).

It also requires us to have identity 0 ∈ S such that

0 + x = x

and inverse −x ∈ S such that

x + (−x) = 0.

Given a,b ∈ F , a field,

a(bx) = (ab)x (compatibility),

1x = x for some 1 ∈ F (identity)

a(x + y) = ax + ay (distributivity w.r.t. vector addition)

(a + b)x = ax + bx (distributivity w.r.t. field addition).

Given any x,y ∈ S and a,b ∈ R, if ax + by ∈ S , S is most likely a
vector space in practice. Given two correlations r1 and r2, it is possible to
have r1 + r2 < −1 or r1 + r2 > 1 . Thus, correlations do not form a vector
space.
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Definition 4.3 Given objects f1, · · · ,fn ∈ S for some space S, the (sample)
mean f̄ of the objects is defined as

f̄ = 1

n

n∑
j=1

fj . (4.6)

Thus, the sample mean is only defined in a vector space. A space that is not
a vector space may not have the properly defined sample mean. To properly do
a statistical inference, it is a necessity to have a vector space at least.

In the Euclidean space S , the sample mean is the minimizer of the following
cost function.

f̄ = arg min
g∈S

n∑
j=1

‖g − fj‖2
2,

where ‖ · ‖2 is the L2-norm. This is easily proved by noting that the cost
function is quadratic in norm ‖g‖2. By differentiating the cost function with
respect to ‖g‖2 and setting the differentiation equal to zero, we obtain the
minimum.

4.3.2 Averaging by Back Projection

The average f̄ may not belong to S if S is not a vector space. Thus, to define
average, S must be a vector space. If S is not a vector space, we transform S
to vector space T using some nonlinear transform

F : S → T .

We assume the inverse of F is well defined and easy to compute. F has to be
one-to-one to make any sense in the following operations.

Given any f1, · · · ,fn ∈ S , we have

gj = F(fj ) ∈ S .

Then the average in T is defined as

ḡ = 1

n

n∑
j=1

gj = 1

n

n∑
j=1

F(fi).

This new point ḡ can be back projected into F via F−1(ḡ). Thus the reasonable
average in S is defined as

f̄ = F−1
[1

n

n∑
j=1

F(fj )
]
.
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The back projection method can be used to average correlations. The sample
mean of correlations is not a well-defined concept. Over the years, a number
of different methods for averaging correlations have been proposed. Silver
and Hollingsworth (1989) proposed to transform correlations into z-scores by
Fisher’s transform (Fisher, 1915):

F(ρ) = arctanh(ρ) = 1

2
ln

1 + ρ

1 − ρ
.

Note the inverse of the Fisher’s transform is given by

F−1(z) = e2z − 1

e2z + 1
.

Given a collection of correlations ρ1,ρ2, · · · ,ρn, the average of Fisher’s
transforms is

z = 1

n

n∑
i=1

F(ρi).

Then F−1(z) is the average of correlations via the back projection. This
approach is known to introduce bias (Corey et al., 1998). Another slightly less
obvious approach is to use the log-Euclidean distance.

4.3.3 Metric Spaces

Diffusion tensor images can produce 3D unit vectors that measure the principle
direction of diffusion of water molecules at each voxel. Given n unit vectors
v1, · · · ,vn with ‖vj‖ = 1, the average diffusion direction is not well defined
in the following sense. Consider collection S2of all the unit vectors. Obvious,
v1, · · · ,vn ∈ S2. However, v̄ = ∑n

j=1 vj /n /∈ S2. v1, · · · ,vn are points
along the 3D unit sphere. v̄ is inside the 3D unit solid ball. To properly define
averaging operation in this example, we need a concept called the Fréchet
mean, which is defined in metric spaces. The metric spaces were introduced
by Fréchet in 1906 as a part of his PhD thesis. Fréchet axiomatized the notion
of distance and showed that many abstract spaces are metric spaces simplifying
various difficult problems to that of metric properties.

Definition 4.4 A metric space is a collection of objects for which the pairwise
distance between objects is well defined. The distances are called metric.
Formally, (M,d) is a metric space if d satisfies the condition

d(x,y) = 0 ↔ x = y. (identity)

d(x,y) = d(y,x) (symmetry)

d(x,z) ≤ d(x,y)+ d(y,z) (triangle inequality)
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Then from the three axioms of metric, it can be shown that metric is always
nonnegative, i.e.,

d(x,y) ≥ 0.

This is left as an exercise.
There are numerous metric spaces. The usual Euclidean space Rn is a metric

space with L2-norm

d(x,y) = ‖x − y‖2 =
[

n∑
i=1

(xi − yi)
2

]1/2

,

where x = (x1, · · · ,xn)
� and y = (y1, · · · ,yn)

�.
In another example, let M be a collection of n × n matrices that represent

a graph with n nodes. Given W 1 = (w1
ij ), W 2 = (w2

ij ) ∈ M, define Ll-
distance as

Dl(W
1,W 2) =‖ w1 − w2 ‖l=

⎛⎝∑
i,j

∣∣w1
ij − w2

ij

∣∣l⎞⎠1/l

.

When l = ∞, L∞-distance is written as

D∞(W 1,W 2) =‖ w1 − w2 ‖∞= max
∀i,j

∣∣w1
ij − w2

ij

∣∣.
Then we can show that (M,Dl) and (M,D∞) are metric spaces. This is

left as an exercise.
The elementwise matrix distances differences may not necessarily be the

best distance for matrices. L1 and L2-distances usually suffer the problem of
outliers. Few outlying extreme edge weights may severely affect the distance.
Further, these distances ignore the underlying topological structures. There
exists a more topologically sensitive network distances (Chung et al., 2017a,d),
which we will study later.

4.3.4 Fréchet Mean

Generalizing the idea in (4.7), we define the Fréchet mean of f1, · · · ,fn ∈M
with metric d as

f̄ = arg min
f∈M

n∑
j=1

d(f ,fj )
2.

In the Euclidean space, the sample mean and the Fréchet mean are identical. If
M is not a vector space, the Fréchet mean may not be the sample mean.
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On the sphere, the shortest distance between any two points v and vj is the
shortest arc in of the greatest circle passing through the two points. The arc
length is the angle

θj = cos−1 (v�j v
)
.

We can show that the arc length is a metric. Then, the Fréchet mean of diffusion
direction is given by

θ̄ = min
v∈S2

n∑
j=1

[
cos−1 (v�j v

)]2
.

The numerical implementation of computing the Fréchet mean on a sphere
is left as an exercise. This is not a trivial problem on the sphere since it is
mathematically not possible to have uniform grids on the sphere. Also, the
Fréchet mean may not be unique for some pathological example on S2.

The Fréchet mean can be used to average the covariance and correlation
matrices for brain network modeling. Qiu et al. (2015) is the first paper
that averaged the collection of brain networks using the Fréchet mean. This
requires defining a metric in the space of symmetric positive definite matrices,
which is not a trivial problem. The metric is given by the log-Euclidean
distance (Arsigny et al., 2005, 2006, 2007), which we will study later. The
log-Euclidean framework is often used in averaging diffusion tensor images.

4.3.5 Log-Euclidean Distance

The concept of Fréchet mean can be used to average correlation or covariance
matrices.

Definition 4.5 Given symmetric and positive definite matrix C = (cij ), its
matrix exponential is defined as a Taylor expansion:

eC = I + C + 1

2!
C2 + 1

3!
C3 + · · · ,

where I is the identity matrix. If there exists matrix A satisfying eA = C, then
A is called the matrix logrithm of C and denoted as log C.

For symmetric positive definite p × p matrix C, the logarithm of C can
be computed as follows. Note C has p positive eigenvalues λ1, · · · ,λp. There
exists an orthogonal matrix Q such that

C = Q�DQ
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with D = diag(λ1, · · · ,λp), the diagonal matrix consisting of entries
λ1, · · · ,λp. Then using the fact (Q�DQ)k = Q�DkQ,

eC = I +Q�DQ+ 1

2!
Q�D2Q+ 1

3!
Q�D3Q+ · · · = Q�eDQ.

Thus the exponential of C is Q�eDQ. Similarly, the logarithm of C is
Q� log DQ.

If matrix C is nonnegative definite with zero eigenvalues, the matrix
logarithm is not defined since log 0 is not defined. Thus, we cannot apply
logarithm directly to rank-deficient large correlation and covariance matrices
obtained from small number of samples. One way of applying logarithm to
nonnegative definite matrices is to make matrix C diagonally dominant by
adding a diagonal matrix αI with suitable choice of relatively large α (Chan
and Wood, 1997).

Definition 4.6 Given two symmetric and positive definite matrices C1 and C2,
the log-Euclidean distance between C1 and C2 is given by

d(C1,C2) = ‖ log C1 − log C2‖F,

where the Frobenius norm is defined as (Arsigny et al., 2005, 2006, 2007)

‖A‖F =
√

tr(A�A).

The log-Euclidean distance can be written differently as

d(C1,C2) =
[
tr (log C1 − log C2)

2
]1/2

.

The log-Euclidean distance can be viewed as the generalized manifold version
of Frobenius norm distance. Given a collection of correlation matrices C1,C2,
· · · ,Cn, log-Euclidean Fréchet mean C̄ is given by (Arsigny et al., 2007)

C̄ = exp

(
1

n

n∑
i=1

log Ci

)
. (4.7)

Since correlation is the off-diagonal entries of correlation matrices, the diago-
nal entries are the average of correlations in the log-Euclidean sense.

Limitation of log-Euclidean distance. If a matrix is nonnegative definite
with zero eigenvalues, the matrix logarithm is not defined since log 0 is not
defined. Thus, we cannot apply the logarithm directly to rank-deficient large
correlation and covariance matrices obtained from data with small sample
sizes relative to the number of nodes. One way of applying the logarithm
to nonnegative definite matrices is to make the matrix diagonally dominant
by adding a diagonal matrix αI with suitable choice of relatively large α
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(Chan and Wood, 1997). Alternately, we can perform a graphical LASSO-
type of sparse model and obtain the closest positive definite matrices (Qiu
et al., 2015; Mazumder and Hastie, 2012). Developing the log-Euclidean for
general correlation matrices including nonnegative ones is beyond the scope of
this chapter. Note topological distances are applicable to nonnegative definite
connectivity matrices.

4.4 Correlation as Metric

Consider a node set V = {1, . . . ,p} and edge weights ρ = (ρij ), where ρij

is the weight between nodes i and j . The edge weights measure similarity
or dissimilarity between nodes. The edge weights in most brain networks
are usually given by some similarity measure between nodes (Mclntosh and
Gonzalez-Lima, 1994; Newman and Watts, 1999; Song et al., 2005; Li et al.,
2009; Lee et al., 2011a). Weighted network X = (V ,ρ) is formed by the pair
of node set V and edge weights ρ. If X is a metric, network interpretation is
straightforward.

We will show how to construct a metric using correlations.
Consider n × 1 measurement vector xj = (x1j, · · · , xnj )

� on node j .
Suppose we center and rescale the measurement xj such that

‖ xj ‖2= x′j xj =
n∑

i=1

x2
ij = 1

and
n∑

i=1

xij = 0.

Naturally, we are interested in using correlations or their simple functions
as edge weights, i.e.,

ρij = x�i xj or ρij = 1 − x�i xj .

However, not every function of correlations is metric.

Example 4.1 1 ρij = 1 − x�i xj is not a metric. Consider the following three-
node counterexample:

xi =
(

0,
1√
2
, − 1√

2

)�
,

1 The counterexample is provided by Zhiwei Ma of University of Chicago.
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xj =
(

1√
2
,0, − 1√

2

)�
,

xk =
(

1√
6
,

1√
6
, − 2√

6

)�
.

Then we have ρij > ρik + ρjk .

Then the interesting methodological question is to identify minimum
conditions that make a function of correlations a metric.

Theorem 4.1 For centered and scaled data x1, · · · ,xp, let

ρij = cos−1(x�i xj ).

Then ρij is metric.

Proof. On unit sphere Sn−1, the correlation between xi and xj is the cosine
angle θij between the two vectors, i.e.,

x�i xj = cos θij .

The geodesic distance ρ between nodes xi and xj on the unit sphere is given
by angle θij :

ρ(xi,xj ) = cos−1(x�i xj ).

For nodes xi,xj ∈ Sn−1, there are two possible angles θij and 2π − θij

depending on if we measure the angles along the shortest arc or longest arc.
We take the convention of using the smallest angle in defining θij . With this
convention,

ρ(xi,xj ) ≤ π .

Given three nodes xi,xj , and xk , which forms a spherical triangle, we then
have spherical triangle inequality

ρ(xi,xj ) ≤ ρ(xi,xk)+ ρ(xk,xj ).

The proof to (4.8) is given in Reid and Szendròi (2005). Thus we proved ρ is
a metric. �

Theorem 4.2 For any metric ρij , f (ρij ) is also a metric if f (0) = 0 and f (x)

is increasing and concave for x > 0.

The proof is given in Van Dijk et al. (2012). Such function f is called the
metric preserving function.

Any power [cos−1(x�i xj )]1/m for m ≥ 1 is metric. When m = 1, we
have the simplest possible metric ρ(xi,xj ) = cos−1(x�i xj ), which obtains
minimum 0 when x�i xj = 1 and maximum π when x�i xj = −1.
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Theorem 4.3 For any x1, · · · ,xp ∈ Rn,

ρij =
[
1 − corr(xi,yj )

]1/2

is a metric, where corr(xi,yj ) is the Pearson correlation.

4.5 Statistical Inference on Correlations

Regardless of if we have Pearson correlations or partial correlations, the
statistical inference can be done similarly.

4.5.1 Inference on One Sample

Let ρ(p) be correlation or partial correlation for each voxel p; we are
interested in testing

H0 : ρ(p) = ρ vs. H1 : ρ(p) �= ρ (4.8)

for some fixed ρ. In the usual one-sample inference, we simply test if
correlation ρ(p) each voxel is 0 or not. Inference type (4.8) is useful if only
one sample is available or determining high-correlation regions within the
brain. There are many different ways for testing the preceding hypotheses.
One widely used technique is to use the Fisher transform (Fisher, 1915) that
transforms the sample correlation r into

F(r) = arctanh(r) = 1

2
ln

1 + r

1 − r
.

Then for moderately large samples, F(r) shows asymptotic normality:

F(r) ∼ N
(1

2
ln
(1 + ρk

1 − ρk

)
,

1

nk − 3

)
.

The transform can be viewed as a variance-stabilizing normalization process.
Then the test statistic under null is

Z = √
n− 3[F(r)− F(ρ)] ∼ N(0,1),

which is a standard normal distribution (Chung, 2007) (see Figure 4.1).
Another way of testing the significance is to use the t-statistic. Assuming

the normality of data, the sample correlation or partial correlation r can be
transformed to be distributed as follows:

T = r
√

n− 2√
1 − r2

∼ tn−2,
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Figure 4.1 p-value over correlation in one sample. The numbers at the top are
sample sizes. For a large sample size of 1,200, even correlation of 0.1 gives
the statistical significance below 0.01. However, for a small sample size of 30,
correlation 0.5 does not give the statistical significance 0.01.

the t distribution with n− 2 degrees of freedom. This test statistic can be used
for testing hypothesis (4.8).

Here n is the sample size. If we are correlating time series with n time
points, the number of time points is the sample size.

4.5.2 Inference on Two Samples

Let ρ1(p) and ρ2(p) be two independent correlations at position p. We are
interested in testing the equality of correlations. At each fixed point p, we are
interested in testing

H0 : ρ1(p) = ρ2(p) vs. H1 : ρ1(p) �= ρ2(p). (4.9)

For two sample inference type (4.9), the test statistic under H0 is given by the
following:

W(p) =
ln
(

1+r1
1−r1

· 1−r2
1+r2

)
2
√

1
n1−3 + 1

n2−3

∼ N(0,1), (4.10)

where r1 and r2 are the sample means that estimate ρ1(p) and ρ2(p) at fixed
point p.
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4.6 Cosine Series Representation

EEG at a channel and fMRI at a voxel are time series. Many time series
analysis techniques have been applied in correlating two functional signals
at different spatial locations. Since functional signals are highly noise, often a
Fourier transform type of signal filtering is applied before the transform. Here
we briefly explain the cosine series representation, which is the analytic version
of the often used cosine Fourier transform (Chung et al., 2010a). The cosine
series representation can be viewed as a type of Fourier descriptor. Fourier
descriptors have been around for many decades for modeling noise functional
data and planar curves (Persoon and Fu, 1977; Staib and Duncan, 1992). They
have been previously used to classify curves (Batchelor et al., 2006), where the
Fourier coefficients are computed by the Fourier transform that involves both
the sine and cosine series expansion. Then the sum of the squared coefficients
are obtained up to a certain degree for each functional data and the k-means
clustering is used to classify the data. The cosine series representation differs
from (Batchelor et al., 2006) in that we represent functional data employing
cosine series only, without using both the cosine and sine series making the
representation more compact. Matlab implementation for the cosine series
representation is available.2

4.6.1 Eigenfunctions of Laplacian in a Unit Interval

There are infinitely many possible orthonormal bases in interval [0,1]. Here
we explain the spectral approach for obtaining orthonormal bases.

Consider the space of square integrable functions in [0,1] denoted by
L2[0,1]. Let us solve the eigenequation

�ψ + λψ = 0

in L2[0,1] with 1D Laplacian � = d2

dt2 . Then it can be shown that the

eigenfunctions ψ0,ψ1, · · · form an orthonormal basis in L2[0,1]. Note that
if ψj is an eigenfunction, any multiple of ψj is also eigenfunction. Thus, it
is expected the eigenfunctions are properly normalized. The eigenfunctions
satisfying (8.2) are then given by the usual Fourier sine and cosine basis

ψ0(t) = 1,ψl =
√

2 sin(lπt),
√

2 cos(lπt)

with the corresponding eigenvalues λl = l2π2.
Note that there are two eigenfunctions corresponding to the same eigen-

value. Note that the multiplicity of eigenfunctions only happens if there is

2 http://brainimaging.waisman.wisc.edu/∼chung/tracts/
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a symmetry in the domain of the eigenvalue problem. The constant
√

2 is
introduced to make the eigenfunctions orthonormal in [0,1] with respect to
the inner product

〈f,g〉 =
∫ 1

0
f (t)g(t) dt . (4.11)

With respect to the inner product, the norm ‖ · ‖ is then defined as

‖f ‖ = 〈f,f 〉1/2.

Using both sine and cosine bases is not algebraically efficient. Instead of
solving (8.2) in the domain [0,1], consider solving the problem in the larger
unbounded domain R with the periodic constraint

ψ(t + 2) = ψ(t).

The period 2 constraint forces the basis function expansion to be only valid
in the intervals · · · ,[−2, − 1],[0,1], [2,3], · · · while there are gaps in
· · · ,(−1,0), (1,2),(3,4), · · · . We can fill the gap by padding with some
arbitrary function. However, if we pad the gaps with any function, it may result
in the Gibbs phenomenon (ringing artifacts) at the boundary of the intervals
· · · ,2,1,0,1,2, · · · (Chung et al., 2007). To avoid the Gibbs phenomenon, we
force the function to be continuous at the boundary by putting the constraint of
evenness, i.e.,

ψ(t) = ψ(−t).

If ψ(t) is the eigenfunction well defined in [0,1], in the intervals, · · · ,[−2, −
1], (−1,0)[0,1], (1,2),[2,3], · · · we must have

· · · ,ψ(t − 2),ψ(−t),ψ(t),ψ(−t + 2),ψ(t + 2), · · · .

The only eigenfunctions satisfying the two constraints (4.12) and (4.12) are the
cosine basis

ψ0(t) = 1,ψl(t) =
√

2 cos(lπt) (4.12)

with the corresponding eigenvalues λl = l2π2 for integers l > 0. Then using
the cosine basis only, any f ∈ L2[0,1] can be represented as

f (t) =
k∑

l=0

clψl(t)+ ε(t),

where cl are the Fourier coefficients and ε is the residual error for using only
kth degree expansion.
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Note that it is possible to put the constraint of oddness, i.e.,

ψ(t) = −ψ(−t).

Then we have sine basis

ψl(t) =
√

2 sin(lπt). (4.13)

4.6.2 Fourier Series

Consider ith functional time series data

ζi(t) = μi(t)+ εi(t),

where t is the time variable. We assume the functional data are scaled in such
a way that they are defined in [0,1]. Formulating the Fourier analysis in a unit
interval makes the numerical implementation more convenient. εi is a zero
mean noise at each fixed t , i.e.,

Eεi(t) = 0.

μi is an unknown smooth function to be estimated. It is reasonable to assume
that

ζi,μi ∈ L2[0,1],

the space of square integrable functions. Any function f ∈ L2[0,1] satisfies
the condition ∫ 1

0
f 2(t) dt < ∞.

This condition is needed to guarantee the convergence in the Fourier series.
Instead of estimating μi in L2[0,1], we estimate it in a smaller subspace

Hk , which is spanned by up to the k orthonormal basis functions:

Hk =
{

k∑
l=0

clψl(t) : cl ∈ R

}
⊂ L2[0,1].

Then the LSE of μi in Hk is given by

μ̂i = arg min
f∈Hk

∥∥f − ζi(t)
∥∥2. (4.14)

Theorem 4.4 The minimization of (4.14) is given by

μ̂i =
k∑

l=0

〈ζi,ψl〉ψl,
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where the lth degree Fourier coefficient 〈ζi,ψl〉 is given by the inner product

〈ζi,ψl〉 =
∫ 1

0
ζi(t)ψl(t) dt . (4.15)

Proof. Heuristically, we need to find function

f (t) =
k∑

l=0

clψl(t)

that is the closest to ζi . The distance between f and ζi is given by

I (c0,c1, · · · ,ck) =
∫ 1

0

∣∣∣ k∑
l=0

clψl(t)− ζi(t)

∣∣∣2 dt,

which is a k + 1 dimensional function in unknown parameter space
(c0,c1, · · · ,ck) ∈ Rk+1. Since I is a quadratic function in (c0,c1, · · · ,ck),
it has the global minimum at

∂I

∂c0
= ∂I

∂c1
= · · · = ∂I

∂ck

= 0.

The algebraic derivation is left as an exercise, but we have

cl = 〈ζi,ψl〉
for all l = 0,1, · · · ,k. �

The expansion (4.15) is called the kth degree Fourier series. As k → ∞,
the expansion converges to ζi , i.e.,

ζi(t) =
∞∑
l=0

〈ζi,ψl〉ψl .

It is also possible to have a slightly different but equivalent model that is
easier to use in statistical inference. Assuming Gaussianness of data, εi(t) is a
Gaussian stochastic process, which is simply a collection of random variables.
Then εi(t) can be expanded using the given basis ψl as follows:

εi(t) =
k∑

l=0

Zlψl(t)+ ei(t),

where Zl ∼ N(0,τ 2
l ) are possibly correlated Gaussian random variables and ei

is the residual error that can be neglected in practice if a large enough number
of bases are used. This is the consequence of the Karhunen–Loeve expansion
(Yaglom, 1987; Adler, 1990; Kwapien and Woyczynski, 1992; Dougherty,
1999).
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Karhunen–Loeve expansion states that εi(t) can be decomposed as

εi(t) =
m∑

l=0

Zlφl(t)

for uncorrelated Gaussian random variables Zl and some orthonormal basis
φl(t). The algebraic determination of Zl and φl(t) are left as an exercise. Since
φl and ψl are different bases, φl can be represented as a linear combination of
ψl . Rewriting φl in terms of ψl will make the Gaussian random variables Zl

correlated.
At the end, we can write model (4.14) as

ζi(t) =
k∑

l=0

Xlψl(t)+ ei(t), (4.16)

where Xl are correlated Gaussian random variables.

4.6.3 Parameter Estimation

In practice, functional time series are observed at discrete time points t1,t2,

· · · ,tn:

ζi(tj ) = μi(tj )+ εi(tj ), j = 1, · · · ,n.

The underlying mean functions μi(t) are estimated as

μ̂i(t) =
k∑

l=0

cliψl(t),

where the Fourier coefficients (c0i,c1i, · · · ,cki) for the ith time series is
estimated using LSE. If we have p number of time series, it requires p number
of LSE separately for each time series. For really large LSE problems, this
is computationally very inefficient. A more efficient way is to estimate all the
coefficients using a single LSE by solving the following large normal equation:

Yn×p = �n×kCk×p,

where

Yn×p =

⎛⎜⎜⎜⎝
ζ1(t1) ζ2(t1) · · · ζp(t1)

ζ1(t2) ζ2(t2) · · · ζp(t2)
...

...
. . .

...
ζ1(tn) ζ2(tn) · · · ζp(tn)

⎞⎟⎟⎟⎠ , (4.17)



94 Correlation Networks

�n×k =

⎛⎜⎜⎜⎝
ψ0(t1) ψ1(t1) · · · ψk(t1)

ψ0(t2) ψ1(t2) · · · ψk(t2)
...

...
. . .

...
ψ0(tn) ψ1(tn) · · · ψk(tn)

⎞⎟⎟⎟⎠ , (4.18)

Ck×p =

⎛⎜⎜⎜⎝
c01 c02 · · · c0p

c11 c12 · · · c1p

...
...

. . .
...

ck1 ck2 · · · ckp

⎞⎟⎟⎟⎠ . (4.19)

Subsequently, the coefficients are simultaneously estimated in the least squares
fashion as

Ĉ = (���)−1��Y .

It is possible to discretize the basis ψl in such a way that ��� = Ik .
This will make the numerical implementation of the Fourier series expansion
computationally much more efficient for big data. The proposed least squares
estimation technique avoids using the often used implicit Fourier transform
(FT) (Bulow, 2004; Gu et al., 2004; Batchelor et al., 2006). The advantage
of the cosine representation is that, instead of recording all the values of time
series data, we only need to record p · (k + 1) number of parameters. This is
a substantial data reduction, and we may be able to compress fMRI into 5% of
the original data while suppressing high-frequency noise (Figure 4.2).

Cosine series representation of fiber tracts. Cosine series representation
can also be used in modeling white matter fiber tracts (Chung et al., 2010a).
Unlike the nonparametric way of representing white matter fiber connectivity
probabilistically, parametric methods can be used to model white matter fibers
explicitly. Splines have also been often used for modeling and matching 3D
curves (Kishon et al., 1990). Unfortunately, splines are not easy to model and to
manipulate explicitly compared to Fourier descriptors, due to the introduction
of internal knots. In Clayden et al. (2007), the cubic-B spline is used to parame-
terize the median of a set of tracts for tract dispersion modeling. Matching two
splines with different numbers of knots is not computationally trivial and has
been solved using a sequence of ad hoc approaches. In Gruen and Akca (2005),
the optimal displacement of two cubic spline curves is obtained by minimizing
the sum of squared Euclidean distances. The minimization is nonlinear, so an
iterative updating scheme is used. On the other hand, there is no need for any
numerical optimization in curve matching in Fourier descriptors due to the
nature of the Hilbert space framework. Instead of using the squared distance
of coordinates, others have used the curvature and torsion as features to be
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Figure 4.2 (a) Resting-state fMRI at two different voxels at the first time point.
(b) Resting-state fMRI at voxel 1 (red) and 2 (black) shown for all 1,200 time
points. (c) Normalized and scaled time series at voxel 1 and its cosine series
representation with degree k = 59. (d) Normalized and scaled time series at
voxel 2 and its cosine series representation with degree k = 59. It is unclear
what optimal degree we should use.

minimized to match curves (Kishon et al., 1990; Gueziec et al., 1997; Corouge
et al., 2004; Leemans et al., 2006). Instead of applying the cosine series
representation to functional time series, we apply to x-, y-, and z-coordinates
separately (Figure 4.3).

4.6.4 Stepwise Model Selection

One major problem in the cosine series representation is that the expansion has
to be truncated at some degree. In Fourier descriptor and spherical harmonic
representation literature, the issue of the optimal degree has not been addressed
properly, and the degree is simply selected based on a prespecified error bound
(Gerig et al., 2001; Bulow, 2004; Gu et al., 2004; Shen et al., 2004; Shen and
Chung, 2006). This model selection framework for Fourier descriptors was first
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Figure 4.3 Cosine representation of a white matter fiber tract at various degrees.
Dots are control points obtained from a streamline-based tractography. The degree
1 representation is a straight line that fits all the control points in a least squares
fashion. The degree 19 representation is used through the chapter. It is unclear
what optimal degree we should use.

presented in (Chung et al., 2007, 2008a). Although increasing the degree of
the representation increases the goodness-of-fit, it also increases the number of
estimated coefficients linearly. It is necessary to stop the series expansion at the
degree where the goodness-of-fit and the number of coefficients balance out.

Suppose we have the kth degree expansion of signal ζi(t):

ζi(t) =
k∑

l=0

ĉliψl(t),

where ĉli are the least squares estimation. Assuming up to the (k − 1)-degree
representation is reasonably fitting data well, we determine if adding the k-
degree term is statistically significant by testing

H0 : cki = 0 vs. H1 : cki �= 0.
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Let the kth degree sum of squared errors (SSE) be

SSEk =
n∑

j=1

[
ζi(tj )−

k∑
l=0

ĉliψl(tj )
]2

.

As the degree k increases, SSE decreases until it flattens out. It is reasonable
to stop the series expansion when the decrease in SSE is no longer statistically
significant. We use the test statistic F given by

F = SSEk−1 − SSEk

SSEk−1/(n− k − 2)
∼ F1,n−k−2,

which is distributed as the F -distribution with 1 and n − k − 2 degrees
of freedom under H0. We compute the F statistic at each degree and stop
increasing the degree of expansion if the corresponding p-value first becomes
bigger than the prespecified significance, which we can put at α = 0.01,
for instance. The forward model selection framework hierarchically builds the
cosine series representation from lower to higher degree.

4.6.5 Distance between Signals

It is often necessary to measure distance or similarity between functions
and time series. Using the cosine series representation, we can determine
the optimal distance between the collections of functional time series, which
avoids brute-force style numerical optimization schemes often used in the
functional data analysis field (Kishon et al., 1990; Gueziec et al., 1997; Ramsay
and Silverman, 1997; Gruen and Akca, 2005; Leemans et al., 2006). This
simplicity makes the cosine series representation more well suited than more
often used splines or other signal filtering techniques (Gruen and Akca, 2005).

With the abuse of notations, we will interchangeably use functional signals
to be estimated and their estimation with the same notations when the meaning
is clear. Let the cosine series representation of two collections of time series η

and ζ be

η(t) =
k∑

l=0

ηlψl(t),

ζ (t) =
k∑

l=0

ζ lψl(t)

where ηl and ζ are the Fourier coefficient vectors. η and ζ are collections of
times series in a vectorial form.

Consider a displacement vector u = (u1,u2, · · · ,up)� that is required to
register ζ to η as close as possible. We will determine an optimal displacement
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u such that the distance between the deformed curve ζ +u and η is minimized
with respect to a certain distance measure ρ. The distance ρ between η and ζ

is defined as the integral of the sum of squared distance:

ρ(ζ,η) =
∫ 1

0
‖ζ (t)− η(t)‖2 dt .

The distance ρ can be simplified as

ρ(ζ,η) =
∫ 1

0

p∑
j=1

[
k∑

l=0

(ζlj − ηlj )ψl(t)

]2

dt

=
p∑

j=1

k∑
l=0

(ζlj − ηlj )
2.

We have used the orthogonality condition∫ 1

0
ψl(t)ψm(t) dt = δlm

to simplify the expression. It is left as an exercise to show ρ(ζ,η) is a proper
metric.

Theorem 4.5 Let Hk = {∑k
l=0 clψl(t) : cl ∈ R} be the subspace spanned by

up to kth basis. Then we have

arg min
u1,··· ,up∈Hk

ρ(ζ + u,η) =
k∑

l=0

(ηl − ζ l )ψl(t).

Proof. Let u∗(t) be the optimal displacement, which has a form

u∗(t) =
k∑

l=0

ulψl(t)

for some unknown parameter vector ul = (ul1,ul2, · · · ,ulp)�. Then

ρ(ζ + u∗,η) =
p∑

j=1

k∑
l=0

(ζlj + ulj − ηlj )
2,

which is an unconstrained positive definite quadratic program with respect to
variables ulj . The global minimum always exists and is obtained when ρ(ζ +
u∗,η) = 0. Thus, we have ulj = ηlj − ζlj . �

The simplicity of Theorem 4.5 is that function registration is done by simply
matching the corresponding Fourier coefficients without any sort of numerical
optimization as in spline curve matching. In (4.20), the distance between two
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collections of time series is given as a function of degree k. Thus, the multiscale
distance that captures both low- and high-frequency similarity can be given by

K∑
k=0

p∑
j=1

k∑
l=0

(ζlj − ηlj )
2,

where K is the preselected degree.
White matter fiber tract registration and clustering. The method can

be applied to linearly registering the fiber tracts and used for clustering
(see Figure 4.4). The cosine series representation can be used to analyze a

Figure 4.4 (a) The curve ζ is registered to η by the displacement vector field
u, which is estimated in the least squares fashion using the cosine series repre-
sentation. The other intermediate curves are generated by plotting ζ + αu with
α ∈ [0,1] to show how the different amount of displacement deforms the curve ζ .
(b) The average of a fiber bundle consisting of five tracts obtained by averaging
the cosine coefficients. (c) Fiber tract clustering based on the distance between
tracts. (d) The histogram of distances from a single tract (one of blue tracts) to all
other tracts. By thresholding the histogram at 10 mm, we cluster tracts.
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collection of fiber bundles consisting of similarly shaped curves. The ability
to register one tract to another tract is necessary to establish anatomical cor-
respondence for a subsequent population study. Since curves are represented
as combinations of cosine functions, the registration will be formulated as
a minimization problem in the subspace Hk , which avoids brute-force-style
numerical optimization schemes (Kishon et al., 1990; Gueziec et al., 1997;
Ramsay and Silverman, 1997; Gruen and Akca, 2005; Leemans et al., 2006).
This simplicity makes the cosine series representation better suited than the
usual spline representation of curves in subsequent statistical analysis (Gruen
and Akca, 2005).

4.6.6 Inference on a Collection of Functional Signals

Based on the idea of computing distance between functional signals by
matching coefficients, we can construct the average functional signals of p

functional signals ζ 1, · · · ,ζp by finding the optimal function that minimizes
the sum of all discrepancies in subspace Hk:

ζ (t) = arg min
ζ1,··· ,ζp∈Hk

p∑
j=1

ρ(ζ j,ζ ).

The algebraic manipulation can show that the optimum signal is obtained by
the average of representation:

ζ (t) = 1

p

p∑
j=1

k∑
l=0

ζ
j
l ψl(t) =

k∑
l=0

ζ lψl(t), (4.20)

where ζ l is the average coefficient vector

ζ l =
1

p

p∑
j=1

ζ
j
l .

This simplicity is the consequence of the Fourier series having the best repre-
sentation in the Hilbert space. Similarly, we can define the sample variance of
p signals and it will turn out to be the cosine representation with the coefficient
vector consisting of the sample variance of p coefficients. The construction of
the sample variance of p signals should be fairly straightforward, and we will
not go into detail.

Given another collection of functional signals η1, · · · ,ηq , we can perform
statistical inference on the equality of functional signals in the two populations.
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The null hypothesis of interest is

H0 : ζ = η. (4.21)

Here we again abused the notation so we are testing the equality of mean
representations of populations. From the very property of the Fourier series in
Hilbert space, the uniqueness of the cosine series representation is guaranteed
so the two representations are equal if and only if the coefficients vectors
match. Therefore, the equivalent hypothesis to (4.21) is given by

H ′
0 : ζ 1 = η1, · · · ,ζ k = ηk .

Obviously this is a multiple comparisons problem. Under the Gaussian
assumption in (4.16), testing the equality of the mean coefficient vector can
be done using Hotelling’s T -square statistic. For correcting for the multiple
comparisons, the Bonferroni correction can be used.

4.6.7 Gibbs Phenomenon

Limitation of cosine series representation. A downside of using Fourier
descriptors is that they are not local and it is not possible to make a state-
ment about a specific portion of the functional signal. Although the Fourier
coefficients are global and mainly used for globally classifying shapes (Shen
et al., 2004), it is still possible to obtain local shape information and make a
statement about local shape characteristics (Chung et al., 2007).

Splines have also been widely used for modeling functional signals (Kishon
et al., 1990; Gruen and Akca, 2005; Clayden et al., 2007). Unfortunately,
splines are not easy to model and to manipulate explicitly compared to Fourier
descriptors, due to the introduction of internal knots. In Clayden et al. (Corouge
et al., 2004; Clayden et al., 2007), the cubic-B spline is used to parameterize
the median of a set of functions. Matching two splines with different numbers
of knots is not computationally trivial and has been solved using a sequence
of ad hoc approaches. In Gruen et al. (Gruen and Akca, 2005), the optimal
displacement of two cubic spline curves is obtained by minimizing the sum
of squared Euclidean distances. The minimization is nonlinear, so an iterative
updating scheme is used. On the other hand, there is no need for any numerical
optimization in obtaining the matching in our method due to the very nature
of the Hilbert space framework. Instead of using the squared distance of
coordinates, others have used the curvature and torsion as features to be
minimized to match curves (Kishon et al., 1990; Gueziec et al., 1997; Leemans
et al., 2006).
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The Gibbs phenomenon (ringing artifacts) often arises in Fourier series
expansion of discontinuous data. It is named after American physicist Josiah
Willard Gibbs. In representing piecewise continuously differentiable data
using the Fourier series, the overshoot of the series happens at a jump
discontinuity. The overshoot does not decease as the number of terms increases
in the series expansion, and it converges to a finite limit called the Gibbs
constant. The Gibbs phenomenon was first observed by Henry Willbraham in
1848 (Wilbraham, 1848) but it did not attract any attention at that time. Then
a Nobel Prize laureate, Albert Michelson, constructed an harmonic analyzer,
one of the first mechanical analogue computers, which was used to plot
Fourier series, and observed the phenomenon. He thought the phenomenon was
caused by mechanical error, but Josiah Willard Gibbs correctly explained the
phenomenon as mathematical in 1899. Gibbs rediscovered the phenomenon
in 1898 (Gibbs, 1898). Later, mathematician Maxime Bocher named it the
Gibbs phenomenon and gave a precise mathematical analysis in 1906 (Bocher,
1906). The Gibbs phenomenon associated with spherical harmonics were first
observed by Herman Weyl in 1968. The history and the overview of Gibbs
phenomenon can be found in the literature (Foster and Richards, 1991; Jerri,
1998).

There are few available techniques for reducing Gibbs phenomenon (Got-
tlieb and Shu, 1997; Brezinski, 2004). Most techniques are a variation on some
sort of kernel methods. For instance, consider Fejer kernel Kn defined as

Kn(u) = 1

n

n−1∑
j=0

Dj(u),

where Dj is the Dirichlet kernel

Dj =
j∑

k=−j

eiku.

Then it can be shown that

Kn(u) = 1

n

( sin nu
2

sin u
2

)2
.

The kernel is symmetric and positive. Then it can be shown that

Kn ∗ f → f

for any, even discontinuous, f ∈ L2[−π,π ] as n → ∞. It has the effect
of smoothing the discontinuous signal f and in turn the convolution will
not exhibit the ringing artifacts for sufficiently large n. Particularly related



4.7 Correlating Functional Signals 103

to Fourier and spherical harmonic descriptors is an exponential weighting
scheme that we have introduce (Chung et al., 2007, 2008a). By weighting
Fourier coefficients with exponentially decaying weights, the series expansion
can converge faster and reduce the Gibbs phenomenon significantly.

Instead of the kth degree expansion (4.15), we define the weighted Fourier
expansion as

k∑
l=0

e−λlσ 〈f,ψl〉ψl (4.22)

for some smoothing parameter σ . Then it can be shown that (4.22) is the finite
series expansion of heat kernel smoothing Kσ ∗ f , where the heat kernel is
defined as

Kσ (t,s) =
∞∑
l=0

e−λlσ ψl(t)ψl(s).

The expansion (4.22) can be further shown to be the finite approximation to
the solution of heat diffusion

∂

∂σ
g = �g, g(t,σ = 0) = f (t).

Since the weighting scheme makes the expansion converge to heat diffusion,
the estimation at the jump discontinuity is smoothed out reducing the Gibbs
phenomenon.

4.7 Correlating Functional Signals

We can also use correlations to measure distance between functions. The
concept of correlation here can be viewed as the generalization of Pearson
correlation that is applied to discrete vector data to functional data. Consider
functional signal

ζ1(t), · · · ,ζp(t) ∈ L2[0,1].

Definition 4.7 The mean of functional signal ζi over time is given by

Et ζi =
∫ 1

0
ζi(t) dt .

The cross-covariance between functional signals ζi and ζj over interval [0,1]
is then given by

Vt (ζi,ζj ) = Et

[
(ζi − Et ζi)(ζj − Et ζj )

]
.
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The variance of ζi is

Vt ζi = Vt (ζi,ζi) =
∫ 1

0

[
ζi(t)− Et ζi(t)

]2
dt .

The cross-correlation coefficient between functional signals ζi and ζj over
interval [0,1] is

ρij = Vt (ζi,ζj )√
Vt (ζi)Vt (ζj )

.

Often we subtract Et ζi from functional signal ζi , i.e. ζi − Et such that ζi

is centered. This operation is often done to normalize signals since subjects
have different baseline average signals. From now on, we will simply assume
Et ζi = 0. If not, simply subtract by its mean. To reduce the confusion, let ηi =
ζi − Et be the centered data of ζi . Consider the cosine series representation of
centered ηi .

ηi =
k∑

l=0

cliψl(t)+ ei(t), t ∈ [0,1].

ei(t) is the residual function of the fit. If we use sufficiently large k, it is
expected that ei is small and ignorable.

The covariance of ηi and ηj is given by

Vt (ηi,ηj ) =
∫ 1

0
ηi(t)ηj (t) dt

≈
k∑

l,m=0

clicmj

∫ 1

0
ψl(t)ψm(t) dt

=
k∑

l=0

cliclj = c�i cj,

where ci = (c0i,c1i, · · · ,cki)
�. The variance of ηi is then given by

Vt ηi =
∫ 1

0
η2

i (t) dt ≈
k∑

l=0

c2
li = c�i ci .

We used the fact that ψl are orthonormal, i.e.,∫ 1

0
ψl(t)ψm(t) dt = δlm.
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The cross-correlation between functional signals ηi and ηj is then given by

ρij =
c�i cj[

c�i cic�j cj ]1/2
.

If we let bi = ci/

√
c�i ci , the correlation is simplified as

ρij = b�i bj .

Let Bk×p = [b1,b2, · · · ,bp] be the matrix of scaled Fourier coefficients.
Then the correlation matrix ρ = (ρij ) is given by ρ = B�B. This will provide
a faster but approximate computation of large-scale correlation matrices. Note
that (4.23) is exact only if k is larger than the number of sampling points n. As
k increases, the accuracy is expected to increase (Figure 4.5).

Example 4.2 Consider fMRI time series η1 and η2 obtained in two voxels 1
and 2 in the Figure 4.2 example. The Pearson correlation between η1 and η2 is

Figure 4.5 The straight line is the correlation between resting-state fMRI in two
voxels. The dotted line is the correlation between the cosine series representations.
The solid line is using the product of Fourier coefficients b�i bj . As the degree of
expansion increases, they converge to each other.
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−0.018. The baselines are Et η1 = 1,763.0 and Et η2 = 1,724.8. Now perform
degree 59 cosine series expansion on the mean subtracted signals:

η1 − 1763.0 =
59∑
l=0

cl1ψl(t)+ e1(t)

η2 − 1724.8 =
59∑
l=0

cl2ψl(t)+ e2(t), (4.23)

where e1(t) and e2(t) are the residual model fit. In this example,

Et e1 = 3.05 · 10−7, Et e2 = 5.72 · 10−6.

The Pearson correlation becomes −0.3329.

4.8 Thresholding Correlation Networks

The majority of brain network analyses have been based on thresholding
correlation edge weights in detecting focal regions of correlated voxels (Cao
and Worsley, 1999b; Koch et al., 2002). On the other hand, Worsley et al.
(2005a) used the singular value decomposition (SVD) in showing that SVD
is better at detecting extensive regions of correlated voxels compared to the
traditional method of simple correlation thresholding. Let Xn×p = (xij ) be the
matrix of p regions and n subjects. Unless it is large sample size studies, we
expect the large p small n problem. We assume X to be centered by subtracting
their mean value. We further assume that each column of X is normalized by
dividing by its root sum of squares, so that the diagonal elements of the cross-
correlation matrix �p×p = X′X is 1. The SVD of � is as follows:

� = UWU ′,

where U is an orthonormal matrix and W is a diagonal matrix of component
weights.Worsley et al. (2005a) proposed to estimate � by setting the smaller
weights in W to be zero. This is exactly the principal component analysis or
partial least squares (PLS) (McIntosh et al., 1996; McIntosh and Lobaugh,
2004). PLS is similar to PCA, but the solutions of PLS are constrained to
be part of the covariance structure. Since p can possibly reach upward of
few million voxels, the computational burden of finding SVD of � can be
prohibitive in small computers. Worsley et al. (2005a) proposed to bypass
the problem by matrix decompositions. Afterward, the statistical inference is
done either using permutation tests (Nichols and Holmes, 2002) or the random
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field theory (Worsley et al., 1998; Cao and Worsley, 1999b). Since the brain
networks are known to be sparse and highly clustered (Achard and Bullmore,
2007; He et al., 2007), it is reasonable to incorporate the sparsity of network
structures into PCA further. There have been various attempts in incorporating
spasticity in PCA using LASSO in statistics (Jolliffe et al., 2003; Zou et al.,
2006). LASSO is a widely used variable selection technique that produces
sparse models (Tibshirani, 1996). It is based on the observation that PCA can
be reformulated as the optimal solution of a regression so that LASSO can be
integrated into the regression.

The main limitation of connectivity analyses based on correlation or covari-
ance matrices is that it fails to explicitly factor out the confounding effect of
other regions. To remedy this limitation, partial correlation has been naturally
introduced in factoring out the dependencies of other regions (Marrelec et al.,
2006; He et al., 2007) or eliminating the effect of the experimental design
(McIntosh et al., 1996). Since the partial correlation corresponds to the off-
diagonal entries of the inverse covariance matrix, sparse PCA can be used
to the inverse covariance matrix. A similar frameworks found applications in
image classification (Berge et al., 2007), gene expression (Dobra et al., 2004),
flow cytometry data (Friedman et al., 2008), and functional brain network
modeling (Huang et al., 2009, 2010).



5
Big Brain Network Data

In this chapter, we explore the main characteristics of big brain network
data that offer unique computational challenges. The brain networks are
biologically expected to be both sparse and hierarchical. Such unique char-
acterizations put specific topological constraints onto statistical approaches
and models we can use effectively. We explore the limitations of the current
approaches used in the field, offer alternative approaches, and explain new
challenges as well as provide the computional solutions.

5.1 Big Data

Wikipedia defines big data as data sets that are so large or complex that
traditional data processing application software is inadequate to deal with them
(en.wikipedia.org/wiki/Big data). Big data are not just about the
size of the data, although that is the main obstacle of using traditional statistical
approaches. Big data usually include data sets with sizes beyond the ability of
standard software tools to process and analyze within a reasonable time limit.
Even 100 MB of data can be big if existing computing resources can only
handle 1 MB of data at a time. Thus, the size of the data is a relative quantity
with respect to the available computing resources.

If we pick any article in big data literature these days, chances are that we
will often encounter hardware solutions to solving big data problems. They
often suggest increasing more central processing units (CPU) or graphical pro-
cessing units (GPU) and emphasize the need for cluster or parallel computing.
For instance, Boubela et al. (2016) suggest to use parallel computing as a way
to compute large-scale Pearson correlation coefficients for 390 GB of data in
the HCP but did not suggest any other simpler algorithmic approaches that can
be implemented in a limited computing resource environment. Simply adding

108
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more hardware is costly and not necessarily an effective strategy for big data.
Such hardware approaches often do not provide a venue for more interesting
statistical problems. Further, the access to fast computational resources is not
necessarily given to everyone. Many biological laboratories still do not have
technical expertise of using cluster or parallel computing. Therefore, it is often
necessary to develop more algorithmic and statistical approaches in addressing
big data at least for biological sciences.

Big brain image and network data offer unique computational challenges.
The brain networks are biologically expected to be both sparse and hierar-
chical. Such unique characterizations put specific topological constraints onto
statistical approaches and models we can use effectively (Chung, 2018).

5.1.1 Large-Scale Brain Images

Many big data sets introduce unique computational and statistical challenges
that include scalability, storage bottleneck, data representation visualization,
and computation mostly related to sample sizes (Fan et al., 2014). However, the
challenges in big brain imaging data sets such as HCP and the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI; adni.loni.usc.edu) are slightly
different.

The majority of functional and structural connectivity studies in brain
imaging are usually performed following the standard analysis framework
(Hagmann et al., 2007; Gong et al., 2009; Fornito et al., 2010; Zalesky
et al., 2010). From 3D whole brain images, n regions of interest (ROI) are
identified and serve as the nodes of the brain network. Measurements at ROIs
are then correlated in a pairwise fashion to produce the connectivity matrix
of size p × p. The connectivity matrix is then thresholded to produce the
adjacency matrix consisting of zeros and ones that define the link between
two nodes. The binarized adjacency matrix is then used to construct the brain
network. However, for a large number of nodes, this brute force approach
has a serious computational bottleneck of manipulating a huge number of
connections and storing them. Even if we solve the computational problem,
biomedical interpretation of network will be difficult with the huge number of
links. For example, for 3 × 105 voxels in an image, we can possibly have a
total of 9 × 1010 edges in the graph.

Further, there are substantially more number of voxels (p) per image than
the number of images (n) in the data sets. Even at 3 mm low resolution,
fMRIs have more than 25,000 voxels (Chung et al., 2017a). Unless the data
set consists of more than 25,000 images, brain imaging is often the problem of
small-n large-p, which is different from the usual big data setting where n is
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often big. HCP and ADNI have n in the range of thousands, far smaller than
the number of voxels.

Traditionally, numerical accuracy has been less of concern in brain imaging
particularly due to spatial and temporal smoothing often done in images to
smooth out various image processing artifacts and physiological noises. Due
to the increased sample size and the central limit theorem, which is further
reinforced by smoothing, the statistical distribution of the data might become
less of a concern in big imaging data (Salmond et al., 2002).

In the traditional mass univariate approaches (Worsley et al., 1992), where
statistical inference is done at each voxel, the problem of small-n large-p is
not critical. Further, spatial smoothing has the effect of reducing the number
of resolution element (RESEL), so we have far fewer effective p (Worsley
et al., 1992). Smoothing also reduces the effect of image registration errors
and high-frequency noise. Gaussian kernel smoothing introduces continuous
hierarchical structure through scale space (Worsley et al., 1996a). However,
small-n large-p problems become critical in brain network modeling, where
we need to correlate different voxels. In the small-n large-p setting, the
sample covariance and correlation matrices are no longer positive definite.
Subsequently, up to p − n nodes are statistically dependent although there
might be no true dependency at all. Thus, there is need to constrain the
covariance or correlation matrices by regularization methods such as sparse
network models. Unfortunately, for large p, many sparse models have severe
computational bottlenecks (Chung et al., 2015a).

There begin to emerge large-scale brain networks with more than 25,000
nodes, where each voxel is taken as a network node (Figure 5.1) (Eguı́luz
et al., 2005; Hagmann et al., 2007; Chung et al., 2017a; Taylor et al.,
2017). The size of such large-scale brain networks can easily match pub-
licly available network data such as the Stanford Large Network Dataset
(snap.stanford.edu/data). In such large-scale networks, the small-
n large-p problem will be more severe. This type of big data requires more
scalable and robust solutions, possibly using sparse penalties.

Many traditional statistical methods that perform well for reasonable
sample size do not scale well with big data. Many likelihood or L1-norm
optimization techniques do not scale well with big data. Methods should likely
to scale linearly or at least polynomially to even able to compute in a tolerable
time limit. Any method that scales exponentially with increased sample size is
not going to be useful. Permutation test is one such method. Any method that
requires the complete data set as an input is not going to be useful as well. The
following are the desirable properties of efficient computational methods for
big data.



5.1 Big Data 111

Figure 5.1 Left: Dense fMRI correlation network consisting of more than 25,000
nodes (Chung et al., 2017a). The network is so dense, simply displaying all the
nodes and edges of the network is not very informative. It is necessary to represent
such a dense network more sparsely. The sparse correlation network model with
sparse parameters λ = 0.7 (middle) and λ = 0.8 (right). It can be shown that they
form a nested hierarchy called the graph filtration.

1. An effective method should be unbiased and sufficiently fast. The iterative
residual fitting algorithm, originally developed for estimating more than
20,000 spherical harmonic coefficients per brain, may offer one such
solution (Chung et al., 2008a). The algorithm sequentially breaks down
one gigantic problem into smaller problems in an iterative fashion.

2. An effective method should require only a small subset of the full data in
accurately estimating the underlying model. Online algorithms, which we
will discuss later, are such methods.

5.1.2 Large-Scale Brain Networks

Purely data-driven approaches for large-scale brain networks are not going to
be computationally efficient or effective. It is often necessary to incorporate
the first-order principles of brain networks into models to possibly reduce
computational bottlenecks. Large-scale brain networks are often characterized
by sparsity and hierarchy (Chung, 2018). The sparsity and hierarchy are highly
relevant topological characterizations to other types of big network data such
as social networks (Christakis and Fowler, 2007), World Wide Web (WWW)
(Adamic, 1999), and genomic regulatory networks (Luscombe et al., 2004).
Given any type of real-world network, it is unlikely that all the nodes are
densely connected to each other. It is expected that the network will have suffi-
cient sparsity. Many large-scale networks such as social networks and WWW
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show a scale-free characteristic, which is the main characteristic of hierarchical
networks. Although we don’t expect all networks to be hierarchical or sparse,
these aspects of brain network should be applicable to other big network data.
In this section, we will explore two main characterizations of brain networks
that should be utilized in even small data settings. We will further explore
various statistical challenges related to such characterizations.

5.2 Sparsity

At the microscopic level, the activation of cortical neurons in the brain
show sparse and widely distributed patterns (Histed and Reid, 2009). At
the macroscopic level, DTI can produce up to a half-million white matter
fiber tracts per brain. Even then, not every part of the brain is anatomically
connected to other parts of the brain but sparsely connected (Chung et al.,
2017b). This can be seen from Figure 5.2, where the brain is parcellated
into 116 disjoint regions and the number of white matter fiber tracts passing
between the regions is used in constructing the structural connectivity matrix
(Chung et al., 2017b). Even though the white matter fibers are very dense, the
resulting connectivity matrix is sparse. For 116×116 connectivity matrix, 60%
of entries are zeros. As we increase the number of parcellations, the sparsity
increases while the total degree of all nodes decreases (Figure 5.3). Note the
degree of nodes counts the number of connections at a node. Thus, it also
measures the sparsity of the network.

Figure 5.2 (a) White matter fiber tracts obtained from a tractography algorithm.
(b) The brain is parcellated into 116 disjoint regions. (c) Connectivity matrix
showing how each region is connected to other regions. Even thoroughly fiber
tracts are very dense, the resulting connective matrix is always sparse since not
every part of brain is connected to each other (Chung et al., 2017b).
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Figure 5.3 Left: plot of sparsity over the number of parcellations. The sparsity is
measured as the ratio of zero entries over all entries in the connectivity matrix.
Right: plot of total degree of nodes over the number of parcellations. The vertical
axis measures the ratio of the total number of connections over every possible
connection. The plots all show the sparse nature of brain networks at any spatial
scale.

In fMRI studies, functional connectivity, which measures the dependency
of brain activity in one region to another region, is often measured by
correlation, covariance or spectral coherence of fMRI time series. Since the
brain does not activate everywhere simultaneously (Chung et al., 2017a),
functional connectivity is also expected to be not dense but sparsely clustered.
It is reasonable to assume both functional and anatomical brain networks are
sparsely connected at the both microscopic and macroscopic levels. Thus, there
is strong biological justification for modeling brain networks sparsely.

The small-n large-p problem in brain imaging often produces underdeter-
mined models with an infinite number of possible solutions. Such problems are
usually remedied by regularizing the systems with additional sparse penalties.
Sparse models used in brain imaging include compressed sensing (CS) (Lee
et al., 2011c), sparse correlations (Chung et al., 2017a), LASSO (Huang et al.,
2009; Lee et al., 2011c), sparse canonical correlations (Avants et al., 2010),
and graphical-LASSO (Huang et al., 2009; Chung et al., 2015a). Most of these
sparse models require optimizing L1-norm penalties, which has been the major
computational bottleneck for solving large-scale problems in brain imaging.
Thus, almost all sparse brain network models have been restricted to a few
hundreds nodes or less. Probably the largest number of features used in any
sparse model in the brain imaging literature is 2,527 MRI features used in a
LASSO model for Alzheimer’s disease (Xin et al., 2015) is probably the largest
number of features used in any sparse model in the brain imaging literature.
Recently, more scalable large-scale sparse brain network models, where each
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voxel is a network node, are beginning to emerge (Chung et al., 2017a).
For such large-scale network construction, faster scalable algorithms are
needed.

There are few previous studies at speeding up the computation for sparse
models. By identifying block diagonal structures in the estimated inverse
covariance matrix, it is possible to reduce the computational burden in the
penalized log-likelihood method (Mazumder and Hastie, 2012). In Chung
et al. (2017a), the computational bottleneck of L1-optimization is overcome
by simplifying the sparse network problem into an orthogonal design in
LASSO (Tibshirani, 1996). Other promising methods include a constrained
L1-minimization estimator (CLIME) (Wang et al., 2016a) and faster compu-
tations for graphical-LASSO (Witten et al., 2011), although they have not yet
been applied to large-scale brain networks.

Any sparse brain network model is usually parameterized by a tuning
parameter that controls the sparsity of the solution. Increasing the sparse
parameter makes the solution more sparse. Thus, sparse models are inherently
multiscale, where the scale of the model is determined by the sparsity. Many
existing sparse network models use a fixed parameter λ that may not be optimal
in other data sets or studies. Depending on the choice of the sparse parameter,
the final network structure will be different (Lee et al., 2012; Chung et al.,
2015a). There is a need to develop a multiscale sparse network model that
provides consistent analysis results and interpretation regardless of the choice
of parameter (Chung et al., 2015a, 2017a).

5.3 Hierarchy

Brain networks are fundamentally multiscale. An intuitive and palatable
biological hypothesis is that brain networks are organized into hierarchies
(Betzel and Bassett, 2017). A brain network at any particular sale might be
subdivided into subnetworks, which can be further subdivided into smaller
subnetworks in an iterative fashion. There have been various attempts at
modeling brain networks at multiple scales (Lee et al., 2012; Chung et al.,
2015a, 2017a; Betzel and Bassett, 2017). Unfortunately, many multiscale
models give raise to conflicting topological structures of the networks from one
scale to the next. For instance, the estimated modular structure in the multiscale
community detection problem usually do not have continuity over different
resolution parameters (Betzel and Bassett, 2017). The topological structure
of parcellation at one particular scale may not carry over to different scales
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(Zalesky et al., 2010; Betzel and Bassett, 2017). There is a need to develop
a hierarchical parcellation scheme that provide a consistent network analysis
results and interpretation regardless of the choice of scale.

5.3.1 Hierarchical Structural Parcellation

It is possible to come up with a new hierarchical parcellation scheme based on
the Courant nodal domain theorem (Courant and Hilbert, 1953). The method
is related to graph cuts (Shen et al., 2010) and spectral clustering (Craddock
et al., 2012; Pepe et al., 2015) based parcellation schemes previous used in
parcellating the resting-state functional magnetic resonance images. However,
unlike previous parcellation approaches, it is possible to provide hierarchical
nestedness and, thus, preserve topology across different spatial resolutions.
This can be achieved through Courant nodal domain theorem (see Figure 5.4).

Figure 5.4 Left: anatomical automatic labeling (AAL) parcellation with 116
predefined ROI. Each parcellation is displayed as a disconnected mesh surface.
Each ROI serves as a node in a 116 × 116 connectivity matrix. For visualization
purposes, we have added artificial empty gaps between mesh surfaces. The red
region is the left precentral gyrus. Middle: the second layer of the hierarchical
parcellation with 2 × 116 regions. Each AAL parcellation is subdivided into two
disjoint regions. Right: the third layer of the hierarchical parcellation with 4×116
regions.
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Courant nodal domain theorem. For Laplacian � in a compact domain
M ⊂ R3, consider eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · ·
and eigenfunctions ψ0,ψ1,ψ2, · · · satisfying

�ψj(p) = λjψj (p).

We then have ψ0(p) = 1/
√

μ(M), where μ(M) is the volume of M. From
the orthogonality of eigenfunctions, we have∫

M
ψ0(p)ψ1(p) dμ(p) = 0.

Thus, ψ1 must be take positive and negative values (see Figure 5.5). The
Courant nodal domain theorem (Courant and Hilbert, 1953) further states
that ψ1 divides M into two disjoint regions by the nodal surface boundary

Figure 5.5 Top: a 3D binary image is converted to a 3D graph based on the 18-
connected neighbor scheme. Here only a 2D image slice result is shown. Bottom:
the Fidler’s vector, which is the first nontrivial eigenvector of the graph Laplacian,
is then computed. By clustering the graphs depending on the sign of the Fidler’s
vector, we can split the graph into two disjoint regions.
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Figure 5.6 The hierarchical parcellation of an AAL ROI (left precentral gyrus
shown in Figure 5.7) up to the fourth layer. At the fourth layer, we have 23

sub-parcellations. The hierarchical parcellation is represented as a binary tree
and indexed using two numbers in computer implementation (layer, indexing for
parcellation). The root node (1,1) is the AAL parcellation. At the next layer, nodes
(2,1), (2,2) correspond to the partition of the AAL parcellation.

ψ1(p) = 0. When the domain is discretized as a 3D graph, the second
eigenfunction ψ1 is called the Fiedler vector. It is often used in spectral
clustering and graph cuts (Shen et al., 2010; Chung et al., 2011b). Applying
iteratively the nodal domain theorem, we can hierarchically partition M in a
nested fashion. Once domain M is divided into M1 and M2 based on the sign
of the second eigenfunction, we iteratively recompute the second eigenfunction
of Laplacian restricted to M1 and M2. Then we proceed with subpartitioning
M1 and M2 further (see Figure 5.6).

The Courant nodal domain theorem can be discretely applied to the AAL
parcellation as follows. We first convert the binary volume of each parcellation
in AAL into a 3D graph by taking each voxel as a node and connecting
neighboring voxels. Using the 18-connected neighbor scheme, we connect two
voxels only if they touch each other on their faces or edges. If voxels are only
touching at their corner vertices, they are not considered as connected. This
results in an adjacency matrix and the 3D graph Laplacian. The computed
Fiedler vector is then used to partition each AAL parcellation into two
disjoint regions (Figures 5.4 and 5.7). For each disjoint subregion, we further
recompute the Fiedler vector restricted to the subregion. This binary partition
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Figure 5.7 Hierarchical parcellation of the left precentral gyrus (shown in
Figure 5.4) up to the eighth layer. At the eighth layer, we have 28−1 = 128
parcellations of the gyrus. The hierarchical parcellation continues until every
voxel is a parcellation.

process iteratively continues until all the partitions are voxels. We are doubling
the number of parcellations at each iteration. There are a total of p = 116
parcellations in layer 1 and 2 · 115 parcellations in layer 2. At the ith layer,
there are 2i−1 · 116 parcellations. This way, we can construct 20-layer nested
hierarchical parcellations all the way to the voxel level. Since the number
of voxels is not uniform across AAL parcellations, we are approximately
doubling the number of parcellations at each iteration.

It is possible to hierarchically parcellate the brain regions into small sub-
regions. This requires first converting the binary volume of each parcellation
into an adjacency matrix, which represents how each voxel is connected to
other voxels. Using the 18-connected neighbor scheme, we define two voxels
are connected only if they touch each other on their faces or edges. If they
are only touching at their corner vertices, they will not be considered as
connected. Figure 5.5 shows the result of binary voxels converted to graphs
on two representative slices. Depending on the scale of parcellation, the
parameters of graph, which characterize graph topology, vary considerably up
to 95% (Fornito et al., 2010; Zalesky et al., 2010). Thus, there is a need for
parcellation-free brain network node identification methods.
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5.3.2 Hierarchical Structural Connectivity

At the each layer of the hierarchical parcellation (Chung et al., 2018b), we
count the total number of white matter fiber tracts connecting parcellations
as a measure of connectivity. The resulting connectivity matrices form a
convolutional network. Let Si

jk denote the total number of tracts between

parcellations Ri
j and Ri

k at the ith layer (Figure 5.8). The connectivity Si
jk

at the ith layer is then the sum of connectivities at the (i + 1)th layer
(Figure 5.9), i.e.,

Si
jk =

∑
Ri+1

l ⊂Ri
j

∑
Ri+1

m ⊂Ri
k

Si+1
lm .

The sum is taken over every subparcellation of Ri
j and Ri

k . This provides

a subject-level connectivity matrix. The connectivity matrix Si = (Si
jk) is

expected to be very sparse at any hierarchy (Figure 5.9). Note the diagonal
elements of matrix Si = (Si

jk), which defines node values, are unspecified yet.

Then connectivity matrix Si will also have a hierarchical structure.
Persistent homology may offer an effective framework in addressing the

topological inconsistency in multiscale models. Instead of studying images
and networks at a fixed scale, as usually is done in traditional approaches,
persistent homology summarizes the changes of topological features over
different scales and identifies the most persistent topological features that
are robust under different scales. This robust performance under different
scales is needed for network models that are parameter and scale dependent.
Instead of building networks at one fixed parameter that may not be optimal,
persistent homological approaches exploit the topological structure of the data

Figure 5.8 Two representative AAL parcellations R1
1 (right precentral gyrus) and

R1
2 (left precentral gyrus) at the first layer will be partitioned into four subregions

R2
1,R

2
2,R

2
3, and R2

4 at the second layer. The fiber tracts will be counted between
the parcellations.
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Figure 5.9 The hierarchical connectivity matrices of MZ- (top) and DZ-twins
(bottom). The parts of connectivity matrices of the layers 1, 2, and 3 are shown.
They form a layered convolutional network, where the convolution is defined as
the sum of tracts between subparcellations.

and models. In doing so, topologically consistent nested hierarchical networks,
called the graph filtration, are obtained (Lee et al., 2012; Chung et al., 2015a).
Such a nested hierarchical structure can further speed up various computations
even for large-scale networks with a billions of connections (Chung et al.,
2017a).

5.4 Computing Large Correlation Matrices

For constructing large-scale correlation-based brain networks, a different type
of correlation computation technique is needed. Existing built-in functions
in MATLAB and R packages for computing correlation matrices are not
necessarily optimized for large-scale data. For large correlation matrices of
size p × p, where p > 10,000, the matrix computation takes a long time
and requires significant memory (see Figure 5.10). The built-in functions in
MATLAB and R packages are often not written in a computationally efficient
fashion. The pairwise computation of correlations is not efficient. A more
efficient way is to scale and normalize the data matrice first and compute the
correlation matrix as a matrix product (Chung et al., 2015a, 2017a).
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Figure 5.10 Top, middle: edge colors are Spearman’s rank correlations thresh-
olded at 0.3 for MZ- and DZ-twins for different layers. Node colors are the
maximum correlation of all the connecting edges. Bottom: edge colors are the
heritability index (HI). Node colors are the maximum HI of all the connecting
edges. MZ-twins show higher correlations compared to DZ-twins. The node and
edge sizes are proportionally scaled.

Suppose we have n × p data matrices X = (xij ) and Y = (xij ), where n

is the number of images and p is the number of voxels we are interested in
computing correlations. We scale and normalize along the columns such that

n∑
i=1

xij = 0,
n∑

i=1

x2
ij = 1, (5.1)

n∑
i=1

yij = 0,
n∑

i=1

y2
ij = 1. (5.2)

Then the correlation matrices of X and Y are defined as

corr(X) = X�X, corr(Y ) = Y�Y .

If n � p, the correlation matrices are full rank and invertible. If not, we no
longer have well-defined correlation matrices and regularizations are possibly
needed. The cross-correlation matrices of X and Y are defined as

corr(X,Y ) = X�Y,
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which is not symmetric. To make it symmetric, we can perform a symmetri-
zation:

(X�Y + Y�X)/2.

The preceding procedure can be implemented as

function Z = corr2norm(X)
[n p]=size(X);
meanX=mean(X,1);
meanX=repmat(meanX,n,1);
X1=X-meanX;
diagX1 = sqrt(diag(X1’*X1));
X1=X1./repmat(diagX1’, n,1);
Z=X1;

Figure 5.11 fMRI cross-correlation network of monozygotic (MZ) and same-sex
dizygotic (DZ) twins with 25,972 nodes (Chung et al., 2017a). Only positive
correlations are shown.
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Once we normalize the data matrix, the cross-correlation matrix C is simply
given as the product of martrices:

X= corr2norm(X);
Y = corr2norm(Y);
C = X’*Y;

This is perhaps the fastest way to compute large-scale correlation matrices.
Due to scaling,

X’*X= 1
Y’*Y= 1

Often, data matrix Xwill likely to have missing values, which are often denoted
as NaN in MATLAB. The preceding algorithm assumes there is no missing
value. It may necessary to perform missing data treatment for any entry
with NaN. Figure 5.11 displays the large-scale cross-correlation networks with
25,972 nodes constructed using the method (Chung et al., 2017a).

5.5 Online Algorithms

In terms of computation, many existing brain image analysis soft-
ware such as SPM (www.fil.ion.ucl.ac.uk/spm) and AFNI
(afni.nimh.nih.gov) are not effective for big data. The general statistical
premise of such mainstream tools is that all the image measurements are
available in the computer memory and statistics are computed using all the
data. However, in the big data setting, it may not be possible to fit all of the
imaging data in a computer’s memory, making it necessary to perform the
analysis by adding one image at a time in a sequential manner. We need a
way to incrementally update the statistical analysis results without repeatedly
running the entire analysis whenever new images or parts of images are added.

An online algorithm is one that processes its inputted data in a sequential
manner (Chung et al., 2017c). Instead of processing the entire set of imaging
data from the start, an online algorithm processes one image at a time. That
way, we can bypass the memory requirement, reduce numerical instability,
and increase computational efficiency. With the ever-increasing amount of
large-scale brain imaging data sets such as ADNI and HCP, the development
of various online statistical methods is warranted (Chung et al., 2017c).
Thus, here is an immediate need to develop the online version of sparse or
hierarchical network models, although there are no such available methods
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yet. Even large-scale Pearson correlation coefficients can be computed using
an online algorithm.

Existing statistical analysis packages such as MATLAB and R also assume
all measurements to be available in computer memory. Unless substantial
modification to existing codes is made, we cannot even compute t-statistics
for extremely large data that will not fit into the computer memory using the
built-in functions. Thus, there is a strong need to develop online algorithms for
big data beyond brain imaging.

5.5.1 Online Two-Sample t-Test

Given data x1, · · · ,xm, an online algorithm for computing the sample mean
μm is given by

μm = 1

m

m∑
i=1

xi

= μm−1 + 1

m
(xm − μm−1)

for any m ≥ 1. The algorithm updates the previous mean μm−1 with new data
xm. This algorithm avoids accumulating large sums and tend to be numerically
more stable (Finch, 2009).

An online algorithm for computing the sample variance σ 2
m is algebraically

involved (Knuth, 1981; Chan et al., 1983). After lengthy derivation, it can be
shown that

σ 2
m = 1

m− 1

m∑
i=1

(xi − μm)2

= m− 2

m− 1
σ 2

m−1 +
1

m
(xm − μm−1)

2

for m ≥ 2. The algorithm starts with the initial value σ 2
1 = 0.

For comparing a collection of data between groups, two-sample t-statistic
can be used. Given measurements x1, · · · ,xm ∼ N(μ1,(σ 1)2) in one group
and y1, · · · ,yn ∼ N(μ1,(σ 2)2) in the other group, the two-sample t-statistic
for testing

H0 : μ1(x) = μ2(x) vs. H1 : μ1(x) > μ2(x)

at each x is given by

Tm,n(x) = μ1
m − μ2

n − (μ1 − μ2)√
(σ 1)2

m/m+ (σ 2)2
n/n

,
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where μ1
m,μ2

n, (σ 1)2
m,(σ 2)2

m are sample means and variances in each group
estimated using the online algorithm. Tm,n is then sequentially computed as

T1,0 → T2,0 → · · · → Tm,0 → Tm,1 → · · · → Tm,n

in m+ n steps.

5.5.2 Online Algorithm for Linear Regression

The online algorithm for linear regression is itself useful but additionally more
useful in constructing an online algorithm for F -tests in the next section. Given
data vector ym−1 = (y1, · · · ,ym−1)

� and design matrix Zm−1, consider linear
model

ym−1 = Zm−1λm−1

with unknown parameter vector λm−1 = (λ1,λ2, · · · ,λk)
�. Zm−1 is a matrix

of size (m− 1)× k. Multiplying Z�
m−1 on the both sides, we have

Z�
m−1ym−1 = Z�

m−1Zm−1λm−1. (5.3)

Let Wm−1 = Z�
m−1Zm−1, which is a k × k matrix. In most applications, there

are substantially more data than the number of parameters, i.e., m � k, and
Wm−1 is invertible. The least squares estimation (LSE) of λm−1 is given by

λm−1 = W−1
m−1Z

�
mym−1.

When new data ym are introduced to the linear model (5.3), the model is
updated to (

ym−1

ym

)
=

(
Zm−1

zm

)
λm,

where zm is a 1 × k row vector. Subsequently, we have

(Z�
m−1 z�m)

(
ym−1

ym

)
= (Z�

m−1 z�m)

(
Zm−1

zm

)
λm

Z�
m−1ym−1 + z�mym = (Wm−1 + z�mzm)λm.

From Woodbury formula (Deng, 2011), we can write

(Wm−1 + z�mzm)−1 = W−1
m−1 − cmW−1

m−1z
�
m,

where cm = 1/(1 + zmWm−1z
�
m) is scalar. Then we have the explicit online

algorithm for updating the parameter vector:

λm = (I −W−1
m−1z

�
mym − cmW−1

m−1z
�
mW�

m−1)λm−1 − cmW−1
m−1z

�
mz�mym,
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where I is the identity matrix of size k×k. Since the algorithm requires Wm−1

to be invertible, the algorithm must start from

λk → λk+1 → · · · → λm.

At each iteration, we need to store k× k matrix Wm−1. In many applications, k

will not be larger than 10 and most likely around 5 or less, which is manageable
as far as computer memory is concerned.

A similar online algorithm for fitting a general linear model (GLM) was
introduced for real-time fMRI (Bagarinao et al., 2006), where the Cholesky
factorization was used to invert the covariance matrix in solving GLM. Our
approach based on the Woodbury formula does not require the factorization or
inversion of matrices.

5.5.3 Online Algorithm for F-Test

An online algorithm for the F -test is involved, but it is based on the online
algorithm for linear regression. Let yi be the ith data, xi = (xi1, · · · ,xip)�

be the variables of interest, and zi = (zi1, · · · ,zik)
� be nuisance covariates

corresponding to the ith data. We assume there are m − 1 data to start with.
Consider a general linear model (Chung, 2013)

ym−1 = Zm−1λm−1 +Xm−1βm−1,

where Zm−1 = (zij ) is (m − 1) × k design matrix, Xm−1 = (xij ) is (m −
1)× p design matrix. λm−1 = (λ1, · · · ,λk)

� and βm−1 = (β1, · · · ,βp)� are
unknown parameter vectors to be estimated at the (m−1)th iteration. Consider
hypotheses

H0 : β = 0 vs. H1 : β �= 0.

The reduced null model when β = 0 is

ym−1 = Zm−1λ
0
m−1.

The goodness-of-fit of the null model is measured by the SSE:

SSE0
m−1 = (ym−1 − Zm−1λ

0
m−1)

�(ym−1 − Zm−1λ
0
m−1),

where λ0
m−1 is estimated using the online algorithm (5.4). This provides the

sequential update of SSE under H0:

SSE0
k → SSE0

k+1 → · · · → SSE0
m.

Similarly, the fit of the alternate full model is measured by

SSE1
m−1 = (ym−1 − Zm−1γ

1
m−1)

�(ym−1 − Zm−1γ
1
m−1),
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where Zm−1 = [Zm−1Xm−1] is the combined design matrix and of size (m −
1)× (k + p), and

γ 1
m−1 =

(
λ1

m−1
β1

m−1

)
is the combined parameter vector of size (k+p)×1. Similarly, using the online
algorithm (5.4), SSE under H1 is given as

SSE1
k+p → SSE1

k+1 → · · · → SSE1
m.

Under H0, the test statistic at the mth iteration fm is given by

fm = (SSE0 − SSE1)/p

SSE0/(m− p − k)
∼ Fp,m−p−k,

which is the F -statistic with p and m− p − k degrees of freedom.

5.5.4 Online Algorithm for a Correlation Matrix

Using a similar iterative principle, it is possible to update the Pearson
correlation when new data are added. Bivariate data xn = (x1,x2, · · · ,xn)

and yn = (y1,y2, · · · ,yn) are given. The Pearson correlation between xn

and yn is given by ρ(xn,yn). Suppose new data xn+1 and yn+1 are added to
existing data xn and yn respectively. Then it is possible to compute the Pearson
correlation between xn+1 = (xn,xn+1) and yn+1 = (yn,yn+1) as a function
of ρ(xn,yn) and xn and yn only. The numerical implementation will input
existing correlation value ρ(xn,yn) and new data xn+1 and yn+1, then outputs
ρ(xn+1,yn+1). One possible iterative solution is1

nV(xn+1,yn+1) = (n− 1)V(xn,xn)+ n

n+ 1
(xn+1 − μn)(yn+1 − μn),

where μn is the online algorithm for the sample mean and V is the sample
covariance. The normalization of the sample covariance is needed to obtain the
online version of correlation. It is possible to have slightly different variations
to the preceding formulation.

We can further construct an online algorithm for computing the correlation
matrix. Suppose n subjects are given. Each subject has p measurements. The
ith subject data vector can be denoted as

xi = (xi1,xi2, · · · ,xip)�.

1 The formulation was derived by Tiankang Xie of University of Wisconsin–Madison and Zewei
Lin of Renmin University.
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The p × p correlation matrix Cn = (cn
ij ) across subjects is given by cn

ij =
ρ(xi,xj ), the Pearson correlation between xi and xj . Now we add the (n+1)th
subject with p measurements, denoted as xn+1. Then the correlation matrix
Cn+1 of all (n + 1) subjects can be computed using only Cn and xn+1. The
resulting p× p correlation matrix Cn+1 is a function of Cn and xn+1 only and
the online algorithm is based on the iterative formula. One possible solution
can be derived by making the matrix version of the iterative algorithm for
correlations.



6
Network Simulations

This chapter covers a practical issue often needed but ignored in brain network
analysis. For validating and comparing different brain network models, it
is often necessary to simulate networks with specific properties. In this
chapter, we will study how to generate complex networks randomly using the
mathematical ground truth (Chung et al., 2015a, 2017a,d). The basic tools
for simulating complex random networks statistically are multivariate data
analysis and mixed-effect models.

6.1 Multivariate Normal Distributions

We start with reviewing multivariate normal distributions. The multivariate
normal distribution is a generalization of the univariate normal distribution to
higher dimensions. So it can be defined from normal distributions as follows.

Definition 6.1 Random variable Z has standard normal distribution, denoted
as N(0,1), if its probability density function is

P(Z = z) = 1√
2π

e−z2/2.

The cumulative distribution function of Z is the probability

P(Z ≤ z) =
∫ z

−∞
1√
2π

e−z2/2 dz. (6.1)

If Z is standard normal, it is often denoted as

Z ∼ N(0,1).

The integral (6.1) is often called the error function in engineering literature.
All other normal distributions are a linear transformation of Z.

129
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Definition 6.2 If Z is standard normal, X = σZ+μ is distributed as normal
with mean μ and variance σ 2. This is denoted as N(μ,σ 2).

Definition 6.3 Given random vectors Z and W , the cross-covariance matrix
is given by

V(Z,W) = E
[
(Z − EZ)(W − EW)�

]
.

The covariance matrix of Z is then defined as

VZ = V(Z,Z).

The algebraic derivation can show that (6.2) can be rewritten as

VZ = E(ZZ�)− EZ(EZ�).

Definition 6.4 Consider random vector Z = (z1, · · · ,zp)�, where each
component is independent and identically distributed as zi ∼ N(0,1). Then
for vector μ and matrix H , X = μ+HZ is distributed as multivariate normal
with mean μ and the covariance matrix HH�. This is denoted as

X ∼ N(μ,HH�).

The covariance matrix HH� is computed as follows

V(HZ) = E
[
(HZ)(HZ)�

] = HH�

since E(ZZ�) = I , the identity matrix. Thus, the covariance matrix is
symmetric positive definite.

6.1.1 Cholesky Factorization

Theorem 6.1 (Cholesky factorization) Any p × p symmetric positive definite
matrix V = (vij ) can be factored as V = HH�, where H = (hij ) is a lower
triangular matrix with real and positive diagonal entries and H� is the upper
triangular matrix.

The proof is given in Harville (1997).

Theorem 6.2 Given the Cholesky factorization of SPD matrix V = HH�,
V = (vij ),H = (hij ), we have

hjj =
(
vjj −

j−1∑
k=1

h2
jk

)1/2
,

hij =
vij −

∑j−1
k=1 hikhjk

hjj

for i > j .
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The main advantage of Cholesky factorization is the explicit formulation
Theorem 6.2 for factorization. The Cholesky factorization has been often used
for various matrix computations as well as proving difficult theorems. The
Cholesky factorization can be used to simulate random networks with specific
covariance matrix as edge weights. MATLAB implements the Cholesky
factorization as chol.m. The MATLAB convention uses the upper triangular
matrix as the Cholesky factor while many textbooks use the lower triangular

matrix. In MATLAB, the Cholesky factor H� of V =
(

2 1
1 2

)
is computed

as follows:

V=[2 1
1 2];

Htr=chol(V)
Htr =

1.4142 0.7071
0 1.2247

Htr’*Htr
ans =

2.0000 1.0000
1.0000 2.0000

Consider simulating 10,000 multivariate normal random vectors with zero
mean and covariance

V =
(

2 1
1 2

)
can be done via Cholesky factorization as follows. We use the Gaussian
random number generator normrnd, which generates a collection of N(0,1)

variables:

z1 = normrnd(0,1,10000,1);
z2=normrnd(0,1,10000,1);
W=Htr’*[z1 z2]’;
figure; plot(W(1,:), W(2,:),’.k’)

The result is displayed in Figure 6.1. The covariance matrix is then estimated
by computing the sample covariance:

cov(W’)
ans =
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Figure 6.1 Left: 10,000 mean-zero bivariate normal vectors with covariance
matrix V . The principal eigenvector of V corresponds to the direction of data
elongation. Right: using the Cholesky factorization, we can uncorrelate the data.

2.0475 1.0379
1.0379 2.0381

Even with 10,000 data points, the covariance matrix is not easy to estimate
accurately.

6.1.2 Gaussianness

Often it is necessary to check Gaussianness of network data. Since many
statistical network models assume normality, checking if imaging data follows
normality is an important problem. The normality of data is easily checked
visually using the quantile-quantile (QQ) plot first introduced by (Wilk and
Gnanadesikan, 1968). The QQ-plot is a visualization technique for comparing
two distributions by plotting their quantiles against each other. A special case
of QQ-plot is the normal probability plot where the quantiles from an empirical
distribution of data are plotted on the vertical axis while the theoretical
quantiles from a Gaussian distribution are plotted on the horizontal axis. It
is used to check graphically if the empirical distribution follows the theoretical
Gaussian distribution. If the data follow Gaussian, the normal probability plot
should be close to a straight line.

Definition 6.5 The quantile point q for random variable X is a point that
satisfies

P(X ≤ q) = FX(q) = p,

where FX is called the cumulative distribution function (CDF) of X.
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Since CDF is monotonically increasing, we can find the inverse of CDF.
Then the quantile q is given by

q = F−1
X (p).

This function is mainly referred to as the quantile function. The QQ-plot of
two random variables X and Y is then defined to be a parametric curve C(p)

parameterized by p ∈ [0,1]:

C(p) = (
F−1

X (p),F−1
Y (p)

)
.

Theorem 6.3 The QQ-plot (6.2) for two Gaussian distributions is a straight
line.

Proof. Suppose

X ∼ N(μ1,σ
2
1 ), Y ∼ N(μ2,σ

2
2 ).

Let Z ∼ N(0,1) and (z) = P(Z ≤ z), the CDF of the standard normal
distribution. Denote q1 and q2 to be the pth quantiles for X and Y respectively.
Then we have

p = P(X ≤ q1)

= P
(X − μ1

σ1
≤ q1 − μ1

σ1

)
= 

(q1 − μ1

σ1

)
.

Hence the parameterized QQ-plot is given by

q1(p) = μ1 + σ1
−1(p),

q2(p) = μ2 + σ2
−1(p).

This is an explicit parametric form of the QQ-plot. The implicit form without
−1(p) is given by

q1 − μ1

σ1
= q2 − μ2

σ2
,

the equation for a line. This shows the QQ-plot of two normal distributions
is a straight line. The ratio of variability σ1/σ2 determines the slope of the
line. �

Theorem 6.3 can be used to determine the normality of scalar data. We can
check how closely the sample quantiles correspond to the normal distribution
by plotting the QQ-plot of the sample quantiles vs. the corresponding quantiles
of a normal distribution. In normal probability plot, we plot the QQ-plot of the
sample against the standard normal distribution N(0,1). The sample quantiles
are obtained using the empirical CDF.
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6.1.3 Empirical Distributions

The CDF FX(q) measures the proportion of random variable X less than given
value q. So by counting the number of measurements less than q, we can
empirically estimate the CDF. Let X1, · · · ,Xn be a random sample of size n.
Then order them in increasing order:

min(X1, · · · ,Xn) = X(1) ≤ X(2) ≤ · · · (6.2)

≤ X(n) = max(X1, · · · ,Xn). (6.3)

The monotonic sequence of random variables X(1), · · · , X(n) is often called
the order statistic. Suppose X(j) ≤ q < X(j+1). This implies that there are j

samples that are smaller than q. So we approximate the CDF as

F̂X(q) = j

n
.

The j/nth sample quantile is then X(j) (Chung, 2013). Some authors define
the sample quantile as the (j − 0.5)/nth sample quantile. The factor 0.5 is
introduced to account for the descritization error.

In numerical implementation, it is easier to implement the empirical
distribution using the step function Iq(x) which is implemented as

Iq(x) =
{

1 if x ≤ q

0 if x > q
.

Then the CDF is empirically estimated as

F̂X(q) = 1

n

n∑
i=1

Iq(Xi),

where Iq(Xi) counts how many times Xi is less than q. A different, possibly
more sophisticated CDF estimation can be found in (Frigge et al., 1989).

Example 6.1 Consider the problem of plotting the quantile function for the
exponential random variable X with parameter λ = 2. Its probability density
function is given by

f (x) = λe−λx .

It can be shown that

F−1
X (p) = −1

2
ln(1 − p).

We generate the QQ-plot of X ∼ exp(2) vs. Y ∼ exp(2) using the
exponential random number generator exprnd (Figure 6.2). Since they are
identical distributions, we expect the straight line as the QQ-plot:



6.1 Multivariate Normal Distributions 135

Figure 6.2 Left: QQ-plot of X ∼ exp(2) over Y ∼ exp(2). We expect the straight
line. Right: QQ-plot of X ∼ N(0,1) over Y ∼ exp(2).

X=exprnd(2, 10000,1);
Y=exprnd(2, 10000,1);
subplot(1,2,1); qqplot(X,Y);

When we generate the QQ-plot of X ∼ N(0,1) vs. Y ∼ exp(2), we get a
curve (Figure 6.2):

X=normrnd(0,1, 10000,1);
Y=exprnd(2, 10000,1);
subplot(1,2,2); qqplot(X,Y);

6.1.4 Multivariate Normality

Often it is necessary to check multivariate Gaussian assumptions in practice.
Given multivariate vector W , we are interested in testing if the data follow
variate normal. We can use the χ2 goodness-of-fit test, but a simpler approach
would be to check if given bivariate data can be generated from normal
distributions:

W = HZ + μ,Z ∼ N(0,I )

for some unknown H and μ. Thus, we need to check if

H−1(W − μ) = Z ∼ N(0,I ).

Example 6.2 Let us check if W is distributed as a bivariate Gaussian. In this
particular example, we assumed the mean of data is zero, so there is no need
to estimate μ.
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Htr = Htr’
1.4142 0
0.7071 1.2247

inv(Htr)
0.7071 0
-0.4082 0.8165

Z=inv(Htr)*W;
figure; plot(Z(1,:), Z(2,:) ,’.k’)

The components of Z become uncorrelated (Figure 6.1). Then we check the
normality of each component of Z using quantile-quantile plots.

6.2 Multivariate Linear Models

Consider a simple higher-dimensional generalization of linear model:

u(x) = μ(x)+�1/2(x)ε(x), (6.4)

where u is a vector of observations at position x, μ is the unknown mean vector
and �(x) is the symmetric positive-definite covariance matrix, which allows
for correlations between components of u and depends on the coordinates x

only (Worsley et al., 1996b; Cao and Worsley, 1999a; Chung et al., 2001b).
Since � is symmetric positive-definite, the square root of � always exists. The
components of the error vector ε are assumed to be independent and identically
distributed as smooth stationary Gaussian random fields with zero mean and
unit standard deviation. The model has been widely used in brain imaging
(Worsley, 1994; Worsley et al., 1996b, 2004; Thompson et al., 1997; Collins
et al., 1998; Joshi, 1998; Gaser et al., 1999; Cao and Worsley, 1999a; Chung
et al., 2001b; Chung, 2013; Worsley et al., 1996b, 2004).

6.2.1 Hotelling’s T-Square Statistic

We are interested in detecting testing the statistical significant in linear model
(6.4). This is a standard multivariate statistical inference problem and can be
solved using Hotelling’s T 2 statistic (Worsley, 1994; Worsley et al., 1996b,
2004; Thompson et al., 1997; Collins et al., 1998; Joshi, 1998; Cao and
Worsley, 1999a; Gaser et al., 1999; Chung et al., 2001b). Hotelling’s T 2

statistic is fairly flexible and can be applicable to wide variety of situations.
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If we only have one group, we can simply assume μ2 to be a known vector field
and treat the problem as a one-sample problem. In the case of a longitudinal
study, where two scans per subject are available, we can take μ1 as the growth
velocity by dividing the displacement difference by the scan interval. Then we
are testing if there is any significant growth over time.

Under the assumption (6.4), we are interested in testing if the two groups
have the same vector mean:

H0 : μ1(x) = μ2(x) for all x

vs.

H1 : μ1(x) �= μ2(x) for some x,

where μi is the unknown d-dimensional mean vector field for the ith group.
The inference is based on Hotelling’s T 2-statistic. Let us rewrite (6.4) for an
individual subject using the group index i and the subject index j :

uij (x) = μi(x)+�1/2(x)εij (x),

where μij are the ith group mean vector and εij are independent and
identically distributed Gaussian random vector field. Let ni be the number of
subjects in the ith group. The unknown ith group mean μi is estimated as

μi = 1

ni

ni∑
j=1

uij .

Testing the hypotheses is then done by checking the significance of the mean
difference μ2 − μ1. The pooled sample covariance matrix is given by

�̂ = 1

n1 + n2 − 2

[ n1∑
j=1

(u1j −μ1)(u1j −μ1)�+
n2∑

j=1

(u2j −μ2)(u2j −μ2)�
]
.

The significance of the group difference is then tested using the Hotelling’s
T 2-statistic

H(x) = n1n2(n1 + n2 − d − 1)

d(n1 + n2)(n1 + n2 − 2)
(μ2 − μ1)��̂−1(μ2 − μ1).

At each x, under the null hypothesis of μ1(x) = μ2(x), H is distributed as an
F -statistic with d and n1 + n2 − d − 1 degrees of freedom. This is for two
samples, but a one-sample case is similar (Chung et al., 2001b).

For the one-sample case, we assume μ2 is a known constant vector field and
the corresponding Hotelling’s T 2 statistic is given by

H(x) = n1(n1 − d)

d(n1 − 1)
(μ1 − μ2)

��̂−1(μ1 − μ2), (6.5)
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where the sample covariance is given by

�̂ = 1

n1 − 1

n1∑
j=1

(u1j − μ1)(u1j − μ1)�.

At each voxel x, under the hypothesis, H(x) is distributed as an F -statistic
with d and n1 − d degrees of freedom.The following 2D example illustrates
how to perform Hotelling’s T 2 in MATLAB.

Example 6.3 We are interested in testing the equality of 2D vector measure-
ments in two groups. The measurements for the first group are(

0
1

)
,

(
0
2

)
,

(
0
3

)
.

The measurements for the second group are(
2
0

)
,

(
0
0

)
.

The data are coded as

mu1= [0 1; 0 2; 0 3]
mu2=[2 0; 0 0]
n1=3; n2=2; d=2;

where n1 and n2 are the sample sizes and d is the dimension of the vector.
The sample means for the two groups and the mean difference are

μ̄1 =
(

0
2

)
,μ̄2 =

(
1
0

)
, μ̄1 − μ̄2 =

( −1
2

)
.

The pooled variance is estimated as

�̂ = 1

3

(
2 0
0 2

)
.

This is computed as

m1 = mean(mu1,1)
m2=mean(mu2,1)

z1=mu1-kron(ones(n1,1),m1);
z2=mu2-kron(ones(n2,1),m2);

sigma= (z1’*z1 + z2’*z2)/(n1+n2-2)
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sigma =

0.6667 0
0 0.6667

The inverse covariance matrix is then trivially

�̂−1 = 3

2

(
1 0
0 1

)
.

The Hotelling’s T -square statistic value is then given as

h = 3 · 2(3 + 2 − 2 − 1)

2(3 + 2)(3 + 2 − 2)
(μ̄2 − μ̄1)��̂−1(μ̄2 − μ̄1) = 3.

The Hotelling’s T -square is distributed as an F -statistic with 2 and 2 degrees
of freedom. The p-value is given by P(H > h) = 0.25, which is computed as
1 - fcdf(3,2,2). Since the p-value is large, the group difference is not
significant. The whole procedure is illustrated in MATLAB.1

6.2.2 Linear Discriminant Analysis

The standard distance with respect to distribution X is defined as

�X(x1,x2) = |x1 − x2|
σ

,

where σ = Var(X)1/2. We will write �(x) = �X(x,μ). Let X =
(X1, · · ·Xp)� be a p-variate vector with

EX = μ and EX = �.

Let Y = a�X for some vector a ∈ Rp. Then

�Y (y1,y2) = a�(x1 − x2)

(a��a)1/2)
.

This distance depends on the choice of vector a. So we define the p-variate
standard distance, which is often called Mahalanobis distance, between two
vectors with respect to X as

�X(x1,x2) = max
a∈Rp,a �=0

a′(x1,x2)

(a′�a)1/2
.

1 http://www.stat.wisc.edu/∼mchung/research/amygdala/
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This definition is scale invariant with respect to X. From the Cauchy–Schwartz
inequality, we can show that

�X(x1,x2) = [(x1 − x2)
��−1(x1 − x2)]

1/2.

For the ith population, EX = μi while CovX = � is fixed, the multivariate
distance between μ1 and μ2 is

�X(μ1,μ2) = [(μ1 − μ2)�
−1(μ1 − μ2)]

1/2.

Y = β�X is a linear discriminant function for the two populations if

�Y (β�μ1,β
�μ2) = �X(μ1,μ2).

β = c ·�−1(μ1 − μ2) satisfies this condition. For the choice of c = 1,

var(β�X) = �2
X(μ1,μ2) = β�(μ1 − μ2).

So for c = 1, the variance and the mean difference are identical.
We have the ith sample xi1, · · · ,xin. Define the sample multivariate stan-

dard distance between the sample means x̄1 and x̄2 as D(x̄1,x̄2) = �X(x̄1,x̄2).
Then it is given by

D(x̄1,x̄2) = [(x̄1 − x̄2)S
−1(x̄1 − x̄2)]

1/2

where S is the pooled sample covariance given by

S = n1S1 + n2S2

n1 + n2 − 2

where

Sj = 1

nj − 1

nj∑
i=1

(xji − x̄j )(xji − x̄j )
�.

Then the vector coefficients of the linear discriminant function are given by

β = S−1(x̄1 − x̄2).

We classify the groups by the line βX1 + βX2 = const.

6.2.3 Covariates in Multivariate Linear Models

For a single contrast in the exploratory variables, Hotelling’s T 2 can be used,
but for multiple contrasts, it is natural to set up a multivariate general linear
model (MGLM) and construct a test statistic (Worsley et al., 2004). Consider
the following MGLM at each fixed point in the template:

Pn×q = Xn×pBp×q + Zn×rGr×q + Un×q�q×q, (6.6)
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where P is the matrix of response vectors, X is the matrix of contrasted
explanatory variables, and B is the matrix of unknown coefficients. Nuisance
covariates are in the matrix Z and the corresponding coefficients are in the
matrix G. The subscripts denote the dimension of matrices. The components
of Gaussian random matrix U are zero mean and unit variance. � accounts
for the covariance structure of between q variables. Then we are interested in
testing the null hypothesis

H0 : B = 0 vs. H1 : B �= 0.

For the reduced model corresponding to B = 0, the least squares estimator of
G is given by solving P = ZG, i.e.,

Ĝ0 = (Z�Z)−1Z�P .

We will assume that there is more sample size n than the number of parameters
r to be estimated. The residual sum of squares of the reduced model is

E0 = (P − ZĜ0)
�(P − ZĜ0).

For the full model, the parameters are estimated by solving

Pn×q = XB + ZG = [X,Z]n×(p+r)

[
B

G

]
(p+r)×q

.

The least squares estimation is given by[
B̂

Ĝ

]
= ([X,Z]�[X,Z])−1[X,Z]�P .

The corresponding residual sum of squared error is

E = (P −XB̂ − ZĜ)�(P −XB̂ − ZĜ).

By comparing how large the residual E is against the residual E0, we can
determine the significance of coefficients B. However, since E and E0 are
matrices, we take a function of eigenvalues of E0E

−1 as a statistic. Since we
expect the sample size n to be larger than q, there are q eigenvalues

λ1,λ2, · · · ,λq

satisfying

det(E0 − λE) = 0.

This requires solving the generalized eigenvalue problem

E0v = λEv
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for eigenvectors v. The q eigenvectors give the orthogonal linear combinations
of the responses that produce maximal univariate F statistics (Fox et al., 2009).
For instance, the Lawley–Hotelling trace is given by the sum of eigenvalues

λ1 + λ2 + · · · + λq .

Wilks’s Lambda is given by

(1 + λ1)
−1(1 + λ2)

−1 · · · (1 + λq)−1.

Roy’s maximum root statistic R is the largest eigenvalue maxj λj . The distri-
butions of these multivariate test statistics are approximately F . In this case,
there is only one eigenvalue, and all these multivariate test statistics simplify
to Hotelling’s T 2 statistic. Hotelling’s T 2 statistic has been widely used in
modeling 3D coordinates and deformations in brain imaging (Thompson et al.,
1997; Joshi, 1998; Cao and Worsley, 1999a; Gaser et al., 1999; Chung et al.,
2001b). The random field theory for Hotelling’s T 2 statistic has been available
for a while (Cao and Worsley, 1999a). However, the random field theory for the
Roy’s maximum root was not developed until recently (Worsley et al., 2004;
Taylor and Worsley, 2008).

The inference for Roy’s maximum root is based on the Roy’s union-
intersection principle (Roy, 1953; Worsley et al., 2004), which simplifies the
multivariate problem to a univariate linear model. Let us multiply an arbitrary
constant vector ν3×1 on both sides of (9.1):

Pν = XBν + ZGν + U�ν. (6.7)

Obviously (6.7) is a usual univariate linear model with a Gaussian noise. For
the univariate testing on Bν = 0, the inference is based on the usual F statistic
with p and n−p−r degrees of freedom, denoted as Fν . Then Roy’s maximum
root statistic is given by

R = max
ν

Fν .

Now it is obvious that the usual random field theory can be applied in
correcting for multiple comparisons. The only trick is to increase the search
space, in which we take the supreme of the F random field, from the template
surface to a much higher dimension to account for maximizing over ν as
well. Another way of defining Roy’s maximum root is via maximal canonical
correlations (Worsley et al., 2004).

Keith Worsley’s SurfStat2 package has a built-in MATLAB routine
for determining the p-value for Roy’s maximum root statistic. SurfStat

2 www.math.mcgill.ca/keith/surfstat
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was developed to utilize a model formula and avoids the explicit use of
design matrices and contrasts. SurfStat can import Montreal Neurological
Institute’s (MNI) (MacDonald et al., 2000), FreeSurfer-based3 cortical mesh
formats as well as other volumetric image data. A similar model formula
approach is implemented in many other statistics packages such as Splus and
Rand SAS. These statistics packages accept a linear model like

Y = Group+ Age+ Brain

as the direct input for linear modeling, avoiding the need to explicitly state
the design matrix. Here, Y is a n × d matrix of measurements, Age is the
age of subjects, Brain is the total brain volume of subject, and Group
is the categorical group variable. This type of model formula has yet to be
implemented in widely used SPM or AFNI packages.

6.3 Mixed Effects Models

Images in longitudinal and twin imaging studies are statistically dependent
with high correlation. Individual networks are likely to be highly correlated
within the same subject or across siblings. Thus, there is a need to model
such dependent networks with explicit statistical models. The most obvious
modeling choice is to use the random effects model, which is also called a
variance components model, a special case of the hierarchical linear model.
In statistical literature, fixed and random effects respectively refer to the
population-average and subject-specific effects, which are often assumed to
be unknown, i.e., latent variables. When a model has both random and fixed
effects terms, the model is called mixed effects.

We will explain the mixed effects model using twin imaging study as an
example. However, the method can easily extended to other dependent data
settings such as longitudinal or multimodal images. Suppose the imaging
data set consists of singles and twins. For the ith twin or single, consider
the following mixed effects model (Milliken and Edland, 2000; Fox, 2002;
Worsley et al., 2009)

yi = Xiβ + Ziγi + εi, (6.8)

where yi is ni × 1 vector of responses for the ith twin. ni is either 1 (single)
or 2 (twin). Xi is ni × p design matrix corresponding to the fixed effects for
the ith subject. Behavior and categorial dummy variables indicating twinness

3 http://surfer.nmr.mgh.harvard.edu
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can be treated as fixed effects. We will assume there is only one random effects
term that varies across twins. The random effects term γi is of size ni × 1 and
modeled as

γi ∼ N(0,gi ),

where the covariance matrix gi is of size ni × ni . For singles, i.e., ni = 1,
γi ∼ N(0,σ 2), where σ 2 is the subject-level variability. For twins, i.e., ni = 2,

γi ∼ N
(

0,σ 2
( 1 ρ

ρ 1

))
,

where ρ is the pairwise twin correlation. Thus, gi is either σ 2 or σ 2
( 1 ρ

ρ 1

)
depending on if the ith cluster is a single or twin.

The model noise εi is assumed to follow

εi ∼ N(0,σ 2
ε Ini

),

where Ini
is the ni×ni identity matrix. The covariance of γi and εi are expected

to have block diagonal structure such that there is no correlation among the
different twins while there is high correlation within twins:

V

(
γi

εi

)
=

(
gi 0
0 σ 2

ε Ini

)
.

The variance of yi , denoted as Vi is given by

Vi = Vyi = ZigiZi� + σ 2
ε Ini

.

6.3.1 Matrix Form

In the numerical implementation, it is easier to use the matrix form. Assume
there are total n twin pairs and singles so that the total sample size is

N =
n∑

i=1

ni .

By combining (6.8), we have matrix form

Y = Xβ + Zγ + ε, (6.9)

where Y = (y�1 ,y�2 , · · · ,y�n )� is the image measurement vector of every
subject.

X = (X�
1 ,X�

2 , · · · ,X�
n )�,

Z = diag(Z1,Z2, · · · ,Zn)
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are the design matrices corresponding to the fixed and random effects respec-
tively. β is the fixed effects and γ = (γ�1 ,γ�2 , · · · ,γ�n )� is the random effects.
The combined noise vector

ε = (ε�1 ,ε�2 , · · · ,ε�n )� ∼ N(0,R).

Note R = σ 2
ε IN . The random effects follows γ ∼ N(0,G), where G =

diag(g1,g2, · · · ,gn) accounts for covariance among random effect terms.
Hierarchically, we are modeling (6.9) as

Y |γ ∼ N(Xβ + Zγ,R), γ ∼ N(0,G).

The covariance of Y , denoted as V , is then given by

V = VY = ZGZ� + R.

The parameters β,G,R are often estimated by maximizing the likelihood,
which is computationally very demanding for most brain imaging studies.
To speed up the computation, specific assumptions are often made into the
structures of G and R. Note V is of size N × N block diagonal matrix
consisting of V1,V2, · · · ,Vn as the diagonal blocks.

6.3.2 Likelihood Methods

The fixed effects parameters β and random effect parameters α =
(α1,α2,α3) = (σ 2,σ 2ρ,σ 2

ε ) are usually estimated by maximizing the
likelihood function, although other methods are available. The likelihood
methods are often computationally slow and not going to be easily scable for
large-scale brain networks.

Let f (yi |γi) and f (γi) be density functions for yi |γi and γi . The marginal
density of yi is then given by

yi ∼ N(Xiβ,Vi).

Note the covariance Vi is a function of α only. Let

ei(β) = yi −Xiβ

be the residual vector. The the likelihood function can be written as

L(α,β) ∝
n∏

i=1

|Vi |−1/2exp

(
−1

2
e�i V −1

i ei

)
. (6.10)
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The log-likelihood is then

−l(α,β) = − log L(α,β) ∝
n∑

i=1

log |Vi | + e�i V −1
i ei,

where |Vi | denotes the determinant. Since |V | = ∏n
i=1 |Vi |, the combined

matrix form is then

−l(α,β) ∝ log |V (α)| + e�(β)V −1(α)e(β)

with e = (e1, · · · ,en)
�. For fixed α, the weighted least squares estimate

β̂(α) =
(

n∑
i=1

XiV
−1
i Xi�

)−1 n∑
i=1

XiV
−1
i yi

= (X�V −1X)−1X�V −1Y (6.11)

maximizes the likelihood (6.10). Note

E β̂(α) = β

and

V β̂(α) =
(

n∑
i=1

XiV
−1
i Xi�

)−1

= (X�V −1X)−1.

6.3.3 Restricted Maximum Likelihood (REML)

Maximizing the likelihood without β produces the restricted maximum like-
lihood (REML) estimate for covariance parameters α (Fox, 2002; Pinehiro
and Bates, 2002; Stroup, 2012). Consider any full rank matrix K satisfying
K�X = 0. Then the marginal distribution of K�Y does not depend on β since

K�Y ∼ N(0,K�V K).

Thus we use the REML of K ′Y instead of the likelihood of Y . The residual
operator K = K� = I−XX− can be used, where the pseudo-inverse of matrix
A is given by A− = (A�A)−1A′. Note KX = X − X� = 0. Once V (α) is
estimated by REML, β is subsequently estimated by plugging V̂ , which gives
the weighted least squares estimate. The REML lRE has an extra term

−lRE(α,β) ∝ log |V | + e�V −1e + log |X�V −1X|.
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6.3.4 Numerical Implementation

We present a three-step method for estimating the parameters. This is the
method similar to Keith Worsley’s implemnetation of the REML procedure
in SurfStat package 4 (Worsley et al., 2009; Chung, 2012).

(1) Fixed effects. We first start with estimating the fixed effects model
parameters β and σ 2

ε with σ = 0. This can be given by the weighted
least squares estimation. However, if the stability is an issue, we may use
the Cholesky factorization. Let U be the upper triangle Cholesky factor of
covariance matrix V , i.e., U�U = V . Let Vh = (U�)−1 be the inverse
of lower triangle Cholesky factor. Note V �

h Vh = V −1. Then (6.11) can be
written as

β̂ = (VhX)−VhY .

(2) Fisher scoring. Then the residual Y −Xβ̂ is used as response in estimating
the variance parameters using REML. Then Fisher scoring will be used to
iteratively estimate the parameters α (Stroup, 2012):

α(j+1) = α(j) + 1

IRE(α(j),β)

∂lRE(α,β)

∂α

∣∣∣
α=α(j)

.

The initial value α(1) = (0,0,σ 2
ε ) is given from the fixed effects model, i.e.

σ 2 = 0.
The gradient of the log-likelihood along the direction of α is

2
∂l(α,β)

∂αi

= −tr
(
V −1 ∂V

∂αi

)
+ e�V −1 ∂V

∂αi

V −1e.

Similarly, the gradient of REML along the direction of α is

2
∂lRE(α,β)

∂αi

= −tr
(
P

∂V

∂αi

)
+ e�V −1 ∂V

∂αi

V −1e.

The information matrix of log-likelihood is given by

Iij (α,β) = −E

[∂2l(α,β)

∂αi∂αj

]
= 1

2
tr
(
V −1 ∂V

∂αi

V −1 ∂V

∂αj

)
,

where P = V −1 − V −1X(X′V −1X)−X′V −1. Similarly, the information
matrix of REML is given by

IREij (α,β) = −E

[∂2lRE(α,β)

∂αi∂αj

]
= 1

2
tr
(
P

∂V

∂αi

P
∂V

∂αj

)
.

4 www.math.mcgill.ca/keith/surfstat
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(3) Reestimation. The fixed effects and the overall variances are reestimated
again using REML. If the procedure were iterated, it would converge to the
REML estimates. However, it will take forever. So only perform this iteration
once.

6.3.5 Functional Mixed Effect Models

It is possible to extend a linear mixed effect model to incorporate a more
complex nonlinear growth pattern by taking functional covariates into the
model. Goldsmith et al. (2011) modeled the clinical outcome Yi of the ith
subject as

Yi = Xβ +
∫ 1

0
Wi(p)f (p) dp + εi, (6.12)

where Wi(p) is the functional observation at position p and f is the smooth
functional parameter that has to be estimated. β is the fixed effect shared
by all subjects. Equation (6.12) is related to the standard impulse-response
model, which has been often used in modeling fMRI responses. In the standard
impulse-response model, the impulse function Wi is usually discrete and the
response Yi is continuous.

The fixed effect model (6.12) can be further generalized by incorporating
the subject-specific random effect terms (Goldsmith et al., 2012). Let the
j th measurement of the ith subject be Yij . We also have the corresponding
functional observations Wij (p). Then Yij is modeled as

Yij = Xijβ + Zijγi +
∫ 1

0
Wij (p)f (p) dp + εi, (6.13)

where Xi is the fixed effects and Zi is the subject-specific random effects. f (p)

is the vector of functional effect that has to be estimated. The functional effect
f (p) are population-level parameters and do not vary across different subjects.
Using the Karhunen–Loeve (KL) expansion, Wij (p) can be decomposed as

Wij (p) =
∑

k

cijkψk(p), (6.14)

where cijk are uncorrelated random variables and ψk are KL-basis (Fukunaga
and Koontz, 1970). The main limitation of this model is that it is based on a
single scalar outcome per subject.

Zipunnikov et al. (2011a,b) proposed a more general functional mixed effect
model:

Yij (p) = μ(p)+Wij (p), (6.15)
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where μ(p) is the population-level fixed functional effect and Wi(p) is the
subject-specific random functional effect. Wij is then decomposed using the
similar KL-decomposition (6.14).

6.4 Simulating Dependent Images

Simulating dependent images at the voxel level is the basis of the simulating
dependent networks. The method presented here can be directly applicable
to simulating dependent connectivity matrices. We will use the mixed effect
models as the baseline model for simulating dependent images.

6.4.1 Simulating Twin Images

The mixed effects models are implemented in R and MATLAB packages as
well as SurfStat. SPM, FSL, and AFNI also have mixed effects model routines
but are limited to fMRI multilevel analysis, so they are not easily modifiable
to more general settings. In this section, we briefly explain how mixed effect
models can be scripted in R.

We simulate total 260 numbers. We assume there were 40 MZ, 40 DZ
different sex and 40 same-sex twin pairs and 20 singles. The twin membership
is indexed by dummy variables D MZ, D DZ, D Single, which takes value
1 (member) or 0 (no member). D Twin is additional integer valued dummy
variable indicating if subjects belong to the same twin. The same twins are
assigned the same integer value. In R, the dummy variables are generated as
follows:

D_MZ=c(rep(1,80),rep(0,80),rep(0,80),rep(0,20))
D_DZ=c(rep(0,80),rep(1,80),rep(0,80),rep(0,20))
D_Single=c(rep(0,80),rep(0,80),rep(0,80),rep(1,20))
D_Twin = c(kronecker(1:120,c(1,1)),121:140)

D Twin is an array of 260 numbers 1 1 2 2 3 3 4 4 · · · 120 120 121 122 · · ·
139 140 indicating twin-ness.

We simulate the ground truth based on the model

y = 4 + bT win + ε, (6.16)

where bT win is twin-level noise distributed as bT win ∼ N(0,σ 2) and
individual-level noise ε ∼ N(0,σ 2

ε ). We used parameters σ = 0.5,σε = 1.
The ground truth is generated as follows.
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b_twin=c()
for (i in 1:120)
{b=0.5*rnorm(1)
b=rep(b,2)
b_twin=c(b_twin,b)
}
b_twin = c(b_twin, rep(0,20))
y= 4 + b_twin + rnorm(260)

b is the twin-level noise, so the twin pairs have exactly the same amount of
noise. y is the subject-level measurement with the fixed baseline 4 and possible
twin variation b twin.

Then we fit the following mixed effects model

Y = β0 + β2DMZ + β3DDZ + β4DSingle + Zγ + ε.

to the ground truth data simulated from (6.16) (Figure 6.3): the R function lme
can be used to perform the linear mixed effects model fit. To apply the lme
routine for fitting the proposed model, we need to generate a data frame with
a specific formula that specifies cluster structure:

myframe = data.frame(y,D_MZ,D_DZ,D_Single,D_Twin)
myframe = groupedData(y ˜ D_MZ+D_DZ+D_Single

| D_Twin, data=myframe)

Figure 6.3 Comparison of fixed and mixed effects models on twin fMRI (Chung
et al., 2017a). The figure displays the t-statistic maps of β5 parameter in the
models: (a) y = β0 + β5 · behavior (b) y = β0 + β2DMZ + β3DDZ +
β4DSingle + β5 · behavior (c) y = β0 + β5 · behavior + bT win (d) y =
β0+β2DMZ +β3DDZ +β4DSingle+β5 ·behavior+bT win. The overall pattern
of t-statistics maps is similar.
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myframe indicates y variable depends on D MZ, D DZ and D Single
variables conditioning on D Twin. Then the lme fit is done as follows:

results=lme(y˜D_MZ+D_DZ+D_Single,data=myframe,
random=˜1|D_Twin)

summary(results)

Linear mixed effects model fit by REML
Data: myframe

AIC BIC logLik
1269.591 1293.775 -628.7956

Random effects:
Formula: ˜1 | D_Twin

(Intercept) Residual
StdDev: 0.6249048 0.9096935

Fixed effects: y ˜ 1 + D_MZ + D_DZ + D_Single
Value Std.Error t-value p-value

(Intercept) 4.071990 0.1268288 32.10619 0.0000
D_MZ -0.080378 0.1553329 -0.51745 0.6054
D_DZ -0.087891 0.1793630 -0.49002 0.6246
D_Single 0.206908 0.2774670 0.74570 0.4567

We obtained 4.07 as the parameter estimate for the intercept β0. There is
about 7% error in the estimation of the fixed effect term, which shows the
mixed effects model is not necessarily a good model. The corresponding t-
statistics and p-value are 32.1 and 0.0000. Since different statistical packages
use different numerical schemes, it is expected to obtain different results if
other packages are used.

6.4.2 Effect of Increased Sample Sizes

In this example, we increase the sample size substantially. We simulate 1,000
MZ, 500 DZ different sex and 500 same-sex twins and 200 singles. This
gives the total sample size of 4,200. Also we reduce the size of signal
to 0.1. This has the effect of reducing the t-statistic value. This simulates
an extremely low signal-to-noise ratio setting. In R, the ground truth is
generated as

y= 0.1 + b_twin + rnorm(4200)
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Figure 6.4 Performance of mixed effect model y = β0 + bT win + ε with
bT win ∼ N(0,σ 2) and ε ∼ N(0,σ 2

ε ). Left: σ = 2,σε = 3. When the subject-
level variability is larger than the twin-level variability, the mixed effect model
does not perform well. Right: σ = 0.5,σε = 1.

The resulting R output after fitting lme is as follows:

> summary(results)
Linear mixed effects model fit by REML

Random effects:
Formula: ˜1 | D_Twin

(Intercept) Residual
StdDev: 0.4731649 0.9928018

Fixed effects: y ˜ D_MZ + D_DZ + D_Single
Value Std.Error t-value p-value

(Intercept) 0.140478 0.037860 3.7104 0.0002
D_MZ -0.026775 0.046369 -0.5774 0.5637
D_DZ -0.045143 0.053542 -0.8431 0.3992
D_Single 0.031731 0.086493 0.3668 0.7138

The estimation is 0.14 for intercept β0, which has 40% error (Figure 6.4).
Thus, it is not likely that mixed effects models are reliable in a low signal-
to-noise setting. As the signal-to-noise deceases more, it is expected the model
fit performs worse.

6.5 Dependent Correlation Networks

In this section, we will show how to generate dependent correlation networks
with complex dependent structures.
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6.5.1 Simulating Correlation Networks

We use a linear regression model–based random network simulation approach
(Chung et al., 2017a,d). We assume there are p = 40 nodes and n = 5 images
or subjects. The data matrix Xn×p = (xij ) is simulated as standard normal in
each component, i.e.,

xij ∼ N(0,1). (6.17)

It is more convenient to use vector and matrix forms in numerical implemen-
tation. Let

X = (x1,x2, · · · ,xp).

Then (11.2.4) can be written as

xj ∼ N(0,I ).

We center and rescale the data vector xj using corr2norm.m. Then the
connectivity matrix is given by correlation matrix X�X. This is computed in
MATLAB as follows

n=5; p=40;
X=normrnd(0, 1, n,p);
Xnorm = corr2norm(X1);
C1=Xnorm’*Xnorm;

Each time we repeat the preceding procedure, we are generating one instance
of correlation network. Two independently generated correlation matrices are
displayed in Figure 6.5. Since there is no dependency between nodes, these
networks are considered as random networks with no signal.

6.5.2 Simulating a Single Module

The data matrix Xn×p = (xij ) is simulated as standard normal in each
component, i.e.,

xij ∼ N(0,1).

Let Y = (yij ) = (y1,y2, · · · ,yp) = X. So far, there is no dependency (signal)
between nodes in Y . We add dependency between nodes by letting

yij = 1

2
xi1 +N(0,0.22)

for 10 nodes indexed by j = 1,2, · · · ,10. This can be equivalently written as

yj = 1

2
x1 + ·N(0,0.2I ).
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Figure 6.5 Top-left, middle: independently generated C1. Top-right: C2, Bottom:
C3 with two, four, and five modules.

This gives highly correlated 10 nodes in the upper-left block in the connectivity
matrix (Figure 6.5). The procedure is implemented as

X=normrnd(0,1,n,p);
Y=X;
for i=1:10

Y(:,i) =0.5*X(:,1)+normrnd(0,0.2,n,1);
end
Ynorm = corr2norm(Y);
C2=Ynorm’*Ynorm;

6.5.3 Simulating Multiple Modules

The details on simulating modular structure are given in (Chung et al., 2017d).
The data matrix Xn×p = (xij ) is simulated as standard normal in each
component, i.e.,

xij ∼ N(0,1).

Let Y = (yij ) = X. So far, there is no dependency (signal) between nodes in
Y . Then we add the following block dependency:

yi = 0.5xci+1 +N(0,σ In).
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This introduces modules in the network. We assumed there were total k =
2,4,5 modules and each module consists of c = p/k number of points.

X=normrnd(0, 1, n,p);
Y=X;
k=4;
c=p/k;
for l=0:(k-1)
for i=(1+l*c):(l+1)*c

Y(:,i)=X(:,1+l*c)+normrnd(0,0.2,n,1);
end

end
Ynorm = corr2norm(Y);
C3=Ynorm’*Ynorm;

Random networks with two, four, and five modules are displayed in Figure 6.5.
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Persistent Homology

Persistent homology, a technique of computational topology (Carlsson and
Memoli, 2008; Edelsbrunner and Harer, 2010), provides a coherent mathemat-
ical framework for quantifying brain networks. Instead of looking at networks
at a fixed scale, persistent homology charts the changes in topological network
features over multiple resolutions and scales (Zomorodian and Carlsson, 2005;
Horak et al., 2009; Edelsbrunner and Harer, 2010). In doing so, it reveals the
most persistent topological features, i.e., those that are robust to noise. This
scale robustness is crucial since most brain network distances are parameter
and scale dependent.

In persistent homology–based brain network analysis, instead of analyzing
networks at one fixed threshold that may not be optimal, we build the
collection of nested networks over every possible threshold using the graph
filtration, a persistent homological construct (Lee et al., 2011a, 2012; Chung
et al., 2013, 2015a). The graph filtration is a threshold-free framework for
analyzing a family of graphs but requires hierarchically building specific
nested subgraph structures. The graph filtration shares similarities to the
existing multi-thresholding or multiresolution network models that use many
different arbitrary thresholds or scales (Achard et al., 2006; He et al., 2008;
Supekar et al., 2008; Lee et al., 2012; Kim et al., 2015). Such approaches are
mainly used to visually display the dynamic pattern of how graph theoretic
features change over different thresholds and the pattern of change is rarely
quantified. Persistent homology can be used to quantify such dynamic patterns
in a more coherent mathematical framework.

Persistent homology is an emerging technique and has been applied to
brain network analysis only recently. There are very few validation and
comparison studies against existing methods. However, in each of the limited
comparison studies, the method is shown to very robust and outperforming
many existing network measures and methods. In Lee et al. (2011a, 2012),

156
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persistent homology was shown to outperform against eight existing graph
theory features such as assortativity, between centrality, clustering coefficient,
characteristic path length, samll-worldness, modularity and global network
homogeneity. In Chung et al. (2017d), persistent homology was shown to
outperform L1, L2, and L∞ matrix norms. In Wang et al. (2018), a persistent
homology feature called persistent landscape was shown to outperform power
spectral density and local variance methods. In Wang et al. (2017), persistent
homology was shown to outperform topographic power maps. In Yoo et al.
(2017), center persistency was shown to outperform the network-based statistic
and elementwise multiple corrections.

7.1 Simplicial Homology

A high dimensional object can be approximated by the point cloud data X

consisting of p number of points. If we connect points of which distance
satisfy a given criterion, the connected points start to recover the topology of
the object. Hence, we can represent the underlying topology as a collection
of the subsets of X that consists of nodes that are connected (Hart, 1999;
Edelsbrunner and Harer, 2010).

Definition 7.1 Suppose U ⊂ 2X is the collection of all possible subsets of X.
Then (X,U) is a topological space on X if

1. ∅,X ⊂ U ,
2. u1,u2 ⊂ U implies u1 ∪ u2 ⊂ U , and
3. u1 ∩ u2 ⊂ U .

Note that every metric space is a topological space. In general, given a
point cloud data set X with a rule for connections, the topological space is
a simplicial complex and its element is a simplex (Zomorodian, 2009). For
point cloud data, the Delaunay triangulation is probably the most widely
used method for connecting points. The Delaunay triangulation represents
the collection of points in space as a graph whose face consists of triangles.
Another way of connecting point cloud data is based on the Rips complex
often studied in persistent homology.

Homology is an algebraic formalism to associate a sequence of objects
with a topological space (Edelsbrunner and Harer, 2010). In persistent homol-
ogy, the algebraic formalism is usually built on top of objects that are
hierarchically nested, such as morse filtration, graph filtration, and den-
drograms. Formally, homology usually refers to homology groups that are
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often built on top of a simplicial complex for point cloud and network data
(Lee et al., 2014).

Definition 7.2 The k-simplex σ is the convex hull of v + 1 independent points
v0, · · · ,vk .

A point is a 0-simplex, an edge is a 1-simplex, and a filled-in triangle is
a 2-simplex. A simplicial complex is a collection of points (0-simplex), lines
(1-simplex), triangles (2-simplex), and higher-dimensional counterparts. More
formally,

Definition 7.3 A simplicial complex K is a finite collection of simplices
satisfying (Edelsbrunner and Harer, 2010) the following:

1. Any face of σ ∈ K is also in K .
2. For σ1,σ2 ∈ K , σ1 ∩ σ2 is a face of both σ1 and σ2.

Hence a graph is a simplicial complex consisting of 0-simplices (nodes)
and 1-simplices (edges). There are various simplicial complexes. One of them
is the Rips complex.

Let Ck be the collection of k-simplices. Then we can define the kth
boundary operator

∂k : Ck → Ck−1

that removes the filled-in interior of k-simplices. Consider a filled-in triangle
σ = [v1,v2,v3] ∈ C2 with three vertices v1,v2,v3. Then, the boundary operator
∂k applied to σ resulted in the collection of three edges that forms the boundary
of σ :

∂2σ = [v1,v2] + [v2,v3] + [v3,v1] ∈ C1. (7.1)

If we give the direction or orientation to edges such that

[v3,v1] = −[v1,v3],

we can write (7.1) as

∂2σ = [v1,v2] + [v2,v3] − [v1,v3]. (7.2)

If we use edge notation eij = [vi,vj ], (7.2) can be written in a more compact
form:

∂2σ = e12 + e23 − e13. (7.3)
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We can apply the boundary operation ∂1 further to ∂2σ and obtain

∂1∂2σ = ∂1e12 + ∂1e23 − ∂1e13

= v1 − v2 + v2 − v3 − (v1 − v3) = 0.

The boundary operation run twice will result in an empty set. Such algebraic
representation for boundary operation has been very useful for effectively
quantifying persistent homology.

7.1.1 Hodge Laplacian

The kth incidence matrix ∇k is defined as the higher-dimensional version
of incidence matrix in the graph theory (Lee et al., 2018a). Consider the
boundary of σ ∈ C2 consisting of edges. The incidence matrix ∇2 will encode
information on how edges are meeting to form the complex σ . The convention
is that the columns of ∇2 are the index for edges and the rows of ∇2 are the
index 2th simplicial complex. The (i,j)th entry of ∇2 is 1 if the sign is edge is
1, −1 if the sign is −1, and 0 otherwise. Thus (7.2) is represented as

∇2 =
e12

e23

e13

⎛⎝ 1
1
−1

⎞⎠ ,

where the column indicates the filled-in triangle σ = [v1,v2,v3].
Consider C1 complex ∂2σ (7.3) that is an unfilled triangle. The incidence

matrix ∇1 of ∂2σ that encodes how nodes v1,v2,v3 are forming edges
e12,e23,e13 is given by

∇1 = v1

v2

v3

e12 e23 e13⎛⎝ 1 0 1
−1 1 0
0 −1 −1

⎞⎠ .

Similarly, the incidence matrix ∇0 can be defined. Then the standard graph
Laplacian is defined as

L0 = ∇0∇�
0 ,

which is also called the 0th Hodge Laplacian (Lee et al., 2018a). In general,
the kth Hodge Laplacian is defined as

Lk = ∇k+1∇�
k+1 +∇k∇�

k .
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The 0th Betti number, the number of connected components, is character-
ized by L0 while the first Betti number, the number of cycles, is characterized
by L1.

7.1.2 Rips Filtrations

The Rips complex has been the main building block for persistent homology
and defined on top of the point cloud data (Ghrist, 2008).

Definition 7.4 The Rips complex is a graph constructed by connecting two
data points if they are within specific distance ε.

Figure 7.1 shows an example of the Rips complex that approximates the
gray object with a point cloud. Given a point cloud data X, the Rips complex
RX(ε) is a simplicial complex whose k-simplices correspond to unordered (k+
1)-tuples of points, which are pairwise within distance ε (Ghrist, 2008). While
a graph has at most 1-simplices, the Rips complex has at most k-simplices. One
major problem of the Rips complex is that given n points, it exactly produces
a graph with n nodes so the resulting graph becomes very complicated when n

becomes large.
The Rips complex has the property that

RX(ε0) ⊂ RX(ε1) ⊂ RX(ε2) ⊂ · · ·
for 0 = ε0 ≤ ε1 ≤ ε2 ≤ · · · . When ε = 0, the Rips complex is simply
the point cloud V . By increasing the ε-value, we are connecting more nodes
so the size of the edge set increases. Such the nested sequence of the Rips

Figure 7.1 Left: a point cloud that approximates the underlying object (gray).
Right: the Rips complex of the point cloud data. ε = 70 is used for construction.
If two points are within the ε radius, we connect them with a link. There are 36
nodes and 56 edges. Three outlying data are not connected to the largest connected
component.
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complexes is called a Rips filtration, the main object of interest in the persistent
homology (Edelsbrunner and Harer, 2008). The increasing ε values are called
the filtration values.

7.1.3 Betti Numbers

We build a vector space Ck using the set of k-simplices as a basis. The vector
spaces Ck,Ck−1,Ck−2, · · · are then sequentially nested by boundary operator
∂k (Edelsbrunner and Harer, 2010):

· · · ∂k+1−−→ Ck
∂k−→ Ck−1

∂k−1−−→ Ck−2
∂k−2−−→ · · · .

Let Bk be a collection of boundaries obtained as the image of ∂k . Let Zk be
a collection of cycles obtained as the kernel of ∂k . We have Bk ⊂ Zk and
quotient space Hk = Zk/Bk , which is called the kth homology group.

The elements of the kth homology group are often referred to as k-
dimensional holes. The kth Betti number is then the number of k-dimensional
holes. Equivalently, the rank of Hk is the kth Betti number. The Betti numbers
are usually algebraically computed using Gaussian elimination. The zeroth
Betti number is the number of connected components while the first Betti
number is the number of cycles.

Persistent homology does not scale well with increased network size
(Figure 7.2). The computational complexity of computing the kth Betti number
depends on the number of k-simplices (Topaz et al., 2015). For n nodes,
there are at most O(nk+1) k-simplices. The homology computation requires
Gaussian elimination, which often runs in O(m3), where m is the actual
number of k-simplices. Thus, the overall computational complexity in the
worst case is O(n3k+3). As the number of nodes increases, the computational
bottleneck can be severe (Figure 7.2).

Due to the computational bottleneck, resampling based statistical inference
may not be feasible for extremely large-scale networks. There is a strong
need to develop a faster inference procedure that does not rely on resampling
techniques (Chung et al., 2017a).

Particularly for graphs and networks, β1 can be computed easily as a
function of β0. Note that the Euler characteristic χ can be computed in two
different ways

Theorem 7.1

χ = β0 − β1 + β2 − · · ·
= #nodes − #edges + #f aces − · · · ,

where #nodes,#edges,#f aces are the number of nodes, edges, and faces.
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Figure 7.2 rs-fMRI correlation network of two subjects from HCP with more
than 25,000 nodes. Identifying cycles and computing the number of cycles can
be computationally demanding in this type of dense correlation network since
persistent homology computations are not very scalable.

However, graphs do not have filled faces, Betti numbers higher than β0 and β1

and the number of elements beyond faces can be ignored. Thus, a graph with
p nodes and l edges is given by

χ = β0 − β1 = p − l.

Thus,

β1 = p − l − β0.

In graph filtration, we can show that β0 and β1 are monotonic.
Identifying connected components in a network is important to under-

stand in decomposing the network into disjoint subnetworks. The number
of connected components of a graph is a topological invariant that measures
the number of structurally independent or disjoint subnetworks. The con-
nected components can be identified using various techniques, including the
Dulmage–Mendelsohn decomposition (Pothen and Fan, 1990), which has been
widely used for decomposing sparse matrices into block triangular forms in
speeding up matrix operations.
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7.2 Morse Filtrations

A function is called a Morse function if all critical values are distinct and non-
degenerate, i.e., the Hessian does not vanish (Milnor, 1973). For a 1D Morse
function y = f (t), define sublevel set R(y) as

R(y) = f−1(−∞,y] = {t ∈ R : f (t) < y}.
The sublevel set is the domain of f satisfying f (t) ≤ y. As we increase y

from −∞, the sublevel set gets bigger such that

R(y1) ⊂ R(y2) ⊂ R(y3) ⊂ · · ·
for

y1 ≤ y2 ≤ y3 ≤ · · · .

The sequence of the sublevel sets forms a Morse filtration. The sequence of
numbers y1,y2,y3, · · · is called the filtration values.

Let β0(y) be the number of connected components of R(y), which is a
function of y. The number of connected components is usually called the
zeroth Betti number and it is the most often used topological invariant in
applications (Edelsbrunner and Harer, 2008). β0(y) only changes its value as
it passes through critical values. The birth and death of connected components
in the Morse filtration is characterized by the pairing of local minimums and
maximums (Chung et al., 2009a).

Let us denote the local minimums as g1, · · · ,gm and the local maximums
as h1, · · · ,hn. Since the critical values of a Morse function are all distinct, we
can combine all minimums and maximums and reorder them from the smallest
to the largest: We further order all critical values together and let

g1 = z(1) < z(2) < · · · < z(m+n) = hn,

where zi is either hi or gi and z(i) denotes the ith largest number in
z1, · · · ,zm+n. It is left as an exercise to show that g1 is smaller than h1 and
gm is smaller than hn in the unbounded domain R.

By keeping track of the birth and death of components, it is possible to
compute topological invariants of sublevel sets such as the zeroth Betti number
β0 (Edelsbrunner and Harer, 2008). As we move y from ∞ to ∞, at a local
minimum, the sublevel set adds a new component so that

β0(gi − ε) = β0(gi )+ 1

for sufficiently small ε. This process is called the birth of the component. The
newly born component is identified with the local minimum gi .
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Similarly for at a local maximum, two components are merged as one so
that

β0(hi − ε) = β0(hi)− 1.

This process is called the death of the component. The number of connected
components will only change if we pass through critical points, and we can
iteratively compute β0 at each critical value as

β0(z(i+1)) = β0(z(i))± 1.

The sign depends on if z(i) is maximum (−1) or minimum (+1). This is
the basis of the Morse theory (Milnor, 1973) that states that the topological
characteristics of the sublevel set of the Morse function are completely
characterized by critical values.

To reduce the effect of low signal-to-noise ratio and to obtain smooth
Morse function, either spatial or temporal smoothing has been often applied
to brain imaging data before persistent homology is applied. In (Chung et al.,
2015a), and (Lee et al., 2017), Gaussian kernel smoothing was applied to 3D
volumetric images. In (Wang et al., 2018), diffusion was applied to temporally
smooth data.

7.2.1 Persistent Diagrams

The birth and death of connected components in the sublevel set of a function
can be quantified and visualized by persistent diagrams (PD) (Figure 7.3).
Consider a smooth Morse function with unique critical values A, B, C, D,
E, F, and G. The dotted horizontal line is the threshold y that moves from −∞
to ∞. Before the line hits the point A, the sublevel set of the function is empty
except for the boundaries. Each time the line touches the local minimum A, B,
and D, a new component that contains the local minimum is born. Each time
the line touches the local maximum C, D, and E, the two components merge
together. This is considered as the death of a component.

Following the Elder Rule, when we pass a maximum and merge two
components, we pair the maximum (birth) with the higher of the minimums
of the two components (birth) (Zomorodian and Carlsson, 2005; Edelsbrunner
and Harer, 2008, 2010). Doing so, we are pairing the birth of a component to its
death. However, when we include the boundaries of the domain, we also need
to take care of the birth and death of the boundaries and accordingly pair them.

In Figure 7.3, we pair point C (death) with point B (birth). Once we move
up to the next maximum E, we pair point E (death) with A (birth). When we
move up maximum F, we pair F (death) with minimum D (birth). At the last
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Figure 7.3 The Morse filtration and corresponding persistent diagram (PD)
encoding the birth and death times of the connected components over the filtration.
Yuan Wang of University of Wisconsin–Madison generated the figure (Wang
et al., 2018).

maximum G, we pair it with the left boundary, which is set at 0 in this example.
The line segment that shows the time of birth and death in the y-axis is called
the barcodes. The scatter points of the time of birth in x-axis and the time of
death in the y-axis is called in the persistence diagram (see Figure 7.3).

For higher-dimensional Morse functions, saddle points can also create or
merge sublevel sets, so we also have to be concerned with them. Since there
are no saddle points in 1D Morse functions, we don’t need to worry about
saddle points in 1D functional signals. The addition of the saddle points makes
the construction of the persistence diagrams much more complex. However,
the saddle points do not yield a clear statistical interpretation compared to
local minimums and maximums. In fact, there are no statistical methods or
applications developed for saddle points in the literature.

Given functional signal f observed at time points t1, · · · tn, the critical
points can be numerically estimated and obtained by checking sign changes in
the differences

f (ti+1)− f (ti).

The persistent diagrams and equivalent barcodes are the original most
often used descriptors in persistent homology. The persistent diagrams possess



166 Persistent Homology

desirable bounding properties such as Lipschitz stability with respect to the
bottleneck distance. Unfortunately, statistical analysis on persistent diagrams
are difficult since it is not a clear-cut to define the average persistent diagram.
Even the Fréchet mean is not unique, rendering it a challenging statistical issue
to perform inference on directly on persistent diagrams (Chung et al., 2009a;
Heo et al., 2012). To remedy the problem, persistent landscape was proposed
in (Bubenik, 2015).

Given a barcode represented as an interval I = [a,b], we can define the
piecewise linear bump function hI : R→ R by

hI (λ) = max(min(λ− a,b − λ),0).

The geometric representation of the bump function (7.4) is a right-angled
isosceles triangle with height equal to half of the base of the corresponding
interval in the barcode. With this new representation, it is possible to average
persistent landscapes.

7.2.2 Inference on Persistent Diagrams

Stability of persistent diagram. The stability of the persistent diagram under
small perturbation is established in Cohen-Steiner et al. (2007) and Edelsbrun-
ner and Harer (2008). Let D(μ) and D(ν) be the persistence diagrams of μ and
ν respectively. A metric on the space of persistence diagrams is the bottleneck
distance d that bounds the Hausdorff distance. It is given by

d(D(μ),D(ν)) = inf
γ

sup
p∈D(μ)

‖p − γ (p)‖∞, (7.4)

where the infimum is taken over all bijections γ : D(μ) → D(ν) and ‖ · ‖∞
is the sup-norm metric. In Cohen-Steiner et al. (2007), the following result is
proven:

d(D(μ),D(ν)) ≤ ‖μ− ν‖∞. (7.5)

Inference on persistent diagrams. Given a persistent diagram in the square
[0,L]2, we can discretize the square with the uniform grid (Chung et al.,
2009a). A concentration map is obtained by counting the number of points
in each pixel. Notice that this approach is somewhat similar to the voxel-based
morphometry (Ashburner and Friston, 2000), where brain tissue density maps
are used as a shapeless metric for characterizing concentration of the amount
of tissue. The inference corrected for multiple comparisons is then done by
performing the permutation test on the t-statistic of concentration maps. If data
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are white noise, points in PD should occur close to the diagonal line, i.e.,
y = x. The deviation from y = x indicates signal.

Likely, the concentration maps do not follow Gaussian distributional
assumptions. Note that this is the usual multiple comparison problem (Worsley
et al., 1996b) due to correlated t-statistic values across neighboring pixels. We
can perform the permutation test to empirically estimate the distribution of

sup
t∈[0,L]2

T (t) and inf
t∈[0,L]2

T (t)

to determine the statistical significance. By thresholding the tails of the
empirical distribution at significance 0.05, we can obtain the corresponding
quantile points.

7.2.3 Why Critical Values?

Persistent diagrams are the plots of pairing of critical values of a function.
The use of critical values of measurements within classical image analysis and
computer vision has been relatively limited so far, and typically appears as part
of simple preprocessing tasks such as feature extraction and identification of
edge pixels in an image. For example, first- or second-order image derivatives
may be used to identify the edges of objects to serve as the contour of an
anatomical shape, possibly using priors to provide additional shape context.
Specific properties of critical values as a topic on its own, however, have
received less attention. Whether critical points may serve a more central role
in the design of image processing algorithms is a question that has not been
investigated in sufficient detail.

Critical points of measurements are not used in classical image analysis
and computer vision very frequently. One reason is that it is difficult to
construct a streamlined linear analysis framework using critical points, or
values of images. Also, the computation of critical values is a nonlinear process
and almost always requires the numerical estimation of derivatives. In some
applications where this is necessary, the discretization scheme must be chosen
carefully, and remains an active area of research (Osher and Fedkiw, 2003). It
is noticed that in most of these applications, the interest is only in the stable
estimation of these points rather than their properties, and how these properties
vary as a function of images.

In brain imaging, on the other hand, the use of extreme values has been quite
popular in other types of problems. For example, these ideas are employed
in the context of multiple comparison correction using random field theory
(Worsley et al., 1996b; Kiebel et al., 1999; Taylor and Worsley, 2008). Recall
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that in the random field theory, the extreme value of a statistic is obtained from
an ensemble of images and is used to compute the p-value for correcting for
correlated noise across neighboring voxels.

Critical points have been also been used in image processing, and serve as
tools for feature extraction (Cootes et al., 1993; Sato et al., 1998; Antoine et al.,
n.d.). In this context, image derivatives are computed after image smoothing
and thresholded to obtain edges and ridges of images that are used to identify
pixels likely to lie on boundaries of anatomical objects. Then the collection
of critical points is used as a geometric feature that characterizes anatomical
shape.

7.3 Graph Filtrations

In persistent homological brain network analysis as first established in Lee
et al. (2011a, 2012), instead of analyzing networks at one fixed threshold,
we build the collection of nested networks over every possible threshold
using a graph filtration, a persistent homological construct (Lee et al., 2012;
Chung et al., 2013). The graph filtration is a threshold-free framework for
analyzing a family of graphs but requires hierarchically building nested
subgraph structures. The graph filtration framework shares similarities to
existing multithresholding or multiresolution network models that use many
different arbitrary thresholds or scales (Achard et al., 2006; He et al., 2008;
Lee et al., 2012; Kim et al., 2015). However such approaches are exploratory,
being mainly used to visualize graph feature changes over different thresholds
without quantification. Persistent homology, on the other hand, quantifies such
feature changes in a coherent way.

Euclidean distance is an often used metric in building filtrations in persistent
homology. For point cloud data, the Euclidean distance between points is used
to build the Rips filtration (Edelsbrunner and Harer, 2010). Numerous brain
network studies used the Euclidean distances for building network filtrations
(Lee et al., 2011b, 2012; Petri et al., 2014; Khalid et al., 2014; Cassidy et al.,
2015; Chung et al., 2015a, 2017a; Anirudh et al., 2016; Wong et al., 2016;
Palande et al., 2017).

7.3.1 Filtration on Weighted Graphs

Recently a concept of graph filtration has been proposed and successfully
applied to brain networks as a way to quantify networks without thresholding
(Lee et al., 2012; Chung et al., 2017a).
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Definition 7.5 Given weighted network X = (V ,w) with edge weight w =
(wij ), the binary network Xε = (V ,wε) is a graph consisting of the node set
V and the binary edge weights wε given by

wε = (wε,ij ) =
{

1 if wij > ε;
0 otherwise.

(7.6)

Note Lee et al. (2012) define the binary graphs by thresholding above, which is
consistent with the definition of the Rips filtration. However, in brain imaging,
higher value wij indicates stronger connectivity. Thus, we are thresholding
below (Chung et al., 2015a).

Note wε is the adjacency matrix of Xε , which is a simplicial complex
consisting of 0-simplices (nodes) and 1-simplices (edges) (see Figure 7.4)
(Ghrist, 2008). In the metric space X = (V ,w), the Rips complex Rε(X)

is a simplicial complex whose (p − 1)-simplices correspond to unordered p-
tuples of points that satisfy wij ≤ ε in a pairwise fashion (Ghrist, 2008). While
the binary network Xε has at most 1-simplices, the Rips complex can have at
most (p−1)-simplices (Figure 7.4). Thus, the complement of the binary graph
X c

ε ⊂ Rε(X ). The Rips complex has the property that

Rε0(X ) ⊂ Rε1(X ) ⊂ Rε2(X ) ⊂ · · ·
for 0 = ε0 ≤ ε1 ≤ ε2 ≤ · · · . When ε = 0, the Rips complex is simply
the node set V . By increasing the filtration value ε, we are connecting more
nodes so the size of the edge set increases. Such a nested sequence of the Rips
complexes is called a Rips filtration, the main object of interest in the persistent
homology (Edelsbrunner and Harer, 2008).

Figure 7.4 The difference between a binary network and a Rips complex. (a) Point
cloud data X. (b) The ball of radius ε centered at each point. (c) Binary network
X|ε . (d) Rips complex Rε(X). Unlike the binary network, the Rips complex has a
filled-in triangle. The figure was generated by Hyekyoung Lee of Seoul National
University.
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Figure 7.5 Graph filtrations of maltreated children vs. normal control subjects
on FA-values (Chung et al., 2015a). The Pearson correlation is used as filtration
values at 0.5, 0.6, and 0.7. Maltreated subjects show much higher correlation of
FA-values, indicating a more homogeneous and less varied structural covariate
relationship.

Since a binary network is a special case of the Rips complex, we also have

X c
ε0
⊂ X c

ε1
⊂ X c

ε2
⊂ · · ·

for 0 = ε0 ≤ ε1 ≤ ε2 · · · . Equivalently, we also have

Xε0 ⊃ Xε1 ⊃ Xε2 ⊃ · · · .

The sequence of such nested multiscale graphs is defined as the graph
filtration (Lee et al., 2011a, 2012). Figure 7.5 shows an example of graph
filtration in a fluorodeoxyglucose (FDG) positron emission tomography (PET)
study of three different populations (Lee et al., 2012).

Note that X0 is the complete weighted graph while X∞ is the node set V .
By increasing the threshold value, we are thresholding at higher connectivity
so more edges are removed. Given a weighted graph, there are infinitely many
different filtrations. This makes the comparisons between two different graph
filtrations difficult. For network Y = (V ,z) with the same node set but with
different edge weight z, with different filtration values, λ0 ≤ λ1 ≤ λ2 · · · , we
have

Yλ0 ⊃ Yλ1 ⊃ Yλ2 ⊃ · · · .

Then we compare two different graph filtrations {Xεi
} and {Yλi

}. For different
εj and εj+1, we can have identical binary graph, i.e., Xεj

= Xεj+1 . So it is
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possible there is a unique filtration that can be used for comparisons. Let the
level of a filtration be the number of nested unique sublevel sets in the given
filtration (Chung et al., 2015a).

Theorem 7.2 For graph X = (V ,w) with q unique positive edge weights, the
maximum level of a filtration is q+1. Further, the filtration with q+1 filtration
level is unique.

Proof. For a graph with p nodes, the maximum number of edges is (p2−p)/2,
which is obtained in a complete graph. If we order the edge weights in the
increasing order, we have the sorted edge weights:

0 = w(0) < min
j,k

wjk = w(1) < w(2) < · · · < w(q) = max
j,k

wjk,

where q ≤ (p2−p)/2. The subscript ( ) denotes the order statistic. For all λ <

w(1), Xλ = X0 is the complete graph of V . For all w(r) ≤ λ < w(r+1) (r =
1, · · · ,q − 1), Xλ = Xw(r)

. For all w(q) ≤ λ, Xλ = Xρ(q)
= V , the vertex set.

Hence, the filtration given by

X0 ⊃ Xw(1)
⊃ Xw(2)

⊃ · · · ⊃ Xw(q)

is maximal in a sense that we cannot have any additional level of filtration. �
Throughout the book, the maximal graph filtration (7.7) will be mainly

used. The condition of having unique edge weights in Theorem 7.2 is not
restrictive in practice. Assuming edge weights to follow some continuous
distribution, the probability of any two edges being equal is zero. For discrete
distribution, it may be possible to have identical edge weights. Then simply
add Gaussian noise or add extremely small increasing numbers

0,
1

1032
,

2

1032
, · · · q

1032

to q number of edges. Among many possible filtrations, we will use the
maximal filtration (7.7) in the study since it is uniquely given. The finiteness
and uniqueness of the filtration levels over finite graphs are intuitively clear by
themselves and are implicitly assumed in software packages such as javaPlex
(Adams et al., 2014). However, we still need a rigorous statement to specify
the type of filtration we are using.

7.3.2 Node-Based Filtration

Instead of doing graph filtration at the edge level, it is possible to build graph
filtration at the node level (Wang et al., 2017). Consider graph G = (V ,E)
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with nodes V = 1,2, · · · ,p and node weights wi defined at each node i. With
threshold λ, define a binary network Gλ = (Vλ,Eλ), where

Vλ = {i ∈ V : wi ≤ λ}
and

Eλ = {(i,j) ∈ E : max(wi,wj ) ≤ λ}.
Note Eλ ⊂ E such that two nodes i and j are connected if max(wi,wj ) ≤ λ.
We include a node from G in Gλ when the threshold λ is above its weight, and
we connect two nodes in Gλ with an edge when λ is above the larger weight
of any of the two nodes. Suppose we have edge weights

w(1) ≤ w(2) ≤ · · · ≤ w(q)

of G. Then we have the node-based graph filtration

Gw(1)
⊂ Gw(2)

⊂ · · · ⊂ Gw(q)
. (7.7)

Unlike Rips filtration, the filtration (7.7) is not affected by reindexing nodes
since the edge weights remain the same regardless of node indexing. Each
Gw(j)

in (7.7) consists of clusters of connected nodes; as λ increases, clusters
appear and later merge with existing clusters. The pattern of changing clusters
in (7.7) has the following properties.

Figure 7.6 Schematic of the node-based filtration on six EEG channels in the
international 10–20 system. (Left: the six-channel layout with the corresponding
Delaunay triangulation on the powers at the EEG channels. Right: as the filtration
value λ increases, we include the nodes and edges with weights less than λ. As
λ increases, more nodes and edges are merged in the filtration. The figure was
generated by Yuan Wang of University of South Carolina (Wang et al., 2017).
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Figure 7.7 Filtrations on EEG power maps in the beta band during sleep in
meditation native participants (MNP) and long-term mediators (LTM) showing
significant filtration differences (Wang et al., 2017). The figure was generated by
Yuan Wang of University of South Carolina.

For w(i) ≤ λ < w(i+1), Gλ = Gw(i)
, the filtration (7.7) is maximal in

the sense that no more Gλ can be added to (7.7) (Chung et al., 2015a). As
λ increases from w(i) to w(i+1), only the node v′i+1 that corresponds to the
weight w(i+1) is added in Vw(i+1)

.
The node-level filtration is illustrated on a six-channel EEG layout in

the international 10–20 system (Figure 7.6). We first build up the Delaunay
triangulation over the six-channel layout. Node weights are the powers at the
EEG channels. At each filtration value λ, we include the nodes and edges with
weights less than or equal to λ. The clusters change as λ increases. Figure 7.7
shows the filtration difference in EEG power maps between meditation native
participants (MNP) and long-term mediators (LTM) (Wang et al., 2017).

7.4 Betti Plots

The graph filtration can be quantified using monotonic function f satisfying

f (Xε0) ≥ f (Xε1) ≥ f (Xε2) ≥ · · · (7.8)

or

f (Xε0) ≤ f (Xε1) ≤ f (Xε2) ≤ · · · . (7.9)
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Figure 7.8 The Betti plots on the covariance correlation matrices for Jacobian
determinant (left column) and fractional anisotrophy (right column) on 548 (top
two rows) and 1,856 (bottom two rows) nodes (Chung et al., 2015a). Unlike the
covariance, the correlation seems to shows huge group separation between normal
and maltreated children visually. However, in all seven cases except the top-right
(548 nodes covariance for FA), statistically significant differences were detected
using the rank-sum test on the areas under the Betti plots (p-value < 0.001). The
shapes of Betti plots are consistent between the studies with different node sizes,
indicating the robustness of the proposed method over changing number of nodes.

The number of connected components (zeroth Betti number β0) and the
number of cycles (first Betti number β1) satisfy the monotonicity (Figure 7.8).
The size of the largest cluster (denoted as γ ) satisfies a similar but opposite
relation of monotonic increase. There are numerous monotone graph theory
features (Chung et al., 2015a, 2017a).

Theorem 7.3 In a graph, Betti numbers β0 and β1 are monotone over
filtration on edge weights.

Proof. When we do filtration on the maximal filtration in (7.7), edges are
deleted one at a time. Since an edge has only two end points, the deletion of an
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edge disconnects the graph into at most two. Thus, the number of connected
components (β0) always increases, and the increase is at most by one. The
Euler characteristic χ of the graph is given by (Adler et al., 2010).

χ = β0 − β1 = p − q,

where p and q are the number of nodes and edges respectively. Thus,

β1 = β0 − p + q.

Note p is fixed over the filtration but q is decreasing by one while β0 increases
at most by one. Hence, β1 always decreases, and the decrease is at most by
one. �

In graph filtrations, the number of connected components increases as
the filtration value increases. The pattern of increasing number of connected
components can visually show how the topology of the graph changes over
different parameter values. The overall pattern of Betti (number) plots can
be used as a summary measure of quantifying how the graph changes over
increasing edge weights (Chung et al., 2013) (Figure 7.9). The Betti number
plots are related but different from barcodes in literature. The Betti number
is equal to the number of bars in the barcodes at the specific filtration value.
To construct Betti plots, it is not necessary to perform filtrations for infinitely

Figure 7.9 Schematic of graph filtration and Betti plots. We sort the edge weights
in an increasing order. We threshold the graph at filtration values and obtain binary
graphs. The thresholding is performed sequentially by increasing the filtration
values. The zeroth Betti number β0, which counts the number of connected
components, and the first Betti number β1, which counts the number of cycles,
is then plotted over the filtration. The Betti plots are monotonic.
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many possible λ values. From Theorem 7.2, the maximum possible number of
filtration level for plotting the Betti numbers is one plus the number of unique
edge weights. For a tree, which is a graph with no cycle, we can come up with
a much stronger statement.

Theorem 7.4 For a tree T with p ≥ 2 nodes and unique positive edge
weights w(1) < w(2) < · · · < w(p−1), the plot for the first Betti number (β0)
corresponding to the maximal graph filtration is given by the coordinates

(0,1),(w(1),2), · · · ,(w(2),3),(w(p−1),p),(∞,p).

Proof. For a tree T with p nodes, there are total p − 1 edges. Then from
Theorem 7.2, we have the maximal filtration

Tw(0)
⊃ Tw(1)

⊃ Tw(2)
⊃ · · · ⊃ Tw(p−1)

. (7.10)

Since all the edge weights are above filtration value w(0) = 0, all the nodes
are connected, i.e., β0(w(0)) = 1. Since no edge weight is above the threshold
w(q−1), β0(w(p−1)) = p. At each time we threshold an edge, the number of
components increases exactly by one in the tree. Thus, we have

β0(w(1)) = 2,β0(w(2)) = 3, · · · ,β0(w(p−1)) = p.

�
For a general graph, it is not possible to analytically determine the

coordinates for its Betti plot (see Figure 7.10). The best we can do is to
compute the number of connected components β0 numerically using the

Figure 7.10 The largest cycle at given correlation thresholds on rs-fMRI. Two
representative subjects in HCP were used (Gritsenko et al., 2018a). As the
threshold increases, the length of cycles decreases monotonically.
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single linkage dendrogram (SLD) method (Lee et al., 2012), the Dulmage–
Mendelsohn decomposition (Pothen and Fan, 1990; Chung et al., 2011c) or
existing simplicial complex approaches (Edelsbrunner et al., 2002; de Silva
and Ghrist, 2007; Carlsson and Memoli, 2008).

7.4.1 Statistical Inference on Betti Number Plots

The zeros and the first Betti numbers can be used as features for characterizing
network differences statistically. Suppose there are n subjects and p nodes in
Group 1. For subject i, we have measurement xij at node j . Denote data matrix
as X = (xij ), where xij is the measurement for subject i at node j .

We then construct a connectivity matrix corresponding to X and the
corresponding kth Betti number plots β1

k (λ) using X. Thus, β1
k (λ) is a function

of X. Consider another Group 2 consists of m subjects. For Group 2, the data
matrix is denoted as Y = (yij ), where yij is the measurement for subject i at
node j . Group 2 will also generate single Betti number plot β2

k (λ) as a function
of Y . We are then interested in testing if the shapes of Betti number plots are
different between the groups. The inference can be done by comparing the
areas under the Betti plots. So the null hypothesis of interest is

H0 :
∫ 1

0
β1

k (λ) dλ =
∫ 1

0
β2

k (λ) dλ (7.11)

while the alternate hypothesis is

H1 :
∫ 1

0
β1

k (λ) dλ �=
∫ 1

0
β2

k (λ) dλ.

This inference avoids the use of multiple comparisons over the range of λ

values. The null hypothesis (7.11) is related to the following pointwise null
hypothesis:

H ′
0 : β1

0 (λ) = β2
0 (λ) for all λ ∈ [0,1]. (7.12)

If the hypothesis (7.12) is true, the hypothesis (7.11) is also true; however, the
inverse may not be true. Thus, testing the area under the curve is related to
testing the height of the curve at every point. The advantage of using the area
under the curve is that we do not need to worry about multiple comparisons
associated with testing (7.12). The area under the curve seems a reasonable
approach to use for Betti plots. A similar approach has been introduced in
(Chung, 2001) in removing the multiple comparisons and producing a single
summary test statistic.
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There is no prior study on the statistical distribution on the Betti numbers
so it is difficult to construct a parametric test procedure. Further, since there
is only one Betti plot per group, it is necessary to empirically construct the
null distribution and determine the p-value by resampling techniques such as
the permutation test and jackknife (Efron, 1982; Lee et al., 2012; Chung et al.,
2013). For this section, we use the jackknife resampling.

For Group 1 with n subjects, one subject is removed at a time and the
remaining n − 1 subjects are used in constructing a network and a Betti
plot. Let X−l be the data matrix, where the lth row (subject) is removed
from X. Then for each lth subject removed, we compute β

1(−l)
k , which is a

function of λ and X−l . Repeating this process for each subject, we obtain n

Betti plots β
1(−1)
k ,β

1(−2)
k , · · · ,β1(−n)

k . For Group 2, the lth row (subject) is
removed from the original data matrix Y and we obtain the data matrix as
Y−l . For each lth subject removed, we compute β

2(−l)
k , which is a function of

λ and X−l . Repeating this process for each subject, we obtain m Betti plots
β

2(−1)
k ,β

2(−2)
k , · · · ,β2(−m)

k . Subsequently, we compute the areas under the
Betti plots by discretizing the integral. The area differences between the groups
are then tested using the Wilcoxon rank-sum test, which is a nonparametric test
on median differences (Gibbons and Chakraborti, 2011). Using the jackknife
resampling, we can avoid using the permutation test. For the permutation test
to converge for our data set, it requires tens of thousands of permutations, and it
is really time consuming even with the proposed time-saving soft-thresholding
method. The proposed method takes about a minute of computation in a
desktop but tens of thousands of permutations will take about seven days
of computation. The MATLAB codes for constructing network filtration and
barcodes and performing statical inference based on the jackknife resampling
is provided.1

Comparisons between Betti plots can be also done by measuring the
distance between the Betti plots. Given two networks X 1 = (V ,w1) and
X 2 = (V ,w2), the Kolmogorov Smirnov (KS) distance between X 1 and X 2 is
defined as (Chung et al., 2013, 2015a; Lee et al., 2017)

DKS(X 1,X 2) = sup
ε≥0

∣∣f (X 1
ε )− f (X 2

ε )
∣∣

using monotone function f . The distance DKS is motivated by the KS test for
determining the equivalence of two cumulative distribution functions (Böhm
and Hornik, 2010; Gibbons and Chakraborti, 2011; Chung et al., 2017a).

1 http://brainimaging.waisman.wisc.edu/∼chung/barcodes/
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The distance DKS can be discretely approximated using the finite number of
filtrations:

Dq = sup
1≤j≤q

∣∣f (X 1
εj

)− f (X 2
εj

)
∣∣.

If we choose enough number of q such that εj are all the sorted edge weights,
then

DKS(X 1,X 2) = Dq

(Chung et al., 2017a). This is possible since there are only up to p(p − 1)/2
number of unique edges in a graph with p nodes and the monotone function
increases discretely but not continuously. In practice, εj may be chosen
uniformly or a divide-and-conquer strategy can be used to adaptively grid the
filtration values. We will study the inference procedure using Dq in a latter
chapter.

7.4.2 The Effect of Node Numbers on Betti Numbers

Depending on the number of nodes, the parameters of graphs vary considerably
up to 95% and the resulting statistical results will change substantially (Gong
et al., 2009; Fornito et al., 2010; Zalesky et al., 2010). On the other hand,
Betti plots are very robust under the change of node size since the plots
monotonically change by the increment of up to one. In a structural covariate
study on the white matter boundary (Chung et al., 2015a), for the node sizes
between 548 and 1,856 (0.3% and 1% of original 189,536 mesh vertices), the
choice of node size did not affect the pattern of graph filtrations, the shape of
Betti plots, or the subsequent statistical results significantly. For example, the
graph filtration on 1,856 nodes shows a similar pattern of dense connections
for the maltreated children (Figure 7.8). The resulting Betti plots also show a
similar pattern of the group separation. The statistical results are also somewhat
consistent. For both the Jacobian determinant and fractional anisotropy (FA)
values, the group differences in Betti plots obtained from sparse correlations
and covariances are all statistically significant (p-value < 0.001) in both 548
and 1,856 nodes except one case. For the case of the 548 nodes’ covariance
on FA values, we did not detect any group differences at 0.01 level (p-value
= 0.043). On the other hand, we detected the group difference for the 1,856
nodes case at 0.001 level.
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Diffusions on Graphs

In brain imaging, the image acquisition and processing processes themselves
are likely to introduce noise to the images. It is therefore imperative to
reduce the noise while preserving the geometric details of the anatomical
structures for various applications. Diffusion equations have been widely used
in brain imaging as a form of noise reduction motivated by Perona and Malik
(1990). Numerous diffusion-based techniques have been developed in image
processing (Sochen et al., 1998; Tang et al., 1999; Taubin, 2000; Andrade
et al., 2001; Chung et al., 2001a, 2003a, 2005b; Malladi and Ravve, 2002;
Cachia et al., 2003a,b; Chung and Taylor, 2004; Joshi et al., 2009).

The direct application of Gaussian kernel smoothing tends to cause various
numerical issues in irregular domains with boundaries. For example, if one
uses large bandwidth in kernel smoothing in a cortical bounded region, the
smoothing will blur signals across boundaries. So in kernel smoothing and
regression literature, various ad hoc procedures were introduced to remedy the
boundary effect. However, the most natural, straightforward way to smooth
images in irregular domains with boundaries is to formulate the problem as
boundary value problems using partial differential equations.

8.1 Diffusion as a Cauchy Problem

Consider M ∈ Rd to be a compact differentiable manifold. Let L2(M) be the
space of square integrable functions in M with inner product

〈g1,g2〉 =
∫
M

g1(p)g2(p) dμ(p), (8.1)

where μ is the Lebegue measure such that μ(M) is the total volume of M.
The norm ‖ · ‖ is defined as

‖g‖ = 〈g,g〉1/2.

180



8.1 Diffusion as a Cauchy Problem 181

The linear partial differential operator L is self-adjoint if

〈g1,Lg2〉 = 〈Lg1,g2〉
for all g1,g2 ∈ L2(M). Then the eigenvalues λj and eigenfunctions ψj of the
operator L are obtained by solving

Lψj = λjψj . (8.2)

Often (8.2) is written as

Lψj = −λjψj

so care should be taken in assigning the sign of eigenvalues.

Theorem 8.1 The eigenfunctions ψj are orthonormal.

Proof. Note 〈ψi,Lψj 〉 = λj 〈ψi,ψj 〉. On the other hand, 〈Lψi,ψj 〉 =
λi〈ψi,ψj 〉. Thus

(λi − λj )〈ψi,ψj 〉 = 0.

For any λi �= λj , 〈ψi,ψj 〉 = 0, orthogonal. For ψj to be orthonormal, we need
〈ψj,ψj 〉 = 1. This is simply done by absorbing the constant multiple into ψj .
Thus, {ψj } is orthonormal. �

In fact, ψj is the basis in L2(M). Consider 1D eigenfunction problem

∂2

∂x2
ψj (x) = −λjψj (x)

in interval [−l,l]. We can easily check that

ψ1j = cos

(
jπx

l

)
, ψ2j = sin

(
jπx

l
]

)
, j = 1,2, · · ·

are eigenfunctions corresponding to eigenvalue λj = ( jπ
l

)2. Also ψ10 = 1
is the trivial first eigenfunction corresponding to λ0 = 0. The multiplicity
of eigenfunctions is caused by the symmetric of interval [−l,l]. Based on
trigonometric formula, we can show that the eigenfunctions are orthogonal:∫ l

−l

ψ1i (x)ψ1j (x) dx = 0 if i �= j∫ l

−l

ψ2i (x)ψ2j (x) dx = 0 if i �= j∫ l

−l

ψ1i (x)ψ2j (x) dx = 0 for any i,j
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From ψ2
1j (x)+ ψ2

2j (x) = 1 and due to symmetry,∫ l

−l

ψ2
1j (x) dx =

∫ l

−l

ψ2
2j (x) dx = l.

Thus

ψ10 = 1√
2l

,

ψ1j = 1√
l

cos

(
jπx

l

)
,

ψ2j = 1√
l

sin

(
jπx

l

)
, j = 1,2, · · ·

are orthonormal bases in [−l,l].
Consider a Cauchy problem of the following form:

∂g

∂t
(p,t)+ Lg(p,t) = 0,g(p,t = 0) = f (p), (8.3)

where t is the time variable and p is the spatial variable.
The initial functional data f (p) can be further stochastically modeled as

f (p) = ν(p)+ ε(p), (8.4)

where ε is a stochastic noise modeled as a zero-mean Gaussian random field,
i.e., Eε(p) = 0 at each point p and ν is the unknown signal to be estimated.
Partial differential equation (PDE) (8.3) diffuses noisy initial data f over time
and estimate the unknown signal ν as a solution. Diffusion time t controls
the amount of smoothing and will be termed as the bandwidth. The unique
solution to equation (8.3) is given as follows. This is a heuristic proof, and
more rigorous proof is given later.

Theorem 8.2 For the self-adjoint linear differential operator L, the unique
solution of the Cauchy problem

∂g

∂t
(p,t)+ Lg(p,t) = 0,g(p,t = 0) = f (p) (8.5)

is given by

g(p,t) =
∞∑

j=0

e−λj t 〈f,ψj 〉ψj (p). (8.6)

Proof. For each fixed t , since g ∈ L2(M), g has expansion

g(p,t) =
∞∑

j=0

cj (t)ψj (p). (8.7)
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Substitute equation (8.7) into (8.5). Then we obtain

∂

∂t
cj (t)+ λj cj (t) = 0 (8.8)

for all j . The solution of equation (8.8) is given by

cj (t) = bj e
−λj t .

So we have solution

g(p,t) =
∞∑

j=0

bj e
−λj tψj (p).

At t = 0, we have

g(p,0) =
∞∑

j=0

bjψj (p) = f (p).

The coefficients bj must be the Fourier coefficients 〈f,ψj 〉 and they are
uniquely determined. �

The implication of Theorem 8.2 is obvious. The solution decreases expo-
nentially as time t increases and smooths out high spatial frequency noise much
faster than low-frequency noise. This is the basis of many of PDE-based image
smoothing methods. PDEs involving self-adjoint linear partial differential
operators such as the Laplace–Beltrami operator or iterated Laplacian have
been widely used in medical image analysis as a way to smooth either scalar
or vector data along anatomical boundaries (Andrade et al., 2001; Chung
et al., 2003a; Bulow, 2004). These methods directly solve PDE using standard
numerical techniques such as the finite difference method (FDM) or the finite
element method (FEM). The main shortcoming of solving PDE using FDM or
FEM is the numerical instability and the complexity of setting up the numerical
scheme. The analytic approach called weighted Fourier series (WFS) differs
from these previous methods in such a way that we only need to estimate the
Fourier coefficients in a hierarchical fashion to solve PDE.

Example 8.1 Consider 1D differential operator L = ∂2

∂x2 . The corresponding
Cauchy problem is 1D diffusion equation

∂g

∂t
(p,t)+ ∂2g

∂x2
(p,t) = 0,g(p,t = 0) = f (p),p ∈ [−l,l].

Then the solution of this problem is given by Theorem 8.2:

g(p,t) = a0ψ10 +
∞∑

j=1

aj e
−λj tψ1j (p)+ bj e

−λj tψ2j (p),
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Figure 8.1 Reduction of Gibbs phenomenon in weighted Fourier series (WFS).
The figure was generated by Yuan Wang of University of Wisconsin–Madison
(Wang et al., 2018).

where

a0 = 1√
2l

∫ l

−l

f (p) dp,

aj = 1√
l

∫ l

−l

f (p) cos

(
jπx

l

)
dp,

bj = 1√
l

∫ l

−l

f (p) sin

(
jπx

l

)
dp

for j = 1,2, · · · (see Figure 8.1)

8.2 Finite Difference Method

One way of solving diffusion equations numerically is to use finite differences.
We will discuss how to differentiate images. There are numerous techniques
for differentiation proposed in the literature. We start with simple example
of image differentiation in 2D image slices. Consider image intensity f (x,y)

defined on a regular grid, i.e., (x,y) ∈ Z2. Assume the pixel size is δx and δy

in the x- and y-directions. The partial derivative along the x-direction of image
f is approximated by the finite difference:

∂f

∂x
(x,y) = f (x + δx,y)− f (x,y)

δx
.
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The partial derivative along the y-direction of image f is approximated
similarly. ∂f

∂x
(x,y) and ∂f

∂y
(x,y) are called the first-order derivatives. Then

the second-order derivatives are defined by taking the finite difference
twice:

∂2f

∂x2
(x,y) =

[
f (x + δx,y)− f (x,y)

δx
− f (x,y)− f (x − δx,y)

δx

]/
δx

= f (x + δx,y)− 2f (x,y)+ f (x − δx,y)

δx2

Similarly, we also have

∂2f

∂y2
(x,y) = f (x,y + δy)− 2f (x,y)+ f (x,y − δy)

δx2
.

Other partial derivatives such as ∂2f
∂x∂y

are computed similarly.

8.2.1 1D Diffusion by Finite Difference

Let us implement 1D version of diffusion equations (Figure 8.2). Suppose we
have a smooth function f (x,t) that is a function of position x ∈ R and time
t ∈ R+. 1D isotropic heat equation is then defined as

∂f

∂t
= d2f

dx2
(8.9)

with initial condition f (x,t = 0) = g(x). Differential equation (8.9) is then
discretized as

f (x,t + δt) = f (x,t)+ δt
d2f

dx2
(x,y). (8.10)

With tk = kδt and starting from t = 0, (8.10) can be written as

f (x,tk+1) = f (x,tk)+ δt
f (x + δx,tk)− 2f (x,tk)+ f (x − δx,tk)

δx2
.

The preceding finite difference gives the solution at time tk+1. To obtain the
solution at any time, it is necessary to keep iterating many times with very
small δt . If δt is too small, the computation is slow. If it is too large, the
finite difference will diverge. Then the problem is finding the largest δt that
guarantees the convergence.

Discrete maximum principle. Since the diffusion smoothing and kernel
smoothing are equivalent, The diffused signal f (x,tk+1) must be bounded
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Figure 8.2 Gaussian kernel smoothing (solid line) and diffusion smoothing
(dotted line) (a) before diffusion, (b) after 0.05 seconds (five iterations), (c) after
0.25 seconds (25 iterations), and (d) after 0.5 seconds (50 iterations).

by the minimum and the maximum of signal (Chung et al., 2003c). Let
xi−1,xi,xi+1 be some points with gap δx.

f (xi,tk+1) = f (xi,tk)+ δt
d2f

dx2
(xi,tk)

≤ max
[
f (xi−1,tk),f (xi,tk),f (xi+1,tk)

]
.

Similarly, we can bound it as follows. Thus, the time step should be bounded by

δt ≤ max

⎡⎣∣∣∣∣∣∣f (xi−1,tj )− f (xi,tj )

d2f

dx2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣f (xi+1,tj )− f (xi,tj )

d2f

dx2

∣∣∣∣∣∣
⎤⎦ .

8.2.2 Diffusion in n-Dimensional Grid

In 2D, let (xi,yi) be pixels around (x,y) including (x,y) itself. Then using the
four-neighbor scheme, the Laplacian of f (x,y) can be written as
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�f (x,y) =
∑
i,j

wij f (xi,yi),

where the Laplacian matrix is given by

(wij ) =
⎛⎝ 0 1 0

1 −4 1
0 1 0

⎞⎠ .

Note that
∑

ij wij = 1.
Extending it further, consider nD. Let x = (x1,x2, · · · ,xn) be the coordi-

nates in Rn. Laplacian � in Rn is defined as

�f = ∂2f

∂x2
1

+ · · · + ∂2f

∂x2
n

.

Assume we have a n-dimensional hypercube grid of size is 1. Then we have

�f (x) = f (x1 ± 1, · · · ,xn)+ · · · + f (x1, · · · ,xn ± 1)

−2nf (x,y).

This uses 2n closest neighbors of voxel x to approximate the Laplacian.
It is also possible to incorporate 2n corners (x1 ± 1, · · · ,xn ± 1) along

with the 2n closest neighbors for a better approximation of the Laplacian. In
particular, in 2D we can obtain a more accurate finite difference formula for
eight-neighbor Laplacian:

(wij ) = 1

9

⎛⎝ 1 1 1
1 −8 1
1 1 1

⎞⎠ .

Based on the estimation Laplacian on a discrete grid, diffusion equation

∂f

∂t
= �f

is discretized as

f (x,tk+1) = f (x,tk)+ δt
∑
i,j

wij f (xi,yi), (8.11)

with tk = kδt and starting from t1 = 0. From (8.11), we can see that the
diffusion equation is solved by iteratively applying convolution with weights
wij . In fact, it can be shown that the solution of diffusion is given by kernel
smoothing.
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8.3 Laplacian on Planner Graphs

In a previous section, we showed how to estimate the Laplacian in a regular
grid. Now we show how to estimate Laplacian in an irregular grid such as
graphs and polygonal surfaces in R2. The question is how one can estimate
Laplacian or any other differential operators on a graph. Assume we have
observations Yi at each point pi , which is assumed to follow the additive model

Yi = μ(pi)+ ε(pi), pi ∈ R2

where μ is a smooth continuous function and ε is a zero mean Gaussian
random field. We want to estimate at some node pi on a graph:

�μ(p0) = ∂2μ

∂x2

∣∣∣
p0
+ ∂2μ

∂y2

∣∣∣
p0

.

Unfortunately, the geometry of the graph forbids direct application of the finite
difference scheme. To answer this problem, one requires the FEM (Chung,
2001). However, we can use a more elementary technique called polynomial
regression.

Let pi = (xi,yi) be the coordinates of the vertices of the graph or polygonal
surface. Let pi be the neighboring vertices of p0. We estimate the Laplacian at
p0 by fitting a quadratic polynomial of the form

μ(u,v) = β0 + β1u+ β2v + β3u
2 + β4uv + β5v

2. (8.12)

We are basically assuming the unknown signal μ to be the quadratic form
(8.12). Then the parameters βi are estimated by solving the normal equation:

Yi = β0 + β1xi + β2yi + β3x
2
i + β4xiyi + β5y

2
i (8.13)

for all pi that is neighboring p0. For simplicity, we may assume p0 is translated
to the origin, i.e., x0 = 0,y0 = 0.

Let Y = (Y1, · · · ,Ym)�, β = (β0, · · · ,β5)
� and design matrix

X =

⎛⎜⎜⎝
1 x1 y1 x2

1 x1y1 y2
1

1 x2 y2 x2
2 x2y2 y2

2
. . . . . . . . . . . . . . . . . . . . .
1 xm ym x2

m xmym y2
m

⎞⎟⎟⎠ .

Then we have the following matrix equation

Y = Xβ.

The unknown coefficients vector β is estimated by the usual least squares
method:

β̂ = (β̂0, . . . ,β̂5)
� = (X�X)−X�Y,
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where − denotes generalized inverse, which can be obtained through the
singular value decomposition (SVD). Note that X�X is nonsingular if m < 6.
In MATLAB, pinv can be used to compute the generalized inverse, which is
often called the pseudoinverse.

The generalized inverse often used is that of Moore–Penrose. It is usually
defined as matrix X satisfying four conditions:

XX−X = X, X−XX− = X−,

(XX−)� = XX−, (X−X)� = X−X.

Let X be m× p matrix with m ≥ p. Then the SVD of X is

X = UDV �,

where Um×p has orthonormal columns, Vp×p is orthogonal, and Dp×p =
Diag(d1, · · · ,dp) is diagonal with nonnegative elements. Let

D− = Diag(d−1 , · · · ,d−p ),

where d−i = 1/di if di �= 0 and d−i = 0 if di = 0. Then it can be shown that
the Moore–Penrose generalized inverse is given by

X− = V D−U�.

Once we have estimated the parameter vector β, the Laplacian is

�μ(p0) = 2β̂3 + 2β̂5.

8.4 Graph Laplacian

Now we generalize volumetric Laplacian in previous sections to graphs. Let
G = (V ,E) be a graph with node set V and edge set E. We will simply index
the node set as V = {1,2, · · · ,p}. If two nodes i and j form an edge, we
denote it as i ∼ j . Let W = (wij ) be the edge weight. The adjacency matrix
of G is often used as the edge weight. Various forms of graph Laplacian have
been proposed (Chung and Yau, 1997), but the most often used standard form
L = (lij ) is given by

lij =
⎛⎝ −wij, i ∼ j∑

i �=j wij, i = j

0, otherwise
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Often it is defined with the sign reversed such that

lij =
⎛⎝ wij, i ∼ j

−∑
i �=j wij, i = j

0, otherwise

The graph Laplacian L can then be written as

L = D −W,

where D = (dij ) is the diagonal matrix with dii =
∑n

j=1 wij . Here, we will
simply use the adjacency matrix so that the edge weights wij are either 0 or 1.
In MATLAB, Laplacian L is simply computed from the adjacency matrix adj:

n=size(adj,1);
adjsparse = sparse(n,n);
adjsparse(find(adj))=1;
L=sparse(n,n);
GL = inline(’diag(sum(W))-W’);
L = GL(adjsparse);

We use the sparse matrix format to reduce the memory burden for large-
scale computation.

Theorem 8.3 Graph Laplacian L is nonnegative definite.

Proof. The proof is based on factoring Laplacian L using incidence matrix
∇ such that L = ∇�∇. Such factorization always yields nonnegative definite
matrices. Very often L is nonnegative definite in practice if it is too sparse
(Figure 8.3).

Figure 8.3 (a) Part of lung blood vessel obtained from CT. (b) Adjacency matrix
obtained from four-neighbor connectivity. (c) Laplace matrix obtained from the
adjacency matrix.
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Theorem 8.4 For graph Laplacian L, L+αI is positive definite for any α > 0.

Proof. Since L is nonnegative definite, we have

x�Lx ≥ 0.

Then it follows that

x�(L+ αI)x = x�Lx + αx�x > 0

for any α > 0 and x �= 0. �
Unlike the continuous Laplace–Beltrami operators that may have a possibly

infinite number of eigenfunctions, we have up to p number of eigenvectors
ψ1,ψ2, · · · ,ψp satisfying

Lψj = λjψj (8.14)

with (Figure 8.4)

0 = λ1 < λ2 ≤ · · · ≤ λp.

The eigenvectors are orthonormal, i.e.,

ψT
i ψj = δij,

the Kroneker’s delta. The first eigenvector is trivially given as ψ1 = 1/
√

p

with 1 = (1,1, · · · ,1)T.
All other higher-order eigenvalues and eigenvectors are unknown analyti-

cally and have to be computed numerically (Figure 8.4). Using the eigenvalues
and eigenvectors, the graph Laplacian can be decomposed spectrally. From
(8.14),

L� = ��, (8.15)

where � = [ψ1, · · · ,ψp] and � is the diagonal matrix with entries
λ1, · · · ,λp. Since � is an orthogonal matrix,

��T = �T� =
p∑

j=1

ψjψ
T
j = Ip,

the identify matrix of size p. Then (8.15) is written as

L = ���T =
p∑

j=1

λjψjψ
T
j .

This is the restatement of the SVD for Laplacian.
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Figure 8.4 Top: first few eigenvectors of the Laplacian in an L-shaped domain.
Bottom: heat kernel with bandwidths σ = 0.01,0.1. We have used degree 70
expansions, but the shape is almost identical if we use higher-degree expansions.
The heat kernel is a probability distribution that follows the shape of the L-shaped
domain.

For measurement vector f = (f1, · · · ,fp)T observed at the p nodes, the
discrete Fourier series expansion is given by

f =
n∑

j=1

f̃jψj,

where f̃j = f Tψj = ψT
j f are Fourier coefficients.
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8.5 Fiedler Vectors

The connection between the eigenfunctions of continuous and discrete Lapla-
cians have been well established by many authors (Gladwell and Zhu, 2002;
Tlusty, 2007). Many properties of eigenfunctions of Laplace–Beltrami opera-
tors have discrete analogs. The second eigenfunction of the graph Laplacian is
called the Fiedler vector and it has been studied in connection to the graph and
mesh manipulation, manifold learning, and the minimum linear arrangement
problem (Fiedler, 1973; Lévy, 2006; Ham et al., 2004, 2005).

Let G = {V,E} be the graph with the vertex set V and the edge set E. We
will simply index the node set as V = {1,2, · · · ,n}. If two nodes i and j form
an edge, we denote it as i ∼ j . The edge weight between i and j is denoted as
wij . For a measurement vector f = (f1, · · · ,fn)

� observed at the n nodes, the
discrete Dirichlet energy is given by

E(f) = f�Lf =
n∑

i,j=1

wij (fi − fj )
2 =

∑
i∼j

wij (fi − fj )
2. (8.16)

The discrete Dirichlet energy (8.16) is also called the linear placement cost
in the minimum linear arrangement problem (Koren and Harel, 2002). Fielder
vector f evaluated at n nodes is obtained as the minimizer of the quadratic
polynomial:

min
f

E(f )

subject to the quadratic constraint

‖f‖2 = f�f =
∑

i

f 2
i = 1. (8.17)

The solution can be interpreted as the kernel principal components of a Gram
matrix given by the generalized inverse of L (Ham et al., 2004, 2005). Since
the eigenvector ψ1 of Laplacian is orthonormal with eigenvector ψ0, which is
constant, we also have an additional constraint:∑

i

fi = 0. (8.18)

This optimization problem was first introduced for the minimum linear
arrangement problem in 1970s (Hall, 1970; Koren and Harel, 2002). The opti-
mization can be solved using the Lagrange multiplier as follows (Holzrichter
and Oliveira, 1999).

Let g be the constraint (8.17) so that

g(f) = f�f − 1 = 0.
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Then the constrainted minimum should satisfy

∇E − μ∇g = 0, (8.19)

where μ is the Lagrange multiplier. (8.19) can be written as

2Lf − μf = 0 (8.20)

Hence, f must be the eigenvector of L and μ/2 is the corresponding eigenvalue.
By multiplying f� on the both sides of (8.20), we have

2f�Lf = μf�f = μ.

Since we are minimizing f�Lf, μ/2 should be the second eigenvalue λ1.
In most literature (Holzrichter and Oliveira, 1999), the condition

∑
i fi = 0

is incorrectly stated as a necessary constraint for the Fiedler vector. However,
the constraint

∑
i fi = 0 is not really needed in minimizing the Dirichlet

energy. This can be further seen from introducing a new constraint

h(f) = e�f =
∑

i

fi = 0,

where e = (1, · · · ,1)�.
The constraint (8.17) and (8.18) forces ψ1 to have at least two differing

sign domains in which ψ1 has one sign. But it is unclear how many differing
sign domains ψ1 can possibly have. The upper bound is given by Courant’s
nodal line theorem (Courant and Hilbert, 1953; Gladwell and Zhu, 2002;
Tlusty, 2007). The nodal set of eigenvector ψi is defined as the zero-level set
ψi(p) = 0. Courant’s nodal line theorem states that the nodal set of the ith
eigenvector ψi divides the graph into no more than i sign domains. Hence, the
second eigenvector has exactly two disjoint sign domains. At the positive sign
domain, we have the global maximum and at the negative sign domain, we
have the global minimum. This property is illustrated in Figure 8.5. However,
it is unclear where the global maximum and minimum are located. The concept
of tightness is useful in determining the location.

Definition 8.1 For a function f defined on vertex set V of G, let G−
s be the

subgraph of G induced by the vertex set V −
s = {i ∈ V |fi < s}. Let G+

s be the
subgraph of G induced by the vertex set V +

s = {i ∈ V |fi > s}. For any s, if
G−

s and G+
s are either connected or empty, then f is tight (Tlusty, 2007).

When s = 0, G+
0 and G−

0 are sign graphs. If we relax the condition so that
G+

s contains nodes satisfying fi ≥ s, we have weak sign graphs. It can be
shown that the second eigenvector on a graph with maximal degree 2 (cycle
or path) is tight (Tlusty, 2007). Figure 8.6 shows an example of a path with
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Figure 8.5 A weighted graph with weights W and the graph Laplacian L. The
weights are simply the adjacency matrix. The second eigenvector ψ1 is given as
numbers beside nodes. Left: this example is given in Hall (1970). The maximum
geodesic distance is obtained between the nodes 1 and 3, which are also hot
and cold spots. Right: there are two hot spots 1 and 5, which correspond to two
maximal geodesic paths 1-4-2-3 and 5-4-2-3 (Chung et al., 2011b).

Figure 8.6 A path with positive (G+
0 ) and negative (G−

0 ) sign domains. Due to
symmetry, the possible eigenfunction ψ1 has to be an odd function.

11 nodes. Among three candidates for the second eigenfunction, (a) and (b),
are not tight while (c) is. Note that the candidate function (a) have two disjoint
components for G+

0.5 so it cannot be tight. In order to be tight, the second
eigenfunction cannot have a positive minimum or a negative maximum at
the interior vertex in the graph (Gladwell and Zhu, 2002). This implies that
the second eigenfunction must decrease monotonically from the positive to
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negative sign domains as shown in (c). Therefore, the hot and cold spots must
occur at the two end points, 1 and 11, which gives the maximum geodesic
distance of 11.

For a cycle, the argument is similar except that a possible eigenfunction has
to be periodic and tight, which forces the hot and cold spots to be located at
the maximum distance apart. Due to the periodicity, we will have multiplicity
of eigenvalues in the cycle. Although it is difficult to predict the location of
maximum and minimums in general, the behavior of the second eigenfunction
is predictable for an elongated graph; it provides an intrinsic geometric way of
establishing natural coordinates.

8.6 Heat Kernel Smoothing on Graphs

Heat kernel smoothing was originally introduced in the context of filtering
out cortical surface data defined on mesh vertices obtained from 3D medical
images (Chung et al., 2005a,b). The formulation uses the tangent space
projection in approximating the heat kernel by iteratively applying Gaussian
kernel with smaller bandwidth. Recently proposed spectral formulation to heat
kernel smoothing (Chung et al., 2015b) constructs the heat kernel analytically
using the eigenfunctions of the Laplace–Beltrami (LB) operator, avoiding the
need for the linear approximation used in (Chung et al., 2005b; Han et al.,
2006). Since surface meshes are graphs, heat kernel smoothing can be used to
smooth noisy data defined on network nodes.

Instead of the Laplace–Beltrami operator for cortical surface, graph Lapla-
cian is used to construct the discrete version of heat kernel smoothing. The
connection between the eigenfunctions of continuous and discrete Laplacians
has been well established by several studies (Gladwell and Zhu, 2002; Tlusty,
2007). Although many have introduced the discrete version of heat kernels
in computer vision and machine learning, they mainly used the heat kernels
to compute shape descriptors or to define a multiscale metric (Belkin et al.,
2006; de Goes et al., 2008; Sun et al., 2009; Bronstein and Kokkinos, 2010).
These studies did not use the heat kernel in filtering out data on graphs. There
have been significant developments in kernel methods in the machine learning
community (Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004;
Nilsson et al., 2007; Steinke and Hein, 2008; Yger and Rakotomamonjy, 2011).
However, the heat kernel has never been used in such frameworks. Most kernel
methods in machine learning deal with the linear combination of kernels as a
solution to penalized regressions. On the other hand, our kernel method does
not have a penalized cost function.
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8.6.1 Heat Kernel on Graphs

The discrete heat kernel Kσ is a positive definite symmetric matrix of size
p × p given by

Kσ =
p∑

j=1

e−λj σ ψjψ
T
j , (8.21)

where σ is called the bandwidth of the kernel. Figure 8.4 displays heat kernel
with different bandwidths at an L-shaped domain. Alternately, we can write
(8.21) as

Kσ = �e−σ��T,

where e−σ� is the matrix logarithm of �. To see positive definiteness of the
kernel, for any nonzero x ∈ Rp,

xTKσ x =
p∑

j=1

e−λj σ xTψjψ
T
j x

=
p∑

j=1

e−λj σ (ψT
j x)2 > 0.

When σ = 0, K0 = Ip, the identity matrix. When σ = ∞, by interchanging
the sum and the limit, we obtain

K∞ = ψ1ψ
T
1 = 11T/p.

K∞ is a degenerate case and the kernel is no longer positive definite. Other
than these specific cases, the heat kernel is not analytically known in arbitrary
graphs.

Heat kernel is doubly stochastic (Chung and Yau, 1997) so that

Kσ 1 = 1, 1TKσ = 1T.

Thus, Kσ is a probability distribution along columns or rows.
Just like the continuous counterpart, the discrete heat kernel is also multi-

scale and has the scale-space property. Note

K2
σ =

p∑
i,j=1

e−(λi+λj )σ ψiψ
T
i ψjψ

T
j

=
p∑

j=1

e−2λj σ ψjψ
T
j = K2σ .
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We used the orthonormality of eigenvectors. Subsequently, we have

Kn
σ = Knσ .

8.6.2 Heat Kernel Smoothing on Graphs

Discrete heat kernel smoothing of measurement vector f is then defined as
convolution

Kσ ∗ f = Kσ f =
p∑

j=0

e−λj σ f̃jψj, (8.22)

This is the discrete analog of the heat kernel smoothing first defined in (Chung
et al., 2005b). In a discrete setting, the convolution ∗ is simply a matrix
multiplication. Thus,

K0 ∗ f = f

and

K∞ ∗ f = f̄ 1,

where f̄ = ∑p

j=1 fj/p is the mean of signal f over every node. When the
bandwidth is zero, we are not smoothing data. As the bandwidth increases, the
smoothed signal converges to the sample mean over all nodes.

Define the l-norm of a vector f = (f1, · · · ,fp)T as

‖ f ‖l=
( p∑

j=1

∣∣fj

∣∣l)1/l

.

The matrix ∞-norm is defined as

‖ f ‖∞= max
1≤j≤p

∣∣fj

∣∣.
Theorem 8.5 Heat kernel smoothing is a contraction mapping with respect to
the lth norm, i.e.,

‖Kσ ∗ f ‖l
l ≤ ‖f ‖l

l .

Proof. Let kernel matrix Kσ = (kij ). Then we have inequality

‖Kσ ∗ f ‖l
l =

p∑
i=1

p∑
j=1

|kij fj |l ≤
p∑

j=1

|fj |l .
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We used Jensen’s inequality and doubly stochastic property of the heat kernel.
Similarly, we can show that heat kernel smoothing is a contraction mapping
with respect to the ∞-norm as well.

Theorem 8.5 shows that heat kernel smoothing contracts the overall size of
data. This fact can be used to skeltonize the blood vessel trees.

8.6.3 Statistical Properties

Often observed noisy data f on graphs is smoothed with heat kernel Kσ to
increase the signal-to-noise ratio (SNR) and increases the statistical sensitivity
(Chung et al., 2015b). We are interested in knowing how heat kernel smoothing
will affect the statistical properties of smoothed data.

Consider the following addictive noise model:

f = μ+ e, (8.23)

where μ is an unknown signal and ε is zero mean noise. Let e = (e1, · · · ,ep)T.
Denote E as expectation and V as covariance. It is natural to assume that the
noise variabilities at different nodes are identical, i.e.,

Ee2
1 = Ee2

2 = · · · = Ee2
p. (8.24)

Further, we assume that data at two nodes i and j have less correlation when
the distance between the nodes is large. So covariance matrix

Re = Ve = E(eeT) = (rij )

can be given by

rij = ρ(dij ) (8.25)

for some decreasing function ρ and geodesic distance dij between nodes i

and j . Note rjj = ρ(0) with the understanding that djj = 0 for all j . The
off-diagonal entries of Re are smaller than the diagonals.

Noise e can be further modeled as Gaussian white noise, i.e., Brownian
motion or the generalized derivatives of the Wiener process, whose covariance
matrix elements are Dirac-delta. For the discrete counterpart, rij = δij , where
δij is Kroneker-delta with δij = 1 if i = j and 0 otherwise. Thus,

Re = E(eeT) = Ip,

the identity matrix of size p × p. Since δjj ≥ δij , Gaussian white noise is a
special case of (8.25).
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Once heat kernel smoothing is applied to (8.23), we have

Kσ ∗ f = Kσ ∗ μ+Kσ ∗ e. (8.26)

We are interested in knowing how the statistical properties of the model change
from (8.23) to (8.26). For Re = Ip, the covariance matrix of smoothed noise
is simply given as

RKσ ∗e = KσE(eeT)Kσ = K2
σ = K2σ .

We used the scale-space property of the heat kernel. In general, the covariance
matrix of smoothed data Kσ ∗ e is given by

RKσ ∗e = KσE(eeT)Kσ = Kσ ReKσ .

The variance of data will be often reduced after heat kernel smoothing in
the following sense (Chung et al., 2005a,b):

Theorem 8.6 Heat kernel smoothing reduces variability, i.e.,

V(Kσ ∗ f )j ≤ Vfj

for all j . The subscript j indicates the j th element of the vector.

Proof. Note

V(Kσ ∗ f )j = V(Kσ ∗ e)j = E

( p∑
i=1

kij ei

)2
.

Since (kij ) is doubly stochastic, after applying Jensen’s inequality, we obtain

E

( p∑
i=1

kij ei

)2 ≤ E

( p∑
i=1

kij e
2
i

)
= Ee2

i .

For the last equality, we used the equality of noise variability (8.24). Since
Efj = Ee2

i , we proved the statement. �
Theorem 8.6 shows that the variability of data decreases after heat kernel

smoothing.

8.6.4 Skeleton Representation Using Heat Kernel Smoothing

Discrete heat kernel smoothing can be used to smooth out and present very
complex patterns and get the skeleton representation. Here, we show how it
is applied to the 3D graph obtained from the computed tomography (CT)
of human lung vessel trees (Castillo et al., 2009; Wu et al., 2013; Chung
et al., 2018a). In this example, the 3D binary vessel segmentation from CT
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was obtained using the multiscale Hessian filters at each voxel (Frangi et al.,
1998; Korfiatis et al., 2011; Shang et al., 2011). The binary segmentation was
converted into a 3D graph by taking each voxel as a node and connecting
neighboring voxels. Using the 18-connected neighbor scheme, we connect two
voxels only if they touch each other on their faces or edges. If voxels are
only touching at their corner vertices, they are not considered as connected.
If the six-connected neighbor scheme is used, we will obtain a far sparse
adjacency matrix and corresponding graph Laplacian. The eigenvector of the
graph Laplacian is obtained using an Implicitly Restarted Arnoldi Iteration
Method (Lehoucq and Sorensen, 1996). We used 6,000 eigenvectors. Note we
cannot have more eigenvectors than the number of nodes.

As an illustration, we performed heat kernel smoothing on simulated data.
Gaussian noise is added to one of the coordinates (Figure 8.7). Heat kernel
smoothing is performed on the noise added coordinate. Numbers in Figure 8.7
are kernel bandwidths. At σ = 0, heat kernel smoothing is equivalent to

Figure 8.7 From top-left to right: 3D lung vessel tree. Gaussian noise is added to
one of the coordinates. 3D graph constructed using six-connected neighbors. The
numbers are the kernel bandwidth σ .
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Fourier series expansion. Thus, we get the almost identical result. As the
bandwidth increases, smoothing converges to the mean value. Each discon-
nected region should converge to its own different mean values. Thus, when
σ = 10,000, the regions that are different colors are regions that are discon-
nected. This phenomenon is related to the hot spots conjecture in differential
geometry (Banuelos and Burdzy, 1999; Chung et al., 2011b). The number of
disconnected structures can be obtained counting the zero eigenvalues.

The technique can be used to extract the skeleton representation of vessel
trees. We perform heat kernel smoothing on node coordinates with σ = 1.
Then we rounded off the smoothed coordinates to the nearest integers. The
rounded-off coordinates were used to reconstruct the binary segmentation.
This gives the thick trees in Figure 8.8 (top-left). To obtain thinner trees,
the smoothed coordinates were scaled by the factor of two, four, and six
times before rounding off. This had the effect of increasing the image size
relative to the kernel bandwidth, thus obtaining the skeleton representation of
the complex blood vessel (Figure 8.8 clockwise from the top-right) (Lindvere
et al., 2013; Cheng et al., 2014). By connecting the voxels sequentially, we
can obtain the graph representation of the skeleton as well. The method can
be easily adopted for obtaining the skeleton representation of complex brain
network patterns.

8.6.5 Diffusion Wavelets

Consider a traditional wavelet basis Wt,q(p) obtained from a mother wavelet
W with scale and translation parameters t and q in Euclidean space (Kim et al.,
2012b):

Wt,q(p) = 1

t
W

(
p − q

t

)
. (8.27)

The wavelet transform of a signal f (p) is given by kernel

〈Wt,q,f 〉 =
∫
M

Wt,q(p)f (p) dμ(p).

Scaling a function on an arbitrary manifold including graph is trivial. But
the difficulty arises when one tries to translate a mother wavelet. It is not
straightforward to generalize the Euclidean formulation (8.27) to an arbitrary
manifold, due to the lack of regular grids (Nain et al., 2007; Bernal-Rusiel
et al., 2008). The recent work based on the diffusion wavelet bypasses this
problem also by taking bivariate kernel as a mother wavelet (Mahadevan and
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Figure 8.8 The skeleton representation of vessel trees. Using the heat kernel series
expansion with bandwidth σ = 1 and 6,000 bases, we upsampled the binary
segmentation at two, four, and six times (clockwise from top-right) larger than the
original size (top-left).

Maggioni, 2006; Antoine et al., 2010; Hammond et al., 2011; Kim et al.,
2012b). By simply changing the second argument of the kernel, it has the
effect of translating the kernel. The diffusion wavelet construction has been
fairly involving so far. However, it can be shown to be a special case of the
heat kernel regression with proper normalization. Following the notations in



204 Diffusions on Graphs

Antoine et al. (2010), Hammond et al. (2011), and Kim et al. (2012b), diffusion
wavelet Wt,q(p) at position p and scale t is given by

Wt,q(p) =
k∑

j=0

g(λj t)ψj (p)ψj (q),

for some scale function g. If we let τj = g(λj t), the diffusion wavelet
transform is given by

〈Wt,q,f 〉 =
∫
M

Wt,q(p)f (p) dμ(p)

=
k∑

j=0

g(λj t)ψj (q)

∫
M

f (p)ψj (p) dμ(p)

=
k∑

j=0

τjfjψj (q), (8.28)

where fj = 〈f,ψj 〉 is the Fourier coefficient. Note (8.28) is the kernel
regression (Chung et al., 2015b). Hence, the diffusion wavelet transform can be
simply obtained by doing the kernel regression without an additional wavelet
machinery as done in Kim et al. (2012b). Further, if we let g(λj t) = e−λj t , we
have

Wt,p(q) =
k∑

j=0

e−λj tψj (p)ψj (q),

which is a heat kernel. The bandwidth t of heat kernel controls resolution while
the translation is done by shifting one argument in the kernel.

8.7 Laplace Equation

In this section, we will show how to solve for steady state of diffusion on a
graph. The distribution of fictional charges within the two boundaries sets up
a scalar potential field �, which satisfies the Poisson equation

�� = ∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= ρ

ε0
,

where ρ is the total charge within the boundaries. If we set up the two
boundaries at different potential, say at �0 and �1, without enclosing any
charge, we have the Laplace equation

�� = 0.
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By solving the Laplace equation with the two boundary condition, we obtain
the potential field �. Then the electric field perpendicular to the isopotential
surfaces is given by −∇�. The Laplace equation is mainly solved using the
finite difference scheme. The electric field lines radiate from one conducting
surface to the other without crossing each other. By tracing the electric field
line on the graph, we obtain the geometric pattern of the graph.

The underlying framework is identical to the Laplace equation based sur-
face flattening or cortical thickness estimation (Jones et al., 2000; Chung et al.,
2010b). Without using the finite difference scheme, we can use an analytic
approach for solving the Laplace equation in an arbitrary graph. The proposed
method is essentially Galerkin’s method (Kirby, 2000). Galerkin’s method
usually discretizes partial differential equations and integral equations as a
collection of linear equations involving basis functions. The linear equations
are then usually solved in the least squares fashion. The iterative residual fitting
(IRF) algorithm (Chung et al., 2008a) can be considered as a special case of
Galerkin’s method.

The solution of the Laplace equation is approximated as a finite expansion

f (p) =
k∑

j=0

cjψj (p).

Consider following boundary conditions

f (p) = 1, p ∈ G+, and f (p) = −1, p ∈ G−, (8.29)

where G+ and G− are subgraphs of G. We may take G+ and G− at the two
extreme nodes in the minimum spanning tree. The boundary conditions satisfy

1 =
k∑

j=0

cjψj (p2i ), p2i ∈ G+ (8.30)

and

− 1 =
k∑

j=0

cjψj (p3i ), p3i ∈ G−. (8.31)

In the interior region G\(G+ ∪G−), by taking the Laplacian on the expansion
f (p) =∑k

j=0 cjψj (p), we have

0 =
k∑

j=0

cjλjψj (p1i ), p1i ∈ G\(G+ ∪G−). (8.32)
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We may assume that the number of nodes in G+ and G− are substantially
smaller than the number of nodes in G\(G+ ∪ G−). So possibly we need to
subsample the interior region. We assume that there are a,b, and c number of
sampling nodes for equations (8.30), (8.31), and (8.32) respectively. We now
combine linear equations (8.30), (8.31), and (8.32) together in a matrix form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
1
...
1
−1

...
−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

y

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1ψ1(p11) · · · λkψk(p11)
...

. . .
...

λ1ψ1(p1a) · · · λk(p1a)

ψ1(p21) · · · ψk(p21)
...

. . .
...

ψ1(p2b) · · · ψk(p2b)

ψ1(p31) · · · ψk(p31)
...

. . .
...

ψ1(p3c) · · · ψk(p3c)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

�

⎛⎜⎜⎜⎜⎜⎝
c1

c2
...

ck−1

ck

⎞⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

C

. (8.33)

The preceding matrix equation can be solved by the least squares method:

Ĉ = (� ′�)−1�y.

In order for the matrix � ′� to have the inverse, the total number of sampling
voxels (a + b + c) should be larger than the total number of basis k, which is
likely to be true for brain images, so there is no need to use the pseudoinverse
here.
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Sparse Networks

There have been many attempts to identify high-dimensional network features
via multivariate approaches (Worsley et al., 2005b; Lerch et al., 2006; He et al.,
2007, 2008; Chung et al., 2013). Specifically, when the number of voxels or
nodes, denoted as p, is substantially larger than the number of images, denoted
as n, it produces an underdetermined model with infinitely many possible
solutions. The small-n large-p problem is often remedied by regularizing the
underdetermined system with additional sparse penalties.

Popular sparse network models include sparse correlations (Lee et al.,
2011c; Chung et al., 2013, 2015a, 2017a), LASSO (Bickel and Levina, 2008;
Huang et al., 2009; Peng et al., 2009; Chung et al., 2013), sparse canonical
correlations (Avants et al., 2010), and graphical-LASSO (Banerjee et al., 2006,
2008; Friedman et al., 2008; Huang et al., 2009, 2010; Witten et al., 2011;
Mazumder and Hastie, 2012). These popular sparse models require optimizing
L1-norm penalties, which has been the major computational bottleneck for
solving large-scale problems. Thus, many existing sparse brain network
models in brain imaging have been restricted to a few hundreds nodes or less.
The 2,527 MRI features used in a LASSO model for Alzheimer’s disease (Xin
et al., 2015) is probably the largest number of features used in any sparse model
in the brain imaging literature.

9.1 Why Sparse Models?

If we are interested quantifying the measurements in every voxel in an image
simultaneously, the standard procedure is to set up a multivariate general
linear model (MGLM), which generalizes widely used univariate GLM by
incorporating vector-valued responses and explanatory variables (Anderson,
1984; Friston et al., 1995; Worsley et al., 1996b, 2004; Taylor and Worsley,

207



208 Sparse Networks

2008). Hotelling’s T 2-statistic is a special case of MGLM and has been mainly
used for inference on surface shapes and deformations (Thompson et al., 1997;
Joshi, 1998; Cao and Worsley, 1999a; Gaser et al., 1999; Chung et al., 2001b).

Let Jn×p = (Jij ) be the measurement matrix; Jij is the measurement
for subject i at voxel position j . The subscripts denote the dimension of
matrix. We can think Jij as either Jacobian determinant, fractional anisotropy
values, or fMRI activation. Assume there are a total of n subjects and p

voxels of interest. The measurement vector at the j th voxel is denoted as
xj = (J1j, · · · ,Jnj )

�. The measurement vector for the ith subject is denoted
as yi = (Ji1, · · · ,Jip), which is expected to be distributed identically and
independently over subjects. Note that

J = (x1, · · · ,xp) = (y�1 , · · · ,y�n )�.

We may assume the covariance matrix of yi to be

V(y1) = · · · = V(yn) = �p×p = (σkl).

With these notations, we set up the following MGLM over all subjects and
across different voxel positions:

Jn×p = Xn×kBk×p + Zn×qGq×p + Un×p�
1/2
p×p, (9.1)

where X is the matrix of contrasted explanatory variables while B is the matrix
of unknown coefficients to be estimated. Nuisance covariates of noninterest
are in the matrix Z and the corresponding coefficients are in the matrix G. The
components of Gaussian random matrix U are independently distributed with
zero mean and unit variance. The symmetric matrix �1/2 is the square root of
the covariance matrix accounting for the spatial dependency across different
voxels. In MGLM (9.1), we are interested in testing the null hypothesis

H0 : B = 0.

The parameter matrices in the model are estimated via the least squares
method. The resulting multivariate test statistics are called the Lawley–
Hotelling trace or Roy’s maximum root. When there is only one voxel, i.e.,
p = 1, these multivariate test statistics collapse to Hotelling’s T 2-statistic
(Worsley et al., 2004; Chung et al., 2010b).

Note that MGLM (9.1) is equivalent to the assumption that yi follows
multivariate normal with some mean μ and covariance �, i.e., yi ∼ N(μ,�).
Then neglecting constant terms, the log-likelihood function L of yi is given by

L(μ,�) = log det �−1 − 1

n

n∑
i=1

(yi − μ)��−1(yi − μ).
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By maximizing the log-likelihood, the MLE of μ and � are given by

μ̂ = ȳi = 1

n

n∑
i=1

yi

�̂ = 1

n

n∑
i=

(yi − ȳi )
�(yi − ȳi ). (9.2)

For a notational convenience, we can center the measurement yi such that

yi ← yi − ȳi .

We are basically centering the measurements by subtracting the group mean
over subjects. Then MLE (9.3) can be written in a more compact form

�̂ = 1

n
J�p×nJn×p. (9.3)

However, there is a serious defect with MGLM (9.1) and its MLE (9.3);
namely the estimated covariance matrix �̂ is positive definite only for n ≥ p

(Friston et al., 1995; Schäfer and Strimmer, 2005). J�J becomes rank deficient
for n < p. In most imaging studies, there are more voxels than the number of
subjects, i.e., n < p. When �̂ is singular, we do not properly have the inverse
of �̂, which is the precision matrix often needed in partial correlation-based
network analyses (Lee et al., 2011c). This is the main reason MGLM was rarely
employed over the whole brain region and researchers are still using mostly
univariate approaches in imaging studies.

9.1.1 Why Sparse Networks?

The majority of functional and structural connectivity studies in brain imaging
are usually performed following the standard analysis framework (Hagmann
et al., 2007; Gong et al., 2009; Fornito et al., 2010; Zalesky et al., 2010). From
3D whole brain images, n regions of interest (ROI) are identified and serve
as the nodes of the brain network. Measurements at ROIs are then correlated
in a pairwise fashion to produce the connectivity matrix of size n × n. The
connectivity matrix is then thresholded to produce the adjacency matrix con-
sisting of zeros and ones that define the link between two nodes. The binarized
adjacency matrix is then used to construct the brain network. Then various
graph complexity measures such as degree, clustering coefficients, entropy,
path length, hub centrality, and modularity are defined on the graph, and the
subsequent statistical inference is performed on these complexity measures.

For a large number of nodes, simple thresholding of correlation will produce
a large number of edges, which makes the interpretation difficult. For example,
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for 3×105 voxels in an image, we can possibly have a total of 9×1010 directed
edges in the graph. For this reason, we used the sparse data recovery framework
in obtaining a far smaller number of significant edges.

9.2 Sparse Likelihood

Beyond sparse regression, others have proposed the likelihood methods. To
remedy the small-n and large-p problem, the likelihood is regularized with a
L1-norm penalty. If we center the measurements yi , the log-likelihood can be
written as

L(�) = log det �−1 − 1

n

n∑
i=1

y�i �−1yi

= log det �−1 − tr
(
�−1S

)
,

where S = 1
n

∑n
i=1 y�i yi is the sample covariance matrix. We used the fact that

the trace of a scalar value is equivalent to the scalar value itself and tr(AB) =
tr(BA) for matrices A and B.

To avoid the small-n, large-p problem, we penalize the log-likelihood with
L1-norm penalty:

L(�−1) = log det �−1 − tr
(
�−1S

)
− λ‖�−1‖1, (9.4)

where ‖ · ‖1 is the sum of the absolute values of the elements. We made
the likelihood as a function of �−1 to simply emphasize that we are trying
to estimate the inverse covariance matrix. The penalized log-likelihood is
maximized over the space of all possible symmetric positive definite matrices.
(9.4) is a convex problem and it is usually solved using the graphical-LASSO
(GLASSO) algorithm (Banerjee et al., 2006, 2008; Friedman et al., 2008;
Huang et al., 2010; Mazumder and Hastie, 2012). The tuning parameter λ > 0
controls the sparsity of the off-diagonal elements of the inverse covariance
matrix. By increasing λ > 0, the estimated inverse covariance matrix becomes
more sparse.

GLASSO is a fairly time-consuming algorithm (Friedman et al., 2008;
Huang et al., 2010). Solving GLASSO for 548 nodes, for instance, may take
up to 6 minutes on slow desktop computers if fast algorithms like Hsieh et al.
(2013) is not used. If �−1

i (λ) is the estimated inverse sparse covariance for
group i at given sparse parameter λ, we are interested in testing the equivalence
of inverse covariance matrices between the two groups at fixed λ, i.e.,

H0 : �−1
1 (λ) = �−1

2 (λ).
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9.2.1 Filtration in Graphical-LASSO

The solution to graphical-LASSO has a peculiar nested topological structure.
Let �−1(λ) = (σ ij (λ)) be the inverse covariance estimated from graphical-
LASSO. Let A(λ) = (aij ) be the corresponding adjacency matrix given by

aij (λ) =
{

1 if σ̂ ij �= 0;
0 otherwise.

(9.5)

The adjacency matrix A induces a graph G(λ) consisting of κ(λ) number of
partitioned subgraphs

G(λ) =
κ(λ)⋃
l=1

Gl(λ) with Gl = {Vl(λ),Al(λ)},

where Vl and Al are node and edge sets of subgraph Gl .
Let S = (sij ) be the sample covariance matrix. Let B(λ) = (bij ) be the

adjacency matrix defined by

bij (λ) =
{

1 if |̂sij | > λ;
0 otherwise.

(9.6)

The adjacency matrix B similarly induces a graph with τ(λ) disjoint
subgraphs:

H(λ) =
τ(λ)⋃
l=1

Hl(λ) with Hl = {Wl(λ),Bl(λ)},

where Wl and Bl are node and edge sets of subgraph Hl . Then the partitioned
graphs are shown to be partially nested in a sense that the node sets exhibits
persistency.

Theorem 9.1 For any λ > 0, the adjacency matrices (9.5) and (9.6) induce
the identical vertex partition so that κ(λ) = τ(λ) and Vl(λ) = Wl(λ). Further,
the node sets Vl and Wl form filtrations over the sparse parameter:

Vl(λ1) ⊃ Vl(λ2) ⊃ Vl(λ3) ⊃ · · · (9.7)

Wl(λ1) ⊃ Wl(λ2) ⊃ Wl(λ3) ⊃ · · · (9.8)

for λ1 ≤ λ2 ≤ λ3 ≤ · · · .

From (9.6), it is trivial to see the filtration holds for Wl . The filtration for Vl

is proved in Huang et al. (2010). The equivalence of the node sets Vl = Wl is
proved in Mazumder and Hastie (2012). Note that the edge sets may not form
a filtration (Figure 9.1). The construction of the filtration on the node sets Vl
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Figure 9.1 Schematic of graph filtrations obtained by sparse-likelihood (9.5) and
sample covariance thresholding (9.6). The vertex set of G(λ1) = H(λ1) consists of
black nodes. For the next filtration value λ2, G(λ2) �= H(λ2) since the edge sets
are different. However, the partitioned vertex sets (gray colored) of G(λ2) and H(λ2)

match.

Figure 9.2 Left: adjacency matrices obtained through graphical-LASSO with
increasing λ values. The persistent homological structure is self-evident. Right:
adjacency matrices are clustered as a block diagonal matrix D by permutation.

(9.7) is very time consuming since we have to solve the sequence of graphical-
LASSO. For instance, for 548 node sets and 547 different filtration values, the
whole filtration takes more than 54 hours in a desktop (Chung et al., 2015a).

In Figure 9.2, we randomly simulated the data matrix X5×10 from the
standard normal distribution. The sample covariance matrix is then fed into
graphical-LASSO with different filtration values. To identify the structure
better, we transformed the adjacency matrix A by permutation P such that
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D = PAP−1 is a block diagonal matrix. Theoretically only the partitioned
node sets are expected to exhibit the nestedness, but in this example the edge
sets are also nested as well.

9.3 Sparse Correlation Network

The problem with graphical-LASSO or any type of similar L1 norm opti-
mization is that it becomes computationally expensive as the number of node
p increases. So it is not really practical for large-scale brain networks. In
this section, we present a scalable large-scale network model (p > 25,000)
that yields greater computational speed and efficiency by bypassing the
computational bottleneck of optimizing L1-penalties.

There are few previous studies at speeding up the computation for sparse
models. By identifying block diagonal structures in the estimated (inverse)
covariance matrix, it is possible to reduce the computational burden in the
penalized log-likelihood method (Witten et al., 2011; Mazumder and Hastie,
2012). However, the method presented in this section differs from Mazumder
and Hastie (2012) and Witten et al. (2011) in that we do not need to assume
that the data will follow Gaussianness. Subsequently, there is no need to
specify the likelihood function. Further, the cost functions we are optimizing
are different. Specifically, we propose a novel sparse network model based on
correlations. Although correlations are often used in sciences in connection
to times series and stochastic processes (Worsley et al., 2005a,b), the sparse
version of correlation has been somewhat neglected.

Consider measurement vector xj on node j . If we center and rescale the
measurement xj such that

‖ xj ‖2= x�j xj = 1,

the sample correlation between nodes i and j is given by x�i xj . Since the
data are normalized, the sample covariance matrix is reduced to the sample
correlation matrix.

Consider the following linear regression between nodes j and k (k �= j):

xj = γjkxk + εj . (9.9)

We are basically correlating data at node j to data at node k. In this particular
case, γjk is the usual Pearson correlation. The least squares estimation (LSE)
of γjk is then given by

γ̂jk = x�j xk, (9.10)
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which is the sample correlation. For the normalized data, regression coefficient
estimation is exactly the sample correlation. For the normalized and centered
data, the regression coefficient is the correlation. It can be shown that (9.22)
minimizes the sum of least squares over all nodes:

p∑
j=1

∑
k �=j

‖ xj − γjkxk ‖2 . (9.11)

Note that we do not really care about correlating xj to itself since the
correlation is then trivially γjj = 1.

9.3.1 Sparse Correlations

Let � = (γjk) be the correlation matrix. The sparse penalized version of (9.11)
is given by

F(�) = 1

2

p∑
j=1

∑
k �=j

‖ xj − γjkxk ‖2 +λ

p∑
j=1

∑
k �=j

|γjk|. (9.12)

The sparse correlation is given by minimizing F(�). By increasing λ, the
estimated correlation matrix �̂(λ) becomes more sparse. When λ = 0, the
sparse correlation is simply given by the sample correlation, i.e., γ̂jk =
x�j xk . As λ increases, the correlation matrix � shrinks to zero and becomes
more sparse. This is separable compressed sensing or LASSO type problem.
However, there is no need to numerically optimize (9.12) using the coordinate
descent learning or the active-set algorithm often used in compressed sensing
(Friedman et al., 2008; Peng et al., 2009). The minimization of (9.12) can be
done by the proposed soft-thresholding method analytically by exploiting the
topological structure of the problem. Since x�i xj �= δij , the Dirac delta, it
looks like the sparse regression is not orthogonal design and the existing soft-
thresholding method for LASSO (Tibshirani, 1996) is not directly applicable.
However, it can be made into orthogonal design. The detail is given in the
sparse cross-correlation section.

Theorem 9.2 For λ ≥ 0, the solution of the following separable LASSO
problem

γ̂jk(λ) = arg min
γjk

1

2

p∑
j=1

∑
k �=j

‖ xj − γjkxk ‖2 +λ

p∑
j=1

∑
k �=j

|γjk|,
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is given by the soft-thresholding

γ̂jk(λ) =

⎧⎪⎪⎨⎪⎪⎩
x�j xk − λ if x�j xk > λ

0 if |x�j xk| ≤ λ

x�j xk + λ if x�j xk < −λ

. (9.13)

Proof. Write (9.12) as

F(�) = 1

2

p∑
j=1

∑
k �=j

f (γjk), (9.14)

where

f (γjk) =‖ xj − γjkxk ‖2 +2λ|γjk|.
Since f (γjk) is nonnegative and convex, F(�) is minimum if each component
f (γjk) achieves minimum. So we only need to minimize each component
f (γjk). This differentiates our sparse correlation formulation from the stan-
dard compressed sensing that cannot be optimized in this componentwise
fashion. f (γjk) can be rewritten as

f (γjk) = ‖xj‖2 − 2γjkx�j xk + γ 2
jk‖xk‖2 + 2λ|γjk|

= (γjk − x�j xk)
2 + 2λ|γjk| + 1.

We used the fact x�j xj = 1.

For λ = 0, the minimum of f (γjk) is achieved when γjk = x�j xk , which
is the usual LSE. For λ > 0, since f (γjk) is quadratic in γjk , the minimum is
achieved when

∂f

∂γjk

= 2γjk − 2x�j xk ± 2λ = 0. (9.15)

The sign of λ depends on the sign of γjk . Thus, sparse correlation γ̂jk is given
by a soft-thresholding of x�j xk:

γ̂jk(λ) =

⎧⎪⎪⎨⎪⎪⎩
x�j xk − λ if x�j xk > λ

0 if |x�j xk| ≤ λ

x�j xk + λ if x�j xk < −λ

. (9.16)

�
The estimated sparse correlation (9.16) basically thresholds the sample

correlation that is larger or smaller than λ by the amount λ. Due to this
simple expression, there is no need to optimize (9.12) numerically as is often
done in compressed sensing or LASSO (Friedman et al., 2008; Peng et al.,
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2009). However, Theorem 9.2 is only applicable to separable cases and for
nonseparable cases, and numerical optimization is still needed.

The different choices of sparsity parameter λ will produce different solu-
tions in sparse model A(λ). Instead of analyzing each model separately,
we can analyze the whole collection of all the sparse solutions for many
different values of λ. This avoids the problem of identifying the optimal sparse
parameter that may not be optimal in practice. The question is then how
to use the collection of A(λ) in a coherent mathematical fashion. This can
be addressed using persistent homology (Edelsbrunner and Harer, 2008; Lee
et al., 2011a, 2012).

9.3.2 Filtration in Sparse Correlations

Using the sparse solution (9.16), we can construct a filtration. We will basically
build a graph G using spare correlations. Let γ̂jk(λ) be the sparse correlation
estimate. Let A(λ) = (aij ) be the adjacency matrix defined as

ajk(λ) =
{

1 if γ̂jk(λ) �= 0;
0 otherwise.

This is equivalent to the adjacency matrix B = (bjk) defined as

bjk(λ) =
{

1 if |x�j xk| > λ;
0 otherwise.

(9.17)

The adjacency matrix B is simply obtained by thresholding the sample
correlations. Then the adjacency matrices A and B induce a identical graph
G(λ) consisting of κ(λ) number of partitioned subgraphs

G(λ) =
κ(λ)⋃
l=1

Gl(λ) with Gl = {Vl(λ),El(λ)},

where Vl and El are node and edge sets respectively. Note

Gl

⋂
Gm = ∅ for any l �= m

and no two nodes between the different partitions are connected. The node and
edge sets are denoted as V(λ) = ⋃κ

l=1 Vl and E(λ) = ⋃κ
l=1 El respectively.

Then we have the following theorem:

Theorem 9.3 The induced graph from the spare correlation forms a filtration:

G(λ1) ⊃ G(λ2) ⊃ G(λ3) ⊃ · · · (9.18)
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Figure 9.3 Jacobian determinants of the deformation field are measured at 548
nodes along the white matter boundary (Chung et al., 2015a). The β0-number
(number of connected components) of the filtrations on the sample correlations
and covariances show huge group separation between normal controls and
postinstitutionalized (PI) children.

for λ1 ≤ λ2 ≤ λ3 ≤ · · · . Equivalently, the node and edge sets also form
filtrations as well:

V(λ1) ⊃ V(λ2) ⊃ V(λ3) ⊃ · · ·
E(λ1) ⊃ E(λ2) ⊃ E(λ3).

The proof can be easily obtained from the definition of adjacency matrix (9.17)
(see Figure 9.3).

9.3.3 Sparse Cross-Correlations

We can extend the sparse correlation framework to the sparse cross-
correlations. Let V = {v1, · · · ,vp} be a node set where data are observed.
We expect the number of nodes p to be significantly larger than the
number of images n, i.e., p � n. Let xk(vi) and yk(vi) be the kth paired
scalar measurements at node vi . They can be twins, longitudinal scans, or
even multimodal images. Denote x(vi) = (x1(vi), · · · ,xn(vi))

� and let
y(vi) = (y1(vi), · · · ,yn(vi))

� be the paired data vectors over n different
images at voxel vi . Center and scale x and y such that

n∑
k=1

xk(vi) =
n∑

k=1

yk(vi) = 0,
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‖x(vi)‖2 = x�(vi)x(vi) = ‖y(vi)‖2 = y�(vi)y(vi) = 1

for all vi . The reasons for centering and scaling will soon be obvious.
We set up a hypernetwork by relating the paired vectors at different voxels

vi and vj :

y(vj ) =
p∑

i=1

βij x(vi)+ e (9.19)

for some zero-mean noise vector e (Figure 9.4). The parameters β = (βij )

are the weights of the hyperedges between voxels vi and vj that have to
be estimated. We are constructing a physically nonexistent artificial network
across different images. For fMRI, (9.19) requires estimating over billions of
connections, which is computationally challenging. In practice, however, each
application will likely to force β to have a specific structure that may reduce
the computational burden.

For this section, let us set up a linear model between x(vi) and y(vj ):

y(vj ) = bij x(vi)+ e, (9.20)

where e is the zero-mean error vector whose components are independent and
identically distributed. Since the data are all centered, we do not have the

Figure 9.4 The schematic of hypernetwork construction on paired image vectors
x and y. The image vectors y at voxel vj are modeled as a linear combination of
the first image vector x at all other voxels. The estimated parameters βij give the
hyperedge weights.
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intercept in linear regression (9.20). The LSE of bij that minimizes the L2-
norm

p∑
i,j=1

‖ y(vj )− bij x(vi) ‖2 (9.21)

is given by

b̂ij = x�(vi)y(vj ), (9.22)

which are the (sample) cross-correlations (Worsley et al., 2005a,b). The cross-
correlation is invariant under the centering and scaling operations. The sparse
version of L2-norm (9.21) is given by

F(β;x,y,λ) = 1

2

p∑
i,j=1

‖ y(vj )− βij x(vi) ‖2 +λ

p∑
i,j=1

|βij |. (9.23)

The sparse cross-correlation is then obtained by minimizing over every
possible βij ∈ R:

β̂(λ) = arg min
β

F (β;x,y,λ). (9.24)

The estimated sparse cross-correlations β̂(λ) = (β̂ij (λ)) shrink toward zero as
sparse parameter λ ≥ 0 increases. The direct optimization of (9.23) for large
p is computationally demanding. However, there is no need to optimize (9.23)
numerically using the coordinate descent learning or the active-set algorithm
as often done in sparse optimization (Friedman et al., 2008; Peng et al., 2009).
We can show that the minimization of (9.23) is simply done algebraically.

Theorem 9.4 For λ ≥ 0, the minimizer of F(β;x,y,λ) is given by

β̂ij (λ) =

⎧⎪⎪⎨⎪⎪⎩
x�(vi)y(vj )− λ if x�(vi)y(vj ) > λ

0 if |x�(vi)y(vj )| ≤ λ

x�(vi)y(vj )+ λ if x�(vi)y(vj ) < −λ

. (9.25)

Although it is not obvious, Theorem 9.4 is related to the orthogonal design
in LASSO (Tibshirani, 1996) and the soft-shrinkage in wavelets (Donoho et al.,
1995). To see this, let us transform linear equations (9.20) into a index-free
matrix equation:⎡⎢⎢⎢⎣

y(v1) · · · y(v1)

y(v2) · · · y(v2)
...

. . .
...

y(vp) · · · y(vp)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
b11x(v1) b21x(v2) · · · bp1x(vp)

b12x(v1) b22x(v2) · · · bp2x(vp)
...

...
. . .

...
b1px(v1) b2px(v2) · · · bppx(vp)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
e · · · e
e · · · e
...

. . .
...

e · · · e

⎤⎥⎥⎥⎦ .
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The preceding matrix equation can be vectorized as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(v1)
...

y(vp)

...
y(v1)

...
y(vp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(v1) · · · 0
...

. . .
...

0 · · · x(v1)

· · · 0

...
. . .

...

0 · · ·
x(vp) · · · 0

...
. . .

...
0 · · · x(vp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11
...

bp1
...

b1p

...
bpp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e
...
e
...
e
...
e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The preceding equation can be written in a more compact form. Let

Xn×p = [x(v1) x(v2) · · · x(vp)]

Yn×p = [y(v1) y(v2) · · · y(vp)]

1a×b =

⎡⎢⎣ 1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

⎤⎥⎦
a×b

.

Then the matrix equation can be written as

1p×1 ⊗ vec(Y) = Xnp2×p2 vec(b)+ 1np2×1 ⊗ e, (9.26)

where vec is the vectorization operation. The block diagonal design matrix X

consists of p diagonal blocks Ip ⊗ x(v1), · · · ,Ip ⊗ x(vp), where Ip is the
p × p identity matrix. Subsequently, X�X is again a block diagonal matrix,
where the ith block is

[Ip ⊗ x(vi)]
�[Ip ⊗ x(vi)] = Ip ⊗ [x(vi)

�x(vi)] = Ip.

Thus, X is an orthogonal design. However, our formulation is not exactly
the orthogonal design of LASSO as specified in Tibshirani (1996) since
the noise components in (9.26) are not independent. Further, in standard
LASSO, there are more columns than rows in X. In our case, there are n

times more rows. Still the soft-thresholding method introduced in Tibshirani
(1996) is applicable and we obtain the analytic solution, which speeds up
the computation drastically compared to existing LASSO-based numerical
optimization (Figure 9.5) (Friedman et al., 2008; Peng et al., 2009).
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Figure 9.5 Run time comparison of estimating sparse cross-correlations. The
LASSO-based numerical optimization with n = 5,10 images with varying
numbers of nodes. The run time scales linearly with the number of images but
scales exponentially with the number of nodes. The LASSO runs more than
100,000 times slower compared to the soft-thresholding method for p = 100
nodes and n = 10 images.

Figure 9.6 Schematic showing the equivalence of binary graph construction
using the sparse cross-correlations and soft-thresholding. Top: the sparse cross-
correlations are estimated by minimizing the L1 cost function (9.23) for four
different sparse parameters λ. The edge weights shrinked to zero are removed.
Bottom: the equivalent binary graph can be obtained by soft-thresholding, i.e.,
simply thresholding the sample cross-correlations at λ.
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Theorem 9.4 generalizes the sparse correlation case given in Chung
et al. (2013). Figure 9.6-top displays an example of obtaining sparse cross-
correlations from the initial sample cross-correlation matrix

X�Y =
⎛⎝ × 0.4 0.5 –0.7

× × 0.3 –0.1
× × × 0.9

⎞⎠
using Theorem 9.4. Due to directional nature of the cross-correlation matrix,
only the upper triangle part of the sample cross-correlation is demonstrated.

9.4 Partial Correlation Network

Let p be the number of nodes in the network. In most applications, the number
of nodes is expected to be larger than the number of observations n, which
gives an underdetermined system. Consider measurement vector at the j th
node

xj = (x1j, · · · ,xnj )
�

consisting of n measurements. Vector xj are assumed to be distributed with
mean zero and covariance � = (σij ). The correlation γij between the two
nodes i and j is given by

γij = σij√
σiiσjj

.

By thresholding the correlation, we can establish a link between two nodes.
However, there is a problem with this simplistic approach in that it fails to
explicitly factor out the confounding effect of other nodes. To remedy this
problem, partial correlations can be used in factoring out the dependency of
other nodes (Marrelec et al., 2006; He et al., 2007; Huang et al., 2009, 2010;
Peng et al., 2009).

If we denote the inverse covariance matrix as �−1 = (σ ij ), the partial
correlation between the nodes i and j while factoring out the effect of all
other nodes is given by (Peng et al., 2009)

ρij = − σ ij

√
σ iiσ jj

. (9.27)

Equivalently, we can compute the partial correlation via a linear model as
follows. Consider a linear model of correlating measurement at node j to all
other nodes:
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xj =
∑
k �=j

βjkxk + εk . (9.28)

The parameters βjk are estimated by minimizing the sum of squared residual
of (9.28)

L(β) =
p∑

j=1

‖xj −
∑
k �=j

βjkxk‖2 (9.29)

in a least squares fashion. If we denote the least squares estimator by β̂jk , the
residuals are given by

rj = xj −
∑
k �=j

β̂jkxk . (9.30)

The partial correlation is then obtained by computing the correlation between
the residuals (Lerch et al., 2006; He et al., 2007; Peng et al., 2009):

ρij = corr (ri,rj ).

9.4.1 Sparse Partial Correlations

There is a serious problem with the least squares estimation framework
discussed in the previous section. Since n � p, this is a significantly
underdetermined system. This is also related to the covariance matrix � being
singular so we cannot just invert the covariance matrix. For this, we need sparse
network modeling.

The minimization of (9.29) is exactly given by solving the normal equation:

xj =
∑
k �=j

βjkxk, (9.31)

which can be turned into standard linear form y = Aβ (Lee et al., 2011c). Note
that (9.31) can be written as

xj = [x1, · · · ,xj−1,0,xj+1, · · · ,xp]︸ ︷︷ ︸
X−j

⎛⎜⎜⎜⎝
βj1

βj2
...

βjp

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

βj

,
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where 0n×1 is a column vector of all zero entries. Then we have⎛⎜⎜⎜⎝
x1

x2
...

xp

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

ynp×1

=

⎛⎜⎜⎜⎝
X−1 0 · · · 0

0 X−2 · · · 0
...

...
. . .

...
0 0 · · · X−p

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

A
np×p2

⎛⎜⎜⎜⎝
β1

β2
...

βp

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

β
p2×1

, (9.32)

where A is a block diagonal matrix and 0n×p is a matrix of all zero entries.
We regularize (9.32) by incorporating l1 LASSO-penalty J (Tibshirani, 1996;
Peng et al., 2009; Lee et al., 2011c):

J =
∑
i,j

|βij |.

The sparse estimation of βij is then given by minimizing L+ λJ . Since there
is dependency between y and A, (9.32) is not exactly a standard compressed
sensing problem (Peng et al., 2009; Lee et al., 2011c). It should be intuitively
understood that sparsity makes the linear equation (9.31) less underdetermined.
The larger the value of λ, the more sparse the underlying topological structure
gets. Since

ρij = βij

√
σ ii

σ jj
,

the sparsity of βij directly corresponds to the sparsity of ρij , which is the
strength of the link between nodes i and j (Peng et al., 2009; Lee et al., 2011c).
Once the sparse partial correlation matrix ρ is obtained, we can simply link
nodes j and j , if ρij > 0 and assign the weight ρij to the edge. This way, we
obtain the weighted graph.

9.4.2 Limitations

However, the sparse partial correlation framework has a serious computational
bottleneck. For n measurements over p nodes, it is required that we solve a
linear system with an extremely large A matrix of size np × p2, so that the
complexity of the problem increases by a factor of p3! Consequently, for a
large number of nodes, the problem immediately becomes almost intractable
for a small computer. For example, for 1 million nodes, we have to compute 1
trillion possible pairwise relationships between nodes. One practical solution
is to modify (9.28) so that the measurement at node i is represented more
sparsely over some possible index set Si :
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xi =
∑
Si

βij xj + εi .

making the problem substantially smaller.
An alternate approach is to simply follow the homotopy path, which adds

network edges one by one with a very limited increase of computational com-
plexity so there is no need to compute β repeatedly from scratch (Plumbley,
2005; Donoho and Tsaig, 2006; Osborne et al., 2000). The trajectory of the
optimal solution β in LASSO follows a piecewise linear path as we change
λ. By tracing the linear path, we can substantially reduce the computational
burden of reestimating β when λ changes.



10
Brain Network Distances

Many existing brain network distances are based on matrix norms. The
elementwise differences may fail to capture underlying topological differ-
ences. Further, matrix norms are sensitive to outliers. A few extreme edge
weights may severely affect the distance. Thus it is necessary to develop net-
work distances that recognize topology. In this chapter, we introduce Gromov–
Hausdorff (GH) and Kolmogorov–Smirnov (KS) distances. GH distance is
often used in persistent homology-based brain network models. In this chapter,
various network distances are contrasted against each other in random network
simulations with the ground truths.

There are many similarity measures and distances between networks in
literature (Banks and Carley, 1994; Lee et al., 2012; Chung et al., 2015a;
Chen et al., 2016). Many of these approaches simply ignore the topology of
the networks and mainly use the sum of differences between either node or
edge measurements. These network distances are sensitive to the topology of
networks. They may lose sensitivity over topological structures such as the
connected components, modules, and holes in networks. In standard graph
theoretic approaches, the similarity and distance of networks are measured
by determining the difference in graph theory features such as assortativity,
betweenness centrality, small-worldness, and network homogeneity (Bullmore
and Sporns, 2009; Uddin et al., 2008; Rubinov and Sporns, 2010). Com-
parison of graph theory features appears to reveal changes of structural or
functional connectivity associated with different clinical populations (Rubinov
and Sporns, 2010). Since weighted brain networks are difficult to interpret
and visualize, they are often turned into binary networks by thresholding edge
weights (He et al., 2008; Wijk et al., 2010). However, the choice of thresh-
olding the edge weights may alter the network topology. To obtain the proper
optimal threshold, the multiple comparison correction over every possible edge
has been proposed (Salvador et al., 2005; Rubinov et al., 2009; Wijk et al.,

226
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2010). However, depending on what p-value to threshold, the resulting binary
graph also changes. Others tried to control the sparsity of edges in the network
in obtaining the binary network (Bassett, 2006; He et al., 2008; Wijk et al.,
2010; Lee et al., 2011c). However, one encounters the problem of thresholding
sparse parameters. Thus existing methods for binarizing weighted networks
cannot escape the inherent problem of arbitrary thresholding.

Until now, there is no widely accepted criteria for thresholding networks.
Instead of trying to come up with an optimal threshold for network construc-
tion that may not work for different clinical populations or cognitive conditions
(Wijk et al., 2010), why not use all networks for every possible threshold?
Motivated by this question, a new multiscale hierarchical network modeling
framework based on persistent homology has been developed recently (Lee
et al., 2011a,b, 2012; Chung et al., 2013, 2015a).

In persistent homology, there are various metrics that have been proposed to
measure network distance. Among them, Gromov–Hausdorff (GH) distance is
possibly the most popular distance that is originally used to measure distance
between two metric spaces (Tuzhilin, 2016). It was later adapted to measure
distances in persistent homology, dendrograms (Carlsson and Mémoli, 2010),
and brain networks (Lee et al., 2012). The probability distributions of GH-
distance is unknown. Thus, the statistical inference on GH-distance has
been done through resampling techniques such as jackknife, bootstraps, or
permutations (Lee et al., 2012, 2017; Chung et al., 2015a), which often
cause computational bottlenecks for large-scale networks. To bypass the
computational bottleneck associated with resampling large-scale networks, the
Kolmogorov–Smirnov (KS) distance was introduced in (Chung, 2012; Chung
et al., 2017a; Lee et al., 2017). The advantage of using KS-distance is its
easiness to interpret compared to other less intuitive distances from persistent
homology. Due to its simplicity, it is possible to determine its probability
distribution exactly (Chung et al., 2017a).

Many distance or similarity measures are not metrics but having metric
distances makes the interpretation of brain networks easier due to the triangle
inequality. Further, existing network distance concepts are often borrowed
from the metric space theory. Let us start with formulating networks as metric
spaces.

10.1 Matrix Norms

Consider a weighted graph or network with the node set V = {1, . . . ,p} and
the edge weights w = (wij ), where wij is the weight between nodes i and j .
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The edge weight is usually given by a similarity measure between the observed
data on the nodes. Various similarity measures have been proposed. The
correlation or mutual information between measurements for the biological or
metabolic network and the frequency of contact between actors for the social
network have been used as edge weights (Bassett, 2006; Bien and Tibshirani,
2011). We may assume that the edge weights satisfy the metric properties,
nonnegativity, identity, symmetry, and the triangle inequality, such that

wi,j ≥ 0, wii = 0, wij = wji, wij ≤ wik + wkj .

With theses conditions, X = (V ,w) forms a metric space. Although the
metric property is not necessary for building a network, it offers many nice
mathematical properties and easier interpretation of network connectivity.
Many real-world networks satisfy the metric properties.

Example 10.1 Given measurement vector xi = (x1i, · · · ,xni)
� ∈ Rn on the

node i, the weight w = (wij ) between nodes is often given by some bivariate
function f : wij = f (xi,xj ). The correlation between xi and xj , denoted as
corr(xi,xj ), is a bivariate function. If the weights w = (wij ) are given by

wij =
√

1 − corr(xi,xj ),

it can be shown that X = (V ,w) forms a metric space.

Matrix norms of the difference between networks are often used as a
measure of similarity between networks (Banks and Carley, 1994; Zhu et al.,
2014). Given two networks X 1 = (V ,w1) and X 2 = (V ,w2), the Ll-norm of
network difference is given by

Dl(X 1,X 2) =‖ w1 − w2 ‖l=
(∑

i,j

∣∣w1
ij − w2

ij

∣∣l)1/l

.

Note that Ll is the elementwise Euclidean distance in l-dimension. When l =
∞, L∞-distance is written as

D∞(X 1,X 2) =‖ w1 − w2 ‖∞= max
∀i,j

∣∣w1
ij − w2

ij

∣∣.
The elementwise differences may not capture additional higher-order similar-
ity. For instance, there might be relations between a pair of columns or rows
(Zhu et al., 2014). Also L1- and L2-distances usually suffer the problem of
outliers. Few outlying extreme edge weights may severely affect the distance.
Further, these distances ignore the underlying topological structures. Thus,
there is a need to define distances that are more topological.

Example 10.2 Given two identical networks that only differ in one outlying
link with infinite weight (Figure 10.1), Ll(X 1,X 2) = ∞ and L∞(X 1,X 2) =
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Figure 10.1 Toy networks with an outlying link weight. All the Ll-norm-based
distance will give ∞ distance while GH- and KS-distance will give 0 distance.

∞. Thus, the usual matrix norm–based distance is sensitive to even a single
outlying link. However, GH- and KS-distance is not sensitive to link weights
but sensitive to the underlying topology. For X 1 and X 2, the corresponding
single linkage matrices are identically⎛⎜⎜⎝

0 0.2 0.5 0.5
0.2 0 0.5 0.5
0.5 0.5 0 0.5
0.5 0.5 0.5 0

⎞⎟⎟⎠ .

GH-distance is the L∞ norm on the single linkage matrix differences (Lee
et al., 2012). Thus, GH-distance is 0 ignoring the outlier. The coordinates of
the β0 plot are given by (0,1),(0.2,1),(0.5,1),(0.6,2),(0.7,2),(0.8,4) for X 1.
For X 2, the coordinates are all identical except (0.8,3). Thus, KS-distance
is 1 ignoring the influence of the outlier somewhat. Additional performance
analysis on the poor performance of matrix norm–based distance is given in
(Chung et al., 2017d).

10.2 Bottleneck Distance

This is perhaps the most often used distance in persistent homology, but it
is rarely used for brain networks. In persistent homology, the topology of
underlying data can be represented by the birth and death of holes. In a graph,
the zero- and one-dimensional holes are a connected component and a cycle,
respectively (Carlsson et al., 2008). During a filtration, holes in a homology
group appear and disappear. The Betti number at a particular threshold is then
the number of holes at that threshold. If a hole appears at the threshold ξ and
disappears at τ, it can be encoded into a point, (ξ,τ ) (0 ≤ ξ ≤ τ < ∞) in R2.
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If m number of holes appear during the filtration of a network X = (V ,w), the
homology group can be represented by a point set

P(X ) = {(ξ1,τ1), . . . ,(ξm,τm)} .

This scatter plot is called the persistence diagram (PD) (Cohen-Steiner et al.,
2007).

Given two networks X 1 = (V 1,w1) with m holes and X 2 = (V 2,w2) with
n holes, we construct the corresponding graph filtrations. Subsequently, PDs

P(X 1) =
{
(ξ1

1 ,τ 1
1 ), · · · ,(ξ1

m,τ 1
m)
}

and

P(X 2) =
{
(ξ2

1 ,τ 2
1 ), · · · ,(ξ2

n,τ 2
n )
}

are obtained through the filtration (Lee et al., 2012). The bottleneck distance
between the networks is defined as the bottleneck distance of the corresponding
PDs (Cohen-Steiner et al., 2007):

DB

(
P(X 1),P(X 2)

) = inf
γ

sup
1≤i≤m

‖ t1
i − γ (t1

i ) ‖∞ ,

where t1
i = (ξ1

i ,τ 1
i ) ∈ P(X 1) and γ is a bijection from P(X 1) to P(X 2). The

infimum is taken over all possible bijections. If t2
j = (ξ2

j ,τ 2
j ) = γ (t1

i ) for some
i and j , the L∞-norm is given by

‖ t1
i − γ (t1

i ) ‖∞= max
(|ξ1

i − ξ2
j |,|τ 1

i − τ 2
j |
)
.

Note that (10.1) assumes m = n such that the bijection γ exists. Suppose two
networks share the same node set, i.e., V 1 = V 2, with p nodes and the same
number of q unique edge weights. If the maximal filtration is performed on
two networks, the number of their zero- and one-dimensional holes that appear
and disappear during the filtration is p and 1−p+ q, respectively. Thus, their
persistence diagrams of zero- or one-dimensional holes always have the same
number of points. The bijection γ is determined by the bipartite graph match-
ing algorithm (Cohen-Steiner et al., 2007; Edelsbrunner and Harer, 2008).

If m �= n, there is no one-to-one correspondence between two PDs. Then,
auxiliary points(

ξ1
1 + τ 1

1

2
,
ξ1

1 + τ 1
1

2

)
, · · · ,

(
ξ1
m + τ 1

m

2
,
ξ1
m + τ 1

m

2

)
and (

ξ2
1 + τ 2

1

2
,
ξ2

1 + τ 2
1

2

)
, · · · ,

(
ξ2
n + τ 2

n

2
,
ξ2
n + τ 2

n

2

)
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Figure 10.2 Toy example of bottleneck distance on four different types of scatter
points: X 1 (blue), X 2 (yellow), X 3 (green), and X 4 (red). (a) Bottleneck distance
displayed as a connectivity matrix (b–g) Persistence diagrams of holes of the pair
of topological spaces. Blue, yellow, green, and red points correspond to the holes
of blue, yellow, green, and red topological spaces, respectively. The figure was
generated by Hyekyoung Lee of Seoul National University.

that are orthogonal projections to the diagonal line ξ = τ in P(X 1) and P(X 2)

are added to P(X 2) and P(X 1) respectively to make the identical number of
points in PDs (Figure 10.2).

10.3 Gromov–Hausdorff Distance

GH-distance for brain networks is first introduced in (Lee et al., 2012). GH-
distance measures the difference between networks by embedding the network
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Figure 10.3 (a) Toy network, (b) its dendrogram, (c) the distance matrix w based
on Euclidean distance, and (d) the single linkage matrix (SLM) S. The figure was
generated by Hyekyoung Lee of Seoul National University (Lee et al., 2011a).

into the ultrametric space that represents hierarchical clustering structure of
network (Carlsson and Mémoli, 2010). The distance sij between the closest
nodes in the two disjoint connected components R1 and R2 is called the single
linkage distance (SLD), which is defined as

sij = min
l∈R1,k∈R2

wlk .

Every edge connecting a node in R1 to a node in R2 has the same SLD. SLD is
then used to construct the single linkage matrix (SLM) S = (sij ) (Figure 10.3).
SLM shows how connected components are merged locally and can be used
in constructing a dendrogram. SLM is a ultrametric, which is a metric space
satisfying the stronger triangle inequality sij ≤ max(sik,skj ) (Carlsson and
Mémoli, 2010). Thus the dendrogram can be represented as an ultrametric
space D = (V ,S), which is again a metric space.

Figure 10.4 shows the SLM corresponding to graphs:⎛⎜⎜⎝
0 0.2 0.5 0.5

0.2 0 0.5 0.5
0.5 0.5 0 0.5
0.5 0.5 0.5 0

⎞⎟⎟⎠ and

⎛⎜⎜⎝
0 0.2 0.5 0.7

0.2 0 0.5 0.7
0.5 0.5 0 0.7
0.7 0.7 0.7 0

⎞⎟⎟⎠ .

GH-distance between networks is then defined through GH-distance
between corresponding dendrograms. Given two dendrograms D1 = (V ,S1)

and D2 = (V ,S2) with SLM S1 = (s1
ij ) and S2 = (s2

ij ),

DGH (D1,D2) = 1

2
max
∀i,j

|s1
ij − s2

ij |. (10.1)

For the statistical inference on GH-distance, resampling techniques such as
jackknife or permutation tests are often used (Lee et al., 2011a, 2012, 2017).



10.4 Kolmogorov–Smirnov Distance 233

Figure 10.4 Toy networks with four nodes and corresponding dendrograms and
β0 plots.

In order to compare persistent homological structures including persistent
diagrams and networks quantitively, it is necessary to define similarity or
distance between objects. Numerous distances have been proposed including
bottleneck, GH-, and KS-distances (Edelsbrunner and Harer, 2010; Lee et al.,
2012; Chung et al., 2017a). We are using the distances themselves as test
statistics, and they do provide intuitive topological interpretations.

GH-distance is the maximum of SLD differences (Lee et al., 2012). SLD
between two nodes i and j is the shortest distance between two connected
components that contain the nodes. The edges that give the maximum SLM is
the GH-distance between the two networks.

Among all topological distances, only GH-distance uses the single linkage
clustering. All other distances do not use the single linkage clustering (Chung
et al., 2017d). For instance, bottleneck distance or KS-distance are not related
to single linkage clustering (Lee et al., 2012).

10.4 Kolmogorov–Smirnov Distance

Recently KS-distance based on graph filtration has been proposed and suc-
cessfully applied to brain networks as a way to quantify networks without
thresholding (Chung et al., 2017a). The main advantage of the method is that
the method avoids using the time-consuming permutation test for large-scale
networks.
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Definition 10.1 Given weighted network X = (V ,w) with edge weight w =
(wij ), the binary network X |ε = (V ,w|ε) is a graph consisting of the node set
V and the binary edge weights w|ε given by

w|ε = (wij |ε) =
{

1 if wij > ε;
0 otherwise.

(10.2)

Note Lee et al. (2012) defines the binary graphs by thresholding above,
which is consistent with the definition of the Rips filtration. However, in
brain imaging, higher value wij indicates stronger connectivity. Thus, we are
thresholding below (Chung et al., 2015a). With these notations, we define KS-
distance as follows.

Given two networks X 1 = (V ,w1) and X 2 = (V ,w2), KS-distance
between X 1 and X 2 is defined as (Chung et al., 2013, 2015a; Lee et al., 2017)

DKS(X 1,X 2) = sup
ε≥0

∣∣f (X 1
ε )− f (X 2

ε )
∣∣

using monotone function f . The distance DKS is motivated by the KS test for
determining the equivalence of two cumulative distribution functions (Böhm
and Hornik, 2010; Gibbons and Chakraborti, 2011; Chung et al., 2017a).
The distance DKS can be discretely approximated using the finite number of
filtrations:

Dq = sup
1≤j≤q

∣∣f (X 1|εj
)− f (X 2|εj

)
∣∣.

If we choose enough number of q such that εj are all the sorted edge weights,
then

DKS(X 1,X 2) = Dq

(Chung et al., 2017a). This is possible since there are only up to p(p − 1)/2
number of unique edges in a graph with p nodes and the monotone function
increases discretely but not continuously. In practice, εj may be chosen
uniformly or a divide-and-conquer strategy can be used to adaptively grid the
filtration values.

The probability distribution of Dq under the null is asymptotically given by
(Chung et al., 2017a)

lim
q→∞

(
Dq/

√
2q ≥ d

)
= 2

∞∑
i=1

(−1)i−1e−2i2d2
. (10.3)

p-value under the null is then computed as

p-value = 2e−d2
o − 2e−8d2

o + 2e−18d2
o · · · ,
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where the observed value do is the least integer greater than Dq/
√

2q in the
data. For any large value d0 ≥ 2, the second term is in the order of 10−14 and
insignificant. Even for small observed d0, the expansion converges quickly and
five terms are sufficient. KS-distance method does not assume any statistical
distribution of graph features other than that they must be monotonic. The
technique is very general and applicable to other monotonic graph features
such as node degrees.

Example 10.3 Consider a network with edge weights rij = 1 − corr(xi,xj ).
Such a network is not a metric space. To make it a metric space, we need to
scale the edge weight to wij = √

rij (Example 10.1). However, KS-distance is
invariant under such monotonic scaling since the distance is taken over every
possible filtration value.

Figure 10.5 displays the number of connected components (β0), and the
size of largest connected components (γ ) in

√
1 − corr plots of FA-values

uniformly sampled at 1,856 nodes along the white matter template boundary
for normal controls and maltreated children (Chung et al., 2015a, 2017b). This
results in 1,856 × 1,856 correlation matrix for each group. Using the KS-
distance, we determined the statistical significance of the correlation matrix
differences between the groups. The statistical results in terms of p-values
are all below 0.0001, indicating the very strong overall structural network
differences in DTI.

Limitation of GH- and KS-distances. The limitation of the SLM is the
inability to discriminate a cycle in a graph. Consider two topologically

Figure 10.5 The plots of β0 (left) and γ (right) over
√

1 − corr. showing structural
network differences between maltreated children (dotted line) and normal controls
(solid line) on 1,856 nodes.
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Figure 10.6 Two topologically distinct graphs may have identical dendrograms,
which results in zero GH-distance.

different graphs with three nodes (Figure 10.6). However, the corresponding
SLM are identically given by⎛⎝ 0 0.2 0.5

0.2 0 0.5
0.5 0.5 0

⎞⎠ and

⎛⎝ 0 0.2 0.5
0.2 0 0.5
0.5 0.5 0

⎞⎠ .

The lack of uniqueness of SLMs makes GH-distance incapable of discrim-
inating networks with cycles (Chung, 2012). KS-distance also treats the
two networks in Figure 10.6 as identical if Betti number β0 is used as the
monotonic feature function. Thus, KS-distance also fail to discriminate cycles.
This example illustrates a need for new, more sophisticated network distance
that can discriminate the higher-order topological features such as cycles and
holes.

10.5 Performance Analysis

Different network distances introduced in the chapter are compared in two sim-
ulation studies involving the paired network settings (Chung et al., 2017a,d).
The simulations are independently performed 100 times and the average results
were reported.
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10.5.1 Comparisons on Paired Networks

No network difference. There are three groups and the sample size is n = 40
in each group and the number of nodes are p = 10. In groups I and II, the kth
data xk(vi) at each node vi was simulated as standard normal, i.e.,

xk(vi) ∼ N(0,1).

Additional data were simulated as

yk(vi) = xk(vi)+N(0,0.012)

for all the nodes for groups I and II. The paired data (x1,y1), · · · (xn,yn)

are then centered and scaled following (Chung et al., 2017a) and the cross-
correlation between them is computed (Figure 10.7). Six different distances are
used to determine if there are any network differences as expected. The results
are given in Table 10.1. For the first four distances, permutation tests are used.
Since there are five samples in each group, the total number of permutation is(10

5

) = 272, making the permutation test exact and the comparison fair. All six
distances performed reasonably well and did not detect network differences in
average.

Figure 10.7 Randomly simulated correlation matrices. Group I and group II are
generated independently and identically. Group III is generated independently but
identically as group I but additional dependency is added for the first l nodes.
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Table 10.1. Simulation results given in terms of p-values. In
the case of no network difference, higher p-values are
better. In the case of network difference, smaller p-values
are better. In the presence of signal, KS-like test procedures
performed the best. The more structure (increased l) there
is, KS-like tests performed substantially better. ∗ indicates
statististical significance below 10−9.

L1 L2 L∞

no diff. 0.48 ± 0.30 0.48 ± 0.30 0.52 ± 0.29
diff. (l = 5) 0.49 ± 0.29 0.51 ± 0.29 0.42 ± 0.30
diff. (l = 10) 0.47 ± 0.31 0.48 ± 0.31 0.37 ± 0.30
diff. (l = 20) 0.47 ± 0.31 0.51 ± 0.32 0.23 ± 0.26
diff. (l = 30) 0.38 ± 0.34 0.40 ± 0.35 0.11 ± 0.18

GH KS (β0) KS (γ )

no diff. 0.53 ± 0.30 0.64 ± 0.33 0.28 ± 0.38
diff. (l = 5) 0.19 ± 0.24 0.38 ± 0.29 0.17 ± 0.28
diff. (l = 10) 0.12 ± 0.16 0.05 ± 0.12 0.04 ± 0.13
diff. (l = 20) 0.07 ± 0.08 0.00 ± 0.00 0.00 ± 0.00
diff. (l = 30) 0.05 ± 0.06 (0.00 ± 0.00)∗ (0.00 ± 0.00)∗

Network difference. Group III was generated identically and independently
like group I, but additional dependency was added by letting yk(vj ) =
xk(v1)/2 for l nodes indexed by j = 1,2, · · · ,l. We changed the number
of dependent nodes l to be 5, 10, 20 and 30. This dependency gives high-
connectivity differences between groups I and III (Figure 10.7). When the
number of dependencies is low (l = 5), all the methods performed badly.
However, as the number of dependency increases, the performance of L∞,
GH-distance, and KS-like distances increased. In particular, KS-like distance
substantially outperformed when there are many dependent nodes (l = 20,30).

In terms of computation, distance methods based on the permutation test
took about 950 seconds (16 minutes) while the KS-like test procedure only
took about 20 seconds on a computer.

10.6 Comparisons on Modules

Five different network distances (L1, L2, L∞, GH, and KS) were compared
in simulation studies with modular structures. There were four groups, the
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Figure 10.8 Randomly simulated correlation matrices. Group I and group II were
generated independently and identically. Group III was generated from group I
but additional dependency was added to introduce modular structures. Group IV
was generated from group III (10 modules) by adding small noise.

sample size was n = 5 in each group and the number of nodes was p =
100 (Figure 10.8). We follow notations in Example 10.1. In group I, the
measurement vector xi at node i was simulated as multivariate normal, i.e.,
xi ∼ N(0,In) with n by n identity matrix In as the covariance matrix. The
edge weights for group I was

w1
ij =

√
1 − corr(xi,xj ).

In group II, the measurement vector yi at node i was simulated as

yi = xi +N(0,σ 2In)

with noise level σ = 0.01. The edge weight for group II was

w2
ij =

√
1 − corr(yi,yj ).

Group III was generated by adding additional dependency to group I:

yi = 0.5xci+1 +N(0,σ In).

This introduces the modules in the network. We assumed there were total k =
4,5,10 modules and each module consists of c = p/k number of points. Group
IV was generated by adding noise to group III: zi = yi +N(0,σ 2In).
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Table 10.2. Simulation results given in terms of p-values.
In the case of no network differences (0 vs. 0 and 4 vs.
4), higher p-values are better. In the case of network
differences (4 vs. 5 and 5 vs. 10), smaller p-values are
better. ∗ and ∗∗ indicates multiplying 10−3 and 10−4.

L1 L2 L∞

0 vs. 0 0.93 ± 0.04 0.93 ± 0.04 0.93 ± 0.04
4 vs. 4 0.89 ± 0.02 0.89 ± 0.02 0.90 ± 0.03
4 vs. 5 0.14 ± 0.16 0.06 ± 0.10 0.03 ± 0.06
5 vs. 10 0.47 ± 0.25 0.19 ± 0.18 0.10 ± 0.10

GH KS (β0) KS (γ )

0 vs. 0 0.87 ± 0.14 1.00 ± 0.00 1.00 ± 0.00
4 vs. 4 0.86 ± 0.17 0.87 ± 0.29 0.88 ± 0.28
4 vs. 5 0.29 ± 0.30 (0.07 ± 0.67)∗∗ (0.07 ± 0.67)∗∗
5 vs. 10 0.33 ± 0.30 0.01 ± 0.08 (0.06 ± 0.53)∗

No network difference. It was expected there was no network difference
between groups I and II. We applied the five different distances. For the first
four distances, a permutation test was used. Since there were five samples in
each group, the total number of permutations was

(10
5

) = 272, making the
permutation test exact and the comparisons fair. All the distances performed
well and did not detect network differences (Table 10.2). It was also expected
there is no network difference between groups III and IV. We compared four-
module network to four-module network. All the distances performed equally
well and did not detect differences (Table 10.2).

Network difference. Networks with four, five, and 10 modules were gener-
ated using group III models. Since the number of modules was different, they
were considered as different networks. We compared four- and five-module
networks, and five- and 10-module networks (Table 10.2). L1,L2,L∞ dis-
tances did not perform well for five. vs. 10 module comparisons. Surprisingly,
GH-distance performed worse than L∞ in all cases. On the other hand, KS-
distance performed extremely well.

The results of the aforementioned simulations did not change much even
if we increased the noise level to σ = 0.1. In terms of computation, distance
methods based on the permutation test took about 950 seconds (16 minutes),
while the KS-like test procedure only took about 20 seconds on a computer.
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The MATLAB code for performing these simulations is provided.1 The results
given in Table 10.2 may slightly change if different random networks are
generated.

10.7 Hypernetworks

Large-scale manifold-valued data such as a collection of correlation matrices
and networks have recently attracted substantial attention in the scientific
community, in areas such as neuroscience, environmental studies, and soci-
ology, where the networks are of prime interest (Tenenbaum et al., 2000;
Fletcher et al., 2004). In modeling such complex data, it is crucial to
be able to visualize the relationship information such as dependence and
similarity between manifold-value data. Since such data are tensorial with a
very complex geometric structure, it is not straightforward to compute and
visualize relationship information. In the study of brain connectivity, networks
represented as manifold-valued data have far more complex geometric and
topological structures than the usual Euclidean geometry admits. It is not
even clear how to characterize the distributions of manifold-valued data. The
hypernetwork approach can be used to empirically estimate the center and
spread of the distributions, as well as discover associations and relationships
between manifold-valued data. These empirical approaches will be particularly
useful for the study of brain connectivity, where the characterization of
variability between subjects and over time remains a challenging problem.

The hypernetwork can be used to integrate multiple measures of manifold-
valued data from different time points, groups, trials, experiments, sites, and
modalities. The hypernetwork can integrate a collection of manifold-valued
data in a holistic fashion as a single gigantic network, where a node is a
manifold-value data point and the edge is the distance or similarity measure
between manifold-value data points; thus a hypernetwork is a network of
networks (Chung et al., 2017a). Although hypernetworks are frequently used in
machine learning (Zhang, 2008), the concept has not often been applied in neu-
roimaging or other areas of science. We will treat the brain network of a single
subject as a single point in higher-dimensional abstract space. Then we connect
all the points to form a hypernetwork. In a hypernetwork, a node is a network,
and an edge is the distance between networks. The hypernetwork can be used
to study the distribution of brain connectivity patterns across individuals.

1 http://www.stat.wisc.edu/∼mchung/twins/
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10.7.1 Hypernetwork of Manifold-Valued Data

We can use the log-Euclidean or other matrix-norm based distances for edge
weights in hypernetworks (Chung et al., 2017d). Often correlation between two
correlation matrices are used as distance between two correlation matrices.
In Zhang et al. (2016) and Zhao et al. (2018), correlation of correlations are
used to capture high-order functional interactions across brain regions. We can
also use the topological distance that is topologically invariant for measuring
distance between networks (Chung et al., 2017d). This requires determining
how close two graphs are topologically. This is still a very challenging open
methodological problem in the field. Alternately, we can compute the distance
between graphs using the topological distances such as GH and bottleneck
distances, which are deformation-invariant similarity measures often used
in persistent homology, but rarely used in brain networks (Mémoli, 2008;
Lee et al., 2011a, 2012). KS-distance, which was recently proposed as an
alternative to GH or bottleneck distances, can be used. The main advantage
of topological distances over geometric distances is that we can measure
distance between networks that do not have the same number of nodes or
anatomical correspondence between nodes. Thus, it is possible to measure
distance between EEG and fMRI networks with different numbers of nodes.

Given connectivity Y1, · · · ,Yn in metric space M with metric d, which
measures the distance between data points. For instance, in the space of p× p

positive definite symmetric (PDS) matrices Sp, the geodesic is given by log-
Euclidean framework (Moakher, 2005; Arsigny et al., 2006):

d(Yi,Yj ) = ‖log(Y
−1/2
i YjY

−1/2
i )‖,

where ‖ · ‖ is the Euclidean norm. Then the hypernetwork of Y1, · · · ,Yn

consists of n nodes where the ith node is Yi and edge weights between them
is given by d(Yi,Yj ). Figure 10.9 illustrates a schematic of a hypernetwork
obtained from a collection of brain networks consisting of PDS matrices.
This results in an n × n connectivity matrix D = (d(Yi,Yj )), which is not
intuitive to understand or easy to visualize. Thus, it is necessary to embed the
hypernetwork into a 2D plane and 3D volume in such a way that the relative
distances d(Yi,Yj ) are preserved (Tenenbaum et al., 2000). This will give an
isomap embedding for visual display.

To obtain an overall smooth pattern of hypernetwork, we will perform
iterated local weighted averaging (Chung et al., 2005b,a) such that all sample
points Yi will be updated by

Yi ←
∑
j∈Ni

wijYj,
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Figure 10.9 Schematic of hypernetwork construction between eight individual
brain networks Yi . The distance between the networks d(Yi,Yj ) is computed using
the GH-distance. Edges with GH-distance larger than the prespecified threshold
is removed for better biological interpretation.

where Ni is the neighboring points of Yi determined by any point Yj that is

smaller than d(Yi,Yj ) ≤ ε, and for weights wij ∝ exp−d−1(Yi,Yj ), which sums
to 1. Note the updated Yi are still PDS since Sp is convex. If we repeat this
process a sufficient number of times, a steady-state pattern, the center will
emerge. We can show that the steady-state pattern is related to the Fréchet
mean, which is defined as

μF = arg min
Y∈Sp

n∑
j=1

d2(Y,Yj ).

The spread of the pattern of the hyper network will be determined as the
number of iterations that will reach the steady state, which is related to the
Fréchet variance, defined as

σ 2
F = 1

n

n∑
j=1

d2(μF,Yj ).
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It is possible to identify conditions on ε and the number of iterations that
will provide meaningful center and spread for the multitude of the data set.
It is possible to use other distance measures on Sp beyond the log-Euclidean
framework, such as Gaussian kernel weighting and generalized correlation
measures.

10.7.2 Clustering in Hypernetwork

To discover association and relationship between manifold-valued data, we can
perform hierarchical clustering. k-means is a robust and widely used method
for unsupervised clustering in Euclidean (Moakher and Zéraı̈, 2011; Prabhu
and Anbazhagan, 2011). For manifold-valued data, it may not be the most
efficient choice, since the Euclidean distance ignores the underlying geometric
structure of manifolds. Further, k-means does not yield hierarchically nested
structure over k, which makes interpretation of the result difficult in the
exploratory stage. However, it is possible to build hierarchical k-means
clustering (Arai and Barakbah, 2007). The k-means function can be adapted
to incorporate geodesics on Sp:

J =
k∑

j=1

∑
i∈Cj

d2(Yi,μj ),

where μj is the Fréchet mean of the j th cluster Cj . Then using the Fréchet
means μ1, · · · ,μk as the next seed points, we apply k-means clustering again
with the smaller number of clusters. This process continues until we obtain
the desired number of hierarchy. It is known that PCA in both the temporal
(Ting et al., 2018) and spectral domains (Wang et al., 2016b) may improve the
performance and stability of classical k-means clustering (Ding and He, 2004).
It may be possible to extend PCA and independent components analysis (ICA)
to incorporate the geodesic structure of the manifold data (Fletcher et al., 2004)
to improve the performance of the hierarchical clustering. Alternately, one may
construct the Laplacian of the hypernetwork and perform spectral clustering.

10.7.3 Graph Theory on Hypernetwork

Given p graphs G1,Gg, · · · ,Gp suppose we computed the pairwise distance
D = (dij ) = d(Gi,Gj ), which serves the edge weights in a hypernetwork.
Using graph theory features, it is possible to quantify various properties of
hypernetworks as a function of distances (Hagmann et al., 2008; Lee et al.,
2018b).
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Then the average pairwise distance is given by

d̄ = 2

p(p − 1)

∑
i>j

dij,

which is equivalent to the average node degree

1

p(p − 1)

p∑
i=1

∑
i∈Ni

dij,

where Ni is the set of nodes containing the neighbors of i but excluding i. The
average efficiency of the hypernetwork is given by

E = 1

p(p − 1)

∑
i>j

1

dij

.

The efficiency of a network measures how efficient information is transferred
between nodes. Smaller the distance between nodes, faster the information
transfers.
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Combinatorial Inferences for Networks

Permutation testing is known as the only exact test procedure in statistics
(Nichols and Holmes, 2002; Chung et al., 2017a). However, it is not exact in
practice and only an approximate method due to the computational bottleneck
of enumerating every possible permutation. When dealing with big imaging
data with large samples, it may take many years to do permutation in a
desktop computer for converging results. In this chapter, we go explain how
to use permutation test for brain network inferences. Then we will show
how to do an exact permutation test using a new combinatorial inference
procedure.

11.1 Permutation Test

The permutation test is perhaps the most widely used nonparametric test pro-
cedure in brain network inference (Zalesky et al., 2010; Chung et al., 2017a).
It is known as the only exact test in statistics since the distribution of the test
statistic under the null hypothesis can be exactly computed by calculating all
possible values of the test statistic under every possible permutation (Fisher,
1966; Gibbons and Chakraborti, 2011; Chung et al., 2017a).

It is often used when parametric assumptions are in doubt or very difficult
to obtain. Decades ago, the computational bottleneck of generating empirical
distribution was so overwhelming, it was mainly applied to scalar data
sets with small sample sizes. In recent years, due to the advancement of
relatively inexpensive computers and the advancement of cluster computing,
the permutation test became practical for a wide range of problems. However,
it is still computationally expensive for even modest sample sizes used in most
brain imaging studies. For really large-scale data sets, it is still computationally
intensive.

246
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To speed up the permutation tests when the total number of permutations
is too large, resampling technique has been proposed under many different
names, such as approximate permutation test or random permutation test.
In the resampling technique, only a small fraction of possible permutations
are generated and the statistical significance is approximately computed.
This approximate permutation test is the most widely used version of the
permutation test in brain imaging. Even for modest sample sizes, the total
number of permutations is astronomically large and only a small subset of
permutations is used in approximating p-values. In most of brain imaging
studies, 5,000 to 1,000,000 permutations are often used, which puts the total
number of permutations usually at less than 1% of all possible permutations. In
Zalesky et al. (2010), 5,000 permutations out of a possible

(27
12

) = 17,383,860
permutations (2.9%) were used. In Thompson et al. (2001), 1 million permu-
tations out of

(40
20

)
possible permutations (0.07 %) were used. In Lee et al.

(2017), 5,000 permutations out of a possible
(33

10

) = 92,561,040 permutations
(0.005%) were used.

Thus, permutation tests are all approximate in practice. Here, we propose
a novel exact combinatorial test procedure that enumerates all possible per-
mutations combinatorially and avoids the numerical resampling that is slow
and approximate. Unlike existing permutation testing that takes a few hours
to a day, our exact procedure takes a few seconds. Recently, combinatorial
approaches for network inference are begin to emerge as the powerful alter-
native to existing standard network inference procedure (Neykov et al., 2016;
Chung et al., 2017a). Neykov et al. proposed to use a combinatorial technique
for graphical models. However, their approach still relies on bootstrapping.
Thus it is still an approximate resampling method (Neykov et al., 2016). Chung
et al. proposed a combinatorial approach for large-scale brain networks, but the
method is limited to integer-valued graph theoretic features such as the number
of connected components (Chung et al., 2017a).

11.1.1 Permutations

Definition 11.1 Given n unique objects a1,a2, · · · ,an, a permutation is a
rearrangement of the n objects. Given n unique objects a1,a2, · · · ,an, a k-
combination is a way of selecting k distinct objects out of n total objects.

For n unique objects a1,a2, · · · ,an, one possible permutation is

a2,a1,a3, · · · ,an.
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For n unique objects, the total number of possible permutations is

n!= n · (n− 1) · (n− 2) · · · 2 · 1.

For given objects a1,a2,a3,a4, possible two-combinations are

(a1,a2),(a1,a3),(a1,a4),(a2,a3),(a2,a4),(a3,a4).

There are six different two-combinations.

Theorem 11.1 The total number of possible k-combinations equals the bino-
mial coefficient (

n

k

)
= n!

k! (n− k)!
.

Proof. This can be seen by determining the relationship between k-
combinations and permutation of n objects. If we let

(
n
k

)
be the total number of

k-combinations, there are k! ways to permute within each combination.
(
n
k

)
k!

is the number of ways of picking out k objects out of n objects and order them.
This is equivalent to

n(n− 1)(n− 2) · · · (n− k + 1) = n!

(n− k)!
.

Thus, (
n

k

)
k!= n!

(n− k)!
. �

Similarly we can count the number of possible combinations in the two
samples. Suppose there are m unique objects a1,a2, · · · ,am in group I and
n unique objects b1,b2, · · · ,bn in group II. Combine them and split them
randomly into n and m objects. We are not interested in ordering. The possible
ways of the random splits is given by(

m+ n

m

)
= (m+ n)!

m! n!
.

Based on Stirling’s formula,

q!∼
√

2πq
(q

e

)q

,

the total number of permutations in permuting two groups of size n each is(
2n

n

)
∼ 4n

√
2πn

,

which becomes extremely large for even modest n. This is why permutation
tests are exponentially slow.
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Here are few examples of the number of combinations computed using
MATLAB.

format long
nchoosek(20,10)
ans =

184756

nchoosek(40,20)
ans =

1.378465288200000e+11

nchoosek(80,40)

Warning: Result may not be exact.
Coefficient is greater than 9.007199e+15
and is only accurate to 15 digits

ans =
1.075072087333362e+23

If there is n = 40 samples in each group, this is beyond MATLAB’s capability
and will not compute the number of permutations exactly. One way of handling
a large number on computer is to use logarithms. Note

n!= e
∑n

j=1 log j .

format long
sum(log(1:80)) - 2*sum(log(1:40)))
ans =
53.031844856178935(80

40

)
is computed as e53.031844856178935:

11.1.2 Permutation Test on Two Samples

The permutation test (Fisher, 1966) is perhaps the most widely used non-
parametric test procedure in medical imaging. It is known as the only exact
test since the distribution of the test statistic under the null hypothesis can be
exactly computed by calculating all possible values of the test statistic under
every possible combinations. Unfortunately, even for modest sample sizes, the
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total number of permutations is astronomically large and only a small subset
of permutations is used in approximating p-values. Thus, permutation tests are
all approximate in practice.

The permutation test for two samples is done as follows (Efron, 1982;
Lee et al., 2012; Chung et al., 2013). A two-sample test setting is probably
the most often used in applications. Suppose there are m unique objects
a1,a2, · · · ,am in group I and n unique objects b1,b2, · · · ,bn in group II.
Let X1 = (a1,a2, · · · ,am) and X2 = (b1,b2, · · · ,bn). We are interested in
testing if

H0 : Group I = Group II vs. H1 : Group I �= Group II.

Let D(X1,X2) be the test statistic that measures the distance between X1

and X2. We can simply use the sample mean difference

D(X1,X2) = ā − b̄

or its normalized version, i.e., t-statistic, as the test statistic. Any reasonable
distance function can be used for this purpose.

We test the statistical significance of distance D(X1,X2) under the null
hypothesis H0. This requires knowing the probability distribution of D under
null. Under the null hypothesis, two groups are interchangeable and D(X1,X2)

is expected to be close to 0. Thus, the sample space is generated as by
permutations. The permutations are done as follows. Concatenate data X =
(X1,X2). Now permute the indices of X in the symmetric group of degree
m + n, i.e., Sm+n (Kondor et al., 2007). The permuted data matrix is denoted
as Xσ , where σ ∈ Sm+n. Then we split Xσ into two parts

Xσ = [X1
σ,X2

σ ],

where X1
σ and X2

σ are of sizes m and n respectively. Then for each permutation,
we have distance D(X1

σ,X2
σ ). Theoretically, for all Sm+n, we can compute the

distances. This gives the empirical estimation of the distribution of D(X1
σ,X2

σ ).
The number of permutations exponentially increases and it is impractical to
generate every possible permutation. So up to tens of thousands permutations
are generated in practice. This is an approximate method and care should be
taken to guarantee the convergence.

Given three groups with n, m, and l objects, we can also design the
permutation test for three groups and test for the equality of the group
means. However, due to the astronomically large number of permutations for
three groups, the procedure simply causes the computational bottleneck. The
permutation test is rarely applied in three groups.
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11.1.3 Permutation Test on Correlations

Let ρ1(p) and ρ2(p) be the population-level correlations from two groups at
each voxel p. We are interested in testing

H0 : ρ1(p) = ρ2(p) for all p

vs.

H1 : ρ1(p) �= ρ2(p) for some p.

Let rj be the Pearson correlation for the j th group. We can use

D = sup
p

[
r1(p)− r2(p)

]
as a test statistic. The test statistic will correct for multiple comparisons in
a one-sided test. We estimate the probability distribution of D under H0 via
permutations. Each permutation produces Pearson correlations denoted by r1σ

and r2σ and there are
(
m+n
m

)
possible permutations. For each permutation, we

compute distance Dσ . Then the distribution of the D is given by

P
(
D ≥ h

)
= # of Dσ ≥ h(

m+n
m

) , (11.1)

where # counts the number of instances when Dσ is bigger than h.
In order to have converging probability (11.1), we need to have tens of

thousands of permutations (Figure 11.1). However, in specific situations, the
permutation can be done by combinatorial enumerations exactly.

11.1.4 Permutation Test on Network Distances

Statistical inference on network distances can be done using the permutation
test or bootstrap (Efron, 1982; Lee et al., 2012; Chung et al., 2013). Here we
explain the permutation test procedure that was used for network distances.
The usual setting in brain imaging applications is a two-sample comparison.
Suppose there are m measurement in group 1 on node set V of size p. Denote
the data matrix as X1

m×p. The edge weights of group 1 are given by f (X1) for

some function f and the metric space is given by X 1 = (V ,f (X1)). Suppose
there are n measurement in group 2 on the identical node set V . Denote data
matrix as X2

n×p and the corresponding metric space as X 1 = (V ,f (X1)). We

test the statistical significance of network distance D(X 1,X 2) under the null
hypothesis H0:

H0 : D(X 1,X 2) = 0 vs. H1 : D(X 1,X 2) �= 0.
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Figure 11.1 Left: histogram of distance D based on 2,400 permutations using
m = 14 autistic and n = 12 normal control subjects for cortical thickness (Chung
et al., 2005b). Right: plots of 95%, 90%, 85%, and 80% upper percentiles over
the number of permutations showing that the p-values do not converge with less
than 2,000 permutations. We most likely need more than 10,000 permutations for
reasonable convergence.

The permutation test is done as follows. Concatenate the data matrices

X = (xij ) =
(

X1

X2

)
(m+n)×p

.

Now permute the indices of row vectors of X in the symmetric group of degree
m + n, i.e., Sm+n (Kondor et al., 2007). The permuted data matrix is denoted
as Xσ(i) = (xσ(i),j ), where σ ∈ Sm+n. Then we split Xσ(i) into submatrices
such that

Xσ(i) =
(

X1
σ(i)

X2
σ(i)

)
,

where X1
σ(i) and X2

σ(i) are of sizes m × p and n × p respectively. Let

X 1
σ(i) = (V ,f (X1

σ(i))) and X 2
σ(i) = (V ,f (X2

σ(i))) be weighted networks
where the rows of the data matrices are permuted across the groups. Then
we have distance D(X 1

σ(i),X 2
σ(i)) for each permutation. The number of per-

mutations exponentially increases and it is impractical to generate every
possible permutation. So up to tens of thousands permutations are generated
to guarantee convergence in practice. This is an approximate method and a
care should be taken to guarantee the convergence, but in most studies about
1% of total permutations are used (Thompson et al., 2001; Zalesky et al.,
2010).
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11.2 Exact Combinatorial Inference

Definition 11.2 For any G1 and G2 satisfying G1 ⊂ G2, f is a monotone
function if it satisfies f (G1) < f (G2).

There are many monotone functions, including the number of connected
components, total node degree, and the size of the largest connected compo-
nents. Once we have a set of features that are monotone, statistical inference
can be done easily. The method works best if we have integer-valued monotone
graph theory features without any gap in integer values. This is defined more
succinctly as follows.

Definition 11.3 Given a collection of nested sets ∅ = G0 ⊂ G1 ⊂ G2 ⊂
· · · ⊂ Gq , f is monotonically dense if

0 = f (G0) < f (G1) < f (G2) < · · · < f (Gq) = r

and r ≤ q.

Due to the pigeonhole principle, the integers between 0 and r are completely
covered by q + 1 features.

Example 11.1 Given graph G with q nodes v1,v2, · · · ,vq , define Gj to be a
subgraph with nodes v1,v2, · · · ,vj . Let f (Gj ) to be the number of nodes in
Gj . Then f (Gj ) = j and satisfies the condition in Definition 11.3 trivially.

Even if monotone function f does not satisfy Definition 11.3, there exists a
nondecreasing function φ such that φ◦f is monotonically dense. Such function
φ is easily constructed as follows. Let xj = f (Gj ). Define a step function φ

such that

φ(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t < x1

j if xj ≤ t < xj+1

q if xq ≤ t

.

Then it is straightforward to see that φ ◦f is monotonically dense. An example
of such a step function is illustrated in Figure 11.2. From now on, without loss
of generality, we will simply assume a monotone feature to be monotonically
dense.

We are interested in testing the null hypothesis H0 of the equivalence of two
monotonically dense features, f and g:

H0 : f (Fj ) = g(Gj ) for all 1 ≤ j ≤ q.
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Figure 11.2 Monotonic features x1 ≤ x2 ≤ · · · ≤ xq are mapped to integers
between 0 and q via some nondecreasing function φ(t).

For simplicity, we will simply assume there are q unique monotone features.
We use

Dq = sup
1≤j≤q

∣∣f (Fj )− g(Gj )
∣∣

as a test statistic.
Under the null assumption, f (Fj ) and g(Gj ) are interchangeable. Thus,

there are a total of
(2q

q

)
ways of permuting them. The distribution of Dq can be

empirically determined using
(2q

q

)
permutations.

Theorem 11.2

P(Dq ≥ d) = 1 − Aq,q(2q
q

) ,

where Au,v satisfies Au,v = Au−1,v + Au,v−1 with the boundary condition
A0,q = Aq,0 = 1 within band |u− v| < d.

Proof. The proof is similar to the combinatorial construction of
Kolmogorov–Smirnov (KS) test (Böhm and Hornik, 2010; Gibbons and
Chakraborti, 2011). Combine two monotonically increasing vectors(

f (F1), · · · ,f (Fq)
)
,

(
g(G1), · · · ,g(Gq)

)
and arrange them in increasing order. Represent f (Fj ) and g(Gj ) as ↑ and
→ respectively. For example, ↑↑→↑→→ · · · . There are exactly q number
of ↑ and q number of → in the sequence. Treat the sequence as walks on a
Cartesian grid. → indicates one step to the right and ↑ indicates one step up.
The observed integer values of (f (Fj ),g(Gk)) correspond to the coordinates
of the grid. Thus the walk starts at (0,0) and ends at (q,q) (Figure 11.3). There
are a total of

(2q
q

)
possible number of paths, which forms the sample space.

This is also the total number of possible permutations between the elements
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Figure 11.3 Au,v are computed within the boundary (dotted lines). The gray
numbers are the number of paths from (0,0); here there are 54 possible paths
within the dotted lines from (0,0) to (4,4).

of the two vectors. The null assumption is that the two vectors are identical
and there is no preference to one vector element to another. Thus, each walk is
equally likely to happen in the sample space. Subsequently the probability can
be written as

P(Dq ≥ d) = 1 − P(Dq < d) = 1 − Aq,q(2q
q

) , (11.2)

where Au,v is the total number of passible paths from (0,0) to (u,v) within
the boundary. Since there are only two paths (either ↑ or →), Au,v can be
computed recursively as

Au,v = Au−1,v + Au,v−1

within the boundary. On the boundary, A0,q = Aq,0 = 1 since there is only
one path. �

Example 11.2 Theorem 11.2 provides the exact probability computation for
any number of nodes p. For instance, probability P(D ≥ 2.5) is computed
iteratively as follows. We start with computing

A1,1 = A0,1 + A1,0 = 2,

A2,1 = A1,1 + A1,0 = 3,

· · · ,
A4,4 = A4,3 + A3,4 = 27 + 27 = 54.
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These are given in Figure 11.3. Thus the probability (p-value) is computed as

P(D ≥ 2.5) = 1 − 54
/(

8

4

)
= 0.23.

A few other examples that can be computed easily are

P(D = 0) = 0, P (D ≥ 1) = 1,

P (D ≥ q) = 2
/(

2q

q

)
,P (D ≥ q + 1) = 0.

Other examples that can be computed easily are

P(Dq = 0) = 0, P (Dq ≥ 1) = 1

P(Dq ≥ q) = 2
/(

2q

q

)
, P (Dq ≥ q + 1) = 0.

Computing Aq,q iteratively requires at most q2 operations while permuting
two samples consisting of q elements each requiring

(2q
q

)
operations. Thus,

our method can compute the p-value exactly substantially faster than the
permutation test that is approximate and exponentially slow. MATLAB code
PH A.m for computing Aq−1,q−1 is available.1

The asymptotic probability distribution of Dq can be also determined for
sufficiently large q without computing iteratively as Theorem 11.2.

Theorem 11.3 limq→∞ P
(
Dq/

√
2q ≥ d

)
= 2

∑∞
i=1(−1)i−1e−2i2d2

.

The proof follows from Gibbons and Chakraborti (2011) and Smirnov (1939).
From Theorem 11.3, p-value under H0 is computed as

p-value = 2e−d2
o − 2e−8d2

o + 2e−18d2
o · · · ,

where do is the least integer greater than Dq/
√

2q in the data (Figure 11.4).
For any large observed value d0 ≥ 2, the second term is in the order of 10−14

and insignificant. Even for small observed d0, the expansion converges quickly
and five terms are sufficient.

11.2.1 Inference on Minimum Spanning Trees

In brain imaging, minimum spanning trees (MSTs) are often used in speeding
up computation and simplifying complex graphs as simpler trees (Wu and
Leahy, 1993). Wu et al. used MST in edge-based segmentation of a lesion

1 http://www.stat.wisc.edu/∼mchung/twins/
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Figure 11.4 Left: convergence of Theorem 11.2 to Theorem 11.3 for q =
10,50,100,200. Right: Run time of permutation test (dotted line) vs. the com-
binational method in Theorem 11.2 (solid line) in logarithmic scale.

in a brain MRI (Wu and Leahy, 1993). Stam et al. used MST as an unbiased
skeleton representation of complex brain networks (Stam et al., 2014).

Most statistical inference methods on MST rely on existing univariate
statistical test procedures on scalar graph theory features on MST such as
the average path length. Since the probability distribution of such features is
often not well known, resampling techniques such as permutation tests are
frequently used. Permutation testing is known as the only exact test procedure.
However, it is not exact in practice and only an approximate method due
to the computational bottleneck of generating every possible permutation,
which can be astrologically large. Thus, the statistical significance is computed
using the small subset of all possible permutations, which gives approximate
p-values. Here, we present a new combinatorial inference approach to the
permutation test, where every possible permutation is enumerated combina-
torially.

The MST is often constructed using Kruskal’s algorithm (Lee et al., 2012).
Kruskal’s algorithm is a greedy algorithm with run time O(p log p) that starts
with an edge with the smallest weight. Then add an edge with the next smallest
weight. This sequential process continues while avoiding a loop and generates
a spanning tree with the smallest total edge weights (Figure 11.5). Thus, the
edge weights in the MST correspond to the order, in which the edges are added
in the construction of the MST. Since there are p nodes, there are p − 1 edge
weights in the MST.

Let M1 and M2 be the MST corresponding to p × p connectivity matrices
C1 and C2. We are interested in testing hypotheses

H0 : M1 = M2 vs. H1 : M1 �= M2. (11.3)
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Figure 11.5 Top: Spearman correlation network of MZ- and DZ-twins and
heritability index (HI) obtained from white matter fiber tract counts in DTI (Chung
et al., 2018b). Bottom: corresponding MST on 1-correlation and HI constructed
using Kruskal’s algorithm.

Let

w1
1 < w1

2 < · · · < w1
p−1

w2
1 < w2

2 < · · · < w2
p−1

be the ordered edge weights of two MSTs in Kruskal’s algorithm. w1
j and w2

j

are edge weights obtained in the j th iteration of Kruskal’s algorithm. Let f,g

be monotone functions that map the edge weight obtained in the j th iteration
to integer j , i.e.,

f (w1
j ) = j, g(w2

j ) = j .

Figure 11.6 displays monotone functions f and g for an example with four
nodes.

Under H0, the sequence of monotone functions f (w1
j ) and g(w2

j ) are
identical and interchangeable. The pseudometric

D(M1,M2) = max
t

∣∣f (t)− g(t)
∣∣
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Figure 11.6 The number of nodes (vertical) in a subtree of an MST obtained in
Figure 3.1. The horizontal axis is the edge weights where nodes are connected to
the subtrees.

is used as the test statistic. Under H0, D(M1,M2) = 0. The larger the value
of D, it is more likely to reject H0. Then we have shown that the probability
distribution of D can be written as

P(D ≥ d) = 1 − P(D < d) = 1 − Ap−1,p−1(2p−2
p−1

) , (11.4)

where Au,v is the total number of passible paths from (0,0) to (u,v) within the
boundary (Chung et al., 2017a).

Figure 11.7 displays monotone functions f (t) and g(t) obtained from an
MST of MS- and DS-twins. At edge weight 0.75, which is the maximum
gap and corresponding to correlation 0.25, the observed distance D was 46.
The corresponding p-value was computed as P(D ≥ 46) = 1.57 × 10−8.
The localized regions of brain that genetically contribute the most can
also be identified by identifying the nodes of connections around edge
weight 0.75 (0.75 ± 0.2). The following AAL regions are identified as
the region of statistically significant MST differences: Frontal-Mid-L,
Frontal-Mid-R, Frontal-Inf-Oper-R, Rolandic-Oper-R, Olfactory-L, Frontal-
Sup-Medial-L, Frontal-Sup-Medial-R, Occipital-Inf-L, SupraMarginal-R,
Precuneus-R, Caudate-L, Putamen-L, Temporal-Pole-Sup-L, Temporal-Pole-
Sup-R, Temporal-Pole-Mid-R, Cerebelum-Crus2-R, Cerebelum-8-R, and
Vermis-8. The identified frontal and temporal regions are overlapping with
the previous MRI-based twin study (Thompson et al., 2001).

11.2.2 Application to Multiple Subjects

The exact combinatorial inference is designed to test the equivalence of two
networks. If we have multiple networks, the method is not directly applicable
and some modification is needed.

Suppose group I consists of m connectivity matrices C1
1,C

1
2, · · · ,C1

m.
Suppose group II consists of n connectivity matrices C2

1,C
2
2, · · · ,C2

n . We are
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Figure 11.7 The number of connected nodes is plotted over the edge weights of
the MST obtained from the Spearman correlation matrices of MZ- (solid red) and
DZ-twins (dotted black). The KS-distance statistic D is 45 at edge weight 0.75.
Regions correspond to the maximum difference between MSTs of MZ- and DZ-
twins. They correspond to regions that are in [0.55,0.95] range in distance.

interested in testing the equivalence of connectivity matrices between groups
I and II. The exact combinatorial inference cannot be applicable directly.
Consider the entries of connectivity matrices

C
j
i = (c

j
i (k,l)).

In this notation, the (k,l)th entry of connectivity matrix C
j
i is C

j
i (k,l). There

are two different ways to apply the exact combinatorial inference. In the first
approach, we compute the similarity or distance between all the (k,l)th entries
of the connectivity matrix. For instance, we correlate all the (k,l)th entries in
groups I and II separately:

akl = corr(C1
1(k,l),C1

2(k,l), · · · ,C1
m(k,l)),

bkl = corr(C2
1(k,l),C2

2(k,l), · · · ,C2
n(k,l)).

Then we obtain two new group-level connectivity matrices A = (akl) and
B = (bkl). Now we can apply the exact combinatorial inference testing the
difference between A and B.
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In the first approach, we computed the distance of all the subjects simulta-
neously at each fixed (k,l)th entry. In the second approach, we compute the
pairwise distance between two connectivity matrices for all the subjects. We
can use GH- or KS-distance. Let d1

ij = d(C1
i ,C

1
j ) be the distance between

connectivity matrices C1
i and C1

j . Similarly, we define d2
ij be the distance

betewen C2
i and C2

j . Then we obtain two group-level connectivity matrices

D1 = (d1
ij ) and D2 = (d2

ij ). Now we can perform the exact combinatorial
inference.

11.2.3 Inference on the Number of Cycles

Given two graphs G1 and G2, we will use the difference of their β1 in
differentiating the graphs. Consider distance

D(G1,G2) = sup
λ

∣∣β1(G1|λ)− β1(G2|λ)
∣∣,

where Gi |λ denotes the binary network thresholded below at edge weight λ.
Note

β1(Gi |λ) = li (λ)− p + βi
0(λ),

where p is the number of nodes of Gi , which is fixed; li (λ) is the number
of edges of Gi |λ; and βi

0(λ) is the number of connected components of Gi |λ.
Then the distance can be written as

D(G1,G2) = sup
λ

∣∣l1(λ)− l2(λ)+ β1
0 (λ)− β2

0 (λ)
∣∣.

Under the null hypothesis H0 : G1 = G2, we may assume the number of
edges are identical. Then, the p-value is bounded by

P(D(G1,G2) > d) ≤ P
(

sup
λ

∣∣β1
0 (λ)− β2

0 (λ)
∣∣ > d

)
.

This is the probability distribution of KS-distance introduced in Chung et al.
(2017a).

11.2.4 Validation of Exact Combinatorial Inference

In most of brain imaging studies, 5,000 to 100,000 permutations are often
used, which puts the total number of permutations usually less than 3% of
all possible permutations. In Zalesky et al. (2010), 5,000 permutations out of
a possible

(27
12

) = 17,383,860 permutations (2.9%) were used. In Thompson

et al. (2001), 1 million permutations out of
(40

20

)
possible permutations (0.07 %)

were used.
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For validation and comparisons, we simulated the random graphs with the
ground truth. We used p = 40 nodes and n = 10 images, which makes possible
permutations to be exactly

(10+10
10

) = 184,756, making the permutation test
manageable. The data matrix Xn×p = (xij ) = (x1,x2, · · · ,xp) is simulated as
standard normal in each component, i.e., xij ∼ N(0,1), or equivalently each
column is multivariate normal xj ∼ N(0,I ) with the identity matrix as the
covariance.

Let Y = (yij ) = (y1, · · · ,yp) = X. So far, there is no statistical
dependency between nodes in Y . We add the following block modular structure
to Y . We assume there are k = 4,5,8,10,40 modules and each module consists
of c = p/k = 10,8,5,4,1 number of nodes. Then for the ith node in the j th
module, we simulate

yc(j−1)+i = xc(j−1)+1 +N(0,σ I ) for 1 ≤ i ≤ c,1 ≤ j ≤ k (11.5)

with σ = 0.1. Subsequently, the connectivity matrix C = (cij ) is given
by cij = corr(yi,yj ). This introduces the block modular structure in the
correlation network (Figure 11.8). For 40 modules, each module consists of
just one node, which is basically a network with zero modules.

Figure 11.8 Randomly simulated correlation matrices with zero, four, five, eight,
and 10 modules. The plot shows the number of nodes over the largest edge weights
added into MST construction during Kruskal’s algorithm for four, five, eight, 10,
and zero modules.
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Table 11.1. Simulation results given in terms of p-values. In the case of
no network differences (0 vs. 0 and 4 vs. 4), higher p-values are better.
In the case of network differences (4 vs. 5, 4 vs. 8, and 5 vs. 10), smaller
p-values are better.

Combinatorial Permute 0.1% Permute 0.5% Permute 1%

0 vs. 0 0.831 ± 0.187 0.746 ± 0.196 0.745 ± 0.195 0.744 ± 0.196
4 vs. 4 0.456 ± 0.321 0.958 ± 0.075 0.958 ± 0.073 0.958 ± 0.073
4 vs. 5 0.038 ± 0.126 0.381 ± 0.311 0.377 ± 0.311 0.378 ± 0.311
4 vs. 8 0.053 ± 0.138 0.410 ± 0.309 0.411 ± 0.306 0.411 ± 0.306
5 vs. 10 0.060 ± 0.126 0.391 ± 0.283 0.395 ± 0.284 0.395 ± 0.283

Using (11.5), we simulated random networks with four, five, eight, 10,
and zero modules. For each network, we obtained an MST and computed
the distance D between networks. We computed the p-value using the
combinatorial method. In comparison, we performed the permutation tests by
permuting the group labels and generating 0.1, 0.5, and 1% of every possible
permutation. The procedures are repeated 100 times and the average results are
reported in Table 11.1.

In the case of no network differences (zero vs. zero and four vs. four), higher
p-values are better. The combinatorial method and the permutation tests all
performed well for no network difference. In the case of network differences
(four vs. five, four vs. eight, and five vs. 10), smaller p-values are better. The
combinatorial method performed far superiorly than the permutation tests.
None of the permutation tests detected modular structure differences. The
proposed combinatorial approach on an MST seems to be far more sensitive
in detecting modular structures. The performance of the permutation test
does not improve even when we sample 10% of all possible permutations.
The permutation test doesn’t converge rapidly with increased samples. The
codes for performing exact combinatorial inference as well as simulations is
provided.2

11.3 Bootstrap

Although not as popular as the permutation test, the bootstrap can be very
effective in estimating network parameters. The bootstrap requires no para-
metric assumptions in doing statistical inference (Efron, 1982). Given a

2 http://www.stat.wisc.edu/∼mchung/twins/
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random sample x = (x1, · · · ,xn), the cumulative distribution function of true
population F is empirically estimated as the proportion of the total sample
points that is less than x, i.e.,

F̂ (x) = 1

n

n∑
i=1

I(−∞,xi )(x),

where IA(x) is an index function taking value 1 if x ∈ A and 0 otherwise. For
order statistics x(1), · · · ,x(n) of x, we have

F̂ (x(1)) = 1

n
, · · · ,F̂ (x(i)) = i

n
and F̂ (x(i+1)) = i + 1

n
.

Empirically, we can assume each sample point to occur with equal probability
1/n. Then we resample with replacement from x with equal probability.
The new resample is denoted as x∗ and called a bootstrap sample. If we
resample m times, we denote them as x∗1, · · · ,x∗m. The MATLAB code
for doing resampling with replacement three times for x = (5,8,3,2) is as
follows:

>boot=inline(’x(unidrnd(length(x),m,length(x)))’,...
’x’,’m’)
boot =

Inline function:
boot(x,m) = x(unidrnd( length(x), m,length(x)))

>x=[5 8 3 2];
>bs=boot(x,3)
bs = 2 3 8 8

3 8 3 2
2 8 3 3

Suppose sample x = (x1, · · · ,xn) follows distribution F(θ) for some
parameter θ . We are interested in performing an inference on θ . For this, we
need to know the distribution θ̂ (x), which is the estimate of θ . Unfortunately,
the distribution may be difficult to obtain analytically. Thus, we generate
m bootstrap samples x∗1, · · · ,x∗m of x first. Then obtain the ith bootstrap
replication of θ̂ as

θ̂∗i = θ̂ (x∗i ).

Instead of using the original sample x in estimating θ , we use the ith bootstrap
replication x∗i in estimating θ and denote it as θ̂∗i . These bootstrap resamples
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provide us with an estimate of the distribution of θ̂ . In particular, we can
estimate mean and the variance of θ as

E θ̂ (x) ≈ θ̄∗ = 1

m

m∑
i=1

θ̂∗i,

E θ̂ (x) ≈ 1

m− 1

m∑
i=1

(
θ̂∗i − θ̄∗

)2.

The following sample data published in Blakley et al. (1994) can be used
as an illustration for this section. The data can be downloaded from the web.3

There are two measurements, arm and grip, that measure the arm and grip
strength of construction workers. From the data, let us estimate the population
mean and variance based on 200 bootstrap replications. For estimating the
population mean and variance, we use θ̂ (x) = x̄ and θ̂ (x) = nx̄.

bs=boot(arm,200);
bsmean=mean(bs,2)
>>[mean(arm) mean(bsmean)]
ans =
78.7517 78.9025

The built-in MATLAB function bootstrp, which is fairly limited in its
functionality, can be also used:

>mean(bootstrp(200,’mean’,arm))
ans =

78.7799

The performance of an estimator is determined by bias. Ideally we like to
have an unbiased estimator. Vθ̂ (x) measures the performance of a bootstrap
estimate. To measure the accuracy of an estimate, we compute the bias, which
is defined as the difference between the expection of the estimator and the true
parameter,

bias(θ̂) = Eθ̂ − θ .

The bootstrap estimation of the bias is then given by

bias(θ̄∗) = θ̄∗ − θ̂ .

For our example, for estimating the population mean, let θ̂ = X̄:

bias(X̄∗) = X̄∗ − X̄.

3 http://www.stat.wisc.edu/∼mchung/teaching/data/strength.data
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Based on the MATLAB result, we have

>>78.9025-78.7517
0.1508.

The bootstrap estimation is not showing severe bias relative to the size of the
signal.

11.3.1 Bootstrap Confidence Intervals

Suppose random variable X ∼ 1
σ
f (

x−μ
σ

) for some distribution f . We want to
find 100(1 − α)% confidence interval (CI) for estimated parameter μ̂ = X̄.
We need to find a pivot of μ. A pivot is a statistic that contains μ but whose
distribution does not depend on μ or σ . For example, f ∼ N(μ,σ 2),

T = X̄ − μ

S/
√

n
∼ tn−1

is a pivot for μ. Let tα/2 and t1−α/2 be α/2 and 1 − α/2 quantiles for tn−1

distribution. The 100(1 − α)% CI is given by(
x̄ − t1−α/2S/

√
n, x̄ − tα/2S/

√
n
)

.

If f is not normal, T will be still a pivot, but we do not know its distribution. So
we generate 1,000 bootstrap replicates T ∗ = X̄∗−X̄

S∗/
√

n
of T and get the bootstap

CI given by (
x̄ − t∗1−α/2S/

√
n, x̄ − t∗α/2S/

√
n
)

.

This is computed as follows in MATLAB:

t=inline(’(mean(x)-u)/(std(x)/length(x))’,’x’,’u’)
for i=1:1000;

trep(i)=t(boot(arm,1),mean(arm))
end;
> quantile(trep,[0.05 0.95])

-19.8246 22.0677
> mean(arm) -22.0677*std(arm)/sqrt(147)

40.3303
> mean(arm) +19.8246*std(arm)/sqrt(147)

113.2677

Thus the 90% bootstrap confidence interval is [40.33,113.27].
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11.3.2 Bootstrap Estimation in Linear Models

For given bivariate data (xi,yi),i = 1, · · · ,n, suppose we have the following
regression model:

Yi = g(xi;β)+ εi .

For instance, consider following linear model g(x;β) = β0 + β1x, where β =
(β0,β1). Fitting a nonlinear model like g(x;β) = β0/(β1 − β2e

−β3x) is also
possible. The least squares estimation (LSE) of β is given by

β̂ = arg min
β

n∑
i=1

(
yi − g(xi;β)

)2
.

Based on LSE, the observed residual is

ε̂i = yi − g(xi;β̂). (11.6)

Then we resample the residual. A bootstrap replicate is then obtained as

y∗i = g(xi;β̂)+ ε̂∗i . (11.7)

The bootstrap estimate of β is then

β̂∗ = arg min
β

n∑
i=1

(
y∗i − g(xi;β)

)2
. (11.8)

Consider estimating the CI of β1 for model

grip = β0 + β1arm

in the strength data. The pivot for β1 is T = β̂1−β1
SE(β̂1)

, where SE(β̂1) =√
Vβ̂1. From equations (11.6), (11.7), and (11.8), we generate 1,000 bootstrap

replicates of T ∗ = β̂∗1−β̂

SEβ̂∗1
. Since we don’t know the standard error SE(β̂1), we

need to estimate SE(β̂∗1 ) via bootstrap, which requires further bootstrapping
from bootstrapped residual e∗i . Let us denote this estimate as Sβ̂1

. Then
100(1 − α)% CI for β1 is

(β̂1 − t∗1−α/2Sβ̂1
, β̂1 − t∗α/2Sβ̂1

).

In MATLAB, this is computed as follows:

beta=inline(’pinv([ones(147,1) x])*y’)
>b=beta(arm,grip)
b=

54.7081
0.7050 % least squares estimation of beta1.

e=grip-b(1)-b(2)*arm; %residuals
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for j=1:1000
bse=boot(e,1); %bootstrap on residuals
bsgrip = bse + b(1) + b(2)*arm;
bsb=beta(arm,bsgrip);

for i=1:50 %estimating the s.d. of beta1.
bs2e=boot(bse,1); %bootstrap on bootstrap
bs2grip = bs2e + b(1) + b(2)*arm;
bs2b=beta(arm,bs2grip);
bsbeta(i)=bs2b(2);

end;
trep(j)=(bsb(2)-0.7050)/std(bsbeta);

end;

>quantile(trep,[0.05 0.95])
-1.5308 1.6580



12
Series Expansion of Connectivity Matrices

In this chapter, we explain how to expand connectivity matrices as a series
expansion for subsequent statistical inference. One of the simplest well-
known expansions is the spectral decomposition, which is the basis of the
principal component analysis (PCA). However, there are many other possible
expansions as well.

12.1 Spectral Decomposition

Often brain connectivity matrices are symmetric. The connectivity matrices
may not be positive definite if the number of images n is smaller than
the number of nodes p, which falls into the small-n large-p problem. We
will consider general connectivity matrices and we will not assume positive
definiteness.

Suppose we have a p × p symmetric matrix C with eigenvalues

λ1 ≤ λ2 ≤ · · · ≤ λp

and the corresponding eigenvectors v1,v2, · · · ,vp such that

Cvj = λjvj .

Large eigenvalues correspond to the high-frequency component. We will not
assume the positive definiteness of C, and we may expect negative eigenvalues
as well (Figure 12.1). If C is positive definite, all the eigenvalues are positive.
If C is nonnegative definite, some eigenvalues are zeros.

269
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Figure 12.1 Eigenvalues of Spearman correlation matrices from MZ- (solid line)
and DZ-twins (dotted line) obtained from a DTI study (Chung et al., 2018b). We
have negative eigenvalues due to the small sample size n relative to the number
of nodes p. Also DTI produces sparse connectivity matrices, which reduces the
rank of matrices and in turn produces negative eigenvalues. Higher eigenvalues
correspond to the high-frequency signal content.

We further assume v1,v2, · · · ,vp are orthonormal. Let Q = [v1v2 · · · vp]
be an orthogonal matrix such that Q′Q = I , the identity matrix. Then we
have

C[v1v2 · · · vp] = CQ = [v1v2 · · · vp]D = QD

with D = diag(λ1,λ2, · · · ,λp). Then trivially we have the decomposition:

C = QDQ�

An algebraic manipulation can show that C can be written as

C =
p∑

j=1

λjvj v
�
j . (12.1)

Equation (12.1) is often known as the spectral decomposition of C. Since
correlation and covariance matrices are often symmetric and positive definite,
they can be decomposed in this fashion. However, any symmetric matrix can be
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Figure 12.2 (a) DZ-twin correlation. Each entry is Spearman correlation of the
number of tracts between 116 regions in the AAL parcellation. (b) MZ-twin
correlation. (c) Spectral decomposition with negative eigenvalues. (d) Spectral
decomposition with positive eigenvalues. Correlation matrix B is equal to the sum
of negative and positive decompositions.

decomposed in this fashion. In fact, we can decompose a connectivity matrix
into negative and positive eigenvalue parts (Figure 12.2):

C =
∑

λj <=0

λjvj v
�
j +

∑
λj >0

λjvj v
�
j .

12.2 Iterative Residual Fitting

The iterative residual fitting (IRF) algorithm is an iterative procedure for
solving large-scale computational problems that cannot be solved with existing
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computational recourses into a smaller problems. Sequentially combining the
solutions of the subproblems, we obtain the convergence to the larger problem.
The method is first introduced in Chung et al. (2008a) in solving the large-scale
spherical harmonic expansion problem for brain surfaces. IRF can be used to
expand connectivity matrices with respect to other matrices.

12.2.1 Computational Issues of Fourier Series Expansion

Consider a manifold M ∈ Rd that will be our object of interest. Let L2(M)

be the space of square integrable functions in M with inner product

〈g1,g2〉 =
∫
M

g1(p)g2(p) dμ(p), (12.2)

where μ is some measure such that μ(M) is the total volume of M. The norm
‖ · ‖ is defined as

‖g‖ = 〈g,g〉1/2.

The operator L is self-adjoint if

〈g1,Lg2〉 = 〈Lg1,g2〉
for all g1,g2 ∈ L2(M). The eigenvalues λj and eigenfunctions ψj of the
operator L are obtained by solving

Lψj = λjψj . (12.3)

Without the loss of generality, we can order eigenvalues

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · ·
and make the eigenfunctions to be orthonormal with respect to the inner
product (12.2).

Let Hk be the subspace

Hk =
⎧⎨⎩

k∑
j=0

βjψj (p) : βj ∈ R

⎫⎬⎭ ⊂ L2(M),

which is spanned by the finite number of basis up to degree k. We are interested
in finding a function h ∈ Hk in the subspace that is the closest to an arbitrary
function f in L2-norm. From the property of Hilbert space L2(M), we have

k∑
j=0

fjψ(p) = arg min
h∈H

‖f − h‖2, (12.4)
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where fj = 〈f,ψj 〉 are Fourier coefficients. For complicated manifold M and
large k > 5,000, the problem can cause a serious computational bottleneck.
There are three well-known methods for computing Fourier coefficients.

The first method numerically integrates the Fourier coefficients by discretiz-
ing the problem (Chung, 2006). Although this approach is the simplest to
implement numerically and possibly the most accurate, the computation can
be extremely slow, due to the brute force nature of the technique. However,
it is possible to speed up the computational drastically if the finite element
method (FEM) is used and the inner product operations can be simplified as
matrix multiplication (Chung et al., 2015b).

The second method is perhaps the most often used method and based
on the fast Fourier transform (FFT) (Bulow, 2004; Gu et al., 2004). The
drawback of FFT is the need for a predefined regular grid system so it is
usually not applicable to more general manifold settings such as graphs and
surface meshes. In particular, for brain surfaces, since the mesh topology is
different for different subjects, a time-consuming interpolation or registration
is needed to align all the subject to the standard regular grid system. Note
cortical meshes obtained from FreeSurfer (Fischl and Dale, 2000) produces
topologically different meshes for different subjects, so FFT is not applicable
in such situations.

The third method is based on solving a system of linear equations (Gerig
et al., 2001; Shen et al., 2004; Shen and Chung, 2006) in a least squares
fashion, which requires matrix inversion. This is the most widely used
numerical technique in the spherical harmonics literature. However, the direct
application of the least squares estimation is not desirable when the size of the
linear equation is extremely large.

For extremely large least squares problems, new iterative strategies such as
the IRF is required (Chung et al., 2008a). Suppose f is observed at the finite
number of points p1, · · · ,pn ∈ M. Then we wish to find h ∈ Hk , which
minimizes the sum of the squared distance

‖f − h‖2 =
n∑

i=1

⎡⎣f (pi)−
k∑

j=0

βjψj (pi)

⎤⎦2

. (12.5)

The minimum of (12.5) is obtained when

f (pi) =
k∑

j=0

βjψj (pi),i = 1, · · · ,n (12.6)

Equation (12.6) is referred as the normal equation and is usually solved by
matrix inversion.
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Let f = (f (p1), · · · ,f (pn))
�, β = (β0, · · · ,βk)

� and

� =

⎡⎢⎣ ψ0(p1) · · · ψk(p1)
...

. . .
...

ψ0(pn) · · · ψk(pn)

⎤⎥⎦
be a n×(k+1) matrix consisting of basis functions evaluated at mesh vertices.
Then (12.6) can be rewritten in the following matrix form:

f = �β. (12.7)

The solution of the matrix equation is

β = (���)−��f, (12.8)

where (���)− is the generalized inverse. The problem with this widely used
formulation is that the size of the matrix � can be fairly large for very large n

and k. So it is impractical to perform matrix operation (12.8) directly. This is
mainly true for FreeSurfer (Fischl and Dale, 2000), which produces more than
300,000 nodes per each cortical hemisphere. This computational bottleneck
can be overcome by breaking the least squares problem in the subspace Hk

into smaller subspaces using the IRF algorithm (Chung et al., 2008a; Shen and
Chung, 2006).

12.2.2 IRF Algorithm

We present an iterative technique for solving (12.7) for an extremely large
number of bases k. Decompose the subspace Hk into smaller subspaces as the
direct sum:

Hk = I0 ⊕ I1 · · · ⊕ Ik,

where subspace Il is the the projection of Hk along the kth basis. Another
way of decomposing Hk is to use more than one basis for Il . For instance, for
spherical harmonics Ylm at degree l, there are 2l+1 bases Yl,−l, · · · ,Yl,l . Thus,
we can define Il as the 2l+1 dimensional subspace generated by all lth degree
spherical harmonics. This has an advantage of simultaneously estimating more
than one coefficient.

The algorithm estimates the Fourier coefficients βj in each subspace Ij

iteratively from increasing the degree from 0 to k. Suppose we estimated the
coefficients up to degree l−1 somehow. The estimated coefficients are denoted
as β̂0, · · · ,β̂l−1. Then the residual rl−1 of the fit is given by

rl−1 = f −
l−1∑
j=0

β̂jψj . (12.9)
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In practice, the computation is done in the finite number of discrete points p1,
p2, · · · , pn. Thus rl−1 = (rl−1(p1), · · · ,rl−1(pn))

� is a residual vector in
(12.9). At the next degree l, we estimate the coefficients βl by minimizing the
difference between the residual rl−1 and βlψl , i.e.,

β̂l = arg min
βl

‖rl−1 − βlψl‖2.

The minimization is achieved in the least squares fashion with a smaller normal
equation. Let �l = (ψl(p1), · · · ,ψl(pn))

�. Then the minimizer is given by

β̂l = (��
l �l)

−1��
l rl−1

= ��
l rl1∑n

i=0 ψ2
j (pi)

.

The functional data f is then estimated by combining terms

l∑
j=0

β̂jψj .

In this fashion, the algorithm hierarchically builds the Fourier expansion from
lower to higher degree.

12.2.3 Speeding Up IRF

To speed up the computation, we can decompose Hk such that each subspace
Ik is spanned by more than one basis if necessary. The iterative procedure
presented here is referred to as the iterative residual fitting (IRF) algorithm
since we are iteratively fitting a linear equation to the residuals obtained from
the previous iteration (Chung et al., 2008a). However, one limitation with IRF
is that it was known that the stepwise regression always underestimates the
Fourier coefficients in absolute value.

The basis function ψj is orthonormal with respect to the integral version
of the inner product. Hermite polynomials and spherical harmonics are such
examples. If we reshape these analytic bases in such a way that they are
orthonormal with respect to the vector product, i.e., ��

i �j = δij , Kronecker’s
delta, we can drastically speed up the computation. Under this condition, the
minimizer is simply given as

β̂l = ��
l rl1 .

If the grid points p1,p2, · · · ,pn are dense enough, then the off-diagonal
entries of ��� are close to zeros, but the diagonal entries of ��� are
not going to be close to ones. Thus, simply modulating the diagonal entries,
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often we may achieve the desired effects. The best approach is to discretize
the underlying manifolds as a graph with nodes p1, · · · ,pn and compute the
eigenvector of the graph Laplacian. The connectivity of the graph can be
achieved by performing the abstract version of the Delaunday triangulation
or Rips complex construction (Wang et al., 2017).

12.2.4 Best Model Selection

In many spherical harmonic representation literature (Bulow, 2004; Gerig
et al., 2001; Gu et al., 2004; Shen and Chung, 2006; Shen et al., 2004), the
optimal degree is simply selected based on a prespecified error bound that
depends on the magnitude of estimating functions. Although increasing the
degree of the representation increases the goodness-of-fit, it also increases
the number of coefficients to be estimated quadratically. So it is necessary
to find the optimal degree where the goodness-of-fit and the number of
parameters balance out. The stepwise model selection framework offers a way
to automatically determine the optimal degree (Chung et al., 2008a).

Suppose we can have expansion

f (pi) =
k−1∑
j=0

βjψj (pi)+ ε(pi), (12.10)

where ε(pi) is a zero mean Gaussian random variable. Then we determine if
adding the kth degree terms in the (k−1)th degree model (12.10) is statistically
significant by testing the null hypothesis

H0 : μk = 0.

Let the kth degree sum of squared errors (SSE) be

SSEk =
n∑

i=1

r2
k (pi).

As the degree k increases, SSE keep decreasing until it flattens out. So it
is reasonable to stop the iteration when the decrease in error is no longer
significant. Figure 12.3 shows the plot of the RMSE,

√
SSEk/n. Under H0,

the test statistic is

F = SSEk−1 − SSEk

SSEk−1/(n− k − 1)
∼ F1,n−k−1,

the F -distribution with 1 and n−k−1 degrees of freedom. We compute the F

statistic at each degree and stop the IRF procedure if the corresponding p-value
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Figure 12.3 Plots of the root mean square deviation (RMSD) for the weighted
spherical harmonic (SPHARM) representation of brain surface coordinates with
varying σ (0.01,0.001,0.0001,0). When σ = 0, we have the traditional spherical
harmonic representation. For σ > 0, the representation is equivalent to isotropic
heat diffusion with diffusion time σ . The cortical surfaces correspond to the
85th degree expansion. As σ → 0, the weighed representation converges to the
traditional SPHARM (Chung et al., 2008a).

Figure 12.4 Cortical thickness projected onto the average outer cortex for various
t and corresponding optimal degree: k = 18(t = 0.01),k = 42(t = 0.001),k =
52(t = 0.0005),k = 78(t = 0.0001). The average cortex is constructed by
averaging the coefficients of the weighted SPHARM. The highly noisy first image
shows thickness measurements obtained by computing the distance between two
triangle meshes.
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first becomes bigger than the prespecified significance α, which is usually set
at 0.05 (Figures 12.3 and 12.4).

12.3 Spectral Decomposition with Different Bases

Consider two groups of subjects. Suppose group 1 gives the connectivity
matrix C1 and group 2 gives the connectivity matrix C2. The problem of
applying the spectral decomposition to each connectivity matrix separately
is that they produce different bases. Instead of doing spectral decomposition
separately for each group, we combine the subjects. Let C be the connec-
tivity matrix obtained from the combined group. The spectral decomposition
gives

C =
p∑

j=1

λjvj v
�
j . (12.11)

Obviously we cannot expand connectivities C1 and C2 with basis vj but we
can approximate them in the subspace spanned by {vj }. We can estimate
coefficients αj and βj of the expansions

C1 =
p∑

j=1

αjvj v
�
j

C2 =
p∑

j=1

βjvj v
�
j .

The coefficients can be estimated sequentially one at a time using the IRF
algorithm (Chung et al., 2008a). First we estimate α1 by solving

C1 = α1v1v
�
1 . (12.12)

The solution of the matrix equation (12.12) is

α̂1 = v�1 C1v1.

Subsequently, we solve for α2:

C1 − α̂1v1v
�
1 = α2v2v

�
2 .

α2 is similarly estimated as

α̂2 = v�2
[
C1 − α̂1v1v

�
1

]
v2.
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The process is iteratively continuous until all the coefficients are estimated.
Then C1 is approximately decomposed using basis {vj }. However, this
approach may not work if the the norm on the residual matrix does not
decrease. It is necessary to make the residual matrix decreases.

12.4 Spectral Permutation

Suppose we have two groups of subjects. One consists of normal controls
and the other is most likely clinical population. Suppose we have connectivity
matrices C1 and C2. Consider their spectral decompositions:

C1 =
p∑

j=1

λ1
j v

1
j v

1
j

�

C2 =
p∑

j=1

λ2
j v

2
j v

2
j

�
.

Then we will permute the set of eigenvalues between two matrices. An
example of permutation is

C1
σ = λ2

1v
1
1v1

1
� +

p∑
j=2

λ1
j v

1
j v

1
j

�

C2
σ = λ1

1v
2
1v2

1
� +

p∑
2=1

λ2
j v

2
j v

2
j

�

where only the first eigenvalues λ1
1 and λ2

1 are permuted. σ is an index to
indicate such permutation. Under the null assumption of the equivalence of
connectivity matrices, we have

H0 : λ1
j = λ2

j for all j .

Therefore, we may permute the whole eigenvalue and eigenvector together.
There will be total

(2p
p

)
permutations. However, we may be most likely to

permute the first q largest eigenvalues λ1
1, · · · ,λ1

q and λ2
1, · · · ,λ2

q and leave out
the high-frequency components. q should be determined empirically. Given n

images in each group, there are total
(2n

n

)
permutations. If we choose q to be

far smaller than n, we also have additional computational speed gain.
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12.5 Karhunen–Loève Expansion

Karhunen–Loève expansion can be used to represent correlation and covari-
ance matrices continuously using continuous basis functions. Let G be the
space of zero mean Gaussian random fields in some manifold M ⊂ Rd with
inner product

〈X,Y 〉 = E

∫
M

X(x)Y (x) dx

with ‖X‖ < ∞. This is basically the integral of the cross-covariance function
between fields X and Y . G can be shown to be a separable Hilbert space by
finding countable orthonormal basis in G (Adler and Taylor, 2007).

Theorem 12.1 (Karhunen–Loéve expansion) For a mean zero Gaussian ran-
dom field Z(x) in G with mean square continuity over a bounded domain
M ⊂ Rd , there exist independent mean zero Gaussian random variables
Zi ∼ N(0,σ 2

i ) and orthonormal bases ψi such that

Z(x) =
∞∑
i=0

Ziψi(x). (12.13)

If EZ(x) �= 0 for some x, we can always center the field by translating
toward the sample mean. The basis ψi is orthonormal in M such that
〈ψi,ψj 〉 = δij . Let σ 2

i = EZ2
i < ∞. Since EZ(x) = 0, the covariance

function of Z(x) is given by

R(x,y) = E

∞∑
i,j=0

Ziψi(x)Zjψi(y)

=
∞∑
i=0

σ 2
i ψi(x)ψi(y). (12.14)

The covariance function of a zero mean Gaussian field completely character-
izes the field itself. Obviously R has to be symmetric to be expressible in this
fashion. This fact is related to Mercer’s theorem (Conway, 1990).

If fj (x) is the realization of the random field Z, the parameters σ 2
i can be

estimated by matching the moment in the following fashion. From (12.14), we
have

R(x,x) =
∞∑
i=0

σ 2
i ψ2

i (x).
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If we assume fj are also centered, the left-hand side is the variance field, which
can be estimated using the sample variance field:

1

n

n∑
j=1

f 2
j (x).

Then we first estimate the parameter σ0 by solving

1

n

n∑
j=1

∫
M

f 2
j (x) dx = σ 2

0

∫
M

ψ2
0 (x) dx = σ 2

0 .

Once we estimated σ0 as σ̂0, the next parameter σ1 is then estimated by solving

1

n

n∑
j=1

∫
M

f 2
j (x)− σ̂0

2
∫
M

ψ2
0 (x) dx = σ 2

1

∫
M

ψ2
1 (x) dx.

The process is iteratively performed until we obtain a sufficiently high-degree
representation. The estimation process is similar to the iterative residual fitting
algorithm. The Karhunen–Loève expansion is just one example of many
possible orthonormal expansions of a function.

12.5.1 Mercer’s Theorem

For continuous symmetric kernel R, which can be taken as a continuous
connectivity matrix, define linear operator L : L2(M) → L2(M) as

Lf (x) =
∫
M

R(x,y)f (y) dy.

This is a compact self-adjoint operator. The linear operator yields unique
countable eigenvalues σ 2

i and orthonormal eigenfunctions ψi of the operator
L such that

Lψi = σ 2
i ψi (12.15)

with σ 2∞ = 0. Equation (12.15) is a Fredholm equation of the first kind, and
ψi and σ 2

i can be estimated numerically if the kernel R(x,y) is given (Arfken,
2000). We will order the eigenvalues such that

σ 2
0 > σ 2

1 > σ 2
2 > · · · .

Then any function f ∈ L2(M) can be represented as

f =
∞∑
i=1

〈ψi,f 〉ψi .
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Subsequently, the operator L has a spectral representation

Lf =
∞∑
i=0

σ 2
i 〈ψi,f 〉ψi .

Then Mercer’s theorem states that kernel R is expressed as

R(x,y) =
∞∑
i=0

σ 2
i ψi(x)ψi(y). (12.16)

A special case of Mercer’s theorem is when R is the heat kernel given by

R(x,y) =
σ∑

i=0

e−λi tψi(x)ψi(y).

The corresponding linear operator L is the heat kernel smoothing operator
defined as

Lf (x) =
σ∑

i=0

e−λi t 〈ψi,f 〉ψi(x).

Mercer’s theorem can be proved using the following argument given in
Courant and Hilbert (1953). Suppose we fix y. Then from the Weierstrass’s
approximation theorem, for continuous function, R(x,·) = ∑∞

i=0 αi(x) for
some basis functions αi uniformly. Now fix x and we have

R(x,y) =
∞∑
i=0

αi(x)

∞∑
j=0

βj (y) (12.17)

=
∞∑

i,j=0

αi(x)βj (y). (12.18)

Again, βj are basis functions. For basis α1, · · · ,αp and β1, · · · ,βp, they can
be rewritten as a linear combination of our orthonormal basis ψ using the
Gram–Schmidt orthogonalization. So some algebraic manipulation can show
that

R(x,y) =
∞∑

i,j=0

cijψi(x)ψj (x) (12.19)

for some cij . Another way of looking at this problem is by noting that
ψi(x)ψj (y) forms an orthonormal basis for M⊗M. Then for the covariance
function R(x,y) ∈ L2(M ⊗M), we immediately have the series expansion
(12.19).
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We will identify cij , using the definition of L. We have

Lψk(x) =
∞∑

i,j=0

cijψi(x)

∫
M

ψk(y)ψj (y) dy

=
∞∑

i,j=0

cijψi(x)δkj

=
∞∑
i=0

cikψi(x). (12.20)

We need to equate (12.20) to σ 2
k ψk(x). The only way it is satisfied for all x

and k is when ckk = σ 2
k and cik = 0 for i �= k. Hence we proved the statement

of Mercer’s theorem (12.16).

12.6 Vandermonde Matrix Expansion

We are interested in representing connectivity matrices C1 and C2 in terms of
an expansion involving another connectivity matrix C exactly. This requests
three steps. Suppose D1 = (λ1

i ),D2 = (λ2
i ),D = (λi) ∈ Rp×p are diagonal

matrices consisting of eigenvalues

λi �= λj, if i �= j . (12.21)

In practice, this is not necessarily a strong assumption. If the connectivity
matrix takes continuous values, the probability of such event is zero. If the
connectivity matrix takes discrete values, it may be possible to have some
of diagonal entries be identical. Then we may simply add negligibly small
numbers and make them unique.

Consider the Vandermonde matrix

A =

⎛⎜⎜⎜⎜⎝
1 λ1 λ2

1 · · · λ
p−1
1

1 λ2 λ2
2 · · · λ

p−1
2

...
...

...
. . .

...

1 λp λ2
p · · · λ

p−1
p

⎞⎟⎟⎟⎟⎠ . (12.22)

It can be shown that the determinant of A is

det A =
∏

1≤i≤j≤p

(λj − λi).



284 Series Expansion of Connectivity Matrices

Figure 12.5 The 116 coefficients obtained in the Vandermonde matrix expansion
for MZ- (solid line) and DZ-twins (dotted line). Almost all coefficients are
negligible except the first 36 coefficients. The remaining 80 coefficients are
smaller than 0.001 in absolute magnitude. With 36 coefficients, the reconstruction
error is smaller than 0.0029 elementwise in L2 norm in average.

Thus, from condition (12.21), A is invertible. Let �1 = (λ1
1,λ

1
2, · · · ,λ1

p)�

be the vector of diagonal entries of D. Let x = (x1,x2, · · · ,xp)� be the
solution of

�1 = Ax.

Then we have

λ1
i = x1 + λix2 + · · · + λ

p−1
i xp.

Identifying the expansion coefficients x requires inverting the Vandermonde
matrix (Figure 12.5). The exact analytical form of the inverse of the Vander-
monde matrix is known. After identifying x, we have

D1 =
p∑

k=1

xkD
k−1.

Since C1 and C2 are symmetric, there exist orthogonal matrices Q1 and Q2

such that

Q�
1 C1Q1 = D1, Q�

2 C2Q2 = D2, Q�CQ = D. (12.23)
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Note that Q�Q = QQ� = I and Q�Ck−1Q = Dk−1. Hence, we have

C1 = Q1D1Q
�
1 = Q1

[ p∑
k=1

xkD
k−1

]
Q�

1

= Q1

[
p∑

k=1

xkQ
�Ck−1Q

]
Q�

1

=
p∑

k=1

xkP
�
1 Ck−1P1,

where P1 = Q(Q1)
�. Note P1P

�
1 = P�

1 P1 = I . Thus, we have expansion

P1C
1P�

1 =
p∑

k=1

xkC
k−1.

Similarly we have

P2C
2P�

2 =
p∑

k=1

ykC
k−1

with P2 = Q(Q2)
�. The expansion is exact within the numerical accuracy of

singular value decomposition.

Example 12.1 If the assumption (12.21) is not satisfied, we cannot represent
C1 using C. Here is a counterexample. Consider corresponding diagonal
matrices of eigenvalues:

D1 =
(

1 0
0 2

)
, D =

(
1 0
0 1

)
. (12.24)

Since A is not invertible, equation Ax = �1 has no solution. Thus, D1 can
not be represented in terms of the expansion of C. Also, if two eigenvalues
are too close to each other, the condition number will be high and we have an
ill-conditioned problem. The expansion may not be accurate.

Example 12.2 Consider following connectivity matrices

C1 =
⎛⎝4 0 1

0 2 0
1 0 3

⎞⎠ , C =
⎛⎝1 0 0

0 3 0
0 0 2

⎞⎠ . (12.25)
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The corresponding diagonal and orthonormal matrices are

D1 =
⎛⎝2 0 1

0 2.38 0
1 0 4.62

⎞⎠ , D =
⎛⎝1 0 0

0 2 0
0 0 3

⎞⎠ .

Q1 =
⎛⎝ 0 0.53 0.85
−1 0 0
0 −0.85 0.53

⎞⎠ , Q =
⎛⎝1 0 0

0 0 1
0 1 0

⎞⎠ .

The Vandermonde matrix is ⎛⎝1 1 1
1 2 4
1 3 9

⎞⎠ .

Solving Ax = �1, we have x = (3.47, − 2.40,0.93)�. Subsequently, we can
represent C1 as the series expansion exactly.

Example 12.3 The Vandermonde matrix expansion is exact if the inverse of
Vandermonde matrix is well defined. However, in practice it may be difficult to
make the matrix well conditioned. Consider the Spearman correlation matrices
C1 and C2 from MZ- (solid red) and DZ-twins (dotted black) obtained from
a DTI study (Chung et al., 2018b) (Figure 12.2). Let C be the Spearman
correlation matrix obtained from by combining both MZ- and DZ-twins. For
better estimation of the coefficients x, we expanded the differences C1−C and
C2 − C with respect to C. Then added C after the expansion. The results are
given in Figure 12.6.

12.6.1 Transition Matrix

If we ignore the negative entries, the connectivity matrices can be interpreted
as transition matrices for Markov chains with an additional normalization.
Given connectivity matrix C = (cij ), C is considered as a proper transition
matrix if all the entries are nonnegative, i.e., cij ≥ 0 and doubly stochastic such
that

p∑
i=1

cij =
p∑

j=1

cij = 1.

In case C is not doubly stochastic, we can make it doubly stochastic as follows:

C → ACB,
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Figure 12.6 Reconstruction of DZ-twin (left) and DZ-twin correlation matrices
using 36 coefficients in the Vandermonde matrix expansion. Compared to the
original correlation matrices in Figure 12.5, we obtained almost similar patterns.
The reconstruction error is smaller than 0.0029 elementwise in L2 norm in
average.

where A = (aij ) and B = (bij ) with

aij = 1
/ p∑

k=1

cik

bij = 1
/ p∑

k=1

ckj

Assuming such constraints are satisfied, the Vandermonde matrix expansion
may be viewed as a regression problem on graphs such that we are regressing
other connectivity matrix C1 as an unknown linear combination of transition
matrices, i.e.,

g(C1) = x1I + x2C + · · · + xpCp−1,

where g : Rn×n → Rn×n is some nonlinear matrix function that connects C1

to the powers of C. In our application, g(C1) = P1C
1P�

1 .
Since entries of C are between 0 and 1, the entries of Ci get smaller as i

increases. Thus, higher power of C can be treated analogous as high-frequency
bases in Fourier series expansions.

12.7 The Space of Positive Definite Symmetric Matrices

Recently in relation to brain network analysis and in diffusion tensor imaging,
positive definite symmetric (PDS) matrices have become fundamental objects
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of interest. Correlation and covariance matrices at the population level should
be all considered as PDS even though we often obtain nonnegative definite
matrices. The usual Euclidean geometry does not apply in the space of PDS.
Let Pm ⊂ Rm(m+1)/2 be the space of positive definite symmetric matrices
of size m × m. Due to the geometric nature of PDS, differential geometric
approaches are useful in quantifying the space (Kreyszig, 1959; Boothby,
1986; do Carmo, 1992; Joshi et al., 1995).

Suppose we have manifold Pm which is a smooth twice-differentiable
manifold embedded in Rm(m+1)/2. We have a parameterization

X(u) : N → Pm,

where all partial derivatives of X up to the second order are continuous in some
domain N , and partial derivatives Xj = ∂X/∂uj form a basis for the tangent
space TY (Pm) at point Y ∈ Pm. For this to happen, we need Xi(u)×Xj(u) �= 0
for any u ∈ N and i �= j . The coefficients gij = 〈Xi,Xj 〉 are called the
Riemannian metric tensor and they measure the amount of deviation from the
Cartesian coordinates.

12.7.1 Laplace–Beltrami Operator

The gradient ∇X of a function F on the tangent plane TY (Pm) is defined as

∇XF =
∑
i,j

gij ∂F

∂uj
Xi, (12.26)

where (gij ) = g−1. The divergence ∇X· of a vector field V =∑
i V iXi is then

∇X · V = 1

|g|1/2

∑
i

∂

∂ui
(|g|1/2V i),

where |g| is the determinant of g. The generalized Laplacian called the
Laplace–Beltrami operator �X corresponding to parameterization X is then
defined as the divergence of the gradient operator (Kreyszig, 1959; Marsden
and Hughes, 1983) such that

�XF = ∇X · (∇XF) = 1

|g|1/2

∑
i,j

∂

∂ui

(
|g|1/2gij ∂F

∂uj

)
. (12.27)

For the derivation of the Laplace–Beltrami operator without using differential
geometry, one may approach the problem in terms of a curvilinear coordinate
transform (Courant and Hilbert, 1953). The most important intrinsic property
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of the Laplace–Beltrami operator is that it is independent of the parameteriza-
tion of Pm. If X̃ = X ◦ is another parameterization, we have

�X̃F̃ = �̃XF .

However, one should be careful in choosing a proper parameterization, which
stabilizes the numerical computation and minimizes the variances of errors in
estimating the Laplace–Beltrami operator.

The Laplace–Beltrami operator is self-adjoint so if F and G are twice
differentiable functions in Pm,∫

Pm

G�F dμ =
∫
Pm

F�G dμ

= −
∫
Pm

〈∇F,∇G〉 dμ,

where the inner product is defined as

〈∇F,∇G〉 =
∑
ij

gij ∂

∂ui
F

∂

∂vi
G

and the area element dμ = √
det g du (Grigoryan, 1999).

The conformal coordinates are defined as a coordinate system whose metric
is given by

ds2 =
∑

i

λ(dui)2

for some function λ = λ(u). With respect to the conformal coordinates, the
Laplace–Beltrami operator is simplified to

�X = 1

λ

∑
i

∂

∂ui
.

For an arbitrary smooth surface and a fixed point p, we can always find
conformal coordinates such that Y = X(u) and λ(u) = 1 (do Carmo, 1992).
Therefore, if we find a conformal coordinate system at each Y ∈ Pm, the
computation of the Laplace–Beltrami operator at Y = X(u) can be simplified
to the usual Euclidean Laplacian at u.

12.7.2 Eigenfunctions in PDS

The eigenfunctions and the eigenvalues of the Laplace–Beltrami operator
have been used in many different contexts in literature (Lévy, 2006; Zhang
et al., 2010). Qiu et al. (2006) constructed splines on a brain cortical surface
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with a boundary using the eigenfunctions. Seo et al. (2010) constructed the
heat kernel as a series expansion of eigenfunctions and formulated diffusion
as heat kernel smoothing. Vallet and Lévy (2008) used the eigenfunctions
to analytically formulate geometric filtering problems. Dong et al. (2006)
proposed a quadrangular remeshing of surfaces using the evenly distributed
extrema of eigenfunctions. The eigenfunctions are used in shape analysis
(Reuter et al., 2009) and shape segmentation and registration (Reuter, 2010).

Since the Laplace–Beltrami operator is self-adjoint and elliptic, we have
discrete eigenvalues

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · ·
and the corresponding eigenfunctions ψj satisfying

�ψj = λjψj . (12.28)

The eigenfunctions ψj form the orthonormal basis in L2(Pm), the space of
square integrable functions in M. Numerically, eigenfunctions can be made
into orthonormal by scaling the eigenvalues. Eigenfunctions are often not
known analytically unless the underlying manifold is algebraically given.

For Y = (yij ) ∈ Pm, let dY = (dyij ). Following Maass (1955), we put the
following metric on Pm:

(ds)2 = tr
(
(Y−1dY )2

)
.

Vectorize n = m(m + 1)/2 unique entries of Y as (x1,x2, · · · ,xn)
′ and write

ds2 in the standard quadratic form as

(ds)2 =
∑

gij dxidxj .

For Pm, this can be more compactly written as follows. Define the matrix of
differential operators ∂ as

∂Y =
(1

2
(1 + δij )

∂

∂yij

)
,

where δij is Kronecker’s delta. With this operator, the Laplace–Beltrami (LB)-
operator � in the local coordinates yij is given by (Richards, 1985; Haff et al.,
2011)

� = tr(Y ∂Y )2. (12.29)

Note that the Laplacian in the coordinates of the eigenvalues of y has more
complicated from James (1968).
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Consider eigensystem

�ψk(Y ) = −λkψk(Y ).

The eigenfunction of the Laplacian (12.29) is difficult to compute in practice
and involves zonal spherical functions (Richards, 1985, 2011). There are
currently no available tools for computing these functions. However, we can
numerically solve the system using the finite difference scheme by discretizing
the Laplacian (Chung and Taylor, 2004; Chung et al., 2015b). Since the
eigenmatrix ψj is othonormal, any positive definite symmetric matrices C ∈
Pm can be expressed as

C =
∑
j

cjψj

where cj =
∫
Pm

C(Y )ψj (Y ) dμ.

Example 12.4 Consider P1 = R+, the positive real line. Note that the
Laplacian is paramaterization invariant. Let y = ex be the parameterization
of P1. It maps R to R+. Then dy = ydx and with respect to the orginal
coordinates y, we obtain

� =
(

d

dx

)2

=
(

y
d

dy

)2

= y
d

dy
+ y2 d2

dy2
. (12.30)

Laplacian (12.30) in P1 differs from the usual Laplacian d2

dy2 for the whole
real line. This additional algebraic complexity of the Laplacian makes the
computation of eigenfunctions of even 1D cases (12.30) complicated. In fact,
we need to solve

y
d

dy
ψj (y)+ y2 d2

dy2
ψj (y) = λjψj (y). (12.31)

In practice, it is easier to simply discretize the differential equation (12.31) and
solve it using the finite difference method.



13
Dynamic Network Models

Spontaneous fluctuations of neural signals are hallmark of resting-state func-
tional magnetic resonance imaging (rs-fMRI) (Allen et al., 2014). Recently,
brain network studies have shifted their focus toward dynamic characterization
of coactiviation patterns. This results in the recognization of intrinsic connec-
tivity patterns including the default-mode network in rs-fMRI (Greicius et al.,
2004). Compared to task-based fMRI, in rs-fMRI dynamic patterns are more
prominent (Allen et al., 2014). Thus, it is necessary to model rs-fMRI using
various dynamic network models.

A stable connectivity pattern that behaves like the backbone of networks
through fluctuating functional connectivity needs to be identified. The change
time points where the simultaneous fluctuations occur and disappear should
be identified as well. Such a complex dynamic pattern is difficult to model
completely with a single complicated statistical model. Many existing graph
theory–based static brain network models largely do not take into account the
presence of spontaneous temporal fluctuations. The dynamic brain network
analysis has its roots in modeling effective connectivity in fMRI, where they
looked at the causal influence of one neuronal system exerts over another
(Friston et al., 1993b; Friston, 1994; Marrelec et al., 2009). Traditionally the
effective connectivity has been modeled using structural equation modeling
(SEM) (Mclntosh and Gonzalez-Lima, 1994; Bullmore and Sporns, 2009) and
dynamic causal modeling (DCM) (Friston et al., 2003a,b). Although DCM
and SEM are implemented in brain image analysis tools such as SPM and
AFNI, the methods were often applied to a small number of nodes due to
computational complexity.

292
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13.1 Dynamic Causal Model

The DCM (Friston et al., 2003; Penny et al., 2004; David et al., 2006) has
been increasingly popular in fMRI connectivity studies. DCM is an effort to
model neuronal response as a physical system using a collection of first-order
differential equations. DCM models the dynamic change of neuronal response
in fMRI.

Let z = (z1, · · · ,zn)
′ be the neuronal response at n nodes and uj =

(uj1, · · · ,ujm)′ be the j th input signal. Then the neuronal activity is mod-
eled as

dz

dt
= Az+

m∑
j=1

ujB
j z+ Cu.

Friston et al. (2003) termed A = (aik) and Bj = (b
j
ik) as the latent and

induced connectivity matrices. A and Bj matrices measure the dependency
between nodes. Figure 13.1 shows the schematic of DCM with three nodes.
The temporal change in the neuronal response is basically modeled using
the measurements obtained in all other nodes simultaneously. DCM is imple-
mented in the SPM extension package.

z1 = a11z1 + c11u1 z2 = a22z2 + a21z1

y3
z3 = a33z3 + a32z2

+ u2b
2
32z2

•

••

u1

u2

y2y1

Figure 13.1 The schematic of DCM on three nodes with two inputs. The output
yj is somehow obtained from the neuronal response zj .
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13.1.1 Dynamic Sparse Network Model

The main limitation of DCM or any type of linear model is that they are
usually inappropriate for applications to whole brain regions mainly due to
the small-n large-p problem (Friston et al., 1995; Schäfer and Strimmer, 2005;
Valdés-Sosa et al., 2005; Lee et al., 2011c; Chung et al., 2013). Specifically,
the number of nodes p a is substantially larger than the number of images
n, which results in an improper estimation of the covariance between nodes.
The small − n large − p problem can be remedied by using sparse network
approaches, which regularize the estimated rank deficient covariance matrix
with additional sparse penalties (Avants et al., 2010; Huang et al., 2010;
Lee et al., 2011c; Mazumder and Hastie, 2012; Chung et al., 2013). So
far sparse network models are mainly applied to modeling static networks
obtained from the resting state fMRI, DTI (Chung et al., 2015a), or PET
(Lee et al., 2011c).

The sparse network framework introduced to handle static networks can
be adapted to handle temporally changing dynamic networks by introducing
time dependency in the model. We present a dynamic sparse network model
for modeling temporally changing, possibly task-dependent, networks. The
system of linear equations characterizes the network for a population at a
specific fixed time point. For statistical data, we set up a linear model on
measurement zj at node j :

zj =
∑
k �=j

βjkzk + εk,

where βjk measures the connectivity strength between nodes j and k (Chung,
2012). Then we are interested in testing the significance of

H0 : βjk = 0 vs. H1 : βjk = 0.

For a temporally changing network, the measurements zj and parameter
matrix β = (βjk) are also considered as temporally changing. Thus the change
should be characterized by the change of β over time. So we start with the
following dynamic linear model:

zj (t) =
∑
k �=j

βjk(t)zk(t)+ εk(t), (13.1)

where zj (t) is a sufficiently smooth neuronal response and εk(t) is a smooth
Gaussian random field. Since (13.1) is a linear model, the parameter can be
estimated using the least squares method. Then we can sparsely estimate βjk

by adding an additional sparse term in the least squares. This results in the
LASSO-type sparse parameter estimation β̂jk .
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By differentiating (13.1) with respect to t , we have a dynamic model at
node j :

dzj

dt
=

∑
k �=j

βjk

dzk

dt
+
∑
k �=j

dβjk

dt
zk + dεj

dt
(13.2)

If there is no temporal change in the network, we expect
dβjk

dt
to vanish. So the

hypothesis of interest is

H0 :
dβjk

dt
= 0 vs. H1 :

βjk

dt
�= 0.

Therefore, it is necessary to estimate the derivative
dβjk

dt
somehow. We can

estimate the derivatives using a two-step estimation technique.
Since we already have the sparse estimate β̂jk for the parameters, (13.2) can

be written as

dzj

dt
−
∑
k �=j

β̂jk

dzk

dt
=

∑
k �=j

dβjk

dt
zk + dεj

dt
. (13.3)

The left-hand side is known and
dβjk

dt
is further estimated similarly. Since we

already have LASSO estimate β̂jk for the parameters, the only unknown quan-

tity
dβjk

dt
can be further estimated again using LASSO-type sparse methods.

13.2 Dynamic Time Series Models

Correlation and covariance matrices can be often treated as manifold-valued
data, where the data are defined in the space of positive definite symmetric
(PDS) matrices with a Riemannan metric. In this section, we will explain
dynamic models of manifold-valued data with a focus on dynamic PDS
structures from nonstationary multivariate time series. The models can capture
how connectivity dynamically changes over time and thus can be used to
evaluate evolutionary dynamics of functional brain networks.

There is extensive literature on nonstationary spectra and covariances
(Ombao et al., 2005; Ombao and Van Bellegem, 2008; Ombao et al., 2017).
However, the existing work only indirectly defines the connectivity structures
from the time series representations. Better models would be to directly model
the time series of manifold-valued data that respect the underlying geometric
structure of PDS.
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13.2.1 Time Series Models on Tangent Space

Some preliminary ideas of building the autoregressive (AR) model to mani-
folds were described in Xavier and Manton (2006), but this work only provides
a sketch of an estimation procedure in the simplified setting of AR processes
on the unit circle. We introduce a nontrivial generalization of the AR model
specifically for PDS matrices, along with explicit estimation procedures and
statistical methods suitable for practical application. The methods can be used
to examine the evolution of brain connectivity over time.

Consider a time series Y1,Y2, · · · ,YT . We can model the increment between
Yt−1 and Yt , defined as

�t = logYt−1
Yt = log Yt − log Yt−1,

with an autoregressive model in the tangent space of Yt−1, and map back to the
manifold after incrementing using the exponential map, i.e.,

Yt = expYt−1
�t .

The proposed order r AR model for Yt is specified by

�t =
r∑

i=1

AiPYt−i−1,Yt−1 (�t−i )+Wt, Yt = ExpYt−1
(�t ),

where Wt is zero mean noise, and Pa,b is the parallel transport operator, which
is needed since the coefficient matrices A1, · · · ,Ap are in different tangent
spaces.

Although this model is based in the classical AR model, it is a nontrivial
extension since standard computational methods are not directly applicable for
general manifolds. Numerically, since we are dealing with symmetric matrices,
we can map �t to its vectorized upper triangle, including the diagonals, and
solve the system of time series as if they are in the Euclidean space.

13.2.2 Time Series Models on Manifolds

As an alternative to the tangent space model in the previous section, we can
set up an exact time series model on a manifold. While it can be attractive
to construct the time series model on the tangent space due to computational
ease, such a model necessarily results in approximation error. Intrinsic time
series models on the manifold will have improved accuracy over the tangent
space methods due to using the orthonormal basis of the manifolds. With this
approach, it is no longer necessary to project to the tangent space to do the
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computation and then project back into the manifold. Let Y1, · · · ,YT ∈ P, the
space of symmetric positive definite matrices. These will now be treated as
discrete observations from a continuous function of the PDS matrix Y (P,t),
i.e., Y (P,tk) = Yk . In P, the Laplace–Beltrami operator L in the coordinates
P = (pij ) is given as

L = tr(P ∂P )2

where

∂P =
(1

2
(1 + δij )

∂

∂pij

)
and δij is Kronecker’s delta (Maass, 1955; James, 1968; Richards, 1985; Haff
et al., 2011). We can compute the eigenfunctions in P by solving

Lψk(P ) = −λkψk(P )

using the finite difference scheme (Chung and Taylor, 2004; Chung et al.,
2015b). The eigenfunction of the Laplace–Beltrami (LB) operator involves
zonal spherical functions (Richards, 1985, 2011). However, there are currently
no available tools for computing these functions. Although the computation of
LB eigenfunctions for large-scale PDS matrices can be fairly time consuming,
we expect this to be solvable in desktop computers for most practical settings.

Since ψk spans P, any linear combination of ψk will be again a PDS matrix.
Thus, we can obtain the Fourier series expansion of Y (P,t):

Y (P,t) =
K∑

k=0

yk(t)ψk(P ),

where

yk(t) =
∫
Pq

Y (P,t)ψk(P ) dP

are the Fourier coefficients, which can be estimated using the least squares
estimation (LSE), with the optimal truncation degree K determined by the
forward model selection approach (Chung et al., 2007, 2008a).

The main advantage of using fixed basis over data-driven PCA-type basis is
that only the coefficients of the basis will dynamically change and thus provide
a far better interpretability of how objects evolve. From the LB basis, we can
further develop a localized LB-wavelet basis (Tan and Qiu, 2015). Moreover,
we can enforce sparsity using the principles of wavelet thresholding (Donoho
et al., 1995). By adding a sparsity penalty, the method can more sharply
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identify subsets of basis functions that contain the most information on the
dynamics, which we anticipate will provide better localization power.

13.2.3 PDE-Based Dynamic Models

We can further generalize on the manifold time series model by using the
partial differential equation–based dynamic models that are able to accurately
characterize more complex time-dependent structures. We propose to solve the
following dynamic model

d

dt
Y (P,t) = LY (P,t)+ ε(P ),

where ε(P ) is a zero mean noise. We can show that

Y (P,t) =
K∑

k=0

cke
−λktψk(P )

is the solution in the space spanned by up to K basis functions. The parameters
ck can be estimated via LSE. Since ψk spans P, the solution is also in P.
The method can be used to estimate and characterize the evolution of brain
connectivity over time. Although we expect LB-operator L to work, other more
general differential operators might be more suitable for capturing the dynamic
features of connectivity.

13.3 Persistent Homological Dynamic Network Model

In this section, we present a new simple but very effective data-driven
approach to assess the dynamic pattern of resting state functional connec-
tivity using recently popular persistent homology, an algebraic approach to
quantifying topology (Lee et al., 2012). So far, persistent homology has been
successfully applied to 3D static networks by building a graph filtration over
changing edge weights, which results in 4D hypernetwork structure. For 4D
dynamic network data that are changing over time, we propose to build a graph
filtration over time and edge weights, making it a 5D hypernetwork structure.

A particular interest with respect to persistent homology is determining if
the topological structure of the brain network at the resting state is changing
or not. We can test this biological question using the topological invariants
called Betti numbers βj (Lee et al., 2018a). This is not an easy question and
requires building a graph filtration over dynamically changing connectivity
matrices.
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Figure 13.2 Dynamically changing resting-state connectivity represented using
116 × 116 correlation matrices. The figure shows six subjects over eight sliding
windows obtained from HCP.

Assume we have a sequence of q connectivity matrices obtained through a
sliding window method G1,G2, · · · ,Gq (Allen et al., 2014) (Figure 13.2). We
are interested in determining if

H0 : G1 = G2 = · · · = Gq

vs.

H1 : At least one Gk is different.

This is a difficult multiple comparisons problem and requires additional data
processing.

13.3.1 Multidimensional Graph Filtration

To make the above inference more stable, we build a persistent homological
structure called the graph filtration, which is based on the nested graph
structure (Chung et al., 2015a). It is not hard to build the nested graphs in
dynamic networks (Figure 13.3).
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Figure 13.3 Dynamically changing resting-state connectivity represented using
3D graphs. The graphs are constructed by thresholding at correlation value 0.9 in
Figure 13.2. The figure shows six subjects over eight sliding windows obtained
from HCP.

Let

Fj = G1 ∪G2 ∪ · · · ∪Gj .

The union ∪ operation should be defined depending on applications. Then we
have filtration over union:

F1 ⊂ F2 ⊂ · · · ⊂ Fq−1 ⊂ Fq . (13.4)

Thus, testing H0 vs. H1 is equivalent to testing

H ′
0 : F1 = F2 = · · · = Fq−1 = Fq .

vs.

H ′
1 : At least one Fk is different.

The graph filtration (13.4) requires multidimensional persistent homology
for weighted graphs (Lee et al., 2017). This is done as follows. Threshold Fj

at λ and obtain a binary graph filtration:

F1|λ ⊂ F2|λ ⊂ · · · ⊂ Fq |λ.
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Further, we have

Fj |λ1 ⊃ Fj |λ2 ⊃ · · · ⊃ Fj |λk

for λ1 ≤ λ2 ≤ · · · ≤ λk .
Let β0(j,λ) = β0(Fj |λ) be the Betti-0 number. Then we have monotone

sequences

β0(1,λ) ≥ β0(2,λ) ≥ · · · ≥ β0(q,λ)

and

β0(j,λ1) ≥ β0(j,λ2) ≥ · · · ≥ β0(j,λk).

Similarly, we also have

β1(1,λ) ≤ β1(2,λ) ≤ · · · ≤ β1(q,λ)

and

β1(j,λ1) ≤ β1(j,λ2) ≤ · · · ≤ β1(j,λk).

Hence β0(j,λ) and β1(j,λ) are 2D monotone functions. Then we test

H0 : βi(1,λ) = βi(2,λ) = · · · = βi(q,λ) for all λ

vs.

H1 : At least one βi(j,λ) is different for some j .

We are basically testing the equivalence of q monotone functions, which is a
multiple comparisons problem and not necessarily an easy test. Usually 1D
Betti-plots are shaped like logistic curves, which are S-shaped curves. So for
each fixed j , we fit the logistic curve

f (λ) = p

1 + e−kj (λ−xj )
,

where p is the total number of nodes, xj is the midpoint, and kj is the slop
at the midpoint (Wang et al., 2016a). Then statistical inference will be done
on the equivalence of vectors (xj,kj ) instead of the equivalence of monotone
curves. We can simply use existing multivariate data analysis techniques for
this purpose (Flury, 1997).
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one sample, 87
persistent diagrams, 166
two samples, 88

iterative residual fitting, 204, 274

jackknife resampling, 177
Jacobian determinant, 56, 59

Karhunen–Loeve expansion, 91
kernel

principal components, 193
kernel smoothing

DTI, 49
Kolmogorov–Smirnov distance, 233

Laplace equation, 204
Laplace–Beltrami operator, 288

conformal coordinates, 289
eigenfunctions, 289
self-adjoint, 289

Laplacian, 89, 159, 188
eigenfunctions, 89
eigenvalues, 115
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Laplacian (cont.)
Hodge, 159
planar graphs, 188
zonal spherical functions, 287

likelihood, 145, 146, 210
sparse, 210
sparse likelihood, 211

linear model
best model selection, 276

linear regression, 125
log-Euclidean distance, 83
logistic regression, 6
longitudinal analysis

mixed effect, 148

manifold-valued data, 242
manifolds, 296
matrix

gram, 193
matrix norms, 227
Mercer’s theorem, 281
metric spaces, 81
minimum spanning trees, 62, 256
model selections, 95
modeling curves, 97
modular structures, 154, 238
Morse filtrations, 163
multiple comparisons

Bonferroni, 18
Rice formula, 19
statistical power, 24

multivariate general linear models
(MGLM), 140

multivariate linear models, 136
multivariate normal, 129

network distances, 226, 251
networks

partial correlation, 222
node degree, 65
node-based filtrations, 171
nodes, 27

hub, 69

online algorithms, 123

parameter estimation, 93
parcellation, 28, 50

hierarchical, 115
parcellation free, 50
supervoxel, 33

partial correlation, 78, 222
partial least squares, 107
path length, 70
PDE, 298
Pearson correlations, 76
permutation, 279
permutation test, 177, 247, 251
permutations, 247
persistent diagrams, 164
persistent homology, 156, 298
plots

Betti plots, 173
quantile–quantile plots, 132

quantile, 132
quantile–quantile plots, 132

R-square, 4
random field

Karhunen–Loève expansion, 280
Mercer’s theorem, 281

random fields, 9
resampling, 177, 266

bootstrap, 266
jackknife, 177
permutation test, 177, 251

Rice formula, 19
Rips, 160
Rips complex, 51

Rips filtration, 53
simplex, 158
triangulation, 160

Roy’s maximum root, 142
RV-coefficient, 59

scale-free, 67
simplex, 158
simplical homology, 157
simulations, 149, 151, 238

correlation networks, 152
dependent images, 149
Gaussian fields, 12
modular structures, 154
twins, 151

singular value decomposition, 107
small-worldness, 72
sparse

network, 207, 292
sparse correlation network, 213
sparse likelihood, 210, 211



Index 329

sparse models, 207
sparse networks, 112, 209, 294
sparsity, 112
spectral decomposition, 269, 278
stability, 166
statistical power

multiple comparisons, 24
type-II error, 21

statistical power , 21
streamline, 34
streamline tractography, 36
structural covariates, 55
SurfStat, 142

tangent space, 296
template, 27
tensor

diffusion, 34
tensor-based morphometry, 56, 59
thresholding

correlations, 106

time series, 295
topological data analysis, 156

critical value, 167
topological data analysis

simplex, 158
tractography, 36

probabilistic, 46
streamline, 34
tract counts, 44

transition matrix, 286
transition probability, 48
trees, 61

minimum spanning trees, 62, 256
type-I error, 17

Vandermonde expansion, 283
vector space, 79

Wiener process, 13

zonal spherical functions, 287
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