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PREFACE

The grand challenge in artificial intelligence (AI)a is to build truly
general intelligent systems,b systems that have the same intellectual
capacity as humans, i.e. able to make meaningful decisions, learn
and exhibit their intelligence in a general way in complex environ-
ments and across many different domains. 

There have been many efforts made in the past decades to meet
this challenge since Alan Turing, in 1950, first proposed the
Turing test to validate machine intelligence. The quest has led to
much progress in AI research. However, the advances made are
largely in very specific or isolated domain and cannot be general-
ized well for wider applications. To refocus on the original vision
of building a truly general intelligent system, more recently, atten-
tion has been turned towards the computational model of the
human brain.

v
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a Artificial Intelligence (AI) refers to the branch of science that attempts to
create intelligence in machine. The definition here includes computational
intelligence such as fuzzy, artificial neural network, probabilistic inference and
evolutionary computing and intelligent agents approach.
b General intelligent system is used here for the same purpose and meaning
as general artificial intelligence or strong artificial intelligence. In the aspect of
mimicking the brain, it is also known as cognitively intelligent system or brain-
inspired computing system or human-like cognitive system or cognitive com-
puting or computational cognitive system. Note that some scientists may be
more specific than others in defining and classifying these terminologies.
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Unlike current AIs, which are limited in many ways, the
human brains possess the ability to autonomously process infor-
mation in complex environments, automatically learn relevant
information, and can associate the right information for handling
surprises in diverse domains and situations. The brain’s process-
ing power in terms of size, power consumption, plasticity and
the robustness is something we would like an intelligent system
to have.

The human brain and its intelligence continues to be a fasci-
nating subject. With the recent advances in measuring instruments
such as two-photon laser scanning microscopy and fMRI, the neu-
ronal connectivity and circuitry of how the brain’s various regions
are hierarchically interconnected and organized are better under-
stood now than ever before. Computer scientists hope that by
reverse engineering of the brain, we may able to build cognitively
intelligent systems that have this truly general intelligence ability.

This book provides a walkthrough on the quest for building
general intelligent systems based on an understanding of the brain.
It brings together diverse viewpoints and expertise from multi-
disciplinary communities that are interested in understanding and
modeling the brain and mind machinery. 

The book starts by providing an overview of how the brain is
structured. Chapter 1 guides the readers through the various brain
regions and their functions. Chapter 2 provides a description of
the neurons and the synapse connections. It addresses how neurons
communicate and how information is stored. Chapter 3 looks at
the cortex architecture and describes the hierarchical structure
design of the cortex. Specific hierarchical pathways in the cortex
are discussed. Chapter 4 presents the different types of memory
systems that researchers understand from studying the brain.
Chapter 5 looks at the learning capability of our brain: How
learning takes place and what are the various learning schemes.
Chapter 6 addresses the issue of how emotion gives rise to cognition. 

Each of these chapters (Chapters 1 to 6), the computational
challenges to design and model the cortex from the regions and
networks of neurons to the individual neuron’s models is also

vi Brain-Mind Machinery
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discussed. The various designs of the hierarchy fashion from differ-
ent stages i.e. from column or mass of cells to a few cells, and the
computational design concept from simple to complex cells are
presented.

From Chapter 7 through Chapter 10, the different design con-
cepts of the whole brain from the computational to the cognitive
science perceptive, are summarized. Chapter 7 and Chapter 8 sum-
marize two unique perspectives of computing approaches to
designing of the brain, namely laminar computing and probabilistic
computing, respectively. Chapter 9 discusses on the higher theories
of the brain and commonsense knowledge representation and gen-
eration. Chapter 10 provides the model of the entire brain based
on cognitive architecture.

What are the prospects of building a truly general intelligent
system? How soon can we create a machine with human-like
intelligence? Chapter 11 explores these issues and the challenges.
Many scientists give differing opinions. Some scientists believe that
human-like intelligent systems will emerge within two decades.

Why is understanding and modeling of the brain difficult?
Chapter 12 addresses the issues involved and discusses why access
to today’s modern instruments is still limited. With these limita-
tions, it would be no surprise that only now and then would we
hear or read about news of a new brain theory or a new discovery
that gives new insight to the brain and mind. Chapter 13 presents
the principles we can adopt to build intelligent systems from our
current understanding of the brain. Chapter 14 concludes with a
brief discussion on the theory of the mind.

The human brain remains a source of the great wonder and
mystery. It exists in us and yet we do not feel its presence.
We perceive with our mind day in and day out. I hope this book
will provide some fresh perspective and thought in our quest
to build truly general intelligent systems from an understanding
of the brain.

Preface vii

FA
b654_FM.qxd  2/13/2009  11:57 AM  Page vii



FA
b654_FM.qxd  2/13/2009  11:57 AM  Page viii

This page intentionally left blankThis page intentionally left blank



ix

FA

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my family,
particularly my wife, Jocelyn Tho and my children, Joy Ng and
Grace Ng, for their support in the course of this work. I would
also like to thank my organization, DSO National Laboratories,
for giving me the opportunity to take a year of sabbatical leave to
do research in cognitive science area, which has led to the publi-
cation of this book; Prof. Steven Grossberg of the Cognitive and
Neural System (CNS) Department, Boston University (BU), for
hosting me as a visiting scholar during my sabbatical leave; and
Prof. Regina Barzilay of the Computer Science and Artificial
Intelligence laboratory, MIT, for co-hosting me as the affiliated
faculty member. 

I would like to thank the many reviewers who provided valuable
input that help shape this book. First of all I would like to thank
Prof. Steven Grossberg for reviewing Chapter 7 of this book on
“Laminar Computing” and his guidance in a number of discus-
sions; BU/CNS researchers’ and lecturers’ comments and discus-
sions on the various chapters, particularly, Prof. Eric Schwartz for
Chapter 12, Dr. Fazl Arash for part of Chapter 3, Dr. Mark Dranias
for Chapters 5 and 6, Prof. Takeo Watanabe and Dr. Aaron Seitz
for contributing part of Chapter 5 on ‘Visual Perceptual Learning”.
My grateful thanks also to Dr. Rick Born, Harvard Medical School,
for discussion on visual neuron’s experimentation in Chapter 2;
the colleges and professors in MIT’s Department of Brain and

b654_FM.qxd  2/13/2009  11:57 AM  Page ix



Cognitive Sciences (BCS) for their discussion on research work in
cognitive science. These include Prof. James DiCarlo, Prof. Mary
Potter, Prof. Joshua Tenenbaum and Prof. Pawan Sinhu with
whom I have communicated; Dr. Maurizio for sharing his work on
emotional state of the brain in Chapter 5; and Prof. Rosalind Picard
of MIT’s media laboratory, for sharing her thoughts on affective
computing; and Prof. Deb Roy for his work in cognitive machines.

The following courses in BU and MIT are particularly inspiring:
Prof. Eric Schwartz’s Course on Computational Neuroscience
(CN580/CN780); Prof. Ennio Mingolla’s Course on Neural and
Computational Methods of Vision (CN530/CN730); Prof. Marvin
Minsky’s Course on Society of Mind/The Emotion Machine;
Prof. Rosalind Picard’s Course on Autism and Technology; and
Prof. Joshua Tenenbaum’s Course on Computational Cognitive
Science. 

I am also most grateful to my friends and colleagues who directed
me to many relevant discussions, workshops, seminars and web-
sites. DSO colleagues working in computational cognitive systems
(Dr. Teow Loo Nin, Ng Khin Hua, Tan Kheng Hwee, Chan Rui
Zhong and Kelvin Goh) and the Nanyang Technological University
collaborator Prof. Tan Ah Hwee for discussions and reviews.

My special thanks to Dr. Simon Overduin (MIT/BCS and
BU/CNS) and Dr. Ostrovsky Yuri (MIT/BCS) who reviewed and
provided input for most chapters of the book. I am most grateful
to the editorial staff and artist from World Scientific Publishing
who provided all the support and help in the course of my writing
this book.

“It is good thing to give thanks unto the Lord…” (Psalm 92:1)

x Brain-Mind Machinery

FA
b654_FM.qxd  2/13/2009  11:57 AM  Page x



xi

FA

CONTENTS

Preface v

Acknowledgement ix

Chapter 1: The Brain: The Center of Attraction 1

Chapter 2: Neurons and Synapses: The Key to Memory 18
and Learning

Chapter 3: The Cortex Architecture: The Building Block 37
of Intelligence

Chapter 4: Many Faces of Memories — Investigating 62
the Human Multiple Memory Systems

Chapter 5: Learning Like a Human: How Does 81
Learning Take Place in Our Brain?

Chapter 6: Emotion and Cognition 104

Chapter 7: Laminar Computing 129

Chapter 8: Probabilistic Computing: The Bayesian Mind 153

Chapter 9: Thinking Machine: Higher Theories of Brain 163
and Commonsense Knowledge Generation

Chapter 10: Modeling the Entire Brain: Biologically 182
Inspired Cognitive Architectures

b654_FM.qxd  2/13/2009  11:57 AM  Page xi



Chapter 11: Are We There? What Can the Computer 210
Do Today and Tomorrow?

Chapter 12: Brain — A Forest Not Totally Explored: 222
What are Some of the Issues?

Chapter 13: Understanding the Brain to Build Intelligent 244
Systems

Chapter 14: Conclusions — The Mind That Matters 255

Glossary 263

Notes 275

References 333

Index 365

xii Brain-Mind Machinery

FA
b654_FM.qxd  2/13/2009  11:57 AM  Page xii



C h a p t e r 1
THE BRAIN: THE CENTER
OF ATTRACTION

“Brain is the most complex living structure known in the universe ...
The brain is what makes us human.” Society of Neuroscience, Brain
Facts 2006.

The brain has a size of about 1500 cubic meters and a surface
with many folds (gyri or ridge on the cortex) and fissures

(sulci or depression on the surface). It is divided into a left and a
right hemisphere. The two hemispheres are connected by the cor-
pus callosum, a large network of nerve fibers, which acts as a com-
munication channel between the right and left hemispheres
(Myers and Sperry, 1958; Sperry et al., 1969). The larger part of
both hemispheres is the cerebral cortex (Fig. 1.1), and this make
up about 85% of the human brain’s weight. In the inner part of
the cerebral cortex is a system of nerve cells called the limbic sys-
tem, and this connects to the brain stem and the other parts of the
nervous system.

The top layer of the cerebral cortex is known as the neocortex
(“neo” in Latin means “new”, hence, neocortex means new cortex).
The neocortex is about 1 mm thick (Schwartz et al., 1988) and is
made up of six layers. It constitutes about 90% of cerebral cortex
and is commonly known as the seat of human intelligence. Humans
have the largest neocortex as compared with other animals.

1
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The average human brain has billions of nerve cells or neurons.
Most literature gives this figure as approximately 100 billion. The
latest finding from Rabinowicz and her collegues indicates that the
average human brain has about 23 billion neurons (Rabinowicz
et al., 2002). Each of the neurons has about 1000 to 10 000
synapses, and has roughly 100 million meters of wiring. All this is
packed into our brain, which if unfolded, will give a structure the
size and thickness of what is like a formal dinner napkin (Webster’s
Medical Dictionary).

The whole human body has about 100 watts of energy and the
brain takes up about one fifth of this energy, i.e. about 20 watts.
Assuming 50% of this energy is dissipated, that leaves the brain with
10 watts of energy. With 10 watts and about 23 billion cells, the
brain is able to function extremely efficiently and effectively in pro-
cessing information – and this is what makes us intelligent beings.
How does the brain do this and what are the mechanisms involved?

This chapter begins by presenting the wonder of the brain’s
organization, its early state of innate regionalization, and special-
ization during the development and growing process. How does
the brain wire itself, and what are the estimated computational
power and capacity of the brain?

How is the Brain Organized? Specificity Implies
Regionalization and Specialization
Genes appear to “encapsulate a program”, which directs and spec-
ifies how and where the early nerve fibers (or axons) grow, are
connected, and how the migration of neurons from their birth-
place to a final destination should take place in the development
of the brain. The first set of tracts in early brain development
forms the basic “scaffolds” on which most later tracts form (Easter
et al., 1993; Wilson et al., 1990). The specific tract formation or
basis of cellular structure suggests the early brain regionalization
and development of specific functional areas (Moore et al., 1996).
The different regions of the brain and their functions are largely
mapped.

2 Brain-Mind Machinery
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The cerebral cortex consists of four lobes or regions, namely,
the frontal lobe, parietal lobe, temporal lobe, and occipital lobe
(Fig. 1.1). The cerebral cortex occupies the largest part of the
human brain, followed by the cerebellum. 

The brain stem (Fig. 1.2) is basically made up of the midbrain,
pons, and medulla. The brain stem is the lower extension of the
brain where it connects to the spinal cord and the rest of the nerv-
ous system. It controls vital life functions such as breathing, heart-
beat, and blood pressure. 

The corpus callosum connects the right and left cerebral hemi-
spheres of the brain and is made of millions of nerve fibers. The
fibers are the axons of the neurons from the cerebral cortex. The
thalamus is the center of the brain, where it connects to the rest of
the nervous system via the brain stem. 

The two hemispheres (left and right) are each divided into four
regions or lobes (Fig. 1.1). Roughly speaking, the four lobes
perform the following role:

• Frontal lobe (behind the forehead): is associated with move-
ment control and high-level cognitive tasks, such as speaking
(the control of many muscles used for speech), planning,

The Brain: The Center of Attraction 3
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Fig. 1.1. The four major parts of the brain, namely, the cerebral cortex, cere-
bellum, limbic system, and brain stem.
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problem solving, reasoning, the ability to make judgments,
and moral behavior.

• Parietal lobe (top and rear): is associated with the processing of
somatosensory information, i.e. sensing and perception of sen-
sory stimuli from the skin (touch information) and internal
organs, as well as mathematical and spatial reasoning.

• Occipital lobe (back): is largely for the processing of visual infor-
mation. The primary visual cortex is at the occipital lobe.

• Temporal lobe (just above ears): is associated with the processing
of auditory information (at the primary auditory cortex), speech
perception, and object recognition. Various parts in the tempo-
ral lobe such as the hippocampus are associated with aspects of
memory and spatial navigation; the amygdala is associated with
emotional and affective behavior.

Many theories have sprung up that explain the differences between
left and right hemisphere functioning. For example, according to
some theories, the right hemisphere is more closely associated with

4 Brain-Mind Machinery
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Fig. 1.2. The inner structure of the brain. (Picture adapted from http://www.
ohsu.edu/thinkfirst/brain.html.)
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perceptual tasks (object recognition such as face, picture, etc), pro-
cessing of spatial information, parallel processing, creativity, and
emotions. Pilots are said to be more right-brained people. In con-
trast, the left hemisphere is closely associated with speech, reading,
language (including sign language), arithmetic, calculation, logic,
sequential processing, and the ability to analyze. Writers are said to
be more left-brained people.

Increasing research on split-braina patients shows that the two
hemispheres have different styles of information processing. It is
noted that the left is more bias towards details, while the right leans
more towards a holistic outlook. There is also some evidence that
the right hemisphere is more specialized for negative emotions, and
the left, more for positive ones. 

Figure 1.3 shows a more detailed diagram of the brain’s various
parts. The spinal cord connects the brain stem (the medulla is part
of the brain stem) to the rest of the body’s nervous system. Further
up the brain stem is the limbic system, which consists of the thala-
mus, hypothalamus, amygdala, olfactory bulb, hippocampus, and
basal ganglia. The limbic system, which plays a vital role in human
emotional responses, is linked to the cerebral cortex. More details
of the limbic system diagram can be found in Chapter 6. The major
part of the cerebral cortex consists of the visual cortex (which
receives information from the eye via lateral geniculate nucleus
(LGN) to the primary visual cortex (V1)), the auditory cortex
(which receives information from the ear), the somatosensory cor-
tex (concerned with receiving general sensations); the motor cor-
tex, and the prefrontal cortex. The prefrontal cortex is important
for higher cognitive function such as mental processes for reason-
ing, problem solving, and decision-making. The motor cortex,
which includes the primary motor cortex (M1) and secondary cor-
tices, are importance for the planning, control, and execution of

The Brain: The Center of Attraction 5
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a This is a term to describe the result when the corpus callosum con-
necting the two halves of the brain is severed to some degree.
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voluntary motor functions. Note that the diagram and the various
areas are not drawn to proportion.

Visual processing constitutes at least 50% of the brain process-
ing and is one of the critical functions of the brain. Figure 1.4
shows the visual processing pathway from the retina through the
lateral geniculate nucleus (LGN) to the visual cortex via the optic
nerve. The visual cortex includes the primary visual cortex (also
known as the striate cortex, V1) and the extrastriate cortices (V2,
V3, V4, and V5).

The first layer of the visual cortex is V1 the striate cortex (or pri-
mary visual cortex). The subsequent layers include V2, V3, V4, and
V5. The occipital lobes cover V1 to V5. The visual area V5 is com-
monly known as MT (middle temporal), and it plays a major role
in the perception of movement.

6 Brain-Mind Machinery
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Fig. 1.3. A detailed diagram of the brain’s various parts.
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The visual cortex has two functionally specialized processing path-
ways, namely, the occipitotemporal pathway (also known as the ven-
tral stream or “what” stream) and the occipitopariental pathway (also
known as the dorsal stream or “where” stream). The occipitotempo-
ral pathway is crucial for object identification while the occipitopari-
ental pathway is crucial for appreciating the spatial relationships
among objects (Ungerleider and Haxby, 1994). Hence, a patient who
has a lesion on the occipitopariental pathway (but with the occipi-
totemporal pathway functioning normally), if presented with a pencil
horizontally, will recognize that it is a pencil, but will not be able to
describe the orientation or grasp the pencil in the correct orientation.

Other examples of specific functional areas are:

• The hippocampus (Fig. 1.3), located on the temporal lobe of
the brain, plays an important role in the formation of declara-
tive memory and spatial navigation. Hence, if one has a lesion
on the hippocampus, one may not be able to remember a new
event that has just happened a few minutes ago. He may annoy
everyone by forgetting what was discussed just a moment ago.

The Brain: The Center of Attraction 7
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Fig. 1.4. Diagram showing the visual pathway from the retina to the visual
cortex via the optic nerve. (Picture from http://thebrain.mcgill.ca)
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• The cerebellum (Fig. 1.3), located at the posterior bottom part
of the brain, is essential to the control of movement of the
human body. It acts as a reflex center for the precise mainte-
nance of equilibrium and also regulates and coordinates posture
and all motor activity. Losing this brain region may result in
poor coordination of body movement. 

• The basal ganglia (Fig. 1.3), located at the base of the cerebral
cortex, are important for movement selection. The basal ganglia
are interconnected with the cortex and thalamus and are associ-
ated with muscle-driven motor movements of the body. Clinical
data has shown that lesions in the basal ganglia led to movement
disorder ranging from the inability to initiate a movement to
inability to suppress involuntary movements and causes
Parkinson’s and Huntington’s diseases.

The basal ganglia and cerebellum are large collections of
nuclei that modify movement on a minute-to-minute basis. The
motor cortex (Fig. 1.3) sends information to both the basal
ganglia and cerebellum, and both structures send information
right back to the cortex via the thalamus. (Remember, to get to
the cortex, you must go through the thalamus.) The output of
the cerebellum is excitatory, while that of the basal ganglia is
inhibitory. The balance between these two systems allows for
smooth, coordinated movements, and a disturbance in either
system will show up as movement disorders. 

• The amygdale (Fig. 1.3), located deep within the temporal
lobes, is involved in processing human emotion. Experiments
have shown that lesions of the amygdala in humans affect emo-
tion, such as the abolishment of fear conditioning (Armony,
2007). Hence, if a patient has the amygdale damaged, he may
not be fearful if a poisonous snake is placed in front of him. 

• The thalamus (Fig. 1.3), located at the top of the brain stem,
acts both as the central control, where many functions are
linked, and as a relay to the cortex, i.e. it relays information to
and from the cortex. Many sensory functions are linked to the
thalamus, and hence, one cannot imagine what will happen if
the thalamus is damaged. 

8 Brain-Mind Machinery
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• The superior colliculus (Fig. 1.3), located just below the thala-
mus, is responsible for the generation of saccadic eye move-
ments and eye-head coordination.

From the broad study of the brain, in some general sense, we can
conclude that the brain is divided into functional regions. Each
region performs specific tasks and is specialized; this indicates the
specific spatial representation of the brain. There is strong asso-
ciation and interconnection between the different regions to
make the system “operate” as a whole. 

How localized is the function in a region is a debatable issue.
Some functions are found to be pretty localized, e.g. the fusiform
face area (FFA) in the human extrastriate cortex is found to be crit-
ical for human face processing, and is relatively localized and very
specific for human face recognition (Kanwisher et al., 1997). The
parahippocampal place area (PPA) and retrosplenial cortex (RSC)
are also found to be more specialized for the identification of
objects (such as a house), spatial structure, and location in a visual
scene. (Epstein et al., 2003; Epstein and Higgins, 2006). Hence, if
a patient has a lesion on the FFA (Fig. 1.5), he may not be able to
recognize faces, such as his wife or mother, and if his PPA and RSC
are damaged, he may not be able to recognize his way home.
However, there are debates on how locally specific these areasb are.
For example, (Haxby et al., 2000) Haxby and colleagues reported
that the FFA may not be as localized as it seems. However, more
recent studies have increasingly supported the hypothesis that these
are very localized and specific functional areas. 

Nevertheless, most scientists’ believe that many functions
remain more distributed than localized. “Distributed” here refers
to a set of neurons (currently I do not have good reference to sup-
port how many thousands of neurons) are involved either within

The Brain: The Center of Attraction 9
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b For instance, while the FFA may be inevitably active in facial percep-
tion, the function of facial perception clearly involves activation of
many cortical and sub-cortical areas, initially driven in a sequential fash-
ion by visual input.
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and/or across the regions and areas in representing a specific object
or concept. This is to say that the functions are mediated by dis-
tributed neural systems in the brain. The theory that supports this
is known as the “Distributed Representation Theory”. However,
how extensive the distribution is within the regions and across the
multiple regions remains fuzzy for some functions. On the other
hand, the “Grandmother Cell Theory” is an extreme case of sup-
porting a very specialized neuron that represent a specific concept
or object. For example, in the “Grandmother Cell Theory”, a single
specific neuron is used to recognize the face of my grandmother,
and in the “Distributed Representation Theory”, a distributed
group of neurons are needed to recognize the face of my grand-
mother. Both the “Distributed Representation Theory” and
“Grandmother Cell Theory” are further discussed in Chapter 2.

Other interesting research issues on regionalization and special-
ization in the brain include:

• How does each region in the brain actually work and develop?
• Why are some essential functions such as facial recognition very

specifically localized in the brain while others are not? 
• To what extent can the specialized regions reorganize in the

event of injury to the brain?

10 Brain-Mind Machinery
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Fig. 1.5. Diagram showing the hippocampal gyrus and the fusiform gyrus, where
the parahippocampal place area and fusiform face area are located respectively.
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• How interdependent are some of the specialized regions with
other regions in the brain? 

• Which of these regions are uniquely human and which can also
be found in other primates?

How Does the Brain Wire Itself?
MIT Professor Sur and his team have tested and demonstrated that
the visual signals can be rewired to the auditory cortex. They
demonstrated these using ferrets in their early development stage
of life. The result shows that orientation selectivity appeared in the
rewired auditory cortex, statistically identical to the visual cortex.
The ferrets had been successfully trained to perform vision tasks
using the auditory cortex (Sharma et al., 2000). 

Biologists have shown that a baby ferret’s brain is one of the
least developed among other animals during birth (i.e. ferret brains
are immature at birth and undergo a late form of development).
Hence, Sur’s team chose baby ferrets to demonstrate that visual
signals can be rewired to the auditory cortex. This experimental

The Brain: The Center of Attraction 11
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Fig. 1.6. A picture of the ferret.
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discovery was highlighted several times in the news in 2000 (see
also http://web.mit.edu/newsoffice/2000/neuromit.html). Later
experiments also suggest that the brain is so adaptable that all the
five senses can be rewired (Abrams, 2003). This adaptability of the
brain is also known as plasticity.

Sur’s latest research finding indicates that although a rewired
auditory cortex takes on many properties of the visual cortex, it
retains some of the original auditory network properties (Majewska
and Sur, 2006). Rewiring appears not to alter the structure of thala-
mocortical arbors and the intracotical connection. Majewska and Sur
indicated that the rewired auditory cortex is not as regular and precise
as the visual cortex. Orientation maps in a rewired auditory cortex
show less periodicity and larger orientation domains than those in the
visual cortex. Sur in his article also added that on a synaptic level,
spine dynamics in a rewired auditory cortex are more similar to those
observed in a normal auditory cortex than those in the visual cortex,
where spines are more stable. (Spine dynamics means the change in
density of the dendritic spine. See notes on Chapter 1 for details.)
These findings argue that although activity has a powerful ability to
remodel cortical connection, it probably acts in concert with a scaf-
fold of connectivity laid down by intrinsic cues (intrinsic cues mean
stimulus or actions coming from in-born (nature) or built-in).

12 Brain-Mind Machinery
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Fig. 1.7. Left picture shows a normal wired cortex; Right picture shows a rewired
cortex. (Diagrams modified from paper (Sur, 2001))
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The ability of the brain to rewire itself suggests that:

• Biologically neural cortical columns in different sensory are, in
general, functionally similar in their neural cell type and laminar
structure.

• There exist adaptive or learning mechanisms across the cor-
tex. The ability to learn is due to the plasticity of the brain. The
brain is plastic in the sense that it can reorganize the neural
pathway based on new stimuli or experiences. 

With exposure, experiences, or activities from different modali-
ties (sensory systems), the neural cortical columns learn and
develop different functional mechanisms and properties.

However, the brain in early development starts to partition and
form specific pathways for specific functions and regions. Although
the pathways can be rewired for other modalities input, it is not
as efficient due to the early stage of the pathway development and
properties. Genes probably dictate the overall framework or archi-
tecture of the brain and the basis columar organization structure of
the neocortex. The details of the columar organization are “filled-
in” by the environment or external stimuli. To illustrate further,
genes are the chief architects that decide all the regions and form
the main connections of the major pathways. This is analogous to
a building in which the chief architect decides all the main struc-
tures and compartments of the building. The details are filled-in by
the tenants who will occupy the building. In the case of a building
designed for, say, shopping purposes but is then put to residential
use, it will still work but may not be optimal in its usage. 

What is the “computational power” of the brain?
There are several approaches in estimating the “computational
power” of the brain. Before we proceed further, I would like to
note that using the term “computational power” to describe the
brain’s capability of processing information may not be the best
approach, since the brain is not entirely “a computing machine”
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per se and does not crunch numbers. However, due to the lack of a
better terminology and also as the main quest of the brain’s mod-
eling technique in this discussion uses the computer, we will use
the computer science terminology of “computational power” to
measure the brain with respect to operation cycles per second.

Three possible approaches in measuring the brain’s “computa-
tional power” are:

• The first approach is to count the number of synapses, guess
their speed of operation, and determine the number of synapse
operations per second. There are roughly 1015 synapses operat-
ing at about 10 impulses/second, giving roughly 1016 synapse
operations per second (Kandel, 1985).

• The second approach is to estimate the computational power of
the retina and multiply it by their brain-to-retina size ratio.
Assuming that a typical ganglion cell in the retina performs
about 100 analog additions 100 times per second, then compu-
tation of the axonal output of each ganglion cell requires about
104 analog additions per second. Given that there are about 106

axons in the optic nerve, a total of 1010 analog additions per sec-
ond is arrived at. There are about 108 optic nerve cells in the
retina and between 1010 and 1012 nerve cells in the brain, so the
brain is roughly 100 to 10 000 times larger than the retina.
Using this approach, the brain is estimated to be able to perform
about 1012 to 1014 operations per second (Moravec, 1998b).

• The third approach is to divide the total useful energy used by
the brain per second by the amount of energy used for each
basic operation to give the maximum number of operations per
second. A brain has about 20 watts. Given that about half of this
energy is lost through dissipation, the effective utilization is
about 10 watt of energy. Using 10 watts as calculation, we can
perform about 1015 operations per second (Merkle, 1989).

From these three approaches, it is concluded that the estimated
computational power of the human brain is about 1013 to 1016

14 Brain-Mind Machinery
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operations per second or 10 million to 10 000 million MIPS (this
is about 10 teraflopsc to 10 petaflops). Note: there are about
1011–1012 neurons in the brain communicating with each other
over about 1014–1015 synapses. If the brain capacity is measured by
the number of synapses, then 1014 synapses will be 100 terabytes.
This is assuming 1 synapse = 1 byte.

Using this information (operations per second/memory capac-
ity), many scientists then predict how the computer will match the
human brain. For example:

“At the present rate, computers suitable for humanlike robots will
appear in the 2020s.” (Moravec, 1998a,b)

“The memory capacity of the human brain is about 100 trillion
synapse strengths, which we can estimate at about a million billion bits.
…Five billion bits per $1k in 1998 will double 17 times by 2023, which
is about a million billion bits for $1k in 2023.” (Kurzweil, 1999) 

“It is estimated that the storage size of a human adult brain is
approximately 1014 bytes. …If the disk price continues to drop at this
rate, then the hard disk of a human brain size could be purchased
with $6000 by 2008; i.e. many desktop computers could afford human
brain size storage at that time.” (Weng, Aug 2006)

Assuming the computation power of the computer continues to
accelerate (as per Moore’s law), and within economic scales, we
arrive at a projection based on the current growth trend in compu-
tational power of computer: within 20 years, we will have sufficient
computational power, at a relatively affordable cost, to perform the
number of operations (about 10 teraflops to 10 petaflops) that is
in some sense “equivalent” to the brain. Note that the current

The Brain: The Center of Attraction 15

FA

c Flops is an acronym meaning floating point operations per second.
One teraflop is equal to about 1012 flops and one petaflop is equal to
about 1015 flops.
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supercomputers, such as the IBM BlueGene/L (performance at
259 teraflops — winner of the HPC challenges in November 2006)
and MDGRAPE-3 (developed by the RIKEN research institute and
cited in their institute’s report, dated June 2006, to perform at 1
petaflops), can do the job. The IBM Blue Brain project used
BlueGene to do research on modeling the neocortex and attempted
to prove that the brain can be simulated at the cellular level. The
IBM Blue Brain project started in 2005.

The storage capacity of the brain, if based on 100 terabytes, is
already achievable. Hence, the more important issue is not speed or
capacity, but how (much) we can model after the brain to build
cognitively intelligent systems.

Summary
The brain is organized into regions, and each of the regions has
a specialized function: Each of these regions is heavily related to
one another and scientists have not fully understood how the dif-
ferent regions are interconnected. Genes have a strong influence on
the fundamental design of the columnar organization and structure
of the brain. The details of the columnar organization and struc-
ture are “filled-in” by the environment or external stimuli. In this
way, the brain is very adaptable to its environment and can be nur-
tured. Genes also influence the many specific pathways and their
properties. This fixed wiring influenced by genes forms the natured

here refers to the natural aspects versus the nature aspect part of
the brain. The brain machinery gives rise to the mind and forms
the basis of our behaviors.

In our quest to reverse engineer the brain to build intelligent
systems, it would be important to understand:

• How the many neurons or cells store information.
• What the essential regions and their functions are.
• How the regions are structurally organized.
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d Nature here refers to the natural aspect versus the nurture aspect.
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• How the regions are interconnected and associated with one
another.

• What the essential pathways, network and their properties are.
• How the different regions in the brain orchestrate together as a

complete system.
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C h a p t e r 2
NEURONS AND SYNAPSES:
THE KEY TO MEMORY AND
LEARNING

“…memories might be stored in the connections between nerve cells.”
Santiago Ramon y Cajal’s 1894 lecture.

In 1894, Santiago Ramon y Cajal (Fig. 2.1) first predicted that
memories might be stored in the synapses. The synapse is the

nerve cell’s junction where cells are interconnected. Today, the
synapse is understood to be the key basis for learning and memory.

Fig. 2.1. Santiago Ramon y Cajal (1852–1934). (Picture from http://nobel-
prize.org/nobel_prizes/medicine/laureates/1906/)
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In 1906, Santiago Ramon y Cajal and Camillo Golgi won the
Nobel Prize together, in recognition of their work on the structure
of the nervous system.

A few years earlier, Heinrich Wilhelm Gottfried von Waldeyer
Hartz (Fig. 2.2), a German anatomist, coined the term “neuron”
to describe the nerve cell. In 1891, Waldeyer Hartx was honored
in the neurosciences as the founder of the so-called “neuron the-
ory” to describe the basic structural unit of the nervous system. 

The brain is a massive neural network of neurons (or nerve cells)
that communicate with one another via synapses (cell junctions or
nerve cell connections at the end of the terminal button, which is
a junction gap). Synapses are viewed as so essential in the make-up
of our brain that one even quoted: “You are your synapses. They are
who you are.” Joseph LeDoux, 2002 (in Synaptic Self ).

As you read this chapter, your synapses should change as new
information is stimulating you. In 2008, the word “synapse” turned
111 years old. The word synapse was first used in a book called, A
Textbook of Physiology, part three: The Central Nervous System, by
Michael Foster and assisted by Charles S. Sherrington, in 1897.

It is commonly cited that Charles S. Sherrington coined the
term “synapse”. The word “synapse” comes from the Greek word,
meaning “to clasp together”.

Fig. 2.2. Heinrich Wilhelm Gottfried von Waldeyer Hartz (1836–1921).
(Picture from http://en.wikipedia.org/wiki/Heinrich_Wilhelm_Gottfried_von_
Waldeyer-Hartz)
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This chapter presents the following:

• How do neurons communicate and affect our learning and
memory?

� Neurons have specialized functions.
� How is information transmitted and stored?
� How is information represented? 
� How does the neuron’s receptive field affect our visual scene?

• How does synaptic plasticity give rise to learning and memory?

� Synaptic plasticity.
� Synaptic spike and normalization.

• Modeling the neurons and synapses

� Historical background of artificial neural networks.
� Modeling at the cellular level.

How Do Neurons Communicate and Affect
Our Learning and Memory?
The fundamental building blocks of the nervous system are the
neurons.

Fig. 2.3. Charles S. Sherrington (1857–1952). (Picture from http://nobel-
prize.org/nobel_prizes/medicine/laureates/1932/sherrington-bio.html.)
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The neuron (Fig. 2.4) consists of a cell body called the soma,
which contains the nucleus for sustaining the life of the cell, den-
drites that serve to receive information from other neurons (via
synapses), and an axon that carries information away from the soma
to the terminal buttons where the information is transmitted to
other neurons. At the end of the terminal buttons are gaps known
as synapses. Neurotransmitters are secreted from the terminal but-
tons. Note that neurotransmitters are specialized chemicals
secreted from terminal buttons; there are more than 30 different
neurotransmitters. These neurotransmitters pass into specific
receptor sites on the dendrite and enter the cell body. 

The axon, also known as the fiber, is surrounded by fatty tissues,
which serve as an insulator. These fatty tissues increase the speed of
neural impulse transmission. The neural impulse transmission
speed varies, but in general it is in the range of 2 to 200 mph or of
the order of milliseconds (1000th of a second). Note that the cur-
rent speed of computers of a single pulse is of the order of nanosec-
onds (one billionth of a second).

Neurons have specialized functions. Research on human and
animal visual systems shows that the visual cortex has many spe-
cialized neurons.a For example, some neurons respond to edges,

Fig. 2.4. Pictures showing the neurons, dendrites, soma, axon, and synapses.
(Picture from MIT/BCS)

a Note that the specialized neurons may be arising due to their connec-
tions in the network and the stimuli they are exposed to early in life.
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others for filling in, and yet others respond only to certain direc-
tions, while some others are sensitive to color contrast, and bright
or dark patterns. By pooling all the different responses from the
neuron population, the brain is able to recognize objects, see
shapes, and compare the balance between different degrees of
bright and dark patterns. To illustrate this further the following
illusions are shown (Figs. 2.5, 2.6 and 2.7).

Figure 2.5 shows that the straight edges of pac-man features
appear to extend beyond their endpoints by extrapolation, where

Fig. 2.5. A white square illusion contour formed by four pac-mans. The white
square is formed due to edge extension and the filling-in effect of our visual process.

Fig. 2.6. The illusion of objects rotating. We perceive the rotation due to the
firing up of the visual cortex neurons responsible for specific directions of motion
when stimulated by the different intensities of colors and shapes of the picture.
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they meet with other extended edges coming from the opposite
direction to form the illusory contour. The four contours in turn
suggest the whole square as an enclosed figure. The contrast
of this white illusory square against the black circles appears to
be brighter than the white background against which it is seen,
and this perceived brightness is observed to pervade every point
across the whole illusory surface uniformly. (Grossberg and
Mingolla, 1985) have modeled this perceptual computation as
a spatial diffusion of color experience from the edges across
which the dark/light contrast signal originates, filling in the entire
illusory surface.

Figure 2.6 shows the illusion where the human eye perceives that
the objects are rotating. The effect is due to the fact that in the
visual cortex, there are neurons that respond to specific directions of
motion. Why are these neurons fired up? One likely cause is that the
different intensities of colors and shapes at the different regions are
equiluminous, and this causes a mismatch in the correspondence
periphery, which causes the motion neurons to respond and yield a
perception of motion. Hence, the motion neurons are fired up and

Fig. 2.7. The illusion of color contrast. (Picture from http://www.eyetricks.
com/illusions.htm.) Can you count the number of black dots? Black dots are seen
due to inhibition and excitation of neurons responsible for receiving light.
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the brain “sees” the objects “rotating”. Another example is when a
person looks at an object moving downward, such as a waterfall, and
that person’s downward receptors (sensory neuron that responds to
this scene) are in action. If he stares at the downward motion long
enough for those cells to become fatigued and then looks at a sta-
tionary object, like a grassy hill, the grass will appear to be moving
upwards. The upward receptors compensate for the fatigue of the
downward receptors. This phenomenon is known as an after affect.

Figure 2.7 illustrates how contrast affects color perception. This
is known as Hermann’s Grid. Can you count the number of black
dots? The areas at the corners of the black boxes appear gray. This
happens because of something called lateral inhibition. In the
retina, when some light-receiving cells are activated others around
them shut down. You will notice that where the white lines inter-
sect, there is black on four sides, whereas the lines themselves are
surrounded by black on only two sides. When you look at the inter-
sections, the cells in the retina are surrounded on four sides by
other cells that are also receiving light. They are therefore more
inhibited than the cells focused on the lines. It is their inhibition
that causes the dark spots to appear.

How is information transmitted and stored? Synapses allow neu-
rons to communicate with one another through axons and den-
drites. There are generally two forms of synapses, namely,
electrical and chemical. Electrical synapses provide for rapid trans-
mission of information as electric current passes from one neuron
to the next. In contrast, chemical synapses involve the transmis-
sion of electrical signals arriving at the axon terminal of one neu-
ron via the release of a chemical messenger such as a
neurotransmitter or neuromodulator.

Figure 2.8 shows how information flows between two neurons
via the synapse. The two interacting neurons are the presynaptic
neuron from the axon terminal and the postsynaptic neuron from
the dendrite spine. Action potential is the electrical signals that
travel down the axon carrying information from the neuron’s cell
body to the axon terminal. Action potential is generated by ions, which
are charged particles. The most common ions are potassium (K+),
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sodium (N+), calcium (Ca2+), and chloride (Cl−). Ions cross the
membrane of a neuron through the ion channels. However, ion
channels will only open for ions to flow through when a specific
neurotransmitter binds with the receptor. Once the neurotransmit-
ter binds with the receptor, the flow of ions through the open ion
channels produces small electrical changes in the membrane of the
postsynaptic neuron. These small electrical signals are called synap-
tic potentials (or sometimes also known as synaptic strength). The
postsynaptic neuron will fire an action potential (sometime known
as an excitatory effect) when and only when the sum of all its
synaptic potentials equals or exceeds its threshold. The sum of the
synaptic potentials is typically contributed by many neurons as each
neuron typically forms synapses with many other neurons. 

On the other hand, a presynaptic neuron may release a neuro-
transmitter that inhibits or reduces the synaptic potential in the
postsynaptic neuron, i.e. decreasing its excitability, and therefore,
decreasing the neuron’s likelihood to fire an action potential.
Excitatory (promoting an action potential) and inhibitory (reducing
the likelihood of an action potential) effects are due to the type

Fig. 2.8. The interaction between the presynaptic neuron and postsynaptic
neuron.
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of neurotransmitter released, as well as the receptor at the post-
synaptic neuron. The main inhibitory neurotransmitter, GABA,
has an inhibitory effect in mammalian systems. Note that nearly
80% of the neurons in the brain are performing excitatory effects
and the remaining 20% are involved in inhibitory activities, i.e.
there are many more excitatory neurotransmitters than inhibitory
neurotransmitters.

The vesicles store the neurotransmitters (Fig. 2.8). Vesicles are
produced in the cell body. An action potential causes a vesicle to
migrate to the membrane, bind to it, and then release its neuro-
transmitter contents to the postsynaptic neurons. Neurotransmitters
are chemical substances released from a neuron at a synapse, and
are used to relay, amplify, and modulate electrical signals between a
neuron and other neurons. A neurotransmitter conveys informa-
tion between two neurons, while neuromodulators convey infor-
mation to a region of neurons (or group of neurons). There are
many different types of neurotransmitters and neuromodulators,
corresponding with different types of receptors. A receptor is a pro-
tein on the cell membrane that binds to a specific molecule, such
as a neurotransmitter, hormone, or other substance, and initiates
the cellular response of that specific molecule. More information of
the different types of neurotransmitters, neuromodulators, and
receptors can be found in (Alexander and Peters, 2000) or at
SenseLab (http://senselab.med.yale.edu/). The SenseLab project
is managed by Professor Good Shepherd from Yale Univeristy for
the construction of databases for receptors and neurons to facilitate
the integration of these multidisciplinary data into computational
models of neurons and neuronal currents.

In summary, the information flow arrives at the axon terminal
as an action potential. This action potential triggers the release of a
neurotransmitter from a vesicle, whereupon the neurotransmitter
binds to a receptor on ion channels, and ions cross the membrane
through open channels. This influx of ions produces a synaptic
potential in the postsynaptic neuron. When the integrated or total
sum of the synaptic potentials exceeds its threshold, the postsynap-
tic neuron will fire an action potential, i.e. the neuron responds or
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conveys information to its connecting neurons and the process
continues. This process and the summing of the synaptic potentials
are also known as the synaptic integration behavior. This synaptic
integration behavior was first discovered by John Carew Eccles
(Fig. 2.9). John was awarded a Nobel Prize for Physiology/Medicine
in 1963.

How is information represented? Information is represented by
patterns of activities encoded in groups of neurons (or over popu-
lations of neurons). This is also known as population encoding.
Understanding the encoding of information in neural population
activity is then important both for grasping the fundamental com-
putations underlying brain function, and for interpreting signals
that may be useful for the control of prosthetic devices (Singer,
2003). The computational issues include: 

• What information is encoded in a population? 
• How does the brain compute using populations?
• When is a population optimal? 

In population encoding, each neuron has a distribution of responses
over some set of inputs, and the responses of many neurons may
be combined to determine some value about the inputs. In one
classic example involving the primary motor cortex, Georgopoulos

Fig. 2.9. John Carew Eccles. (Picture from http://nobelprize.org/nobel_
prizes/medicine/laureates/1963/eccles-bio.html)
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et al. trained monkeys to move a joystick in one of multiple direc-
tions towards a lit LED. Neurons in the primary motor cortex
responded maximally during movements to their preferred direc-
tion, i.e. the direction neurons are trained to respond towards the
lit LED, and the neuron response decreased if the animal made
movements towards directions increasingly different from the pre-
ferred direction (Dayan and Abbott, 2001).

Neuroscientists found that, indeed, some neurons provide bet-
ter information than others, and a population of such expert neu-
rons has an improved signal to noise ratio or information quality.
This means populations of neurons do better than single neurons.
How the specific populations of neurons are assembled is thought
to provide the functional elements of brain activity that execute the
basic operations of information processing (Fingerlkurts et al.,
2004; Fingerlkurts et al., 2005).

The number of neurons in a population is claimed not to be big.
Some neuroscientists believe it to be not more than 100 neurons.
Others believe it can be greater than 100 neurons. But the key
issues is that chunks of information are encoded and stored in small
populations of neurons. Here, a small population of neurons, i.e.
hundreds of neurons, is considered small relative to the billions of
neurons in the brain. 

However, those who believe the “Grandmother Cell Theory”
would say one neuron is sufficient to represent an object at the
top of the highest hierarchy chain of neuron encoding. The
“Grandmother Cell theory”, coined by neurobiologist Jerome
Levtite in the 1950s, hypothesizes that a single neuron is sufficient
to store an object or a concept (including one grandmother’s face).
The latest support on this idea come from the study by a group of
scientists from UCLA, CalTech, and MIT; see article (Quiroga et
al., 2005). Their results suggest an invariant, sparse, and explicit
code, which might be important in the transformation of complex
visual percepts into long-term and more abstract memories.

The opposing theory to the “Grandmother Cell Theory” is
the “Distributed Representation Theory”. The “Distributed
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Representation Theory” is closer to David Hubel and Torsten
Wiesel’s hierarchical concept. In the “Distributed Representation
Theory”, it is thought a set of neurons is involved in representing
a concept or symbol, and in addressing the “binding problem”.
The “Binding problem” refers to how different features from a pic-
ture or concept are put together.

Rick Born, Harvard Medical School, commented in his paper
that the early Stanford University experiments showing that mon-
keys could perform the task in question (an example of a task is to
push a red button when the monkey sees a red object appear) with
a relatively small number of neurons, as compared with the hundred
or thousand neurons one might suspect (Born and Bradley, 2005).
Note: Born also concluded that MT (V5 of visual cortex) is an ideal
place to evaluate models of population decoding. (I had an oppor-
tunity to visit Harvard Medical School, Rick Born’s Lab, on 17 Jan
07. He highlighted that good and accurate brain experimental data
took months and sometimes years to collect and validate. For exam-
ple, training a monkey to do specific tasks would take about 6–9
months, and after implanting the probe, the monitoring and collec-
tion process will depend on the hours the monkey could work.)

How does the neuron’s receptive field affect our visual scene?
The study on the visual system’s receptive field size indicated that
many neurons are needed at a lower visual cortex and fewer neu-
rons are required at a higher visual cortex to recognize a scene.

The term receptive field was coined by Sherrington in relation to
reflex actions and was reintroduced by H. Keffer Hartlineb in 1938.
The receptive field of a neuron, in the visual system, can be defined
as the area on the retina from which discharges of that neuron can
be influenced by light. For example, a record of the activity of one
particular fiber in the optic nerve of a cat shows that that fiber
increases or decreases its rate of firing only when a defined area of
the retina is illuminated. This area is its receptive field. By definition,

b H. Keffer Hartline received the Nobel Prize in 1967 for his work on
the physiology and chemistry of vision.
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illumination outside the field produces no effect at all. The area
itself can be subdivided into distinct regions, some of which act to
produce firing and others to suppress impulse in the cell.

The receptive field of the lower visual cortex is small, i.e.
many neurons are needed to see a visual scene. But at the higher
visual cortex, the receptive field gets larger, i.e. bigger field and
more selective tuning. In V1 and V2, it is just directional, i.e.
line and orientation. As it goes further up the chain the neurons
become more complex and the tuning more selective. When you
see an image or a scene, millions of neurons are activated in the
retina. But as the image or scene is projected up the cortex lay-
ers, it is said that fewer neurons are activated due to the large
receptive field.

Figure 2.10 shows how a line is seen from the lower visual area
(retina) to the primary visual cortex. At the retina, many photore-
ceptors, each with a small receptive field, are arranged in a line. But
at a higher visual area, such as the primary visual cortex (V1),

Fig. 2.10. Illustration of receptive field size from a visual perspective. (Picture
from http://www.brainconnection.com)
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a neuron can combine the input from the lower visual area to a line
selective and orientation-specific receptive field.

How Does Synaptic Plasticity Give Rise
to Learning and Memory?
Neuroscientists’ believe that learning and memory are the result of
long-term changes in synaptic strength, via a mechanism known as
synaptic plasticity. Synaptic strength is the gain of the postsynaptic
cell’s response to a presynaptic input (or potential in the trans-
membrane).

What is synaptic plasticity? Synaptic plasticity is the ability of the
connection between two neurons, i.e. synapse to change in strength
or its potential. Changes in synaptic strength can be short-term and
without permanent structural changes in the neurons themselves,
lasting seconds to minutes — or long-term, known as long-term
potentiation, (LTP), in which repeated or continuous synaptic acti-
vation can result in a second messenger, i.e. another release of neu-
rotransmitter, which initiates protein synthesis in the neuron’s
nucleus, resulting in alteration of the structure of the synapse itself.
The opposing process of LTP is the long-term depression (LTD).

LTP was discovered by Professor Terje Lomo from the
University of Oslo (Norway), in 1966. LTP is also regarded as the
cellular basis for memory.

Hence, long-term memory (LTM) is addressed (@) by long-
term potentiation (LTP) under the “organization” (ORG) of
synaptic plasticity (SY), i.e. LTM@LTP.ORG.SY.c LTP and LTD
are believed to contribute to synaptic plasticity in our brain, provid-
ing the foundation for a highly adaptable nervous system. Synaptic
plasticity leads to the cellular basis of memory and learning.

c Putting in this expression is just for easy remembering and it is not an
email address. Long-term memory (LTM) is addressed (@) by long-
term potentiation (LTP) under the “organization” (ORG) of synap-
tic plasticity (SY).
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Further reading for synaptic plasticity can be found in the notes for
Chapter 2. 

There are several mechanisms that cooperate to achieve synap-
tic plasticity. These include (Gaiarsa et al., 2002; Tashiro et al.,
2000):

• Changes in the amount of neurotransmitter released into a
synapse, and 

• Changes in how effectively cells respond to those neurotransmitters.
• Changes in spine morphology, i.e. production of new spines or

growth of spines in a manner that produces more synaptic contact.

The synaptic plasticity due to LTP and LTD is affected by action
potential. The firing of action potentials is known as spikes. And spike
response with respect to stimulus has a normalization effect. The next
subsection will further discuss what a spike and normalization are.

Spiking and Normalization. The timing between a presynaptic
neuron and postsynaptic neuron in changing the synaptic strength
is observed as a spike. The timing sensitivity of a spike’s duration is
on the order of millisecond. 

There are various spiking patterns (or spike trains) and different
single-spike shapes (for example thin-spike). Note that the speed of
a spike is typically in the duration of millisecond. Figure 2.11 shows
some examples of the spike patterns, namely, regular spiking (con-
stant spike), bursting (neurons that fire in burst), and fast spiking
patterns (fast firing rate). Different spike patterns are observed in

Fig. 2.11. Spike patterns.
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different areas of interneuron connection. The spiking pattern is
important and critical with regards to how information is stored
and how information in different regions is interconnected.
Spiking pattern is currently a research area and cluttered by many
different hypotheses. Until better instruments and techniques are
available to better prove these hypotheses, how spike patterns influ-
ence information storage will remain unknown.

It is known that the number of spikes is fewer and with slower
spike rates for weak stimuli than strong stimuli, i.e. a response to
strong stimulus produce a higher spike rate and a greater number of
spikes. Hence, there is a need for the balance of spike responses with
respect to the stimulus intensity, i.e. some kind of normalization is
needed. However, it is not exactly clear how the normalization takes
place in the cortex. It is certain that normalization happens at a
much slower time scale than spiking, i.e. in seconds rather than
milliseconds. One of the leading mechanisms for normalization is
said to be the shunting inhibition in the cortex. Research work sup-
porting shunting inhibition that led to normalization in the cortex
includes (Albrecht and Geisler, 1991; Heeger, 1992; Borg-Graham
et al., 1998) and (Hirsch et al., 1998). Shunting inhibition includes
synaptic depression at active synapses and intrinsic modulation (nor-
malization) of synaptic currents. (Carandini and Heeger, 1994) pro-
posed that the normalization signal would take the form of a
shunting inhibition driven by the pooled responses of surrounding
neurons of many different preferred orientations and spatial fre-
quencies. And this shunting inhibition, which would thus be orien-
tation independent but increases with stimulus contrast, would
increase the conductance of a cell. The conductance has a normal-
izing effect on the excitatory current of the cell.

However, one cannot dispute that something other than shunt-
ing may take place that somehow balances hyperpolarizing (non-
shunting) inhibition with the excitatory current of the cell.

How is model normalization achieved in the cortex? One of the
approaches is to use the shunting network model. This shunting
network model is proposed by Professor Stephen Grossberg from
Boston University and provides a simple and intuitive way of
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achieving normalization in the cortex. More discussion of this will
be presented in Chapter 7 of this book.

Modeling the Neurons and Synapses
The idea of modeling many neurons in massive parallel connection
was introduced in the 1950s and 1960s under the general field
known as artificial neural networks (ANN). The subsection below
provides a brief history of ANN and how the field has advanced to
its current stage, and highlights the current difficulty encountered
in modeling at the cellular level.

A brief historical background on artificial neural networks
(ANN). In the late 1950s, Frank Rosenblatt began to explore the
functional properties of small networks of neurons, which he called
Perceptrons (Rosenblatt, 1962). Perceptrons works well in many
experiments. But in the 1960s, many mathematicians were skeptical
of Rosenblatt’s conclusions because they were mainly empirically
drawn. Marvin Minsky and Seymour Papert, in 1969, published the
book on Perceptrons that widely determined what Perceptrons can
and cannot do in the mathematical sense. Minsky and Papert’s book
make it clear that Perceptron architectures were much more limited
in what they could accomplish than what Rosenblatt would claim.
As a result, work on Perceptrons and other related neural network
modeling was silent for almost a decade.

In the late 1980s to 1990s, artificial neural networks were hot
topics of research again (more reading can be found in (Ng, 1997)
where an extensive survey was conducted in 1994). The field was
re-ignited by various factors, some of which include: publication of
the books “Parallel Distribution Processing” by Rumelhurt and
McClelland 1986/87 (Rumelhurt and McClelland, 1986a,b)
(Rumelhurt and McClelland, 1987a,b), interest from DARPAd to
re-examine neural information processing capability (DARPA neural

d DARPA stands for Defense Advanced Research Projects Agency.
DARPA is the central research and development organization for the
USA Department of Defence.
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network study), and disappointment faced in traditional AI tech-
niques for performing higher cognitive tasks. In late 1990s, the
field slowed down. This was because most models of the neural
network have shown static learning and could not perform beyond
the promise as claimed. However, research persists with more
accurate models of the neural networks. These include modeling
the detailed synaptic dynamics, neuron interconnection, the path-
way, cortex architecture, neural cortical column structure (more
information of neural cortical column in Chapter 7), excitatory
and inhibitory effect, horizontal interaction, etc. However, diffi-
culties still persist and many adopt a simplified approach to a very
precise and accurate model. To illustrate this difficulty, we will
consider modeling at a cellular level, i.e. modeling of the neurons
and synapses.

Modeling at a cellular level. Modeling the neurons and synapses
with precise accuracy can be very complicated. One example is the
Hodgkin–Huxley cell membrane model. The Hodgkin–Huxley
model, proposed by Alan Lloyd Hodgkin and Andrew Huxley in
1952, represents the biophysical characteristics of the cell mem-
branes and describes how action potentials in neurons are initiated
and propagated. Despite being a biophysically accurate model, it is
computationally prohibitive for simulating many neurons in real
time, and many parameters need to be precisely determined from
the real biological neurons. 

Other computationally effective models based on neuron
and synapses behaviors are available, such as the integrate-and-
fire model and spiking model. However, these are typically
simplified models of neurons. Many models were proposed
to produce so-called realistic spiking and bursting dynamics
exhibited by cortical neurons. One of these models is the sim-
ple spiking model proposal by (Izhikevich, 2003). Izhikevich
claimed that the simple spiking model provides rich spiking and
bursting dynamics. The details of the Hogkin-Huxley equation
and the simple spiking model are presented in the notes on
Chapter 2.
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Summary
Neurons communicate with one another through axons and
dendrites via the synapse. At the synapses, information is passed
from one neuron’s axon to the next neuron’s dendrites.
Throughout our entire life, the brain responds to experiences
by adjusting the synaptic strength and by changing the physical
pattern of synaptic connections between neurons. Thus, infor-
mation can be stored by the nervous system in the form of
altered structures of the synapses, and/or by the formation of new
synapses and the elimination of old ones. A permanent change
in synaptic strength, which leads to long-term retention of infor-
mation in memory, is due to the long-term potentiation (LTP).
The opposing process is long-term depression (LTD). Both the
LTP and LTD influence how we learn and store information.

The firing of action potentials is known as spikes. The number
of spikes and the spike rate determine the intensity of the stimulus.
It is generally believe that normalization takes place in the cortex
to avoid neuron saturation.

The number of neurons involved in storing specific information
is probably smalle at the cortex. The debate on whether a single
neuron or a large set of neurons for specific information storage
will become clear only when better measuring instruments can be
used to perform the experiment. 

Modeling of neurons using a biologically accurate model, such
as the Hodgkin–Huxley cell membrane model, is computationally
complex. Other computationally effective models based on neuron
and synapses behaviors, such as the integrate-and-fire model and
spiking model are commonly used. However, these models typi-
cally simplify the modeling of neurons and may not lead to an accu-
rate model of the true neurons.

e I regard less than a thousand neurons as small relative to the billions of
neurons in the brain.
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C h a p t e r 3
THE CORTEX ARCHITECTURE:
THE BUILDING BLOCK
OF INTELLIGENCE

“Innate mechanisms endow the visual system with highly specific con-
nections but visual experience early in life is necessary for their main-
tenance and full development. Deprivation experiments demonstrate
that neural connections can be modulated by environmental influ-
ences during a critical period of postnatal development. We have
studied this process in detail in one set of functional properties of the
nervous system, but it may well be that other aspects of brain function,
such as language, complex perceptual tasks, learning, memory and
personality, have different programs of development. Such sensitivity
of nervous system, to the effects of experience may represent the fun-
damental mechanism by which organism adapts to its environment
during the period of growth and development.” Torsten N. Wiesel,
Dec 1981 Nobel lecture.

Scientists around the world have discovered that genes influence
the size and overall structure of the cortex, including the

regionalization and specialization of the brain area. Activity stimu-
lus and experience through sensory input further build the cortex
to specific functions or sharpen the functions. Some of the special-
ized functional regions in the cortex are discussed in Chapter 1.
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The cortex surface is highly folded, i.e. extensive wrinkling
and convolutions. The cortical folding appears to have advan-
tages, such as increased surface area and volume ratio, and pro-
vide for short connections between different functional regions
in the cortex. This interconnection is known as cortico-cortical
connections. 

Hence, the brain can have a large number of neurons per unit
volume and increase in capacity and efficiency with a relatively
small head size compared to the body size. Understanding the
functional significance of these folds is one of the big open ques-
tions in neuroscience.a

From the computational modeling perspective, it is interesting
to know how the cortex is structurally arranged and what are the
underlying functional layers that enable us to recognize, discrimi-
nate, understand, and perform decision-making in a relatively short
time span. This chapter will discuss the following issues: 

• How is the cortex structurally arranged?
• What are some of the factors that influence the cortex architecture?
• Discuss the computational model of the cortex architecture. 
• Present a case study on why the brain can discriminate and rec-

ognize pictures at a glance. 
• How the prefrontal cortex performs decision-making.

How is the Cortex Structurally Arranged?
Early experiments on the visual processing in the cortex has shown
the hierarchical organization of the visual cortex in the brain.
Hubel and Wiesel (Hubel and Wiesel, 1962) were probably the
first to demonstrate that the visual system in the brain is designed
in hierarchical structure and with highly specific connections. They
also proposed the notion of the hierarchy feature extractors model
from simple to complex cells for the visual cortex. Ungerleider and
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a For example, how the folds develop and decay in the cortex, and what
is the significance of the course fold and the fine-grained folds.
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Haxby in 1994 further illustrated that the hierarchical organization
of the visual cortical area can be further broken down into two dis-
tinct hierarchically organized pathways, namely the ventral and
dorsal streams (Ungerleider and Haxby, 1994). 

The two distinct pathways (Fig. 3.2), namely, the dorsel stream, is
shown in green, and the ventral stream, is shown in red (Ungerleider
and Haxby, 1994). Leslie G. Ungerleider, from the National Institute
of Mental Hospital, is BU/CNS Celest Distinguished guest speaker
in December 2006. Their figure has been heavily cited and studied.
Most visual cortex models are developed based on this diagram. 

The ventral stream of visual cortex is often referred to as the
“what pathway” because it is widely believed to be associated with
form recognition and object representation (Kandel et al., 2000).
The dorsal stream of the visual cortex is often referred to as the
“where pathway” as it is often believed to associate with the direc-
tion and orientation of an object location.

Figure 3.3 shows another perspective of the hierarchal organi-
zation of the visual cortex in simple block form. Figure 3.3 on the
right illustrates the fact that the visual cortex is physically arranged
as patches on a planar cortical sheet (Dean, 2005). 
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Fig. 3.1. Picture showing the two distinct visual pathways — the ventral stream
and the dorsal stream (Ungerleider and Haxby, 1994).
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Fig. 3.2. Picture showing the detailed breakdown of the visual processing path-
way, feedforward and feedback path are show by the arrows.

Fig. 3.3. Hierarchical organization of the visual cortex.
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Figure 3.4 shows the flat brain of the Macaque monkey. The
general four areas for the visual cortex, namely, the V1, V2, V3,
V4, and IT areas are shown in bold letters. The detailed intercon-
nection of the visual cortex, from LGN to the prefrontal cortex, is
shown in Fig. 3.5.

It is clear that the primary visual cortex is divided into hierar-
chical regions (Figs. 3.2, 3.3, and 3.5). Regions that are higher
in the stack capture general visual features, while those lower in
the stack capture specific features. Other regions in the cortex
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Fig. 3.4. A flat brain of the Macaque monkey. (Picture adapted from (Felleman
and Van Essen, 1991))
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are also shown to be arranged in hierarchical forms. For example,
the saccade mechanisms that lead to the cerebral cortex and
the basal ganglia regions are also shown to have hierarchical
connections.

Figure 3.6 shows the hierarchical organization of possible sac-
cade mechanisms. Effective connections to the SC (superior collicu-
lus) from the cerebral cortical areas and the basal ganglia (i.e. SNr)
enable the selective control of saccades especially by suppressing
unwanted saccades. (Hikosaka et al., 2000)
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Fig. 3.5. Schematic diagram of the visual cortex arranged in hierarchical order
from the analysis of the macaque monkey’s brain. (Picture from Felleman and Van
Essen, 1991.)
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Other Design Factors in the Cortex 
Besides hierarchical structure, the following are some other design
factors that influence the cortex architecture.

How do different regions in the cortex interact? Recent studies
have also shown that the cortex relies on specific input pathways,
processing networks, and output projections. “Pathways and net-
works confer representation” (Sur and Leamey, 2001). 

“The early development of pathways to and from a cortical area
involves the expression of specific genes which regulate molecules that
guide axon projections. We have used high-density DNA microarrays
to identify genes that are differentially expressed between sensory areas
of cortex in neonatal mice.” (Leamey et al., 2002). 

This suggests specific hierarchical pathways in the cortex. The
cortex also continually changes its fine functional role according
to the influence of attention, experience, activity, expectation and
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Fig. 3.6. Hierarchical organization of saccade mechanisms.
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perceptual tasks. This further suggests that the properties of any
cortical area are dynamic, experience-dependent, and subject to
top-down influences and horizontal interaction (Gilbert et al.,
2000; Grossberg 2003a; Li et al., 2004).

“The cerebral cortex is subdivided into discrete functional areas that
are defined by specific properties, including the presence of different
cell types, molecular expression patterns, micro circuitry and long-
range connectivity. These properties enable different areas of cortex to
carry out distinct functions. Emerging data argue that the particu-
lar structure and identity of cortical areas derives not only from spe-
cific inputs but also from unique processing networks.” (Majewska
and Sur, 2006)

“… Visual Cortex, like many parts of perceptual and cognitive neo-
cortex, is organized into six main layers of cells, as well as character-
istic sub-lamina. ….these layered circuits help to realize processes of
development, learning, perceptual grouping, attention and 3D vision
through a combination of bottom-up, horizontal and top-down inter-
actions…” Stephen Grossberg, Invited article for Behavioral and
Cognitive review (Grossberg, 2003a).

Hence, the basic cortex architecture consists of multiple feedfor-
ward and feedback hierarchically layered networks. There are also
pathways that direct specific connections with other cortices. Some
cortical regions have unique properties depending on the type of
sensory input. The cortex connection is further built up with influ-
ence from top-down, bottom-up, and horizontal interaction. The
layer interconnection can be at distance location.b Hence, the top-
down influence can be from a different region depending on the
context, and bottom-up information may drive a distant layer in
the cortex. The cortex structure continues to build up from this
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b Distance location refers to a long axon connecting to another cortical
area in the brain.
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basic “scaffold” architecture depending on external activity and its
specific properties to form specific cortex functions. 

Is the cortex a primary memory system? “The brain can keep the
eye still because it stores a memory of the eye position.” H. S. Seung
(MIT/BCS) (Seung, 1996). 

Since the 1990s, most neuroscientists support or agree, as I
understand from conversations with neuroscientists and from read-
ing published papers, that the brain’s cortex mainly involves mem-
ory systems.c If this is so, how are these memories interconnected
such as to enable us to understand and recognize object and con-
cept in invariant time and space? What is the memory temporal-
spatial representation of information? How is the information
recalled and retrieved at the “appropriate” cue? Cues are based on
many factors such as timing, events, and related pattern. In com-
putational terms, this could be related to a “pointer”.d How can we
have a “dynamic pointer”? In some sense, we do not know how the
“dynamic pointer” in the brain is designed and invoked, and some-
times its directing is not constant or cannot be defined in a consis-
tent way. More importantly, sometimes, we wonder why these
“dynamic pointers” are sharp, directed, and pointed.

Brain performs a fusion process. In (Ng, 2003), I discussed that
fusion is an integration of multiple sources of information in the
form of competitive and/or complementary ways. Studies till now
have supported the existence of both the competitive and comple-
mentary interaction of the information process in the brain. Hence,
in some sense there is “fusion” performed in the brain.

For example,

• Ventral (“what”) and Dorsal (“where”) stream working
together in a complementary manner help us to view, classify,
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c Some scientists may not fully agree that the brain is mainly composed
of memory systems.

d In software coding, a pointer is a special kind of variable that holds the
address of another variable.
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and recognize the orientation of an object in a natural scene. In
each stream, the six-layer cortical structure interconnections
(the excitatory/inhibitory and feedforward/feedback loop) are
performing competitive actions to achieve its intrinsic goal. 

• The prefrontal cortex that performs the function of working
memory is able to piece together information from various parts
of the cortex in the brain to process information, such as form-
ing a good sentence in our speech.

Detailed studies of the visual cortex at the neuron level also con-
firm that different specialized neurons working in complementary
and competitive manners enable us to see the image laid in front of
our eyes.

Computational Model of the Cortex
Architecture — Model After the
Hierarchical Structure
This section presents some of the computational models of cortex
architecture. Most current work has been done on the visual cor-
tex. Researchers in the 1990s have proposed a hierarchical struc-
ture for modeling the brain’s cortex, and have applied machine
learning techniques to update the connecting weights in the hier-
archical model. More lately, researchers have re-proposed the same
idea and built models on hierarchical manner. For example,
Riesenhuber and Poggio proposed the Hierarchical Feedforward
architecture (Riesenhuber and Poggio, 1999), Lee and Mumfold
suggested the Hierarchical Bayesian Model with Particle Filter (Lee
and Mumfold, 2003), and Jeff Hawkin talked about Hierarchical
Temporal Memory (Jeff, 2004). This section will discuss some of
these computational models of the cortex in hierarchical structure.

“The recognition of visual objects is a fundamental cognitive task per-
formed effortlessly by the brain countless times every day while satisfy-
ing two essential requirements: invariance and specificity. In face
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recognition, for example, we can recognize a specific face among
many, while being rather tolerant to changes in viewpoint, scale, illu-
mination and expression.” (Lee and Mumfold, 2003)

Professor Tomaso Poggio, Director of the Center for Biological
and Computational Learning at MIT Brain and Cognitive Science
(BCS) Department has a group of researchers who demonstrated
an ultra-fast object recognition system using a hierarchical feedfor-
ward architecture in 2006. They suggested that hierarchical feed-
forward architecture (without feedback) may explain the effect of
human “immediate recognition” — the initial phase of recognition
before eye movements and high-level processes can play a role.

Figure 3.7 shows the model of the hierarchical feedforward visual
cortex. Serre’s research work in MIT modeled the ventral stream
of the visual cortex. Figure 3.7 on the right shows the modeling
of simple and complex cells (Serre et al., 2006, 2007a,b). Serre

The Cortex Architecture: The Building Block of Intelligence 47

FA

Fig. 3.7. Model of the hierarchical feedforward visual cortex from Serre’s
research. (Picture from Serre et al., 2006.)
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modeled the details based on the different functional layers described
in the ventral stream. Supervised training was performed at the pre-
frontal cortex layer and unsupervised learning was performed at
lower level such as V1 to IT layers. 

Serre et al., in their paper, claimed that their hierarchical feed-
forward model behaves similarly with the human observer across all
four animal categories in the ultra-rapid categorization of 50 ms in
recognizing animals in the natural scene. (Animals in the natural
scenes constitute a challenging class of stimuli due to large varia-
tions in shape, pose, size, texture, and position in the scene.) The
MIT team further tested and showed that the model is robust on
rotated images not re-trained before. 

However, they reported that at 80 ms, the human outper-
formed the model. They concluded that it is an open question
whether the somewhat better performance of humans for longer
than 80 ms is due to feedback effects mediated by back-projections,
i.e. top-down influence. 

Professor Tomaso Poggio, in 2007 Scene Understanding
Symposium, declared that the feedforward ventral stream model
was completed; he was looking for the next stage of incorporating
the feedback or back-projection process and aimed for image infer-
ence abilities. 

Note that the feedforward ventral stream is only a small part of
the whole visual pathway. With feedback influence, consideration of
object recognition in depth, classifying different objects in the nat-
ural scene, stability of the network with positive feedback, and
addressing the dorsal stream (the “where” issue), the whole net-
work could be a very complicated one. Other potential gaps include
the global horizontal interaction not included in the model. Current
debate indicates that the approach looks like a convolution method
and needs to resolve the shift invariance part. The simple cell layer
uses the Gabor filter. The Gabor function has long been associated
with visual processing. (Stork and Wilson, 1990) pointed out that
the Gabor function cannot fit to single-cell receptive fields and they
concluded that there are insufficient theoretical demonstrations and
experimental data to favor the Gabor function over any number of
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other plausible receptive-field functions. Despite this, the Gabor
function remains popular and is used in the Serre et al. model. The
model is only tested on simplified categorization tasks such as ani-
mal-versus non-animal or face versus non-face. It has not been used
to recognize particular faces or specific animals’ identification.

Professor Stephen Grossberg’s research team from Cognitive
and Neural System (CNS) Department in Boston University has
studied and worked on cortical network architecture and the reso-
nance theory for many years. Their team has considered both the
ventral stream (“what”) and the dorsal stream (“where”) in their
modeling of the visual pathway. His group is progressing up the
chain from LGN–V1–V2 to MT/MST and AIT with feedforward,
feedback, inhibitory signal, and horizontal interaction, in one
holistic consideration. Their model, in some sense, has a closer
resemblance to the biological theory and is careful in considering
each connection to address the different features involved in cap-
turing the vision scene. 

Figures 3.8 and 3.9 show the feedback, excitatory, and
inhibitory signal consideration in the design of the partial visual
cortex. The design includes the six-layer cell interconnection. 

The model (Figs. 3.10 and 3.11) explains how surface attention
interacts with eye movement for object recognition from different
view angles. Fazl indicates that this interaction does not require
prior knowledge of object identity. The modules in the model con-
form to brain regions in the “what” and “where” cortical streams
of the visual system. The “what” stream learns a spatially-invariant
and size-invariant representation of an object, using bottom-up fil-
tering and top-down attention mechanisms. The “where” stream
computes indices of object location and guides attentive eye move-
ments. Preprocessing occurs in the primary visual areas, notably
log-polar compression of the periphery, contrast enhancement, and
parallel processing of boundary and surface properties (Fazl et al.,
2005b). This model is known as ARTSCAN.

Fazl in CNS has completed the above model and demonstrated
its invariant representation and the abilities to perform 3D object
categorization. He demonstrated that the ARTSCAN model has
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a performance of above 95% correct invariant object recognition
after real-time incremental learning controlled by attention shifts
and active eye movements. Invariance here refers to the object
that can still be recognized when it is presented in different ori-
entations, depths, and sizes. Note that the object invariant view
is limited within the training of object orientation and size.
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Fig. 3.8. (Left) shows the layer connection in the LGN and V1; (Right) shows
the extension from LGN-V1 to V2.

Fig. 3.9. The extension from LGN to V4.
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Current experiment trains objects at double their size and orien-
tation at +45 degrees to −45 degrees (Fazl et al., 2005a,b,
2006).

Supervised and unsupervised learning are performed.
Supervised learning is done at the higher cortex (prefrontal cortex
area) and unsupervised learning is done at the low cortex areas.
The reason for supervised learning in the prefrontal cortex is that
the object could only be trained (or presented) at a complex level,
which is at the prefrontal cortex and the intermediate layers
(V2–IT) where the object is broken down into its components, and
unsupervised learning is performed (clustering of the compo-
nents). This is the same logic for Serre et al. in their work using
supervised learning at the top layer and unsupervised learning at
the layer below this top layer. In Serre et al., the extraction at each
layer takes the strongest average signal. Fazl’s work demonstrated
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all the major components for signal flowing forward and with feed-
back, according to the cortical connection.

Figure 3.12 shows the several variations of Hierarchical Temporal
Memories (HTMs) proposed by Jeff Hawkins and Dileep George
from Numenta Inc. Jeff indicated that HTMs are similar to
Bayesian Networks (BNs); however, HTM differ from most BNs in
the way that time, hierarchy, action, and attention are used. 

The HTM receives the pattern coming from the senses. It then
creates a set of beliefs. Each belief is back-propagated (BP) up
the HTM. The CPT (Conditional Probabilistic Table) is created
on-the-fly by learning the quantization points. Note that quanti-
zation points at the bottom nodes are created by the spatial pat-
tern presented and are propagated upward. The quantization
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function itself is the CPT in Jeff ’s HTM. This way of creating
CPT differs from traditional BNs. Everything the HTM learns is
stored in memory matrices at each node. These memory matrices
represent the spatial quantization points and sequences learned by
the node.

In perceptual learning, Ahassar and Hochstein proposed a
reverse hierarchy theory of explicit feedback connections and implicit
feedforward connections for vision (see Fig. 3.14) (Ahissar and
Hochstein, 1998; 2004). This structure has the same notion as
a simple to complex cell hierarchy. It indicates that higher up the
hierarchy, the complex cell represents abstract information of the
world and it helps in perceptual learning via feedback connections
from the high-level. The early explicit perception is a post-processing
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Fig. 3.12. Hierarchical Temporal Memories (HTMs).

Fig. 3.13. The representation of causes and beliefs in the HTM.
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high-level view with spread attention. Later, attention is focused on
specific low-area details.

For object recognition, other related work that claim to work
extremely well include: 

• Constellation models have been shown to learn to recognize many
objects (one at a time) using an unsegmented training set from just
a few examples (Weber et al., 2000; Fergus et al., 2003; Fei-Fei
et al., 2004). The model used learnt incrementally in a Bayesian
manner and made use of prior information (Fei-Fei et al., 2004).

• Multiplayered convolutional networks were shown to perform
extremely well in the domain of digit recognition and face iden-
tification (Fukushima, 1980; LeCun et al., 1998, 2004; Chopra
et al., 2005).

• Hierarchical Memory system with feedback. Another approach
using a self-organizing map principle with focus on feedback
connection (Sit and Miikkulainen, 2006).

54 Brain-Mind Machinery

FA

Fig. 3.14. The reverse hierarchy theory. (Picture from Ahissar and Hochstein,
2004.)

b654_Chapter-03.qxd  2/12/2009  9:13 AM  Page 54



Figure 3.15 shows an attempt by Professor Marvin Minsky, MIT
media laboratory, on how a brain might organize its multiple hier-
archical connection to represent knowledge (Minsky, 2006).

“It also seems unlikely that our representations are arranged quite so
hierarchically. In biology, new structures usually originate as dupli-
cate copies of older ones, and this often results in orderly layers.
However, because brain cells are so peculiarly able to make connec-
tions to distant places, they can more easily evolve less hierarchical
organizations.” Marvin Minsky (Minsky, 2006)

Case Study — Why the Brain Can Discriminate
and Recognize Pictures in a Glance
A human can perform significant tasks in much less time than a sec-
ond, such as recognizing an object in a natural scene. Professor
Mary Potter, in her seminar talk (November 2006 at MIT/BCS),
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Fig. 3.15. Professor Marvin Minsky’s way of representing multiple connections
in the brain. (Picture from “The Emotional Machine” by Marvin Minsky.)
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indicated that a picture can be understood by a human in about
100 millisecond (ms). This is supported by her experiment. Now,
how far could the neuron signal travel in 100 ms? This question
was raised and it triggered me to find out more. Given that the
synaptic transmission delay is about 1–10 ms, a neuron can travel
at the speed of 10–100 m/s.

Now, let us take the visual pathway. Figure 3.16(A) shows the
hierarchical organization of cortical areas. This model presents the
different cortical areas of the primate’s visual system, staged at dif-
ferent levels according to a simple rule: areas at low-order stages
send feedforward connects to the upper levels, whereas high-order
areas send feedback connections to areas at a lower level (Bullier,
2001). And Fig. 3.16(B) shows the latencies of visual responses of
neurons in different cortical areas. 

So if a picture is presented in 100 ms, the signal of the “image”
of the picture received could have traveled to the inner cortex of the
brain (all the way to the prefrontal cortex). Hence, within 100 ms,
we can recognize a picture. One neuron potentially could be con-
nected to another 10 000 other neurons as it moves up different
cortical areas. (Although the signal has traveled through many neu-
rons, it must also able to retrieve the information from the LTM to
process within 100 ms. Mary Potter coined the term conceptual
short-term memory to explain rapid comprehension of new stimuli
such as pictures or sentences that require retrieval from the LTM.
She explained that there is a need to retrieve the conceptual infor-
mation from the LTM for processing. (Note: A question was asked
on what is the difference between working memory and conceptual
short-term memory. Her answer was conceptual short-term mem-
ory is a more précise definition.)

The ability of the brain to search at specific neural pathways
looks critical here. It is well-known that certain regions of the
brain contain certain information. For example, for face recogni-
tion, the part of the brain that contains the facial image is in the
fusiform face area (FFA). How would the brain know where to
search? Or is it a pure brute force search due to its massive paral-
lel connections?
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For each area (Fig. 3.16(B)), the central tick marks the median
latency and the extreme ticks the 10–90% centiles (Bullier, 2001).
(See also Fig. 3.17, an approximate time scale from the monkey
experiment.)
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Fig. 3.16. (A) Hierarchical organization of visual cortical areas (Bullier, 2001).
(B) The latencies of visual responses of neurons in different cortical areas.
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So for about 100 ms the signal from the retina would have
reached the prefrontal cortex, whereupon it would pass the AIT
where high-level objects are stored. The MIT team modeled the
ventral stream using a hierarchical feedforward architecture. They
suggested that there is probably not much feedback for fast dis-
crimination (Serre et al., 2006).

How Does the Prefrontal Cortex Perform
Decision-Making?
The prefrontal cortex has been commonly associated as the place
where working memory resides and decisions are made. The motor
pathways are link to the prefrontal cortex as shown in Fig. 3.17.

Figure 3.17 shows the possible path the signal will travel for a
brain to make a simple decision, say finding an object in a cluttered
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Fig. 3.17. An approximate time scale from visual to motor response from a
monkey experiment. The diagram also shows an estimated location of the dorso-
lateral prefrontal cortex (DLPFC) in the brain. (Picture adapted from (Thorpe
and Fabre, 2001))
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picture, and respond with the subject pressing a button. Monkey
and human are able to respond at about 200–400 ms (Thorpe and
Fabre, 2001).

Ungerleider and her team use functional magnetic resonance
imaging (fMRI) and a categorization task in which subjects decide
whether an image presented is a face or a house to test where and
how in the brain this decision-making computation might be per-
formed. (Heekeren et al., 2004, 2006). She concluded that:

• An increase of sensory network activity or attention occurs
when the information presented is noisier. This implied that
greater noise results in more attention focus.

• The prefrontal cortex has a general decision-making function
independent of the stimuli and response modalities. 

• When subjects made categorical decisions about degraded face
and house stimuli, the activity within the left dorsolateral pre-
frontal cortex (left DLPFC) is greater during easy decisions
than during difficult decisions. Ungerleider indicated that pos-
terior DLPFC looks more like the areas in the brain for difficult
decision-making process.

Ungerleider’s experiment also showed that 75% of the people
tested performed better at the noisy face recognition process when
prior face information was given. 

Stepwise activation — Hierarchal sequence in problem-solving.
The brain relies on stepwise activation to make difficult decision
(Dobbs, 2006; Bunge et al., 2005). David Badre (formally in UC
Beceley, now in MIT/BCS) performed an experiment, which
showed that as test subjects faced more variables in a given prob-
lem, they recruited first the premotor cortex (first area just behind
the prefrontal cortex), and then as the context became more
important, the pre-premotor cortex (second area), a section of the
prefrontal cortex directly in front of the premotor cortex, was used.
And a third area, the lateral prefrontal cortex, would kick in if solv-
ing the puzzle required weighing past events or ongoing goals.
And it has been observed that the lateral prefrontal cortex (or
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“advanced” areas in solving problems) does not light up unless the
ones preceding them had activated. Once the lateral prefrontal cor-
tex is “on”, they stayed active longer, as if monitoring the more
complex situation. The fourth area is the frontal pole, at the very
front of the lateral frontal lobe. Badre used imaging studies to show
that these four areas operate in hierarchal sequence as the subjects
solve an increasingly difficult series of puzzles, i.e. for simple prob-
lems the premotor cortex is activated, and for the most compli-
cated puzzles the frontal pole (frontmost part of the prefrontal
cortex) consistently lit up.

Summary
From the study of the visual cortex and other cortical regions in the
brain, it is clear that the cortex is divided into hierarchical regions.
Each region has a layered structure arranged from a simple layer
consisting of simple cells to a complex layer consisting of complex
cells. Within the hierarchies, computationally, supervised learning
seems to be more appropriate for the higher cortex, such as the
prefrontal cortex, and unsupervised learning is done at the lower
cortex such as the lower sensory cortex.

These multiple memory systems are implicitly located all over
the cortex. The basic cortex architecture consists of many specific
pathways that link different regions in the hierarchies together.
These pathways and their flow enable influence from top-down
information (feedback), bottom-up (feedforward), and horizontal
interaction. The layer interconnection can be at distance location.
Hence, the top-down influence can be from a different region
depending on the context, and bottom-up information may drive a
distant layer in the cortex. The cortex structure continues to build
up from this basic “scaffold” architecture depending on external
activity and its specific properties to form specific cortex functions.
The cortex also performs fusion-like processes that involve comple-
mentary and competitive processes. Research as of now also sup-
ports the cortex as being primarily composed of multiple memory
systems.
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Experiments have shown that at about 100 ms, the signal from
the retina would have reached the prefrontal cortex. And between
180–260 ms, we can activate the motor of our hand for perform-
ing simple decision-making tasks.

Research shows that the prefrontal cortex has four areas that
solve problems in a hierarchal sequence depending on the degree
of complexity. The prefrontal cortex involves more top-down
attention influence when there are more uncertainties (or noise
data). Also, prior information affects decisions.
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C h a p t e r 4
MANY FACES OF MEMORIES —
INVESTIGATING THE HUMAN
MULTIPLE MEMORY SYSTEMS

Memory is essential to all learning processes (Ng, 2003).
Whatever is learned, needs to be somehow stored and able

to be retrieved or recalled at the right time for performing tasks,
making decisions, thinking, or even just daydreaming. In the brain,
the synapses are the key basis for information storage. Detailed
studies by scientists have shown that there are multiple different
memory systems in the brain.

Two broad ways of categorizing the multiple memory systems
are based on information storage time and the type of information
stored. For detailed studies of memory systems, you can refer to
the following references: (Baddeley, 1992; Willingham, 2001;
Eichenbaum and Cohen, 2001; Anderson et al., 2004; Styles et al.,
2005; Kolb et al., 2006).

This chapter discusses the following:

• The different types of memory systems based on information
storage time and the type of information stored. 

• What are the declarative and non-declarative memories?
• The role of the hippocampus in memory. 
• Some interesting observations of the human memory. 
• The human memory in chronological age.
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Memory Systems Based on Information
Storage Time
When categorizing memory systems based on operation time (or
according to the effective time span that memory can be recalled),
we can classify them as:

• Sensory Memory
• Working Memory (encompassing short-term memory)
• Long-Term Memory

Figure 4.1 shows a broad schematic diagram of memories that
could potentially be mapped to a computational model for infor-
mation processing purposes. 

Fig. 4.1. A schematic diagram of memories. (Picture adapted from http://the-
brain.mcgill.ca/)
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Sensory Memory (SM). Sensory memory is memory from our
immediate sensors, such as iconic memorya for visual stimuli,
transsaccadic memoryb for our eye movement, and echoic memoryc

for aural stimuli. Sensory memory helps to preserve accurate rep-
resentation of the physical features of sensory stimuli for a few sec-
onds or less. This brief timing is sufficiently long to give us a sense
of continuity of the world without interfering with new sensory
impressions, and in turn allows us to extend the availability of
information acquired from the environment. 

Working memory. Working memory holds information tem-
porarily in the order of seconds to minutes. It holds some infor-
mation and knowledge long enough for us to perform tasks, such
as reasoning, thinking, and problem solving. In 1956, Miller
famously proposed that the working memory recall is limited to
about seven chunks or seven meaningful units of information
(Miller, 1956). Research in 1985 indicated that when steps are
taken to prevent the rehearsal or chunking of the presented items,
the limit appears to be closer to about four units of information
(Mandler, 1985). Further experiments also show that working
memory capacity is dependant on one’s ability to control attention
(Kane et al., 2004) and also the ability to inhibit irrelevant infor-
mation (Gernsbacher, 1993; Lustig et al., 2001). Professor
Nelson Cowan, University of Missouri-Columbia, indicated that it
is not one function of attention specifically, but attention more
generally (such as zoom-in attention with a specific goal or to
zoom out with a scope of attention, i.e. to apprehend the maxi-
mum number of targets) that is important for individual differ-
ences in working memory’s capacity (Cowan, 2005).

a Iconic memory stores visual images for a very short time span, i.e.
about half a second.

b Transsaccadic memory stores the position and orientation of our eye’s
saccadic movement.

c Echoic memory is the brief mental echo that persists after information
has been heard.
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According to Professor Alan Baddeley,d there are four compo-
nents of working memory, namely the central executive system and
three slave systems, i.e. the phonological loop, visuospatial sketch-
pad, and episodic buffer (Baddeley, 2000). 

The phonological loop (PL) helps to hold and manipulate both
verbal (speech related components) and auditory (sound related
components) information. According to Willingham (Willingham,
2001), PL comprises of two parts, namely the phonological store
and articulatory control process. The phonological loop can repeat
about two seconds of auditory information, while the articulatory
control process writes information into a phonological store. This
is said to be the mechanism of “self-talk” — for more information
see (Willingham, 2001). Other research on the phonological loop
has found that its capacity is highly correlated with vocabulary in
children. Baddeley et al. (1998) reviewed a number of studies
investigating this correlation. The researchers found correlations
between the digit span and vocabulary size, and between the abil-
ity to repeat long non-words and vocabulary size.

The visuospatial sketchpad (VSSP) has a similar function as a
phonological loop, with the exception that this is exclusive for
visual and spatial information only. It is a work-pad on which you
can “see” things in your mental states (or mental picture). For
example, this is where you will visualize a classroom scene or a pic-
ture of your family in a living room. 

Baddeley indicated that information from the phonological
loop and visuospatial sketchpad are coordinated by the central
executive (CE). The CE also performs the role of controlling atten-
tion of information, i.e. CE will play an important role to divide
mental resources to different parts of a task. The functions of CE
include the initiation of retrieval of long-term memories, planning
of future actions, usage of decision-making processes, and integra-
tion of new information. 

d Alan Baddeley is a professor of psychology at the University of York.
He is known for his work on working memory, in particular for his
multiple components model.
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In 2000, Baddeley added the episodic buffer (the third slave
system) to link information across domains to form integrated units
of visual, spatial, and verbal information with time sequencing or
chronological ordering such as the memory of a story or a movie
scene. The episodic buffer is also assumed to have links to other
long-term memory (LTM).

Working memory encompasses the short-term memory (STM).
Note: as the research of memories has become more refined, it has
become increasingly apparent that the original concept of STM as
a mere temporary storage for long-term memory is too simplistic.
Other critics have also indicated that working memory is not well-
defined and have come out with their own terminology, such as

• Conceptual short-term memory (CSTM coined by Mary Potter)
• Working short-term memory (WSTM)
• Working long-term memory (as opposed to WSTM) 

The prefrontal cortex (PFC) is widely regarded as the place where
WM and short-term storage of information are performed (Kolb
et al., 2006). 

Remark: Perhaps at some course level, we can model the work-
ing memory. Modeling can include the detailed connection of CE,
PL, VSSP and the association to LTM. We can also mimic the
process of automation to free up the machine’s working memory
to do other tasks. Machines can perform repeated tasks automati-
cally, i.e. sequential actions of the task retrieved directly from the

Fig. 4.2. A block diagram of working memory adapted from Baddeley’s model
(Baddeley, 2000).
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LTM. Note: when we remember new facts by repeating them, we
are actually passing the information through the hippocampus sev-
eral times to strengthen the associations, i.e. LTM build-up. 

Long-term memory. Long-term memory (LTM) can be consid-
ered a warehouse of all experiences, events, information, emotions,
skills, words, categories, rules, and judgments that have been
attained from sensory and short-term memory (Gerrig and
Zimbardo, 2005). Long-term memory is mainly processed in the
temporal lobe, especially for verbal information. Information
encoded into long-term memory after a long period of time would
not require the intervention of the hippocampus as the various cor-
tical regions are able to associate with one another to reconstruct
memory. LTMs are also stored in various cortical regions. 

It has been widely believed that the LTM is recorded in the
neuronal circuits through alteration in the efficacy of existing
synapses through long-term potentiation (LTP) and long-term
depression (LTD) (discussed in Chapter 2). Synaptogenesise and
synapse elimination are alternative ways that neuronal circuits may
be altered. Memories are retrieved from storage by chemical and
electrical activity of neurons, which generates synaptic potentials
determined by the pattern of synaptic connectivity between them. 

Memory Systems Based on the Type
of Information Stored
If we classify memory in terms of the types of information stored,
LTM can be grouped into declarative (explicit) and non-declarative
(implicit) memories. Declarative memory can be further divided
into episodic and semantic memory, while non-declarative memory
consists of both procedural memory and conditioning.

Declarative memory (also known as explicit memory), refers to
the storage and retention of information with conscious effort, and
the memory retrieved can be expressed in language. For example,

e Synaptogenesis is the formation of new synapses.

b654_Chapter-04.qxd  2/12/2009  9:14 AM  Page 67



68 Brain-Mind Machinery

FA

what is your friend’s telephone number, when is your wife’s birth-
day, and when is the last time you went for your medical check-up?
Declarative memory can be further refined into episodic and
semantic memory.

In contrast, non-declarative memory involves information that
is acquired and retrieved at the unconscious level (without con-
scious effort). These are actions, habits, or skills learned through
repetition and practice. For example, riding a bicycle, driving an
automobile, skipping a rope, and playing badminton. It is interest-
ing to note that long-term memory constitutes a large part of both
declarative and non-declarative memories.

Damage to the medial temporal lobe (hippocampus is located in
the medial temporal lobe) in the brain will impair declarative mem-
ory. Evidence for this has been obtained from amnesic patients. In
medical history, a patient known as H.M., had a lesion in his medial
temporal lobe. H.M. was studied by scientists with regard to his
memory after the lesion. H.M. exhibited profound forgetfulness
against a background of intact intellectual and perceptual functions.
For example, if you have a conversation with him just a while, and
you go to the toilet and return, he will not remember you had a
conversation with him, let alone the conversation content.

Long Term Memory

Declarative
(Explicit) 

Non-declarative 
(Implicit)

Episodic Semantic Procedural Conditioning

Generalise 

Instantiate 

Fig. 4.3. An overview of long-term memory breaking down into declarative
(explicit) and non-declarative (implicit) memories.
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No one knows exactly where the enormous LTM database is
stored, but it is clear that the hippocampus is necessary to “file
away” new declarative memory, and the cerebellum is likely to play
a role in non-declarative memory. 

Declarative Memory
Declarative memory can be further classified into semantic and
episodic memory (Tulving, 1972). These two types of memories
differ from each other by the kind of retrieval cues required to
recall a particular event or fact. 

Semantic Memory
Semantic memory refers to the generic, categorical memories such as
meanings or words, what they refer to, facts and their associations,
and rules and formulae that allow us to manipulate symbols. For
example “an apple is a fruit”. This kind of information can be made
available without any reference to the time and place at which the
event had occurred, such as with formulae or mathematical equations.
Thus, when we recall facts, we do not have to think of the original
learning episode in order to retrieve information. In other words, we
still can obtain knowledge from forgotten experience.

When we recall semantic memory, we will activate the frontal
and temporal cortices. The temporal lobe is known for the corre-
sponding activation of the fact in question, while the frontal cortex
is (speculated by Tulving) required for reaching consciousness. 

Episodic Memory 
Episodic memory helps to preserve individual, specific memories of
personal experiences or episodes. For example, “What did I eat for
breakfast today?” In order to recover episodic memory, one would
need retrieval cues that specify either the time at which the episode
or event occurred or the content of the events. For instance, the
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word “Paris” is needed for someone to recall incidents that happened
during his trip to Paris. However, specific memory representations of
events may or may not be formed depending on how the informa-
tion is encoded. For example, one would not develop a specific mem-
ory of brushing teeth for the 10th or 11th time.

The hippocampus plays a fundamental role in episodic memory
by reactivating a particular activity pattern in various regions of the
cortex. After a period of continuous reactivating, the various corti-
cal regions activated during recall will be strongly linked to one
another. Therefore, the hippocampus is no longer required to act
as a bridge between the various cortical regions after the strong link
is established. As such, information in the long-term memory does
not get “erased” even if one suffers a lesion in the hippocampus. 

Autobiographical memory. Autobiographical memory is regarded
as a special case of episodic memory. It is memory that captures self
and personal involvement, such as one’s emotions, thoughts, and
self-reflection.

Interaction between semantic and episodic memory. It has to be
noted that although semantic and episodic memory are different in
some ways, they have to interact to allow the acquisition of new
semantic knowledge (Tulving, 1972). There are times when we can
forget our facts. One good way to aid in recall is to use additional
retrieval cues, such as using original learning contexts. By trans-
forming semantic memory into episodic memory, we may recall the
necessary knowledge. 

Tulving’s view of the relationship between episodic, semantic, and
procedural memory is one of increasing encapsulation, as episodic
memory is said to be dependent on semantic memory, which is in
turn dependent on the non-declarative’s procedural memory. Non-
declarative memory will be discussed in the next section.

Non-Declarative Memory
Implicit information is being encoded via a “data-driven” process,
which means that information is passed from sensory receptors into
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the brain. In the brain, sensory information is processed in the sub-
cortical and cortical regions. For example, visual information about
an object from visual receptors is passed to the lateral geniculate
nucleus (LGN) in the brain, followed by the occipital cortex, and
finally, to the temporal lobe for object recognition. 

Non-declarative memory can be further broken down to two
types, namely the procedural memory and conditional memory

Procedural memory. Procedural memory enables us to perform
tasks without conscious retrieval of information from our long-
term memory store. In other ways, it is a procedure so standard
that it is done automatically, such as riding a bicycle. As a result, it
may be difficult for us to describe expert skills although we are
able to perform well in those skills. It was found that patients with
amnesia still have intact procedural memory and are also able to
learn new skills. However, they cannot recall having learned that
skill before.

Procedural memory therefore helps to increase the efficiency of
performing a skill, otherwise it would be very tedious to go
through every single step of activity to do a task. Procedural mem-
ory does not involve the hippocampus. Rather, procedural memory
is associated with the cerebellum, basal ganglia, and the motor cor-
tex, which are involved in motor control. 

Conditioning memory. Conditioning memory is results from
pairing events with parallel stimuli that may or may not be associ-
ated with the incident. In classical conditioning, a neutral event is
paired with a response-evoking event, which eventually causes that
neutral event to be able to evoke a response as well. For example,
in fear conditioning experiments, a conditioned stimulus such as a
tone is paired with an unconditioned stimulus such as an electric
shock. After several trials of pairings, the tone elicits an autonomic
response, resulting in fear-behavioral responses such as freezing. It
is reported that the test showing the association between tone and
shock is robust and long lasting. It has been suggested that con-
ditioned fear associations help animals detect and avoid previously
encountered threats throughout their lives (Quirk, 2002).
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Role of Hippocampus in Memory
The hippocampus, in general, plays a critical role for declarative
memory (both semantics and episodic memory). Literature reports
that the hippocampus’s roles include: 

• To enable one to recall specific personal experiences, i.e. episodic
types of memory (Vargha-Khadem et al., 1997; Tulving and
Markowitsch, 1998).

• To encode and retrieve sequential events (Fortin et al., 2002).
• To mediate the capacity for memory recollection (Fortin et al.,

2004). 
• To play an important part in the storing and processing of spatial

information (Zola-Morgan and Squire, 1990) and navigation.

Some studies show that neurons in the hippocampus have spatial
firing fields. These cells are called place cells. These cells fire when
the animal finds itself in a particular location. The discovery of
place cells suggests that the hippocampus might act as a cognitive
map — a neural representation of the layout of the environment.

The medial temporal lobes (where the hippocampus and parahip-
pocampal region are located) consolidate and integrate the memory.
Information in the memory is then linked to the cortical association
areas where the storage is more long-term. Cortical association areas
are thought to perform higher level information processing. These
areas are neither a function of motor nor sensory areas; but motor or
sensory areas can be integrated to cortical association areas.

The hippocampus and related temporal lobe structures such as
the entorhinal cortex, perirhinal cortex, and parahippocampal gyrus
(Fig. 4.5) are responsible for the creation and consolidation of new
declarative memories for storage elsewhere. In another word, the
hippocampus and related structures are responsible for containing
information in short-term memory, but are certainly not involved in
storing long-term information. These structures have limited buffer
capacity. The importance of the hippocampus in memory formation
was discovered via experiments. And two famous case studies of
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Fig. 4.4. The flow of information storage from the hippocampus to the parahip-
pocampal region, and to the cortical association areas. (Diagram courtesy of
Professor Patricia Bauer, Duke University.)

Cerebral Cortex

Hippocampus

Perirhinal Cortex

Lateral entorhinal cortex Medial entorhinal cortex

Parahippocampal cortex

Fig. 4.5. A broad diagram of a medial temporal lobes organization.
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amnesic patients, namely H.M. and R.B., contributed significantly to
these experiments. In the case study of patient H.M., it was shown
that hippocampus lesions are sufficient to cause anterograde amne-
sia. Anterograde amnesia is memory loss due to the inability to trans-
fer information from short-term memory to long-term memory.

Another interesting observation is from the study of an Alzheimer’s
disease (AD) patient. The study shows that in AD patients, their
hippocampal volume is generally less than in persons without AD.
An AD patient in general exhibits the degeneration of hippocam-
pal volume and regional cortical thickness. It is hypothesized that
the white matter degeneration may result in a disconnection of cor-
tical regions and contributes to cognitive dysfunction with aging
and age-associated degenerative disease (Sowell et al., 2004).

How the memory systems work in the medial temporal lobes is
one of the key research areas.

What about non-declarative memory? For non-declarative
memory, as of our understanding from current research, the basal
ganglia, cerebellum, and premotor cortex play a more critical role
than the hippocampus. 

Let Us Sleep Over It
“Memories of our life stories may be reinforced while we sleep”, MIT
researchers reported on Dec 17 2006 in the advanced online edi-
tion of Nature Neuroscience.

A number of experimental studies indicate that sleep helps in
reinforcing and consolidating memories. Memory consolidation is
a process whereby memories are transferred from short to longer-
term stores, and possibly reorganized into more efficient forms. A
study shows that sleep replays awake experience in the cortex and
hippocampus. However, whether temporally structured replay
occurs in the cortex and whether the replay events in the two areas
are related are unknown (Daoyun and Wilson, 2007; Louie and
Wilson, 2001; Siapas and Wilson, 1998).

“We found that spiking patterns not only in the cortex but also in
the hippocampus were organized into frames, defined as periods of
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stepwise increase in neuronal population activity. The multicell firing
sequences evoked by awake experience were replayed during these
frames in both regions. Furthermore, replay events in the sensory cor-
tex and hippocampus were coordinated to reflect the same experience.
These results imply simultaneous reactivation of coherent memory
traces in the cortex and hippocampus during sleep that may con-
tribute to or reflect the result of the memory consolidation process.”
(Daoyun and Wilson, 2007). 

Interesting Observation of Human Memory
1. Memory is associative. Memory is associative, and thinking

about one thing can get you thinking related thoughts.
Because of memory’s associative property, you can remember a
new piece of information better if you can associate it with pre-
viously acquired knowledge that is already firmly anchored in
your memory. And the more meaningful the association is to
you personally, the more effectively it will help you to remem-
ber. So taking the time to choose a meaningful association can
help you remember new information. 

Some people use this technique to increase their ability to
remember more things. Tricks have also been derived to
remember number sequences by using visual imaging as we
associate visual imaging better, more so if we can associate the
image with a story. 

Also, in your brain’s memory systems, isolated pieces of
information are memorized less effectively than those associ-
ated with existing knowledge. The more associations between
the new information and things that you already know, the bet-
ter you will learn it. For example, you will have an easier time
remembering that the entorhinal cortex is connected to the
hippocampus via the dentate gyrus if you already have some
basic knowledge of brain anatomy.

2. Memory is affected by attentiveness and concentration. Memory
is affected by the degree of attentiveness. Attentiveness is one
of the critical tools that engrave information into memory.
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Thus, attention and concentration deficits can radically reduce
memory performance. 

3. Memory is strengthened more if it is interesting, motivated, and
needed, or of necessity. It is easier to learn when the subject mat-
ter fascinates you. Human memory systems have been shown to
be enhanced when the motivation factor and interest are strong.

4. Memory is affected by emotional state. The more intense the
emotions and mood, the higher the chance the event will be
remembered. This also has led some scientists to believe in the
existence of emotional memory.

5. Memory can be retrieved via context cues. While we are memo-
rizing information, we also remember the contextual contents
such as location and smell of the situation. Therefore, through
a series of associations we are able to retrieve the recorded
information from memory using contexts as retrieval cues. 

6. Some memories are never forgotten. This is sometimes known as
flashbulb memories. These refer to memories formed when some
personal significant event occurs, and the whole scene is encoded
into memory — for example, the first time you won a prize, your
first date, a close friend of your passing away, or world events that
strike you hard, such as the 9/11 World Trade Tower collapse.
You may remember very clearly where you were or where you
read and heard the news (Neisser and Harsch, 1992).

7. Memory is vulnerable to “post-event information”. Memories are
vulnerable to “post-event information” (where post-event
information involves facts, ideas, and suggestions that come
along after the event has happened) (Loftus, 2003). You can,
unknowingly, integrate this information into your memory,
modifying what you believe you saw, heard, and experienced.
Over time, you can integrate post-event information with
information you gathered at the time of the event in such a way
that you can’t tell which details came from where, combining
all this into one seamless memory. Some people find this find-
ing disturbing as they would like their memory to be always
accurate and reliable. It is true that our memory is accurate
most of the time, but we also experience times when what we
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remember is not totally true. Can you recall one of these inci-
dents? Or an incident you know from your friend or colleague
whose memory has “slipped” and the truth is not as they said
they remembered? (Note this is assuming you have evidence to
prove that what you remember is correct.)

8. Memory constantly goes through reconstruction. Whenever we
want to recall (remember) or relate a story, we have to recon-
struct it from elements scattered throughout various areas of
our brains. Some scientists believe that there is a constant
on-going process of reclassification resulting from continuous
changes in synapses and possible neural pathways and parallel
processing of information in our brains. 

9. Memory is not entirely faithful/trustworthy/reliable. When you
perceive an object (say a car), groups of neurons in different
parts of your brain process the information about its shape,
color, smell, sound, and so on. The brain draws information
from different neurons in different parts of the cortex to form
a perception of the object. Subsequently, whenever you want to
remember the object, you must reconstruct these relationships.
The parallel processing that your cortex does for this purpose
can alter your memory of the object. 

Human memory, in many circumstances, is very accurate. But
research has demonstrated that memory can also be prone to dis-
tortion and is occasionally untrustworthy.

You can improve your memory capacity by making effort to
repeat and integrate information by paying clear attention to how
you want to integrate the information. One form of integrating
information is to associate what you want to remember with infor-
mation with which you already have a strong link. For example, to
remember a password, you may like to associate it with a phrase
you will recall easily. 

“Human beings feel attached to their remembered past, for the
people, places, and events that we enshrine in memory give structure
and definition to the person we think of as our “self.” If we accept that
memory spills over into dreams and imagination, then how do we
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know what’s real and what’s not?” Loftus (in her research on why
people feel uncomfortable). Loftus’s research shows that memory
is more prone to error than many people realize. Our memory sys-
tem can be infused with compelling illusory memories of important
events. These grand memory errors have contributed to injustices
that could have been avoided or minimized (Loftus 2003b).

Human Memory in Chronological Age
“Memory is born anew every day” E. Galeano

People in general cannot remember specific events from the early
years of their lives. Studies have shown that humans can recalled
very few memories before the age of three. And if one would to
recall their entire lifespan, the amount one can recall before age
seven tends to fall off sharply in comparison to other periods
(Fig. 4.6).

One of the key points shown in Fig. 4.6 is that we start to remem-
ber more of our life stories after the age of six or seven. Picture taken
with permission from Professor Patricia J. Bauer (Duke University)
(Talk in BU/Department of Psychology by Professor Patricia J.
Bauer: “Getting a life: Contributions from developments in episodic
and autobiographical memory” on March 2007).

Fig. 4.6. A chart of the rate of remembering and forgetting with respect to age.
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Why is the adult distribution of autobiographical memories seen
around six to seven years old, but not before? It is interesting to
know that studies have shown that the overall size of the brain is rel-
atively mature (about 95% of the adult volume) at the age of six to
seven years old. There seems to be a correlation between the brain
growth and the ability to remember. When the growth is stabilized
at six to seven years old, our ability to remember also increases. Later
studies have also shown that after the age of six to seven years old,
the brain structure continue to change but at a very local and discrete
pattern (Sowell et al., 2004). One possible hypothesis on why young
children less than six years old have amnesia is due to their growing
brain, which is undergoing constant changes and recalibration of
their information storage location, and this makes the brain forget
the information. Hence, information could be lost or “forgotten”,
and after seven years old, when the brain stop growing, information
storage becomes more stable and we can remember better.

Summary
The human brain has many different memory systems. This chap-
ter covers the different types of memory systems based on infor-
mation storage time and the type of information stored. Memory
systems based on operation time can be classified into sensory
memory, working memory (including short-term memory), and
long-term memory.

Long-term memory can be further categorized into the type of
information stored. These are namely the declarative memory (also
known as explicit memory) and the non-declarative memory (or
implicit memory). Declarative memory stores information with
conscious effort and the memory retrieved can be expressed in lan-
guage. Declarative memory can be further refined into episodic
and semantic memories. In contrast, non-declarative memory
involves information that is acquired and retrieved at the uncon-
scious level (without conscious effort). These are actions, habits, or
skills learned through repetition and practice. Non-declarative
memory can be divided into procedural and conditional memories.
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The hippocampus plays a critical role in declarative memory.
These include recall-specific personal experiences (episodic mem-
ory), sequential encoding and retrieval of events. The medial tem-
poral lobes, where the hippocampus is located, are critical for the
consolidation and integration of memory. Lesions or damage to
the medial temporal lobes, particularly at the hippocampus, will
cause anterograde amnesia. Research has shown that in Alzheimer
disease patients, their hippocampal volume is generally less than for
persons without Alzheimer disease. It is hypothesized that the
white matter degeneration may result in a disconnection of cortical
regions and contributes to cognitive dysfunction with aging and
age-associated degenerative diseases.

Many other interesting observations of human brain memory
systems are documented. These include: memory is vulnerable to
“post-event information” and memory constantly undergoes con-
solidation and reconstruction. The human brain seems to be stabi-
lizedf at the age of six- to seven-years old, and our ability to
remember increases after this age.

f Stabilized here refer to maturity of brain growth and the increase in the
ability to remember.
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C h a p t e r 5
LEARNING LIKE A HUMAN:
HOW DOES LEARNING TAKE
PLACE IN OUR BRAIN?

How does the brain learn? How does learning occur in the
brain’s neural networks? How do we learn to make decisions?

We learn at almost every instant; our synapses change constantly as
we see and experience new events. Learning can be considered as
the encoding of experience into memory. Without learning, mem-
ory cannot exist; without memory, learning is useless (Ng, 2003).
One result of learning is the formation of different memories such
as episodic, semantic, and procedural memories.

Memory, or more specifically long-term memory, is the record left
by a learning process. Learning is needed for many reasons, and two
key reasons from the perspective of building intelligent systems are:

• Building a “commonsense knowledge database” in long-term
memory, and 

• Continuously refining and aligning the “commonsense knowl-
edge databases” during everyday cognitive activities and inter-
action with the environment.

This chapter discusses learning and its importance for intelligent
systems as follows:

• Discusses how humans learn;
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• Presents how plasticity and stability give rise to learning;
• Discusses the various classes of human learning;
• Including perceptual, stimulus-response, motor, and relational

learning;
• Examines the role of dopamine in learning, and
• Addresses cognitive learning.

How Do Humans Learn?
According to (Ormrod, 1999), the definitions of learning vary with
the perspective of the theorist:

• From a behaviorist perspective, learning is a relatively perma-
nent change in behavior due to experience. This refers to
a change in behavior, that is, an external change that we can
observe.

• From a cognitive perspective, learning is a relatively permanent
change in mental associations due to experience. This definition
focuses on a change in mental associations, that is, an internal
change that we cannot observe.

From a neuroscientific perspective, learning involves changes in the
nervous system that occur as a result of new sensory experiences.
These changes in the nervous system include physical changes in the
size, shape, and flow of the neurotransmitter at synapses as well as
new growth of neurons. These alterations of the brain at the neural
level systematically affect and shape our behaviors. This ability to
adapt and change is known as neural plasticity. Note that neural
plasticity means the neurons are able to alter and reshape themselves
so as to grow and form new connections.

Few of the details and mechanisms behind neural plasticity
are known. The best-known processes are long-term potentiation
(LTP) and its opposing process, long-term depression (LTD).
These processes are discussed in Chapter 3. LTP/LTD involves
the increased/decreased conductivity of synaptic connections
between neurons. LTP/LTD occurs as a consequence of increased
synchrony/asynchrony in the activity of pre-synaptic (sending)
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and post-synaptic (receiving) neurons. LTP/LTD is presumed to
produce learning by differentially facilitating the associations
between stimuli and responses.

Besides LTP/LTD, there are two alternative proposals regarding
the mechanism of neural plasticity; these are, namely, the in-vitro
reinforcement (IVR) (Stein and Belluzzi, 1989; Stein 1994, 1997)
and the hedonistic synapses (HS) (Seung, 2003). Some details of
these proposals are presented in the note for Chapter 5.

How Plasticity and Stability Give Rise
to Learning
How does the brain learn in the first place? How can the adapt-
ability of neurons in the brain give rise to learning? How do we
learn new things while retaining what we have already been
learned? 

The adult brain. The healthy adult brain is both plastic and sta-
ble, i.e. it is adaptable and robust in its ability to retain information
without suffering catastrophic chaos or instability. Recent research
has shown that even in the mature adult brain, stem cells continue
to be produced. Researchers from John Hopkins University (USA)
and National Cheng Kung University (Taiwan) have found that
new adult neurons (neurons newly generated in the hippocampus
of an adult) show a pattern of changing plasticity very similar to
that seen in the brain cells of newborn animals. These new adult
brain cells have a “critical period” in which they are highly plastic
before they differentiate into less plastic, mature brain cells. In
newborn animals, such a critical period enables an important, early
burst of wiring of new brain circuitry with experience. This finding
suggests that new adult neurons are equipped to facilitate new
learning through experience-dependent wiring of new connections
and pathways (Ge et al., 2007).

This same group of researchers also discovered that at the
molecular level, plasticity depends upon neurotransmitter recep-
tors being functionally intact. A neurotransmitter is a chemical-
liquid signal secreted by a presynaptic neuron onto a neighboring,
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postsynaptic neuron that triggers a nerve impulse in the receiving
neuron. Neurotransmitter receptors mediate the ability of new
neurons to undergo LTP. Further experiments revealed that the
ability of a new neuron to undergo LTP in response to theta burst
stimulation depended on the cell’s age. Subtle alterations in recep-
tor populations are the means by which the brain wires the pre-
ferred pathways in the process of learning and memory. The
researchers concluded that adult neurogenesis (the process of cre-
ating new neurons) may represent not merely a replacement mech-
anism for lost neurons, but an ongoing developmental process that
continuously rejuvenates the mature nervous system by offering
expanded capacity of plasticity in response to experience through-
out life. In other words, new adult brain cells may give the adult
brain the same kind of learning ability that young brains have while
still allowing the existing, mature circuitry to maintain stability.
Note that neurogenesis in the adult brain and LTP/LTD are com-
plementary, not competing processes by which learning can take
place.

The adolescent brain. A research group lead by Professor Toga
Arthur and colleagues from the University of California (Los
Angeles) discovered that the brain continues to undergo surpris-
ingly dramatic anatomical changes between the ages of three and
15 years old. More specifically, their research indicates that from
ages three to six, the most rapid growth takes place in frontal-lobe
areas involved in maintaining attention to tasks and planning or
organizing new actions. By contrast, during the period from six to
puberty, the spike in gray-matter growth shifts to the temporal and
parietal lobes, which play a major role in language skills and spatial
relations. Beyond puberty, the growth rate of these brain areas falls
off fast. This may explain why, as a rule, the ability to learn lan-
guages declines sharply after the age of 12 (Suplee, 2000).

Further research from this lab indicates that as children age, the
growth of gray matter occurs in a wave, moving from the front of
the brain to the rear. This finding relates to an interesting observa-
tion made by Dr Jay Giedd, from a child psychiatrist with the
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National Institute of Mental Health in Bethesda (Suplee, 2000):
“In the womb and during the first 18 months of life” when the brain
undergoes its most drastic changes, “an infant does not have much say
about the way things turn out. But during the teenage years, “a per-
son has a lot to say” about the way his brain develops.” 

Their findings indicate that the teenage years are a kind of crit-
ical period during which the brain is optimized for commonly prac-
ticed abilities. This means when a person does sports or academics
or music as a teenager, the circuits that determine these abilities are
going to be hard-wired as the brain matures. 

The infant brain. The amount of plasticity in an infant’s brain is
remarkable. Studies using adult monkeys have shown that hip-
pocampal lesions impair spatial relational learning, i.e. the ability to
learn and remember a particular location in relation to the envi-
ronmental spatial cues (see previous sections for a discussion of the
research showing that hippocampal lesions disrupt the formation of
new declarative memories in humans). David Amaral, a professor at
the University of California (Davis) and research director of the
MIND Institute, has shown that, unlike adult monkeys, hip-
pocampal lesions in infant monkeys do not disrupt the learning of
spatial relations. The preservation of cognitive function in infant
monkeys following hippocampal lesions spotlights the high degree
of plasticity found in the infant brain. However, where this plastic-
ity takes place and precisely how it reorganizes this circuitry is cur-
rently unknown (Lavenex et al., 2006). It is interesting to note that
the newborn brain has many times more neurons and synapses than
an adult brain and that many of these neurons and synapses may
not yet be fixed on a particular function or circuit during this early
stage of development (note genetically predefined functions are
discussed in earlier chapters). 

Learning to use vision after the critical period. Another break-
through in our understanding of the brain and plasticity was
obtained by researchers studying the patient SK. SK was born with
congenital aphakia (a condition where the eyeball develops without
a lens). In principle, he was blind and could see only after he was
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given a special pair of glasses in July of 2004 (under the project
Prakash led by Professor Pawan Sinha, a neuroscientist at MIT). SK
had passed the so-called “critical period” of visual learning. This
“critical period” in visual learning occurs between the ages of one
and three years. Previous studies led many scientists to believe that
if a person does not learn to see during this “critical period”, then
the person will never see normally. But 18 months after getting his
glasses, SK surprised everyone. He had begun to make sense of his
world; he recognized more complex objects with varying colors
and brightness. This demonstrated the plasticity and adaptability of
the brain to learning (Madavilli, 2006.)

Forms of Human Learning
How do our brains select what to learn? When does learning take
place? There are different possible forms of human learning dis-
cussed by researchers from different fields. Most of these forms of
learning overlap or are related to one another. Some of these forms
of human learning include

• Perceptual learning, which functions to identify and categorize
objects and situations. It involves changes within the sensory
systems of the brain.

• Stimulus-response learning involves making a response when a
particular stimulus is present, i.e. the ability to learn to perform
a particular behavior when a certain stimulus is present. It is the
establishment of connections between perceptual and motor
systems.

• Motor learning involves the change in motor systems in the
brain. Motor learning is the process by which we learn to acquire
precise, coordinated movements, like those that are required for
running, serving a tennis ball, etc. It needs sensory input, and
hence it involves its own stimulus-response learning mechanism.

• Relational learning involves identifying connections between
stimuli through the connections between different areas of the
association cortex. 
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Through the study of these four forms of human learning, we hope
to understand and gain some insight into the mechanisms of
human learning.

Perceptual Learning
The aspects of perceptual learning discussed here include visual
learning and auditory learning. This form of learning appears to
take place in low level cortical areas such as V1 (in the visual cor-
tex) or A1 (in the auditory cortex) and sensory association cortex.
Higher level cortical areas receive sensory information from other
cortical areas while lower level cortical areas receive sensory infor-
mation from sources nearer the sense organs, outside the cortex. 

Visual perceptual learning. It is known that the visual pathway
consists of two streams, namely, the ventral (what) stream and the
dorsal (where) stream. The ventral stream carries information as to
“what” is the object. Results from monkey experiments have
shown that the ventral stream’s ability to differentiate visual pat-
terns requires intact connections between the visual cortex and
inferior temporal cortex. The dorsal stream carries information as
to “where” an object is in space, such as its orientation, direction,
and position.

Perceptual learning in the lower visual cortex has been studied
extensively by Professor Takeo Wanatabe and Dr Aaron Seitz in
Boston University, Department of Psychology. A subsequent sec-
tion describes some of their latest findings.

Auditory perceptual learning. The auditory system is capable of
temporal processing across a wide range of scales from microsec-
ond timing (up to 20 KHz) to several seconds (20 Hz). In the
auditory system, this range is used in the ability to discriminate the
order, interval, and duration of sound, which is important for
speech processing (Shannon et al., 1995). Deficits in this range of
temporal processing may contribute to some language-based learn-
ing disabilities (Merzenich et al., 1996). However, even for simple
interval discrimination tasks, little is known about the neural mech-
anisms and areas involved in timing. 
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(Karmarkar and Buonomano, 2003) conducted an experiment
to study whether learning on an auditory interval discrimination
task generalizes across stimulus types, intervals, and frequencies.
The degree to which improvements in timing carry over to differ-
ent stimulus features constrains the neural mechanisms underlying
timing. Human subjects trained on a 100–200 msec interval dis-
crimination task showed an improvement in temporal resolution.
This learning generalized to a perceptually distinct duration stimu-
lus, as well as to the trained interval presented with tones at
untrained spectral frequencies. Their results indicate that the brain
uses circuits that are dedicated to specific time spans and that each
circuit processes stimuli across non-temporal stimulus features. The
patterns of generalization additionally indicate that temporal learn-
ing does not rely on changes in early, subcortical processing,
because the non-temporal features are encoded by different chan-
nels at early stages.

Visual perceptual learning from Professor Takeo Watanabe and
Dr Aaron Seitz. Perceptual learning here refers to improvements in
sensory abilities the at low level visual cortex, such as V1 (Seitz and
Watanabe, 2005). In Seitz and Watanabes’ experiment, they asked
subjects to focus on the center of the screen at a small circle with a
letter in it. This circle forms the focus of attention of the subjects
(see figure below). 

Fig. 5.1(a) shows the procedure of the exposure stage in Seitz and
Watanabes’ experiment. A 5% coherent motion direction (shown as
up in the figure) was temporally paired with the target letters (shown
as white); three other directions were paired with distractor letters
(shown as black). Fig. 5.1(b) shows a change in performance
between the pretest and posttest. A significant improvement was
found for the direction temporally paired with the targets when
assayed at 10% motion coherence. No significant changes were found
for 5% coherent motion (Seitz and Watanabe, 2005).

The task given to the subject was to remember which letters
were in white color (only two letters were in white, with the rest
in black). Surrounding the small circle were numerous dots (these
dots are task-irrelevant since the dots have nothing to do with
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whether or not the subject recalls the letters in white). A per-
centage of these dots will move in the same direction with the
same speed. The rest of the dots will move randomly. 5% correla-
tion is the term used to describe that 5% of the dots move
together in the same direction with the same speed. Through
exposure of these dots, the subject experiences task-irrelevant
learning in that they will be able to determine the direction of the
correlated motion of the dots significantly better than chance
level, even though they were focusing their attention to the task
of recalling the white letters. At 5% correlation level, the motion
of 5% of the dots is not obvious to the subject. A version of the
experiment setup is as follows: A pre-exposure test is given to
subjects (to determine baseline accuracy rate). In this test phase,
the correlation level is 10%. The number of trials in the test
period is small, so this prevents the subject from learning the
trials in the test phase. This is followed by an exposure phase.
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In this phase, the subject is exposed to trials with 5% correlation
level but the subject is not tested. After the exposure phase, the
subject carries on with the second test phase. In this test phase,
the correlation level is 10%. It was found that through the expo-
sure phase with 5% correlation level (recall that at 5% correlation
level, the movement direction of the dots is not obvious to the
subject), the subjects’ accuracy in determining the correlated
movement of the dots increased. This indicates that there is pas-
sive perceptual learning — the subjects learn the correlated
movement of the dots even though the dots are not the focus of
attention. (Note: If the correlation level for both test phases were
5%, the increased change in accuracy via learning is too small to
be noticed).

In another version of the experiment, the direction of the cor-
related movement of the dots is the same for all white letters (tar-
gets). The directions of the dots for black letters (distracters) are
equally likely to be three out of the four possible directions (north,
south, east, west). It is found that subjects only learn the direction
of the dots for white letters. This suggests associative perceptual
learning in that learning only occurs with targets. The direction of
movement of the dots is not learned with non-targets/distracters.
Hence, perceptual learning is associative and related to the con-
ditional learning.

Seitz and Watanabe trained the subjects for 45 days and it was
found that the task-irrelevant learned skill was retained for a long
time (six months). Perceptual learning occurs in the low level visual
cortex region (V1) and not in the sensory memory level. This
enables long-term encoding of the task-irrelevant learned skill.

Figure 5.2 shows an updated proposed unified model framework
of perceptual task-relevant and task irrelevant learning by Seitz and
Watanabe. Reference (Seitz and Watanabe, 2005) and Watanabe’s
presentation in BU (March 30 2007, The Brain, Behavior and
Cognition Spring 2007 Colloquia Series). This updated unified
model shows the inhibiting control link from task target orienting
to the irrelevant feature (courtesy of Professor Takeo Watanabe). 
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Seitz and Watanabes’ experiments support the model that both
task irrelevant and task relevant learning occurs when task target
and reinforcement signals interact at an appropriate timing. They
also found out that through fMRI scans, DLPFC has a higher
activity when the correlation level of the movement of the dots is
increased (i.e. the DLPFC “notices” the correlated movement of
the dots). When the correlation level of the movement of dots is
increased, the DLPFC’s activity increases but the activity of MT
decreases. Therefore, they hypothesize that there is some inhibitory
control via DLPFC to MT. This causes the subject to have a lower
accuracy as they increased the correlation level of the movement of
the dots. For example, at 5% correlation level, the DLPFC does not
“notice” the correlated movement. There is little inhibition of
DLPFC to MT activity, so the subject has a high performance accu-
racy. At 20% correlation level, DLPFC “notices” the correlated
movement, inhibits the MT activity, and hence, the subject’s accuracy
level drops.
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Fig. 5.2. A proposed unified model framework for perceptual learning.
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Stimulus-Response Learning (S-R Learning)
Learning stimulus and response relationships, or S-R learning,
establishes connections between sensory and motor systems. A few
related types of S-R learning such as conditional learning and oper-
ant learning will be discussed in this section. The computational
techniques based on S-R learning are also discussed.

Conditional learning. As discussed in Chapter 4 on memory,
there is a learning process in forming the conditioning memory.
Learning through conditioning can be classified into classical con-
ditioning (pioneered by Russian physiologist Ivan Pavlov) and
operant conditioning (or instrumental learning).

• Classical conditioning: Ivan Pavlov developed the theory of
classical conditioning through the study of dogs. From his
perspective, learning begins with a stimulus response connec-
tion. Classical conditioning associates between two forms of
stimuli, i.e. the unconditioned stimulus and the conditioned
stimulus. The unconditioned stimulus (US) (e.g. a bowl of
meat) that normally causes or provokes a response called
unconditioned response (UR) (e.g. the dog salivates). And
this is repeatedly associated with a conditioned stimulus (CS)
(e.g. a bell — in normal cases the bell is neutral and does not
provoke the response) will eventually cause the unconditioned
response (the dog salivates) without any need for the uncon-
ditioned stimulus (the bowl of meat). Hence, classical condi-
tioning learning is learning to pair the CS and US over many
trials till a CS alone will produce a CR. Note that before
conditioning, the bell (CS) should attract the dog’s attention
or elicit the orienting response to be conditioned.

All forms of learning can be reduced to a conditioning phe-
nomena according to Pavlov. Pavlov showed that conditioned
responses originated in the cerebral cortex. Pavlovian condition-
ing mechanisms are said to be responsible for the formation of
associations between stimuli and unconditioned stimuli. These
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associations can evoke an associated drive (hunger or sex), affec-
tive (pain or pleasure), or autonomic responses (Hall, 2001). 

The classical conditioning is closely related to a computa-
tional temporal difference learning (TD) algorithm. TD learn-
ing will be discussed later in this chapter.

• Operant conditioning (or instrumental conditioning or instru-
mental learning) was pioneered and extensively studied by
Edward L. Thorndike (1874–1949) by observing the behavior
of cats trying to escape from home-made puzzle boxes. Operant
conditioning involves an association between a response and a
stimulus; allows an organism to adjust its behavior according to
the consequences of that behavior. In Thorndike’s cat experi-
ment it was observed that cats took a long time to escape. With
experience, ineffective responses occurred less frequently and
successful responses occurred more frequently, enabling the cats
to escape in less time over successive trails. Therefore, operant
conditioning is the use of consequences to modify the occurrence
and to form behavior. Unlike classical conditioning, operant con-
ditioning deals with the modification of voluntary behavior
through the use of consequences. These could be either:

� “favorable” consequences (reinforcing stimuli), hence more
likely to occur in future, or 

� “unfavorable” consequences (punishing stimuli), hence less
unlikely to occur in the future.

The reinforcing or punishing stimulus in operant conditioning
influences the amount of dopamine released and leads to synap-
tic changes. It then strengthens weak synapses (reinforcing) or
weakens strong synapses (punishing). The reinforcing and
punishing stimulus in operant conditioning is closely related to
reinforcement learning. However, the operant conditioning
learning in animals involves much more complicated behaviors
than the computational model of reinforcement learning
(Touretzky and Saksida, 1997). Reinforcement learning will be
discussed in the later section.
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Biologically, the following areas are involved in S-R learning: 
Ventral tegmentum area (VTA). It is claimed that reinforcing

stimuli activate neurons here, which stimulate the release of
dopamine. The VTA is part of the midbrain and is rich in dopamine
and serotonin neurons. The VTA is also related to two major
dopamine pathways, namely:

• The mesolimbic pathway — which connects the VTA to the
nucleus accumbens

• The mesocortical pathway — which connects the VTA to corti-
cal areas in the frontal lobes.

The amygdala is involved in the detection of CS for reinforcement —
if monkeys are trained that food follows a visual stimulus, then after
their amygdala is lesioned, the monkeys forget the association 

Lateral hypothalamus (LH) neurons become active when mon-
keys see food, but only when hungry — neurons show sensory-spe-
cific satiety; activity related to presence of reinforcing stimuli. 

The prefrontal cortex secretes excitatory glutamate, which trig-
gers bursts of dopamine to be released from neurons in the ventral
tegmental area into the nucleus accumbens; this may serve as mon-
itor for reinforcement-seeking activity.

Computational Techniques Based
on S-R Learning
Temporal difference learning. Temporal difference (TD) learning is
a prediction method. It is a combination of ideas from Monte
Carlo techniques and dynamic programming (DP). It resembles a
Monte Carlo method because it learns by sampling the environ-
ment according to some policy. And it is related to DP techniques
because it approximates its current estimate based on previously
learned estimates (a process known as bootstrapping). 

The TD learning algorithm was originally conceived in part as a
theory of Pavlovian conditioning (Barto and Sutton, 1982), and
more recently, with connection to reinforcement learning and
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machinery in the brain. (TD learning is one way to explain how the
brain performs learning).

Reinforcement learning. Reinforcement learning (RL) is by
reward (positive) and penalty (or negative or punishment)
methodology to teach a system to learn. The learning is due to
adjustment of its weight dynamically in each iteration with presen-
tation of the reward or penalty stimulus coming from the environ-
ment. RL is sometimes considered a special class of supervised
learning. Note that RL is sometimes considered to be learning with
a critic as opposed to learning with a teacher in supervised learn-
ing. RL theory remains one of the competing techniques in the
study of how the neural mechanism learns for decision-making
(Sutton and Barto, 1998; Dayan and Balleine, 2002; Camerer,
2003). More recently, the reinforcement learning process is shown
to adjust representations of competing decision options, and
hence, is used for prediction of future decisions (Cohen and
Ranganath, 2007). 

Associative learning. S-R learning (and so is motor learning) can
be considered a special class of associative learning. Associative
learning involves the ability to learn to associate events (and this
includes the stimulus and response type of events) and the rela-
tionship between such events. New knowledge can be built using
existing knowledge in an associative learning process. The stronger
the associative link of the new knowledge to the preexisting knowl-
edge, the more permanent the storage (or more effective the
encoding of information in neurons) of the new knowledge will be.
Associative learning can also be applied to new ideas and experi-
ences. In psychology, new ideas and experiences can reinforce one
another and are associated with enhancing the learning process.
Related to associative learning are conditional learning and percep-
tual learning.

Motor Learning
Motor learning is the process of improving the smoothness and
accuracy of movements. This includes learning new motor skills.
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Motor learning is essential for complicated movements such as eat-
ing, speaking, playing (table tennis or an instrument), and climb-
ing (stairs or a tree). It is also important for calibrating simple
movements like reflexes, as parameters of the body and environ-
ment change over time. The cerebellum and basal ganglia are crit-
ical for motor learning.

Motor learning requires the following:

• Motor commands and the sensory feedback from the move-
ment, either as raw data or its second order derivative data, such
as the error signals, need to be stored in memory for learning to
occur. 

• Cognition is needed for motor learning. For example, a hockey
goalie tries to predict the direction of a shot by searching for per-
ceptual clues that provide advance information. A golfer without a
clear shot to the green tries to remember how to hit a controlled
fade. A figure skater about to perform a triple axle jump followed
immediately by a triple toe loop must prepare for this combined
action with the flexibility in mind to change the plan if something
goes wrong. All of these are examples of decision-making processes
regarding the anticipation, planning, regulation, and interpretation
of motor performance. However, some motor responses are reac-
tive and may not need deliberate cognitive processes.

Procedural learning and sequence learning (learning a sequence of
movements) are part of motor learning (sometimes also known as
sensory-motor skills), and these are mainly task-oriented activities
such as typing, operating musical instruments, cleaning a utensil,
assembling a bookshelf or learning the procedure to drive a car.
These forms of learning normally involve feedback to correct the
motor behavior and selective attention to determine what actions
are appropriate. Hence, it has some form of supervised or guided
learning in the early stage of learning the procedure. Once the skill
or tasks are learned, the process becomes more automated in the
brain and attention is given to other more important events such as
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predicting the motion due to variation in new environment, e.g.,
predicting the next limb moment in uneven terrain not encoun-
tered before.

Relational Learning
Relational learning involves identifying connections between stim-
uli through the connections between different areas of the associa-
tion cortex.

• Spatial learning is learning about where you and others are in
your environment. The hippocampus is involved in spatial learn-
ing. An experiment has shown that London taxi drivers have
more hippocampal grey matter compared to ordinary folk
(McGuire et al., 2003). (Evidence of activation of the hip-
pocampus during memory-driven spatial navigation (McGuire
et al., 1997). Evidence of the hippocampus’s role in spatial
learning from lesion studies (O’Keefe, 1993).)

• Episodic learning is remembering the sequences of events that
occur as we see them.

• Observational learning is learning by watching and imitating
other people. 

Learning by imitation. Learning through imitation is related to
observational learning. Learning by imitation seems to be the most
basic for all humans, particularly young children. This form of learn-
ing was further supported by the discovery of mirror neurons. Mirror
neurons are discovered by Giaccamo Rizzollati of the University of
Parma (Italy). Rizzollati discovered that at the ventral premotor area
of monkey frontal lobes, there are mirror neurons. Mirror neurons
allow us to imitate the movements of others. Some scientists believe
that mirror neurons play a key role in early infant imitation of action.
These neurons show activity in relation both to specific actions one
performs and matching actions others perform (Gallese and
Goldman, 1998; Iacoboni et al., 1999; Williams et al., 2001).
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All the different types of human learning that I have listed are
interrelated to one another and they are also related to our higher
thinking and reasoning.

Dopamine’s Role in Learning
Dopamine is a neurotransmitter in the human nervous system. It
plays a key role in learning, in particular, the following three key
areas in learning:

• Dopamine related to reward. Professor Richard Depue, Cornell
Unversity, indicated that the higher the level of dopamine, or
the more responsive the brain is to dopamine, the more likely a
person is to be sensitive to incentives and rewards. “When our
dopamine system is activated, we are more positive, excited and
eager to go after goals or rewards, such as food, sex, money, educa-
tion or professional achievements.” — Richard Depue. He also
showed that dopamine is strongly related to how well the pre-
frontal cortex holds information. “To hold in short-term memory
a spatial map of the environment, for example, you must have the
dopamine system activated; without it, you cannot do this type of
cognitive functioning.” — Richard Depue (Lang, 1996).

• Dopamine related to making choices. A group of researchers at
the University of Colorado Boulder studying Parkinson’s dis-
ease patients reported strong evidence that dopamine in the
brain plays a key role in how people implicitly learn to make
choices that lead to good outcomes while avoiding bad ones.
“Often people will get a “gut feeling” that allows them to make a
choice depending on how often it was associated with positive out-
comes in the past. But people with Parkinson’s disease often have
difficulty making these kinds of choices.” — Michael Frank.
(Frank et al., 2004).

• Dopamine related to conditional stimulus. The release of
dopamine is observed to relate to the onset of a conditional
stimulus. It has also been observed that the dopamine neurons
are depressed when the expected reward is omitted. Thus, it is
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reported that dopamine seems to encode the prediction error of
rewarding outcomes. In nature, we learn to repeat behaviors
that lead to maximized rewards. Dopamine is therefore believed
by many to provide a teaching signal to parts of the brain
responsible for acquiring new behavior (Schultz et al., 1997).

Model of dopamine system for learning. As dopamine plays a key
role in learning, modeling the dopamine system has become a key
research focus. Some believe that the dopamine system should be
modeled using a temporal difference learning mechanism (Schultz
et al., 1997; Daw, 2003). Temporal difference learning provides a
computational model describing how the prediction error of dopamine
neurons can be used as a teaching signal (Schultz et al., 1997).

Others model the dopamine system as a positive and negative
reinforcement learning mechanism. For example, (Frank et al.,
2004) modeled the dopamine system of the basal ganglia using
reinforcement learning, which he called “carrot and stick” learning.
In BU/CNS, (Brown et al., 1999) modeled the dopamine system
based on conditional learning. For a brief description of this model,
refer to the note in Chapter 5.

Cognitive Learning
This section describes some other forms of cognitive learning. The
term “cognition” comes from the Latin word for “knowledge” or
“thinking”. Hence, cognitive learning refers to more complex behav-
iors of human learning. These include affective learning, supervised/
unsupervised learning, transfer learning and match/mismatch
learning, among others. Humans start this learning process early in
life and continue with it for their entire lives.

Affective learning. In human behavior studies, it is observed
that humans do not separate emotions from cognitions, and from
the educational learning perspective, learning is incomplete with-
out attention given to the individual’s interest, motivation, appre-
ciation, and attitudes (Chickering, 2006; Owen-Smith, 2004).
Research has demonstrated that emotion (such as fear, anger, and
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joy) affects learning. For example, a slight positive mood not only
makes you feel a little better but also induces a different kind of
thinking characterized by a tendency toward greater creativity and
flexibility in problem solving, as well as more efficiency and thor-
oughness in decision-making. These effects have been found in
many different ages and professions (Isen, 2000) (Picard et al.,
2004). We could also experience that in our everyday lives. Some
believe that affective learning could be one of the early learning
processes of an infant.

However, there is still very little understanding as to which
emotions are most important in learning and how they influence
learning. In order for learning to become truly rooted, a person has
to have a deep emotional attachment to the subject area. Affective
learning is to foster a love for learning before enforcing a strict
learning strategy.

Here, we focus the affective learning on the cognitive and infor-
mation processing aspects rather than the affective learning in ped-
agogy terms. How should affective learning be incorporated into
the current machine learning techniques? How should machine-
based rules be encoded and studied with learning interaction?
Affective learning techniques include the OCC (Ortony, Clore and
Collins’ model, 1988; Ortony et al., 1988) and Cathexis model
(Velasquez and Maes, 1997) of emotion. Affective learning is in its
infancy stage of research. MIT media lab is actively pursuing this
research.

Supervised and unsupervised learning. Supervised learning
needs a teacher/supervisor or teaching signals to adjust or correct
its generated output given the input. Unsupervised learning does
not need a supervisor or teaching signals. Biologically, there are
many related examples for supervised and unsupervised learning in
the brain. For example, the photoreceptors in the eyes are con-
stantly changing with the visual world in an unsupervised manner
to identify and recognize the objects that are in the world. The
synapses in the neocortex are known to be influenced and changed
in an unsupervised manner by the patterns of activity in sensory
neurons. The unsupervised learning typically uses the observed
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input patterns for training and clustering the data into common
features or groups. Some of the unsupervised algorithms include
Hebb learning (Hebb, 1949), Boltzmann machine, and maximum
likelihood (ML) density estimation method. Note: more references
to unsupervised learning can be found in (Dayan, 1999; Ng,
2003).

Supervised learning is important for task-oriented type of
learning, e.g. learning to drive a car or playing a game. In most
cases, supervised and unsupervised learning complement one
another. For example, in the model of the visual streams, most use
the unsupervised learning at the lower visual cortex (such as in V1
or V2) and the supervised learning at the higher visual cortex
(such as in IT).

Transfer learning. The process of applying existing knowledge
into new settings is known as transfer learning. Transfer learning is
enhanced by similarities between the old and new contexts. 

Match and mismatch learning. Professor Stephen Grossberg
believes that learning within sensory and cognitive domain is often
match learning.a Match learning occurs only if a good enough
match occurs between bottom-up information and a learned top-
down expectation that is read-out by an active recognition cate-
gory, or code. When such an approximate match occurs, previously
learned knowledge can be refined. If novel information cannot
form a good enough match with the expectations that are read-out
by previously learned recognition categories, then a memory
search, or hypothesis testing, is triggered, which leads to the selec-
tion and learning of a new recognition category rather than the cat-
astrophic forgetting of an old one.

In contrast, learning within spatial and motor processes is pro-
posed to be mismatch learning that continuously updates sensory-
motor maps or the grains of sensory-motor commands. As a result,
we can stably learn what is happening in a changing world, thereby
solving the stability-plasticity dilemma, while adaptively updating
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our representations of where objects are and how to act upon them
using bodies whose parameters change continuously through time.

Language learning. Language is probably the most complex
skill a human has to learn. The ability to speak involves the fine
control of many muscles. It is believed that this ability is somewhat
pre-wired to some extent. An infant will start to learn to imitate
another human’s speech to learn the language. 

Summary
In summary, learning allows us to adapt our behaviors to the envi-
ronment. At the cellular level, learning occurs due to neural plas-
ticity and involves interactions among the motor, sensory, and
memory systems. The brain, with its plasticity and stability, is a
great wonderful living machinery that enables the various human
learning discussed in this chapter. Although there are still many
research gaps with regards to the biological learning mechanism,
there are many good principles we can learn from the biological
human learning. These include:

• Attention process. We do not learn everything, i.e. our brain pays
attention and learns only the important things.

• Passive learning. Our brains also have an automated process of
passive learning due to sensory exposure, which can directly
speed up our learning process on essential events. 

• Forgetting process. We forget, and that in some sense frees up or
does not unnecessary burden us with large amounts of useless
or non-critical data that do not affect our life very much. It is
observed that the human brain will forget things much faster
if no attention is given. Note that this is besides the point
highighted on passive learning discussed in perceptual learning
for visual stimulus. 

• Automatic process. Processes once learned are often automated.
For example, after we learn to walk or eat, we do not need to
consciously control every moment, for it becomes an automatic
process. Another example is cycling: after you have learned to

102 Brain-Mind Machinery

FA
b654_Chapter-05.qxd  2/12/2009  9:14 AM  Page 102



cycle, the motor action has become automatic; this leaves you
to focus on interesting and/or unexpected events that may hap-
pen as you cycle. This automatic process frees our brain to
process other information.

Lastly, I conclude with Minsky’s statement of learning from mis-
takes. “I’ll bet that when we try to make machines more sensible,
we’ll find that learning what is wrong turns out to be as important
as learning what’s correct. In order to succeed, it helps to know the
likely ways to fail. Freud talked about censors in our minds; that
keeps us from forbidden acts or thoughts. And, though those censors
were proposed to regulate our social activity, I think we use such cen-
sors, too, for ordinary problem solving — to know what not to do.
Perhaps we learn a new one each time anything goes wrong, by con-
structing a process to recognize similar circumstances, in some sub-
conscious memory.” — Marvin Minsky 1982, “Why people think
computer cannot.”
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C h a p t e r 6
EMOTION AND COGNITION

Introduction

Why is emotion related to cognition? Nobel laureate Herbert
Simon emphasized that a general theory of thinking and

problem solving must incorporate the influences of emotion
(Simon, 1967). Psychological research has revealed that there is a
direct behavioral link between cognition and emotion, i.e. our
thoughts affect the way we feel about stimuli and vice versa.
Emotion theorists have argued that emotions play an important
role in cognition, influencing perception and creativity, and also act
as a powerful motivator. Neuroscientists and biologists have also
observed the link between the amygdala (center of emotion chem-
ical secretion), the limbic system (which encompasses the amygdala
and is involved in emotion and motivation), and the neocortex
(center of higher intelligence). Some scientists have argued that the
demands of a system with finite resources operating in a complex
and unpredictable environment naturally give rise to the need for
emotions, to address multiple concerns in a flexible, intelligent, and
efficient way.

However, there are also concerns that emotion is not logical
and strong emotion may impair rational decision-making. Acting
“emotionally” implies acting irrationally, with poor judgment.
Professor Picard, MIT media lab, explains that emotion not only
contributes to a richer quality of interaction, but also directly
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impacts a person’s ability to interact in an intelligent way (Picard,
1997, Affective Computing). For example:

• Communication. Emotional skills are important to communica-
tion; this includes the way we express ourselves in body action,
facial expression, verbal tone, and choice of words. 

• Fast decisions. Emotions help us to make fast decisions in crucial
situations. For example, when one sees a tiger approaching, the
fear will force one to make a decision to run or do something
quickly to avoid falling prey to the tiger. Through the release of
endocrines, i.e. adrenaline, which leads to faster heart beats and
enables the person to respond to the situation with sharp focus.
Hence, in these kinds of situations, emotions help induce fast
decision-making and act like a protective mechanism.

Therefore, emotions are not as irrational as they seem to be. Picard
indicates that emotion plays an active part in intelligence, especially
perception, rational thinking, decision-making, planning, creativity,
and so on. Studies have shown that damage to the amygdala is
associated with impairment in decision-making (Bechara et al.,
1999) and other complex cognitive and behavioral functions
(Bechara et al., 2003; Bar-On et al., 2003). Collectively, this
demonstrates that emotion and cognition are closely coupled and
suggest that emotion has a strong, pervasive, and controlling influ-
ence over cognition.

“Emotions arise from the relationship between the individual and its
environment, or, better, the regularities of its environment. Cognition
is a pre-requisite for emotion.” — Richard Lazarus (University of
California, Berkeley).

In this chapter we will discuss: 

• What are the emotions?
• What is the possible emotional circuitry in the brain?

b654_Chapter-06.qxd  2/12/2009  9:14 AM  Page 105



• What is emotional state?
• How can we model emotion and cognition? 
• How do emotions affect our cognitive abilities?

One of the key references in this chapter is Professor Rosalind
Picard’s book entitled, Affective Computing, published in 1997. I
am fortunate to have sat in her course on Autistic and Technology
for fall 2007 in MIT Media Lab. Other sources of information in
this chapter arise from discussions with Dr Maurizio, a researcher
from MIT Brain and Cognitive Science Department.

What are the Emotions?
There are three possible categories of emotions, namely (Damasio,
1994; LaBar and LeDoux, 1996):

• Primary emotions
• Secondary emotions
• Background emotions

Primary emotions are our first response to a situation. For exam-
ple, if we are threatened, we may feel fearful. These are instinctive
responses without going through the thinking process. It is the
more reactive part. Primary emotions can include shame, guilt,
fear, anger, sadness, happiness, and embarrassment, as well as feel-
ing insulted, pressured, and cheated. 

Secondary emotions appear after primary emotions. These involve
more thought and interpretation. Secondary emotions may be caused
directly by primary emotions. For example, the fear of a threat may
turn to anger after going through the thinking process and one real-
izes it is an unjustified threat. Secondary emotion gives you a picture
of the person’s mental processing of the primary emotion.

Background emotion is the emotional resting state or home-
ostasis (first suggested by Damasio). It is what you experience most
often, what you feel in-between bursts of happiness and anger,
interest and despondency. Background emotion is like a small
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power generator monitoring the condition of your body and brain
as you go about your business. When the generator sings out or
groans, reflecting a change in your visceral and/or musculoskeletal
state, you become immediately aware of the change and experience
a primary or secondary emotion.

What is the Possible Emotional Circuitry
in the Brain?
History of the emotional circuit. In 1937, James Papez first con-
ceived the mechanism for emotion. The Papez circuit consists of
the neural pathway that goes from the hypothalamus, thalamus to
hippocampus, and spreads to the cingulated cortex, which provides
the link to the neocortex. Papex thought this the cortical control
of emotion. See figure below (Figs. 6.1 and 6.2).

Papex’s proposed circuit (Fig. 6.1), however, missed out the
amygdala, which we now know is the center of the emotion.

In 1949, Paul McLean extended Papez’s circuit to include the
amygdala and more explicit connections between the hypothalamus,

Fig. 6.1. Papez’s proposed circuit.
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hippocampus, and the links from the prefrontal area to the anterior
area of the brain and the brainstem.

Figure 6.3 shows Paul MacLean extension of the Papez’s circuit
in 1949 to include the amygdala and other areas that feed from the
Papez regions. The amygdala is the key player in emotion as we
know today.

Figure 6.4 shows the structure that is often considered to con-
stitute the limbic system. The limbic system was introduced as a
concept by Paul MacLean in 1952 and was long considered the
seat of emotions. Though some of the structures included in this
system are in fact involved in some emotional responses, we now
know that it does not correspond exactly with any of the multiple
emotional systems in the brain. Picture and description adapted
from http://thebrain.mcgill.ca/.

Amygdala. The amygdala is located deep within the medial
temporal lobes of the human brain. Research shows that the amyg-
dala performs a primary role in the processing and memory of
emotional reactions. The amygdala is part of the limbic system. It

Fig. 6.2. Papez circuit in schematic diagram. (Picture from Dalgleish, 2004.)
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connects with the hippocampus, the prefrontal area, and the medial
dorsal nucleus of the thalamus. What would happen if a person
loses the function of the amygdala? A patient named “S.M.” had a
Urbach-Wiethe disease, which causes bilateral calcification of the

Fig. 6.3. Paul MacLean’s proposed circuit.

Fig. 6.4. Details of the limbic system. (Picture adapted from http://thebrain.
mcgill.ca/.)
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amygdala. Such patients do not experience anger or fear (are
unable to recognize expressions), and have diminished emotional
responses. Later studies confirmed that amygdala lesions in humans
abolish fear conditioning. The amygdala is involved in processing
emotional stimuli (Armony, 2007), and it is where the learning for
fear conditioning occurs (LeDoux, 1994).

Thalamus. The lesion or stimulation of the medial dorsal and
anterior nuclei of the thalamus is associated with changes in emo-
tional reactivity. However, the importance of these nuclei on the
regulation of emotional behavior is not due to the thalamus itself,
but to the connections of these nuclei with other limbic system
structures. The medial dorsal nucleus makes connections with
cortical zones of the pre-frontal area and with the hypothalamus.
The anterior nuclei connect with the mamillary bodies, and
through them, via the fornix, with the hippocampus and the cin-
gulate gyrus, thus taking part in the Papez’s circuit.

Hypothalamus. Lesions of the hypothalamic nuclei interfere
with several vegetative functions and some of the so-called moti-
vated behaviors, like thermal regulation, sexuality, combative-
ness, hunger, and thirst. The hypothalamus is also believed to
play a role in emotion. Specifically, its lateral parts seem to be
involved with pleasure and rage, while the median part is likely
to be involved with aversion, displeasure, and a tendency for
uncontrollable and loud laughter. However, in general terms,
the hypothalamus has more to do with the expression (sympto-
matic manifestations) of emotions than with the genesis of the
affective states. When the physical symptoms of emotion appear,
the threat they pose returns, via the hypothalamus, to the limbic
centers, and thence, to the pre-frontal nuclei, increasing anxiety.
This negative feedback mechanism can be so strong as to gener-
ate a situation of panic. As will be seen later on, the knowledge
of this phenomenon is very important, for clinical and therapeu-
tic reasons.

Cingulate gyrus. It is located in the medial side of the brain
between the cingulate sulcus and the corpus callosum (principal
fiber bundle connecting the two cerebral hemispheres). There is
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still much to be learned about this gyrus, but it is already known
that its frontal part coordinates smells and sights with pleasant
memories of previous emotions. This region also participates in the
emotional reaction to pain and in the regulation of aggressive
behavior. Wild animals, submitted to the ablation of the cingulate
gyrus (cingulectomy), become totally tamed. The cutting of a sin-
gle bundle of this gyrus (cingulotomy) reduces pre-existent depres-
sion and anxiety levels, by interrupting neural communication
across the Papez’s circuit.

Brainstem. The brainstem is the lower part of the brain. It is
believed that the brainstem is responsible for the “emotional reac-
tions”, (indeed, they are just reflex answers) of inferior vertebrates,
like reptiles and amphibians. The involved structures are the reticular
formation and the locus coeruleus, a concentrated mass of nor-epi-
nephrine secreting neurons. It is important to stress that, even in
humans, these primitive structures remain active, not only as alerting
mechanisms vital for survival, but in the maintenance of the sleep-
awake cycle.

Ventral Tegmental Area (VTA). The VTA is part of the mid-
brain (see Fig. 6.5), located in the mesencephalic part of the brain-
stem. In VTA, there is a compact group of dopamine-secreting
neurons whose axons end in the nucleus accumbens (mesolimbic

Fig. 6.5. The brain stem area. (Picture adapted from http://www.cerebromente.
org.br/.)
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Fig. 6.6. The septum area. (Picture adapted from http://www.cerebromente.
org.br/.)

dopaminergic pathway). The spontaneous firing or the electrical
stimulation of neurons belonging to that region produces pleasur-
able sensations, some of them similar to orgasm. Many people who,
for a genetic error, have a reduction of D2 (dopamine) receptors in
the accumbens nucleus, become, sooner or later, incapable of
obtaining gratification from the common pleasures of life. Thus,
they seek typical and noxious “pleasurable” alternatives, like alco-
holism, cocaine addiction, impulsive gambling, and compulsion for
sweet foods. Information from http://www.cerebromente.org.br/.

Septum (or septal nuclei). The septum part of the limbic system
lies anteriorly to the thalamus (Fig. 6.6). The septum area has been
associated with different kinds of pleasant sensations, mainly those
related to sexual experiences.

Prefrontal cortex. When the pre-frontal cortex suffers a lesion,
the subject loses his sense of social responsibility as well as the
capacity for concentration and abstraction. In some cases,
although consciousness and some cognitive functions, like speech,
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remain intact, the subject can no longer solve problems, even the
most elementary ones. When pre-frontal lobotomy was used for
treatment of certain psychiatric disturbances, the patients entered
into a stage of “affective buffer,” no longer showing any sign of
joy, sadness, hope, or despair. In their words or attitudes, no traces
of affection could be detected.

A critical finding was that information reaches the amygdala
before the cortex. In fact, some stimuli may never reach the cortex
at all. That is why we may react to a situation without even realiz-
ing what we are doing until well after we have done it.

Sometimes, the brain lesions that invoke particular emotional
changes are also responsible for cognitive impairments. This condi-
tion is clearly illustrated in patients of the Klüver–Bucy Syndrome.
This disorder results from bilateral lesions of the amygdala and infe-
rior temporal cortex. One emotional symptom associated with the
Klüver–Bucy Syndrome is a “flat” affect, i.e. the patient becomes
indifferent to people or situations, showing very little affective
behavior to stimuli that normally arouse emotions. Paradoxically,
the patient may occasionally smile inappropriately. There are cog-
nitive abnormalities that accompany these emotional symptoms.
For example, the patient suffers from visual agnosia and is unable
to recognize faces. The presence of emotional and cognitive symp-
toms together following damage to the amygdala and inferior
temporal cortex may imply that these brain structures are part of
the neural networks for both cognitive and emotional processes
(Kolb and Whishaw, 1996).

The sensory input to the prefrontal cortex is highly integrated
with input from cortices associated with emotional processes. The
following diagram illustrates the connection.

Figure 6.7 shows the direct and possible indirect pathways of
sensory projections to lateral and orbital prefrontal cortices. Lateral
prefrontal areas, such as the frontal eye fields, receive robust pro-
jections from visual cortices and sparse projections from the visual-
recipient part of the amygdale. In contrast, caudal orbitofrontal
areas receive projections from olfactory, gustatory, auditory,
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somatosensory, and visual cortices, and robust projections from the
amygdale, which is also the recipient of input from the same sen-
sory modalities. Information from (Barbas, 1995). 

Figure 6.8 shows the information from an external stimulus
reaches the amygdale in two different ways. One is a short, fast, but
imprecise route directly from the thalamus; and another is a long,
slow, but precise route, by way of the cortex. It is said that the
short, more direct route lets us start preparing for a potential dan-
ger before we even know exactly what it is. For example, let’s sup-
pose while you are walking in a forest you suddenly see a long,
narrow shape coiled at your feet. This snake-like shape, very
quickly, via the short route, sets in motion the physiological reac-
tions of fear that are so useful for mobilizing you to face danger.
But this same visual stimulus, after passing through the thalamus,
will also be relayed to your cortex. A few fractions of a second later,
the cortex, thinking with its discriminatory faculty, will realize that
the shape you thought was a snake was really just a discarded piece
of garden hose. Information from http://thebrain.mcgill.ca/.

Fig. 6.7. Direct and indirect pathways of sensory projections to prefrontal
cortices.
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Figure 6.9 shows a clear link between the prefrontal cortex (loca-
tion well known for working memory), neocortex (the central for
higher intelligence, i.e. cognitive abilities), hippocampus (responsible
for long term memory), and amygdala (responsible for emotional
chemical secretion). Information from (LaBar and LeDoux, 2006).

Remark: We can see that emotion is not a separate subsystem of
the brain (or mind per se) but a pervasive feature of it. It is important
to stress that all these structures interconnect intensively and none of
them is solely responsible for any specific emotional state. However,
some contribute more than others to certain kinds of emotion.

The process of emotion engages parts of the cortex, in particular
the frontal cortex. The frontal cortex “communicates” significantly
with the limbic system. Damage to this area impairs normal cortical-
limbic interaction, effectively leaving a person with too little emo-
tion. And too little emotion impairs decision-making.

We know that too much emotion can wreak havoc on reason-
ing, but now there is evidence that too little emotion also can
wreak havoc. This evidence requires a shift from the usual notion
of how people separate emotions and rationality. Detailed studies

Fig. 6.8. External stimulus reaches amygdale in two different routes. (Picture
from http://thebrain.mcgill.ca/.)
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have been done by Damasio on patients who have frontal-lobe
disorders, affecting a key part of the cortex that communicates
with the limbic system. For example, a healthy individual who
loses a lot of money with an investment would learn the lesson
that investment is not a simple business and might stop investing;
however patients with too little emotion might continue to invest
until all their money is gone. Another example is a patient who
suffers from frontal lobe damage, and who may go into an endless
irrational search when engaged with a simple decision such as
when to schedule an appointment. Another effect frontal-lobe
disorders have on patients is that they might not have the usual
feelings of embarrassment or bad feeling (positive or negative
feeling with regards to certain decisions.) Feelings are always part
of decision-making.

What is Emotional State?
Emotional state refers to your internal dynamics when you have an
emotion. The state is multi-variant, including aspects of both your

Fig. 6.9. A proposed circuitry for the fear emotion.
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mental state and physical state. It changes with time and with a
variety of other activating and conditioning factors. Emotional
state cannot be directly observed by another person, but may be
inferred (Picard, 1997). For example, when you are standing in
line, you do not know the emotional state of the person in front of
you. However, when he turns around with a clenched fist, you can
infer that he is in a state of anger. When we change our emotional
states, we are switching between different ways to think (Picard,
2004). For example, emotional states influence:

• What information is available in working memory (Bower, 1991)
• Subjective utility of alternative choices (Lerner and Keltner, 2000)
• Style of processing (Bless et al., 1996)

Primary emotions are our first emotion state. They are our first
response to a situation. 

Physical aspects of different emotion states. Typical emotional
states are expressed in physical forms, such as posture, vocal into-
nation, facial expression, and limb movement. Facial expression is
the most noticed area of emotional expression.

The face is where our eyes linger during conversation. We tend
to communicate most effectively “face to face”. Facial expression
provides us many emotional cues of the person you are talking to.
Professor Paul Ekman, University of California, termed “social dis-
play rules” that limit the range of acceptable expressions, such as in
business or social settings. For example, during a serious negotia-
tion session, it is inappropriate for the businessman to distort his
face to extreme disgust. He knows that in a serious meeting, he can
express only mild emotions regardless of his feeling.

Autistic children who have social problems avoid facial contact.
They have difficulty in generalizing facial expressions and under-
standing why or what causes that facial expression. And hence, this
affects some autistic children’s cognitive processes with regards to
emotional intelligence. Computers today are somewhat like autis-
tic people. They are factual and do not understand the emotional
aspect of the situation.
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Emotion affects the body’s effectiveness in function. Studies have
long shown that emotions such as anxiety, fear, and stress influence
your body; in particular the likelihood that you get sick increases as
emotions affect the immune system. Research has found mechanisms
whereby emotion directly influences the immune system, neurochem-
ically, as well as through regulation of the autonomous nervous system,
which have been found to directly interact with cells of the immune
system such as lymphocytes and macrophages. Hormones that are
released during stress have also been found to impact immune cells.

An experiment has shown that babies use their emotional states
to make intelligent decisions. For example, babies are reluctant to
crawl on a glass surface if the apparent drop beneath them is large
(this seems to be an innate safety mechanism to keep babies away
from dangerous heights). However, if the drop is a little smaller, so
that the situation is ambiguous, the babies use social referencing to
judge whether or not to cross. In the experiment, the parent sits
opposite the baby, and is asked to adopt either a happy or fearful
expression. Surely enough, the baby will cross when the parent is
happy but not when the parent is fearful. This is interesting because
it is the opposite of the typical response in normal interaction, where
a fearful expression will normally cause a child to approach the par-
ent for security. Clearly, these babies were using emotional informa-
tion from their parents to make sense of the ambiguous situation.

“Our earliest emotions are built-in processes in which inborn proto-
specialists control what happens in our brains. Soon we learn to overrule
those schemes, as our surroundings teach us what we ought to feel.
Parents, teachers, friends and finally our self-ideals impose upon us
new rules for how to use the remnants of those early states: they teach
us how and when to feel and show each kind of emotion sign. By the
time we are adults, these systems have become too complicated to
understand. By the time we have passed through all those stages of
development, our grown up minds have been rebuilt too many times
to remember or understand much of how it felt to be an infant.” —
From Society of Mind, Malvin Minsky.

118 Brain-Mind Machinery

FA
b654_Chapter-06.qxd  2/12/2009  9:14 AM  Page 118



Emotion and Cognition 119

FA

Figure 6.10 shows Plutchik Robert’s three-dimensional circum-
plex model that describes the relations among emotion concepts,
which are analogous to the colors on a color wheel. The cone’s ver-
tical dimension represents intensity, and the circle represents degrees
of similarity among the emotions. The eight sectors are designed to
indicate that there are eight primary emotion dimensions (Fig. 6.11)
defined by the theory arranged as four pairs of opposites. In the
exploded model, the emotions in the blank spaces are the primary
dyads — emotions that are mixtures of two of the primary emo-
tions (Plutchik, 2002).

Another perspective of looking at human emotion is Russell’s
model (Russell, 1980; Russell and Barrett, 1999).

Fig. 6.10. Plutchik Robert’s three-dimensional circumplex model.
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How Can We Model Emotion and Cognition?
What are the models of emotion currently available? Four different
types of models are discussed in this section. These are:

The Ortony Clore Collins (OCC) Cognitive model. In 1988
Ortony, Clore and Collins published their book entitled, “The
Cognitive Structure of Emotions” (Ortony et al., 1988). They set
forth one of the early models of cognitive appraisal for emotions
that has come to known as the OCC model. The OCC model’s
main goal is for the AI system to be able to reason about emotions
especially for natural language understanding, cooperative decision
solving, and planning. The original OCC model has been extended
by others to generate emotion (although the original OCC struc-
ture was formulated without having emotion generation in mind).

Fig. 6.11. The general link between the eight primary emotions in humans,
considered by Plutchik, namely, anger, fear, sadness, disgust, surprise, curiosity,
acceptance, and joy.
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By cognitive reasoning, the computer can deduce that a sequence
of events causes an emotion to arise. By the same reasoning,
applied to its personal events, it can cause an emotion to arise
within itself. Hence, the OCC structure can be used not just for
reasoning about emotions, but also for generating them.

Roseman’s Cognitive Appraisal Model. Roseman and colleagues
postulated that cognitive appraisals of events are based on six spe-
cific dimensions, namely (McCarthy et al., 1998):

• Situational state — an appraisal of whether an event is consistent
or inconsistent with one’s desires.

• Motivational state — which refers to whether the individual is
seeking something positive or striving to avoid something painful.

• Probability — which refers to the perceived likelihood of an
event’s occurrence.

• Control potential — the degree to which individuals believe
they can control or influence a given situation.

• Problem source — which refers to whether a negative event is
caused by something inherent to the person or object or merely

Fig. 6.12. Russell’s two-dimensional representation of emotions.
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with the behavior or a non-central attribute of the person or
object.

• Agency — which consists of three separate sub-dimensions

� Agency-self: the degree to which an event is perceived as
caused by oneself.

� Agency-other, the degree to which the event is perceived as
caused by another person.

� Agency-circumstance, the degree to which the event is per-
ceived as caused by external circumstances.

For example, John aims to earn an “A” grade, but it is uncertain if
he will do well enough on the final exam to receive one. His moti-
vational state is appetitive, aiming for a reward. His situational state
is presently uncertain. The causal agency is a test (impersonal).
He has been working hard and thinks he has potential to receive an
“A”. His appraisal of his situation suggests that he feels hopeful. If
he then receives his grade and it is not an “A” (motive-inconsistent),
then he may feel frustration. If he feels that his failure on the test
was due to the teacher’s grading him unfairly, then he is likely to
feel anger towards his teacher. 

The model suggests that appraisals are influenced by shifts in
attention. If John wants an “A” and gets one, he may focus on the
“A” and feel joyful. Or, he may think about the teacher and feel a
liking for him, or he may focus on what he accomplished herself
and feel pride. Picard pointed out that teaching a computer what to
attend to is another open research problem. In humans, attention
is influenced by emotion. For example, anger can focus attention
on the object of the anger. 

Roseman and colleagues found that by measuring appraisals along
each of these dimensions, an individual’s emotional reaction can be
predicted. The theory includes 11 specific negative emotions and five
positive emotions. The 11 negative emotions are disgust, distress, sad-
ness, fear, unfriendliness, anger, frustration, shame, regret, and guilt.
The five positive emotions are joy, relief, affection, pride, and hope.
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Both the OCC and Roseman theories provide a rule-based
mechanism for cognitive generation of emotions. And they address
the emotional states at a relatively high-level. In humans, emo-
tions are generated not only by explicit reasoning (high level), but
also by low-level non-cognitive influences, such as physical influ-
ences, i.e. associated with bodily phenomena rather than mental
phenomena.

Three-layer architecture. Professor Aaron Sloman (University of
Birmingham) and colleagues have proposed that adult humans
have at least three architectural layers in their brains:

• A reactive layer — executes in almost an automatic manner.
The reactive layer is capable of some simple learning; however,
it is not able to construct or evaluate plans. (suitable for fast
primary emotions)

• A deliberative layer — capable of planning, evaluating options,
making decisions, and allocating resources. The emotions
involved in goal-success or goal-failure. (This corresponds to
Damasio’s secondary emotions.) These are cognitively-generated
emotions that typically require some kind of cortical reasoning
about goals, situations, objects, and events.

• A self-monitoring layer — is a self-monitoring meta-manage-
ment that prevents certain goals from interfering with each
other and can look for more efficient ways for the deliberative
layer to operate, choose strategies, and allocate its resources.
Sloman suggested that emotions associated with this layer
might include shame, humiliation, and grief.

Although the three-layer architecture lacks details of implementa-
tion, it illustrates the need Picard argued for multiple levels of
models in emotion synthesis, including both low-level primary
mechanisms and higher-level cognitive ones. In particular, it illus-
trates the need for a higher “self-monitoring” process for the man-
agement of emotions, to develop the skills of emotional
intelligence for regulating and wisely using its emotions.
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Picard indicated that the three-layer architecture is a poten-
tial model for emotion synthesis that compares favorably with
findings in the neurological, psychological, and cognitive science
communities.

These three layers can be categorized loosely according to their
functional similarity with other animals. See also the six-layer archi-
tecture proposed by Marvin Minsky (Minsky, 2006) (discussed in
Chapter 9).

Cathexis — four elicitors for emotion synthesis. Carroll Izard
(1993) proposed that there are four types of elicitors of emotion in
humans. These have inspired a new connectionist model of emo-
tion synthesis. Juan Velasque of MIT (Velasquez, 1996) has used
these four types of elicitors to build an emotional synthesis called
“Cathexis”. The four elicitors in this model are:

• Neural — effect of neurotransmitters and other neurochemical
processes. These processes run independently, in the back-
ground, and are influenced by hormones, sleep, diet, depres-
sion mediation, etc.

• Sensorimotor — effect of posture, facial expression, muscular
tension, and other central efferent activity. These effects prima-
rily intensify a given emotional state, but in some cases appear
capable of generating new affective states.

• Motivational — effect of sensory provocations such as anger
provoked by pain of drives such as hunger and emotions evok-
ing each other.

• Cognitive — effect of cortical reasoning, implemented here via
an adaptation of Riesman’s theory.

Cargexis consists of a constellation of proto-specialists, like Minsky’s
agents in the Society of Mind (Minsky, 1985). Each proto-special-
ist represents a basic emotion types, which receives inputs from the
four elicitors, as well as from other proto-specialists. Each proto-
specialist can exert influence on output behaviors, e.g. joy with an
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intensity above its activation threshold, can produce a smile or joy,
and can inhibit distress and activate hope. Since proto-specialists
are used to implement both emotional and non-emotional states, it
is easy for emotions to interact with physical states; for example,
sorrow increases fatigue and decreases hunger. The result is a dis-
tributed connectionist-flavor model that can synthesize a variety of
emotions simultaneously.

The Cathexis model has only one update rule. The rule contains
terms that take on values specific to proto-specialists, but otherwise
the form is the same for every proto-specialist’s emotion intensity
(see annex for detail updating rules).

Interested readers on the four models can refer to the references
for more information.

Learning from autistic children may give us insights to building
a model for emotions. Autistic children do not interpret socio-affec-
tive cues such as tone of voice or facial expression well. Their social
inability to perceive, understand, and act using social-emotional
information affect their ability to interact and communicate effec-
tively with people. Today’s computer is naturally an autistic system
in the emotional aspect. Hence, how can a system be built to be
less autistic? Learning from autistic children and learning how to
help them to improve their social-emotional skill may in turn help
us to understand such social-emotional cues and make a system
that better responds to humans and learns like a human.

“…process of reward and punishment expresses itself through emotion.
Emotions are “states produced by reinforcing stimuli”. “Reinforcing”
stimuli are the ones that need to be decoded by special regions of the
brain, which generate the neural processes that we call “emotions”.
The representation of a “reinforcer” contains information about how
to calculate reward/punishment. The brain wants to maximize the
activation of representations relative to rewarders and minimize
activation of the representations relative to punishers.” — Edmund
Rolls (University of Oxford).
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How Do Emotions Affect Our Cognitive
Abilities?
Below are four examples of how emotion can affect our cognitive
abilities.

1. Emotion in decision-making. Picard suggested that affective
decision-making provides a good solution in the situation
where problems are faced, in which the possibilities cannot be
enumerated and evaluated in the available time. Picard added
that humans use feelings to help them navigate the oceans of
inquiry, to make decisions in the face of combinatorial com-
plexity. These feelings might be called “intuition” or “a sense
of knowing” or just “gut feelings”. Regardless of what they are
called, they provide a mechanism through which emotion
works powerful influences on human cognition and behavior.
It is commonly observed that humans can respond with
remarkable intelligence and flexibility despite insufficient
knowledge, limited memory, and relatively slow processing
speed. An integral component of human decision-making is
emotion, and this component could potentially be given to
computers.

2. Emotions in learning. Learning can be abandoned because
of negative feelings or enhanced because of positive feelings.
Dr Barry Kort suggested that learning systems have affective
states, and that future learning systems should exhibit such
learning states as curiosity, fascination, puzzlement, frustration,
insight, satisfaction, and confidence. 

3. Emotions influence memory. Emotions influence our memory
retrieval and memory encoding. Good feelings likely encode a
knowledge of positive outcomes. Bad feelings likely to encode
a knowledge of bad outcomes. Likewise, positive moods make
it easier to remember positive things while negative moods tend
to make it easier to remember negative things. For example,
when you come across a car accident, you may remember your
own negative experience of a car accident. Also, we tend to
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remember emotional events better, regardless of whether the
emotion was good or bad. For example, experiments have
shown that faces with fearful expressions are remembered bet-
ter than those with neutral ones.

Although memory retrieval remains a mystery, we know
that emotion plays a role in its function. Picard in his book,
“Affective computing”, indicated that memory may be the
chief mechanism through which emotions enter into the men-
tal associations active in analogical thinking and creativity.
Picard saw the influence of emotions in both high-focus rea-
soning and low-focus generation of associations as a conse-
quence of emotional influence on memory.

4. Negative emotion can impair our cognition. Too much pro-
longed negative emotion does not seem to help in cognition.
For example, studies have shown that depression can raise the
risks of developing dementia and Alzheimer’s disease later in
life. Dementia is the progressive decline in cognitive function
of the brain. The areas affected include memory, attention,
language, and problem solving. Alzheimer’s disease (AD) is a
neurodegenerative disease characterized by progressive cognitive
deterioration. Some scientists believe that depression releases
harmful stress hormones, which may damage brain structures
responsible for memory such as the hippocampus. (Source:
Archives of general psychiatry (data)).

Conclusions
The brain has specific circuits that handle emotions. These circuits
help to communicate “emotion” to the rest of the body via the
bloodstream and the nervous system. Emotion is a mechanism that
regulates the body. It causes changes in the body state.
Psychological research has revealed that there is direct behavioral
link between cognition and emotion, i.e. our thoughts affect the
way we feel about stimuli and vice versa. Our thoughts can change
our emotions. This influence can be considered to be “cognitive”
when they involve appraisal, comparison, categorization, inference,
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attribution, or judgment. Emotion could be one of the most
importance factors for an intelligent machine. Picard commented
that emotions may be a key reason why artificial intelligence has
failed to date (Picard, 1996).

For humans to truly be able to engage with the computer and
vice versa, it is important that the machine exhibit some form of
emotional expression in its cognitive process and also be able to
understand some level of human emotion. That would help for
humans to have a desire in engaging the machine and appreciate it
for everyday use. This is irrespective of whether the machines have
true feelings like humans or follow a set of rules for their emotional
behavior. 

Today, there are no computers with emotions that influence
their decision-making and other cognitive processes to the same
degree that these influences are believed to occur in people. 

There are models on emotion, and four of these models have
been discussed. However, till today, there is no model that can
completely represent the human emotional system. There are a
number of issues that one needs to overcome in order to model a
complete emotional system for computer. One of the key problems
is how to map emotional states to behaviors. As we have seen, fear
motivates a rat to find a means of escape, but it does not automat-
ically tell it by what means to pursue. Emotions motivate and bias
behaviors, but they do not completely determine them.
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C h a p t e r 7
LAMINAR COMPUTING

What, How, and Why Laminar Computing?

Laminar computing is a term coined by Professor Stephen
Grossberg from Boston University for modeling biological

intelligence. Grossberg has been doing research over the past 50
years on how the brain works. Some of his research covers the
learning mechanism in neural networks, the mechanism of the
visual cortex, how the cerebral cortex works, and how the brain
perceives things, giving rise to a mind. More recently, he has been
trying to understand the laminar structure in the brain to design a
computational model, which is the key interest of this chapter.

The lecture series Professor Stephen Grossberg (Fig. 7.1)
(Wang Professor of Cognitive and Neural Systems and Professor of
Mathematics, Psychology, and Biomedical Engineering at Boston
University) gave at MIT Lincoln Laboratory on neural network
technology was instrumental in motivating the laboratory to initi-
ate the national DARPA study on neural networks. More detailed
articles of Grossberg’s work can be found at http://www.cns.bu.
edu/Profiles/Grossberg/.

This chapter discusses laminar computing, several important
properties that underline laminar computing, how the ideas about
laminar computing evolved from Grossberg’s early research work,
and how the laminar architecture research has progressed from
vision to cognition.
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The Neocortex has a Laminar Pattern
The neocortex is typically made up of six layers of cells. In 1909,
the German anatomist, Korbinian Brodmann, identified more than
50 different areas of the neocortex (Brodmann, 1909). The differ-
ent areas of neocortex were identified based on the difference in
thickness of these layers and the size and shape of neurons. Some
examples of different areas identified in the visual pathways are the
striate visual cortex (V1), prestriate visual cortex (V2, V3, V4, MT,
MST), and inferotemporal cortex (IT) areas. 

In humans, 90% of the cerebral cortex is neocortex, and the
neocortex takes up about 76% of the human brain (Chudler,
2006). The neocortex contains about 28 billion neurons (28 × 109)
according to Mountcastle (Mountcastle, 1997), and is divided into
lobes. Note that if we take the average human brain as 23 billion
neurons from Rabinowicz’s study (Rabinowicz et al., 2002), then
the neocortex contains about 17.5 billion neurons (see Chapter 1).
The different regions of the neocortex are believed to have differ-
ent functions, such as sensory perception, generation of motor
commands, reasoning, thought, language, etc. 

The neocortex’s six distinct layers are named as follows:

• Layer 1 — Molecular layer. This layer consists of mostly den-
drites and axons of cells in deeper layers.

130 Brain-Mind Machinery

FA

Fig. 7.1. Picture of Professor Stephen Grossberg.
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• Layer 2 — External granular layer. This layer comprises largely
of granule cells.

• Layer 3 — External pyramidal layer. This layer has a variety of
cell types, including large pyramidal neurons that project mainly
to targets in other parts of the cortex.

• Layer 4 — Internal granular layer. This layer is like layer 2, com-
posed primarily of granule cells. It typically receives inputs from
layer 3 in other parts of the cortex. It can also receive direct
bottom-up inputs from other cortical areas and inputs from
layer 6.

• Layer 5 — Internal pyramidal layer. This layer contains mainly
pyramidal cells that are typically larger than those in layer 3 and
often project to subcortical targets or to layers 1/2 or 4 of
lower-level parts of the cortex.

• Layer 6 — Multiform layer. This layer is a mix of different cell
types and white matter. 

These six cortical layers are interconnected and their connections
vary with different neocortical areas, i.e. different areas in the brain
perform different functions and have different layer connections.
The boundaries between the layers are quite fuzzy, and it is common
that neurons cross layer boundaries with their dendrites and axons.
These six layers that form the neocortex represent the laminar
pattern. Hence, Stephen Grossberg coined the term “laminar com-
puting” for the “computation” performed by the laminar circuitry. 

“Laminar computing concerns the fact that cerebral cortex, the seat
of higher intelligence in all modelities, is organized into layered cir-
cuits (usually six main layers), which undergo characteristic bottom-
up, top-down and horizontal interactions.” — Stephen Grossberg
(Grossberg, 2003a).

The basic structure of the cortical layers forms columns known as cor-
tical columns in the mature cortex (some view this as a cortical maps).
Hence, the neocortex is said to be organized in columnar function
(Mountcastle, 1997); also known as the neocortical column.

Laminar Computing 131

FA
b654_Chapter-07.qxd  2/12/2009  9:14 AM  Page 131



Figure 7.2 shows an example of a visual cortical column. Each
column typically responds to a sensory stimulus representing a cer-
tain body part or region (of sound or vision). These columns are
typically similar and can be thought of as the basic repeating func-
tional units of the neocortex. 

In humans, the neocortex consists of about half a million of
these columns, each of which contains approximately 60000 neu-
rons. Mountcastle also defined the cortical minicolumn as a corti-
cal column containing 80–120 neurons. It has also been
discovered that the cortical column in the visual cortex has a
pinwheel-like pattern.

A pinwheel-like orientation (Fig. 7.3) has been discovered in
the cortical columns of cat and monkey visual cortexes (Ohki et al.,
2005).

Figure 7.4 shows the arrangement of neurons, dendrites, and
axons in vertical modules of the striate cortex (V1) of the macaque
monkey (Mountcastle, 1997) (picture origin from (Peters and
Sethares, 1996)).
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Fig. 7.2. A visual cortical column.
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Each cortical column contains six layers of cells (Fig. 7.5). The
appearance of the six distinct layers in the cortex depends on what
is used to stain it. The Golgi stain reveals neuronal cell bodies and
dendritic trees (extreme left picture). The Nissl method shows cell
bodies and proximal dendrites (middle picture). The Weigert stain
for myelinated fibers reveals the pattern of axonal distribution
(extreme right picture) (Heimer, 1994).

Scientists believe that understanding the distinct functions of
different parts of the neocortex, the functional utility of such lam-
inar organization in the control of behavior should have an enor-
mous payoff in understanding biological intelligence. Stephen
Grossberg in his 2003 paper said that if one can understand how
laminar circuits work in one part of the brain, then different intel-
ligent capabilities may be expected to be understood as variation
on a shared architecture theme (Grossberg, 2003a). The laminar
circuits of the visual cortex are well explored by the Cognitive and
Neural System Department in Boston University led by
Grossberg. Research is now on-going to carry this work further
from vision to cognition. As noted earlier, this chapter will discuss
the laminar computing done in BU/CNS. A number of details
may be missed out in the process of summarizing more than
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Fig. 7.3. Pinwheel representation of cortical orientation columns.
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40 years of research done by Grossberg and his colleagues in this
short chapter.

“When laminar computing models become sufficiently mature, they
will provide a blueprint for VLSI chip designers to try to design a uni-
versal laminar chip set whose variations can support many different
types of intelligence. These chips will, moreover, be manifestly self-
consistent for integration within a larger system controller, say for an
autonomous adaptive mobile robot, due to the fact that they have all
been fashioned from the same underlying design, and will all connect
in a stereotyped manner.” — Stephen Grossberg.
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Fig. 7.4. Layer arrangement of the striate cortex (V1).
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Top Down, Bottom-Up, and Horizontal
Interactions
Evidence has surfaced in both anatomical and neurophysiological
studies that the cells in the laminar layers have top-down (feedback),
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Fig. 7.5. Six distinct layers of the laminar architecture.
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bottom-up (feedforward), and horizontal interactions. These have
become one of the key design features in laminar computing. The
fundamental question then is: “How are bottom-up, top-down,
and horizontal interactions organized within cortical layers to gen-
erate adaptive behaviors?”

Brain signals related to the knowledge we have acquired about
the world are called top-down. Signals related to incoming sensory
information are called bottom-up. Grossberg and Carpenter have
explained that bottom-up information by itself can activate the tar-
get nodes. Target nodes, in the biological sense, refer to the cells
that represent the target. The top-down expectation selects consis-
tent bottom-up signals, suppresses inconsistent bottom-up signals,
and cannot by itself activate the target node. The role of top-down
processing enables us to pay attention to learn expectations about
the world.

Top-down influence can occur during face-to-face conversation —
visual feedback (e.g. head and eye gesture) to communicate relevant
information and to synchronize rhythm between participants.
People often rely more on visual feedback than on visual perception.

It is noted that the connections “up” and “down” within the
thickness of the cortex are more obvious and dramatically denser
than the “horizontal” connections. Examples of horizontal neu-
rons connection are shown below.

Figure 7.6 shows the horizontal neurons (A), horizontal pyram-
idal cells (B), and fan-shaped neurons (C) in layer VI (layer 6) of a
21-day old rat (Ferrer et al., 1986). More information on horizon-
tal neuron interactions can be found in the paper by (Novojilova
and Babmindra, 2004).

Attention. Attention is a behavioral concept, but one whose
properties arise from brain mechanisms. Attention can prime an
observer to expect an object to occur at a given location or with
particular stimulus properties (Duncan, 1984). According to
Grossberg (Grossberg, 2005), attention is part of a unified design
of top-down, bottom-up, and horizontal interactions among iden-
tified cells in laminar cortical circuits.

Attentive information processing is a fast processing loop, while
learning and memory is a slower processing loop. Grossberg states
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that top-down attentive feedback encodes learned expectations that
self-stabilize learning in response to arbitrary temporal sequences
of input spatial patterns in real time.

Attention is linked to learning. The role of attention in control-
ling adult plasticity and perceptual learning was demonstrated by
(Ahissar and Hochstein, 1993) and (Gao and Suga, 1998). Gao
and Suga reported physiological evidence that acoustic stimuli
caused plastic changes in the inferior colliculus (IC) of bats only
when the IC received top-down feedback from auditory cortex.
These authors also reported that plasticity is enhanced when the
auditory stimuli were made behaviorally relevant. Grossberg indi-
cated that this is consistent with the ARTa (Adaptive Resonance
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Fig. 7.6. Horizontal connecting neurons.

a ART was introduced as a theory of human cognitive information pro-
cessing (Grossberg, 1976), and later, the theory has evolved as a series
of real-time neural network models that perform unsupervised and
supervised learning, pattern recognition and prediction (Carpenter and
Grossberg, 1987).
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Theory) proposal that top-down feedback allows attended, and
thus, relevant, stimuli to be learned while suppressing unattended
irrelevant ones. Note: the evidence that cortical feedback also con-
trols thalamic plasticity in the somatosensory system has been
reported by (Krupa et al., 1999).

Feedforward and feedback. There is rapid feedforward process
when the bottom-up data is unambiguous. Feedback is automati-
cally engaged, using top-down data, to choose between ambiguous
alternatives.

When there is a good enough match between bottom-up and
top-down signal patterns between two or more levels of process-
ing, their positive feedback signals amplify and prolong their
mutual activation, leading to a resonant state (Grossberg, 2003).
The amplification and prolongation of the system’s fast activa-
tions is sufficient to trigger learning in the more slowly varying
adaptive weights that control the signal flow along pathways from
cell to cell.

The neuron fires rapidly when stimuli is center focused with on-
center (self-excitatory) and off-surround (competitive). If the stim-
uli is surround focused, the off-center and on-surround will cause
rapid firing. 

Figure 7.7 shows the recurrent (feedback) on-center off-surround
network. This network is capable of contrast-enhancing its input
pattern, normalizing its total activity, and storing the contrast-
enhanced pattern in short-term memory (STM) without saturation
(Grossberg, 1982).

Shunting Networks
The core mathematical framework for biophysically based neural
modeling was developed by Sir Alan Hodgkin and Sir Andrew
Huxley in the early 1950s. Their work won them a Nobel Prize.
Hodgkin and Huxley used the giant squid’s axon to carry out
their experiment. They recorded the membrane potential dynam-
ics of a single neuron and modeled them using a set of nonlinear
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differential equations (Hodgkin and Huxley, 1952). See also
(Nelson, 2004), which nicely summarized their work. Hodgkin
and Huxley’s cell membrane equation forms the basis of many
subsequent studies on modeling the neurons. 

Grossberg’s shunting equation is a network variant of the orig-
inal single cell Hodgkin and Huxley’s cell membrane equation (see
annex for the shunting equation and its correspondence to
Hodgkin and Huxley’s cell membrane equation).

However, some critics, such as (Douglas et al., 1988) and
(Ferster and Jagadeesh, 1992), question the “biological plausibil-
ity” of shunting in the cortex. These critics debated that shunting
inhibition does not appear to be performed by cortical neurons. 

However, to a physiologist, “shunting inhibition” is purely silent,
meaning that if you stimulate an inhibitory fiber alone, no hyper-
polarization of post-synaptic cells will occur. Biophysically, this means
that the reversal potential of inhibition is at the resting potential,
and more importantly, that large conductance changes occur.b The
large conductance changes have a divisive or normalizing effect on
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Fig 7.7. On-center off-surround network.

b Note that silent inhibition can also occur by just choosing the
inhibitory saturation point to equal the resting potential. Thanks to the
comment by Professor Stephen Grossberg.
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excitatory current. Conductance change is equivalent to the change
in the size of the denominator of the equilibrium solution of the
shunting equation. So, the experimental data conducted by some
scientists may have appeared to rule out significant inhibitory nor-
malization via the denominator.

Experiments, such as (Heeger, 1992) and (Borg-Graham et al.,
1998), support the hypothesis that shunting inhibition does take
place in cortical neurons. Hence, it is argued that though normal-
ization clearly occurs in the cortex, a shunting network may not be
the actual means, but at best is a simple and intuitive way of achiev-
ing the same effect.

Shunting network models are used by Grossberg and his col-
leagues in BU/CNS for modeling the neurons and their mutual
interaction in the brain. 

The shunting dynamics indicate that unexcited sites are “switched
ON” by mass action from “their” (excitatory) inputs, and excited
sites are “switched OFF” by mass action from “other” (inhibitory)
inputs.

Folded Feedback
Another feature of the laminar computing is the folded feedback
(another term coined by Grossberg). What is folded feedback? All
cells in layer 2/3 send excitatory feedback signals to layer 6 via
layer 5 (Gilbert and Wiesel, 1979; Ferster and Lindstrom, 1985).
Layer 6, in turn, once again activates the on-center off-surround
network from layer 6 to layer 4, which feeds into layer 2/3.
Grossberg calls this process folded feedback (Grossberg, 1999).
Note that cells in layer 2/3 are complex cells, and cells at layers 4
and 6 are simple cells.

To reiterate the idea of folded feedback, consider the attentional
signals from the higher cortex being fed back to layer 4 of V1, via
the modulatory 6 to 4 path. Corticocortical feedback axons tend
preferentially to originate in layer 6 of the higher area and to ter-
minate in layer 1 of the lower cortex, where they can excite the api-
cal dendrites of layer 5 pyramidal cells whose axons send collaterals
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into layer 6. Having arrived in layer 6, the feedback is then
“folded” back up into the feedforward stream by passing through
layer 6 to 4.

Grossberg explained that when ambiguous or complex scenes
are being processed, intracortical folded feedback enables stronger
groupings that started to form in layer 2/3 to inhibit weaker
groupings, whereas intercortical folded feedback enables higher-
order processing constraints to bias which groupings will be
selected. Grossberg further explained that both infants and adults
can focus their attention selectivity upon whole objects because of
attention causing an excitatory modulatory bias at some cells in
layer 4, and groupings that form in layer 2/3 can be enhanced by
this modulation via their positive feedback loops from 2/3 to 6 to 4
to 2/3. Grossberg’s employs this folded feedback to explain how
visual attention can flow along an object boundary and also an illu-
sory contour (Roelfsema et al., 1998; Raizada and Grossberg,
2001). See also the LAMINART model at later sections. 

Figure 7.8 shows the intracortical feedback from layer 2/3 to
layer 6 and intercortical feedback from the higher regions to layer
6 of the lower regions. This intracortical feedback inhibits weaker
groupings and enables stronger groupings to form. The intercorti-
cal feedback enables higher order processing, such as attention to
bias which groupings will be selected. The intercortical attention
acts via a top-down modulatory on-center off-surround network,
and the intracortical loop acts to stabilize learning.
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Fig. 7.8. Intracortical and intercortical feedback connection in the laminar layers.
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The intracortical and intercortical feedback circuits that control
the property of attentional selection have been shown in modeling
studies to play a key role in stabilizing infant development and
adult perceptual learning within multiple cortical areas, including
cortical areas in V1 and V2.

Complementary Properties
In (Grossberg, 2000) paper, Grossberg presented evidence that the
brain’s processing streams compute complementary properties.
Each stream’s properties are related to those of a complementary
stream much as a lock fits its key, or two pieces of a puzzle fit
together. Pairs of parallel cortical processing streams compute com-
plementary properties in the brain. Grossberg illustrated the com-
plementary properties using the ventral (“what”) and dorsal
(“where”) streams of the visual pathway. See Fig. 7.9 below for the
two streams in visual pathway.

What and where stream. Fig. 7.9 shows some visual processes
and their anatomical substrates that are being modeled as part
of a unified vision system. LGN = Lateral Geniculate Nucleus;
V1 = striate visual cortex; V2, V4, MT, MST = prestriate visual
cortex; IT = Inferotemporal cortex; PPC = posterior parietal
cortex; PFC = prefrontal cortex. Understanding how the brain
sees is one of the areas where experimental and modeling work
have advanced the furthest, and this progress illustrates several
different types of complementary interactions. The figure pro-
vides a schematic macrocircuit of the types of processes that
are assembled into a unified theory of how the brain sees, includ-
ing processes of vision, recognition, navigation, and cognition.
In particular, key matching and learning processes within
the “what” and “where” cortical streams have been proposed
to be complementary: The “what” stream, through cortical
areas V1-V2-V4-IT-PFC, learns to recognize what objects
and events occur. The “where” stream, through cortical areas
V1-MT-MST-PPC-PFC, spatially localizes where they are, and
acts upon them. Complementary processes also occur with each
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stream: the “what” stream boundary grouping via the (V1
interblob)-(V2 pale stripe)-V4 stages, and surface formation via
the (V1 blob)-(V2 thin stripe)-V4 stages, have complementary
properties. The “where” stream target tracking via MT-(MST ven-
tral) and navigation via MT-(MST dorsal) have complementary
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Fig. 7.9. A proposed unified vision system.
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properties. Such complementary processes are predicted to arise
from symmetry-breaking operations during cortical develop-
ment (Grossberg, 2003).

The “Drum-up” to Laminar Computing
From 1958, Stephen Grossberg, as an undergraduate student,
started to derive neural network learning equations. Later, as a
PhD student in Rockefeller University, he conducted research on
nonlinear dynamics learning equations. During the late 1960s and
early 1970s, he continued to study the nonlinear dynamics in the
context of how network of cells work in a recurrent on-center off-
surround anatomy. 

From recurrent on-center off-surround network to shunting net-
work. In the late 1960s, experimental studies suggested that cells
are arranged in a recurrent on-center off-surround anatomy
(Anderson et al., 1969; Stefanis, 1969) (Eccles et al., 1967). Based
on this fundamental principle, Grossberg built his system equation
called the recurrent on-center off-surround networks (Grossberg,
1973). (Details of the equation are given in the notes.) The recur-
rent on-center off-surround network equation is shown to resolve
the noise-saturation dilemma in neural networks. Grossberg indi-
cated that the noise-saturation dilemma confronts all noisy cellular
systems that process input patterns. If the inputs are too small, they
can get lost in noise. If the inputs are too large, they can turn on
all excitable sites, thereby saturating the system and rendering it
insensitive to input differences across the cells. Grossberg explained
that the competitive interactions among the cells from the recurrent
on-center off-surround networks automatically retune their sensi-
tivity to overcome the saturation problem (Grossberg, 1980). One
of the key properties of the recurrent on-center off-surround net-
works is the normalization property or shunting effect. Grossberg
indicated that in the neural context, the competitive interactions
are shunting interactions, and they are carried out within on-cen-
ter off-surround anatomy. The off-surround signals automatically
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inhibit or shunt the networks, i.e. they self-normalize the networks
total activities. 

Hence, the recurrent on-center off-surround network was later
also known as the shunting on-center off-surround network (Ellias
and Grossberg, 1975) or shunting cooperative-competitive feed-
back networks (Grossberg, 1982). It was then reformulated as the
current shunting networks and used in the short-term memory
(STM) model and many other experiments related to vision process
modeling (Grossberg, 1988). 

From shunting network to solving the stability-plasticity dilemma.
In the 1980s and 1990s, Grossberg also discussed the issue of sta-
bility and plasticity dilemma in the brain. Grossberg called the
problem — whereby the brain learns quickly and stabily without
catastrophically forgetting its past knowledge — the stability-plas-
ticity dilemma. Grossberg indicated that the stability-plasticity
dilemma must be solved by every brain system that needs to rap-
idly and adaptively respond to the flood of signals that subserves
even the most ordinary experiences. If the brain’s design is parsi-
monious, then similar design principles operating in all the brain
systems that can stabily learn an accumulating knowledge base
in response to changing conditions throughout life (Grossberg,
1999, 2003).

Grossberg suggested that top-down attention is a key mecha-
nism whereby the brain solves the stability-plasticity dilemma.
Grossberg explained that, without an appropriate type of nonlinear
top-down learned feedback, one cannot escape this instability in
response to a non-stationary input environment. This suggests a
simple type of top-down on-center off-surround feedback circuit
(i.e. shunting networks) would provide additional computational
power to solve the problem. As discussed earlier, the shunting net-
work has inherited a nonlinear feedback process and can generate
basic properties like noise suppression, automatic gain-control nor-
malization, and stable learning.

The link-up with ART. In early 1970s, Grossberg explained that
the functional unit of perception and cognition is a state of resonant
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activity within the whole system. And the resonant state can drive
adaptive or learned changes in the system structure. The resonant
state is therefore called an adaptive resonance. Adaptive resonance
arises when feedforward (bottom-up) and feedback (top-down)
signals within the systems are consonant. The feedback computa-
tion corresponds to our intuitive notion of expectancies. Feedback
expectancies help to stabilize the code against erosive effects of
irrelevant environmental fluctuations.

Adaptive resonance theory (ART) was introduced in 1976.
Grossberg explained that ART helps to self-stabilize learning in a
real-time environment where learning needs to remain stable
through time, free from catastrophic forgetting, particularly when
the amount of data becomes large and can change its statistical
properties through time (Grossberg, 1976).

ART was introduced as a theory of human cognitive informa-
tion processing (Grossberg, 1976), and later, the theory evolved
into a series of real-time neural network models that perform unsu-
pervised and supervised learning, pattern recognition and predic-
tion (Carpenter and Grossberg, 1987) (Carpenter and Grossberg,
2003). A series of ART-based models was proposed in the last 20
years of research in BU/CNS. These include CogEM, START,
iSTART, etc. (See notes for summaries of the various ART-based
models.)

From ART to LAMINART in vision. Why the LAMINART
model? Grossberg explained that laminar layers follow the adaptive
resonance theory (ART), or ART could be realized within identi-
fied laminar cortical circuits. ART is a perceptual and cognitive the-
ory that proposes how stable development and learning can occur
throughout life using top-down attention. ART predicted in the
1970s that attention can be thought of as a top-down modulatory
on-center off-surround network.

The LAMINART model proposes how bottom-up, top-down,
and horizontal cortical circuits work together in laminar circuits and
how they realize processes of development, learning, grouping, and
attention.
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The LAMINART model also explained how the visual cortex
organizes for processing boundary and surface information, how
preattentive and attentive processing are intimately linked within
the cortical layers, and how laminar computing enables the visual
cortex to realize: (1) the binding process whereby cortex groups
distribute data into coherent object representations; (2) the atten-
tional process whereby the cortex selectively processes important
events; and (3) the developmental and learning processes whereby
the cortex shapes its circuits to match environmental constraints. It
is proposed that the mechanisms governing (3) in the infant lead
to properties (1) and (2) in adults. 

Figure 7.10 shows a LAMINART model. The model is a syn-
thesis of feedforward (bottom-up), feedback (top-down), and hor-
izontal interactions within and between the lateral geniculate
nucleus (LGN) and visual cortical areas V1 and V2. Cells and con-
nections with open symbols indicate excitatory interactions, and
closed symbols indicate inhibitory interactions. The triple top-
down connections indicate attention feedback (Grossberg, 2000b;
Grossberg, 1999).

The LAMINART model is used to simulate neurophysiological,
anatomical, and psychophysical data about the visual cortex.
Variants of the model are finding their way into new algorithms for
processing complex and noisy imagery with a large dynamical range
such as SAR imagery. 

The LAMINART model has the property of hybrid feedforward
and feedback computing. When an unambiguous scene is processed,
the model can quickly group the scene in a fast feedforward sweep
of activation that passes directly through layer 4 to 2/3, and then
on to layers 4 to 2/3 in subsequent cortical areas. This property
clarifies how recognition can be fast in response to unambiguous
scenes. If, however, there are multiple possible groupings; say, in
response to a complex textured scene, then competition among
these possibilities due to inhibitory interactions in layers 4 and 2/3
can cause all cell activities to become smaller. This happens because
the competitive circuits in the model are self-normalizing; that is,
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they tend to conserve the total activity of the circuit. This self-
normalizing property emerges from shunting on-center off-surround
networks that process input contrast over a large dynamic range
without saturation (Grossberg, 1973; Douglas et al., 1995).

Grossberg indicated that these self-normalizing circuits carry
out a type of real-time probability theory in which the amplitude of
cell activity covaries with the certainty of the network’s selection,
or decision, about a grouping. Amplitude also covaries with pro-
cessing speed. Low activation greatly slows down the feedforward
processing in the circuit because it takes longer for cell activities to
exceed output thresholds and to activate subsequent cells above the
threshold.

In the LAMINART model, network uncertainty is resolved
through feedback, i.e. weakly active layer 2/3 grouping cells feed
back signals to layers 6, then 4, then 2/3, to close a cortical feed-
back loop that rapidly contrast enhances and amplifies a winning
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Fig. 7.10. A LAMINART model.
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grouping. As the winner is selected and weaker groupings are sup-
pressed, its cells become more active, and hence, can again more
rapidly exceed output thresholds and send the cortical decision to
subsequent processing stages. In summary, the LAMINART circuit
behaves like a real-time probabilistic decision circuit that operates
in a fast feedforward mode when there is little uncertainty, and
automatically switches to a slower feedback mode when there is sig-
nificant uncertainty. Feedback selects a winning decision that
enables the circuit to speed up again. Activation amplitude and
processing speed both increase with certainty. The large activation
amplitude of a winning grouping is facilitated by the synchroniza-
tion that occurs as the winning grouping is selected.

The LAMINART model clarifies how excitatory and inhibitory
connections in the cortex can develop in a stable way by achieving
and maintaining a balance between excitation and inhibition.
Long-range excitatory horizontal connections between pyramidal
cells in layer 2/3 of the visual cortical areas play an important role
in perceptual grouping (Hirsch and Gilbert, 1991; McGuire et al.,
1991). The LAMINART model proposes how development
enables the strength of long-range excitatory horizontal signals to
become balanced against that of inhibitory signals, which are medi-
ated by short-range di-synaptic inhibitory interneurons that target
the same target pyramidal cells.

Variants of LAMINART. A 3-D LAMINART model was pro-
posed in 2003.

Figure 7.11 shows a 3-D LAMINART model (Grossberg and
Howe, 2003), including 3-D boundary completion and attention,
as well as the binocular and monocular interactions. Due to the
binocular fusion that occurs in layer 3B, the binocular boundaries
that are formed in layer 3B and 2/3A can be positionally displaced
or shifted, relative to their monocular input signals, to layers 6 and 4.
The model proposed that horizontal connections occur in layer 5.
Feedback signals from layer 2/3A propagate vertically to layer 5,
whose cells activate horizontal axons in layer 5. In 2007, the
dARTEX neural model was proposed, illustrating how laminar
interactions in the visual cortex may learn and recognize object

Laminar Computing 149

FA
b654_Chapter-07.qxd  2/12/2009  9:15 AM  Page 149



texture and form boundaries. The model combines multiple-scale
bottom-up filtering, horizontal grouping, top-down spatial and
object attention, and a distributed ART (dART) classifier, in a lami-
nar cortical circuit model. dARTEX is an extension of ARTEX. The
model unifies five interacting processes: region-based texture classi-
fication, contour-based boundary grouping, surface filling-in, spa-
tial attention, and object attention. dARTEX shows how form
boundaries can determine regions in which surface filling-in occurs;
how surface filling-in interacts with spatial attention to generate a
form-fitting distribution of spatial attention or attentional shroud;
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Fig. 7.11. A 3-D LAMINART model.
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how the strongest shroud can inhibit weaker shrouds, and how the
winning shroud regulates learning of texture categories, and thus
the allocation of object attention (Bhatt et al., 2007).

From Vision to Cognition
The vision process activates about 50% of the brain cerebral cortex,
and hence, most work has been devoted to vision research.
However, increasingly the focus has been moving toward cognition.
Can Grossberg’s LAMINART principles be used to explain data on
the temporal dynamics of cognitive information processing? In par-
ticular, how do the layered circuits of the prefrontal and motor cor-
tex carry out working memory storage, sequence learning, and
voluntary sequential performance? A neural model called LIST
PARSE (Grossberg and Pearson, 2006) has begun to explain and
quantitatively simulate cognitive data about immediate serial recall
and free recall, including bowing of the serial position performance
curves, error-type distributions, temporal limitations upon recall
accuracy, and list length effects. (Note: bowing means that the sys-
tem is not able to reproduce the correct order of items from work-
ing memory if the list of stored items becomes too long. Thus the
inability to read-out correct order information of long lists from
working memory can be traced to the need for stable learning.) The
model also qualitatively explains cognitive effects related to atten-
tion, temporal grouping, variable presentation rates, phonemic sim-
ilarity, presentation of non-words, word frequency/item familiarity
and list strength, distracters and modality effects. In addition, the
model quantitatively simulates neurophysiological data from the
macaque prefrontal cortex obtained during sequential sensory-
motor imitation and planned performance demonstrating parallel
coding of movements in a sequence with relative activation predic-
tive of performance order (Grossberg, 2006).

Grossberg indicated that the LIST PARSE model proposes
functional roles for the different layers of granular lateral prefrontal
cortex, notably, the ventrolateral prefrontal cortex, for storage of
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temporal lists of events in working memory and learning of list
categories. LIST PARSE illustrates how variations on granular
laminar cortical circuits can quantitatively simulate data about spa-
tio-temporal processes in vision as well as spatio-temporal data
about cognition.

Notes: This provides a quick glance through Professor Stephen
Grossberg’s work. All the materials in this chapter are largely sum-
maries and extracts from the published work of Grossberg,
Carpenter, and their colleagues.
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C h a p t e r 8
PROBABILISTIC COMPUTING:
THE BAYESIAN MIND

Within the neural modeling community, one choice of math-
ematical tools uses Bayesian principles and graphical models.

This mathematical approach is chosen due to its claim of clear seman-
tics and an expressive medium for capturing neural function at mul-
tiple levels of details. For example, in modeling the visual hierarchical
cortex architecture, a number of scientists proposed a Bayesian
network approach to model this hierarchical architecture. 

As early as 1991, Mumford had started to model the brain’s
cognitive process using the Bayesian method (Mumford, 1991;
Mumford, 1992). In (Lee and Mumford, 2003), they extended
their hierarchical Bayesian model to account for processing at mul-
tiple regions in the temporal cortex including V1, V2, V4 and the
inferotemporal cortex (IT). They assumed that each of these
regions is responsible for computing features at different levels of
abstraction. And (Dean, 2005) further generalized their model to
include an account on the hierarchical layer of the cortex. 

Subsequently, the hierarchical Bayesian model was extended to
include belief propagation (Isard, 2003; Sudderth et al., 2003; Rao
and Ballard, 1996; Zernel, 2000; George and Hawkin, 2005). 

Is the brain operating on Bayes rules? Some scientists have a strong
view that it is not, and others think that Bayes rules and Bayesian
inference have a role in the brain. From the behavioral point of view
there are claims that the brain exhibits some probabilistic “likeness”.
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Furthermore, some believe that behavior drives the brain rather
than the brain drives behavior. 

I believe the Bayesian approach is useful in the sense that it
enables us to explicitly explore the role of prior knowledge and
combine evidence of the likelihood of events. If we take the notion
that the brain is an information processing machine, then informa-
tion processing will typically involve inferring new information
from information that has been derived from the senses or from the
memory. The process of inferring typically needs to take into
account uncertainty. Probabilistic methods such as Bayesian tech-
niques can explicitly take into account uncertainty. Besides,
Bayesian modeling can serve as a good approximation to address
high-level cognition and new data can be used to update existing
estimates of the most likely model of the world. The use of Bayesian
methods for inference in cognition have been used by a number of
cognitive scientists (Chater et al., 2006a,b; Gopnik et al., 2004;
Gopnik and Tenenbaum, 2007). In cognitive psychology, intelli-
gent actions are thought to come about due to causal processes
and mechanisms. And causal Bayesian networks are one of the
graphical methods for representing the causal construction
(Glymour, 2001).

“Connectionism will be affected by the increasing appeal to Bayesian
probability theory in human reasoning.” — (Thomas and
McClelland, 2008).

(McClelland and Thompson, 2007) reported that work has already
begun to relate connectionist and Bayesian accounts and is used in
the domain of causal reasoning in children. In some cases, connec-
tionism may offer alternative explanations of the same behavior;
in others it may be viewed as an implementation of a Bayesian
account.

However, the Bayesian method may be difficult to scale up, i.e.
for a large scale information processing problem, the technique
may have limitations unless a good approach can be used to over-
come the limitations in the future.
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In the following, we present one approximate approach of
modeling the human cognitive process using the Bayesian method.

Probabilistic Model of Cognitive Process
In (Ng et al., 2006, 2007), a cognition-based dynamic reasoning
machine called D’Brain was developed. D’Brain stands for
Dynamic Bayesian Reasoning and Advanced Intelligent Network.
D’Brain is a high level cognitive system designed to provide deci-
sion support to a human decision-maker. The design of D’Brain’s
architecture incorporated a cognitive perspective, so it has some
level of resemblance to the human cognitive process, which is a key
element in building the next generation of truly intelligent cogni-
tive aids for humans (Ng, 2003). 

In designing D’Brain’s cognitive framework, analogies were
drawn between the framework components and the human brain
components. The brain regions important for cognitive functions
include the neocortex (the seat of higher intelligence), the limbic
system, such as the hippocampus, which is important for memory
formation, and the thalamus that plays a critical role for relaying
information from the sensory to diverse brain regions. Note that in
this work, we loosely equate the thalamus to a resource manager. 

Memory is an important component in the study of cognitive
intelligence (Ng, 2003). The hippocampus has an important role
in the formation of new memories about experienced events
(episodic memory) and is part of a larger limbic system involved in
learning and the consolidation of long-term memories. There are
also the sensory memories and working memories in the brain.

Figure 8.1 shows a very simplified overview of the brain.a

In designing the D’Brain cognitive framework, various cogni-
tive mechanisms proposed by (Endsley, 2000), which are impor-
tant for the development of situation awareness, have been
considered. D’Brain adopted Endsley’s concept of instantiating

Probabilistic Computing: The Bayesian Mind 155

FA

a Figure 8.1 is by no means completed nor does it provide sufficient
details for the complete implementation of the entire brain.

b654_Chapter-08.qxd  2/12/2009  9:15 AM  Page 155



situation models from mental models for reasoning. However, adopt-
ing from the human brain model, the D’Brain design improved on
Endsley’s model by introducing the learning/adaptation module.

Mental models are mechanisms whereby humans are able to
generate descriptions of system purpose and form, explanations of
system functioning and observed system states, and predictions of
future states. Mental models are used to describe a person’s repre-
sentation of some systems of interest. Mental models embody
stored long-term knowledge about these systems that can be called
upon to direct problem solving and interaction with other relevant
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Fig. 8.1. A simplified architecture of the human brain system.
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systems when needed. In a way, we can think of mental models as
stores of long-term memory. On the other hand, a situation model
is a schema depicting the current state of the mental model of the
system, and hence, is stored in the short-term memory. As new
observations of the changing environment are made, the situation
model is updated. Based on information of the current environ-
ment, the situation model draws knowledge from relevant mental
models in order to explain the current situation. In this sense, the
situation model is the combination of instantiations of various
mental models. In summary, mental models represent general
knowledge and are static and more generic, whereas a situation
model is specific to the current situation, and hence, more
dynamic. In particular, a situation model not only captures the
human’s representations of the various parameters of the system,
but also includes an understanding of the dynamics of the system
developed from changes in the situation model over time. While a
situation model is developed from observing the current world, it
is also largely influenced by the underlying mental models that the
person has accumulated through learning from past experiences in
other worlds. By reasoning using situation and mental models, we
can determine what information should be attended to, how that
information should be interpreted and integrated, and what pro-
jections can be made about what will happen to the system in the
near future (perception, comprehension, and projection). Figure 8.2
shows the design of the cognitive framework for an application on
activity and intent inference. 

The cognitive framework for activity and intent inference
draws some analogy with the biological components of our
brain. For example, the Intent Inference module and Model
Matching model of the framework are equated to components
of the neocortex. The Attention module and Context/
Environment Information Management module are equated
loosely to components of the thalamus. Mental models are like
factual knowledge stored in our long-term declarative semantic
memory. Situation-specific intent models are like events stored
in our long-term declarative episodic memory. In our cognitive
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framework, mental models are dynamically pieced together in
real-time as the external environment changes, and hence, our
interpretation of the situation is updated. This is similar to how
our semantic memory of our brain, which stores bits of factual
information, are pieced together to interpret a certain event/
episode. In our Intent Model Tracking, Prediction and Feedback
Module of our framework, situation-specific intent models are
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Fig. 8.2. Cognitive framework for activity and intent inference.
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stored and tracked. This memory used for storing situation-spe-
cific intent models is similar to our declarative episodic memory
formed by our hippocampus. The Model Revision module is
then similar to how we generalize several monitored episodic
memory to obtain new factual knowledge, which is then incor-
porated into semantic memory. The ability to store and track
episodes (the function of the hippocampus) is important for
learning new knowledge. The algorithms used to select which
models to combine and how to combine them can be said to be
akin to cognitive skills. The memory that stores these algorithms
is an analogy to our brain’s long-term procedural memory,
which also stores skills.

An advantage of our framework design is that the implementa-
tion of mental models, and hence, situation and intent model, is
not restricted to a particular knowledge representation. We can use
Bayesian networks, neural networks (Haykins, 1999), fuzzy rules
(Zadeh, 1974), templates, etc. Furthermore, we can have a mixture
of such mental model representations and fuse them during the
intent model construction process by, say, the Dempster–Shafer
algorithm. However, the choice of the mental model representa-
tion has a major impact on the implementation of the inference sys-
tem. It affects the way in which the intent model can be
constructed through combination of the situation models.
Nonetheless, the problem of using a new knowledge representation
might be tackled by adding new algorithms to our declarative
memory. The new algorithms can be added manually, or ultimately,
the system might be able to learn new algorithms autonomously.
We acknowledge that combining various mental model representa-
tions, such as Bayesian networks and neural networks, is not a triv-
ial task. However, we point out that our architecture does not limit
us to a single mental model representation such as Bayesian net-
works. The advantage our architecture has is that it has the flexi-
bility to combine various mental models that are constructed in
different representations to form a situation model. For example, a
knowledge engineer well-versed in rule-based systems can construct
a set of knowledge fragments in rules, while another knowledge
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engineer well-versed in probabilistic models can construct another
set of knowledge fragments in Bayesian networks and the architec-
ture allows the fusion of the knowledge fragments from these two
experts.

Bayesian Networks
For our first implemented system, we chose to use Bayesian net-
works because a strong analogy exists between our cognitive frame-
work and the knowledge-based approach using Bayesian networks.
Furthermore, we take the view of the brain being as an information
processor, and information processing typically involves inferring
new information from information that has been derived from the
senses or memory. The process of inferring typically needs to take
into account uncertainty, and hence, the field of probabilistic meth-
ods is considered. 

The concept of building situation-specific Bayesian networks
(SSBN) (Wright et al., 2002; Laskey et al., 2001) from a library of
network fragments coincides with the idea of instantiating situation
models from mental models (network fragments are the imple-
mentation of long-term memory (LTM). This includes “context/
environment database” and “mental model library” modules in
our cognitive architecture). Building SSBN corresponds to “model
matching”, “context/environment information management”,
“situation model instantiation and maintenance”, and “situation-
specific intent model construction” modules in our architecture.
The fragment library is viewed as long-term memory that embod-
ies static knowledge of different domains and the situation spe-
cific network as the current working memory or short-term
memory (STM).

Most of the solutions reported in publications on using
Bayesian networks for inference are based on the concept of
building a complete and static Bayesian network for carrying
out the inference process. The disadvantage of such static mod-
eling is that the events and activities offer changes from what
have been expected. Hence, the static network will not be able
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to fully represent the new situation or adapt sufficiently well to
it. To adapt to dynamic situations, instead of using a static
Bayesian network to reason about the situation, we use an evolv-
ing situation-specific Bayesian network (SSBN) that is formed by
fusing Bayesian network knowledge fragments together accord-
ing to the sensor inputs received. We build our mental models of
a certain domain by first constructing these Bayesian network
knowledge fragments. These fragments form a knowledge base
of the domain. Each fragment models a Bayesian network with a
network structure that generally holds true, and each fragment
behaves like a standard Bayesian network. As evidence is
observed, knowledge (or network) fragments are fused together
to form a SSBN (Fig. 8.3). In other words, we maintain a library
of sub-networks fragments that encode a smaller set of relation-
ships that generally hold true. These fragments are then fused at
run-time based on the presence of evidence, and is constantly
updated to reflect the current situation. When evidence streams
in, for example, when node A is observed (Fig. 8.3), the system
will search for fragments that contain node A and fuse them
together with the previous SSBN to form an updated and
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current SSBN. Likewise, when node B is observed, the system
will fuse fragments that contain node B with the previous SSBN
to form the new and current SSBN. We also acknowledge that
the system does not need to fuse all fragments that contain the
observed node. There needs to be some control in order to con-
trol which fragments will be fused into the SSBN. Also, frag-
ments can be deleted when they are no longer relevant to the
current situation.

Knowledge bases are akin to libraries and the network frag-
ments belonging to a knowledge base are akin to the books that
belong to a particular library. Note that each knowledge fragment
is itself a standard Bayesian network (Pearl, 1988).

The equations for fusing Bayesian network knowledge frag-
ments to create the SSBN in order to perform dynamic reasoning
can be found in the Notes for this chapter.

Conclusions
This chapter presented the perspective of modeling the brain using
the probabilistic approach. The advantages and disadvantages of using
this probabilistic approach were discussed. An example of a proba-
bilistic model for the cognitive process was presented. The probabilis-
tic model using Bayesian networks and its modeling of the “long-term
memory” and “short-term working memory” were discussed.
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C h a p t e r 9
THINKING MACHINE: HIGHER
THEORIES OF BRAIN AND
COMMONSENSE KNOWLEDGE
GENERATION

“You can’t think about thinking, without thinking about thinking
about something.” — Seymour Papert (Papert, 2005).

One clear distinct feature humans have is the ability to think.
Every moment of our lives, we are thinking. We are so

involved in using our brain for thinking that sometimes we do not
even notice it.

“What makes us such excellent animals? We do not have the strength
of an ox, an antelope’s speed, or the grace of a cat. However, we
humans are unsurpassed in our flair for developing new forms of art.
We fabricate weapons, garments and dwellings; we are matchless at
all sorts of social inventions; we make codes of behavior, with laws to
enforce them — and then invent clever new ways to evade them. And
surely our most outstanding trait is our knack for inventing new
Ways to Think.” — Marvin Minsky, The Emotion Machine. 

“A test of true thinking must involve emotion.” — Rosalind Picard,
Affective Computing. 
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Professor Howard Gardner, in his book, “Frames of Mind”, indi-
cated that human intelligence consists of multiple forms including
social intelligence, which consists of interpersonal and intrapersonal
skills. Peter Salovey and John Mayer identified these latter skills as
emotional intelligence, which they defined as “the ability to moni-
tor one’s own and others’ feelings and emotions, to discriminate
among them and to use this information to guide one’s thinking and
actions” (Salvoey and Mayer, 1990).

What constitutes thinking? To “think”, as defined by Webster
dictionary is: “to have in mind”, “to reflect”, to ponder”, “to call
to mind”; “remember”, “reason”, “form a mental picture; imagine”.
It is also clear from normal human cognition that thinking and
feelings are partners. If we wish to design a computer that
“thinks” like a human brain, then it must also “feel”. For exam-
ple, to pass the Turing Test,a one may ask a question that involves
a tragic accident. The details of emotion and cognition are dis-
cussed in Chapter 6.

Hence, to be able to think, one needs to have intelligence, emo-
tion, and be in a conscious state. The conscious state here refers to
the awake state where the brain is in a normal operating state or is
functioning normally. 

As “thinking” is a pretty high level concept, I will discuss some
of the high level theories of the brain’s machinery proposed by sci-
entists. The high level theories may potentially explain how we
think and how we can make a machine “think” like a human. These
include: 

• Multiple layers of machinery by Marvin Minsky
• Theory of Multiple Intelligences by Howard Gardner
• Triarchic theory of intelligence by Robert J. Sternberg
• Conceptual Blending Theory by Gilles Fauconnier and Mark

Turner
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to determine if the computer can demonstrate human-level intelligence
and pass the test by convincing the human judges of their humanness.
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The ability to think and behave intelligently requires both large quan-
tities of common sense knowledge and the ability to learn from expe-
rience. The brain has a huge amount of internal knowledge stored,
and more so commonsense knowledge. Psychologists studying young
children’s brains know that children as young as six years old already
have a huge amount of commonsense knowledge. How could a
machine be able to have such commonsense knowledge? Today, we
are not able to model a biological way of representing commonsense
knowledge. A number of current attempts use more conventional
approaches. These include Cyc, WorldNet, and Open Mind (Open
Mind Common Sense), and they will be discussed in this chapter.

Human thinking takes place in a cumulative process of growth
and development and perhaps the ultimate process in thinking is to
get wisdom. In the last section of this chapter, I include some dis-
cussion on what is wisdom.

We begin the chapter by discussing the point: Can a machine
think and have a mind?

Can a Machine Think and Have a Mind?
“What if… we were magically shrunk and put into someone’s brain
while he was thinking. We would see all the pumps, pistons, gears, and
levers working away, and we would be able to describe their working
completely, in mechanical terms, thereby completely, describing the
thought processes of the brain. But that description would nowhere
contain any mention of thought! It would contain nothing but
descriptions of pumps, pistons, levers!” — Gottfried Leibniz 1690.

“‘Could a machine think?’ On the argument advanced here only a
machine could think, and only very special kinds of machines, namely
brains and machines with internal causal powers equivalent to those of
brains. And that is why strong AI b has little to tell us about thinking,
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since it is not about machines but about programs, and no program
by itself is sufficient for thinking.” — John Searle, Minds, Brains,
Program (Searle, 1980).

Computer systems that solely take instructions from software pro-
grams and execute rules as instructed are not thinking. In some
sense, we are not programmed in this way and we have yet to
discover the way the human brain produces thought. However, if
one day we could design a “program”, so to speak, which is
dynamic and self-evolving, and give it the same plasticity as brain
neurons and synapses, then maybe we would able to design a com-
puter that can think on its own. 

Currently, some programs are demonstrated to have simple
adaptations, such as the change of parameter values due to spe-
cific input. These include programs such as artificial neural net-
works, genetic algorithms, recursive least square types of
algorithms, and many others. However, we are far from achieving
highly “plastic” software programs or equivalent forms in hard-
ware that match the plasticity and stability of our brain’s neurons
and synapses.

A number of AI and cognitive psychologists have proposed a
number of high level theories to explain the way human brain
thinks and how to emulate it. Some of these schemes will be dis-
cussed in the next sections.

Multiple Layers of Machinery
What do we mean when we say “I am conscious and thinking?” Are
there a number of smaller machineries in our brain that represent
this? Professor Marvin Minsky, MIT Media Laboratory, thinks that
the human brain has many different types of machinery or agents
working together. Minsky thinks that no single theory can explain
how the brain works. The human brain probably has many axioms
and many small facts stored away as we learn. Minsky described a
few high level theories that discussed how the brain works and how
it can lead to a thinking machine (Minsky, 2006).
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Self-reflective system. Minsky and Singh discussed designing a
self-reflective system (Minsky, 2006) (Singh, 2005). In Singh’s
PhD thesis, he proposed EM-ONE, an architecture for common-
sense thinking, to be capable of reflective reasoning about situa-
tions involving physical, social, and mental dimensions. EM-ONE
uses as its knowledge base a library of commonsense narratives,
each describing the physical, social, and mental activities that occur
during an interaction between several actors. EM-ONE reasons
with these narratives by applying “mental critics”, procedures that
debug problems that exist in the outside world or within EM-ONE
itself. 

A-Brain, B-Brain and C-Brain. Figure 9.1 shows Minsky’s notion
of multiple brain machinery. A-Brain receives signals from the exter-
nal world and reacts to these signals, resulting in muscle movement.
By itself, the A-Brain only reacts to external events but with no sense
of what they might mean. The B-Brain is connected to A-Brain. B-
Brain can affect the external world by controlling how A-Brain will
react. B-Brain would need appropriate ways to represent things. C-
Brain will supervise B-Brain. C-Brain acts like a manager and can
give general guidance.

Six-layer structure. Minsky also proposed that the human men-
tal resources are organized into six broad layers of processes as illus-
trated below Fig. 9.2.

Three of the layers are directly related to thinking. The lower
two layers are more of reactive responses. And at the higher level,
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the emotion is interacting with the bottom layers. Minsky
explained that we are born with the instincts that help us to survive
(instinctive reactions). And as we progress in life, we learn that cer-
tain conditions demand specific ways to react (learned reactions).
In situations where we have to consider several alternatives and try
to decide which would be best, we turn on our deliberative think-
ing process. When we reflect on our decision, we are not reacting
to external events but what is happening inside our brain (reflective
thinking). As we think about our plans to take that decision, we
are engaging in self-reflective thinking. In the last stage of self-
conscious emotions, Minsky explained that we would often ask
ourselves what other people think of our decision and plans. In
other words, do we hold up to the values that we set or meet our
ideals? Then we may find conflict between how we behave and the
values of those to whom we are attached, and this could lead to the
kinds of cascades that Minsky called “self-conscious emotions”. 

Multiple Intelligences 
Professor Howard Gardner, Harvard Graduate School of Education,
coined the term multiple intelligences from the study of human
cognition through discoveries in the biological and behavioral sci-
ences. Gardner proposed that there are eight distinct intelligences
in human, namely, linguistic intelligence, logical-mathematical
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intelligence, musical intelligence, bodily-kinesthetic intelligence,
spatial intelligence, interpersonal intelligence, intrapersonal
intelligence, and naturalist intelligence (Gardner, 1999, Gardner,
2003).

• Linguistic intelligence involves the sensitivity to spoken and
written language, the ability to learn languages, and the capac-
ity to use language to accomplish certain goals. Lawyers, speak-
ers, writers, and poets are among the people with high linguistic
intelligence.

• Logical-mathematical intelligence involves the capacity to ana-
lyze problems logically, carry out mathematical operations, and
investigate issues scientifically. Mathematicians, logicians, and
scientists exploit logical-mathematical intelligence.

• Musical intelligence entails skill in the performance, composi-
tion, and appreciation of musical patterns. Gardner indicated
that musical intelligence is almost parallel structurally to lin-
guistic intelligence.

• Bodily-kinesthetic intelligence entails the potential of using
one’s whole body or parts of the body to solve problems or
fashion products. Obviously dancers, actors, and athletes fore-
ground bodily-kinesthetic intelligence. However, this form of
intelligence is also important for craftspersons, surgeons, bench-
top scientists, mechanics, and many other technically oriented
professionals.

• Spatial intelligence features the potential to recognize and
manipulate the patterns of wide spaces as well as the patterns of
more confined areas. Those who possess such intelligence
include pilots, navigators, sculptors, surgeons, chess players, and
architects.

• Interpersonal intelligence denotes a person’s capacity to under-
stand the intentions, motivations, and desires of other people,
and consequently, to work effectively with others. Salespersons,
teachers, clinicians, religious leaders, and political leaders all
need acute interpersonal intelligence.
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• Intrapersonal intelligence involves the capacity to understand one-
self, to have an effective working model of oneself — including
one’s own desires, fears and capacities — and to use such infor-
mation effectively in regulating one’s own life.

• Naturalistic intelligence involves expertise in the recognition
and classification of the numerous species in his or her environ-
ment. Those who have such intelligence are most skillful in
applying the accepted “folk taxonomies” in cultures with a sci-
entific orientation, and then to have an extensive knowledge of
the living world.

Linguistics and logical-mathematical intelligence tend to dominate
most tests of intelligence. This type of test may not isolate people
who have other intelligences such as artistic abilities. Musical intel-
ligence, bodily-kinesthetic intelligence, and spatial intelligence are
particularly notable in the arts.

Triarchic Theory of Intelligence
This theory was proposed by Professor Robert J. Sternberg, a psy-
chologist and psychometrician in Tufts Unversity. Sternberg
believes there are three types of human intelligence (Sternberg,
2003):

• Analytic intelligence. This involves the ability to complete aca-
demic, problem-solving tasks such as those used in traditional
intelligence tests. These types of tasks usually present well-
defined problems that have only a single correct answer. People
with such analytic intelligence are said to perform well in IQ
tests, GAT tests, or any similar tests that only test their analytic
skill that is learnt in school or through books. According to
Sternberg, people with this intelligence are school smart or
book smart.

• Creative intelligence. The ability to successfully deal with new
and usual situations by drawing on existing knowledge and
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skills. For example, if you are in a situation where you cannot
find a proper opener to open a wine bottle, and you start to use
your key attached with a hook that acts as a handle and across-
bar (some other ways), to open the wine bottle, then you have
used creative intelligence. Hence, unlike a task in analytic intel-
ligence, which in Sternberg’s word involves single correct
answers, tasks requiring creative intelligence have open-ended
or many possible answers.

• Practical intelligence. This involves the ability to adapt to
everyday life by drawing on existing knowledge and skills.
Practical intelligence is involved when dealing with everyday
personal or practical problems. It may also be involved when
dealing with new and unusual situations in everyday life, e.g. if
you find yourself alone in an unfamiliar suburb, without money
or a mobile phone, and have missed the last train or bus back to
your home. According to Sternberg, successfully dealing with
such a situation involves a distinctly different part of intelli-
gence, often observed in people who are “street smart”. “Street
smart people can usually make these adjustments, applying their
knowledge and skills in effective ways. According to Sternberg,
the three parts of intelligence involve abilities that are different,
separate, and are not “fixed”, that is, they can change (become
stronger or weaker) through experience in everyday life.

Robert J. Sternberg indicates that a person may be stronger in one
or more of these three intelligence that make them successful in the
society and culture they live in (where successful is according to
their own individual definition of success).

When a person is sufficiently strong in each of the three parts,
then the three parts will be “in balance”.

Sternberg added that individuals with successful intelligence
often have a “can-do” attitude, are able to learn from past experi-
ences, and can apply their mental abilities to achieve their goals and
ambitions in real-life situations. (Source http://en.wikipedia.org/
wiki/Robert_Sternberg)
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Conceptual Blending Theory
The conceptual blending (CB) theory was proposed by Gilles
Fauconnier and Mark Turner. The theory development began in
1993, and subsequently, Fauconnier and Turner published a book
entitled “The Way We Think” in 2002 that further explained the
conceptual blending theory (Fauconnier and Turner, 2002). The
key process in the theory is blending, i.e. humans are unconsciously
but constantly blending information when talking, listening, imag-
ining, and thinking. Blending is said to be the basic cognitive oper-
ation. CB theory claims to be related to cognitive architecture
theories such as Soar, ACT-R, and frame-based theories of Marvin
Minsky. The word “blending” is also sometimes used interchange-
ably with the word “integration,” and hence, conceptual blending
is also known as conceptual integration. Note that blending and
integration are a kind of fusion process.

Blending is a set of mental operations for combining cognitive
models in a network of discrete mental spaces. Mental spaces are
said to interconnect in working memory, which can be modified
dynamically, and they can be used to model dynamic mappings in
thought and language. Building a conceptual blending network
involves setting up several mental spaces. The following diagram
shows a basic conceptual blending network. 

Figure 9.3 shows the basic conceptual blending networks. The
network comprises of three key spaces, namely, the input space,
generic space, and the blend space. These spaces are known as men-
tal spaces. Therefore,

a. Input mental spaces (the figure shows two input mental spaces,
i.e. Input 1 and Input 2). 

b. A generic mental space that captures the structure that the two
input mental spaces share.

c. The blended space forms a new mental space. 

Mental spaces are small conceptual packets constructed as we think
and talk, for purposes of local understanding and action. Mental
spaces are said to be partial assemblies containing elements, and
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structured by frames and cognitive models. They can be used gen-
erally to model dynamical mappings in thought and language. The
mental space is a theoretic construct corresponding to possible
worlds in philosophy. The main difference between a mental space
and a possible world is that a mental space does not contain a faith-
ful representation of reality but an idealized cognitive model
(Fauconnier and Turner, 1998, 2002).

The critical thing in CB theory is how to find the relation
between the two input mental spaces that lead to the new blend.
The theory calls these the “vital relations”. 

CB theory was first formulated for cognitive semantics.
Cognitive semantics is part of cognitive linguistics, i.e. understand-
ing of language creation, learning and usage as explained by refer-
ence to human cognition in general. And the theory also claims
that this may explain the way we think. 

Commonsense Knowledge Representation
The ability to think and behave intelligently requires both large
quantities of common sense knowledge and the ability to learn

Thinking Machine 173

FA

Fig. 9.3. Conceptual blending networks.

b654_Chapter-09.qxd  2/12/2009  9:15 AM  Page 173



from experience. The brain has a huge amount of internal knowledge
stored, and more so, commonsense knowledge. How could a machine
be able to have such commonsense knowledge? Till today, no biolog-
ically inspired techniques have been very successful in representing
large-scale knowledge in a machine. Hence, a number of attempts
have been made using traditional approaches to have large-scale
commonsense knowledge. Three of these are discussed here, namely,
Cyc, WorldNet, and Open Mind (Open Mind Common Sense).

1. Wordnet was started in 1985 in Princeton University under the
direction of psychologist, Professor George A. Miller. WordNet
is a semantic lexicon for the English language. It groups
English words into sets of synonyms called synsets, provides
short, general definitions, and records the various semantic
relations between these synonym sets. The purpose is twofold:
to produce a combination of dictionary and thesaurus that is
more intuitively usable, and to support automatic text analysis
and artificial intelligence applications. As of 2006, the database
contains about 150 000 words organized in over 115 000
synsets for a total of 207 000 word-sense pairs; and in com-
pressed form, it is about 12 megabytes in size (from http://
en.wikipedia.org/wiki/Wordnet).

2. Cyc was started in 1984 by Doug Lenat. The name “Cyc”
comes from “encyclopedia”. The Cyc project is by far the
largest and most ambitious attempt to build a database of com-
monsense knowledge, and today, Cyc contains over two million
facts and rules about the everyday world. Its ontology is the
most expressive presently available, and represents the state-of-
the-art in broad coverage of formal knowledge representation.
It includes a wide range of ideas about representing such mat-
ters as space, time, beliefs, goals, social relationships, physical
constraints, as well as many other domains. (From http://en.
wikipedia.org/wiki/Cyc.)

3. Open Mind (Open Mind Common Sense), started in 1999, is
based at the Massachusetts Institute of Technology Media Lab.
The goal is to build a large common sense knowledge base
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from the contributions of many thousands of people across the
Web. Since its founding in 1999, it has accumulated more than
700000 English facts from over 15000 contributors. The
knowledge collected by Open Mind Common Sense has
enabled dozens of research projects at MIT and elsewhere. The
ConceptNet and LifeNet commonsense knowledge bases are
derived from parsing the collected data. (From http://en.
wikipedia.org/wiki/Open_Mind_Common_Sense.)

“Other similar quests, such as MindPixel, General Purpose Solver
(GPS), EM-ONE and Knowledge Machine are briefly presented in
the Notes for Chapter 9.”

WordNet, Cyc, and OpenMind all have the same goal of trying
to achieve commonsense knowledge. There, each tries to assemble
a comprehensive ontology and database, and to enable AI applica-
tions to perform human-like reasoning using the rich language cap-
tured. They each has slight variations. For example, WordNet
only has some common sense knowledge while Open Mind
Common Sense has a large common sense knowledge base as this
is MIT media lab’s main goal (MIT media lab maintains and devel-
ops the Open Mind Common Sense). The WordNet is a semantic
lexicon for the English language and its chief purpose is to produce
a combination of dictionary and thesaurus and to support auto-
matic text analysis and artificial intelligence applications. 

The three common problems WordNet, Cyc, and OpenMind
need to overcome are:

a. Handling of exceptions. How to handle exceptions? For
example, commonsense knowledge by default rule may indi-
cate that “All birds can fly”. But penguins and ostriches are
examples of birds that cannot fly. How to enable the com-
monsense knowledge to handle such exceptions? Humans
have the capability of handling exceptions. Humans can also
learn by just watching.

b. Commonsense logic. How to build analog or equivalent com-
monsense functions? For example, putting a cardboard on top
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of the head instead of carrying an umbrella, could be a tempo-
rary solution during a light drizzle.

c. Robust commonsense database. How to build robust com-
monsense data inside a computer system? This includes how
to have a good design to ensure continuous encapsulation of
the knowledge efficiently and effectively without incurring scal-
ability problem.

Currently, we have not been successful in finding ways to teach
computers all this commonsense knowledge. It is said that human
as young as five to seven years old already have much common
sense knowledge.

The Wise Machine — AI with Wisdom
The ultimate desire of thinking is to achieve “wisdom”. Wisdom
is the ability to make sound judgments and good decisions, fore-
see consequences and draw important lessons from situations.
Now, can machines have wisdom? Can a machine read a book
such as Moby-Dick and draw important lessons, such as “One
should not be too focused and obsessed with one goal to the
point that one excludes the more important things in life”?
(Note: Moby-Dick was written by Herman Melville in the eigh-
teenth century.) Or can a machine be so creative as to devise the
next solution to solve the increasing bottleneck database issue,
such as a cache oblivious algorithm? Note: a cache oblivious algo-
rithm is designed to exploit the CPU cache without having the size
of the cache (or length of the cache lines) as an explicit parameter.

I have searched various publications and not come across many
materials that discuss this topic and also with respect to building
intelligent systems. Perhaps “wise” or “wisdom”, the word itself, is
not well understood. What is wisdom and what does it mean to be
a wise man?

In the Bible, three books (Job, Proverb, and Ecclesiastes) touch
on wisdom. From studying these books, one can draw a conclusion
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that wisdom is a principle and it can be further broken down into
60 desirable character traits. Character is wisdom, but wisdom is
not character. Why is this so?

“Get wisdom, get understanding; do not forget my words or swerve
from them. Do not forsake wisdom, and she will protect you; love her,
and she will watch over you. Wisdom is supreme; therefore get wisdom.
Though it cost all you have, get understanding.” — Proverb 4:5–7.

“Wisdom is the principal thing; therefore get wisdom.” (Proverb 4:7)

The wisest man, according to the Bible, who ever lived is King
Solomon.

1 King 3:16–28. An example of wisdom from the Bible on King
Solomon’s wise decision. This story goes as follows:

Now, two prostitutes came to the King Solomon and stood
before him. One of them said, “My lord, this woman and I live in
the same house. I had a baby while she was there with me. The
third day after my child was born; this woman also had a baby. We
were alone; there was no one in the house but two of us.

During the night, this woman’s son died because she lay on
him. So she got up in the middle of the night and took my son from
my side while I, your servant, was asleep. She put him by her breast
and put her dead son by my breast. The next morning, I got up to
nurse my son — and he was dead! But when I looked at him closely
in the morning light, I saw that it wasn’t the son I had borne.”

The other woman said, “No! The living one is my son; the dead
one is yours.”

But the first one insisted, “No! The dead one is yours; the liv-
ing one is mine.” And so they argued before King Solomon.

The king said, “This one says, “My son is alive and your son is
dead,” while that one says, “No! Your son is dead and mine is alive.”

Then the king said, “Bring me a sword.” So they brought a
sword for the king. He then gave an order: “Cut the living child in
two and give half to one and half to the other.”
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The woman whose son was alive was filled with compassion for
her son and said to the king, “Please, my lord, give her the living
baby! Don’t kill him!”

But the other said, “Neither I nor you shall have him. Cut him
in two!”

Then the king gave his ruling: “Give the living baby to the first
woman. Do not kill him; she is his mother.”

When all Israel heard the verdict the king had given, they held
the king in awe, because they saw that he had the wisdom from
God to administer justice.

This short story illustrates King Solomon’s wisdom in decision
making (the ability to make good decisions, weigh options, and act
prudently). It also shows the human emotion in communication
and how Solomon wisely tapped on human emotions to make his
wise decision. 

“To understand wisdom fully and correctly probably requires more
wisdom than any of us have,” Robert Sternberg said.

Pattern recognition and wisdom. The work by Nobel laureate
Herbert Simon and others has shown that pattern recognition is
among the most powerful, and perhaps the foremost mechanism of
successful problem solving. The brain machinery appears to have
hardwired some of this ability early in life, and as life progresses, the
external environment sharpens or shapes this pattern-recognition
process and enables it to be fully operational (as discussed in the
chapter on gene versus environment). 

It is said that the brain comes pre-wired for certain kinds of
pattern recognition but not others. The visual cortex,
sematosensory cortex, auditory cortex, and motor cortex, to a
large degree, are pre-wired. The more complex cortical regions
such as the association cortex may have relatively less pre-wired
knowledge. It can possess a huge capacity to process any kind of
information. This is the part where the mind is open (with an
open-ended-open-minded design) for new input beyond the
pre-wired.
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Could a certain kind of pattern-recognition mechanism in our
brain capture the “wisdom” that we do not yet know?

Knowledge, character, and wisdom.

“Many people know a great deal but are all the more foolish because
of it. They have not yet learned how to apply the knowledge they have.
For the successful conduct of life, mere knowledge is not enough.” —
Anonymous.

Knowledge is frequently equal to power (common saying: knowledge
is power; knowledge can bring us to the technological edge, etc), but
knowledge alone does not often bring a person to success. Most stud-
ies have shown what make people successful are most part, character.
Here are 60 ideal character traits any parent would desire their chil-
dren to have. And I assume any scientists, likewise, would like their
intelligent robots to ultimately be able to model after some of these
character traits. These are, to be: 1. Appreciative; 2. Attentive;
3. Available; 4. Committed; 5. Compassionate; 6. Concerned; 
7. Confident; 8. Considerate; 9. Consistent; 10. Content;
11. Cooperative; 12. Courageous; 13. Creative; 14. Decisive;
15. Deferent; 16. Dependable; 17. Determined; 18. Diligent;
19. Discerning; 20. Discreet; 21. Efficient; 22. Equitable; 23. Fair;
24. Faithful; 25. Fearless; 26. Flexible; 27. Forgiving; 28. Friendly;
29. Generous; 30. Gentle; 31. Honest; 32. Humble; 33. Joyful;
34. Kind; 35. Loyal; 36. Meek; 37. Merciful; 38. Observant;
39. Optimistic; 40. Patient; 41. Peaceful; 42. Perseverant;
43. Persuasive; 44. Prudent; 45. Punctual; 46. Purposeful;
47. Resourceful; 48. Respectful; 49. Responsible; 50. Secure;
51. Self-controlled; 52. Sincere; 53. Submissive; 54. Tactful;
55. Temperate; 56. Thorough; 57. Thrifty; 58. Tolerant;
59. Truthful; 60. Virtuous.

“Knowledge comes by taking things apart: analysis. But wisdom
comes by putting things together.” — John A. Morrison. Wisdom is
the proper use of knowledge. How can we design a machine to use
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its knowledge to derive wisdom? How can we design a machine
that has human-like character traits?

“The rod of correction imparts wisdom, but a child left to himself dis-
graces his mother.” — Proverb 29:15.

Machine with vision. The Bible says, “Where there is no vision,
the people perish.” — Proverbs 29:18. And a Japanese proverb
says, “Vision without action is daydream. Action without vision
is nightmare.” What does it mean to have a vision or an intelli-
gent foresight? Here, I am not referring to the faculty of
sight but the ability to discern things or have an unusual com-
petence to perceive and set goals, objectives, and plan for the
future.

How to create a faculty that could have such intelligent ability?
In what situation will we produce great vision? Does it happen
more often during the time of suffering or pain? Is the ability to
have vision related to emotion? There seems to be some connec-
tion to emotion but we are not sure how it works.

Summary
To create a machine with true thinking ability like a human is cur-
rently unimaginable. However, if one could truly make a “pro-
gram” that changes, adapts, or has “plastic” abilities, and it can
alter its output behavior due to the “program plasticity”, we may
one day say that the machine has some “thinking” capability and “a
mind of its own”. 

“Thinking” is a pretty high level concept; this chapter discusses
some of the high level theories of the brain’s machinery proposed
by scientists. The high level theories may potentially explain how
we think and how we can make a machine “think” like a human.
These include: 

• Multiple layers of machinery 
• Theory of multiple intelligences
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• Triarchic theory of intelligence
• Conceptual blending theory

To think, one needs to have much commonsense knowledge and
to constantly build up this knowledge, in addition to intelligence
abilities. Cyc, WorldNet, and OpenMind are some examples of the
human attempt to build large-scale commonsense knowledge.

Lastly, the purpose of thinking is to achieve wisdom. Wisdom is
a principal thing, and hence, it is related to character. Could we
have a machine with character and wisdom? Currently, automatic
character building based on environmental influence looks diffi-
culty to achieve and we do not know of any research carried out in
this area.
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C h a p t e r 1 0
MODELING THE ENTIRE BRAIN:
BIOLOGICALLY INSPIRED
COGNITIVE ARCHITECTURES

To model the entire brain or engage in any large scale model-
ing of the brain is not a trivial task. 

Figure 10.1 shows one possible way of categorizing to enable us
to discuss the level of detail in modeling of the brain. It is divided
into six levels and further subdivided into three bands. 

At the low bands, the modeling is most complicated. I do not
know of any attempt to model at the atomic and molecular levels
such as moleculara interaction and protein folding for the whole
brain.

At the medium band are the cellular and network levels. This
band is also relatively complicated to model but some modeling
techniques are suggested, as discussed in the earlier chapter. 

The last band is at the system and organismal levels. Modelings
at this band typically consider the functional, cognition, behavior,
and the affect aspect. In some sense, it is a high level cognitive
process. At the system level, different regions of the brain can be
modeled to interact with other regions and work together to give
cognition. The system level can take into account properties such

a A molecule is group of atoms chemically bonded together to form a
unit.
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as the complementary role, top-down expectation, bottom-up
influence, etc. At the organismal level, one attempts to study and
understand the whole system output and model after the system’s
cognition, behavior, and affect. These models typically consider
long-term memory, working memory, the ability to perform rea-
soning, planning, goal-setting, and learning. 

Blue Brain project by IBM and CCortex project by Artificial
Development are two of the examples from commercial companies
attempting to model the entire brain at the cellular level. Many
other companies are involved at different levels of modeling the
brain to build intelligent systems. A few such companies in United
States include eCortex Inc (http://e-cortex.com/), Numenta Inc
(http://www.numenta.com/), Cyberkinetics/Neurotechnology
System Inc (http://www.cyberkineticsinc.com/content/index.
jsp), and Charles River Analytics (http://www.cra.com/about-us/
index.asp).

The Cognitive Computing group at IBM Almaden Research
Center claims to have completed simulating the mouse brain on the

Molecular level (1*10-15  to 10-12meter) 

Organismal level (CNS size) 

System level (1*10-3 to 10-1 meter) 

Network level (1*10-6 to 10-3 meter) 

Cellular level (1*10-9 to 10-6 meter) 

Molecules/group of atoms.  

Neurons/Synapses

Groups of neurons/columns

Regions/networks of networks
(Functional) 

Nervous system
(Cognition/Behavior/Affect) 

Atomic level (1*10-15 meter) Atoms 

High 

Medium

Low 

Fig. 10.1. Levels of modeling the brain.
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BlueGene/L supercomputer (BBC News, April 27, 2007). They
simulated the mouse cortex with a massive parallel cortical simulator
that incorporates relatively simple single compartment spiking neu-
rons, spike-timing dependent plasticity (STDP) and axonal delays
(Ananthanarayanan and Modha, 2007). With the completion of the
Blue Brain project, IBM on 20 Nov 2008, announced funding from
DARPA to build “cognitive computing” with its collaborators under
a grant of $4.9 m. (See http://www-03.ibm.com/press/us/en/
pressrelease/26123.wss for more information.)

Henry Markram, in his report on the Blue Brain project, indi-
cated that to model the brain at the atomic level (atomic collision is
simulated or performed at the atomic scale) would take days to sim-
ulate a microsecond of protein folding in the most powerful super-
computer. However, models at higher levels such as the molecular or
cellular levels can capture lower-level processes and allow complex
large-scale simulations of biological processes (Markram, 2006). 

Note that the mouse brain has 100 million neurons and the
Blue Brain project simulated at the cellular level is doing that. The
human brain has about 23 billion neurons (Rabinowicz et al.,
2002). To simulate that, we would need today’s computer to
increase its computational power by about one million fold before
we are able to simulate human brain at the cellular level. 

Modeling at the atomic and molecular levels is currently very
difficult, because, in the brain, every molecule is performing com-
plex tasks that need a powerful computer to simulate. Besides that,
the simulation and modeling process would also need to capture all
the functions over trillions and trillions of these molecules as well
as all the rules that govern how they interact. 

The next closest biological form of modeling at the cellular level
is the Hodgkin–Huxley’s original cell membrane equation, a four-
dimensional equation. However, the Hodgkin–Huxley’s cell mem-
brane equation is based on a giant squid axon. In the human brain,
there are billions of neurons and it is impossible at our current tech-
nology to measure every single neuron to find out all the parame-
ters and values to form every cell membrane question, taking
into consideration their ion channels, different types of synapses, the
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specific spatial geometry of individual neurons, etc. It is equally
impossible to compute them at the current computing power.

Hence, modeling at the cellular level using the Hodgkin–
Huxley type neuronal models on the human brain is equally com-
plex. A simplified form of cellular level modeling is then proposed,
such as the two-dimensional neuron models, which is a reduction
form of the four-dimensional Hodgkin and Huxley’s cell mem-
brane equation. Other simplified neuron models that are more
commonly used are the spiking neuron models such as the inte-
grate-and-fire model and spike response model (Gerstner and
Kistler, 2002). Grossberg’s shunting networks equation is another
network variant form of the neuron model following Hodgkin and
Huxley’s cell membrane equation. The key challenges in all these
simplified models are how biologically plausible the models are
with respect to the anatomic data of the cell membrane equations
for the specific region in the brain, the parameters, and the param-
eters’ values selection and setting. Even then, scaling the model
itself up to the brain level is complex. 

Hence, to model the entire brain, the most current approach
adapts the higher cognitive level, i.e. at the system or cognition
level. In this chapter, we will present the six different types of cog-
nitive architecture, which serve to model the entire brain at the sys-
tem and cognition level. Section 1 will give an overview of the
integrated cognitive architecture approach to model the entire
brain. Sections 2, 3, 4, 5, 6, and 7 will discuss the cognitive archi-
tecture of SOAR, ACT-R, ICARUS, BDI, Subsumption, and
CLARION respectively (Chong et al., 2007).

Integrated Cognitive Architecture
An integrated cognitive architecture can be defined as a single system
that is capable of producing all aspects of behavior, while remaining
constant across various domains and knowledge bases (Newell,
1990; Anderson et al., 2004). This system would consist of many
modules (or components) working together to produce a behavior.
These modules contain representations of knowledge, memories for
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storage of content, and processes utilizing and acquiring knowledge.
Integrated cognitive architectures are often used to explain a wide
range of human behavior, and to mimic the broad capabilities of
human intelligence (Anderson, 2004; Langley and Choi, 2006).

Research on integrated cognitive architectures is interdisciplinary
by nature, spanning the fields of artificial intelligence, cognitive psy-
chology, and neurobiology. Over the past decades, many cognitive
architectures have been proposed and steadily developed, based on
different approaches and methodologies. However, despite inte-
grated cognitive architecture having been an important research
area, there is a lack of formal reviews on the subject domain.

While it is clearly impossible for this chapter to include all exist-
ing research and individuals who have contributed significantly to
the topic, we aim to cover a good mix of the systems that are rep-
resentative of various approaches and disciplines. 

Figure 10.2 shows an overview of the six cognitive architectures,
namely, Soar, ACT-R, ICARUS, BDI, Subsumption, and CLARION,
roughly classified according to their roots and emphasis.

Soar, based on the physical symbolic hypothesis (Newell, 1990),
is one of the earliest and most extensively developed AI architectures
in history. ACT-R (Anderson et al., 2004) and ICARUS (Langley
and Choi, 2006), on the other hand, were developed with the aim of

Fig. 10.2. Overview of the six cognitive architectures.
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producing artificial intelligence mimicking human cognition. While
the three architectures share many features of classical artificial intel-
ligence, like symbolic representation, production rule-based infer-
ence, and means-end analysis for problem solving, ACT-R, and
ICARUS are notably different from Soar by their strong emphasis of
producing a psychologically motivated cognitive model.

BDI architecture is a popularly used framework incorporating
beliefs, desires, and intentions for designing intelligent autonomous
agents (Bratman et al., 1988; Rao and Georgeff, 1991). Based
on the studies of folk psychology and intentional systems, BDI
has a special focus on intentions, representing an agent’s commit-
ments to carry out certain plans of actions (Georgeff and Ingrand,
1989). 

Similar to the above, CLARION cognitive architecture follows
the traditional approach in computer science. However, CLARION
is a hybrid model integrating both symbolic and connectionist pro-
cessing of information (Sun and Peterson, 1996; Sun and Zhang,
2006).

Furthermore, CLARION is based on a neural network in the
design of the architecture as well as cognitive psychology. As a
result, it is similar to ACT-R cognitive architecture as both models
are based on the combination of artificial intelligence, cognitive
psychology, and neurobiology.

Coined as the new artificial intelligence, the Subsumption archi-
tecture is drastically different from other cognitive architectures in
its approach. Subsumption architecture is behavior-based and thus
does not contain any problem solving or learning modules. The idea
of higher layers subsuming lower layers in Subsumption architecture
also originate from neurobiology, therefore both artificial intelli-
gence and neurobiology form the basis for Subsumption architec-
ture (Brooks, 1999; Toal et al., 1996).

SOAR Architecture
SOAR stands for State, Operator, and Result. Soar, one of the first
cognitive architecture proposed, is a general cognitive architecture
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for developing systems that exhibit intelligent behavior and it has
been under continuous development since the early 1980s (Laird
et al., 1987). Soar has generated a wide spectrum of applications
particularly in military operations such as virtual training for large
scale combat flight simulation to generate intelligent human-like
behavior when viewed by a training audience participating in oper-
ational military exercises (Jones et al., 1999) and urban combat
training (Wray et al., 2004). The current working prototype Soar
system is in version 8.6 (Laird et al., 2006). 

Figure 10.3 illustrates the Soar architecture (Lehman et al., 2006)
consisting of memory structures and a decision-making mechanism
linking perception to action. The memory structures present in the
Soar architecture include long-term memory and working memory.
Information from the environment is made available in the work-
ing memory via perception, allowing appropriate actions to be cho-
sen during domain-independent problem solving. The external
environment can also be influenced by the architecture through the
implementation of selected actions.

Knowledge is stored in the long-term memory, which can be
classified into procedural, semantic, and episodic memories.
Procedural memory provides the knowledge of performing tasks.

Fig. 10.3. The Soar cognitive architecture.
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Semantic memory stores general facts about the world (e.g. a car
has four wheels and is encoded as declarative structures) and is con-
sidered declarative knowledge. On the other hand, episodic mem-
ory contains specific memories of an event experienced. Hence,
both procedural and semantic memories are universally applicable,
whereas episodic memory is contextual specific. In instances
whereby procedural knowledge is insufficient, semantic and
episodic memories are employed as cues to aid in problem solving.

The working memory in Soar’s cognitive architecture houses all
the knowledge that is relevant to the current situation. It contains
the goals, perceptions, hierarchy of states, and operators. The states
(and sub-states) give the information on the current situation. The
operator provides the steps to apply during problem solving, while
the goal directs the architecture into the desired state. Contents of
the working memory, also known as working memory elements,
can trigger both the retrieval of relevant knowledge from the long-
term memory into the working memory, and motor actions.

Soar’s functions and processes. The Soar agent makes use of
means-ends analysis for problem solving, which requires the system
to select and apply operators to result in a new state that is closer
to the desired state. In order to bring the system closer to its goal,
the Soar agent implements a five-phase decision cycle, constituting
of input, elaboration, decision procedure, application, and output.
The main function of the decision cycle is to choose the next oper-
ator to apply (Laird et al., 1986a; Lehman et al., 2006).

Percepts are added to the working memory in the input phase
for use during the elaboration phase. Production rules are then
matched with the working memory elements in order to bring
knowledge relevant to the current problem into the working mem-
ory. Meanwhile, preferences are created to act as recommendations
for the selection of appropriate operators. The elaboration phase
continues till the firing of rules in the long-term memory ceases,
ensuring that all knowledge relevant to the current situation is con-
sidered before a decision is made (Laird et al., 1986b; Lehman
et al., 2006). When the elaboration phase reaches quiescence, the
decision cycle proceeds to the decision procedure where preferences
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are evaluated. The best suggested operators are chosen and applied
during the application phase. A motor action is then performed dur-
ing the output phase as a result of applying the selected operator.

An impasse is encountered whenever procedural knowledge is
inadequate for problem solving (Laird et al., 1986b). In Soar, there
are four types of impasse: no-change, tie, conflict, and rejection.
A no-change impasse occurs when the elaboration phase enters
quiescence without any suggestion, while a tie impasse refers to the
situation whereby no object is superior over the others. Cases in
which two or more candidate objects are better than each other
result in a conflict impasse. A rejection impasse is encountered
when all operators are rejected.

Any impasse encountered provides an opportunity for the Soar
agent to learn from its experience. The learning mechanisms pro-
posed in the Soar architecture are chunking, reinforcement learn-
ing, episodic memory, and semantic memory. Successful resolution
of the impasse results in the termination of the goal or sub-goal,
which in turn leads to the formation of chunks. The chunking
mechanism enables new production rules to be added to the long-
term memory. These chunks are used whenever a similar situation
is encountered, thereby avoiding the same impasse and improving
the performance of the agent in the future. 

The Soar agent also receives rewards from success or punish-
ments from failure, allowing the agent to undergo reinforcement
learning. Any operator resulting in a reward upon execution is
given positive reinforcement, and such operators are more likely to
be selected in the future. Episodic and semantic memories store
information on the agent’s past experiences, and therefore, both
are used as additional cues to select applicable operators (Laird
et al., 1986b; Lehman et al., 2006).

ACT-R Architecture
ACT-R stands for Adaptive Control of Thought-Rational. ACT-R is
pioneered by Professor John Anderson from Carnegie Mellon
University, Psychology Department in early 1990s (Anderson, 1993).
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ACT-R was developed as a model of human cognition using empiri-
cal data derived from experiments in cognitive psychology and brain
imaging. The ACT-R design concept assumes that cognition of the
brain emerges through the interaction of a number of independent
modules. Some examples of the independent modules are the visual
module, control module, memory module, and motor module.

In order for the modules to communicate, a common knowl-
edge representation is needed. In ACT-R, knowledge is repre-
sented by chunks, a simple symbolic representation system. Each
chunk has a number of slots, each of which contains a single sym-
bol. These symbols can represent anything (including other
chunks), but do not have an inherent semantic value. 

ACT-R provides a step-by-step simulation of human behavior
for detailed understanding of human cognition. It consists of four
basic modules, as well as a central production system (see Fig. 10.4).
They are, namely, the perceptual, motor, intentional, and memory

Fig. 10.4. The ACT-R cognitive architecture (Anderson et al., 2004).
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modules. The perceptual module receives sensory input from the
external world and the motor module executes the actions pro-
duced by the production system. The intentional module maintains
the task-related objectives during the cognition process and the
memory module contains the long-term memory. Each module has
a buffer to keep track of one’s internal state during problem solv-
ing. The central production system generates production rules
based on the information available in the buffers of the four basic
modules (Anderson et al., 2004).

Each module of the ACT-R architecture has its plausibility in
neurobiology. They are summarized as follows:

• Visual module. The function of the visual module is to receive
the visual input from the external environment. The obtained
information is used for processing in the production system. In
neurobiology, the occipital lobe of the forebrain is responsible
for the vision information processing.

• Motor module. The motor module is for motoring actions, taken
in the production system. The counterparts in the neurobiology
are the motor cortex and cerebellum. The motor cortex is the
region of the cerebral cortex involved in the planning, control,
and execution of voluntary motor functions, and the cerebellum
controls the body movement in space and coordinates all motor
activities and postures.

• Intentional module. The intentional module consists of the con-
text, goals, and schedules in problem solving. In the human brain,
the posterior parietal cortex plays a major role in maintaining
the problem state. Besides, the prefrontal cortex is involved in
working memory, problem solving, initiation, judgment, impulse
control, and social and sexual behaviors. It is thought to be an
important part in the maintaining of the problem context.

• Memory module. The memory can be categorized into sensory,
short-term (or working memory), and long-term memories
according to the effective time span that memory can be recalled.
In terms of the nature of information stored, the long-term

b654_Chapter-10.qxd  2/12/2009  9:15 AM  Page 192



Modeling the Entire Brain: Biologically Inspired Cognitive Architectures 193

FA

memory can be divided into declarative (explicit) and non-
declarative (implicit) memories. In the human brain, the frontal
and temporal lobes, where the hippocampus is located, are
responsible for long-term memories. 

• Production system. According to the ACT-R theory, the basal
ganglia and its associated connections are thought to implement
the production system. There are three parts of the basal gan-
glia that play important roles in the production system. They are
the striatum, pallidum, and thalamus. The striatum acts as a pat-
tern recognition function that matches the input patterns with
that in the memory under the problem context. The pallidum
serves as a conflict-resolution function and the thalamus is used
to control the execution of the selection actions.

ICARUS Architecture
The ICARUS is a relatively new cognitive architecture proposed by
Langley and Choi. The ICARUS cognitive architecture focuses on
physical and embodied agents, integrating perception and action
with cognition. This cognitive architecture also aims to unify reac-
tive execution with problem solving, combine symbolic structures
with numeric utilities, and learn structures and utilities in a cumu-
lative manner. ICARUS shares a number of central features as other
cognitive architectures (Langley and Choi, 2006).

The design for ICARUS has been guided by the following prin-
ciples, which enable the differentiation of ICARUS from other
cognitive architectures: (1) Cognitive reality of physical objects;
(2) Cognitive separation of categories and skills; (3) Primacy of cat-
egorization and skill execution; (4) Hierarchical organization of
long-term memory; (5) Correspondence of long-term or short-
term structure; and (6) Modulation of symbolic structures with
utility functions.

Architecture. Figure 10.5 presents an overview of the ICARUS
architecture. The main components of the ICARUS architecture are
the perceptual buffer, conceptual memory, skill memory, and motor
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buffer. The perceptual buffer is involved in the temporary storage of
percepts. The conceptual memory can be further classified into con-
ceptual short-term and conceptual long-term memories. Conceptual
short-term memory, otherwise known as belief memory, contains
high-level inferences describing the relations among the objects per-
ceived. On the other hand, conceptual long-term memory consists of
conceptual structures describing classes of environmental situations.
Similar to conceptual memory, skill memory is subdivided into short-
term and long-term skill memory. All the skills that can be executed
by the ICARUS agent are stored in the long-term skill memory, and
any skill chosen to be implemented is brought into the short-term
skill memory. The skill signals in the motor buffer, read out from the
short-term skill memory, are then executed by the ICARUS agent to
bring about changes to its environment.

Functions and processes. The key processes in ICARUS include
conceptual inference, goal selection, skill execution, problem solving,

Fig. 10.5. The schematic diagram of the ICARUS cognitive architecture.
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and learning. Conceptual inference is the mechanism responsible
for matching conceptual structures against the percepts and beliefs.
It is dependent on the content and representation of elements that
have been stored in both the short and long-term memories. The
environment, which the ICARUS agent is situated in, affects the
perceptual buffer and thus the conceptual memory, leading to a
repeat of the conceptual inference that updates the descriptions of
the environment. In each cycle, the agent retrieves the attributes of
the perceived objects into the perceptual buffer and matches them
against the conceptual definitions in the long-term memory. As a
result, all the elements that are implied deductively by the percepts
and the conceptual definitions are added to the belief memory.
Conceptual inference occurs in a bottom-up (data driven) manner,
and is similar to the elaboration phase in Soar (Langley et al., 2004;
Langley and Choi, 2004).

Goals in ICARUS represent the objectives that an agent aims to
satisfy. In order to achieve the goals, stored skills within the long-
term skill memory are executed, thereby altering the environment
to bring the agent closer to its goals. ICARUS focuses on only one
goal at a time. Therefore, in each cycle, only the highest priority
goal not yet satisfied is attended to by the ICARUS agent. The
agent then selects skills that are applicable to the agent’s current
belief and executes the skills chosen via the motor buffer.

Whenever the agent is unable to find an applicable skill to
achieve its current goal upon reaching an impasse, it employs
means-ends analysis as its problem solving strategy. Means-ends
analysis involves the decomposition of a problem into sub-goals.
An applicable skill path is selected for each sub-goal. After com-
pleting a sub-goal, the agent returns to the parent goal before
selecting another skill path for the next sub-goal.

ICARUS is similar to Soar in terms of learning, since both
architectures learn from the impasse. The difference is that
ICARUS retrieves information from the goal stack to select an
applicable skill, while Soar uses task-dependent knowledge
to solve an impasse. Skill learning in ICARUS occurs as a result
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of problem solving whereby a skill is learnt when the agent
is able to execute the action successfully (Langley and Choi,
2004).

BDI Architecture
BDI agent is based on the theory of human practical reasoning
(Bratman et al., 1988) and Denett’s theory of intentional sys-
tems. Originally developed as a system that can reason and plan
in a dynamic environment, BDI meets real-time constraints by
reducing the time used in planning and reasoning. BDI is
designed to be situated, goal directed, reactive, and social. This
means a BDI agent is able to react to changes and communicate
in their embedded environment, as it attempts to achieve its
goals. Mechanisms for responding to new situations or goals
during plan formation for general problem solving and reason-
ing in real time processes are also included in BDI systems
(Georgeff and Ingrand, 1989; Sardina et al., 2006)). BDI agents
are typically implemented as a Procedural Reasoning System
(PRS). Later implementations of BDI architectures are also
largely based on PRS (Guerra-Hernndez et al. 2004; Sardina
et al., 2006).

The database contains the beliefs or facts about the world as
well as inference rules that lead to the acquisition of new beliefs;
therefore, the database consists of both the beliefs and the plan
library. The beliefs are updated by the perception of the environ-
ment and the execution of intentions (Georgeff and Ingrand,
1989; Guerra-Hernandez et al., 2004).

Plans refer to the sequences of action a BDI agent can perform
to achieve one or more of its intentions. It is a type of declarative
knowledge containing ideas on how to accomplish a set of given
goals or react to certain situations. A plan consists of a body and an
invocation condition. The body of a plan comprises of possible
courses of action and procedures to achieve a goal, while the invo-
cation condition specifies prerequisites to be met for the plan to
be executed, or to continue executing the plan. The plan can also
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consist of sub-goals to achieve, and the execution of the plan may
create new sub-goals, leading to the formation of goal-sub-goal
hierarchy (Sardina et al., 2006).

Desires, also known as goals, are objectives that a BDI agent
aims to accomplish. The usage of the term “goal” in this architec-
ture is only restricted to non-conflicting desires. Conflicts among
desires are also resolved using rewards and penalties (Dastani et al.,
2001). A goal is said to be successfully achieved when a behavior
satisfying the goal description is being executed. 

Intentions are desires that the agent is committed to. Thus, it
contains all the tasks chosen by the system for execution. Each
intention is implemented as a stack of plan instances, and is only
considered executable if the context of the plan matches with the
consequence of the beliefs.

An event queue in BDI architecture refers to perceptions of the
agent mapped into events stored in the queue. An event occurs
when there is an acquisition or removal of belief, reception of

Fig. 10.6. Schematic of the BDI cognitive architecture in dMARS specification.

b654_Chapter-10.qxd  2/12/2009  9:15 AM  Page 197



messages, and acquisition of new goals. Therefore, events are
inputs to the system.

Functions and processes. A system interpreter manipulates all
components of the BDI architecture described above. It updates
the event queue by perception and internal actions to reflect the
events observed, followed by the selection of events. New possible
desires are then generated by finding relevant plans in the plan
library for the selected event. From the set of relevant plans, an
executable plan is then selected and an instance plan is thus created.
The instance plan is pushed onto the existing (when the plan is
triggered by an internal event such as another plan) or new (when
the plan is triggered by an external event) intention stack. The BDI
agent interacts with its environment either through its database
when new beliefs are acquired or through actions performed dur-
ing the execution of the intention. The interpreter cycle repeats
after the intention is executed. However, only the acquisition of a
new belief or goal leads to an alteration of plans and causes the
agent to work on another intention.

The BDI architecture integrates means-ends reasoning with the
use of decision knowledge in its reasoning mechanism. The system
performs means-ends reasoning and other planning in the context
of existing intentions. A special feature of the BDI architecture is
that once it is committed to a process of achieving goals, it does not
consider other pathways although they may be better than the one
chosen. In this way, the architecture saves decision time.

Goals in BDI architecture are dropped once the system recog-
nizes goals as being accomplished or unable to be readily accom-
plished. Only when all attempts at achieving goals by trying all
applicable plans have failed can the goals be labeled “cannot be
readily accomplished”.

The original BDI architecture lacks the mechanism of learning.
However, there have been recent attempts to include learning
mechanisms into BDI systems. For example, Norling (Norling,
2004) extended BDI for learning recognition primed decision
making. A table lookup version of Q-learning was adopted to learn
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reactive rules for path finding in a grid world. More recently,
Subagdja and Sonenberg (Subagdja and Sonenberg, 2005) further
extended the BDI architecture to incorporate learning by generat-
ing and testing hypotheses for the purpose of formulating plans. At
the multi-agent level, (Guerra-Hernandez et al., 2004) expanded
the BDI architecture to incorporate learning in multi-agent sys-
tems using a first order method called induction of decision tree.

Subsumption Architecture
Subsumption architecture is a “new” concept in artificial intelli-
gence derived from behavior-based robotics. In view that classical
artificial intelligence often has the problems of extensibility, robust-
ness, and achieving multiple goals, Subsumption architecture was
proposed as an incremental and bottom-up approach to deal with
these problems. Subsumption architecture decomposes a problem
in terms of behaviors exhibited by the robots instead of stages of
information flowing within the controller as in a traditional AI
design. Conversely, some researchers believed that traditional cog-
nitive architectures would be useful for higher cognitive functions,
while Subsumption architecture was only meant for reflexive tasks
(Brooks, 1999; Butler, 2001; Amir and Maynard-Zhang, 2004).

Architecture. Figure 10.7 depicts the Subsumption architecture,
comprising of a hierarchy of “simple” behavior-based modules
organized into layers (levels of competence). Subsumption allows
all layers to access the sensor’s data and multiple simple behaviors
to operate in parallel. Each layer is capable of controlling the sys-
tem by itself, unlike classical artificial intelligent agents. Each level
of competence displays a behavior to pursue a particular goal and a
higher-level layer tends to subsume the underlying layers. Lower
layers work like fast-adapting mechanisms, allowing the agent to
react quickly to changes in its environment. In contrast, higher lay-
ers control the system towards the overall goals. As a result, lower
level behaviors are the results of reaction towards the environment,
while higher-level behaviors aim to pursue the primary goals. In
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order to achieve a higher level of competence, a new layer of con-
trol can be simply added without altering existing layers.

Functions and processes. It is notable that symbolic processing is
absent in the Subsumption architecture. There is no explicit repre-
sentation of knowledge; therefore, there is no matching of rules. As
a result, no decision has to be made at any level in the system.
Subsumption architecture is also free from central control (6, 7). The
layers in the architecture are driven by data collected, with no global
data or dynamic communication. This implies that the system is
being reactive via implementing an activity as a consequence of
events. The perception of the system would be tightly coupled to the
action within each layer. The layers are also expected to react quickly
in order to sense rapid changes in the environment. Communication
between the layers occurs in one direction only, resulting in minimal
interaction between the layers. However, as mentioned earlier, the
higher layers can suppress the input and inhibit the output of the
lower layers, which in turn leads to adjustment in behavior to fulfill
the overall goal.

Fig. 10.7. The Subsumption cognitive architecture (Brooks, 1999).
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The architecture is also able to cope with noise due to imperfect
sensory information or unpredictability in the environment. By
designing multiple distributed layers of behavior into the system,
the possibility of system collapse due to a drastic change in envi-
ronment is reduced. This allows the system’s performance to
degrade gradually, rather than failing completely when facing non-
ideal input.

The layered-based design of Subsumption architecture has also
led to easier implementation. Each module of the system can be
tested and debugged until flawless before proceeding to the next
higher level. This type of incremental, bottom-up approach of the
model ensures the workability of the system and also simplifies the
debugging process. The layered design of the architecture is anal-
ogous to the biological nervous system, wherein new sections of
the brain are developed for new functions, but old sections are still
preserved to perform their original tasks.

CLARION Architecture
CLARION stands for Connectionist Learning with Adaptive Rule
Induction ON-line. With its root in connectionist systems (i.e.
neural networks), CLARION is a hybrid architecture that incorpo-
rates both implicit and explicit memories for reasoning and learn-
ing (Sun et al., 2001). Procedural knowledge (implicit memory)
can be gradually accumulated with repeated practice, and deals
with practiced situations of minor variations. To deal with novel sit-
uations, declarative knowledge is required to guide in the explo-
ration of new situations, thereby reducing the time for developing
specific skills. It also unifies neural, reinforcement, and symbolic
methods to perform on-line, bottom-up learning. Hence, CLARION
is able to react in a dynamically changing environment without any
preexisting knowledge installed into the architecture (Sun and
Peterson, 1996, 1998).

Architecture. As shown in Fig. 10.8, the CLARION architecture
consists of two levels: a top level containing prepositional rules and
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a bottom level (reactive level) containing procedural knowledge.
The top level comprises of explicit symbolic mechanisms and the
bottom level uses subsymbolic neural mechanisms. Procedural
knowledge can be acquired through reinforcement learning in a
gradual and cumulative fashion, while declarative knowledge is
acquired through rule extraction by trial and error. The architec-
ture consults both the top and bottom levels, in order to select the
most appropriate action to perform at each step.

It is generally accepted that declarative knowledge is explicit,
while procedural knowledge is implicit. As a result, declarative
knowledge is usually accessible but procedural knowledge is not.
However, there may be exceptions. Thus, the CLARION architec-
ture includes a non-action-centered subsystem (NACS) and action-
centered subsystem (ACS). NACS contains mostly declarative
knowledge, while ACS contains mainly procedural knowledge. The

Fig. 10.8. The CLARION cognitive architecture (Sun and Zhang, 2006).
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top level of the NACS is a general knowledge store (GKS) and
contains explicit representation. On the other hand, an associative
memory network (AMN) forms the bottom level of NACS, which
consists of implicit representation. In ACS, explicit action rules are
stored in the top level. These rules are either provided by the agent’s
external environment or extracted from information in the bottom
level. The bottom level of ACS comprises of implicit decision net-
works, which can be trained by reinforcement learning (Sun and
Zhang, 2006).

Functions and processes. Learning in CLARION can be differen-
tiated into implicit learning or explicit learning. Implicit learning
can be considered as learning procedural skills, while explicit learn-
ing takes place by learning those rules in declarative knowledge.
The learning of procedural knowledge at the bottom level occurs
through a reinforcement learning paradigm, which works by mak-
ing adjustments to the probability of selecting a particular action.
When an action receives a positive reinforcement, the chance of
selecting the action increases; otherwise, the chance of selection
decreases. Learning processes employed in CLARION are through
neural mechanisms, such as multi-layer neural networks and a back-
propagation algorithm, which are used to compute Q-value. When
the situation becomes better due to an action performed, the
Q-value of the action rises, thus increasing the tendency to perform
that action.

The learning of rules in the top level takes place by extracting
information from the bottom level. Upon the successful execution
of an action, the agent extracts a rule corresponding to action
selected by the bottom level and adds this to the rule network. The
agent in turn removes more specialized rules in the rule network
and only keeps the general rules. The agent then tries to verify the
rules learnt by trying them out in subsequent interactions with its
environment. If the performed action results in an unsuccessful
attempt, the rule is modified to be more specific and exclusive of
the current situation. In contrast, a successful attempt enables a
rule to be generalized to make it more universal in application (Sun
and Peterson, 1998).
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It has been shown that people often use similarities between
objects in determining the outcome of inductive reasoning. As a
result, CLARION includes both rule-based and similarity-based
reasoning to mimic human reasoning. Reasoning takes place in
CLARION via the comparison of a known chunk with another
chunk. When the similarity between two chunks is sufficiently high,
inference regarding the relations between them can then be made.
The usage of chunks during reasoning constitutes rule-based rea-
soning, while the comparison of chunks makes use of similarity-
based reasoning. The process of reasoning in CLARION can also
occur iteratively to allow all possible conclusions to be found. In
iterative reasoning, the conclusion reached at each step can be used
as a starting point for the next step. The overall outcome is to select
the appropriate course of action for the agent to react to its envi-
ronment (Toel et al., 1996).

Functional Comparison of the Six Cognitive
Architectures
Comparing the six cognitive architectures across the functions is
not an easy task. Each architecture focuses on different aspects of
the cognition and uses a distinct set of terminology. In these com-
parisons, we briefly break the functions into seven functional areas,
namely perception (the ability to receive information from external
environment), memory, goals, problem solving, planning, reasoning/
inference, and learning. 

In a Soar agent, the information from the external environment
is directly fed to the working memory via the perception module.
The perceptual input from Soar can be from many different sources.
In BDI architecture, the perceptions are available in the form of
events and stored in the queue. The subsumption architecture was
originally designed for robots. Thus, the system perceives the envi-
ronment through obtaining data from its sensors.

Table 10.2 shows the comparison based on memory. Soar
used a centralized working memory containing preferences,
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Table 10.1. The Realization of Perception in the Six Cognitive Architectures

Architecture Means of Perception

Soar Perceptual input stored directly as part of the working memory
ACT-R Perception stored in visual module and made available through

visual buffer
ICARUS Perceptual stored in Perceptual buffer as part of conceptual

memory
BDI Perception mapped to events stored in events queue
Subsumption Perception is available through sensors
CLARION Perceptual input represented as dimension/value pairs

Table 10.2. Implementation of Memory Functions in the Six Cognitive
Architectures

Architecture Representation Working Memory Long Term Memory

Soar Symbolic Contains perceptual Contains procedural,
input, states and declarative
production rules (semantics) and
relevant to current episodic memory
situation

ACT-R Symbolic Contains goal, Contains declarative
perception, knowledge in
relevant declarative module
knowledge and and perceptual
motor action in knowledge in
the various buffers production system

ICARUS Symbolic Consists of Procedural knowledge
perceptual buffer, stored in long term
belief memory skill memory,
and short term declarative knowledge
skill memory in long term

conceptual memory
BDI Symbolic Belief as working Plans as long term

memory memory
Subsumption No explicit No explicit working Heuristics within each

representation memory layer
CLARION Symbolic + As temporary procedural at bottom

Subsymbolic information level Declarative at 
storage top level
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Table 10.3. The Goal Representation of the Six Cognitive Architectures

Architecture Goal Representation

Soar Goals represented as states in working memory
Support goal-subgoal hierarchy

ACT-R Goals stored in the international module and made available
through the goal buffer

ICARUS Goals placed in the goal stack
Support goal-subgoal hierarchy

BDI Non-conflicting goals as desires
Support goal-subgoal hierarchy

Subsumption Multiple goals across modules in different layers
Allow multiple and parallel goal processing

CLARION Goals stored in a goal structure, such as goal stack or goal list

Table 10.4. The Comparison on Planning Capabilities in the Six Cognitive
Architectures

Architecture Machanism of Planning

Soar Decision cycle selects appropritate actions, bringing system
closer to goal

ACT-R Planning by creating subgoals
ICARUS Planning through instantiation of skills
BDI Predefined plans stored in the plan library
Subsumption Implicit planning by task decomposition
CLARION Planning by beam search in the Q-value space

Table 10.5. Comparison of the Problem Solving Mechanism of the Six
Cognitive Architectures

Architecture Problem Solving Mechanism

Soar Means-ends analysis
Decision procedure for selecting appropriate operator to apply

ACT-R By activation of chunks in Bayesian framework and production
rule firing when chunks match with rules

ICARUS Means-ends analysis by searching and backtracking
BDI Means-ends analysis
Subsumption No explicit problem solving mechanism
CLARION Combination of Q-values calculated in the bottom level and

rules in the top level to choose the course of actions
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perception, states, substates, etc. Whereas ACT-R uses a dis-
tributed memory network, wherein the goals, beliefs, sensory
and motor signals are situated in distinct buffers. Both ICARUS
and BDI do not include procedural or declarative memory. BDI
and subsumptuous architectures do not refer to any memory
structure.

Goals are the objectives that the architecture agents have to
achieve. All the architectures incorporate goal setting and most of
them have goal-subgoal hierarchy.

Table 10.6. Comparison on the Reasoning and Inference Capability of the
Six Cognitive Architectures

Architecture Mechanism of Reasoning/Inference

Soar Rule matching to bring relevant knowledge to working memory
Elaboration phase to create preference

ACT-R Probabilistic reasoning
ICARUS Boolean match of conceptual clauses, bottom-up and data driven
BDI Procedural reasoning system
Subsumption Absence of reasoning mechanism
CLARION Integrate rule-based reasoning and similarity- based reasoning

Table 10.7. Comparison of Learning Capability

Architecture Mechanisms of Learning

Soar Chunking for creation of new production rules
Reinforcement learning for updating reward of each rule
Episodic and semantic memory to aid in decision making

ACT-R Production compilation for reducing multiple production rules
into one

CARUS Skill learning
BDI Q-learning, top-down induction of decision tree

Learning from interpretations
Subsumption Absence of learning mechanism

Reactions to environment pre-wired into each module
CLARION Q-learning at bottom level (procedural knowledge)

Rule extraction at top level (declarative knowledge)
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Conclusions
From the US DARPA BICA (Biological-Inspired Cognitive
Architecture) Phase 1 proposal, there emerged a few more cognitive
architectures. These are briefly described in the notes for Chapter 10.
However, DARPA has silently ended the BICA project (The Star-
Ledger News, 15 March 2007, “A quiet death for the bold project
to map the mind” by Kelvin Coughlin).

Current cognitive architecture is mainly based on:

• Rule-based technique, i.e. the techniques are pretty much struc-
tured based on rules. Rules could come in the form of if-then
statements or through matching the closest by some kind of
template and then selecting the closest one as output. Although
rules can be generated automatically, current auto-generation of
robust rules can be improved.

• Symbolic. The knowledge representations are mainly symbolic.

The architectures have common memory systems such as long-term
memory, short-term memory, an emotion component, and reasoning
components. Some architecture such as SOAR and ACT-R are more
detailed and include procedural, episodic, and semantic memories.

Table 10.8. The Relevance of the Six Cognitive Architectures in Neurobiology

Architecture Relevance to Neurobiology

Soar No reference to brain anatomy
ACT-R Used for predication of brain activation pattern;

Modules and production system are mapped to various 
brain regions

ICARUS No reference to brain anatomy
BDI No reference to brain anatomy
Subsumption No reference to brain anatomy;

Layered design is analogous to biological nervous system
CLARION Based on neural networks but no reference to brain anatomy
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Currently, there is no single cognitive architecture or theory
that can cover any significant fraction of the phenomena of human
cognition and the brain as a whole. Most of the researchers in cog-
nitive architecture design indicate that their design is still incom-
plete in many details and only map onto the gross anatomy and
functionality of the human brain.
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C h a p t e r 1 1
ARE WE THERE? WHAT CAN
THE COMPUTER DO TODAY
AND TOMORROW?

What can the computer do now? The term computer here
means any device that involves a computational process, e.g.

a robot, computer system (desk-top or laptop), and other gadgets
that use processors. 

Data and Communication Capability
Can a computer search for data? Yes. It could probably search faster
than a human in a sequential or brute-force way where the data are
properly tagged, or where the search involves the use of pure key
word matching.

Can a computer communicate across mediums such as a messaging?
Yes, we have seen computers send text messages automatically and
most of the time we are annoyed by the advertising messages.

Can a computer speak with a human-like voice? Not quite. It still has
a distinct “machine” voice (Olive, 1996). For example, the ALICE
has a distinct computer voice (http://www.alicebot.org/join.html).

Can a computer translate across languages? Yes, but it still not as
good as a human translator in terms of accuracy. There are a number
of translation engines available on the web that one can try out.

b654_Chapter-11.qxd  2/12/2009  9:15 AM  Page 210



Are We There? What Can the Computer Do Today and Tomorrow? 211

FA

Can a computer transcribe print? Yes, for typewritten text. Software
for optical character recognition (OCR) are available. OCR can
translate images of typewritten or handwritten text into machine
readable text. Typewritten text has reached an accuracy of 99% and
is largely considered a solved problem. Research is now on hand-
written text. OCR ability to recognize handwritten text is still a
challenging issue. Some researchers have claimed their intelligent
character recognition (ICR, another way to call OCR) is able to
achieve an accuracy of 80%–90% for “clean neat handwriting”.

Can a computer perform speech-to-text translation? Yes. Today,
speech to text translation software claims to be as good as 99%
accurate after training. The speech recognition software under
noisy environments looks pretty good too. There are a number of
software that can be easily checked out from the internet. (Humans
may not be able to perform this task as fast as computers.)

Can a computer communicate emotions via voice/facial emotions?
Voice synthesizers will produce various tones according to punctu-
ations such as the exclamation mark (!) or question mark (?).
However, this is still not quite there yet.

Can a computer understand instructions? Only simple ones. (And
the instructions must have been taught beforehand.)

Physical Capabilitya

Can a robot play ping-pong? Yes. Russell L. Andersson built one
robot ping-pong player (Andersson, 1988).

Can a robot run and walk like a human? Not quite yet. Sony QRIO
became the first robot to run in 2003. QRIO can also dance,
recover from falls, and balance on a skateboard. In 2004, a Honda
robot named ASIMO (see Fig. 11.1) claimed to be running four
times faster than Sony QRIO. ASIMO was running at 3 km/
hour, which is closer to a leisurely jog. 

a The term “robot” is used here in place of “computer”.
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More video clips of ASIMO’s other physical capabilities such as
climbing staircases, kicking balls, and dancing can be found at
http://asimo.honda.com/asimotv/.

In 2005, researchers from the Communications and Cybernetic
Research Institute of Nantes in France and the University of
Michigan claimed to have developed mathematical principals for
enabling human-like running and walking with the ability to
recover balance. Their robot, named ‘Rabbit’, can walk at an aver-
age speed of 5 km/h and run at 12 km/h. 

At about the same time (2005/2006), Albert Hubo from
Humanoid Robot Research Center (Hubo Lab from Korea
Advanced Institute of Science and Technology) also demon-
strated that their robot can walk and perform some simple dance
movements.

French humanoid robot, called Nao (built by French start-up
Aldebaran Robotics), tried to compete with advanced domestic
humanoid robots from Asia. The Linux-based, Wi-Fi equipped
robot can walk, dance, understand voice commands, recognize
faces, and have some ‘user-teachable’ capabilities.

Germany’s University of Gottingen has reported progress in
developing RunBot, a robot that can adapt to different terrains and
adjust its posture after a few learning experiences. 

Fig. 11.1. Honda’s robot ASIMO running. Picture from http://asimo.honda.
com/
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The physical ability of robots to move, walk, and run over
bumpy or hilly terrains is still a challenge. Humans, in general, still
have a far better biomechanical system (leg, hips, etc.) and more
complex neuronal control of their body system. And currently, the
robotic physical ability does not look natural. This is partly due to
the control mechanism and the lack of good morphology and
material in the physical design.

Vision Capability
Does a computer have invariant object recognition capability, such
as recognizing CAPTCHA (Completely Automated Public Turing
Test to tell Computers and Human Apart)? Not yet. Humans still
outperform the computer. Since humans are so good at object
recognition, they are used to label the vast quantity of images in
the internet through a fun game called the ESP game. The basic
idea of the ESP game is to display an image and guess what label
the other player will use on the image. So the usual method to
guess correctly is to type as many words that describe the images
and hope that one of them will match the other player’s. In this
way, you get all the images labeled for free by playing the game
(Luis von Ahn from Computer Science Department at Carnegie
Mellon University, 2006, Google technical talk 26 July 2006).

Artistic Capability
Can a machine paint a picture that looks like a painting by a
human? Yes.

Can a computer create art? The robot, Aaron, created by Harold
Cohen, mixes paints, chooses a subject, and paints a picture.
Harold Cohen, an emeritus art professor at the University of
California at San Diego said that the creative part of Aaron is
the software. Another art painting computer is the robot, Action
Jackson. The creator of Action Jackson, Topher McFarland,
acknowledged that Action Jackson is just a mechanical plotter
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carrying out his instructions (instructions written in the software
code downloaded to the robot).

Can a computer sing? Yes. In 1962, John L. Kelly and Carol C.
Lochbaum employed a synthesis-by-rule algorithm to have a
computer sing the song, “Daisy, Daisy”. See also VocalSynthesis:
Cantor by MacMax.

Can a computer compose music? Yes. In 1997, Steve Larson, a
University of Oregon music professor arranged a musical variation
of the Turing test by having an audience attempt to determine
which of three pieces of music had been written by a computer and
which of the three had been written two centuries ago by a human
named Johann Sebastian Bach. Larson was only slightly insulted
when the audience voted that his own piece was a computer com-
position, but he felt somewhat vindicated when the audience
selected the piece written by a computer program named EMI
(Experiments in Musical Intelligence) to be the authentic Bach
composition (Kurzweil, 1999).

Mental Capability
Can a computer play chess? Yes, we saw IBM Deep Blue beat world
champion Gary Kasparov in May 1997. 

Can a computer prove mathematical theorems? Perhaps not quite.
But in 1996, the theorem-proving program (EQP), developed at
Argonne National Laboratory, proved the Robbins conjecture —
a previously unsolved problem in Boolean algebra.

Can a machine navigate faster than humans? Yes, today, the GPS-
guided navigational systems are pretty robust, fast, and accurate
in recalculating alternative routes when a human makes a wrong
turn. With such systems and a voice recognition system installed,
driving on the highway or along the countryside becomes a
breeze.
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Does a computer have emotions? Not currently. There has been
research on building machines with affective learning capabilities,
and machines may one day “look like” they have emotions. For
example, in MIT, robot Kismet (see Fig. 11.2) is designed to have
some “human-like” expressions. Kismet can “express” emotions
such as happiness, sadness, interest, disgust, surprise, anger, and
calmness. For more information on Kismet, refer to the following
website: http://www.ai.mit.edu/projects/humanoid-robotics-
group/kismet/kismet.html. 

Kismet is equipped with visual, auditory, and proprioceptive sen-
sory input. Picture taken from http://www.ai.mit.edu/projects/
humanoid-robotics-group/kismet/kismet.html.

Can a computer understand what it is saying? Not quite.

Can a computer understand what you are saying? No. Maybe it is
easier for you to type into the computer for it to “understand”
what you are saying.

Does a computer have mental vision, i.e. foresight? Not currently.

Can a computer understand the emotional state of another human?
Not currently.

Does a computer have feelings? No, we do not fully understand
how our brain generates feelings. 

Can a computer teach, adapting to a student’s style of learning?
Not yet.

Fig. 11.2. Picture of Kismet showing a happy expression.
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General Task Capabilityb

Can a computer discuss art, science, technology, and history?
Not currently. Computer is still not able to answer questions in
a proper way (given the free text knowledge), let alone striking
a discussion with a human. With advances in ontology and knowl-
edge representation research, a computer may be able to answer well
structured questions which it has rich ontological representation.

Can a computer have personal experiences and discuss social rela-
tionships? Not at the current stage.

Can a computer, in general, learn to play all kinds of games such as
ping-pong, badminton, golf, and soccer? Not at the current stage.
Can all humans play all kinds of games? 

Can a computer think like a human? (Lee, 2006) Still far from it.

Does a computer have language understanding? Not yet. Computer
language understanding remains a complex task (Olive, 1996).

Can a machine demonstrate creativity? Not currently.

Can computer vision match the human capability in recognizing
objects in various spatial orientations, size, luminance, etc? Not at
the current stage.

Can a computer exhibit free will? Not as human free will. However,
if we start to define free will, we will be confining the free will
within that definition and the machine may one day achieve it
within that confined definition. 

The greater the freedom of a machine, the more it will need
moral standards. I do not think designers will easily be able to
enforce “The Three Laws”c for computers, since computer percep-
tion of potential harmful events to people is not perfect, and since
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b General Intelligence, such as the ability to plan, reason, learn, solve
problems, deal with novel situations, fuse and interpret sensory data.

C See notes on Chapter 14 for a definition of the three laws.
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ultimately the laws are based on the machine’s judgment about
a situation. Furthermore, computers can be hacked, by humans
or other computers. A system that truly operates in a complex
and unpredictable environment will need more than laws; it will
essentially need values and principles, a moral compass for guid-
ance, and perhaps even religion (Picard, 1997).

Can a computer have a character? Still uncertain.

Can a computer be social and interact with human? Not quite at
the current stage. 

Can a computer deal with surprises? Not currently. Computers are
good at tasks that are pre-programmed, i.e. as anticipated by the
designer of the system. Human brains can react and handle surprises
in real time that today’s computers still cannot. The DARPA’s brain-
on-a-chip venture, called “Systems of Neuromorphic Adaptive Plastic
Scalable Electronics” (SyNAPSE) is said to seek development of a
brain-inspired electronic “chip” that mimics the function, size, and
power consumption of the biological cortex. And one of the tasks is
to be able to deal with surprises. (See http://blogs.spectrum.ieee.
org/tech_talk/2008/11/darpas_synapse_seat_of_your_pa.html)

Could a machine be self-generative? For example, a machine builds
another machine (like giving birth to a new machine). Current
multiple robots for car production plants are all preprogrammed
and fixed in their production process.

Could a Machine Pass the Turing Test?
How soon could we create a machine with full human cognitive
intelligence?

What is the Turing Test? In 1950, Alan Turing published a
paper that described his concept of the Turing Test, in which
one or more human judges interviews computers and a human
using terminals (so that the judges won’t be prejudiced against
the computers for lacking a human appearance) (Feigenbaum
and Feldman, 1963). The nature of the dialogue between the
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human judges and the candidates (i.e. the computers and
the human) is similar to an online chat using instant messaging.
The computers as well as the human try to convince the human
judges of their humanness. If the human judges are unable to
reliably unmask the computers (as imposter humans) then the
computer is considered to have demonstrated human-level intel-
ligence. 

Turing was very specifically nonspecific about many aspects of
how to administer the test. He did not specify many key details,
such as the duration of the interrogation and the sophistication of
the human judge and human player. (Information from the
Association for Uncertainty in AI (http://www.auai.org/).)

What is Alan Turing’s own prediction? The common under-
standing is 50 years from 1950, which in this case would be the
year 2000. But Jack Copeland thinks this is an unofficial prediction
date of Alan Turning. Jack Copeland shared Turing’s 1952 con-
versation between Newsman and Alan Turing, which indicated that
Alan Turing said it would take at least 100 years to pass the Turing
test (Copeland, 2006):

Newsman: “I should like to be there when your match between a
man and a machine takes place, and perhaps to try my hand at mak-
ing up some of the questions. But that will be a long time from now, if
the machine is to stand any chance with no questions barred.”

Alan Turing: “Oh yes, at least 100 years, I should say.”

What do people say?

There are many diverse views on how soon the computer can
pass the Turing test. Currently, on the web, there are two
well-known competitions to beat or bet on the Turing test.
These are:

• The Loebner Prize in Artificial Intelligence — The first Turing Test
Competition. (http://www.loebner.net/Prizef/loebner-prize.
html.) Hugh Loebner, a businessman, funded a US$100,000 prize
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for the first computer that can pass the test, and annual contests
are held with smaller prizes. The 2007 contest was held in New
York City. ALICE was the winner of the 2004 Loebner Prize.

• AAAI competition — Long bet between Mitchell Kapor and
Raymond Kurzweil on the title: By 2029 no computer — or
“machine intelligence” — will have passed the Turing Test. The
vote, as of May 2007, was 53% disagree and 47% agree. Check
out: http://www.longbets.org/bets (What is your vote?).

Now and then, there are also debates on this topic, such as the
debate in MIT Computer Science and Artificial Intelligence
Laboratory (CSAIL) on 30 November 2006 (Simon Lecture)
between David Gelernter and Raymond Kurzweil under the semi-
nar title: Creativity: the mind, machines, and mathematics. 

“… we have to attack the problem right …..Building machine with
consciousness out of the software is impossible …the only way currently
I know to achieve consciousness is through living organism …” —
David Gelernter’s reply to Raymond Kurzweil with regards to
building a conscious machine.

“…Exponential power of growth in the information technology,
which will affect hardware and software … we will have model and
simulation of the various cognitive regions in the brain within
20 years … and that will give us template to build intelligent
machine to pass the Turing test.” — One of many remarks by
Raymond Kurzweil on why he thinks the computer will beat the
Turing test within 20 years.

“The chance to pass Turing test in the next 50 years is good.” —
Copeland’s concluding remark in Simon lecture on 30 Nov 2006,
MIT/CSAIL.

“Within 25 years, we’ll reverse-engineer the brain and go on to
develop superintelligence. Extrapolating the exponential growth of
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computational capacity (a factor of at least 1000 per decade), we’ll
expand inward to the fine forces, such as strings and quarks, and out-
ward. Assuming we could overcome the speed of light limitation,
within 300 years we would saturate the whole universe with our intel-
ligence.” — Raymond Kurzweil (The Intelligent Universe). 

Raymond Kurzweil indicated that with an exponentially increasing
computational ability provided by the Law of Accelerating Returns
(a variation on Moore’s law), we will be able to continue to rapidly
improve the resolution and speed of non-invasive brain scanning
technologies and enable humans to build a new “brain”.

Note also that the Law of Accelerating Returns can only be
achievable when quantum computing can be achieved. What is
today’s state-of-the–art in quantum computing? Are we anywhere
near a working model?

On April 13, 2005, Gordon Moore himself stated that the law
may not hold for too long since transistors may reach the limits of
miniaturization at atomic levels. 

“In terms of size (of transistor) you can see that we’re approaching
the size of atoms, which is a fundamental barrier, but it’ll be two or
three generations before we get that far — but that’s as far out as
we’ve ever been able to see. We have another 10 to 20 years before we
reach a fundamental limit. By then they’ll be able to make bigger
chips and have transistor budgets in the billions.” — Gordon Moore
(Dubash, 2005).

The task ahead to increase computational speed is challenging
and this may have a potential impact on how much we could reverse
engineer the brain, unless alternative methods are available.

Roger Penrose in his book, “The Emperor’s New Mind”, argues
that there are facets of human thinking and human imagination that
can never be emulated by a machine. Penrose indicated that laws,
even more wondrously complex than those of quantum mechanics,
are essential for the operation of a mind (Penrose, 1991).
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“I believe that the creation of a superhumanly intelligent AI system is
possible within 10 years, and maybe even within a lesser period of time
(three to five years). Predicting the exact number of years is not possi-
ble at this stage. But the point is, I believe that I have arrived at a
detailed software design that is capable of giving rise to intelligence at
the human level and beyond.” — Ben Goertzel in Artificial General
Intelligence: Now Is the Time, published on April 9, 2007.

“Why have we made limited progress in AI? Because we haven’t
developed sophisticated models of thinking, we need better program-
ming languages and architectures, and we haven’t focused on com-
mon sense problems that every normal child can solve.” — Marvin
Minsky (The emotion universe) (Minsky in a 2007 class com-
mented that many people have proposed general AI but they all
get “flattened out”. Perhaps building general artificial intelligence
(GAI) is more complex than we have imagined.

“The reason that no computer program can ever be a mind is simply
that a computer program is only syntactical, and minds are more
than syntactical. Minds are semantical, in the sense that they have
more than a formal structure, they have a content.” — John Searle,
Minds, Brains and Science (Searle, 1984)

Hence, our current approach of modeling the biological plausibil-
ity is just a small fraction of the true biological network. Yet, in
this small fraction we can see some impressive results although it
is still far from a general intelligent system. Nevertheless, the quest
continues and more funds are allocated to studying the brain with
the aim to build general intelligent systems. These include US
DARPA’s initiative on a number of brain-inspired computing proj-
ects such as project SyNAPSE. The European Commission’s 7th
Framework Programme listed “Cognitive systems, Interaction,
Robotics” as one of its key challenges. A number of research institu-
tions and laboratories are doing research on computational cognitive
science areas with the goal of building general intelligent systems.
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C h a p t e r 1 2
BRAIN — A FOREST NOT TOTALLY
EXPLORED: WHAT ARE SOME OF
THE ISSUES?

We now have a lot more data about the brain then a decade
ago, yet we still cannot explain many things that happen in

the brain.
Today, the “forest” in our brain is not a totally unexplored sub-

ject. The forest has been “probed”, “measured”, and observed from
physiological and behavioral data. However, there are still many
issues that can be researched on and many questions that need to
be resolved. Many scientists have provided many interesting views,
opinions, and suggestions of how the different parts in the brain
work. There are also many different claims of why and how the brain,
as a whole, works. These claims are mainly based on data collected
from brain measuring instruments.

This chapter presents some of these claims and the issues to
address:

• The different theories and views of how the brain and mind
work

• Some open issues
• Some limitations of the instruments.
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Many Theories and Views of How the
Brain and Mind Work
In the mid-1960s, the brain was likened to a telephone switching
network; in the mid-1980s, it was compared to a digital computer.
By the end of 1990s, it is said to be similar to a massively parallel
digital computer. More recently, the brain is compared to a quan-
tum computer as well as to the World Wide Web.

As discussed in the earlier chapters, at the fundamental level,
the brain consists of many nerve cells (neurons). The nerve cells
interconnect and associate with one another throughout the
nervous system. These form the fundamental parts of the brain
that give rise to memory and learning. There are many mysteries
and wonders that go on in these neurons and their interactions.
Many scientists have different ideas, concepts, and theories of
explaining these massive neurons, their highly distributed and
parallel interaction among one another that lead to a working
mind. From their professional points of view, whether from sci-
ences (such as chemists, biologists, or physicists), engineering,
computer science, neuroscience, psychology or philosophy
study, they all share valuable insights into this great mystery and
wonder of how the brain and mind work. Here are some of their
insights.

Brain as an associative network. The neurons’ massive intercon-
nection has led many to propose that the brain is organized in an
associative network and governed by some rules such as reinforce-
ment or associative rules.

Brain as having many distributed functions. The late Professor
Karl Lashley (1890–1958) described the brain as having many
functions. Each of these functions is not localized but distrib-
uted around the brain. Every brain region partakes (to some
extent) in all brain processes. For example, the function of mem-
ory in the brain is not localized but distributed throughout the
cortex.
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Brain as a dynamical system. Some scientists hypothesize that
the electrical activities of the brain can be described by the theory
of dynamical system (van Gelder 1998; Laurent et al., 2001).
Progressing from this thinking, the following have been arrived at:

• Chaotic dynamical system. The brain as a chaotic dynamical sys-
tem (Skarda and Freeman, 1987; Tsuda, 2001; Kay, 2003).

• The brain as a network of oscillators. Neurons are oscillators
and they modulate other cells or networks of cells. Various mes-
senger chemicals, such as peptides, modulate the effects of other
transmitters. And a significant population of neurons rarely or
never “fire” (Bullock, 1981; Roberts and Bush, 1981). Instead,
they propagate slow-wave graded ionic potentials (Bickhard and
Terveen, 1995).

Professor Stephen Grossberg’s shunting networks can be said to be
a class of dynamical system, which uses first order differential equa-
tions in the model. 

“Brains are open thermodynamic systems, continually dissipating
metabolic energy as heat in constructing spatiotemporal patterns of
neural activity. Here, patterns of cortical oscillations are described as
Prigogine’s ‘dissipative structures’ formed at a conditionally stable
operating point far from equilibrium.” — Walter Freeman
(Freeman, 2007) (Freeman, 1997).

Professor Mark Bickhard from Lehigh Univeristy suggested that
the brain is composed of many oscillators that generate vast con-
current micro-modes (Mark called these micro-modes a microgen-
esis process) of processing across the brain. These oscillators are
neurons that oscillate and resonate with modulation where time
places a part. And it could anticipate whether a stimulus it received
is true or false in the environment. The microgenesis process antic-
ipates that the appropriate condition — whatever it is — obtained
is the current environment.
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“An architecture supporting oscillations and modulations makes very
strong connection with a number of aspects of brain functioning that
both connectionist models and standard models ignore.” —
(Bickhard and Terveen 1995).

Brain as composed of multiple intelligences. Professor Howard
Gardner, from his study of the brain in an effort to ascertain the
optimal taxonomy of human capacities, coined the term multiple
intelligences. He indicated that human beings are best described as
having a set of relatively autonomous intelligences such as linguis-
tic, logical, spatial, bodily kinesthetic, musical, interpersonal, and
intrapersonal intelligences (Gardner, 2003).

Brain as a map machine. Experiments have shown that in the
mammalian visual cortex, neurons are organized according to their
functional properties into multiple maps such as retinotopic, ocu-
lar dominance, orientation preference, direction motion, and oth-
ers. “Map”, here, refers to a pattern or representation of a sensory
surface (such as the retina or skin receptors, which receive the stim-
ulus) onto the cortex’s neural surface. Some believe that these cor-
tical maps reflect neuronal connectivity in the brain. In the 1970s,
(Schwartz, 1977) indicated that the retinotopic mapping of the
visual field to the surface of the striate cortex is characterized as a
logarithmic mapping. This was subsequently observed in human
subjects using a positron emission tomography (PET) scanner fol-
lowing the administration of 2-deoxyglucose (2DG) to human
subjects, and a logarithmically structured “ring-ray” stimulus was
observed (Schwartz et al., 1984). Hence, from the visual cortex
study, it was generalized that the brain is a map machine (Schwartz
et al., 1988) (Chklovskii and Koulakov 2004) (Polimeni et al.,
2006). The study to model the cortical surface (via mapping) was
useful because it is believed that the local functional organization
of the cortex is largely 2-D.

Brain as an information processing system. This has been the
one of the key themes of this book, which looks at the brain as an
information processing system, and to obtain the inspiration for
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building a computationally intelligent information processing sys-
tem. The brain has a network of neurons (neural networks) that
forms a massively parallel information processing system. Most
computational scientists take this perspective.

Our brain is complex and can be described and viewed in many
different interesting perspectives. There are also many interesting
different hypotheses on how the mechanism of the neurons and
synapses work that give rise to a working mind. The matter on the
brain is clearly unsettled and fuelled by many challenging research
issues. 

Open Issues
What are the open issues? There are many open issues with
regards to the study of the brain. No one can fully claim that we
have now understood how the brain works and how it gives rise
to a mind. The exact cortical connection is probably far more
complicated then it is thought to be. Many open research issues
remain with regard to how the neurons and group of neurons are
interrelated and connected. From the molecular level to the func-
tional region level there remain many issues for research. As the
problem is addressed by researchers from diverse disciplinary
fields and different cultural backgrounds, there are also commu-
nication gaps such as the understanding of terminology and
interpretation of findings that may potentially hinder some of
research progress.

A number of open research issues were discussed in the previ-
ous chapters, a few more will be discussed here, and more are pro-
vided in the Notes for Chapter 12.

What are the biochemical and molecular mechanisms that acti-
vate the different parts of the brain regions and create different
functional processes? Based on laboratory tests, we know a number
of roles and functions in different parts of the brain. For example,
we know the role of the hippocampus in spatial memory, the
amygdala in emotion, the associative cortex in decision-making,
the thalamus for regulation of body temperature, etc. However,
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we know little of the biochemical and molecular mechanisms that
activate this process and how they interact to give rise to a func-
tional system.

“Brain circuitry more precise than suspected”, a phrase borrowed
from the SALK Institute for Biological Studies press release in
2005. One key principle in brain organization is that nerve cells
(neurons) with similar functions are grouped together and organ-
ized into functional slices known as functional columns (Hubel and
Wiesel, 1962; Mountcastle 1997). Each column generally carries
about a thousand neurons. However, why is there a need for so
many neurons to be located in the same area of the brain to carry
out the same function? Neuroscientists are puzzled by this ques-
tion. The latest finding by Professor Edward Callaway from the
SALK Institute indicated that the thousand neurons in these
columns are not the same. “There are fine-scale connections with the
columns so that different neurons right next to each other could be
involved in very different functions because they are connected differ-
ently and don’t even talk to each other directly. Right now, people are
placing electrodes in the brain and recording from 100 neurons
simultaneously and it turns out this is relatively uninformative.
That’s probably because most of them are not connected or even com-
municating with each other.” — Edward Callaway. The brain’s cir-
cuitry is organized on a much finer scale than previously suspected,
creating new challenges for future studies (SALK Institute press
release, 2005).

Tracing the “wires” of the brain is non-trivial. The thinnest
axons are about 100 nm in diameter and it is necessary to image
the structure of the brain at nanoscale resolution to trace the wires
of the brain at both the dendritic and axon level. Special instrument
and techniques are needed to perform this research (see notes for
Chapter 12 for some details).

How are the various regions interconnected and related?
Studies by (Bulkin and Groh, 2006) have suggested possible multi-
sensory processing in the brain regions. The interrelation of the
various regions of the brains is not well understood to model it
effectively.
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One example is the well-known visual circuitry diagram (see
Fig. 12.1), where some studies have suggested a possible link to the
auditory pathway via the inferior colliculus to the parietal cortex.

“How do areas of the brain communicate? For example, a simple
activity like responding to a question involves areas all over the
brain that hear the sound, analyze it, extract the relevant informa-
tion, formulate a response, and then coordinate your lips and mouth
to speak. We have no idea how information moves between these
areas.” — Dr Robert Knight (Sanders, 2006).

“It’s an open question whether the cortex is really as modular as many
fMRI studies make it out to be.” — David Cox (Massachusetts
Institute of Technology (MIT)) and Robert Savoy (Massachusetts
General Hospital (MGH)). They recently described a new fMRI
application of a statistical methodology aimed at identifying, not

Fig. 12.1. A visual circuitry with a link to the auditory pathway.
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ignoring, the interactions among voxels from different parts of the
brain (Cox and Savoy, 2003).

Problem with the precise and accurate localization of the brain
region. The brain has a complicated surface of many folds (gyri)
and fissures (sulci). There are some variations in shape and size of
the gyri and sulci of each person’s brain. This makes it difficult to
compare brains across subjects to determine significant regions of
function and activation, the purpose being to study the functional
architectures and neural maps embedded in the brain.

To draw good inference from two independent studies, one
needs to be able to accurately pin down the region of the brain
studied. What constitutes the same brain region from individual to
individual? Currently, there are still issues with regards to the accu-
rate localization of which brain region performs what function for
an average brain. There are four possible different methods of
detecting sameness-in-regions of the brain. These are:

1. Normalized to 3-D Coordinates, i.e. transforming the subject’s
brain to a standardized coordinate.

2. Sulcal and Gyral landmarks, i.e. considering the subject’s brain
curvature and shape, localize based on prominent sulcal and
Gyral landmarks.

3. Cytoarchitecture (cell types, brain’s layer, size, etc), i.e. charac-
terize brain region via cytoarchitecture.

4. Create flat maps of the human brain. The surface of the brain,
i.e. the grey matter is where the functional activation of the
brain occurs, and one way of visualizing the activity of the brain
is to create a surface-based map (Hurdal et al., 2001).

However, the problem is that the data from these four methods do
not agree with one another. There are still some variants from
method to method. Some have suggested methods, such as
“Functional Regions of Interest”, involving anatomy and function,
to reconcile the difference.
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Limitation of the measuring instrument. Today’s measuring
instruments have provided far more insight to scientists in under-
standing the brain than a century ago. Some of the more recent
enhancements to the instruments, such as the fMRI, may have
improved the research a great deal. However, this is not to say that
the instruments are perfect. It is important to know the limitations
so that the data collected can be taken into the perspective of the
instrument’s limitation. Data collected from the instrument needs
to be properly processed for correct interpretation. As this is an
important issue, the next section is devoted to a full discussion.

Measuring Instruments in Neuroscience
Today’s measuring devices may not be as perfect as we would desire
to explore the brain, particularly for the study of the brain’s activ-
ity, its connectivity, or the dynamic neural correlation with the cog-
nitive processes in the human brain. From these measuring devices,
huge data have been collected. There are also issues with regards to
the ability in using the data in an accurate, precise, and meaningful
way for scientific discussions in exploring the brain’s connectivity.

The purpose of this section is to explore the limitations and
issues with regards to the measuring instruments and the data col-
lected from these instruments. 

Instruments Measuring the Brain’s Electric Signal

EEG (Electroencephalography). This method measures the brain’s
electrical activity (potentials) by taking the record from electrodes
placed on the scalp (see Fig. 12.2). The resulting traces, which are
a continuous measure of the brain activity, are known as EEG and
it represents an electrical signal from a large number of neurons.
These are sometimes called brainwaves.

ERP (Event Related Potentials ). ERP is a specific case of
EEG recording. ERP recordings link to the occurrence of an
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event, i.e. a presentation of a stimulus would be such an event, and
the brain’s response to this event (stimulus) are recorded. These
records in some sense represent the signal generated by thousands
or more neurons in the brain responding to the event. By meas-
uring the brain’s response to an event we can learn how different
types of information are processed.

The ERP’s electric traces shows interest for researchers because
different components of the response indicate different aspects of
cognitive processing. For example, presenting different sentences
to a subject will give different electrical signal responses, which will
determine the time taken to register information about a word’s
meaning. And one can also figure out where this activity occurs in
the brain. However, localization using EEG/ERP is not very accu-
rate (poor spatial resolution).

The advantages are that the measuring of EEG/ERP is
inexpensive and non-invasive. EEG and ERP have a high tem-
poral resolution. The limitations of both EEG and ERP are as
follows:

• Poor spatial resolution. The electrodes placed on the scalp could
pick up useful electric signals from an area (from a large group

Fig. 12.2. A man’s head with the EEG electrode. (Courtesy of Sekuler’s lab
(Brandeis University), with permission from Yigal Agam (March 22, 2007).)
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of neurons) but not from individual neuron action potentials.
And even for that area, it is difficult to pinpoint the exert loca-
tion in a 3-D brain.

• Neuron activities. It is also difficult to discern from EEG/ERP
signals whether the neuron activity is releasing inhibitory, exci-
tatory, or modulatory neurotransmitters. This is because the
signals emitted could be affected by cerebral tissues, fluid, and
other unknown factors.

• Background noise. As in all measurements, the careful remov-
ing of background noise is needed (in this case it is the 60 Hz
electrical background noise) and also the blinking of eye or
movements of body muscle near the electrode may affect the
electrode measurement, since the useful electric signal gener-
ated from the brain is in the order of about 50 microvolt.

� Brain noise. Even if all the instrument-measuring noises are
removed, there is also brain noise, such as random crackling
and sputtering of neurons that usually go unnoticed.
Furthermore, other parts of the brain may be functioning
and generating noises that may not be related to the spot of
interest, which the instrument is measuring.

Some techniques to overcome the limitation include: 

• Using a large number of electrodes to triangulate the source of
electrical activity — but it should be noted that the accuracy or
required resolution is still not as good although triangulation
helps.

• Removing the noise from eye blinking and power line noise.
There are a number of papers that claim to automate the removal
of eye blinking artifacts of EEG, e.g. using the Independent
Component Analysis (ICA) (Li et al., 2006) and the Constrained
Blind Source Separation algorithm (CBSS) (Shoker et al., 2004).

However, all the techniques for overcoming the shortfall are far
from perfect at the current stage, and hence, one’s claim of the
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experimental results using EEG/ERP data should have careful con-
sideration of the limitation.

Instruments Using the Magnetic Field

MRI (Magnetic resonance imaging). MRI was discovered in the
1930s by Felix Bloch and Edward Purcell. In the 1970s, MRI
started to be used for medical diagnosis. Then, it became one of
the methods that provide a better picture of what is inside the skull
or the brain. It can be used to determine brain size and employs a
strong magnetic field. Currently, there are no known risks or side
effects. However, any metal implant or metallic object nearby
would greatly affect the magnetic field reading.

In the MRI-related family, we have fMRI and diffusion MRI.
fMRI (functional Magnetic Resonance Imaging). The most

commonly used approach for fMRI techniques in brain imaging
was introduced around 1992 (Kwong et al., 1992). Noninvasive
techniques (advantage point) are used. fMRI has dominated the
field of human brain mapping since the 1990s, and till today, it is
regarded as one of the most valuable measuring instruments for
brain research. Many papers were published based on fMRI stud-
ies. fMRI takes a picture based on the average amount of oxygen
in the blood. It is known that changes in blood flow and the
amount of blood oxygenation is related to the neural activity in the
brain. Studies of this blood flow are known as hemodynamic.

The fMRI picture is based on several measurements and the
mean results are shown. In other words, the fMRI generates maps
that are a statistical picture of brain activity, with the colors chang-
ing as neuronal activity increases. The advantages are that fMRI is
non-invasive and has a high spatial resolution (3 to 6 mm).
Limitations of fMRI include:

• Poor temporal resolution (in order of seconds). fMRI is not
good for recording neuronal events in real time. 

• The technique is limited by interpretational challenges. In (Pray
2003), the article indicated statistical skills are needed to handle
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the enormous amount of data even in a single scan, to prevent
erroneous conclusions and understand the truth. However,
other scientists also find that the challenge is in the many steps
that need to be done, such as artifact removal, preprocessing,
region of interest (ROI) definition, sometimes volume segmen-
tation, inflation, and flattening, as well as statistical tests and
proper correction for multiple comparisons.

• Spatial resolution is not sufficient to resolve the activity of indi-
vidual neurons (normally, an average of a group of neuron activ-
ities = approximately 20 mm2 or more (Smith et al., 2001)
claims that the fMRI can take up to 16 mm2). However, this
spatial resolution is still far better than the EEG/ERP method.
Nevertheless, there is still a question of what we are measuring
given the spatial resolution.

� As Ugurbil et al. indicated that fMRI maps are based on sec-
ondary metabolic and hemodynamic events (hemodynamics
refers to the study of the properties and flow of blood) that
follow neuronal activity and not on the electrical activity
itself, it remains mostly unclear what the spatial specificity
of fMRI is, i.e. how accurate are the maps generated by
fMRI as compared with the actual sites of neuronal activity
(Ugurbil et al., 2002).

• Lastly, the nature of the link between fMRI signals and
processes that define neuronal signaling, such as action poten-
tials or neurotransmitter release, is not fully understood.
Professor Kim and colleagues’ study on BOLD fMRI
(BOLD–blood oxygenation level-dependent) signals to corre-
late the neuronal activity have reached the conclusion that the
BOLD signals are a robust predictor for neuronal activity only
at supra-millimeter spatial scales, i.e. 2 × 2 mm2 (Kim et al.,
2004). Another report by (Logothetis and Wandell, 2004) indi-
cated that the BOLD contrast mechanism reflects changes in
cerebral blood volume, cerebral blood flow, and oxygen con-
sumption. The interaction between neural activity and these
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variables involves a number of factors, including the cell types
and circuitry driven during activation, and the processes that
couple energy demand to its supply to the brain.

A conventional fMRI scanner (see Fig. 12.4) contains giant cylin-
drical supercooled magnets, which produce a field some 50 thou-
sand times stronger than the Earth’s magnetic field and can create
3-D maps of the body tissue. Subjects lie on a sliding table, which
is pushed into the scanner. Subjects are usually restrained with soft
pads to prevent movements that might result in unusable data.
Because of the strength of the magnetic field involved, subjects are
required to remove all metallic objects from their body before
being placed in the scanner.

Diffusion MRI (including diffusion tensor imaging (DTI)).
Diffusion tensor imaging (DTI is also known as diffusion tensor
MRI) was introduced by Peter Basser and his colleagues in 1994.
Currently, there has been an increase in reports of researchers using
DTI, or more generally, the diffusion MRI to examine different brain
regions such as white matter changes in normal aging and in AD.
This technique enables the measurement of the restricted diffusion

Fig. 12.3. A fMRI image showing the increase in brain activity (highlighted in
color) at the site of stimulation (primary motor cortex) and in other areas of the
brain that control movement (such as the premotor cortex) (Pray, 2003).
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of water in tissue (i.e. to observe the Brownian motion of water mol-
ecules in brain tissues). The axons in parallel bundles and their myelin
shield facilitate the diffusion of the water molecules along their main
direction. This preferential oriented diffusion is called anisotropic
diffusion. If we apply diffusion gradients (i.e. magnetic field variation
in the MRI magnet) in at least six directions, it is possible to calcu-
late, for each voxel, a tensor (where the word “tensor” mathemati-
cally means a generalized linear quantity or geometrical entity that
can be expressed as a multi-dimensional array relative to a choice of
basis of the particular space on which it is defined, i.e. an organized
collection of numbers) of a symmetric positive definite three-by-
three matrix, which describes the 3-D shape of diffusion. The fiber
direction is indicated by the tensor’s main eigenvector. 

The diffusion MRI limitations include:

• Low spatial resolution of the image relative to the tract curva-
ture (Lori et al., 2002).

• Ambiguity between crossing and bending fibers (Basser et al.,
2000) (Tuch, 2004). Also, the human brain is known to have

Fig. 12.4. A fMRI scanner. Courtesy of Dr Michael Chee and the staff of the
Cognitive Neuroscience Lab, Duke-NUS Graduate Medical School.
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many complex crossing patterns, and there is limitation in
estimating voxel structure (including intra-voxel structure).
Voxel, here, refers to the volumetric representation of brain
tissues.

• Distortions in the images (Jezzard and Clare, 1999).

Some techniques to overcome this include:

• Model-based methods (some prior knowledge of the local fiber
configuration is needed).

� Multi-fiber Gaussian tensors, which model the signal as a
finite number of Gaussian fibers (Tuch, 2002).

� Spherical deconvolution techniques, which use Gaussian
kernels to estimate the diffusion signal (Ozarslan et al.,
2004) (Tournier et al., 2004). Orientation Diffusion
Function (ODF).

• Model-independent

� Q-ball imaging (Tuch et al., 2005). This method seeks to
reconstruct the ODF (Orientation Diffusion Function,
sometimes called the Orientation Distributed Function)
from the high angular resolution diffusion imaging data.
This method is said to be able to resolve subvoxel structure.

MEG (Magnetoencephalography). MEG is a related method to the
EEG. But instead of recording electrical potentials, it uses mag-
netic potentials at the scalp to index brain activity. For example, to
locate a dipole, a magnetic field can be used, due to the dipole’s
extreme high points of intensity of the magnetic field. By using a
superconducting quantum interference device, MEG can record
these magnetic fields. 

The advantage of MEG includes: The magnetic field is not
influenced by variations such as the different thickness of brain tis-
sues, cerebral spinal fluid, the skull, and the scalp. The strength of
the magnetic field tells us how deep within the brain the source is
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located. And similar to EEG, it has a good temporal resolution of
up to the millisecond. However, the limitations are:

• The magnetic field in the brain is 100 millionth the size of the
Earths’ magnetic field. Hence, highly shielded rooms are
needed.

• MEG cannot detect activity of cells with certain orientations
within the brain. For example, magnetic fields created by cells
with long axes radial to the surface will be invisible.

• It has poor spatial resolution.

TMS (Transcranial Magnetic Stimulation). The TMS is the reverse
of MEG. It has a series of coils placed on a subject’s scalp. The
focused magnetic field pulses, then stimulates the underlying neu-
rons. This causes the potential of neurons to depolarize, and the
neurons fire in a random pattern rather than in a coherent order.
There are two types of TMS:

• Single-pulse TMS, in which stimulation is at a particular time
during the performance of a task. 

• Repetitive TMS (or rTMS) is TMS with pulse frequencies of
≥ 1Hz. rTMS gives multiple pulses. It can facilitate brain activ-
ity or disrupt activity. 

One of the major advantages of TMS is that it can be used to con-
firm findings from the lesion method. However, the TMS coils can
only stimulate regions on the surface. It is not possible to stimulate
anything deeper without stimulating what is above.

Instruments Using Radioactive Material

PET (Positron emission tomography). Positron emission from
radioactive nuclei was discovered in 1933 by Thibaud and Joliot.
More detailed history refers to (Valk et al., 2003). It is an invasive
technique.
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A short-lived radioactive tracer isotope is injected into the
participant (usually in the blood). The radioactive tracer enters the
bloodstream and goes to the brain. These molecules are unstable but
become stable by producing a positive charged electron (positron).
Then two electrons will terminate each other, producing energy. The
two electrons form a photon of light. Any area that is metabolically
active produces more photons of light, and any area that has less
produces fewer photons. The tracing of where the energy was
created can enable us to localize what region at which this happens.

With PET, the blood flow in the brain is mapped, i.e. it allows
us to see how the brain uses molecules and provides an absolute
measure of regional cerebral blood flow. The disadvantages are:

• It is invasive (involving the injection of a radioactive substance),
thus it is not possible to make many scans on a subject (partici-
pant). Thus, it is not particularly recommended for use in the
human brain. 

• The time period taken to get an image due to the isotope’s half-
life is an important factor, because once time has gone by, there
is valuable brain activity we did not have an image of. 

• A machine called the cyclotron, which is very expensive, is
required. The cyclotron is an accelerator of subatomic particles.
It produces a large quantity of protons (heavy particles with an
electrical positive charge). 

• PET does not provide enough imaging of brain activity from
one person.

SPECT (Single photon emission computed tomography) is worse
off in resolution and takes longer to get an image compare to PET.
SPECT is an invasive method.

Instruments Using Optics

Optical Imaging. Optical Imaging measures the changes in cor-
tical light reflectance. It allows us to obtain information about
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the neural activity as well as its time source. This method uses
infrared light and the detectors are composed of optic fiber
bundles, which sense how the path of light is altered either
through absorption or scattering. This can be used to measure
the absorption of light, which is the slow signal, and deals with
the concentration of chemicals in the brain. It starts after
neuronal activity and stops seconds after, which is thought
to reflect increased blood flow to areas engaged by tasked
demands. This method is limited by its invasiveness (it can be
done during surgery) and shallow penetration into the brain.
(It cannot penetrate more than ~ 1 mm deep into the exposed
cortical surface.)

NIRS (Near-infrared spectroscopy). NIRS is a noninvasive opti-
cal technique that measures changes in the hemoglobin oxygena-
tion state in the human brain (Jobsis, 1977). The accuracy and
reliability of NIRS are still controversial. This is because of the
incomplete knowledge of which region in the brain is sampled by
the NIR light (Hoshi, 2003).

Combination of Instruments
By using a combination of the above instruments, some of the indi-
vidual instrument’s disadvantages are overcome to some extent.
For example:

fMRI with EEG and MEG. We know that fMRI has poor tem-
poral resolution, and hence, it may be complemented with the use
of EEG or MEG for the same experiment set. 

PET with MRI or CT. PET is often used in conjunction with an
MRI or CT scan through “fusion” to give a full 3-D view of an
organ.

TMS with fMRI and MRI. Combining TMS with fMRI and
MRI to form a 3-D brain mapping.

One of the best future hopes is still in finding the best strategies
to combine these instruments, and finding better combination
techniques to leverage on their respective strengths and eliminate
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the weakest. Some of the challenges the combination technique
would need to overcome include:

• Registration error. For example, the different instrument meas-
urements coordinate differently. 

• Temporal and spatial error. For example, MEG and fMRI can-
not be measured together at the same time. Some experiments
for MEG and fMRI will be conducted at different times. Due
to this, the same experiment may have temporal and spatial
error.

Lesion Method
Brain lesions. A brain lesion is an area of the brain that is damaged
in both structure and function. The method observes the change
in behavior or cognitive functions, caused by brain lesions that lead
to an inability to perform a particular mental function. Most lesion
studies are performed with animals. There are cases for lesions in
human brains (due to diseases or injury). The advantage of using
brain lesions is the claim that the method gives excellent localiza-
tion. However, there are also some variants one has to take note of,
such as:

• Patients vary, as does the damage to their brain, and their symp-
toms. And even though a researcher can compose a group that
seems to have damage to the same area of the brain, it isn’t
always the same exact area, and the size and extent varies with
each person.

• Sometimes, it is not clear if the damage caused a certain area to
not function or whether the damage caused a disruption of sig-
nals being sent to the area that controls the function.

The disadvantages are that the method is very invasive, you rarely
see pure cases (especially in diseases), and (when using animals)
whether they are valid models for humans, there are differences
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between animal and human brains. Other difficulties in using the
lesion method may include:

• A lack of ability to observe the function by the damaged portion
of the brain also can cause problems. Researchers can only see
how the brain functions after the damage has occurred, and
how the rest of the brain responds to it.

• Also, the role a specific part of the brain controls is not always
clear. Sometimes an area of the brain can be “masked” in a way
such that it is not readily connected to a certain function.

• The final, possible limitation, of this method is that it can lead
to underestimation of a certain brain function. A patient may
compensate their behavior by trying to perform a task differ-
ently than they would have prior to their brain damage.

(Adapted from psychology wiki farm.)

Conclusions
Today, we have collected lot of data and understood the brain bet-
ter than our ancestors. However, we are also left with many unan-
swered questions. The brain measuring instruments have helped
provide many insights to our understanding of the brain. However,
researchers need to know the limitations of each instrument, tak-
ing these into consideration when they process and interpret the
data, and without overemphasizing the research results beyond
these limitations.

The computational modeling of the brain is shaped by the col-
lection and interpretation of these experimental techniques using
such instruments; hence, when one models the brain, it is good to
keep in mind the data’s assumptions and not overstate the accuracy
in understanding the brain. We do not want to reach a stage where
an experimental technique or modeling of the brain is so widespread,
and its limitations so poorly understood, that modeling concepts
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based solely on these methods take root, making the incorrect ones
difficult to weed out.

“After half a century of cognitive revolution we remain far
from agreement about what cognition is and what cognition does.
It was once thought that these questions could wait until the data
were in. Today there is a mountain of data, but no way of making
sense of it.” — Pamela Lyon, Journal of Cognitive Process
(2006) 7:11–29. “The biogenic approach to cognition”.

It would be no surprise that now and then we hear or read of
news of a new brain theory or new discovery that gives new
insight to the brain and mind. The brain forest is still out there,
and there are rooms for many possible explorations and explana-
tions with regards to the brain. The brain remains one of the
great wonders.
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C h a p t e r 1 3
UNDERSTANDING THE BRAIN
TO BUILD INTELLIGENT
SYSTEMS

We have taken inspiration from birds to build airplanes that
fly. And we do not necessarily need to design airplanes that

have wings that flap like birds. Likewise, we can take inspiration
from the brain to design intelligent systems. And we do not nec-
essarily have to design the neurons at the cellular or atomic level.
The airplanes that fly come in all sizes and can carry far more load
than any bird. Likewise, in our approach to build intelligent sys-
tems that have human-like intelligence (or better than human
intelligence in certain aspects), we need not use designs that copy
the structure of the brain to the minute details or have brain-like
size. Studies on the brain can help us look for key design princi-
ples and take inspiration from biological cellular structures to
behavior at the organismal level. The intelligent system can be
built based on these key principles.

This chapter will discuss some of these key design principles,
the ways in which humans and computers can augment one
another, and how the computer can leverage on its computational
power to overcome some of the perceived limitations of the
human brain.
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What are the Design Principles of the Brain?
Some key principles we can learn from the brain to inspire our
building of intelligent systems are:

1. At the atomic, molecular, and cellular level: 

a. Neuron behavior. Modeling the details of neurons at the
molecular or even cellular level would be too complex to
achieve, and even if it were done, one would have the dif-
ficulty of determining the accuracy and precision of the
model. One possible approach is to design models that pro-
duce the same effect or have some similar neural behavior
or activity. For example, one may consider models like
shunting networks (Grossberg, 1988), the simple spiking
model (Izhikevich, 2003), and various integrate-and-fire
neuron models.

b. Excitatory and inhibitory effects. 

i. These effects influence how information is transferred,
kept, and learnt between neurons.

ii. There are more excitatory neurons than inhibitory neu-
rons. And intelligent systems may take this design prin-
ciple of more excitatory than inhibitory effects. 

c. Synaptic strength and connection. Understanding the
long-term potentiation (LTP) and long-term depression
(LTD) may help in the understanding and designing of
information representation, storage, and association with
other links in an artificial “cortex” architecture.

d. Parallelism. Multiple activities occur simultaneously in the
neurons due to many parallel interconnections among neu-
rons. Biologically, every neuron is connected to many other
neurons and each acts like a “processor”. This parallelism
allows the brain to “compute rapidly”.a The design principle

a Biologically, the fastest neural events occur on the order of milli-
seconds. 
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of parallel connection can be adapted, i.e. many processors
connected to one another in a parallel structure similar to
neuron connections may help in achieving this ultra-fast
computation.b

e. Distributed. The ways information is transmitted, retrieved,
learnt, and stored are mostly in a distributed neural system.
This distributed neural system can be adopted for informa-
tion processing. For example:

i. Redundancy. If one or two neurons in the group or
columnc die it does not affect the whole column’s function.
Information representations are also more robust in the
case of accidents or the encroachment of new concepts.

ii. A distributed nature may make it easier to access a rep-
resentation from different stages of processing or easier
to “recall” by allowing for multiple indices into the
representation.

f. Principles of pre-wired and evolving wiring.

i. The key components and the basic structure of the
brain are mainly pre-wired or hardwired as specified by
the gene.

ii. The basic structures are specialized through exposure
to external stimulus.

g. Feedback and feedforward connections between neurons.
These ideas already exist in many artificial neural networks
and smart systems, where

i. Feedback provides top-down expectation.
ii. Feedforward for bottom-up influence.

b Parallelism does not increase the speed of the computation itself, but
rather makes up for the slow speed of the computation by simultane-
ously computing many processes and alternatives. This sort of increase
in computational power far outweighs the raw computing speed; an
advantage of the computer vs. the brain.

c A column consists of many neurons grouped together.
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h. Notion of simple and complex cells.

i. Simple cells perform a direct role and have more com-
petitive effect among the cells.

ii. Complex cells perform first order and second order
combination, such as performing object category.

i. Mirror neurons. Imitation is one of the key principles in
human learning. The ability to imitate is said to be due to
the existence of mirror neurons. The principle of mirror
neurons and how this arises due to the higher cognition can
be learnt and modeled after in the smart system.

j. Dopamine. Dopamine is found to be related to how we
learn via rewards. Current computational models that use
reinforcement learning hard code rewards (extrinsic
rewards). Perhaps the study of dopamine can give insights
into developing a system that uses intrinsic rewards (a sys-
tem that self-assigns reward values to various states).

k. Receptor and second messenger. Receptors are proteins
within the cell nucleus that bind to a specific molecule such
as neurotransmitters, hormones, or other chemical sub-
stances. Once a receptor is activated, it will in turn activate
a second messenger, which will cause a cascade of actions in
a cell. This behavior can be modeled for the computational
process. For example, when an event is captured and acti-
vated (like a receptor waiting for activation), it would lead
to a cascade of actions occurring.

2. At the network and system levels where neurons are arranged
in groups/columnsd and functional regionse:

a. Hierarchical organization.

d Groups and columns usually only apply to relatively low-level sensory
regions.

e A functional region could be a general region such as the associative
cortex or a more specific functional region such as the Fusiform Face
Area (FFA). It is noted that some functions and current ways of region-
alizing the brain could be a debatable issue.
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i. Different layers of neural networks perform different
tasks.

ii. The layer complexity in performing tasks increases from
the low-level sensory to high-level cortex. 

iii. Receptive field. The idea of a small receptive field in a
simple cell to a large receptive field in a complex cell.

b. Regionalized into functions.

i. Neurons of similar function are grouped together.
ii. Neurons from one region can communicate with sev-

eral other regions.
iii. Some regions have very localized specific functions. For

example, the Fusiform Face Area (FFA) is for the stor-
ing of faces and is used for face detection.

c. Feedback and feedforward process. The architecture can
inherit such feedback and feedforward connections for
information passing. For example, feedforward is good for
fast processing and quick recognition and reaction. 

d. Complementary role. Multiple subsystems working in com-
plementary roles. For example, the dorsal and ventral
streams of the visual pathway work complementarily to
enable us to recognize and grasp an object.

e. Competitive role. Within the same group of neurons, there
are competitive effects.

f. Cooperative role. Different regions and areas of the brain
work cooperatively together to result in cognitive intelligence.

g. Multi-modality. Multiple sensor integration such as inte-
grating auditory and visual operating together can be done.

h. Auto-calibrates and adapt to new demands or environment.
Dynamically select good sets of parameters to work with.

i. The brain appears to leave data sources fragmented. Why?
How can its data representation be created and modified?

j. Specific mechanism. The brain appears to have specific
mechanisms that enable effective top-down and bottom-up
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control. This process may be adapted in our intelligent
system design. For example a top down control process
based on “prior events” is specifically targeted to the relevant
feature-specific area to boost conflict resolution in the brain.

k. Cognitive connections. The brain's cortico-cortical con-
nections are interesting to mimic after. For example, infor-
mation from an external stimulus reaches the amygdala
(for generating emotional response) in two different ways.
One is a short and fast, direct route from the thalamus; the
other is a long and slow, indirect route by way of the cortex.
The short and direct route lets us start preparing for a
potential danger before we even know what it is. For exam-
ple: let us suppose, while you are walking in a forest you sud-
denly see a long, narrow shape coiled at your feet. This
snake-like shape leads you to jump up due to the short,
direct route. But this same visual stimulus, after passing
through the thalamus, will also be relayed to your cortex
(where higher reasoning process) — a longer, indirect
route. A few fraction of a second later, the same shape
you thought to be a snake was really just a discarded piece
of garden hose. This type of direct and indirect connections
can improve the cognitive architecture by considering multiple
decision paths and results, as more information is received
and processed.

3. At the organismal level:

a. Global stability and robustness.

i. Shunting inhibition to prevent saturation. The brain
does not suffer unexpected saturation and hence failed
to work in its operation of the massively parallel neural
networks.

ii. Learn in a stable manner. The brain learns quickly and
stably without catastrophically forgetting its past
knowledge. Professor Stephen Grossberg calls this the
stability-plasticity dilemma. 

b654_Chapter-13.qxd  2/12/2009  9:16 AM  Page 249



250 Brain-Mind Machinery

FA

b. Predictive ability. Our brain has the ability to predict. For
example, when we are juggling balls, our brain is able to
predict the balls’ movements and extrapolate the motor
motion of our hands in parallel to catch the falling balls.
In the juggling ball example, you look at the top level of
the ball movement and you project where it is going to
fall and you shift your hand to catch it. You do not look
at the ball’s complete movement (for if you do you will
not have time to catch the ball) and you do not look at
the bottom where the ball will fall and move your hand
(again you will not have enough time to catch it, if you do
so). Does our brain use the same machinery to perform all
other predictions?

c. Pattern recognition. Our brain is very good at recognizing
patterns and performs inference or prediction. Pattern recog-
nition plays a key role in our abilities to solve problems. The
brain is able to take in multiple features to recognize a pat-
tern or multiple patterns.

d. Invariant object recognition capability and the ability to
generalize. 

i. When we look at an apple from different angles, our
retinas receive different views of the apple but we can
still recognize that it is the same apple.

ii. When we view several pictures of different dogs, we are
able to generalize it into a single concept of “dog”, and
when we see a picture of another dog that we have not
seen before, we can still recognize it as a dog.

e. The learning principle. We learn because the brain is plastic
or it has neural plasticity. This may provide idea to generate

i. “Plastic” program, i.e. program that is flexible and
changes dynamically with environmental input.

ii. “Dynamic” pointer, i.e. pointer that can dynamically
link its association to involve other pointer or programs.
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f. Different regions in the brain seem to adapt different
synaptic plasticity. For example:

i. Basal Ganglia — reinforcement learning.
ii. Cerebellum — motor learning/error-based learning.
iii. Hippocampus and cerebral cortex — Hebbian in general.

g. Automate most processes once it is learnt.

i. Once learnt, the system does not need to be pre-
processed. It sort of goes into a memory recall mode
where stages are performed automatically. An example
of this is learning to drive a car. Once learnt, the pro-
cedure for driving is automatic and the attention goes
to the dynamic environment on the road.

4. Other design principles are:

a. Attention mechanism. Where should I look and where
should I focus?

i. Interesting activities, such as peculiar, suspicious, and
funny stuff lead us to pay special attention.

ii. Statistically unusual, unexpected, and abnormal activi-
ties also catch our attention mechanism.

b. Both localized and distributed. Some functions are pretty
localized, such as recognizing faces (in FFA areas), which
could be specific to a set of neurons performing specific
tasks. Others appear more distributed, i.e. involve many
sets of neurons forming different areas to perform a task
such as navigation.

c. Memory.

i. Associate related activity and post-event information.
In some sense, we can use a simple association tech-
nique to associate activities and related events.

ii. Consolidation and formation. Since the memory of an
event is consolidated from bits and pieces, Daniel
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Schacter wrote that “Memories for individual events
resemble jigsaw puzzles that are assembled from many
pieces,” and suggested that all persons in recollection,
normally “knit together the relevant fragments and feel-
ings into a coherent narrative or story.”

� Consolidation during sleep. Some form of “after
dark” can be emulated to perform computational
memory reorganization like the brain does during
sleep.

� Memory formation for encoding, storing, and
retrieving.

d. 3-D computing. As the brain neuron connections are 3-D,
the layer connections of the artificial neural network design
can be 3-D (multiple layers of 2-D stacked one after
another in all directions).

e. Open-ended-open-minded design.f This refers to the brain’s
ability to process any kind of information and rewire its
architecture. It is observed that the more complex cortical
regions in the brain, such as the association cortex, may have
relatively less pre-wired knowledge. This may be one aspect
that enables the brain to process any kind of information.

When computers are one level smarter but have yet to reach human
intelligence, we can use computers in a dual augmentation strategy
to assist human intelligence. The next section will discuss this dual
augmentation strategy.

Dual Augmentation Strategy
Currently, computers outperform humans in structured tasks.
Humans are dynamic and outperform computers in all other

f Despite the pre-wiring, the brain is left with an open-ended-open-mind
design, i.e. the brain can learn new functionalities.
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non-structured tasks. Computers can be used to augment human
intelligence, and likewise, humans can be used to augment com-
puters, which in turn can assist other humans. How does this
work?

Using humans to solve problems that computers cannot solve.

• For example, in the Mozes Mob case: Mozes Mob (mozes.com/
mob.php) is a free, cell phone-based service designed to
answer questions. To see how it works, text message a ques-
tion that a human could answer easily but that a computer
program would have a hard time figuring out (such as “Is the
weather nicer in Miami or Buffalo?” or “What was Carlton
Fisk’s most famous home run?”) to 66937. Behind the
scenes, your question is sent to a swarm of volunteers. One of
them answers, and their response is bounced back to your cell
phone, usually in just a few seconds.

• Another example is the Google image labeler which (images.google.
com/imagelabeler) is an addictive online game that takes
advantage of the fact that it’s very easy for a human to recog-
nize the subject matter of an image (e.g. “That’s a puppy!” or
“That’s two airplanes and a bird!”) but virtually impossible for
a computer. The game teams up pairs of strangers to assign key-
words to images as quickly as possible. The more images you
can label in 90 seconds, the more points you get. Meanwhile,
Google gets hundreds of people to label their images with key-
words, something that would be impossible with just computer
analysis.

These two examples use human society to augment the com-
puter. The augmented computer then appears intelligent and aids
other humans. Although the current computer appears more like
a relay tool, in the long run, when it has more intelligence, the
dual augmentation strategy can be made more sophisticated and
humans can get the best of the computational power and its
intelligence.
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Computational Power
The computational power of a machine can continue to evolve with
its designer, while the human brain design is already fixed or some
believe that it will evolve at a much slower pace than the computer.
Hence, humans can leverage on the computational machine since
the machine:

1. Can be designed to remember all facts and knowledge.
Humans can forget.

2. Does not suffer fatigue like humans, and hence can be used to
complement humans.

3. Does not suffer from depression. It can be designed with emo-
tions that help in its communication with humans. Negative
emotions such as depression need not be built into the system.

4. Size need not be constrained to brain-size. Hence, the com-
puter can have more memory systems built-in than current
brain memory.

Conclusion
The human quest for building intelligent systems to assist in their
work is inevitable and necessary. This chapter discussed some key
design principles we can learn from the biological brain to build
intelligent systems. 

So far, many intelligent or smart systems developed are for spe-
cific applications such as intelligent transportation systems, self-
diagnostic systems, “smart” home appliances like the autonomous
vacuum cleaner and other military systems. In time to come, we
hope these intelligent systems can be enhanced in terms of the archi-
tectural, functional, power consumption and algorithmic design by
taking inspiration from the brain, or as US DARPA SyNAPSE proj-
ect initiative in seeking to pick the most useful elements of the brain,
to achieve higher-level cognition and to perform more general tasks.

“The closer we can get to human-like cognition, the better.” — David
Gelernter (Gelernter, 1994) (The Free press).
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C h a p t e r 1 4
CONCLUSIONS — THE MIND
THAT MATTERS

“… the mind is what the brain does.” — National Geographic,
“Beyond the Brain”, March 2005 article by James Shreeve and
Cary Wolinsky.

In a short span of 50 years, computer size has dropped from one
of room size to today’s palm-size, and processing power has

increased from a few hundred instructions per second to three giga
hertz or more, i.e. three billion instructions per second, and with
multiple processors working together. Technology has enabled us
to communicate and meet people from different time zones and
places seamlessly. 100 years ago, this would have been unimagin-
able. Why has this happened within such a short span of time? This
is especially remarkable given that humans have been in existence
for thousands of years with the same brain capability.

“Throughout the recorded and archeological history of humankind,
the way of life that the majorities have followed has been dramatically
shifted by technological revolutions. Technological revolutions are hap-
pening more and more often. The dawn of the most recent of these rev-
olutions, the digital revolution, is within living memory of many of us
alive today. The battles and restructuring of our world brought on by
the digital revolution is raging around us at its full fury today. It is
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shifting wealth and power, and restructuring our cities and
lifestyles.” — Rodney Brooks (Brooks, 2003).

Using these advanced digital technologies, many researchers are
embarking on the journey to understand the brain for many rea-
sons. Till today, the brain remains a wonder to scientists and an
area that can generate many research topics. Interesting new results
and new hypotheses on the brain machinery and how it gives rise
to a mind will continue to overwhelm us. It is no surprise that
every now and then we will hear or read new discoveries or new
theories of the brain.

One of the reasons for understanding the brain, as discussed in
this book, is to build computationally intelligent systems that have
some human-like intelligence. However, some scientists would
desire to have the full or identical human-like intelligence. If the
quest to meet the complete human intelligence can be achieved
one day, then the machine theoretically will have a mind of its
own. What do we then say of this mind that arises out of a com-
putational box?

The brain is living machinery and it gives rise to a mind.
Ultimately, it is the mind that matters and how we use the mind.
This chapter will discuss the current thinking on the theory of the
mind, and what is the meaning of having a mind. I will also relate
the theory of my mind.

What are Theories of the Mind?
What is the mind? Based on: 

• Webster’s Dictionary, the “mind” means the part of an individ-
ual that feels, perceives, thinks, wills, and especially, reasons.

• Wikipedia.org/wiki/Mind, The term “the mind” is most com-
monly used to describe the higher functions of the human
brain, particularly those of which humans are subjectively con-
scious, such as personality, thought, reason, memory, intelli-
gence, and emotion. Although other species of animals share
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some of these mental capacities, the term is usually used only
in relation to humans and supernatural beings to which
human-like qualities are ascribed, as in the expression, “the
mind of God”.

The phrase “theory of mind” (or TOM) is used in several ways and
has different meanings, although they are in general related to one
another, i.e. trying to understand the mind. TOM is interdiscipli-
nary and used by philosophers, psychologists, and cognitive scien-
tists. There are currently a few interrelated schools of research with
regards to the “theory of mind”. These are:

• Philosophy of mind. The study of what is the mind, the nature
of the mind, the mental events, structure, functions, properties,
consciousness, processes, and their relationship to the physical
body (commonly known as mind-body problem, mind and mat-
ter, also related to the mind-brain identity). This attempt to
address issues such as whether a non-material mind (i.e. mental
such as pain, desire, belief, purpose, etc.) can influence a mate-
rial body (physical body) and vice-versa. For example, the men-
tal state “desire for a cup of coffee” will cause the body to move
in a specific manner and in a specific direction to obtain what
they want. In other words, our perceptual experiences depend
on stimuli that arrive at our various sensory organs from the
external world, and these stimuli cause changes in our mental
states. These mental states cause us to have feelings of sensation,
both pleasant and unpleasant. (Gopnik, 2003) (Carey, 1985)
(Wellman and Gelman, 1992) (Carruther, 1996).

� Cartesian dualism.a (Same as mind-body dualism.) The belief
is that there exist two distinct entities, namely body and soul,

a Theory of theory. Some scientists prefer this approach via Cartesianism
and neo-Cartesianism as the understanding of mentalistic notions (such
as belief, desire, perception, intention, etc.) on how people behave in
relation to the structure and function of the mind and cognitive abili-
ties (Carruther, 1996).
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and that there is a clear distinction between the physical
body (including the brain) and the non-physical mind. These
two entities interact with each other causally, though it is not
known how.

� Mind-brain identity. The identity theory of mind-brain holds
that the mental states and processes of the mind are identi-
cal to brain states and the process of the brain, i.e. the men-
tal state “A” is nothing more than the brain state “B”. For
example, the mental state, “desire for a cup of coffee”,
would be a brain state, the firing of certain neurons in cer-
tain brain regions (Smith, 1956).

• Reading people’s minds. Understanding and interpreting other
people’s actions and behaviors, i.e. what is their belief, desire,
and intention (when people think about other people’s
thoughts). Other names include mind reader and mind reading
(Davidson, 1984) (Dennett, 1987). For example, when you
see a child crying while a fire alarm is off in his home, you can
infer that the child is afraid. Or if you see a young couple wav-
ing happily and saying goodbye at a train station to an older
couple, and the older woman is crying and the old man says
something and hugs her, you can probably guess that the old
man is saying some comforting words to his wife (the older
woman) and the young couple is probably newly married and
going on a honeymoon. Note that the scope of TOM research
is focused not on psychic powerb but using the understanding
of one’s self to understand another person and to socialize
effectively. Many mind-reading theories have been studied in
parallel with autistic individuals. This is because autistic indi-
viduals seem to have an impairment of their “mind-reading”
ability. And the study of TOM may help autistic children dur-
ing their early development process.

b Psychic power here refers to the unusual mental powers that cannot be
explained or extraordinary abilities to tell what people are thinking and
able to see into the future.
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“You never really understand a person until you consider things
from his point of view… until you climb into his skin and walk
around in it.” — To Kill a Mockingbird by Harper Lee (Helper,
2003).

• Computational theory of mind. This approach is used by scien-
tists, particularly interested in artificial intelligence or cognitive
intelligence, to model the mind based on understanding the
nature of the mind. This includes:

� Structure and process of the mind.
� Functional theory of mind, i.e. how the mind works and its

various possible functions.
� Semantic properties of the mental state and how this is rep-

resented in the mind.

Next, computational techniques are used to model how the
mind works and to understand the working mechanism of
the mind.c See (Horst, 2005) for the computational theory
of mind. Issues on whether the theory of mind or the mind
itself and the cognitive process can be modeled fully by compu-
tational techniques are discussed and debated. Can a human
build a machine that has a mind of its own — like the human
mind? The reader interested in more in-depth discussion may
refer to (Searle, 1990; 1991; Edelman, 1989; Gibson, 1979),
which raise several questions regarding this matter; and
(Chalmers, 1993) and (Kurweil, 1999), where it is thought that
it is possible to fully model the mind by the computational
approach.

c The study on brain-inspired computing is related to the computa-
tional theory of mind. Brain-inspired computing takes from the bio-
logical perspective of the brain and computational theory of mind
takes from the behavior perspective of the mind. They are related to
the same quest in building intelligent systems that have human-like
intelligence.
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The Mind that Matters

What is the conclusion of the matter? “What is mind? No matter!
What is matter? Never Mind.” — C.U.M. Smith.

“The advance of modern neurophysiology has both sharpened the
Cartesian dilemma and at the same time tended to obscure it. For
few of us realize this scandal in the depth of our culture: this schizo-
phrenia. For, on the one hand we feel bound to assert that minds do
in fact act upon bodies, and on the other that they do not so act.” —
(Smith, 1970).

We have not come to a clear conclusion of what is the mind. What
is the mental state and what is the mental representation of the
mind? How the physical brain gives rise to a mind remains largely
a mystery. The human brain is so complex, it gives rise to a mind
that can investigate the laws of the universe, question its existence,
and ask about the nature of God.d

Professor Stephen Hawking, in his study of the universe, raised the
issue that if a complete theory can be found to explain the universe
then we would know the mind of God. In his own words, “... if we
do discover a complete theory, it should in time be understandable in
broad principle by everyone, not just a few scientists. Then we shall all,
philosophers, scientists, and just ordinary people, be able to take part
in the discussion of the question of why it is that we and the universe
exist. If we find the answer to that, it would be the ultimate triumph
of human reason — for then we would know the mind of God.” — A
Brief History of Time by Steven Hawking (p. 175).

“Up to now, most scientists have been too occupied with the develop-
ment of new theories that describe what the universe is to ask the ques-
tion why.” — Steven Hawking.

d Seeking to understand the mind of God.
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Are we living in the same situation where scientists are too occu-
pied with the uncovering of how the brain works to ask the ques-
tion of why?

An article from The New York Times on “Who’s minding
the mind?” (Carey, 2007) highlighted the recent study by
Professor John A. Barghe and his co-researcher Lawrence
Williams: “When it comes to our behavior from moment to moment,
the big question is “What to do next?” Well, we are finding that
we have these unconscious behavioral guidance systems that are
continually furnishing suggestions through the day that what to
do next and the brain is considering and often acting on those,
all before conscious awareness. Sometimes those goals are in line
with our conscious intentions and purposes, and sometimes they
are not.”

The same article concluded that “…the new research on prim-
ing makes it clear that we are not alone in our own consciousness.
We have company, an invisible partner who has strong reactions
about the world that don’t always agree with our own, but whose
instincts, these studies clearly show, are at least as likely to be
helpful, and attentive to others, as they are to be disruptive.” The
New York Times, July 31, 2007 (Who’s Minding the Mind?)
(Carey, 2007).

It is amazing that we can see, hear, and think of our world, the
universe, and read and imagine whatever is before and after us.
Anything within this physical space where we, as human beings, are
bound, we can imagine and attempt to understand. The mind is
what matters; how we think has become what the brain creates,
giving us the understanding and ability to appreciate love, joy, pain,
and suffering in the world we live in.

“Then He opened their minds so they could understand …” —
Luke 24:45.

e A professor of psychology at Yale University.
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GLOSSARY

Acetylcholine: A neurotransmitter released at the neuromuscular
junction. Also released from certain synapses in the brain, where it
can have either neurotransmitter or neuromodulatory effects, and
from parasympathetic nervous system neurons.

Action potential: The transient of electrical signals that travel
down axons carrying the output information of neurons.
Basically, it is simply an electrical current that travels down an
axon of a neuron.

Agent: See multi-agent systems.

Amino acid: The molecules, which when strung together, form
proteins.

Amygdala: Located in the limbic system. Center of emotional
chemical secretion and plays an importance role for emotional
behaviors such as fear, joy, and aggressive behavior. 

Anterograde amnesia: Memory loss due to an inability to transfer
information from short-term memory to long-term memory.
Damage to hippocampus can cause anterograde amnesia. (See also
retrograde amnesia).
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Anterior commissure: A forebrain commissure that provides
communication between structures within the temporal lobes. 

Artificial intelligence (AI): The study of human cognitive abilities
(intelligence) using models that are implemented as computer pro-
grams or hardware. AI used to be distinct from artificial neural
networks, however, this dividing line is getting blur.

Artificial neural networks (ANN): ANN is a computer program
whose structure resembles the brain’s neural network connection,
i.e. an individual neuron is modeled and many of these neurons are
interconnected in networks. They are sometimes known as con-
nectionist models. The goal of ANN is to simulate or emulate the
performance of tasks of which animals or humans are capable.

Association cortex: Area in the cerebral cortex that concerns
higher level of processing.

Autoreceptor: A receptor molecule located in the presynaptic neu-
ron’s axon terminal. It is thought to play a role in providing feed-
back to the presynaptic neuron and also in modulating synaptic
activity. 

Axon: Part of the neuron that carries the neural impulse away from
the soma toward the target of the neuron. This part of the neuron
carries action potentials. 

Axon terminal: The ending of the axon that connects to the neu-
ral target. It contains the neural transmitters to be released. 

Autonomic nervous system: That part of the nervous system that
regulates our internal organs. Much of the regulation is involuntary
and mediated by two opposing subdivisions, the sympathetic and
parasympathetic systems.
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Axon: It carries information away from the soma to terminal
buttons where messages pass to other neurons, muscles, or
glands. 

Central nervous system (CNS): The CNS consists of the brain
and spinal cord.

Cerebral cortex: The largest part of the brain cortex, highly
infolded in humans. The cerebral cortex is divided into two hemi-
spheres, which are further subdivided into four lobes: frontal, pari-
etal, occipital, and temporal. 

Chloride (Cl−−): A negatively charged ion primarily involved in the
inhibition of neurons.

Cingulate gyrus: This is a gyrus in the medial part of the brain.
The cingulate gyrus receives inputs from the anterior nucleus of
the thalamus and the neocortex as well as from somatosensory
areas of the cerebral cortex. It functions as an integral part of the
limbic system.

Cognitive: Related to the mind and brain.

Cognition: Related to the operation of the mind process by which
awareness of objects, thought, and perception takes place. 

Cognitive neuroscience: A field of scientific study on biological
mechanisms underlying cognition, with a specific focus on the neu-
ral substrates of mental processes and their behavioral manifesta-
tions. It addresses questions of how psychological and cognitive
functions are produced by the neural circuitry. Cognitive neuro-
science is a branch of both psychology and neuroscience. It over-
laps with many disciplines such as cognitive studies, psychology,
psychobiology, neurobiology, physics, psychiatry, neurology, and
mathematics.
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Cognitive psychology: A field of study on human cognitive abili-
ties such as decision making and reasoning abilities.

Cognitive science: An interdisciplinary study of the mind and
intelligence, embracing philosophy, psychology, artificial intelli-
gence, neuroscience, linguistics, and anthropology. Its intellectual
origins are based in the mid-1950s when researchers in several
fields began to develop theories of mind based on complex repre-
sentations and computational procedures. Its organizational ori-
gins are in the mid-1970s when the Cognitive Science Society was
formed and the journal, Cognitive Science, began. The words
“cognitive science” were coined by Christopher Longuet-Higgins
in 1973. 

Commissure: Any fiber tract that connects structures on the two
sides of the central nervous system. 

Computational neuroscience: A field of study of the nervous sys-
tem that utilizes tools from mathematics and computer science.

Corpus callosum: A thick band of axons, found in the middle of
the brain, that carries information from one hemisphere of the
brain to the other hemisphere. It is the largest commissure. It pro-
vides communication across the two hemispheres.

Critical period: The period of time during development when an
animal is particularly sensitive to environment conditions.

CT scan: A series of x-ray photographs taken from different angles
and combined by computer into a composite representation of a
slice through the brain (CATscan). CT scans are useful in the study
of brain structures.

Current: Electrical energy flowing — that is, the kinetic energy
form of electricity. 
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Dendrites: These bushy branch-like structures are a neuron’s mes-
sage receivers. Dendrites receive impulses from other neurons (via
synapses) or from sensory organs, and bring them toward the cell
body, i.e. soma. 

Diffusion: Diffusion is the effect that the random movement of
molecules has, which causes the movement of molecules from a
region of high concentration to low concentration. Diffusion (the
change in the relative levels of concentration) will stop when the
concentration of the substance in solution is equal at all points. 

Dopamine: A neurotransmitter released from brain synapses.
Dopamine is associated with Parkinson’s disease and schizophrenia.
Dopamine is also a neurohormone released by the hypothalamus.

Fovea: The central region of the eye that mediates high-acuity
vision.

Free recall: The production of material from memory without the
aid of specific cues.

GABA (gamma-aminobutyric acid): It is one of the most com-
mon inhibitory neurotransmitters. GABA binds to a receptor with
a channel that selectively passes chloride ions. Upon entry, these
ions increase the negative potential of the cell and thereby inhibit
firing.

Ganglion cells: The third-order cells in the retina whose axons
form the optic nerve.

Gray matter: Those regions of the brain and spinal cord where
neuronal cell bodies and dendrites are abundant.

Glutamate: A major excitatory neurotransmitter involved in mem-
ory. Oversupply can over stimulate brain, producing migraines
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or seizures (which is why some people avoid MSG, monosodium
glutamate).

Hippocampus: A region of the brain found under the temporal
lobes that play an important role in memory formation (particularly
long-term memory) and the representation of space (e.g. place cells).

Hypothalamus: A forebrain region that regulates autonomic,
endocrine, and visceral functions. Hence, it is concerned with basic
acts and drives, such as drinking and sexual activity.

Huntington’s disease: An inherited disease of the basal ganglia
that causes movement dysfunction.

Inferior temporal cortex (IT): The IT is necessary for visual
pattern discrimination, and receives information from the visual
cortex.

Ion: An electrically charged particle. Ions can be positive (e.g.
Na+) or negative (e.g. Cl−). Like charges repel or push each other
away, and opposite charges attract or draw each other. 

Limbic system: The limbic system is involved in emotion forma-
tion and processing, learning and memory. The system consists of
the thalamus, hypothalamus, amygdala, olfactory bulb, hippocam-
pus, and basal ganglia. (Note that the basal ganglia is part of the
limbic system. The basal ganglia lie beside the limbic system and is
tightly connected to the limbic system and the cortex above it). 

Mirror neurons: Mirror neuron is a neuron that fires or is acti-
vated when an animal performs an action and when the animal
observes the same action performed by another animal, i.e. the
neuron “mirrors” the behavior of another animal as though the
observer were itself performing the action. Mirror neurons have
been interpreted as the mechanism by which we simulate or imitate
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others in order to better understand them (Gallese and Goldman,
1998) (Iacoboni et al., 1999).

Myelin: A sheath of fatty tissue that covers most axons on the nerv-
ous system. It serves to speed conduction, and hence, increase the
speed of transmission of neural impulses. 

Moore’s law: It states that transistor density on integrated circuits
doubles about every two years.

Multi-agent system: In computer science, a multi-agent system
(MAS) is a system composed of several autonomous agents, collec-
tively capable of reaching goals that are difficult to achieve by an
individual agent or monolithic system.

Neural plasticity: A term from neuroscience indicating changes in
the brain that alter brain function so as to constitute learning. It is
assumed that with the structure of the brain fixed, responding will
not change. Learning is presumed to be due to changes in the neu-
ral structure, and hence, neural plasticity.

Neurogenesis: The process by which neurons are created or the
birth of neurons. Most active during pre-natal development, neu-
rogenesis is responsible for populating the growing brain. Growth
of new neurons.

Neurophysiology: A study of nervous system function.
Neurophysiology is part of physiology and is closely related to psy-
chology, neurobiology, neuroanatomy, cognitive science, and other
brain sciences.

Neuroscience: A field of science for studying the cellular level of
neurons in the nervous system.

Neuron: The nerve cell, the basic building block of the nervous
system.

b654_Glossary.qxd  2/13/2009  11:24 AM  Page 269



270 Brain-Mind Machinery

FA

Neural networks: A collection of abstracted neurons connected to
each other through weighted connections (“synapses”). See also
artificial neural networks (ANN).

Neurotransmitters/neuromodulators: These are chemicals sub-
stances released from a neuron at a synapse that are used to relay,
amplify, and modulate electrical signals between a neuron and
other neurons. Neurotransmitters convey information between
two neurons, but neuromodulators convey information to a region
of neurons (or group of neurons).

Nucleus: The structure in the soma of the neuron that contains the
chromosomes. 

Optic nerve: The portion of the axons that originate in the gan-
glion cell layer of the retina that travels from the retina to the optic
chiasm. 

Occipital lobes: Involved in processing visual information.

Orbitofrontal cortex: An area found in the lower part of
the frontal lobes, important for the expression of emotional
behaviors.

Parietal lobes: Top and rear side of the brain, involved in process-
ing somato-sensory information (touch).

Potential energy: Energy that is available to do work. 

Parkinson’s disease: A disease of the motor system caused by
a deficiency of dopamine in the basal ganglia. Patients with the
disease typically develop a tremor and have difficulty initiating
movements.

Peptide: A small protein.
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Plasticity: The brain’s capacity for modification, as evident in brain
reorganization following damage (especially in children) and in
experiments on the effects of experience on brain development.
The brain can rewire itself with new synapses or select new uses for
its prewired circuits.

Postsynaptic Neuron: The neuron that receives the neurotrans-
mitters released by the presynaptic neuron. It is in most synapses a
dendrite or soma. 

Receptor: A molecule in the postsynaptic neuron’s membrane to
which the neurotransmitters bind, which then directly or indirectly
alter the membrane potential by opening or closing ion channels. 

Potassium (K++): A positively charged ion primarily involved in
establishing the resting potential.

Primary motor area: The region of the cerebral cortex where fine
movements are initiated. Found in the frontal lobes adjacent to the
central sulcus.

Primary sensory area: Regions where sensory information is first
processed in the cerebral cortex.

Psychophysics: A subdiscipline of psychology dealing with the
relationship between physcial stimuli and the observer or subject’s
point of view.

Purkinje cell: A large neuron found in the cerebellum.

Pyramidal cell: A prominent neuron found in all areas of the cere-
bral cortex.

Receptive field: The receptive field of a sensory neuron is
a region of space in which the presence of a stimulus will alter
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the firing of that neuron. The concept of receptive fields can
be extended to further up the neural system (information from
wiki).

Retina: Interior lining of the back of the eye containing
photoreceptors.

Retrograde amnesia: Memory loss where one cannot recall events
that occurred before the onset of amnesia. The memory loss may
only affect some types of memory. For example, a pianist with ret-
rograde amnesia may not remember how to play the piano but can
remember how the instrument looks.

Saccade: A saccade is a fast movement (or jerky movement) of both
eyes in the same direction. We make about three saccades in one
second, each lasting between 20 and 200 microseconds.

Second messenger: A small molecule synthesized in a cell in
response to a neuromodulator (the first messenger).

Singularity: A point in space-time at which the space-time curva-
ture becomes infinite (extracted from “A Brief History of Time” by
Stephen Hawking).

Soma: The cell body where the nucleus is found. Most of the pro-
tein production and energy storage is performed by soma for sus-
taining the life of a cell.

Sodium (Na++): A positively charged ion involved in the generation
of action potentials and in the excitation of neurons and sensory
cells.

Somatosensory: Pertaining to sensory information coming from
the skin and deeper tissues of the limbs and trunk, such as touch,
pressure, temperature, and pain.
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Split-brain: This is a term to describe the result when the corpus
callosum connecting the two halves of the brain is severed to some
degree. 

Stability-plasticity dilemma: A term introduced by Professor
Stephen Grossberg. It is concerned with the fact that our brains
can rapidly learn enormous amounts of information throughout
life, without just as rapidly forgetting what is already known.
The brains are plastic and can rapidly learn new experiences
without losing the stability that prevents catastrophic forgetting
(Grossberg, 1999).

Substantial nigra: This is a concentration of neurons in the ven-
tral portion of the midbrain that uses dopamine as its neurotrans-
mitter and is involved in both motor function and emotion. Its
dysfunction is implicated in Parkinson’s disease.

Sulcus: A groove or deep infolding on the surface of the brain.

Superior colliculus (SC): The two pair of bumps on the posterior
surface of the midbrain, just below the thalamus. SC plays a role in
vision and is said to be responsible for the generation of saccadic
eye movement and eye-head coordination. 

Synaptic Vesicle: A membrane structure in the axon terminal that
contains neurotransmitters until they are released. 

Thalamus: Innermost part of the forebrain, it relays sensory infor-
mation to the cerebral cortex.

Uncertainty principle: One can never be exactly sure of
both the position and velocity of a particle; the more accurately
one knows the one, the less accurately one can know the
other (adapted from “A Brief History of Time” by Stephen
Hawking).
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White matter: Regions of the brain and spinal cord where there
are abundant myelinated axons. The myelin gives the tissues its
whitish appearance.

System neuroscience: This is a sub-disciple of neuroscience, which
studies the neural circuit function, most commonly in awake,
behaving intact organisms. The system neuroscience research area
is concerned with how nerve cells behave when connected together
to form neural networks for a common function such as vision.
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NOTES

Chapter 1
1. Phrenology is a theory developed by German physician Franz

Joseph Gall in the eighteenth century. He claimed that by the basis
of the shape of the head, one can determine character, personality
traits, and criminality. Gall’s map of the brain is disputed by modern
neuroscience. However, Gall’s theory that the cerebral cortex does
not act as one organ but as a collection of specialized regions, and
that the brain is the basis of all behavior remain the truth as of today. 

2. The average human male brain has two billion more neurons than
the average female brain. However, in women, the neuron connec-
tion is stronger than in men. This may explain why males have bet-
ter spatial reasoning and females better language ability. Males have
an average of 299,052 neurons per square mm on the surface of a
brain slice about 3 mm thick. Females have an average of 264,892.
(Rabinowicz et al., 2002).

3. Most complex mental functions such as learning and memory don’t
reside in any one place but are distributed throughout the brain.

4. Dendritic spine.
The figure shows the dendrite spine and spine head. Information and
picture from http://en.wikipedia.orgg/wiki/Dentritic_spine.

The dentritic spine is a small membranous extrusion that pro-
trudes from a dendrite and forms half of a synapse. Spines are typi-
cally connected to the parent dendrite through a thin spine neck as
in the figure. Dendritic spines are found on the dendrites of most
principal neurons in the brain. Spines come in a variety of shapes and
have been categorized accordingly, e.g. mushroom spines, thin

b654_Notes.qxd  2/13/2009  11:34 AM  Page 275



276 Brain-Mind Machinery

FA

spines, and stubby spines. Electron microscopy studies have shown
that there is a continuum of shapes between these categories. There
is some evidence that differently shaped spines reflect different devel-
opmental stages and also strengths of a synapse. Using two-photon
laser scanning microscopy and confocal microscopy, it has been
shown that the volume of spines can change depending on the types
of stimuli that are presented to a synapse.

The detailed brain anatomy, explanation of each part, and their
respective functions can be found in the following websites:

• http://www.waiting.com/brainfunction.html
• http://thalamus.wustl.edu/course/cerebell.html
• http://www.stanford.edu/group/hopes/basics/braintut/ab0.

html
• http://www.lib.uiowa.edu/hardin/md/brainpictures.html.

Chapter 2
1. More information on neurons and synapses can be found in the fol-

lowing websites: 

http://faculty.washington.edu/chudler/neurok.html
http://www.cerebromente.org.br/
http://www.biologymad.com/NervousSystem/
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2. Hodgkin–Huxley’s cell membrane equation. (Hodgkin and Huxley,
1952) (Nelson, 2004):

C dv/dt = (V + – V )g+ + (V − − V )g − + (V p – V )gp

g + is the excitatory term
g − is the inhibitory term
gp is the passive decay term

3. Simple spiking model. The simple spiking model proposed by
Izhikevich claimed to reduce many biophysically accurate Hodgkin–
Huxley type neuronal models to a 2-D system of ordinary differen-
tial equations. The details of the ordinary differential equations are
as follows:

V ′ = 0.04 v2 + 5v + 140 – u + I
U ′ = a(bv – u)

With the auxiliary after-spike resetting,

If v ≥ 30 mV, then

Here, v and u are dimensionless variables, and a, b, c, and d are
dimensionless parameters where t is the time. The variable v repre-
sents the membrane potential of the neuron and u represents a
membrane recovery variable of Na+ ionic currents, and it provides
negative feedback to v. After the spike reaches its apex (+30 mV), the
membrane voltage and the recovery variable are reset according to
the equation 3. Synaptic currents or injected dc-currents are deliv-
ered via the variable I. 

The part 0.04 v2 + 5v + 140 was obtained by fitting the spike ini-
tiation dynamics of a cortical neuron so that the membrane potential
v has mV scale and the time t has ms scale. The resting potential in
the model is between −70 and −60 mV depending on the value of b.
As with most real neurons, the model does not have a fixed thresh-
old; depending on the history of the membrane potential prior to the
spike, the threshold potential can be as low as −55 mV or as high as
−40 mV (Izhikevich, 2003).

4. Major neurotransmitters and their functions.

a. Acetylcholine (ACh): Enables muscle action, learning, and mem-
ory. Deficiency implicated in Alzheimer’s disease.
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b. Dopamine: Influences movement, learning, attention, and emo-
tion. Excess dopamine receptor activity is linked to schizophre-
nia; starved of dopamine, the brain produces the tremors and
decreased mobility of Parkinson’s disease.

c. Serotonin: Affects mood, hunger, sleep, and arousal.
Undersupply linked to depression; Prozac and some other anti-
depressant drugs raise serotonin levels.

d. Norepinephrine: Helps control alertness and arousal.
Undersupply can depress mood.

e. GABA (gamma-aminobutyric acid) is one of the most common
inhibitory neurotransmitters. GABA binds to a receptor with a
channel that selectively passes chloride ions. Upon entry, these
ions increase the negative potential of the cell and thereby
inhibit firing. 

f. Glutamate: A major excitatory neurotransmitter involved in
memory. Oversupply can over stimulate the brain, producing
migraines or seizures (which is why some people avoid MSG,
monosodium glutamate).

5. The nervous system (NS) is an electrochemical communication system,
consisting of all the nerve cells of the peripheral and central nervous
systems.

a. Central NS (CNS) consists of the brain and spinal cord.
b. Peripheral NS (PNS) consists of the sensory and motor neurons

that connect the CNS to the rest of the body.

Chapter 3
1. Motor cortex (MC). An area at the rear of the frontal lobes that con-

trols voluntary movements; the left MC controls the right side of
body and the right MC controls the left side of body; the larger area
of the MC is devoted to areas of the body that require finer control
(e.g. fingers vs. forearm); just thinking about movement produces
electrical activity in the MC.

2. Sensory cortex (SC). An area at the front of the parietal lobes that reg-
isters and processes body sensations; the left SC receives information
from the right side of the body and the right SC receives information
from the left side of the body; the larger areas of the SC are devoted
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to the more sensitive areas (lips) of the body (e.g. lose a finger, then
a greater SC area gets devoted to adjacent fingers; pianists have more
auditory cortex, deaf people more visual cortex).

3. Associative cortex (AA). The remaining 2/3 of the cortex involved in
higher mental functions such as learning, remembering, thinking,
and speaking, the AA integrates and acts on information received and
processed by the sensory area; unlike the MC and SC, stimulating
specific areas of the AC does not result in specific responses so func-
tions cannot be neatly specified.

4. Visual spectrum. The range of electromagnetic radiation that is visi-
ble to us, 380 to 760 nanometers.

5. Perception of color determined by three dimensions: 

a. hue — determined by wavelength (what we think of as color). 
b. brightness — determined by intensity. 
c. saturation — relative purity of the light that is being perceived.

6. Three types of eye movements: 

a. vergence movement — cooperative, with both eyes kept fixed
on a target. 

b. saccadic movements — abrupt shifts in gaze from one point to
another, as when reading. 

c. pursuit movement — following the movement of an object. 

7. Visual association cortex: 

a. ventral stream — ends with the inferior temporal cortex,
involved with the perception of objects (“what”). 

b. dorsal stream — ends with the posterior parietal cortex,
involved with the perception of location, movement, and con-
trol of eye and hand movements.

Chapter 4
1. (Vincent et al., 2006) presented data in support of the hypothesis

that specific regions with the parietal cortex play a role in memory
functions associated with the hippocampus formation. Furthermore,
they show that those regions of the parietal cortex associated with
the hippocampus formation are automically distinct from regions of
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the parietal cortex traditionally associated with spatial attention and
motor intention. More broadly, the hippocampus network, defined
in their study, appears to be very similar if not identical to a group
of areas posited to constitute a “default network”. The fact that
the posterior parietal components of this network are specifically
modulated by recollection would be consistent with the putative
self-referential nature of this network’s other components.

2. The priming task involves:

a. a showed list of words. 
b. asking for recall (explicit) or showing the first few letters and

asking to say the first word that comes to mind (implicit). 
c. amnesic subjects’ explicit memory was <50% of controls’, but

they performed equally on the implicit task. 

3. Anterograde amnesia patients are not able to form new memories, or
have problems learning new information.

4. Retrograde amnesia patients are not able to retrieve established
memory. Or trouble remembering old information before the injury.

5. Amnesia patients are usually not affected by semantic memory
although some kind of dementia can have an effect on semantic
memory.

6. While many people tend to forget things, there are some individuals
with superb memory abilities. An example is a subject known as “S”,
who employed mnemonic as a technique to enhance memory for-
mation. This technique involves the conversion of a series of words
into graphic images. These images are supposed to be vivid and sta-
ble, which means that the same image is brought up for the same
word. These images are distributed along a visualized street, and one
would recall information as he “walked” down this visualized street.

Chapter 5
1. Is it possible to have a pure memory system without a learning process?

However, can we have no learning process and just a pure memory
system as discussed in the chapter on memory systems? Take for exam-
ple the patient HM, who has lost the ability to form new long-term
memories due to the surgical removal of his medial temporal lobe to
cure his epilepsy. HM lost approximately two-thirds of his hippocampal
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formation, parahippocampal gyrus, and amygdale. After the surgery
he suffered from severe anterograde amnesia and could not commit
new events to long-term memory. However, he was able to perform
meaningful conversations with his short-term working memory
(Schaffhausen, 1997). Some may debate, using this example as evidence
that the learning process may not be totally needed. However, even for
this short-term working memory, there are changes in synapse, spike
pattern, excitatory and inhibitory action, and the interaction with other
synapses via neurotransmitters. These activities are discussed in Chapter
3 on synapses and neurons, that neuroscientists believe give rise to a
learning process. However, there remain many puzzles, such as what
this learning process is about. How can new information be captured in
the memory? How is new memory formed given that there is relatively
little new growth of neurons in the adult brain? How does the old
memory get refreshed or remain in the system? What makes our learn-
ing so efficient and effective? Various researchers’ findings will be pre-
sented and discussed here to give some insight into these questions.

2. Long-Term Potentiation (LTP). LTP is the earliest way in explaining
the neural plasticity (Bliss and Lomo, 1973) (Kelso et al., 1986).
LTP demonstrates changing interactions between neurons and is said
to underlie memory and learning. Two neurons connected by a
synapse are identified either in vivo or in vitro. In LTP, correlated
activity by both a pre-synaptic and post-synaptic neuron facilitates
later transmission of signals from the former to the latter. In short,
after both neurons are activated simultaneously, the conditional like-
lihood that the post-synaptic neuron fires, given that the pre-synap-
tic neuron fires, is raised.

3. In-vitro reinforcement. Stein and colleagues demonstrated a form of
neural plasticity apparently distinct from long-term potentiation
(LTP). They called it the in-vitro reinforcement (IVR). The basic
result is that changes in neural activity are due to the infusion of the
neurotransmitter, dopamine. A neuron that exhibits a characteristic
multi-spike burst is monitored in-vitro. Whenever a burst is detected,
dopamine is injected around the cell via a pipette. The burst rate is
observed to increase. The basic notion is that initially random activ-
ity, when regularly followed by a biologically important event, will
come to occur more often. (Stein, 1994) (Stein et al., 1994) (Stein,
1997). Hence IVR involves increases and decreases in intrinsic burst

b654_Notes.qxd  2/13/2009  11:34 AM  Page 281



282 Brain-Mind Machinery

FA

rates of individual neurons. IVR is presumed to produce learning by
differentially reinforcing activity by those neurons involved in gener-
ating more adaptive behavior. 

a. An artificial neural network with a computational model of
learning based on a simulation of IVR has demonstrated that
complex, independently-generated behaviors can be learned by
a network of IVR-sensitive neurons. Thus, IVR may provide a
key to understanding how complex, cognitive behaviors are
learned.

4. Hedonistic synapses is another hypothesis proposed by Sebastian
Seung from MIT, on how the neural plasticity work is different from
IVR and LTP. Hedonistic means “reward seeking”. In the case of
neurons, Seung explained that the actions are the release of vesicles
of neurotransmitters into the synaptic cleft and a reward corresponds
to some chemical signal such as dopamine. Vesicle release from a
presynaptic neuron is a stochastic process. When an action potential
goes through the neuron, there is a probability that the neuron will
release vesicles or fail to release them (hence, only two actions per-
formed: either release the neurotransmitter or fails to release). Seung
hypothesized that synapses are responding to a global reward signal
by increasing their probabilities of vesicle release or failure, depend-
ing on which action immediately preceded the reward. Seung then
modeld the hedonistic synapses learning by computing a stochastic
approximation to the gradient of the average reward. Seung claims
that HS is compatible with synaptic dynamics such as short-term
facilitation and depression and with the intricacies of dendrite inte-
gration and action potential generation. A network of hedonistic
synapses can be trained to perform a desired computation by admin-
istering reward appropriately, through numerical simulations of inte-
grate-and-fire model neurons (Seung, 2003).

5. LTP involves variable sensitivity of synaptic connections between two
neurons. IVR appears to involve variable sensitivity of a single neu-
ron to its overall activity due to various causes. HS appears to involve
a single neuron.

6. Critical period. Many scientists believe the notion of “use it or lose
it” during the critical period of brain development. That is, if one
misses the critical period or does not stimulus the brain during the
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critical period, then one may lose the function or ability to learn,
which is dependent on that plasticity during the critical period. 

7. Intrinsic reward mechanism. In humans it has an intrinsic reward
mechanism, i.e. humans can give themselves rewards without exter-
nal stimulus rewards. In most traditional methods, such as reinforce-
ment learning, an externally determined reward is needed. How
could we design an intrinsic reward to make better intelligent sys-
tems? How can we have self-detection of error? 

8. Credit assignment. Some researchers indicate that the learning prob-
lem is a credit assignment approach.

9. The brain predicts sensory consequences of motor commands. Prediction
and stability. The brain predicts the sensory consequences of motor
commands. The ability to predict accurately leads to stability, e.g.
some mechanisms in our brain that predict the consequences of cer-
tain actions we make (e.g. Volunteer that tries to maintain holding a
book. If someone else removes the book, the left hand automatically
moves up. But if the volunteer himself removes the book with the
right hand, the brain somehow can predict the exact timing and
make auto-correction (cancellation) such that the left hand will not
move up). The human brain performs predictive trajectories when
playing games such as table tennis, badminton, etc.

10. Children’s brains. After six or seven years old, the brain reach about
95 percent of the average adult volume, having a fourfold increase
in size since birth. The latest research finding indicates that even
so, the brain continues to change, i.e. extensive internal re-wiring
continues.

11. Neurogensis in learning and memory. It is not yet clear how neuro-
genesis improves or weakens different forms of learning and mem-
ory. Hen and colleagues temper the exuberance surrounding
neurogenesis research with a cautionary note. “Strategies aimed at
stimulating hippocampal neurogenesis to elicit antidepressant or pre-
cognitive effects will need to strike a fine balance between restoring
function and avoiding potential negative consequences of an excess
of neurogenesis.” — Tom Fagan.

12. Plasticity and aging. Part of the loss of plasticity is probably due to
age. But some of the loss of plasticity might be by program. Once a
neuron has been around for a while it has probably found some pur-
pose and there’s probably a bias in the brain’s design against letting
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a neuron too easily get reprogrammed for other purposes. (Ge et al.,
2007).

13. SK gaining sight and critical period issues. On the case of patient SK
gaining sight, there could be a distinction between Hubel and
Weseil’s cat experiment, which was performed in total darkness com-
pared to SK, which was brought up with exposure to light.

14. Why does the brain need background noise to learn? This background
noise causes a gradual change in the brain’s neural activities even
when nothing new is being learned (Seung’s lab) (Rokni et al., 2007).
Rokni et al. in their experiment show that the tuning curves of motor
cortical cells are constantly changing even when performing a famil-
iar task. Furthermore, when learning a new motor task, learning-
related changes occur on top of this background of changing tuning
curves. From the existence of background changes, the researchers
concluded from their study of motor learning:

a. The brain plasticity process is considerably variable.
b. The spatial randomness of background changes: they inferred

that the source of variability is local, i.e. independent in differ-
ent synapses, rather than from environment noise, e.g. muscle
noise, which through sensory feedback, contaminates the learn-
ing signal.

c. Plasticity noise is additive.
d. Noise changes synapses very slowly. According to their theory,

this slowness is necessary to prevent the noise from erasing
motor memories.

15. Dopamine also plays a critical role in many other neurological condi-
tions, including attention deficit disorder, schizophrenia, and drug
addiction. Hence, with understanding the detailed effects of
dopamine in the brain, drugs could be designed to more directly tar-
get beneficial actions without producing as many unwanted side
effects. The chemistry of our brain largely influences our personality
and emotions. “One personality trait in humans is how sensitive and
responsive we are to incentives and rewards.” — Richard Depue
(Cornell University).

16. Stability. A central issue in neuroscience is how the adult brain
selectively adapts to important environmental changes. Although
the brain needs to adapt to new environments, its architecture
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must protect itself from modification from the continual bom-
bardment of undesirable information. How does the brain solve
this so-called “stability-plasticity dilemma”? The stability and plas-
ticity dilemma is largely unsolved. How does the brain achieve sta-
bility and plasticity? (Stability and plasticity dilemma). It is widely
accepted that the synaptic weights are the support of learning. In
the training phase (or learning phase), the neural network system
computes the weights, and the weights are then fixed during the
generalization phase of the network. If synaptic weights do not
stop varying, what is the nature of them when confronted to con-
tinuous sequences of inputs? Such a system will face catastrophic
forgetting, which is the forgetting of old patterns due to the pres-
entation of new ones. This is the stability and plasticity dilemma.
Although there are several discussions on how to resolve the sta-
bility and plasticity dilemma, the problem persists and we do not
indeed understand how.

a. How does the brain maintain stability enough for learning new
information and yet retain old information or knowledge?
How can a network be made flexible enough to learn and yet
be stable enough to retain knowledge? Although some recent
studies have shown that visual learning is susceptible to disruption
and elucidates the processes by which the brain can
consolidate learning and thus protect what is learned from
being overwritten.

17. Shaping behavior is an aspect of behavior analysis that gradually
teaches new behavior through the use of reinforcement until the tar-
get behavior is achieved (Wolfgang, 272). 

18. NMDA receptors are a type of glutamate receptor, critical in long-
term potentiation and found in the hippocampus, mostly CA1. It
controls a calcium ion channel, which normally is blocked by a mag-
nesium ion. Calcium is critical for long-term potentiation.

19. AMPA receptors control sodium channels — involved once long-
term potentiation has occurred. 

20. The inferior temporal cortex is necessary for visual pattern discrimina-
tion and receives information from the visual cortex. 
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21. Extinction in operant conditioning can occur when the behavior or
response fades out over time due to non-reinforcement.

22. Some locations are related to learning and memory in the brain.

a. Perrihinal cortex — Within the medial temporal lobes, the
Perrihinal cortex lesions appear most significant for object
recognition. This is because the Perirhinal cortex serves as
the final stage in the ventral visual cortical pathway that rep-
resents stimulus features and it operates as part of a network
for associating sensory inputs within and across sensory
modalities.

b. Hippocampus — The hippocampus stores a series of allocentric
maps (representation of space based on external objects and
landmarks) based on sensory input. The hippocampus is
involved in spatial memory.

c. The inferotemporal cortex (cortex of the inferior temporal lobe)
is involved in the perception of objects and storing memories of
visual patterns.

d. Inferotemporal cortex — IT lesions cause agnosia (“psychic
blindness”).

e. Prefrontal Cortex — Lesions of the lateral prefrontal cortex
impair delay tasks.

f. Striatum — It is involved with storing memories of contingently
associated responses and stimuli. These are memories that are
built up through multiple stimulus-response contingencies.
(Fuster, 1997).

g. Orbitofrontal cortex (OFC) — The human orbitofrontal cor-
tex is among the least understood regions of the human brain
but has been proposed to be involved in sensory integration, in
representing the affective value of reinforcers, and in decision-
making and expectation (Kringelbach, 2005). In particular, the
human orbitofrontal cortex is thought to regulate planning
behavior associated with sensitivity to reward and punishment
(Bechara et al., 1994). This is supported by research in
humans, non-human primates, and rodents. Researchers have
found that the reward value, the expected reward value, and
even the subjective pleasantness of foods and other reinforcers
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are represented in the OFC. A large meta-analysis of the exist-
ing neuroimaging evidence demonstrated that activity in the
medial parts of the orbitofrontal cortex is related to the moni-
toring, learning, and memory of the reward value of reinforces,
whereas activity in the lateral orbitofrontal cortex is related to
the evaluation of punishers, which may lead to a change in
ongoing behavior (Kringelbach and Rolls, 2004). Similarly, a
posterior-anterior distinction was found with more complex or
abstract reinforcers (such as monetary gain and loss) being rep-
resented more anteriorly in the orbitofrontal cortex than less
complex reinforcers such as tast. It has even been proposed that
the human orbitofrontal has a role in mediating subjecting
hedonic experience (Kringelbach, 2005).

h. Destruction of the OFC through acquired brain injury typically
leads to a pattern of disinhibited behavior. Examples include
swearing excessively, hypersexuality, poor social interaction,
compulsive gambling, excessive alcohol/smoking/drug use,
and poor empathizing ability. 

i. Decisions about the visual world can take time to form, espe-
cially when the information is unreliable. (Roitrnan and
Shadlen, 2002) studied the neural correlate of gradual decision
formation by recording activity from the lateral intraparietal
cortex (area LIP) of rhesus monkeys during a combined
motion-discrimination reaction-time task.

j. During the period of decision formation, the epoch between
the onset of visual motion and the initiation of the eye move-
ment response, LIP neurons underwent ramp-like changes in
their discharge rate that predicted the monkey’s decision.

23. Hebb Learning (Hebbian Theory) Donald Hebb extended what Cajal
proposed on synaptic strength connection to include that cells may
grow new connections among each other to communicate and form
new memory. Hebb described a mechanism for synaptic plasticity.
This mechanism was known as Hebbian theory or also called Hebb’s
rule, which indicates that an increase in synaptic efficacy arises from
the pre-synaptic cell’s repeated and persistent stimulation of the post-
synaptic cell. The theory is often summarized as “cells that fire
together, wire together”.
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Chapter 6
1. The importance of feeling understood is emphasized by Stephen

Covey in his bestselling book, “The 7 Habits of Highly effective
people” (Covey, 1989).

2. Multiple emotion systems. There are still issues with regard to how
the emotion memory (after being captured) is exhibited in other
brain regions. The current observation suggests that the brain may
have multiple emotion systems, e.g. multiple fear systems. Professor
David Amaral’s research on amygdala lesions in the neonatal monkey
produced decreased fear to inanimate objection but increased fear in
novel social interaction. The issue is why is there an increased fear in
novel social interaction? Could it be due to a multiple fear system in
the brain? He also observed that amygdala lesions affect emotion
(specifically fear) learning and expression. However, in monkeys, it
was shown that it affects fear learning but not the fear “startle”. For
example, in a monkey and rat on “fear potential startle” training such
as turning on a light and getting an electric shock. The monkey and
rat will learn that when the light is on, they will get an electric shock.
And hence, when the light is on, the monkey or rat will jump even if
there is no electric shock. For the rat, if the amygdala is removed, the
condition learning is also removed and there is no fear “startle”. But
in the monkey, the condition still exists and that leads to the ques-
tion of where the condition is stored in the brain.

3. “There is no fear in love. But perfect love drives out fear, because fear
has to do with punishment. The one who fears is not made perfect in
love.” — 1 John 4:18.

4. Losses of the ventromedial prefrontal regions (located on the
lower forward section of the frontal lobe). Studies of those who
have sustained damage to this region indicate that they seem
to exhibit the same sort of behavior change. They seem unable
to understand the need for long-range planning, and thus to act
irresponsibly.

5. In (Tropea et al., 2006), the experiment shows that activity-depend-
ent development of the primary visual cortex (V1) involved in DR
(dark-rearing, i.e. reduction of activity in both eyes via dark-rearing)
leads to the upregulation of genes subserving synaptic transmission
and electrical activity.
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6. A simple rule of how the OCC model will synthesize the emotion
“joy” is:

If E > 0
Then set Pj = fj (E, I )

E is greater than 0 if the event is expected to have beneficial conse-
quences. And I represents a combination of global intensity variables
(e.g. expectedness, reality, proximity). Then Pj is the potential for
generating a state of “joy” where f is functioning specific to “joy”.
Similar rules can be used for computing potentials for other emo-
tions, e.g. the potential for distress, Pd. 

This rule activates the “joy” emotion to give rise to a value (P),
which can be mapped to one of a variety of emotion terms in the
“joy” family, such as “pleased” for a moderate value or “euphoric”
for an unusually high value. Note that the example of the emotion
joy is an oversimplified case; more complicated rules exist for other
emotional types in the OCC model.

7. Cathexis — four elicitors for emotion synthesis. The updating rule con-
tains terms that take on values specific to proto-specialists, but oth-
erwise the form is the same for every proto-specialist’s emotion
intensity. At each time t, each proto-specialist p = 1…p updates its
emotional intensity Ip(t) as follows: 

• Let Ep,i, I = 1, 2, 3, 4 be values contributed to proto-specialist p
by the four elicitors. 

• Let αp,m be the excitatory gain applied by proto-specialist m to
proto-specialist p.

• Let βp,m be the inhibitory gain applied by proto-specialist m to
proto-specialist p. 

Finally, let f be a function that controls the temporal decay of an
emotion intensity, and let g be a function that constrains the emotion
intensity to lie between zero and its saturation value. The new inten-
sity is then a function of its decayed previous value, its elicitors, and
influences from other emotion intensities:

I t g f Ip t I tp p ll p m p mm

p
m( ) ( ( ( )) ( ) ( )), , ,= - + + -

= =Â Â 1
1

4

1
e a b
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As in the OCC model, the intensity is compared to an emotion-spe-
cific activation threshold before determining if an emotion exists.
Only if the intensity exceeds the activation threshold does the proto-
specialist release its value to influence the behavior system and other
proto-specialists.

8. Dolores Canamero, at the Free University of Brussels, built a system
in which emotions trigger changes in synthetic hormones, and in
which emotions can arise as a result of simulated physiological
changes (Canamero, 1997).

9. Low-level signals are motions around the mouth and eyes, hand ges-
tures, pitch changes in the voice, and verbal cues such as the words
being used. 

10. Signals are any detectable changes that carry information or mes-
sages. Sounds, gestures, and facial expressions are signals that are
observable by natural human senses, while blood pressure, hormone
levels, and neurotransmitter levels require special sensing equipment.

11. High-level reasoning and low-level signals cooperate in the genera-
tion of emotional expression.

Chapter 7
1. Solving the noise saturation dilemma. Suppose that the ith cell Ci

receives an input Ii that can turn on some of its B excitable sites by
mass action. Let xi(t) be the number of excited sites and B −xi(t) be
the number of unexcited sites at time t. The simplest mass action law
for turning on unexcited sites and letting excited sites spontaneously
turn off is:

where I = 1, 2, … , n. Term (B−xi) Ii says that the input Ii turns on
unexcited sites B−xi by mass action. Term –Axi says that excited sites
spontaneously become unexcited by mass action at rate A. Hence,
when Ii = 0, xi can decay to the equilibrium point zero. 

d

dt
x Ax B x Ii i i i= - + -( ) ,
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Hodgkin-Huxley’s cell

membrane equation

Grossberg’s

shunting equation

2. Recurrent on-center off-surround networks. The system equation:

where i = 1, 2, … , n, and xi(≤ B) is the mean activity of the ith cell
or cell population, vi, of the network. Four effects determine this
system: (1) exponential decay via the term –Axi; (2) shunting self-
excitation via the term (B−xi) f (xi); (3) shunting inhibition of other
populations via the term –xiΣf (xk); (4) externally applied inputs, via
the term Ii. The function f(w) describes the mean output signal of a
given population as a function of its activity w. In vivo f(w) is often
a sigmoid function of w (Grossberg, 1973). The recurrent on-
center off-surround networks is said to take into account the non-
linearity, shunting, on-center off-surround feedback interaction.

3. Hodgkin-Huxley’s cell membrane equation and Grossberg’s shunting
equation. The shunting equation is claimed to be compatible with
the (Hodgkin and Huxley, 1952) cell membrane equation. Below is
a comparison of the two equations.

&x Ax B x f x x f x Ii i i i i k
k i

i= - + - - +
=
Â( ) ( ) ( ) ,
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For the shunting equations, –Axi is the passive decay term, Ii is the
excitatory input, and Ik is the inhibitory input. Cell activity is bound
between D and B, independent of the excitatory input (Ii) and
inhibitory input (Ik).

4. Equation on the learning law. Grossberg in 1988 discussed the learn-
ing law for an adaptive weight or long-term memory trace z(t) (also
sometimes denoted by w(t) or m(t)):

where x is the activity of a presynaptic (or postsynaptic) cell, y is the
activity of a postsynaptic (or presynaptic) cell, and z is the adaptive
weight at the synapse of an intervening pathway or axon. This
apparently simple equation was, for example, used to introduce
self-organizing maps, adaptive resonance theory and counter-
propagation networks. This simple equation and its variant gives rise
to such varied names as the outstar learning law, the instar learning
law, the gated steepest descent law, Grossberg learning, Kohonen
learning, and mixed Hebbian/anti-Hebbian learning. Read the
(Grossberg, 1998) paper for more discussion.

5. ART model. ART stands for Adaptive Resonance Theory. It was first
introduced in 1976 by Grossberg as a theory of human cognitive
information processing (Grossberg, 1976), and later, the theory
evolved as a series of real-time neural network models that perform
unsupervised and supervised learning, pattern recognition and pre-
diction (Carpenter and Grossberg, 1987) (Carpenter and Grossberg,
2003). The basic ART system is an unsupervised learning model.
Many other models evolved from ART, two of which are fuzzy ART
for analog input patterns (Carpenter et al., 1991) — ARTMAP mod-
els for combining two unsupervised modules to carry out supervised
learning (Carpenter et al., 1992). Many variations of the basic ART
supervised and unsupervised networks have since been adapted for
technological applications and biological analyses. Some of these are
further discussed below.

ART proposes how the brain learns to recognize objects and
events. This is accomplished through an interaction between

dz

dt
f x Az g y= - +( )[ ( )],
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bottom-up perceptually-driven inputs and learned top-down expec-
tations. Bottom-up inputs attempt to match top-down expectations
and the top-down expectations can prompt the brain to anticipate
input or expectation patterns. When a match occurs, the system locks
into an attentive resonant state that drives the recognition learning
process (how we learn to recognize things), and hence, the term
adaptive resonance. ART predicts that all conscious events are reso-
nant events. The degree of match that is required for resonance and
sustained attention to occur is set by a vigilance parameter. Vigilance
may be increased by predictive errors, and controls whether a partic-
ular learned representation will be concrete or abstract. Low vigi-
lance allows the learning of broad abstract recognition categories;
high vigilance forces the learning of specific concrete categories. If a
match is inadequate, then the current input is processed as a novel
stimulus. Attention is then rapidly reset so that memory can be
searched for another, or new, representation of the event. (Note: The
iSTART model proposes that individuals with autism have their vig-
ilance fixed at such a high setting that their learned representations
are very concrete or hyperspecific; that is, hypervigilance leads to
hyperspecific learning. This property leads to a multitude of prob-
lems with learning, cognition, and attention due to the manner in
which top-down matching, attention, learning, attention focusing
and reset, and memory search are organized. Grossberg indicated
that the ART model clarifies thalamo-cortical-hippocampal interac-
tions among others in the brain.) ART is born of many other mod-
els, to follow in the quest of CNS’s group in modeling the brain.

Grossberg addressed how ART solved the stability-plasticity
dilemma using dynamic balance. He demonstrated using ART, and
explained how the brain dynamically switches between its stable and
plastic modes such that it is not too rigid (due to being too stable)
or chaotic (due to being too plastic).

Grossberg also explained that the ART resonant state synchro-
nises, amplifies, and prolongs the cell activations that it includes. This
change of energy and time scales enables the more slowly varying
adaptive weights to learn the activities that they can correlate. By dis-
carding signals other than those that are attended, the resonant state
helps to prevent catastrophic forgetting. It is because the resonance
triggers learning that the theory is called the adaptive resonance the-
ory (Grossberg, 2000b).
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The above figure shows an example of recognition categories
when a subset of cells is selected by active top-down prototypes; they
can continue to send bottom-up signals to the category representa-
tions at the next processing stage. The categorical cells can, in turn,
continue to send top-down signals to the attended feature pattern. A
resonant state hereby locks in, whose cells are synchronized, ampli-
fied, and prolonged long enough for the LTM traces that support
the resonant cells to learn from their activity patterns.

ART matching and resonance rules have the bottom-up activation
(by itself ART can automatically activate target nodes) and top-down
expectations. The top-down expectations can learn prototypes that
select consistent bottom-up signals, suppress inconsistent bottom-up
signals (attentional focusing), and cannot by themselves fully activate
target nodes (modulation, priming).

Carpenter indicated that ART principles have further helped
explain parametric behavioral and brain data in the areas of visual
perception, object recognition, auditory source identification, vari-
able-rate speech, and word recognition (Carpenter and Grossberg,
2003). More recent progress has also been made on how the neo-
cortex is organized into layers, clarifying how ART design principles
are found in neocortical circuits.

6. CogEM model stands for the Cognitive-Emotional Motor. The
CogEM model proposes how emotional centers of the brain, such as
the amygdale, interact with sensory and prefrontal cortices (notably
ventral or orbital, prefrontal cortex) to generate affective states.
Grossberg indicated that CogEM explains the interaction between
cognitive, emotional, and motor learning properties (Grossberg, 2000).
The CogEM model was first introduced in (Grossberg, 1971) and has
since undergone substantial development in later years. See (Grossberg,
1982a, 1982b, 1984b), (Grossberg and Gutowski, 1987), (Grossberg
and Levine, 1987), (Grossberg and Merrill, 1992, 1996). CogEM
extends ART to the learning of cognitive-emotional associations or
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associations that link objects and events in the world to feelings and
emotions that give these objects and events value. Under normal cir-
cumstances, arousal of the circuits in the brain that control emotion
are set at an intermediate level. Either under-arousal or over arousal
of these circuits can cause abnormal emotional reactions and prob-
lems with cognitive emotional learning. 

“If the emotional center is over-aroused, the threshold to acti-
vate a reaction is abnormally low, but the intensity of the emo-
tion is abnormally small … In contrast, if the emotional
circuits are under-aroused, the threshold for activating an emo-
tion is abnormally high, but when this threshold is exceeded, the
emotional response can be over reactive.” said Grossberg. The
iSTART model proposes that individuals with autism experi-
ence under aroused emotional depression, which helps
explain symptoms like reduced emotional expression as well
as emotional outbursts.

The figure shows the simplest CogEM model. Three types of inter-
acting representations (sensory, drive, and motor) that control three
types of learning (conditioned reinforcer, incentive motivational, and
motor) help to explain many reinforcement learning data. Sensory rep-
resentations, “S”, temporarily store internal representations of sensory
events in working memory. Drive representations, “D”, are sites
where reinforcing and homeostatic, or drive, cues converge to activate
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emotional responses. Motor representations, “M”, control the read-
out of actions. Conditioned reinforcer learning enables sensory events
to activate emotional reactions at drive representations. Incentive
motivational learning enables emotions to generate a motivational set
that biases the system to process information consistent with that emo-
tion. Motor learning allows sensory and cognitive representations to
generate actions (Grossberg, 2000) (Grossberg and Seidman, 2006).

The figure shows a block diagram of a CogEM model in terms
of simplified anatomical connections. When a drive representation
like the amygdale gets depressed, its diminished activation by sensory
events prevents normal interpretation of emotionally important
events and also attenuates motivationally appropriate signals to and
from the prefrontal cortex. Such a local imbalance in the model
circuit can generate many negative symptoms that are characteristic
of schizophrenia, including the loss of a theory of mind.

7. START model. A synthesis of the ART and CogEM models, called
the START model, stands for Spectrally Timed ART Model (Fiala
et al., 1996) (Grossberg and Merrill, 1992). The START model pre-
dicts how motivational mechanisms within the amygdala and related
emotion-representing brain areas can rapidly draw motivated atten-
tion to salient cues. This can happen via a cognitive-emotional reso-
nance within CogEM feedback circuits between sensory
representations “S” and drive representations “D”.

The degree of match that is required for resonance to occur is
set by a vigilance parameter, which controls whether a particular
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learned representation will be concrete or abstract. Low vigilance
allows for the learning of broad abstract recognition categories,
such as a category that is activated by any face; high vigilance
forces the learning of specific concrete categories, such as a cate-
gory that is activated by a particular view of a familiar friend’s face.

8. iStart model, which stands for Imbalanced Spectrally Timed
Adaptive Resonance Theory, is derived from the earlier START
model developed by Grossberg to explain how the brain controls
normal behaviors. The new model illustrates how brain mech-
anisms that control normal emotional, timing, and motor
processes may become imbalanced and lead to symptoms of
autism. START and its imbalanced version, iSTART, are a combi-
nation of three models, each of which tries to explain fundamen-
tal issues about human learning and behavior (Grossberg and
Seidman, 2006).

9. ARTSCAN demonstrates the theoretical analysis of how spatial and
object attention interact with surface and boundary representations
to support the learning of view-invariant object categories (Fazl
et al., 2005) (Fazl et al., 2006). The ARTSCAN model predicts how
spatial and object attention work together as eye movements scan a
scene to selectively fuse, through learning, multiple views of an
object into a view-invariant object category.

10. ARTSTREAM. A neural network model of auditory scene analysis.
This model proposes how the brain accomplishes this feat. The
model clarifies how the frequency components that correspond to a
given acoustic source may be coherently grouped together into a dis-
tinct stream based on pitch and spatial location cues. The model also
clarifies how multiple streams may be distinguished and separated by
the brain (Grossberg et al.). 

11. LIGHTSHAFT stands for the LIGHTness and SHApe-From-
Texture model. This is a model that utilizes monocular visual tex-
ture information to produce a 3D percept of surface lightness.
It is built upon and extends the FAÇADE model (Grossberg
et al., 2007).

12. The ARTEX model is proposed by (Grossberg and Williamson,
1999). The model joins together visual preprocessing (multiple-scale
bottom-up filtering, horizontal grouping, and surface filling-in) as a
perceptual front end to an ART classifier to learn and categorize both
Brodatz textures (based on (Brodatz, 1966) benchmark work on
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texture) and natural textured scenes after they were processed by a
synthetic aperture radar (SAR) sensor.

Chapter 8
1. Bayesian Network Knowledge Fragments Fusion

This section discusses the technical details of how to fuse BN knowl-
edge fragments. We present two novel methods to handle the fusion
of multiple Bayesian Network knowledge fragments, which we
termed N-Combinator and N-Clone.

The problem of BN knowledge fragments fusion is depicted in
the example given in Fig. A1. In this example we wish to fuse frag-
ments 1 and 2 encoded with the parameters P(A|B) and P(A|C)
respectively to form the combined fragment where node A now has
multiple parents, namely, B and C. This fusion process is needed in
D’Brain as it allows the Situation Specific Bayesian Network to be
created from the library of knowledge fragments.

One approach is to compute the higher dimension CPT of
P (A|B,C), from lower dimension CPTs P (A|B) and P (A|C). There
exists a widely known method of CPT combination called Noisy-
OR if all the nodes in the model are binary (Pearl, 1988). Noisy-
OR is usually used to describe the interaction between n causes x1,
x2,…, xn (parent nodes) and their common effect y (child node).
The causes xi are each assumed to be sufficient to cause y in absence
of other causes and their ability to cause y is assumed to be inde-
pendent of the presence of other causes. Here, we do not consider
leak probabilities where the model does not capture all possible
causes of effect node y. The leak probability models the situation

B

A 

C 

A 

Fragment 1 Fragment 2 

Combine 
B

A

C

Combined Fragment

Fig. A1. Graphical Representation of Problem Statement.
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where the effect node y will be active even when all its causes are
inactive.

The mathematical formulation for the probability that the effect
node y is active, given a subset of its active parents xp is:

(1)

where pi is defined as:

(2)

which is the probability that the effect node y is active given a single
parent xi is active. Note that –xi denotes that xi is not active.

While Noisy-OR is a widely accepted CPT combination method,
it is limited to only binary nodes modeling. Diez extended the
Noisy-OR to a Noisy-Max model that allows the computation of full
CPTs for multiple state nodes but on the condition that the nodes
(effect node and all its parents) have to be graded. This means that
if a node has n states, its nth state has to be greater in its effect than
its (n − 1)th state, which is greater in its effect than its (n − 2)th state
and so on. For example, if the node is Illness, its graded states can be
None, Mild, Serious, and Critical. On the other hand, if the node is
Color and its states are Red, Green, and Blue, then the node Color
is not graded since we cannot say that the effect of Red > Green >
Blue.

Noisy-OR is not a suitable method for fusing BN knowledge
fragments due to the restriction that only binary nodes are used in
the knowledge fragments. Modeling complex situation using only
binary nodes is inadequate. Although Noisy-Max allows us to model
nodes with more than two states, it requires nodes to be graded.
However, it is not always possible to model graded nodes for some
applications. Hence, Noisy-Max is also not a suitable method. The
absence of an appropriate method for fusing BN knowledge frag-
ments for generic nodes (multi-state nodes with no restriction on
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their states) provided the motivation for us to propose two novel
methods: N-Combinator and N-Clone. 

2. N-Combinator
The N-Combinator computes the joint CPT entries for a child
node with multiple parent nodes without the constraint that they
have to be graded. There are three steps to the N-Combinator
method.

Step 1: Model each multi-state child node and its multi-state parent
nodes as multiple binary nodes. 

Step 2: Combine the binary nodes using Noisy-OR. 
Step 3: Re-model the binary nodes back to their original multi-state

nodes by normalization.

n binary nodes 

X
Modelled by

x1 x2 Xn
… 

Node X with n states

Fig. A2. Modeling a multi-state node with multiple binary nodes.

Consider the node X in Fig. A2 with n states {x1,…, xn}. In Step 1,
we model it into n binary nodes where each binary node has an
active and non-active state represented by xi and –xi respectively.
Then we have

(3)

To illustrate how Step 2 and Step 3 are carried out, we use the exam-
ple of computing the joint CPT entries for a child node with two par-
ent nodes shown in Fig. A3. In this example, we model the
multi-state nodes A, B, and C (each multi-state node has three
states) into the binary nodes a1, a2, a3, b1, b2, b3, c1, c2, c3 (Step 1).
Next, these multiple binary nodes are combined via Noisy-OR (Step 2)
using P(A|B) (stored in fragment 1) and P(A|C) (stored in frag-
ment 2), and the Noisy-OR conditional probabilities are normalized

( ) ( , , , , , , )X x x x x x xi i i i i n= ∫ º º- +1 1 1
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b2 b1 b3

Nodes with multi-states Binary nodes

B 

A

b1

a1

Modelled by

a1

b3

a1 a2

b2

a3 a3

…….

C 

A

c1

a1

Modelled by

c2

a1

c3

a1

c1

a2

c2

a3

c3

a3

…….

B 

A

Nodes with multi-states Binary nodes

Modelled by

C b1

a1

b2 b3 c1

a2

c3

a3

c2 Noisy-OR
Combination 

Fragment 1

Fragment 2

Combined Fragment

Fig. A3. Example of N-Combinator method.

(Step 3) to yield the full CPT of P(A|B,C). For example, (refer to
Fig. A4 for illustration), 

(4)

where is the normalizing factor.a =
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The general equation for computing the joint CPT of a child node
Y that has n parent nodes X1, X2,…, Xn (Fig. A5) is 

(5)

where , and

m is the number of states of Y.

a =
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Fig. A4. Illustration of obtaining P(A = a3|B = b1,C = c2).
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3. N-Clone
Recall that a BN is fully specified by its network structure and the
corresponding network parameters (CPTs). In the N-Combinator
approach to BN fragment fusion, we effectively fused the network
structures of all fragments into one, which requires the higher
dimension joint CPT to be computed. On the other hand, if we can
somehow maintain the network structure of the individual fragments
in the fused network, then there is no need to compute new CPT
parameters. This is the approach adopted in N-Clone. In N-Clone,
the child node is cloned. In this way, we do not need to generate the
joint CPT entries. In doing so, we avoid the problem of poor infer-
ence results from poorly generated joint CPT entries. 

Let’s suppose we have these two fragments:

]

Instead of combining node D’s parents in N-Combinator to form

A 

D 

B 

A

D

C

…
…

Y 

X1 X2 Xn

Fig. A5. Child node Y, with n parent nodes X1, X2,…, Xn.
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we now clone the node D:

where D1 and D2 are the clone nodes. They are kept as separate
nodes in D’Brain. However, in the graphical user interface, the
user will not view the clone nodes. To the user, all the clone nodes
will be displayed as one single node. This is as though the two
nodes were merged into a single node as shown by the dotted
ellipse. Again, note that we do not need to generate joint CPTs
with this method:

P(D1|B) is obtained from P(D|B) in fragment 1;
P(D2|C) is obtained from P(D|C) in fragment 2.

Fragment 1 gives us some information about node D (now cloned
as D1). Fragment 2 also gives us some information about node D
(now cloned as D2). The posterior of node D is computed by
combining the posteriors of node D1 and D2. For example, if A is in
state 1, we have a posterior probability for node D1, and a posterior

A

B C

D1 D2

A

D

B C
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probability for node D2. Let’s suppose their posterior probabilities
are as follows:

Prob(D1 = State 1) 0.3 Prob(D2 = State 1) 0.4

Prob(D1 = State 2) 0.7 Prob(D2 = State 2) 0.6

We propose to combine these two posterior probabilities by
averaging:

Prob(D = State 1) (0.3 + 0.4)/2 = 0.35

Prob(D = State 2) (0.7 + 0.6)/2 = 0.65

This is the posterior probability that the user will view if he queries
about node D (i.e. given evidence that node A is in state 1, the prob-
ability that node D will be in state 1 is 0.35).

Chapter 9
1. Wordnet: http://en.wikipedia.org/wiki/Wordnet
2. Cyc: http://en.wikipedia.org/wiki/Cyc
3. Open Mind Common Sense: http://en.wikipedia.org/wiki/Open_

Mind_Common_Sense

a. The Open Mind project’s goal is to teach computers all those
things an average person knows but takes for granted, because
they are so obvious. This is known as the problem of giving com-
puters “common sense”. This includes things like:

(1) Every person is younger than their mother. 
(2) You can push something with a straight stick.
(3) One hundred dollars is a lot to pay for a sandwich. 
(4) Snow is cold and is made of millions of snowflakes. 
(5) A week is longer than a minute. 
(6) Computers need a source of power to operate. 
(7) Most birds can fly, except for penguins and birds with bro-

ken wings.
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4. Mindpixel, started in 2000, was conceived by the late Chris McKinstry,
a computer scientist. Mindpixel aimed to create a database of mil-
lions of human validated true/false statements or probabilistic
propositions. Participants in the project created one-line statements
that aimed to be objectively true or false to 20 other anonymous par-
ticipants. In order to submit their statement they had first to check
the true/false validity of 20 such statements submitted by others.
Participants whose replies were consistently out of step with the
majority had their status downgraded and were eventually excluded.
Likewise, participants who made contributions that others could not
agree were objectively true or false had their status downgraded. A
validated true/false statement is called a mindpixel. The project
enlisted the efforts of thousands of participants and claimed to be
“the planet’s largest artificial intelligence effort”.

a. McKinstry believed that the Mindpixel database could be used
in conjunction with a neural net to produce a body of human
“common sense” knowledge that would have market value.
Participants in the project are awarded shares in any future value
according to the number of mindpixels they have successfully
created.

b. On 20 September 2005, Mindpixel lost its free server and is no
longer operational. It was being rewritten by Chris McKinstry as
Mindpixel 2 and was intended to appear on a new server in
France. Chris McKinstry committed suicide on 23 January 2006
and the future of the project and the integrity of the data is
uncertain.

c. Some Mindpixel data (the 80K set) was utilized (in 2006) by
Michael Spivey of Cornell University and Rick Dale of The
University of Memphis to study theories in high-level reasoning
and continuous temporal dynamics of thought.

5. GPS (General Problem Solver). One of the very earliest AI programs,
Newell, Shaw, & Simon’s (1960a) General Problem Solver (or GPS)
could be seen as a collection of critics. The critics of GPS were essen-
tially reactive, in that they recognized differences between the sys-
tem’s goals and the present situation, and immediately took actions
to reduce those differences; John McCarthy referred to the GPS as a
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“symbolic servo-mechanism.” GPS did not anticipate the conse-
quences of those actions, or otherwise consider their relative merits;
it did not engage in the kinds of hypothesis-manipulation forms of
deliberation discussed in this thesis. However, in (Newell, Shaw, &
Simon, 1960b) they describe what could be the first AI system with
a reflective level. The system consisted of two separate GPS systems,
one that operated on the base-level problem domain, and the second
that operated on the knowledge base of the first GPS. This “second-
order GPS” consisted of a set of critics that modified the critics of
the first-order GPS so that their effects were more orthogonal and
interfered with each other less. This is a form of reflection that EM-
ONE does not presently engage in — reformulating the contents of
its knowledge base in order to improve and accelerate inference. In
EM-ONE, such an operation would probably be part of the self-
reflective level, as it operates not so much on traces of recent delib-
eration but rather on the entire knowledge base of critics used by
the system.

6. EM-ONE. The EM-ONE knowledge representation scheme was
originally inspired by the Cyc upper level ontology. EM-ONE aspires
to eventually support the use of large bodies of commonsense knowl-
edge, and I considered using the Cyc ontology in EM-ONE. It was
the only representation I had encountered that provided a suffi-
ciently broad vocabulary to take the kinds of narratives and critics
that I had been expressing pre-formally in English and in a sharper
representation that a program could more easily work with. In the
end, I decided to use my own, simpler scheme, although in the
future I may try to implement a version of EM-ONE on top of
the Cyc substrate. This should not be difficult because EM-ONE is
built on top of a Lisp-based version of Prolog that makes use of
Prolog’s database and pattern matching machinery. Cyc provides this
same functionality, but in many ways is more sophisticated because it
has special purpose inference procedures for certain special types of
commonsense inference (e.g. taxonomic and temporal inference are
implemented with special-purpose algorithms).

7. Some of the differences between EM-ONE and Cyc are:

a. In EM-ONE, there are a limited collection of frames and frame
slots that let one describe physical, social, and mental situations.
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This simple representation scheme is far easier to learn and apply
than the full Cyc ontology, and the cost in precision and expres-
siveness trades off against Cyc’s complexity. One of my goals at
the outset of EM-ONE was to build a system that was reasonably
easy for someone new to the project to understand, and I wanted
to avoid putting them in the position of having to first learn
the full Cyc ontology. In retrospect, the Cyc ontology is so well
documented that it may have been a better decision to have
selected an appropriate subset of Cyc. On the other hand,
because the EM-ONE representation is completely frame-based,
and because every frame is a reified entity that can be attached to
slots of other frames, it is especially natural to represent mental
notions such as propositional attitudes (believes, desires, etc) that
relate actors to mental states, which is important for a system that
does social reasoning and that can reflect upon itself and its own
reasoning.

b. The EM-ONE narrative corpus is based not on default rules but
instead on narratives annotated by the causal and dependency
relationships that exist between the elements of the narrative.
These narratives are structured in a fairly uniform manner where
each narrative is a set of situations whose constituents have sim-
ple causal and temporal interrelations. Singh believed that narra-
tives are generally a better way to represent commonsense
knowledge than abstract logical rules, as is the convention in Cyc.
Rather than reasoning by making deductions using common-
sense rules, EM-ONE reasons by making analogies to common-
sense narratives. While Cyc does have some knowledge in the
form of stories and scripts, the bulk of the knowledge in Cyc is
the form of general facts and rules.

c. Cyc could be thought of as having a somewhat uniform deliber-
ative layer, but like most present day inference systems it does not
possess a reflective layer. Cyc possesses some knowledge about
folk psychology and mental states, but it does not employ any of
this knowledge to assess and debug its own functioning. Novel
non-folk-psychological concepts about the mind, such as mental
critics, do not appear. This seems to be because Cyc consists pri-
marily of types of knowledge that AI practitioners are largely
already familiar with, but theories about human commonsense
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psychology — ones that let us make detailed predictions about
how people learn, reason, and reflect — are still in their infancy,
so there was little existing research for the developers of Cyc to
draw upon.

8. Story-based intelligence was proposed by Roger Schank. Here is a short
description of his writing: Why do people like to tell and hear stories?
Story telling is common enough phenomenon. But do people who
like to tell stories really spend any time at all listening to other peo-
ple’s stories? When people who like to tell stories are listening to the
stories of others, you often see them chafing at the bit. They are wait-
ing for the story to be over so they can tell their own story. If you
watch enough of this, hear enough of it, and participate enough in it
by examining your own behavior, you begin to wonder if anybody is
listening to anybody. The only time you really have to listen is when
you attend a lecture and you cannot get up and tell your story back.
Even then, your mind is going all the time, getting reminded of your
own experiences that you would just love to tell if it were socially
permissible to do so.

9. Knowledge Machine (KM) is a knowledge representation and reason-
ing system. KM is developed by the Knowledge Systems Research
Group of the University of Texas at Austin, led by Peter Clark and
Bruce Porter. It claims to be a powerful, frame-based language with
clear first-order logic semantics. And it contains sophisticated machin-
ery for reasoning, including selection by description, unification, clas-
sification and reasoning about actions using a situations mechanism.
It is implemented in Lisp and runs on both Windows and Unix oper-
ating systems. Main website of KM: http://www.cs.utexas.edu/
users/mfkb/RKF/km.html

a. When someone tells you a problem, most of the time they do not
want an answer, but a good story to relate their problem.

b. On AI — Schank said: “The kind of intelligence you really worry
about, after all, when you are sitting next to the guy in the air-
plane, is whether he can hold up his end of the conversation in
such a way so as not to bore you to death. You see him as being
really intelligent if the stories he tells back to your stories actually
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relate to your stories; that is, if it seems like he’s understood your
stories” … “Intelligence revolves a lot around getting a machine
to have something to say and getting it to have the ability to
understand what you said. Intelligence involves a lot less problem
solving than we commonly think.”

c. “On the one hand, it is really a lot simpler to state one’s belief
than to tell a story that explains why one holds that belief. On the
other hand, it is never as persuasive to do so. You can say, I
believe such and such, and no one listens to you. If you tell a
really good story, however, people listen.”

d. Schank added that by telling our stories, we get reminded and we
try to learn. As we tell a story to someone, we hear a story back
in our minds that we like to tell. We start to tell the story because
we are actually in some sense comparing the story that comes to
mind to the story that was told to us. This could be called the
understanding of the understanding cycle. In the understanding
cycle, we start with expectation failures. We are bundles of expec-
tations. You expect all kinds of things to happen: you expect me
to stand up here and lecture. You do not expect me to dance on
stage and take my clothes off. As you begin to explain the behavior
of the things around you, you begin to formulate expectations: You
expect the world to exist in a certain way, and if it doesn’t exist
that way, you worry about it. You have an expectation, and when
it fails you may be upset. You may think that failure is a bad thing,
but it turn out that failure is a wonderful thing. Failure is the
beginning of learning. When you feel you want to get something
but don’t get it you get upset. What your mind is actually saying,
however, is, “Oh boy! I failed. That is terrific, because now I can
begin to figure out why.” … The reason to call that memory a
story is that it tends to have story-like properties. Story-Based
Memory by Roger Schank (Schank, 1992).

Chapter 10
1. Conductance-based models (Skinner, 2006). The conductance-based

model is a form of the Hodgkin-Huxley cell membrane model. A
conductance-based model represents a neuron by a single isopotential
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electrical compartment, neglects ion movements between subcellular
compartments, and represents only ion movements between the
inside and outside of the cell. To form a very small region of the
brain, one would need to build many multiple compartments using
the conductance-based model.

2. CCortex-based autonomous cognitive model (ACM). ACM is built by
a company called Artificial Development (California-based com-
pany), a company that started modeling the entire brain around
2002/3. The company claims it has completed a representation of a
functioning human brain. And it hopes that their software may have
immediate applications for data mining, network security, search
engine technologies, and natural language processing. ACM claims
to use realistic frontal cortex, motor, and somatosensory areas. And
it continues to enhance and work on visual and auditory cortex areas
and other important structures such as the hippocampus, basal gan-
glia, and thalamic systems. CCortex Developer Box includes a 64 bit
Spiking Neural Network Engine. Each Developer Box can represent
up to 250 million neurons containing 11 000 synapses, and will be
capable of updating a data matrix of 1.5 billion synapses 10 times per
second for real-time applications. (Source: http://ad.com/).

3. From the Blue Brain project, Henry projected that Blue Column
(simulating 100 000 neurons) will be possible by about 2008/9, and
the detailed cellular level model within five years, while the model at
the cellular level of the entire brain will probably take a decade.

4. Soar is one of the most established cognitive architectures with a wide
range of military applications. The new research focus of Soar 9
includes extensions of Soar cognitive architecture and the integration
of emotions with reasoning and learning mechanisms. More infor-
mation is available at http://sitemaker.umich.edu/soar/home.

5. Detailed information for ACT-R can be found at http://act-
r.psy.cmu.edu/about/.

6. ICARUS operates on a recognize-act cycle and it focuses on reactive
execution of existing skills rather than a problem-space search.
It generates reactive behaviors to achieve goals through constant
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interaction with the environment. ICARUS lacks planning capability
in this sense as it constantly has to wait for percepts from the environ-
ment. See also http://www.isle.org/langley/talks/icarus.6.04.ppt.

7. DARPA Quest. In the DARPA call for BICA (Biologically-Inspired
Cognitive Architecture) phase one BAA, we see a number of brain-
inspired designed architectures. A very brief summary is provided here:

a. CHIP: A Cognitive Architecture for Comprehensive Human
Intelligence and Performance (Shrobe et al., 2006).

The figure shows the CHIP Architecture: the systems of com-
ponents intimately interact with one another, forming tightly
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integrated loops through the various layers. The middle column,
which manages the internal state of the system, acts as a shared
blackboard with three levels for general communication among
the components. But in addition to this shared channel, there are
many special purpose channels linking specific sub-systems
(Shrobe et al., 2006), MIT. This is a well thought architecture
that includes the Sloman’s three-layer architecture and the brain’s
cortex arrangement).

The figure shows the memory systems and corresponding learn-
ing pathways in the CHIP architecture.
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b. TOSCA Architecture Design

The figure shows the major pathways within and between
neural systems underlying TOSCA architecture design (by
Professor John Laird, University of Michigan).

Professor John Laird’s key research focus is on the Soar cog-
nitive architecture discussed in the chapter. TOSCA is another
biological-inspired architecture Laird works on, and more lately,
TOSCA has been renamed as STORM (see Douglas Pearson’s
website from Three Penny Software). STORM’s key focus is to
create a framework that is easy for the architecture to work on
such as the ability to change the module easily. 

In TOSCA’s architecture, the pattern of connections is
claimed to be consistent with the following processing loop:

(1) The posterior cortex potentially receives five types of input:
sensory input (via the thalamus), episodic memory (via the
hippocampal system), top-down control signals (from the
anterior cortex), emotion (amygdale), and bottom-up associ-
ations (from other parts of the posterior cortex).

(2) Specific (core) thalamocortical loops cluster on patterns of
activity, recognizing familiar input patterns.

(3) Non-specific (matrix) thalamocortical loops encode (and
retrieve) sequences of clusters, producing a representation of
what is expected to come next.

(4) Cortico-cortical connections within the posterior cortex
modify and elaborate the internal state, generating a more
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complete hierarchy of clusters of sequences of clusters that is
organized topographically within cortical areas.

(5) Cortico-cortical projections to the anterior cortex propose
specific intentions, which could be motor actions or mental
actions (e.g. setting cues for episodic memory retrieval, set-
ting goals in working memory, maintaining or attending to
specific information).

(6) Corticostriatal loops select among competing actions based
on the (learned) values associated with each action in the cur-
rent context/state. Multiple actions can be selected in paral-
lel, based on the parallel structure of frontostriatal loops.

(7) State-action values are modified by the midbrain dopamine
system in a way that realizes reinforcement learning algo-
rithms (strengthening state-action associations that lead to
long-term rewards).

(8) Motor actions are passed on to the motor output systems for
execution whereas mental actions provide top-down control
signals to the posterior cortex.

The figure shows the schematic of corticostriatal pathways.
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The figure shows an initial STORM framework. (Source:
http://www.eecs.umich.edu/~soar/sitemaker/workshop/27/G
orski2.pdf).

c. Self-aware cognitive architecture. This is another architecture pro-
posed by GMU for BICA phase one. The name of this architec-
ture is due to its main feature, which is the notion of self-aware
cognition. Again, it has the same claim as inspired by studies of
the human brain-mind: in particular, theoretical models of repre-
sentations of agency in the higher associative human brain areas.
The self-aware cognition feature is said to allow the system to
maintain human-like attention, focus on the most relevant fea-
tures and aspects of a situation, and come up with ideas and ini-
tiatives that may not follow formal logic (DeJong et al., 2006).
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The figure shows the top level self-aware architecture. It is based
on three key building blocks, namely schemas, mental states, and
cognitive maps. The schemas are used for representation of
knowledge and experiences. Mental states are used for instantiat-
ing a self. And the cognitive maps are to provide efficient index-
ing and navigating of stored memories.

d. SAL Architecture. SAL stands for Synthesis of ACT-R and
Leabra. SAL brings together ACT-R, with Leabra (Leabra is a
high neural-fidelity architecture that is claimed to perform well in
adapting to new environments).

The figure shows the tripartite architecture of SAL. Human
cognition is conceptualized in terms of the computational prop-
erties of distinct brain areas, each specialized for different incom-
patible forms of learning (e.g. rapid learning in the hippocampus
versus slow learning in the cortex). Red arrows represent top-
down cognitive control (which results from interactions between
the frontal cortex and basal ganglia), while black arrows represent
standard neural communication.
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The figure shows the cognitive module architecture of SAL,
where the broad tripartite architecture has been subdivided into
finer grained separable cognitive mechanisms.

e. BICA-LEAP Architecture. BICA-LEAP stands for Biologically-
Inspired Cognitive Architecture for integrated LEarning, Action,
and Perception. BICA-LEAP is a joint proposal from HRL
Laboratories, University of Southern California (USC), Boston
Univeristy CNS department (BU/CNS), and Portland State
University (PSU). BICA-LEAP attempted to synthesize a single
comprehensive architecture based on core brain operating prin-
ciples and computational paradigms that can be adapted to solve
all the modal problems, visual object recognition, audition, moti-
vation, etc). Till today, these modal problems are solved individ-
ually, i.e. in disparate architectures whose design embodies
specializations for each model problem (from the talk by Dr Deepak
Khosla, HRL Laboratories, in the BU/CNS ICCNS 2007
conference).
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Chapter 11
1. Plastic Electronics — The building of plastic electronics may revo-

lutionize the computer technology into the next “S” curve. In plas-
tic electronics, electronic components can be assembled in thin
plastic form. The facility will produce flexible active-matrix display
modules for “take anywhere, read anywhere” electronic reader
products. It will utilize Plastic Logic’s unique process to fabricate
active-matrix displays that are thin, light, and robust, enabling a
reading experience closer to paper than any other technology. (Press
release FT 3 Jan 2006).

2. Reliance on the computer system is greater than ever. We will have a
“system log me out” phenomenon, and without the computer sys-
tem, it could not work. 

3. People’s desire for knowledge will be much greater and information
exchange will be great — across the internet and travel.

4. Multimedia technology will have a great impact, keeping many peo-
ple busy and making them lose touch with real life.

5. Communication technology is going to do wonder, and many excit-
ing stuff will be marketed. Communications media has started from
humble paper letter writing (posted by pigeons) and progressed to
long distance telephone connections, email, internet chat rooms,
video conferences, and 3-D virtual representations of our interacting
environment.

6. Mind chip. Many will still attempt to find out how the brain works
and want to model it to develop a mind chip. (See also New Scientist
magazine, dated 3 February 2007, about the mind chip.)

Chapter 12
1. Many scientists indicate the brain has an associative network connec-

tion. References include (Gros, 2005).
2. One possible explanation for the diverse view of how the brain works

is that the brain is a complex machinery and everyone is looking at a
spotlight of the big picture.
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3. The technique for deconstructing brain wiring at the single neuron
level is still in the infancy stage.

4. Some information on the localization issues of the brain are the
recorded notes from a talk by Professor Rebacca Saxe (MIT/BCS) in
BU in the February 2007 Neuphi meeting.

5. Open issues include:

a. The motor system, such as how the projection is done well in
advance.

b. The association cortex and how it works. There remain many
research issues at the association cortex.

c. How are the detailed cortical connections wired?
d. Why is the cerebral cortex arranged in six layers, why does the

cortical column have patterns such as a pinwheel pattern, and
why is the brain structure hierarchical?

e. At what scale is the architecture of the mammalian brain organ-
ized? Many people believe this reduces to both an empirical ques-
tion in neuroscience and a theoretical question in evolutionary
biology. Evolutionary biology asks whether there is reason to
believe that the brain evolved modules through the mechanism of
natural selection, and whether these modules can be thought of
as achieving definable goals. (Glimcher, 2004).

f. Why do we have this inborn moral law? The ability to discern
between right and wrong seems hard-wired in the brain. Why is
this process built-in?

g. Why does the brain have rhythms? How are the different brain
waves related to our thinking mechanism and brain states? Why
are these rhythms related to the respective function? For example,
why are gamma rhythms related to attention and why is the delta
function at rest state? Where do these rhythms come from? What
are they good for? How do they work together in our brain? 

h. Why do the neural activities keep changing even in the presence
of nothing-new-to-learn situations? 

i. How many of the processes are innate (nature) or developed
(nurture)? Innate or developed (derived)? It is also not clear how
much the modular mechanisms are innate and how much is the
process of canalization and increase of specialization with devel-
opment (where canalization is the development of an organism
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along relatively predictable pathways despite abnormality or
injury). For example, “words” are non-innate specialization. It
appears that specialization regions developed to handle words are
clearly not innate. Left fusiform gyrus are recruited in looking for
words in our own language rather than in any other language.
What about the RTPJ (right temporo-parietal junction) to belief
attribution?

j. Why do we have déjà vu experiences? Why do we have déjà vu
experiences? The term “déjà vu” is a French word for “already
seen”. It is an experience where one feels that an event or person
is something he has seen before or has a sense of familiarity with,
and it also comes with a sense of “eeriness” or “strangeness”.
Studies suggest that the déjà vu experience is common to most
people.

k. Why do we have dreams? Is dreaming essential for learning? Does
dreaming help in sorting information in the brain? Do dreams
have anything to do with our survival strategies or issues? Jonathan
Winson, a psychiatrist, suggested that all long-term memories
may be constructed through this off-line process during REM
sleep. During sleep, the hippocampus would process the day’s
events and store important information in the long-term mem-
ory. Winson suggested that the dream is an ordered processing of
memory, which interprets experience that is precious for survival.
Dreams are essential to learning. (Scaruffi, 1999).

l. Why is sleep so important for the function of the brain?
m. Why is there this unknown dark energy? Neuroscientists are puz-

zled by the additional energy required for the brain to perform
mental tasks, which is extremely small compared with the energy
that the brain expends as an individual who does nothing at all.
(Studies of brain activity are mostly from fMRI). Why does the
resting brain generate so much energy? (This is also known as
dark energy (Raichle, 2006).) Raichle proposed three possible
explanations for the brain’s dark energy:

i. People have random thoughts and daydreams when doing
nothing.

ii. Intrinsic activity might emerge from neural efforts to bal-
ance the opposing signals of cells simultaneously trying to
jack up and cool down brain activity.
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iii. Internal process of generating predictions about upcoming
environmental demands and how to respond to them. 

n. Why do some autistic people have special abilities in using their
brain? For example, Peek Kim claimed to be able to remember all
the facts he read and many others claim to have special artistic
skills such as illustrating city landscapes in great detail. 

6. Can we reverse engineer the brain using computational techniques?
To start with, the brain and the human body are not a computational
system per se. It is a biological and chemical system. We know some
aspect of how the brain works, but we may not know how to repro-
duce or model precisely and accurately the biological processes. And
we also cannot explain what goes on inside the brain and why certain
biological processes take place as desired.

Could we then reverse engineer to model the brain using com-
putational techniques? This is still a debatable issue. 

7. Difficulty in tracing the “wires” of the brain, its axons, and den-
drites. Seung’s lab/MIT in collaboration with Winfied Denk (Max
Planck Institute — Heidelberg), who invented a new technique
called serial block-face scanning electron microscopy. This auto-
mated technique claims to yield 3-D images of the brain at
nanoscale resolution. For more information, see http://hebb.mit.
edu/index.html.

8. The visual system has been most well studied, yet there still remain
some critical unsolved issues. These include:

a. Human LGN. Human LGN has six layers in the macular region,
which fuses into four in the periphery and leaves two in the
monocular zone. Occasionally, there is also an eight-layer area at
the edge of the four-layer segment (Hickey and Guillery, 1979).
The functional significance of this has not been investigated.

b. How does the brain analyze surface appearance, such as color,
texture, and gloss? These are important and critical for our every-
day tasks such as deciding whether a patch of pavement is icy,
whether a pancake is cooked, and whether a road is muddy before
stepping on it. (Professor Edward Adelson/MIT, his graduate
student Lavanya Sharan).
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c. Which are the neural mechanisms for detecting image skewness?
We know that in the retina and brain, there are cells that are
preferentially sensitive to either bright patterns or dark ones.
This will help scientists to develop better visual systems for
robots so that the robot can make better judgments based on
surface appearance.

9. Neocortical design issue. What are the transforming operations
imposed in a local region of the neocortex, a cortical column, upon
its input to produce several outputs? The essays included here provide
a cross-section of this large field, written by investigators using meth-
ods that include Golgi studies, slice recordings with multiple intra-
cellular microelectrodes and multiple microelectrode recordings in
the intact cortex; several include theoretical modeling. While no one
of these authors would venture to claim the problem is solved, their
contributions and those of others in the field indicate that significant
progress has been made in constructing an intra-columnar flow dia-
gram, and in understanding the dynamic neuronal operations within
it. (Mountcastle, 2003).

10. Prediction and estimation. We have amazing prediction and estima-
tion capabilities. If you close your eyes for a short duration, you will
still have the perception to move for a short distance or the ability to
point your finger to a person around you without much difficulty.
The brain’s ability to visualize and perceive in predicting and esti-
mating the physical world is another beautiful design that we have
not fully grasped. What is the mechanism behind this capability? That
is the ability to predict and estimate from static or moving occlusion
to a more natural scenario such as playing a game like tennis. In play-
ing tennis, you will notice that your arm and motion control are able
to move to the correct placement way before the ball returns to your
court. Our ability to constantly make prediction and estimation in
our motor movement and thinking process is still a wonder (Ooi,
He, Wu, 2001).

11. Brain flattening method. The surface of the human cerebral cortex is
a highly folded sheet with the majority of its surface area buried
within folds. As such, it is a difficult domain for computational as well
as visualization purposes. A number of studies on brain flattening
(Schwartz et al., 1989) (Wolfson and Schwartz, 1989) inflate it so

b654_Notes.qxd  2/13/2009  11:34 AM  Page 323



324 Brain-Mind Machinery

FA

that activity buried inside sulci may be visualized (Fischl et al., 1999)
and segmentation of the brain’s gray matter, white matter, skull dura,
pia, etc (Fischl et al., 2002). As said, reconstruction is a complex task
that requires the solution of a number of subtasks such as intensity
normalization, skull-stripping, filtering, segmentation and surface
deformation (Dale et al., 1999), and segmentation at sub-corti-
cal regions is a major problem and challenge.

12. Brain rhythms. We know that the brain generates the following
rhythms (list not complete):

a. Delta (1–3 Hz) deep sleep. If awakened, one acts groggy and
confused (observed in very deep sleep to the resting phase).

b. Theta (4–7 Hz) is observed in the learning and memory process.
In (O’Keefe and Recce, 1993), the spatial information is coded
at theta frequencies by clusters of neurons segmentally distrib-
uted along the longitudinal axis of the hippocampus) — in the
wakefulness stage.

c. Alpha (8–12 Hz) involves deep relaxation or just an awake and
drowsy state, often with the eyes closed. It is believed in alpha,
we begin to access the wealth of creativity that lies just below our
conscious awareness. Some believe it is the gateway to the entry-
point that leads into deeper states of consciousness. (A recent
study links it to modulating selective attention. Alpha power,
observed in highly trained animals, is modulated as a function of
cued attention and can show column-specific expression to sup-
press input from a “distractor” and can show a column-specific
expression to suppress input from distractor vibraissae.

d. Beta (12–30 Hz) is an alert, attentive, and thinking stage involv-
ing rapid firing, heightened alertness, and visual acuity. It may be
key to the act of cognition. Novelty (?) Long range?

e. Gamma (30–90 Hz) is an attentive state. It is present when we
are awake and paying attention. It is reduced during sleep and
disappears when we are totally unconscious, such as when under
anesthesia. These cognitive activities have been associated with
gamma (40 Hz in particular) — attention, memory, facial
recognition, REM sleep, and the comprehension of new con-
cepts. Gamma is thought to be important to binding (the
ability of the brain to combine all inputs (external or internal)
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into a single unified conscious experience) (from http://www.
mindupdate.com).

13. Brain rhythms. “There is a great deal of experimental evidence that
rhythms in the brain play a significant role in perception and cogni-
tion.” Mike Denham and Miles Whittington in Cognitive Systems
Project InterAction Conference (IAC, 2003). They indicated that
future computational architectures for cognitive systems will involve
spatially distributed, functionally-specialized information processing
regions, like those in the brain, and will similarly require mechanisms
for coordinating activity across these distributed processes. The syn-
chronization of rhythmic activity between distributed processes may
be a candidate mechanism to enable the efficient operation of such
architectures. Denham and Whittington also listed the following key
questions and emphasized the importance to understand the under-
lining mechanisms:

a. What are the neural mechanisms of rhythmic activity and syn-
chronisation, both locally and across widely distributed regions? 

b. Why the interplay between slow and fast brain rhythms? 
c. What are the roles of synchronisation over different frequency

bands?
d. How does the brain build a coherent perceptual account of a sen-

sory event in the case that the component features of the event are
processed asynchronously in widely distributed areas of the cortex? 

e. Is rhythmic activity fundamental to this process? 
f. Will future artificial sensory systems require similar mechanisms? 
g. Does rhythmic activity play a role in the organization, storage,

and retrieval of episodic memories, and if so, what role is it, e.g.
“chunking” of individual perceptual/cognitive experiences into a
complete “episode”?

h. Does this have any impact on the way information is composed
of sequences of events that might be stored/retrieved in future
artificial cognitive systems?

i. If future artificial cognitive systems employ “massively” distributed
asynchronous processing hardware architectures, will they face
the same problems as the brain in providing coherent behavior?
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j. Is rhythmic, synchronized activity in the brain dependent on intrin-
sic neural mechanisms or is it an “emergent” behavior of the brain
resulting from inherent self-organizing, adaptive processes?

k. If so, would we expect to observe it as an emergent feature of any
massively parallel, distributed self-organizing computational
architecture when it is required to deliver coherent behavior?

14. The neuron as a functional unit process input verses as an oscillator, res-
onating and modulating endogenous activity. Hebb said, “Cell that
fire together wired together”. If Cell A fires before Cell B fires, the
connection link is strengthened, and if Cell A fires after Cell B fires,
then the connection link is weakened. But this is not true if both Cell
A and Cell B are oscillators. (Reference to Nancy Kopell’s research
work, Math department, BU). Nancy Kopell and her research groups
in BU have shown several computational models based on neural
rhythms and oscillation to demonstrate how spiking in a neuronal
network can be brought about by the interaction between oscillating
excitatory cells and inhibitory cells (Borgers and Kopell, 2004), how
the cortical network supports attention (Borgers et al., 2005), and
how the gamma and theta oscillations are observed within the hip-
pocampus for learning and memory (Gloveli et al., 2005). For more
information, visit: http://math.bu.edu/people/nk/.

15. These are grey neuroscience areas but interesting to know:

a. Belief attribution. The representation of belief, thought, and any
internal states seem to be part of the RTPJ areas in the brain
(Saxe and Sch, 2003).

b. The motor cortex can also do a kind of thinking. Georgopoulos
of the University of Minnesota reported that the motor cortex
can help to recognize and remember the sequence of events in
time. Georgopoulos’s team found that neuronal activity in the
motor cortex can provide information about the direction of an
upcoming movement and can also serve as a memory for the spa-
tial locations of individual stimuli to which the animal was sup-
posed to move. This potentially means that the information
needed to perform complex cognitive tasks is distributed widely
in the brain (Wickelgren, 1999).
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Chapter 13
1. What is the limitation of the human brain? Listed below are some

possible limitations of the brain and how the computer can be used
to augment these limitations:

a. The number of synapses and neurons are more or less fixed in the
adult brain. The brain’s “computational power” is computed to
be around 100 teraflops and 100 terabytes (see Chapter 1). The
number of synapses and neurons do not continue to increase but
stay more or less constant throughout our life after the early
development period is over.

i. The computer can be used to store huge information that
may be useful in the future. (As storage is getting cheaper, do
we need to remove anything completely from memory? How
do we decide what to forget? Do computers dream? Does for-
getting involve removal from memory or does it make mem-
ories harder to find (foreground and background info,
removing links)?)

ii. Design devices that could help people with memory difficulty.

b. Memory and remembering issue. Our memory is not totally
accurate and subject to illusory or imaginary influence. Seeing a
protruded hollow face is an example of illusion that can fool us.
Our memories are also easily influenced by top-down informa-
tion (although top-down information does help us in a lot of
areas as explained in the earlier chapter). Our memory likes to
perceive and believe what we want to believe even at times when
it is at fault. As we grow older, we are in general also more “stub-
born” and harder to change. We start to have self-pride. And
depending on the type of cultural influence, we may have a cer-
tain attitude that makes our perceived information sometimes dif-
ficult to believe, even of ourself. In layman terms, we call it a
“decease” in our brain caused by fear, stubborn, etc. Why is this
so in the human brain?

c. We do not remember all the information that we see every day.
But we remember information that looks important to us and
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we pay attention to it. This is good as we do not unnecessarily
load our memory system. However, we may miss out essential
information.

d. Physical fatigue. Humans are physical beings and subject to
fatigue and stress. Machines would not have the fatigue.

e. Humans need to activate or exercise both the brain and body.
Without that we will die. But machines do not need this. 

f. Spatial updating. Spatial updating refers to the cognitive process
that computed the relationship between oneself and the entire
world changes. Experiments have shown that we update local
spatial relationships but do not update the global relationship.
However, if the participant automatically updated the local tar-
gets when they moved relative to the global environment (e.g.
relative to the campus), the global environment is updated, as
well as the local environment (Wang and Brockmole, 2003).

g. The human brain can only maintain a limited number of differ-
ent thoughts before it starts to get confused. 

h. Humans may have negative emotions such as depression.
i. Humans remove complexity by ignoring details. But if machines

have unlimited resources or more resources than humans
(beyond what humans can do), then they can still attend to more
things in the same time span.

j. Humans can be distracted, but machines may be designed to con-
sider all factors, e.g. machines can have four eyes (so even if there
is one distractor in one eye, the rest can still function normally).
(Still, a question of unlimited resources versus attention?)

k. Human intelligence can take time to build, but be very robust; a
baby takes two years to say the first word (if we were to build
intelligent machines, we cannot afford to wait for it to learn for
over 20 years before it amasses enough knowledge).

l. The brain does make mistakes. We experience that in our life.

2. Psychologists have long known that our memories are easily embel-
lished. We add imaginary details through wishful thinking or to make
a more logical story that sometimes is not the true story. 
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Chapter 14
1. Understanding the autistic mind. Interesting poems from Tito, an

autistic child, can be found in http://magma.nationalgeographic.
com/ngm/0503/feature1/online_extra.html.

2. It has been demonstrated that children with autism typically have
special difficulties in understanding the beliefs of others. This sug-
gests that they lacked the “theory of mind” (Williams et al., 2001).

3. The three laws of computers (or robots) (Picard, 1997):
a. A computer may not injure a human being, or through inaction,

allow a human being to come to harm.
b. A computer must obey the orders given it by human beings

except where such orders would conflict with the first law.
c. A computer must protect its own existence as long as such pro-

tection does not conflict with the first or second law.

— Reproduced from the “The Bicentennial Man” by Isaac Asimov.
His robots are subject to “The Three Laws of Robotics”, repro-
duced by Picard, except the word “robot” is replaced by the word
“computer”.

4. False belief test: The Sally-Ann test, which depicts the behavior of
two little girls, Sally and Ann. In the first frame, Sally places a doll in
her carriage. When she leaves the room, Ann takes the doll and places
it in her box. In a moment, Sally will return to the room. Now, please
answer the following three questions:

Where is the doll?
Where did Sally put the doll?
Where will Sally look for the doll?

Sally will look for the doll in her carriage because that is where she
mistakenly believes it is; a child of three, however, will answer that
Sally will look in the box because that is where the doll actually is.
However, the test isn’t about location of the doll, but about what
Sally is likely to believe in regard to its location. Three year olds fail
the test because, in order to come up with the correct answer, they
have to mentally put themselves in Sally’s place, and they cannot yet
do that.
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Neuroscientists use the Sally-Ann test and other false-belief
(FB) tests to evaluate one person’s ability to attribute mental states
to another person. This is a gradually developing process that
occurs unevenly within the population. By age six to seven, the vast
majority of us are able to pass much more challenging FB tests by
entering into another person’s mind by proxy and making an accu-
rate approximation of how that person is thinking or feeling under
particular circumstances. It has been observed under neuroimaging
that children aged six to seven years old have used the cortical
regions such as the bilateral temporo-parietal junction (TPJ), pos-
terior cingulate, and medial prefrontal cortex, which are responsi-
ble for TOM. In adults, the right TPJ is recruited selectively when
subjects read about a character’s thoughts, but not other facts
about a person. Developmental change in response selectivity was
observed in just this one region: the right TPJ was recruited
equally for any information about people in younger children, but
only for descriptions of mental states in older children (Saxe and
Wexler, 2005).

5. Mind opening questions. Here I would like to discuss some mind
opening questions (or to some people it could be “mind boring”
questions).

a. Why are we 99.9% genetically identical (Collins, 2006; all
human kind have a surprisingly low level of genetic diversity
compared with other species) but yet also so different and
unique in many ways? Even a twin is different. We (human
beings) look so much alike in many areas, but yet we are still so
different as an individual. For example, our fingerprints are all
different, and our eye retina patterns are all different. There is
no known identical copy. 

b. Why do the atoms and molecules hold together? What is this
force that holds them together? What holds our body together? I
mean, why does such a force exist in the first place? If that force
is released, we will all be disintegrated and vaporized. Imagine, if
the gravitational force disappears from Earth, we will suddenly be
floating away from Earth into space.

c. Why do we have an inborn moral law in us? Irrespective of any
race and place you are born, you can from birth distinguish
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what is right and wrong. Children do not need to be taught;
they immediately can distinguish what is right and what is
wrong in behavior. More surprising, most parents will know
that little kids do not need to be taught to do wrong things and
behave badly. 

d. Why do we have so many distinct languages? For example,
there are striking differences between Russian, Chinese, and
Indian languages, even though the people who speak these lan-
guages are geographic neighbors and have pretty much the
same brain.
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