
T E C H N O L O G Y I N A C T I O N ™

Build Your Own
Car Dashboard
with a Raspberry Pi

Practical Projects to Build Your
Own Smart Car
—
Joseph Coburn

Build Your Own Car
Dashboard with a

Raspberry Pi
Practical Projects to Build Your

Own Smart Car

Joseph Coburn

Build Your Own Car Dashboard with a Raspberry Pi: Practical Projects to

Build Your Own Smart Car

ISBN-13 (pbk): 978-1-4842-6079-1 ISBN-13 (electronic): 978-1-4842-6080-7
https://doi.org/10.1007/978-1-4842-6080-7

Copyright © 2020 by Joseph Coburn

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6079-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joseph Coburn
Alford, UK

https://doi.org/10.1007/978-1-4842-6080-7

I’d like to dedicate this entire book to the Raspberry
Pi Foundation and the Pallets team. Without the Pi
Foundation, there would be no Raspberry Pi at all,

and their continued hard work to ensure that computer
science is not forgotten in UK schools is something we

should all strive to emulate. The Pallets team developed
Flask, which is the Python framework upon which this

whole book is based. Not only that, but Pallets developed
many more incredibly useful Python packages, including

Flask- SQLAlchemy, Click, ItsDangerous, and more.
These free tools make it easy to spin up an entire Python
application, and the team works tirelessly to maintain

their projects to a very high standard.

v

Table of Contents

Chapter 1: Raspberry Pi History ���1

A Brief History of Pi ���1

Raspberry Pi 1 ���4

Raspberry Pi 2 ���5

Raspberry Pi Zero ��6

Raspberry Pi 3 ���7

Raspberry Pi 4 ���8

Pi Cameras ��10

Chapter Summary ���11

Chapter 2: Software Development Primer ��13

Types of Programming Languages ��14

Data Types ���17

Python 2 vs� Python 3 ���18

Object-Oriented Programming (OOP) ��19

Classes ��20

Inheritance ��21

Encapsulation ��21

About the Author ���xi

About the Technical Reviewer ���xiii

Preface ���xv

Introduction ��xvii

vi

Polymorphism ��24

Design Patterns ���26

SOLID Principles ��28

Event-Driven Programming ���31

Defensive Programming��33

1992 London Ambulance Service Computer- Aided
Ambulance-Dispatch System ��34

Testing���37

Therac-25 Radiation Therapy Machine ��38

Test-Driven Development (TDD)���44

Debugging ���45

Rubber Duck Debugging ��46

Logging ��47

Breakpoints ���48

Version Control with Git ��49

Deployments ���51

Chapter Summary ���54

Chapter 3: Project Overview ���55

Project Structure ���56

The Hardware ��58

Electronic Components ��60

Equipment List ��63

Chapter Summary ���64

Chapter 4: Local Development Configuration �������������������������������������65

Getting Started with Python ��67

Git and GitHub Repository Configuration ���74

Integrated Development Environment Setup ��81

Table of ConTenTsTable of ConTenTs

vii

Python Virtual Environment Configuration ��87

Git Workflow ��92

Pull Requests ��98

Repository Rules ���103

Pipeline Configuration ���107

Git Cheat Sheet ���117

Chapter Summary ���118

Chapter 5: Raspberry Pi Initial Configuration �����������������������������������119

Install an Operating System on Your Memory Card ���120

Boot the Pi for the First Time ��126

Configure SSH ���130

Pi Python Setup ���134

Cloning the Repository ��136

Keeping Code Updated ��139

Chapter Summary ���141

Chapter 6: Getting Started with Flask ��143

First Flask Config ��144

Running Flask on the Pi ��161

Autostart Flask When the Pi Boots ��167

Chapter Summary ���170

Chapter 7: Temperature Monitoring ��171

Hardware Configuration ��171

Pi Configuration���177

Flask Temperature Sensor Logic ���177

Chapter Summary ���186

Table of ConTenTsTable of ConTenTs

viii

Chapter 8: Boot Sensor ���187

Hardware Configuration ��187

Flask Boot Sensor Logic��190

First Unit Tests ��196

Chapter Summary ���206

Chapter 9: Light Sensor ��207

Hardware Configuration ��207

Test-Driven Development Light Sensor Tests ��209

Flask Light Sensor Logic ���213

Chapter Summary ���217

Chapter 10: Fog and Reverse Sensors ��219

Hardware Configuration ��219

Fog and Reverse Sensors Logic ��223

Chapter Summary ���228

Chapter 11: Reversing Camera ���231

Camera Connection ���232

Pi Camera First Time Configuration ��235

Camera Live Stream Configuration ���237

Pi Camera Focus Adjustment ��241

Camera Flask Code ���243

Chapter Summary ���247

Chapter 12: Reversing Beeper ��249

Piezo Connection ��249

Piezo Flask Logic ��251

Chapter Summary ���255

Table of ConTenTsTable of ConTenTs

ix

Chapter 13: Distance Sensor ��257

Distance Sensor Theory ��257

Distance Sensor Hardware ���258

Distance Sensor Flask Code ���261

Chapter Summary ���263

Chapter 14: System Polishing ���265

Basic Dashboard Layout ���266

Autoload the Pi’s Web Browser ���279

Show Sensor Data ���282

Reversing Module Completion ��285

Final Pi Improvements ��292

Index ���297

Table of ConTenTsTable of ConTenTs

xi

About the Author

Joseph Coburn is an experienced computer science teacher, writer,

editor, and software developer. His work has been shared by Adobe,

Lifehacker, and the Arduino Foundation. His code is used by thousands

of people daily. And he is well versed with designing, implementing, and

troubleshooting complex software systems.

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years

of experiences in security, web/mobile

development, cloud, and IT architecture. His

true IT passions are security and Android.

He has been programming and teaching

how to program with Android, Perl, PHP, Java,

VB, Python, C/C++, and MySQL for more than

20 years.

He holds a Master of Science degree in

Computing Science from the University of

Salerno, Italy.

He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager, PCI/

SCADA auditor, and senior lead IT security/cloud/SCADA architect for

many years.

xv

Preface

Back in July of 2018 I wrote an article for MakeUseOf titled “How to Add

Smart Features to Your Old Car with These 10 DIY Projects.” It was a fairly

standard article for us at the time; a list of ten cool car projects using

the Raspberry Pi and links to the tutorials and YouTube videos – a fairly

normal article of 1000 words or thereabouts. I don’t remember anything

special about this article, and my editor requested no changes at the time

of submission – which was great to hear. I’d written several Pi articles at

the time, along with several Python tutorials, but my main focus was on

product reviews. At that time, I’d just started a partnership with BenQ,

and published several fun reviews on their 4K projectors and LCD gaming

monitors.

Toward the end of June 2019, Aaron Black (senior editor at Apress)

reached out to me regarding the article and enquired as to my interest

in writing a book on the Raspberry Pi. Up until that point, I hadn’t, but I

remember thinking “is that all it takes to kick off the process?” I followed

up on Aaron’s email, and after some correspondence and a pitch, I signed

the contract to deliver this book in nine months. I certainly learned a lot

writing this book, and it’s my hope that you will learn a lot by reading it.

While I had a clear structure of the book layout and managed to write

the first 12,000 words within a week in August, it was certainly a huge effort

that took many writing sessions, head-scratching coding sessions, and

self-editing sessions locked away in my office. You sometimes wonder if

it’s worth it at all, but having finished the book now as I write this preface,

I can say unequivocally “yes.”

xvi

With several hundred articles under my belt with both MakeUseOf

and Blocks Decoded publications, I was well practiced in juggling multiple

jobs, pitches, authors, and editors, yet a minimum of 55,000 words seemed

far more achievable in theory. In practice, it felt like the final 10% took

90% more effort than the first 90%. It seems the software development

aphorism the ninety-ninety rule holds true for books just as much as

software development. “The first 90 percent of the code accounts for the

first 90 percent of the development time. The remaining 10 percent of the

code accounts for the other 90 percent of the development time” – Tom

Cargill.

PrefaCePrefaCe

xvii

Introduction

The modern computer is a revolutionary device. In less than 100 years,

society has changed, with computers running almost every aspect of our

lives. The mobile phone is a futuristic science fiction–like gadget, with

instant access to almost all the information ever created. We live in an

unparalleled age of technology, one in which you can book a train, video-

chat with friends, or earn money from the comfort of your own home.

In 1957, computers were the size of a bus, with each component

requiring a team of people and a crane to unload. Now 63 years later, the

Raspberry Pi can fit into your pocket and costs less than a takeaway. In

November 2015, the Raspberry Pi Zero launched for a price of $5, and a

promotional campaign saw it attached to the front of a magazine.

Few could have predicted the enduring popularity of the Raspberry Pi.

With over 25 million units sold and no end in sight, it’s safe to say that the

humble Pi has become legendary. Its low barrier to entry helped spawn a

new industry. Now in its fifth generation, the Pi has been to the International

Space Station in low Earth orbit. Pis can control home lighting, 3D printers,

drones, security systems, arcade machines, and many more projects.

This book will teach you how to use the Raspberry Pi and the Python

programming language through a practical car-based project. Not only

will you learn how to build your own hardware connected to the Pi, but

you’ll learn how to write software and the industry-standard best practices

which keep your software running smoothly. These will keep you safe as a

software developer. This book may not be like others you read. I want you

to question everything. It’s hoped you will learn how the circuits work, and

why the code looks like it does, instead of copying the code and hoping for

the best. By doing this, you’ll gain a solid foundation in both the Raspberry

Pi and software development.

xviii

Throughout this book, I encourage you to hand-type every line of

code. It will be tedious, and the temptation to grab the code from GitHub

and paste it into your work will always be present. I promise you that by

really understanding every line, and each and every word by reading,

understanding, and typing it yourself, you’ll become a better programmer.

I’m a big fan of simple code – and hopefully the projects contained in

this book are manageable. Each project starts small and then builds

in complexity as your confidence grows – each chapter expanding on

concepts learned in the previous chapter.

Remember – code is for you (or other developers) to read and

understand. Computers will interpret almost any valid code, no matter

how complex, slow, inefficient, or hard to read. Other developers

understanding the code are far more valuable than a clever solution which

is convoluted, or confusing to get your head into.

My hope is that you’ll complete this book and know how to program.

Not knowing how to write Python code, or use the Raspberry Pi, rather

you have the skills to quickly pick up (almost) any programming language.

The skill of problem solving is an integral part of software development,

and code is the medium through which we as developers can express our

solutions.

All you need to build these projects yourself is a little equipment, and a

desire to learn more. A constant burning question of why and an insatiable

appetite for answers are more powerful than any number of degrees or

years of experience. In my career as a software developer, I’m fortunate

enough to occasionally have the need to interview developers for midlevel

to senior developer positions. I’d rather employ someone who has a

willingness to learn and a desire to better themselves than someone who

can code the pants off a donkey, but is stuck in their ways, or even worse,

unable to acknowledge the fact that they don’t know everything.

I’ll guide you through the process of developing software and hardware

for the Raspberry Pi, but that doesn’t mean the solutions presented here

are the best. By the time you read this (given the rapidly advancing nature

InTroduCTIonInTroduCTIon

xix

of technology), some of these techniques may have fallen out of favor. New

technologies may exist, or better techniques and algorithms arrive to make

your job easier. Bring it on I say! The day you stop learning as a developer

is the day you stop growing.

If you think there’s a better way to solve some of the problems in this

book, or you just want to say “hi,” then drop me a line on GitHub, or even

better, open a pull request and start a discussion in this project’s repo at

https://github.com/CoburnJoe/Pi-Car. I’ll maintain a branch which

mostly matches the code in this book, but I’m more than willing to open

this project to the open source community.

Last of all, remember to have fun. Coding should be fun, and nothing

compares to that feeling of elation after fixing a bug or getting something

working. On more than one occasion, I’ve spent days diagnosing or

troubleshooting systems, only to find a missing comma, semicolon, or

bracket. It’s such a good feeling that I’d happily continue to track bugs

down over weeks or months if the need arises.

InTroduCTIonInTroduCTIon

https://github.com/CoburnJoe/Pi-Car

1© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_1

CHAPTER 1

Raspberry Pi History
Chapter goal: Learn about the main Raspberry Pi
boards and their (brief) history. Understand the key
differences between different Pi models, and why
certain features were introduced.

First introduced in 2012, the Raspberry Pi has seen five major version

releases across 13 form factors. Dozens of derivatives and knockoff clones

exist, and a huge number of different modules, accessories, cases, and

projects exist to help you use the ultimate tech tool. I’ve personally used

Raspberry Pis to build business operation dashboards and display real-

time server statistics and for face recognition and identification with

OpenCV, retro gaming stations with RetroPie, video streaming, CI/CD

deployment servers, and much more. Their small form factor, cheap price,

and modest energy consumption features lend themselves perfectly to

these kinds of projects – and many more besides.

 A Brief History of Pi
The idea for the Raspberry Pi came about after computer scientist Eben

Upton grew concerned that college students lacked the necessary skills to

work with computer hardware, instead focusing on software and online

interactions. While working for the University of Cambridge, UK, in 2006,

https://doi.org/10.1007/978-1-4842-6080-7_1#DOI

2

Eben along with colleagues Rob Mullins, Jack Lang, and Alan Mycroft

developed a hand-soldered prototype which was a far cry from today’s

credit card–sized computers. It wasn’t until February 2012 that Eben et al.

managed to release the affordable yet powerful computer we know and love.

The Pi was developed with support from Broadcom, who designed

and developed the SoC (system on a chip) processor used to power the

Pi. Almost everything the Pi needs to work is built in to the system. The

memory, GPU, CPU, I/O, and more are soldered into place. It’s not possible

to upgrade the Pi’s components, but with regular new releases increasing

the Pi’s power and usefulness, and a sale price of less than $50, few can

complain about planned obsolescence.

Originally marketed with modest sales expectations, the Pi took the

world by surprise, eventually going on to sell more than 30 million units.

As a computer science student at the University of Lincoln, UK, I (along

with all the other students on my course) was gifted a first-generation Pi by

the university, with no expectation or pressure to use it and no mandatory

modules requiring ownership of one. Perhaps it was hoped the Pi would

spark a revolution in computer hardware design, or more likely my

university wanted to support a cool project. The Pi has since become the

best-selling UK computer of all time.

Figure 1-1. Raspberry Pis, from left to right: Pi 1, Pi 2, Pi Zero, Pi 3, Pi 4

Chapter 1 raspberry pi history

3

While there have been five main models of Pi release thus far (shown

in Figure 1-1), each series saw several variations and minor specification

changes – either as a midlife refresh or at launch. This allows the Pi to cater

to a huge number of budgets, users, and projects. Models such as the Pi

Zero are tiny, while the Pi 4 comes in three variants, each one with more

RAM (and a larger price) than the previous model.

This huge flexibility helps to keep the Pi affordable, while offering

higher-end features for those with the larger budgets. Note that lacking

the funds to purchase a “faster” Pi doesn’t exclude someone from the best

experience – most Pis retained the same processor and basic specifications

across models, meaning the incremental upgrades are limited to changes

such as total memory, I/O ports, and other small improvements. The

Raspberry Pi has never seen an Apple style price gouge, instead opting

to keep the Pi affordable. Figure 1-2 shows the Pi 4, with USB power, USB

devices, and HDMI cables connected.

Figure 1-2. Raspberry Pi 4 wired up

Chapter 1 raspberry pi history

4

Today, the Pi is managed by two organizations. The Raspberry Pi

Foundation is a charity that exists to promote the study of computer

science in education. It’s a registered charity, with a board of trustees.

It’s supported both by Broadcom and the University of Cambridge,

UK. After the initial success of the Pi, a limited company called Raspberry

Pi (Trading) LTD was created to handle the research, development, and

production of all future Pis. Eben Upton is still a key driving force in both

organizations today.

 Raspberry Pi 1
The original Raspberry Pi was introduced in 2012 as the Pi 1 Model B

(Figure 1-3). It measured 3.37 x 2.22 inches and cost $35. It didn’t have

wireless networking built in, but it has one USB 2.0 port, an Ethernet port,

an analog video out, 3.5mm audio out, and a full-size HDMI port. Powered

by MicroUSB, this Pi has 26 GPIO (general-purpose input/output) pins for

interfacing with the real world, the now standard CSI camera connection,

and a DSI interface, to connect LCD displays to (in addition to the HDMI

port).

Chapter 1 raspberry pi history

5

The Model B is powered by a single-core Broadcom BCM2835 SoC

processor running at 700MHz, with 256MB of RAM (shared with the GPU).

The Pi 1 Model A arrived in 2013, which removed the Ethernet port. By

2014, the Model 1 A+ and B+ arrived, with a modest bump up to 512MB

of RAM, a slightly lower price, and a doubling to two USB 2.0 ports, along

with several miscellaneous component changes. The B+ increased the

GPIO layout to the now standard 40 pins.

 Raspberry Pi 2
After three years, the Raspberry Pi 2 arrived in February 2015 (Figure 1-4).

Boasting four USB 2.0 ports, a slight reshuffle of the layout, and dropping

the component video out, this model is the simplest in the range, simply

sold as Pi 2 Model B. While there is still no support for Wi-Fi, this model

quadrupled the power with a quad-core Broadcom BCM2836 SoC running

Figure 1-3. Raspberry Pi 1

Chapter 1 raspberry pi history

6

at 900MHz, and another doubling of the RAM to 1GB. The form factor

remained unchanged. This model was a significant step-up on the now

slow and clunky Pi 1, yet kept the same $35 price.

 Raspberry Pi Zero
In November 2015, the Pi Zero arrived and once again revolutionized the

market (shown in Figure 1-5). This dropped the price to $10 per unit and

drastically reduced the size to a new form factor measuring 2.59 x 1.20

inches. This model switched back to the BCM2835 SoC from the Pi 1 along

with 512MB of RAM. The processor came pre-overclocked to 1GHz. This Pi

saw minor I/O changes to accommodate the smaller form factor. You had

to solder the GPIO header yourself, and mini HDMI and micro-USB ports

kept the size small.

The revolutionary device was given away for free on the cover of The

MagPi magazine – another first for the Pi Foundation. I remember the

Figure 1-4. Raspberry Pi 2

Chapter 1 raspberry pi history

7

launch day well, as it was a complete surprise to everyone. I managed to

get a copy of the magazine and a Pi Zero on launch day, but only by pure

chance. My then boss got a tip off to go buy The MagPi before work and he

bought one for me – there were only two left on the shelf!

In February 2017, the Pi Zero was updated to include Wi-Fi and sold

as the Pi Zero W. Since release, various combinations of Wi-Fi and pre-

soldered headers arrived, offering you total flexibility in your style of

pocket computer.

 Raspberry Pi 3
The Pi 3 Model B launched in 2016 (Figure 1-6) saw a return to the

“traditional” credit card–sized form factor. By now, the layout has

stabilized with 40-pin GPIO, Ethernet, and 4x USB 2.0 ports as standard.

The Pi 3 used a BCM2837 quad-core processor running at 900MHz, with

Figure 1-5. Raspberry Pi Zero

Chapter 1 raspberry pi history

8

1GB of DDR2 RAM. For this first time, the Pi featured a built-in Wi-Fi

receiver and a gigabit Ethernet port. This was the first model to support a

64-bit architecture.

The Pi 3 A+ and B+ arrived in 2018, once again bringing with them the

standard removal of Ethernet, and minor spec shuffling. These models saw

a slight processor change to the BCM2837B0 quad-core chip, running at

1.4GHz – a worthwhile upgrade for those craving speed.

 Raspberry Pi 4
The Pi 4 Model B (Figure 1-7) is surprisingly consistent so far. Granted, it only

arrived in June 2019, so it’s yet to see a minor spec bump and A+/B+ release.

The Pi 4 upgraded two of the USB ports to USB 3.0 and provided two mini

HDMI outputs, capable of driving 4K displays. It sports a 1.5GHz SoC in the

form of the BCM2711. Three variations of the Pi 4 are available, with 1GB, 2GB,

and 4GB of RAM – for an increased price of $34, $45, and $55, respectively.

Figure 1-6. Raspberry Pi 3

Chapter 1 raspberry pi history

9

Fi
gu

re
 1

-7
.

R
as

pb
er

ry
 P

i 4

Chapter 1 raspberry pi history

10

The Pi 4 builds upon the vast Pi heritage curated over eight years

of production, and many more of development. The Pi 4 is seriously

powerful, and it starts to dwarf the earlier models – especially the Pi 1

Model B. Be it video encoding, building files from source, and any other

intensive task, the Pi 4 significantly speeds up the job. The king is dead,

long live the king!

 Pi Cameras
Every model of the Pi (with the exception of the Zero) features a camera

serial interface, or CSI port. This allows the connection of the Pi Camera –

which you’ll use in the completion of the car project in this book.

The original Pi camera launched in May 2013. It measures 1 x 0.78

inches, with a flat ribbon cable, which connected to the CSI port. Priced

at roughly $20, the camera was expensive when compared to the Pi itself,

but it did (and still does) provide a fascinating insight into computer

vision and image processing. Capable of a maximum resolution of 5MP for

photos, or 1080p video at 30 frames per second, it was “good enough” for

most projects.

It was shortly followed by the Pi NoIR camera – an infrared variant

designed for night vision with IR lighting.

Chapter 1 raspberry pi history

11

Figure 1-8. Raspberry Pi Camera V2.1

By 2016, the successor to the Pi camera arrived in the Pi Camera

V2 (Figure 1-8) – with the same dimensions and connection, but a

significantly better 8MP sensor. The V2 camera was a huge upgrade in

quality. A V2 NoIR version followed shortly after.

In 2020, a $50, 12MP model was announced, with support for

interchangeable lenses. This modern lens mount will let you connect

DSLR lenses – some of which cost several hundreds or thousands of dollars

more than the sensor itself!

 Chapter Summary
In this chapter, you learned about the five main Raspberry Pi boards,

along with the Pi camera, and the history behind the Pi and the Pi

Foundation. You learned about the various different form factors and

Chapter 1 raspberry pi history

12

revisions of the Pi itself, and the different CPU and I/O configurations,

along with the pricing model and publicity stunts (such as giving away

the Pi Zero on the cover of The MagPi magazine).

The next chapter is a software development primer. In it, you’ll learn

some basic computer science theory, along with some historical case

studies. You’ll gain an understanding of how software works, and how you

can use the lessons from history to make your code better.

Chapter 1 raspberry pi history

13© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_2

CHAPTER 2

Software Development
Primer
Chapter goal: Learn some of the fundamental computer
science terms, techniques, and best practices. Learn a
brief history of Python, and read case studies to
understand how to improve software.

This book covers a multitude of software development tools, techniques,

and best practices. The aim of this chapter is to upskill you on the core

fundamentals necessary to follow along with the projects. While anyone

can write code, it takes skill to write software.

Do you ever get frustrated by a software package that crashes every

time you use it? Or what about a magical button that crashes every time

you press it? All software has to run under a huge variety of conditions. The

operating system, installed drivers, hardware, accessories, other software,

and many more conditions make it impossible to test every different

computer configuration.

By employing industry-standard best practices for software

development, it’s possible to develop applications and tools that are

resilient to an unexpected error or condition. While it may not always be

possible to carry on normal operation if a critical error happens, you’d

https://doi.org/10.1007/978-1-4842-6080-7_2#ESM

14

hope that the software in question will not crash when it gets unexpected

data or a strange and unusual operating environment.

By writing automated tests for your code, you can be confident that

each component is working both as an individual module and in the

context of the system as a whole. Version control tools help keep your code

organized and backed up, and object-oriented programming ensures you

don’t waste time writing the same code over and over again.

• While these primers are necessary for you to

understand the why behind the code explained in the

later chapters, I hope that you, the reader, will learn

these principles and apply them to other projects

you work on. Whether it’s a remote-controlled robot,

desktop software package, or even a spreadsheet

macro, almost any project benefits from “software

hardening” and defensive programming.

 Types of Programming Languages
When working with programming languages, you may have heard the

terms “static” and “dynamic.” These terms refer to the type checking.

Before digging into type checking, it’s necessary to understand interpreting

and compiling.

Compiled languages need converting into machine code through a

process called “compiling.” This makes them very fast to run, as all the

instructions have been “figured out” before the application runs at all.

You don’t need any expensive or hard-to-find tools to compile your code,

as the compiler is a core part of the language. Any syntax errors or invalid

code will not compile, reducing (but not eliminating) the possibility of

bugs getting introduced to your system. Examples of compiled languages

include C++ (https://isocpp.org/), Rust (www.rust-lang.org/), Go

(https://golang.org/), and Java (www.java.com/).

Chapter 2 Software Development primer

https://isocpp.org/
http://www.rust-lang.org/
https://golang.org/
http://www.java.com/

15

Here’s a basic “Hello, World” application in C++:

#include <iostream>

int main() {

 std::cout << "Hello, World!";

 return 0;

}

Here’s the same application in Java:

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, World");

 }

}

Notice how both applications use a “main” function. This is required

as a starting point – when executed, the language interpreter looks for a

function called main as the place to start running the code. Notice how

both languages specify a data type. The C++ example returns an integer

status code, whereas the Java example uses considerably more words to

state that its main function does not return any value.

The alternative to compiled languages is interpreted languages. These

do not need compiling, as their instructions get followed line by line as they

execute. Sometimes they get compiled on-demand through just- in- time

compilation. Interpreted languages can be slower to run than compiled

languages, but they offer smaller file sizes and dynamic typing, and can

be quite fast to write. Interpreted languages include PHP (www.php.net/),

Python (www.python.org/), and Ruby (www.ruby-lang.org/en/).

Here’s “Hello, World” in PHP:

echo "Hello World!";

Chapter 2 Software Development primer

http://www.php.net/
http://www.python.org/
http://www.ruby-lang.org/en/

16

The Python example is almost exactly the same, replacing “echo” with

“print”:

print("Hello, World!")

These interpreted language examples are considerably less wordy

than the compiled language examples earlier. Python does have a “main”

function, but it’s not always required. PHP does not have one at all. Don’t

be misled; however, as while some interpreted languages are quicker to

write, they can be much slower to execute than compiled languages.

Back to type checking, in some languages, if you tell the code you want

to store an integer, it’s not possible to store a string in that same variable.

Programming languages reserve space in memory to store your data. If

you change that data, it may not have enough room to store the new data.

Sure, you could reserve more memory, but the simplest thing to do is raise

an error, and let you, the programmer, fix the problem. All languages check

the type of data, whether you know about it or not. Not all languages will

even raise an error, however.

Statically typed languages need you to specify the data type of all

your variables. They won’t work without doing so and will crash if you

try to store the wrong data in your variables. Examples of statically typed

languages include C++ (https://isocpp.org/), C# (https://docs.

microsoft.com/en-us/dotnet/csharp/), and Java (www.java.com/).

Dynamically typed languages are the alternative to statically typed

languages. With dynamic typing, the types of your variables get checked

at runtime. The disadvantage here is that you have to run your program to

find the error. Dynamically typed languages include PHP (www.php.net/),

Python (www.python.org/), and Ruby (www.ruby-lang.org/en/).

Note interpreted languages often use dynamic typing, and
statically typed languages are often compiled. it’s possible to have a
dynamically typed compiled language, but they are not very common.

Chapter 2 Software Development primer

https://isocpp.org/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
http://www.java.com/
http://www.php.net/
http://www.python.org/
http://www.ruby-lang.org/en/

17

Python uses a simpler attitude toward type checking. Python uses

“duck typing.” This is like dynamic typing, but with one big difference. Duck

typing does not care how you use your objects, providing the operation,

command, or attribute is valid for that object. You can mix up your strings

and integers all you like, and it will only become a problem once you

attempt to perform string-specific operations on integers, or vice versa.

 Data Types
Understanding data types is crucial to programming in any language.

You can write code without understanding them (and as you gain more

experience you’ll begin to understand them more), but knowing why

they exist and which ones to use is a fundamental basic step to learning

to program. Everything you store (even in volatile memory such as RAM)

is specific by your programming language. Even if you don’t explicitly

specify a data type, somewhere along the chain, a software tool or package

will reserve sufficient space in memory to store a specific piece of data. It

doesn’t make sense to always reserve as much memory as possible, in case

you want to store really big data (even if you only want to store tiny data),

so specifying a data type helps your computer to save memory and perform

its tasks faster. Data types underpin everything your computer and software

applications do, so having a basic understanding of them is crucial.

Data types let you tell the code how you intend to store a piece of

data. This allows type checking (discussed in “Types of Programming

Languages”). This also lets the code know what operations you can

perform on your variables. For example, you can’t divide “potato” by five,

but you can add five to six. Some popular basic data types are

• Integer

• Boolean

• String

Chapter 2 Software Development primer

18

Integers let you store whole numbers (1, 5, 451, etc.), Booleans are

true or false, and strings store words or single characters (“hello”, “apples”,

etc.), including numbers. There are many more data types such as signed

and unsigned integers (unsigned ints store positive numbers and zero),

complex objects, floats, and decimals (for storing really precise numbers),

along with abstract data types. I cover more of these as you need to know

them later on in the project chapters.

 Python 2 vs. Python 3
In February 1991, Guido van Rossum (https://twitter.com/gvanrossum)

released Python 0.9.0 to the wild. Known as the benevolent dictator for

life, Guido took Python from nothing to the powerful tool it is today. Once

Python version 2.0 came out in October 2000, Python’s community and

popularity soared. For a large percentage of Python’s life, Python version

2.x was the only choice if you wanted to code in Python. It had its flaws but

it did a good job at the time. Many minor version releases added powerful

new features, and Python’s popularity went from strength to strength.

Fact “Benevolent dictator for life” (BDfl) is a title sometimes given
to leaders of open source software projects. this is often the project
founders who have the final say in any disagreement. Guido was the
first benevolent dictator for life of any software project in 1995! Guido
retained the BDfl moniker until July 2018, when he resigned the title
stating, “i’m tired, and need a very long break.” there are no plans
for a successor to the throne.

December 2008 saw the release of a new major version 3.0. This

version altered how the language worked and meant code written in

Python 3.0 was not compatible with code written in Python 2.0. This

Chapter 2 Software Development primer

https://twitter.com/gvanrossum

19

change aimed to fix major design flaws with Python, guided by the

overarching mantra “reduce feature duplication by removing old ways of

doing things.”

Due to these breaking changes, it wasn’t until Python version 3.6

released in December 2016 that developers finally started jumping ship

from the old version to the shiny new version. One of the reasons for such a

slow adoption rate is that it takes a long time to write software, and having

to rewrite that software in a similar but different language isn’t always an

easy or quick task to do. The other reason is that the 3.6 release introduced

enough desirable features to make upgrading worthwhile, and even fun.

Python versions 2.6 and 2.7 released in parallel with the newer

versions, and these “old” versions introduced several changes to

encourage users to upgrade. These included warnings about deprecated

features, along with several “taster” features. Several features added in

Python 3.1 were also released in 2.6 and 2.7 as a way to help developers

still on Python 2. Python 2.7 support existed until 2020, but as of November

2014, users are heavily encouraged to use Python 3.

It’s foolish to begin any new Python project in Python 2, and as Python

version 3.7 introduces significant memory management and speed

improvements (alongside all the other Python 3 improvements), all the

code and examples in this book are written in Python 3.

 Object-Oriented Programming (OOP)
Object-oriented programming is a paradigm based around objects and

data. By creating common blocks of code, you can share data around,

reduce code duplication, and keep your code neat and tidy. This makes it

easier to use, easier to troubleshoot, and easier to test. Not all languages

follow all “the rules” of OOP, and Python is notorious for its laid-back

approach to enforcing the rules and how it implements certain features.

Python has a saying “we are all consenting adults.” In the context of

Chapter 2 Software Development primer

20

Python, this means it won’t stop you from doing bad things or breaking the

rules, trusting that you understand the consequences if it all goes wrong.

When a language is said to be OOP, that doesn’t mean it abandons

its feature set. OOP languages still use variables, loops, and many of the

other features you may expect from the language. OOP languages provide

features and tools to work with objects. This may be support for classes,

functions, inheritance, and more. Python is mostly a pure OO language, as

it treats everything as an object.

 Classes
Classes are one of the core building blocks of OOP. Classes are containers

that store information. They have attributes, which are often variables

that store data. They also have functions (sometimes called subroutines

or methods), which perform a specific task. Classes are like a recipe. They

are a set of instructions to complete a specific task. For a cake recipe, the

attributes could be the quantity of each ingredient or the total baking time.

The functions could be helpful utilities such as mixing or baking.

Classes are a template (the recipe), but they don’t do anything on their

own. For a class to be useful, it needs to be instantiated. This creates an

object based on the template. Objects that get instantiated from a class are

instances. They are individual instances of a class.

For the cake recipe, the objects are the finished cakes. This could be a

blueberry cake or a chocolate cake. Each cake is its own entity (object), but

both are based on the original recipe (class). Both of these cakes followed

the instructions in the recipe but turned out differently. These objects

started in the same class, but are not tied to each other at all. You can cook

them independently, change the ingredients or the quantity, or delete one

or both cakes – either by eating them or throwing them in the bin!

Everything in the core library for a programming language is a class.

Even if you’ve never written a class before, you’ve used them. In Python,

the for loop is its own class, as is the print function, or the string type.

Chapter 2 Software Development primer

21

 Inheritance
Inheritance is a way of creating a new type of class based on some other

class. Looking at the previous cake example, you have a cake recipe class.

This is good for making cakes, but what if you wanted to make muffins?

Muffins are a type of cake, but does the cake class need muffin-specific

tooling? If it’s all clogged up with functions and attributes for all the

different types of cakes, it may become large and cumbersome.

By creating a new class that inherits the parent class, your new class

gains access to all the attributes and functions in the parent but can add

extra attributes and functions. This new class that inherits from some

other class is a subclass, while the parent is a superclass. If you subclass

the cake recipe as a muffin recipe, you can still mix and bake the muffin

objects, only now you may be able to pour the muffins into muffin tins,

distribute many small muffins, or anything else you add to your muffin

recipe. Subclassing/inheritance is the same as photocopying your recipe

and writing a note on the bottom!

Note not all attributes are accessible to subclasses and objects.
this is explained in the class protection section. python ignores these
rules, however!

 Encapsulation
As you’ve learned, classes have different kinds of data. They can store

variables, and they can store functions, to execute specific code. These

can all have different return types, and different accessibility levels. If your

class contains a piece of code that only you should use, then any objects

Chapter 2 Software Development primer

22

created from your class should not be able to access this. The way to do

this is through access modifiers. The three access modifiers are

 1. Public

 2. Private

 3. Protected

Public members are accessible by anyone and anything. As the name

implies, there is no restriction on these. Instantiated objects can all freely

access this data. For the cake recipe, this could be bake or mix functions, or

this could be the total baking time.

Private members are only accessible by code inside the class. The

recipe class can change these, but any objects created from the class

cannot even see these members. This is useful for code that’s only used

internally. For your cake class, the baking method may be accessible to

everyone, but what if it stores an internal baking temperature? If other

people can access and change this value, the cake may burn. Making this

private means only you (or other developers working on the class itself)

can work with this.

Finally, there are protected members. This is like private, in that

only members of the class can access this data, but is extended to any

subclasses. If you create a protected member, the main class can access it,

and so can any subclasses (such as muffins). Objects instantiated from the

cake class cannot see or access this.

Many languages use tools such as getters and setters. These are often

simple public functions that regulate access to private members. This is

a good practice. Going back to the oven temperature example, it may be

useful to let objects change the temperature, but suppose every time the

temperature changes, you need to adjust the cooking time. If objects have

access to the temperature, they could change it without adjusting the

cooking time. They may not even know the cooking time should change. By

using a setter, you can ensure the cooking time gets readjusted anytime the

Chapter 2 Software Development primer

23

temperature changes. Besides this, you can change how data gets stored in

your class, and any objects using the getter or setter do not need to change.

This makes your code less fragile and easier to change in the future. This

is encapsulation, and it’s a very important aspect of OOP. Only you, the

developer, get to decide the rules and regulations around your code.

Unfortunately, Python does not have access modifiers. This can make

Python code challenging to work with at times. While there are some

pseudo-workarounds and Python best practices you’ll see in the project

code, most of these revolve around trust. There’s nothing stopping you

from accessing private data in classes, but don’t expect any help if things

start going wrong. For the reasons mentioned earlier – sometimes data

needs changing in a specific way, or other attributes calculated at the same

time. For small projects or instances where you are the sole developer on

a code base, you’ll often have enough working knowledge to know where

potential hazards reside.

There are other access modifiers, but these vary between languages

and are often an amalgamation of the main three.

The final type of class protection is that of the method type. When

working with methods, you need to define how the function can interact

with the object and the class. The three types are

 1. Static

 2. Instance

 3. Class

The default method type varies per language, as does the need to

specify one at all. In Python, instance methods are the default modifier, but

in Java, it’s common to use static methods.

Static methods do not need access to any other class information.

They don’t need specific object data such as ingredients or cooking time.

Everything these need to run is self-contained in the function. A good

example of this is a multiplication function. You give it two numbers, and

Chapter 2 Software Development primer

24

it returns the product. This is what happens in any programming language

when you use the asterisk sign. The reason you don’t need brackets or to

instantiate the function is because special math symbols are designed for

use as we’ve come to expect, but the language itself still stores this as a

function.

Instance methods have full access to everything in the class. These

get tied to the object itself. If your cake recipe has an instance method to

get the weight of the ingredients, then this will change for every object. A

cake may need 10 ounces of flour, whereas muffins may need 11 ounces.

Instance methods can call both static methods and class methods, and

each method is only aware of the data for that object.

Class methods can only call static methods in the class. They cannot

access object-specific data, but they are not stand-alone functions like

static methods. These are useful when you need to access other class

utility functions, but don’t need specific data every time they run. If you

don’t have any static methods, you won’t often need a class method.

Only once you have static methods will you need to even consider a class

method, and even then you’ll only need it if you want to access other static

methods.

Note python uses the decorator pattern for its methods. if you don’t
specify the method type, it will be an instance method by default.
look out for the decorator pattern in the “Design patterns” section.

 Polymorphism
As you may guess from the name, polymorphism refers to many forms.

Polymorphic code is code that can handle many different uses or data

types. Polymorphism in Python is another interesting topic, because

Chapter 2 Software Development primer

25

Python doesn’t work like other languages, but I’ll get on to that shortly.

Polymorphism is often divided into two categories:

 1. Compile-time polymorphism

 2. Dynamic method dispatch (runtime polymorphism)

Compile-time polymorphism (sometimes called overloading) is

only possible with statically typed languages. This can be very fast

as the compiler does all the work. The most common compile-time

polymorphism technique is function overloading.

Function overloading lets you use different data types or even

parameters in a function. Suppose you have a function called bake. It takes

one parameter, an integer called duration. Without function overloading,

you couldn’t create another function in the same class with the same

name. By overloading this function, you can. You can create functions with

different data types, or a different number of parameters. For example, you

could change the bake function to take a single string called duration. You

could also change it to accept two integers, duration, and temperature.

When you compile your code, the compiler will choose which function to

use, based on the supplied arguments.

You can also change the return type, but you can’t only change this,

you’ll need to change the signature as well. The code for these functions

can be different, or one can change the data and call the other one. By

overloading functions, you can make your code flexible, and able to handle

a variety of different parameters and data types.

Operator overloading is similar, but it lets you define custom functions

to extend the built-in operators. A good example of this is the addition

symbol. This works fine for integers but will crash if you try to add strings

or custom classes. By overloading this operator, you can create custom

functions to add your own data types or classes.

Dynamic method dispatching resolves references when the code

gets run, instead of at compile time. This approach is more flexible than

Chapter 2 Software Development primer

26

compile-time polymorphism and is useful when it’s not possible for the

compiler to figure out the function you need. The outcome is the same as

compile-time function overloading. It may not be possible for the compiler

to decide what to do for many reasons. Perhaps one or both of your

overloaded functions extend the other, or perhaps you base the function

on user input, which is not known at compile time.

Note python does not support function overloading in the traditional
sense, but it’s still possible. By using inheritance, your subclasses can
contain functions with the same name as their parent class. these
subclass functions override the superclass functions. Generally, you’ll
want to keep the purpose of these functions similar (a function called
bake shouldn’t launch a missile, for example, unless you want to
bake your enemies). this is useful because the parent classes can
implement functionality which your subclasses can change if it’s not
quite right. anything using objects of these instances won’t have to
change their calls.

 Design Patterns
Design patterns are blueprints in the sense that they describe how to

solve a problem. They are not quite the same as classes (which are also

blueprints). Design patterns give you a handy way to describe a solution.

When you bake cookies, you don’t say to your friends “hey, want some

round baked goods, made with chocolate chips and dough?”, you use their

name – cookies! Design patterns can help you to communicate with your

team. Design patterns consist of a name, a problem, a solution (ideally

language agnostic), and an outline of the possible side effects of this

solution (if any).

Chapter 2 Software Development primer

27

Creating a new design pattern is possible, but improbable. Design

patterns arose out of engineers designing similar solutions to problems, so

unless you can get your code written into thousands of different code bases,

and set the world alight with your unique solution, it probably won’t become

a new pattern.

Design patterns evolved in the late 1970s, but they rose to popularity

after the famous gang of four (Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides) held a workshop in 1991 and then published

their book Design Patterns: Elements of Reusable Object-Oriented Software.

Their book documents 23 different design patterns. Some common

patterns are as follows:

The Adapter Pattern acts as an interface between incompatible

objects. An example of this would be calling the baking method on a roast

chicken. It still needs baking, but chickens are not part of the cake class. By

writing an adapter to interface the two, you can make it work.

The Decorator Pattern is one of the most well-used patterns in

Python. This lets you extend classes through subclassing but dynamically

at runtime. This pattern is very powerful, and happens per object,

independently of any other class instances.

The Facade Pattern provides an interface to a class or piece of code. If

you need to call ten different functions in a specific order to use your class,

a facade pattern can wrap these into one simple-to-use function, which

performs all the work in the correct order.

The Factory Pattern delegates the creation of objects to a centralized

entity. This is useful for letting subclasses define which superclass to use,

without getting bogged down in the details.

This is only a small fraction of all the possible design patterns. The 23

documented patterns in the GoF’s book have achieved almost legendary

status – and for good reason. Next time you’re looking to solve a software

problem, check that a design pattern doesn’t already exist.

Chapter 2 Software Development primer

28

 SOLID Principles
SOLID is a mnemonic for five object-oriented design principles introduced

by Robert C. Martin in his 2000 paper titled “Design Principles and Design

Patterns.” These principles exist to make software easier to develop, easier

to fix, and easier to understand.

The five principles are

 1. Single responsibility

 2. Open-closed

 3. Liskov substitution

 4. Interface segregation

 5. Dependency inversion

The single responsibility principle states that each individual

component of a code base should have sole responsibility for one piece

of functionality. The reason for this is to limit the work required to make

a change. If you’re making doughnuts and decide to change the filling

from jam to custard, you shouldn’t have to change how you mix the

batter. If there is only one place in your code that handles a requirement,

it becomes very easy to change this and the code. If one part of your code

handles several different operations, or several different pieces of code

involve the same operation, it becomes a confusing mess to change any

code.

This doesn’t mean your code should be tiny and only perform one

task. It’s fine to have different functions grouped together, but they should

be loosely related. Code for icing cakes can all live together, and code to

dust doughnuts with sugar can live here as well – both are a type of glazing.

Code to fry doughnuts belongs somewhere else.

The open-closed principle is the idea that software components

should be “open for extension, but closed for modification.” Through this,

Chapter 2 Software Development primer

29

it should be possible to extend the functionality of a component without

changing its original source code. In simpler terms, your code should need

few changes to meet a new or recently changed requirement. This is often

carried out through inheritance or polymorphism.

Say you have a function to calculate the surface area of a doughnut

(very useful to know how much icing to make). This works very well, but

it’s not very flexible. If you want to calculate the surface area of a cake or

even a square cake, you need to change the code. By writing this function

to calculate the surface area of any baked good, you can be confident your

code can handle any future confectionery requirements. Don’t get too

carried away though, as YAGNI.

YAGNI stands for you ain’t gonna need it. It’s a reminder to only put in

place features you need right now, and not start coding things nobody has

asked for. If nobody wants a feature, or you start coding features you think

people will want, that’s a lot of wasted effort for little reward. With a new

code base, startup company, or code following the open-closed principle,

it can be a fine balancing act between flexible code and worthless

features, but taking the time to think through your solution can make a big

difference.

Liskov substitution suggests that subclasses should be direct

substitutes for their superclasses. In other words, you should be able to

swap a parent instance for a child class and nothing changes in the code.

It’s fine for your subclasses to extend the behavior of their parents, but if

a subclass is fundamentally different or incompatible with its parent, you

should redesign your solution.

Here’s an example. Suppose you have a class for cakes. Your code

follows the open-closed principle and allows for all kinds of extensions.

This works great for a variety of cakes: cupcakes, muffins, Victoria

sponges – yum. Then, along comes a pastry chef with some fresh doughnut

batter. It’s possible to subclass the cake class as a doughnut, but doughnuts

are usually fried, not baked. All the cake-specific functions and attributes

don’t work on doughnuts.

Chapter 2 Software Development primer

30

You could create new functions to fry or override the bake function

to perform frying duties on the subclass, but this starts to get confusing.

Even with a highly modified doughnut subclass, anything or anyone

using instances of these objects will get themselves into all kinds of

trouble. Doughnuts need a deep fat fryer or at least a frying pan – will

the pastry chef have one available if the function is called “bake,” and the

documentation says it requires an oven?

By following the Liskov substitution principle, it should be very

clear what your objects are, how they work, and the functionality they

implement. It’s fine to extend classes, but drastically changing how they

work, or implementing “quick fixes,” “hacks,” or other nasties is a bad idea.

Interface segregation states, “No client should be forced to depend on

methods it does not use,” and is summarized as splitting large modules

and classes into smaller and easier-to-use pieces. This applies to huge

modules more than smaller projects, but it’s still worth considering.

Here’s an example. Your cake class wasn’t useful for all cases (such as

doughnuts), so you modified it to become a generic confectionary class.

This class can do everything – baking, frying, mixing, icing, and more.

While it’s a good class, written using the other four SOLID principles, it’s

massive. It’s thousands of lines long, and developers dread working on it.

By moving pieces out into their own classes, you can reduce the size of this

mega-class and make the code easier to understand, read, and use.

You could have individual classes for baking, frying, and icing. You

could have a utility class for common functions. Now, the confectionary

class implements the other classes through its own instances.

The final principle is dependency inversion. High-level modules

should not depend on low-level modules. Both should talk to each other

through abstractions. High-level modules should provide complex

business logic and be easy to reuse and change. Low-level modules should

provide operations such as network or disk access.

Chapter 2 Software Development primer

31

Without following this principle, tightly coupling business logic to a file

handler means that changes to the file handler (such as using a different

library or function) need changes to the business logic.

Here’s an example. Your high-level cake classes handle the production

of cakes – mixing, baking, stirring, and so on. These classes shouldn’t

care about how the oven produces the heat. They put cakes in, set the

temperature, and then remove them after a set period of time. If the cake

class had to call an oven function such as “heat up coil for 15 minutes,”

then this is very tightly coupled. What if you get a new oven? What if it’s

gas-fired, or charcoal? Suddenly the cake class needs updating to call the

appropriate functions to light the gas or empty a new bag of charcoal. If

these classes talk to each other through an abstraction, only one piece of

code has to change.

This may seem complex, but by following the Liskov substitution and

interface segregation principles, you almost get dependency inversion as a

by-product.

 Event-Driven Programming
When developing any system, it’s a good idea to plan the architecture, and

the events. How will your system work? When you press a button, what

logic will route you to the appropriate piece of code to perform some work?

Event-driven programming is a paradigm in which actions happen

in response to events. It’s used frequently with JavaScript, but many

languages support it. Event-driven programs often use a loop to listen

for events and then trigger the appropriate action in what’s known as a

“callback.” While you can write this loop yourself, a framework or other

suitable tooling may tool it for you. Event-driven programming is often

used for graphical user interface (GUI) applications.

Chapter 2 Software Development primer

32

Any code you write to respond to events is an “event handler” because

it handles the appropriate event. These event handlers subscribe to each

event, so they get notified when it fires through the callback. There are no

rules around how much or how little work event handlers can perform,

and you can have as many as you like (even for the same event). Generally

sticking to one task for each event handler is a good idea. It makes

your code easier to test and easier to understand and maintains a good

separation of concerns.

Event-driven programming is flexible, but there is room for

improvement. The publish-subscribe (pub-sub) design pattern is an often

used pattern for event-driven systems. Rather than have the event triggers

call the subscribers, publishers publish to specific channels, of which

subscribers subscribe to. Publishers do not need to know about all their

subscribers, they publish to these channels, regardless of whether anyone

will act upon the messages.

The pub-sub approach to system architecture is very flexible. Events

don’t need to know about any event handlers, and you can add, remove,

manipulate, or otherwise alter event handlers without having to rework

any event or callback logic.

Subscriptions can be topic-based or content-based. Topic-based

subscribers join areas of interest. This may be cakes for a cooking platform

or wheels for a car system. The publisher sends out a notification to this

specific topic. Anything subscribed to this topic will begin handling the

event. This is akin to a public channel or group chat in systems such as

IRC, Slack, or WhatsApp.

With content-based subscriptions, callbacks get tagged with attributes,

and subscribers are only notified if their subscription settings match

the attributes in the callback. Both content-based and topic-based pub-

sub event handling are a form of message filtering. Some systems even

combine the two for a more flexible approach.

Chapter 2 Software Development primer

33

 Defensive Programming
Defensive programming is a big part of this book. Learning what it is and

why it’s necessary can make you a better programmer. The subsets of

offensive programming and secure programming can mean that defensive

programming covers a vast range of topics.

In short, defensive programming (or defensive design) is a way of

developing software such that it can still function under impossible or

unexpected circumstances. Can you imagine what would happen if your

email client could not handle an incoming email while you were writing an

email? Or what about a video game that doesn’t work without the Internet?

Sometimes developers (or sales and marketing) make deliberate decisions

about functionality, but it’s often unexpected conditions that cause

problems. By anticipating the worst, and preparing your code to handle

all eventualities, you can be confident your code can survive the worst

possible scenarios.

Many coding projects don’t experience any ramifications from services

becoming unavailable or unexpected circumstances arising. This doesn’t

mean defensive programming is redundant. History is full of tragic

examples of impossible situations that became possible and caused real

harm. If something is impossible, or will never happen, then Murphy’s Law

says that it will happen. It’s how your code handles the impossible that

matters.

Murphy’s law is an adage summarized as “anything that can go
wrong will go wrong.” if you’re optimistic, then the variation known
as Yhprum’s law states that “anything that can go right, will go right.”

This historical example highlights just how badly things can go wrong

if you don’t expect the unexpected.

Chapter 2 Software Development primer

34

 1992 London Ambulance Service
Computer- Aided Ambulance-Dispatch System
On 26th October 1992, the London Ambulance Service deployed a new

computerized system to dispatch over 300 emergency ambulances to

7 million people living in a 600 square mile area of London. This was a

brand-new computerized system designed to replace the fully manual

process.

Within hours of launching, the system was unable to keep track of

ambulances. As many as 46 people died because an ambulance did not

arrive in time, never arrived at all, or in some cases, more than one arrived.

For one patient, by the time the ambulance arrived they had already died,

and been that way for quite some time.

There are many reasons why this system failed on that fateful day. Two

significant failures were

• Imperfect data

• A memory leak

The ambulance-dispatch system failed to function when given

incomplete data about ambulance locations. As the system didn’t know

where ambulances were, it attempted to reroute or dispatch vehicles

currently in use.

This memory leak retained event information on the system even

when it was no longer necessary. Over time (and compounded by the

excessive call volume due to the early failures), the memory filled up, and

the system failed.

By defensively programming this system from the beginning, some of

these problems may have been avoided. While testing and deployment

all work together for the benefit of the customer (and this project has

far greater deep-rooted problems), by assuming the worst will happen

and preparing your code to handle it, you can start to stem the flow of a

problem before it even arises.

Chapter 2 Software Development primer

35

You’ve read how badly things can go wrong, but that can never

happen right? Sitting at home coding your small little system can never kill

anyone? Perhaps not, but you don’t know where your code will end up if

you share it online, or what projects you might pull your code into in the

future, because you have a working solution.

That’s enough of the bad news; here are some tried and tested areas to

safeguard your code against:

• Never trust user input – Always assume users are out

to get you. Use whitelists for allowed characters or

valid file extension types. Never allow users access to

your database through text input boxes – use prepared

statements and sanitize user input before it touches

your database.

• Don’t assume a service will always be there – If you

are using another service such as an API, there could

be many reasons why you can’t reach it. Perhaps the

service is unavailable, or there is a problem with their

domain. Your device could be offline, or the payload

comes back in a different format to that you expected.

Assume the worst and prepare your code to handle

missing or invalid services and data.

• Raise and catch exceptions – Many languages will raise

exceptions when errors happen. Catch these and then

implement code to handle the failing condition. Equally,

if your code fails, raise an exception of your own.

• Keep code clean – Each piece of your code should

have a specific and defined task. A function to get the

temperature should not alter the speed. Clearly defined

expectations and doing one thing well ensure your

code is small, easier to test, easier to understand, and

easier to defensively program.

Chapter 2 Software Development primer

36

• Testable code – As you’ll learn shortly under the

“Testing” section, small chunks of code are easy to test.

By writing tests to run code under unusual conditions,

you can be confident you can handle strange and

unexpected edge cases.

Note whitelists are lists of allowed things. whitelists state what
is allowed and block anything else by default. whitelists are like the
bouncers at a posh party or nightclub – if your name is not on the list
you’re not getting in!

Blacklists are less secure than whitelists, but they have their place.
Blacklists are the opposite of whitelists – they specify what to block,
and anything else is allowed by default. Blacklists are like a poster
of banned people at a gas station. all customers can buy gas, apart
from known bad people on the poster.

The final aspect of defensive programming is that of security. Secure

programming is a subset of defensive programming. By writing your code

to expect vulnerabilities, and never trusting anything or anyone, you’ll

be in a much better place from a security perspective. The OWASP Top

Ten Project is a curated list of the ten biggest security threats facing any

application today. Security mitigations follow some of the advice already

mentioned. Deny everything by default. Validate all input, and keep it

simple. While this project has limited interaction with users and the

outside world, it’s still vulnerable.

During development with your Raspberry Pi on the Internet, it’s

common for automated systems to access (or attempt to access) your Pi

in unexpected ways. Perhaps you have default passwords set or services

enabled and running on default ports. If you take the pessimistic approach

that everyone is out to hack you, and never assume anything will always be

available, you’ll end up with a far better system, which provides the user

(you!) with a very pleasant experience, even if the worst happens.

Chapter 2 Software Development primer

37

 Testing
Software testing is a vast and broad area of study, one that is far bigger than

this chapter allows. Many books can and have been written on the topic,

so this subchapter will serve as a loose starting point, from which you can

research further if you so desire. If you’re interested in testing and testing

with Python, I can highly recommend the following books:

• Python Testing with Pytest – Brian Okken

• Clean Code: A Handbook of Agile Software

Craftsmanship (Chapter 9, “Unit Tests”) – Robert

C. Martin

• Python Unit Test Automation: Practical Techniques for

Python Developers and Testers – Ashwin Pajankar

Testing exists to ensure that a piece of software is free from defects and

works as expected and required. No software will ever be 100% defect-free,

but with a bit of thought, and some good testing, you can be confident your

code generally works as expected.

Joke “99 little bugs in the code, 99 little bugs in the code. take one
down, patch it around 117 little bugs in the code.” – @irqed

There is no one way to test or a five-step plan to follow. If you do these

steps in this order, you’ll have perfectly tested software. In reality, software

testing is a broad spectrum, covering a vast range of different techniques.

These all work together to ensure code is the best it can be. Automated

tests give you the best repeatability and consistency between test runs

(especially with arduous testing), but manual testing still has its own

valuable place.

To understand why testing is so important, let’s look at another tragic

example from history.

Chapter 2 Software Development primer

38

 Therac-25 Radiation Therapy Machine
The Therac-25 was a software-controlled radiation therapy machine

released in 1982. Through this machine, hospital operators treated cancer

patients with radiation. Hospital machinists programmed the dosage,

duration, and location of the beam, and the machine handled the rest.

Between 1985 and 1987, the Therac-25 caused at least six accidents, with

some patients receiving over 100 times the normal dosage of radiation.

These patients either suffered serious injury or death. The US Food and

Drug Administration (FDA) issued a mandatory recall on all Therac-25

machines due to their potential for serious harm.

This is an interesting and popular case study in computer science.

Before looking at the root cause of the failures, it’s necessary to understand

how the machine worked, and the history of its predecessors.

The Therac-25 was a two-in-one radiation therapy machine. It used

magnets to deliver direct electron-beam therapy. This is used for treating

cancer near to the surface of the skin. The other mode of radiation therapy

was a megavolt X-ray. This delivered radiation doses 100 times higher

than direct electron-beam therapy, and as a result, the beams had to

pass through both a filter and a combiner to ensure precise and accurate

delivery. These extra tools were not needed for the other beam, and due to

its increased power, the megavolt X-ray was mainly used for deep-tissue

treatment such as lung cancer.

In summary, the Therac-25 used two radiation beams: a low-power

beam and a high-power beam, which needed filtering and focusing. It also

had a patient light, used to help position the patient without delivering any

radiation.

One of the major flaws in this machine was the ability to select and

use the high-power mode without the necessary filter and focusing

components in place. This happened due to a software bug caused by

rapidly switching from the low-power to the high-power mode. This meant

patients received a lethal dose of radiation in a large area due to the lack

Chapter 2 Software Development primer

39

of filtering and focusing devices. Another flaw allowed the low-power

electron beam to activate when in patient-light mode.

Previous models of the Therac used hardware to ensure that these

conditions could never happen. The Therac-25 removed these to reduce

the cost and used a software version, which failed.

There are many reasons why this machine failed, including many bugs.

Some of the serious issues were as follows:

• The developers failed to consider what might happen if

the software fails.

• In any error, the system presented an error code that

was not explained in the manual. The users ignored

this.

• The machine was not tested until assembly at a

hospital.

• Overconfidence led developers to ignore bug

complaints.

From a testing perspective, you can write all the automated tests you

like, and you won’t catch these issues. Many of these arose out of the reuse

of a previous generation model. The developers assumed that because this

machine has been running for a long time, it must be good and safe, and

so they can rush out this upgraded model. This was not the case and the

significant software upgrades necessitated significant new testing. Onto

the testing failures:

The testers did not understand how hospital staff used the machine, or

the speed at which they changed programs.

• A set of nonstandard keystrokes produced a set of

errors.

• A variable overflowed causing the machine to skip

safety checks.

Chapter 2 Software Development primer

40

There are so many problems with this machine that not all would

have been solved by testing, yet it remains my opinion that good testing,

defensive programming, and code audits would have saved the lives of

everyone harmed by this machine. That said, the benefit of hindsight

is a wonderful thing. After the incident investigation, International

Electrotechnical Commission (IEC) 62304 was introduced to specify the

design and testing required for medical devices.

As this example shows, any testing is better than no testing, and don’t

make assumptions. Testers love testing edge cases but thinking about

the possible ramifications of your code (especially code that can so easily

injure or kill people) is a step in the right direction.

Joke “a Qa engineer walks into a bar. orders a beer. orders 0
beers. orders 99999999999 beers. orders a lizard. orders -1 beer.
orders a ueicbksjdhd.

the first real customer walks in and asks where the bathroom is. the
bar bursts into flames, killing everyone.” – Brenan Keller

Now you know what can happen when testing fails, let’s look at how

to avoid big problems such as these. It’s important to have a common

understanding of the tools at your disposal. First, don’t think of yourself

as a developer and someone else as a tester. Testing is the responsibility of

everyone involved in developing software! Testing can be loosely split into

three categories.

Functional testing aims to assess whether the software meets the

predefined requirements or specifications. The first step is defining these

specifications! When functional testing, systems should provide a fixed

output with a fixed input. For example, with a calculator, feeding in “1 + 1”

should output “2”.

Chapter 2 Software Development primer

41

Performance testing looks to assess the speed, responsiveness, and

stability of a system. If you’re building the next Facebook, then you’ll want

to know the system can handle more than a handful of users at the same

time. When you press a button, how long does it take before you get a

response? Your acceptance criteria may vary depending on the project

and the deployment. If you’re writing a script for your own use, then you

may have simpler requirements than a system processing thousands of

transactions per second.

Finally, there is regression testing. Regression testing helps ensure

that new features and changes have not broken existing features. If you’re

working on a legacy system, a big project, or generally playing “whack a

mole” with a spaghetti code base, then regression testing couldn’t be more

important.

As for specific ways of testing, the following snippets cover some of the

over 150 different testing techniques, skills, tools, and processes available

to modern-day developers.

Unit testing exists to test a specific piece of code in isolation. By

writing small, single responsibility functions, you can unit test that

a function performs as intended. Say you have a function to add two

numbers together. If you input 5 and 6, you should get 11. You can test

edge cases for this. Should it throw an exception if you pass a string? What

about fractions, or will it only work with whole numbers? Unit testing

should give you confidence that each piece of code is working as designed.

Returning to the tasty cakes analogy, unit tests could cover breaking the

eggs, measuring the flour, and setting the oven temperature. Unit tests

wouldn’t usually cover if the cake tastes nice or even looks like a cake after

following all the steps.

Integration testing tests how individual components interact with

each other, and with the whole system. It can only happen when two or

more distinct parts of a system are ready. So often it happens right at the

end of development after everything has been produced (if it happens at

all). While this is better than no integration testing, the sooner you can run

Chapter 2 Software Development primer

42

integration tests, the sooner you can get feedback on if your solution works

or not. By shortening this feedback loop, you can get into a position where

customers get new features faster, and with fewer defects.

If unit tests test you can break the eggs, integration tests verify that the

eggs get mixed correctly with the flour, the cake starts to rise in the oven,

and the icing sticks to the top of the finished cake.

System testing helps developers and testers gain confidence in

the nearly finished product. This is often performed by independent

testers – people who were not involved with the development of the

system. Integration testing happens on two or more different components,

whereas system testing happens on the whole system. System testing could

test that the cake looks like a cake, it takes nice, is chocolate, and has icing

and sprinkles. This involves evaluating the system against the supplied

requirements.

Acceptance testing exists to ensure the system meets the business

or client requirements, and if it’s ready to release, or needs more work.

The business may decide that the system is brilliant, but it’s missing this

amazing feature that it must have before it is ready to release to the wild.

For a birthday cake, no matter how amazing it tastes and looks, it must

have candles. Cupcakes should be small and there should be many of

them. Acceptance testing happens toward the end of the process, but it

doesn’t have to. By getting feedback on small individual features as they

are ready, you can assess their suitability.

Internal acceptance testing (or alpha testing) happens internally with

people not involved in the development process. This could be customer

support teams or sales teams. User acceptance testing (UAT) or beta

testing involves getting the system into customers’ hands. By getting real

customers to use the system, you gain new and exciting insights. Is it really

what they want, or does it need a little more work?

Load testing ensures the performance of a system is adequate when

running under its anticipated load. It can be difficult to predict the

demand for your product if it’s a simple app that solves a simple problem.

Chapter 2 Software Development primer

43

By load testing the system to its breaking point, you can figure out its

maximum load, and extrapolate that to give you a rough idea of future

scaling requirements.

Back to cakes, load testing cakes is quite simple. You hand them all out

and count how many people get one. If you’re a good baker, you may want

to factor in the fact some people will eat more than one muffin or a slice of

cake.

Load testing sometimes emulates the load from a known or expected

quantity of users. It can also serve to stress test the entire architecture to

find its breaking point. Tools such as JMeter or Gatling can spin up users to

an almost unlimited number, depending on your requirements.

Black-box testing happens from a user’s point of view. The tester

has no knowledge of how the system works or if you need to perform

any special steps to get a feature to work. This testing does not prod the

delicate internal organs of your code. By using testers with no knowledge

of the code, black-box testing avoids the developer bias and tunnel vision

sometimes present when working on a big project. Black-box testing can

happen for integration, system, and acceptance testing.

White-box testing involves studying the code in question and

determining both the valid and invalid operations expected of it. By

assessing the outcomes of both these types of operations, white-box testing

is excellent at determining if a system is working, and which edge cases it is

unable to handle. White-box testing can happen with unit, integration, and

system testing.

Mocking works alongside unit tests. Its main purpose is to imitate a

different part of the system or an external resource which is not under

test at that moment in time. Suppose you make a call to an external API,

but every time you do so it costs you $1. Making this call in your unit tests

could end up costing you a lot of money, so how can you run unit tests?

By imitating this external API call, you can replicate the result without

spending a cent.

Chapter 2 Software Development primer

44

 Test-Driven Development (TDD)
Test-driven development operates around a very short feedback cycle. It

starts by writing a very simple test. You then write just enough code to pass

the test. After the test passes, it’s time to refactor the test to include a basic

requirement. Now back to the code to pass the test, this process repeats

several times until all the requirements are met.

By writing the tests first, you’re forced to consider how your code

will work, rather than sitting down and writing whatever code comes to

mind. If your test only includes one basic requirement, you’re less likely

to develop features you think will be needed in the future, which wastes

time and resources. This all comes back to the SOLID principles discussed

earlier in this chapter.

There are many benefits to developing a module with test-driven

development. The biggest of which is a complete set of (unit) tests! At any

point in the future, you can come back and rework, refactor, implement

new features, or otherwise change your code, safe in the knowledge that

your unit tests cover all the conditions required to continue working.

Naturally, there may be new requirements and changes needed to the unit

tests themselves, but generally, you should avoid changing both the test

and the code at the same time, as you may not be able to trust that either

component is working.

Some developers slide back into old habits after trying test-driven

development – either through familiarity or because it involves too much

effort. Some teams only work in a TDD way, and others may develop a

hybrid system, encompassing a little TDD. Providing you have a good

amount of unit test coverage encompassing many of the possible edge

cases and error conditions, it probably doesn’t matter too much how you

got there.

Chapter 2 Software Development primer

45

Note Software development legend Kent Beck is credited with
test-driven development’s rise to fame. Kent is an american software
engineer who is one of the original signatories of the agile manifesto
and the creator of extreme programming. Kent’s top tips for test-
driven development are as follows:

 1. never write a single line of code unless you have a
failing automated test.

 2. eliminate duplication.

 Debugging
“Debugging is like being the detective in a crime movie where you are also

the murderer.” – Filipe Fortes

Debugging is a general term related to finding and removing bugs in

software. It can be very rewarding to fix a bug, but it can also be a cause

of frustration. Spending a whole day or more tracking down a missing

comma is not everyone’s idea of fun.

There are many different ways to track down a bug. Your go-to

technique may differ from mine, and the type of bug, the environment,

your programming language, or your integrated development environment

(IDE) all factor into it.

To fix a bug, you need to know what the bug is. How does it think,

how does it work? What exact steps do you need to take to replicate the

issue? To solve the bug, you must become the bug. At times, code can

work perfectly, yet a bug may only appear on the production server, or by

following a very unusual and specific set of steps, or at a specific time.

I once implemented a feature and the customers complained that

it didn’t work on a Tuesday afternoon. Sprawling rambling spaghetti

code was the culprit here. Another time customers complained that a

Chapter 2 Software Development primer

46

button only worked after pressing it ten times. The problem here was an

incrementing number that the original developer expected to remain

under 1000. Once it got over 1000, the code used the first three digits of the

number, which only changed every ten presses.

If you recall the Therac-25 case study, one problem was that the

developers and the testers did not use the system as quickly as the hospital

staff did. Only by pressing specific buttons within an eight-second time

frame did a bug appear.

The point is, you and the code must become one. You must know your

enemy better than you know yourself. Only then can you understand what

is happening with the bug. Even if you think you know what’s happening, it

never hurts to use some of these common debugging techniques. Making

assumptions about code is how bugs get missed.

 Rubber Duck Debugging
Rubber duck debugging isn’t as daft as it sounds – and it doesn’t have to

be a rubber duck. By explaining your code line by line to someone else, the

problem will often materialize. The act of revisiting every line of code is

often enough to cause the problem to leap out at you.

Why the rubber duck? While other developers work equally as well, it

disturbs the work they were doing. If you explain the code to an inanimate

object (which has no dreams and visions of its own), then you can fix the

problem without disturbing a teammate.

Rubber ducks have become an iconic symbol in developer pop culture,

thanks in part to the book The Pragmatic Programmer (Andrew Hunt and

David Thomas). Anything will do, as stepping through the code itself is the

solution. The ducks aren’t magic.

Chapter 2 Software Development primer

47

 Logging
Logging is the process of outputting descriptive statements at key points

in the code. Seeing exactly where the code is or what happened at any

moment in time is a crucial clue in the riddle of the code.

If you log the start of a function call, any exceptions, unexpected

conditions, and the end of a function, you can begin to understand what

the code is doing – which may differ from what you thought it was doing.

Suppose your code crashes every time it runs. Where is the error? By

implementing explicit logging, you can follow the path of the code through

the logs. If you can trace the code to the last visible log, you’ll know it’s

failed after that point – even better if your logs tell you what happened. The

logs for a cake application may look like this:

 1. Starting to bake the cake

 2. Heating oven to 451 degrees Fahrenheit

 3. Putting the cake into the oven

 4. Waiting 20 minutes

 5. Removing cake

 6. Turning the oven off

Through these logs, you can see what the code is doing, and trace each

log back to the line of code executed.

Logs are often implemented through a log handler. These log handlers

often come included in many frameworks. They let you log data through

logger levels. Useful debugging information could go to a debug level,

while serious crashes could go to the error level. It’s possible to set the

logging level so you only see the errors, for example. This keeps your

production logs tidy, yet still lets you enable more verbose logs as and

when required. These log handlers often output the file, date, time, or any

other useful information – you can configure the format.

Chapter 2 Software Development primer

48

 Print Statements: The Pauper’s Logging

Print statements are as simple as they sound. Print statements send output

from your program to the environment it is running in. If your code is

running in the command line, your print statements will appear in the

command line.

Print statements are not as comprehensive as using a log handler.

There’s no way to group different statements or issue an error code or type

of statement. Print statements are quick to write and easy to use, but they

should be primarily used for quick troubleshooting when running code

locally on your machine. Want to know if your new code is even running?

Put a print statement in, and look out for it when the code runs.

As print statements shouldn’t live for very long, and log handlers

are the preferred choice for application visibility, many developers use

shorthand, quick, or otherwise nonsense print statements. If you’re

looking to see if a new function gets called, and you will delete the print

statement almost immediately, then random statements such as “I am

here” or my personal favorite “potato” are commonplace. Very recently

I had to remove a print statement that sneaked into production which

simply said “one quiche.”

 Breakpoints
“You know nothing. In fact, you know less than nothing. If you knew that

you knew nothing, then that would be something, but you don’t.” – Ben

Harp, Point Break (1991)

Breakpoints let you stop the flow of your code. They pause execution

and allow you to inspect all your variables. You can see the exact state and

conditions your code is in. You can resume execution and see where the

code goes next. Breakpoints are useful when debugging software. They

don’t make any assumptions but may highlight some odd behavior that

Chapter 2 Software Development primer

49

you can fix. By inspecting the code while it is executing, you can spot

anything which is not the expected behavior.

As this quote highlights, you don’t know anything about your code

until it runs. You may think you know how it works, and for most of the

code you may be correct. When things go wrong, however, the best way to

figure out the problem is by halting the code with a breakpoint.

Programming languages such as Python come with support for

debugging and breakpoints. Your tooling needs configuring (often

performed through your IDE), but once configured, it’s often as simple as

pressing “debug” instead of “run.” Breakpoints specify the line of code to

pause at. Once the software reaches that line, it pauses execution instead

of continuing. You can add or remove breakpoints, continue execution, or

cancel the debugging altogether.

 Version Control with Git
Version control is one of the most powerful tools in a developer’s toolkit. It

tracks your changes across all files. Should your latest release break your

code base or you change your mind or want to look at an older version of

your code, you can do so with version control. Version control is not the

same as backing up your files! Copying a file or making a backup shows

how that file existed at a point in time. While this can be useful, it’s not

easy to manage, and it’s hard to know where and when a change occurred.

Version control tracks every change. You can see who made a change, and

when, along with every change before and after. You can experiment in a

nondestructive way, and collaboration with other developers is so much

easier than without using version control.

Git (https://git-scm.com/) is one of the most popular version control

systems on the planet, but Apache Subversion (https://subversion.

apache.org/) and Mercurial (www.mercurial-scm.org/) are two

alternatives. Each system works differently, but the basics remain the

Chapter 2 Software Development primer

https://git-scm.com/
https://subversion.apache.org/
https://subversion.apache.org/
http://www.mercurial-scm.org/

50

same. Throughout this book, I’ll reference version control techniques with

Git, but you can use any system. Many job adverts look for familiarity with

Git, but some workplaces use very specific version control systems and

tooling. Here are the basics.

Git requires any project to have a repository and a repository host. A

repository (a “repo”) is a place for a project to live – like a folder on your

computer. You can have as many different repos as you like, but it’s a good

idea to keep each repo self-contained to a single code base or project.

Repos need to live somewhere. This is where repository hosts come in.

GitHub is a very well-known host, as is Bitbucket. You can even self-host if

you’d prefer to. Repository hosting places your repos online, and accessible

over the Internet. To prevent any unauthorized tampering, repositories

are secured with credentials, so only authorized users can view or change

code – depending on the author’s preference.

Inside repositories code lives in branches. A branch is a specific

version of code within your repo. Suppose you have a website in your repo.

You have a branch named “master.” Every time your code goes into master,

the website gets updated. How would you test your code, or even store

half-finished code without everyone seeing it on the website? – by using

another branch. By creating a branch for work that is not yet ready, you can

enjoy the benefits of Git without disrupting other people or services that

rely on working code. You can have as many branches as you like, each

different to the main branch.

To start working on a code base, you need to get the code from the

repo to your computer. This is called cloning, or checking out. Through

Git (no copy and paste required), every file in the branch gets copied to

your computer. When you’ve made your changes, you need to get these

changes back into the branch. This is a commit. A meaningful message

accompanies each commit, so other developers know what happened

during this commit. Finally, you need to get your committed code from

your machine to the main repository. This is pushing. You push your

Chapter 2 Software Development primer

51

changes to the remote repository host. You can also pull changes from the

remote, if it’s changed since you last pulled it.

When you’re ready to get your code from one branch to another, you

need to make a pull request. If you are working on your own, this may

be acceptable immediately, but working in a team often necessitates

an approval process. How will other developers learn that your code is

available? How can your employers ensure you wrote adequate unit tests,

or followed any legal requirements or obligations you may be following?

A pull request is like saying “here’s my latest code, I want it to go into this

branch, would you mind taking a look at it.” Once a pull request is open,

you can decline it, or merge it. Repository hosts often offer tools to enable

discussions around pull requests. Business process often dictates that

a certain number of developers must look and approve a pull request

before it is merged. This ensures everyone is happy with the quality before

merging.

There are many more Git and version control tools and options

available, but I’ll cover most of these as and when you need them. The

specifics of how Git works and the intricacies of these commands can get

complicated, but you don’t need to know everything about Git to start

using it right now.

 Deployments
Writing the best code in the world is no good if you can’t put it anywhere,

and this is where deployments come in. Deploying your code gets it in

front of people, running on a server somewhere. This could be a Raspberry

Pi, physical server, or cloud computing service such as Amazon Web

Services (AWS) (https://aws.amazon.com/) or Google Cloud Platform

(GCP) (https://cloud.google.com/). It doesn’t matter where this code

lives but the method to get your code from repository to host is what

matters.

Chapter 2 Software Development primer

https://aws.amazon.com/
https://cloud.google.com/

52

Little and often is the mantra here. As soon as your code reaches a

specific branch (often designated as “master”), an automated system

should deploy this to the server for you. It’s possible to manually deploy

code, but this is troublesome. You have to remember all the steps,

passwords, and servers. It takes time, and it’s a major effort for minimal

gains. It’s possible to automate the whole deployment process, including

rollbacks in the event of a catastrophe. We’ll build a deployment pipeline

later on during the project chapters, but there are a few concepts worth

considering.

To ensure a good deployment process, you need a good pipeline.

Pipelines drive deployments and are crucial to ensuring strong and stable

software gets released with a minimal amount of risk. Pipelines are a set

of automated steps followed to deploy software. The input of each step is

based on the output of a previous step. If the first step fails, there’s no need

to continue with future steps. A basic pipeline may look like this:

 1. Run unit tests.

 2. Run integration tests.

 3. Run load tests.

 4. Deploy.

 5. Validate release.

If the unit tests fail, the software won’t deploy. This keeps you safe. You

need to have unit tests to begin with, but what’s the point of having them if

you ignore the failures? By requiring the tests to pass to deploy, you can be

confident that code that fails the tests will not reach the customer.

This is a basic example, and larger code bases may have many more

steps. Some pipelines automate everything. If the release fails, they roll

back to the previous known working version. The Raspberry Pi pipeline

you’ll configure later on won’t go this far, but it will check the unit tests

pass before allowing you to merge. Tools such as Jenkins or Travis facilitate

this pipeline process, although these are not covered in this book.

Chapter 2 Software Development primer

53

Blue/green deployment is a technique which is only cost-effective on a

cloud computing platform. In the traditional server-based approach (and

the pipeline discussed earlier), there’s one massive server. Deployments

release the change and, if it fails, revert back to a previous change. This

works, but it has its flaws. There’s no way to quickly revert the code back

to a working state, and every user gains the new code immediately. Blue/

green deployments create a brand-new server for the new code and run

this alongside the old server with the old code. Once it’s ready and tested,

customers get moved to the new server all at once. If there’s an issue once

customers use it, they all get migrated back to the old server.

With physical hardware-based servers, blue/green deployments

are difficult to achieve. It’s possible, but not easy or cheap. Cloud

infrastructure makes this so much easier to achieve. You can create new

servers almost instantly, and then turn them off after the release to save

money.

Canary releases are like blue/green deployments (and may work in

conjunction with them). Like blue/green deployments, once the code is

released on a new server, and it’s available, a small percentage of traffic

(perhaps 1%) moves to the new server. If it’s stable, more traffic gets sent

over. This continues until everyone is on the new release, and the old

server gets switched off.

Should the new release fail, everyone can stay on the old release. Only

a small percentage of customers get affected. These customers can move

back to the old server. This has massive benefits. Fewer customers have a

bad experience in the event of a bad release, and you can be confident that

new code releases won’t cause an outage for every user.

While a car system may not need blue/green deployments or a canary

release, what about automated updates? While not used in this project,

many software applications update themselves automatically. Many cars

gain updates in a process known as over-the-air updating. If you’re a car

manufacturer, it makes sense to trial an update on a small number of cars,

before pushing it out to all your customers and risk breaking every car.

Chapter 2 Software Development primer

54

Note i haven’t discussed Ci/CD pipelines. Ci/CD stands for
continuous integration and continuous delivery (sometimes
deployment). it’s the process of constantly integrating and delivering
code/features. if you wait until the very end of a project to start
integrating it, testing it, and delivering features, you may find a large
number of things which don’t work, or are not to the customer’s
needs. By constantly integrating and getting feedback, you can adapt
to changing requirements, circumstances, or errors.

 Chapter Summary
Throughout this chapter you’ve learned the basics of computer science.

You’ve studied how programming languages work, and how version

control, debugging, object-oriented programming, and more exist to make

your life as a developer easier, safer, and help to prevent bugs arising in the

first place.

You’ve seen some tragic case studies from history which illustrate how

badly things can go wrong when proper care is not taken when developing

software, and used the benefit of hindsight to critique these historical

events.

In the next chapter, you’ll learn what the projects in this book involve.

The software packages you’ll use and the hardware you need to buy to

follow along.

Chapter 2 Software Development primer

55© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_3

CHAPTER 3

Project Overview
Chapter goal: Understand how this project is structured
and what equipment you need to follow along.

By now you should have an understanding of software development

processes, tools, and best practices. Chapter 2 covered the basic building

blocks needed to make you a software developer, and not just someone

who can write code. With that in mind, this chapter aims to provide you

with an overview of the mini-projects covered in the following chapters

and explains how these projects work together to produce a complete

system in the form of a smart car dashboard.

Chapter 2 is intended as both a software development primer and a

beginner’s reference guide. If you’re unsure about an aspect of a mini-

project, refer back to Chapter 2, but remember that it’s a beginner’s guide,

so it naturally can’t go into intricate details for every topic. This chapter

and all those following furnish you with further information and practical

examples as you need to know them.

The mini-projects encompassed in the following chapters are

designed as stand-alone projects. Each one builds upon skills learned in

the previous chapter, yet jumping right into a project doesn’t mandate

the completion of all the previous projects. By working through each

chapter sequentially, you will produce a fully functional in-car computer

or smart dashboard. While these projects involve electronic circuits,

https://doi.org/10.1007/978-1-4842-6080-7_3#DOI

56

sensors, and interactive components, these are all software-heavy projects.

Sensors provide data and facilitate interaction with the outside world; the

Raspberry Pi and software you write does all of the hard work.

 Project Structure
This smart dashboard is similar to the one you might find in your car,

although it’s significantly more intelligent than that of an entry-level

model. The Pi drives a full-color LCD display which outputs an abundance

of real-time sensor data – data such as the temperature, time, reversing

status (complete with rear camera), available light, a boot sensor, fog light

sensors, and more.

The Pi is connected to a series of simple electronic circuits installed

in your car – although installation is optional if you’d prefer not to tinker

with your pride and joy. Code developed in Python interrogates these

sensors, interprets the results, and displays them to you in a functional and

aesthetically pleasing way. You could run this project on any computer, but

the Pi’s size, price, and energy consumption make it a clear winner here.

Rather than developing a graphical user interface (GUI) from scratch,

this project displays information to the user via a web server and basic

HTML web page. This has many advantages. Primarily, it’s easy to

produce and fast to load. It may not be the most efficient way to design an

application, but it’s certainly the easiest. It’s good enough for this project

and is the way most applications are heading through software-as-a-service

(SaaS) models. By letting Python handle the hard work, and limiting the

client-side code (JavaScript), the main downsides of an HTML GUI are

mitigated.

Chapter 3 projeCt overview

57

Note Client-side code is code executed by your web browser.
this uses the client’s computer (that’s you or me) to do some work.
javaScript is the language of choice for this, and it can greatly
enhance the user experience of a website. the downside is that it’s
slow to run, and user support varies for different commands.

the alternative to client-side code is server-side code. this is code
executed by a server of some kind, written in a server-side language
such as python. in this project, the pi is both the client and the server,
and as the server can execute code far faster than the client, it
makes sense to restrict the javaScript in use and let python do all the
hard work.

Once completed, you could easily extend this project. A Bluetooth

module provides endless expansion options – Apple CarPlay or Android

Auto support. Electronic seat driver profiles, keyless entry, or anti-theft

driver photography and tracking are all very real and achievable projects

building upon the skills learned here.

As with all modern gadgets, this is a software-heavy project. Python

is easy to write, easy to understand, and “fast enough” for this use case.

Some may argue that compiled languages such as C++ or Java are far better

choices, yet their relative complexity is enough to scare most people off

such a project. Besides, Python is rapidly growing as the number one choice

for many different projects, and it’s been around long enough now to ensure

a thriving and active ecosystem exists to serve you and your needs.

If you’re familiar with digital car diagnostics, you may be screaming at

me right now. Modern cars equipped with OBD-2 (onboard-diagnostics)

ports can provide an abundance of car data to anyone who cares to

connect to the port. Statistics such as engine error codes, current

revolutions per minute (RPM), engine health, fuel efficiency, and much

more are available.

Chapter 3 projeCt overview

58

Here’s the problem with the OBD-2 port: It’s for mechanics. Sure, you

or I might find some useful information in the torrent of data provided

by the car, but its primary purpose is to aid with troubleshooting and

diagnostics. It generally won’t augment your experience as a driver, and

it’s harder to connect to and use than a home-brew solution. Granted,

consumer USB or stand-alone OBD-2 modules exist, but those would

boil this project down to reading in existing data and spitting it out to

the screen. The Raspberry Pi presents a truly exciting opportunity to

learn basic electronics skills, and really hone your software development

experience skills.

 The Hardware
The Raspberry Pi provides the processing power for this project. It’s

cheap enough to be accessible to most people and powerful enough to

run a huge number of applications. It has a host of different input/output

(I/O) ports and is easily extended with a variety of affordable hardware

components. As outlined in Chapter 2, there are several different models

of Raspberry Pis. While processing power and style of I/O ports often

changes, the basic structure of the Pi itself is very consistent. These

projects will work on almost any Pi model, although early revisions may

struggle due to their limited processor speeds and the amount of RAM

they use. Any model from the Model 2 B+ and above will work with these

projects, providing you account for the slight changes in I/O location

between models. For the purposes of consistency, I am using a Pi 4 Model

B 4GB throughout this book.

You’ll need a power supply to run your Raspberry Pi. During the

development stage of these projects, a mobile phone charger or dedicated

Pi power supply is suitable. For final installation in a car (well known for

their lack of mains power sockets), you’ll need a different power solution.

Early Pi models require a micro-USB charger capable of providing 3A of

Chapter 3 projeCt overview

59

current. For modern boards, a USB Type-C charger of the same rating is

needed.

You’ll also need a microSD card. This is the solid-state hard drive

for your Pi. Not only does it store the entire Pi operating system, but it

stores all of your settings, configurations, and application logic. These are

reasonably priced (the $10–$20 range) and smaller than your fingernail.

Ensure you buy a “class 10” or higher memory card, which is the speed

rating of the card. These faster cards can handle the needs of a Pi with

ease. As these projects don’t need to store reams of data, 8GB is more than

enough storage space (although larger capacity cards won’t cause any

problems). A 4GB memory card is not large enough.

For development at home, you may want to buy a Pi case. These

pieces of plastic, wood, or metal are like phone cases or the case for your

computer. They protect the hardware while still allowing easy access to

the ports. They serve to protect your Pi from excess grease and grime from

your fingers, along with shielding it from errant fingers and providing

protection from knocks and falls. In one instance, cases protect Pis from

undesirable photoelectric effects! These cost a few dollars and are available

in a huge variety of shapes and styles.

Fun Fact when released, the pi 2 would instantly power-down
when photographed with a flash! this is due to an exposed
component known as the wLCSp package. this component regulates
the power delivered to the pi’s processor, and the intense light
delivered by a camera flash is enough to confuse this part. when
confused, the wLCSp cannot function properly, so the pi promptly
turns off. this isn’t dangerous, and won’t damage the pi. Using a
case or otherwise obscuring this circuit prevents the problem from
happening.

Chapter 3 projeCt overview

60

wLCSp stands for wafer-level chip-scale package. it refers to the
process of packaging a component at the wafer level. in short, it’s a
way to produce tiNY integrated circuits, found in devices such as the
raspberry pi and the iphone.

For the screen, you can choose any suitable display you own or have

access to. The keyword here is suitable. It’s perfectly possible to build this

project with a spare 17-inch LCD from your old computer, but that’s not

very practical for a car. A 3.5-inch HDMI display is a good choice, and it

doesn’t need to be a touchscreen. These cost between $20 and $50, and

you can buy them on Amazon, or any large retailer such as Walmart. Often

a miniature HDMI cable to connect the Pi to the display is included, but

you may need to buy a standard HDMI cable if you don’t get one, or you

wish to install the Pi in a different location to the screen.

 Electronic Components
Aside from the Pi and associated electronic parts, you’ll need a selection

of electronic components. These range from tire pressure sensors to

breadboards, resistors, wires, and LEDs. While covered in greater detail

during the mini-projects, here are the basics.

A solderless breadboard is used to quickly construct temporary

circuits. These let you rewire them in mere seconds, and greatly speed up

the experimental section of a project. These are no good for permanent

use, or installation in a car. Breadboards contain several power rails

spanning the length of the board. These allow for easy (low voltage) power

distribution to the whole board. The middle contains a gap – this is wide

enough to place dual inline packages (small processors to augment the Pi,

or microswitches, all of which share this common spacing). Surrounding

this gap are independent rows with five holes each. Each series of five

holes is connected, but each group of five is independent of the next.

Chapter 3 projeCt overview

61

This lets you wire circuits without fear of a short-circuit. Sizes are defined

by the number of points (or tie points). Something in the 400–800 range is

a good start.

Fun Fact Breadboards are so named because they were literal
breadboards from the kitchen! Before solderless breadboards arrived,
hobby engineers used wooden breadboards with nails or thumbtacks
pushed into them. By wrapping strands of wire around these ad hoc
terminal points, it was possible to construct crude circuits. as you
can imagine, real breadboards are hard to manage and take a lot of
time to build any circuit. thank goodness for plastic and solderless
breadboards.

Breadboards are wired with solid-core wire or hookup wires. These

wires connect different components to each other and the Pi. By fitting into

the gaps in the breadboard, you can complete the circuit. They are often

called jumper wires and are covered in plastic to prevent short-circuits.

Resistors are an essential electronic component. They resist the flow of

electricity. This is useful to prevent components from overheating due to

excessive electricity. Resistors work by converting electricity to heat. This

loss reduces the voltage available to the other part of the circuit. In theory,

any resistor will work with any voltage, but are generally sized for the job at

hand, both to save money and prevent excessive heat generation and early

failure.

Resistors are specified with a power rating and a resistance. This

indicates the maximum load that the resistor can safely dissipate. As a

loose rule, bigger resistors can handle a bigger load, but every resistor sold

is designed and tested with a specific maximum load. The power rating of

a resistor is measured in watts (W). The resistance is measured in ohms (Ω).

Ohms specify the maximum resistance this resistor can safely provide. You

don’t have to max this out in your circuit, and there’s a formula you can

Chapter 3 projeCt overview

62

use to calculate resistance and power. Resistors don’t have a polarity – they

work the same backward as forward.

The physics behind electronic components such as these are

fascinating, and many books can and have been written on the topic. As

such, I can’t dive into this topic as deeply as would be preferred – I’d be

here all day!

The Dallas DS18B20 temperature sensor unit lets your Pi sense

the temperature of its environment. You could use several of these to

determine the temperature outside the car, inside the car, and inside the

engine bay. These complete units only require one wire to operate (in

addition to a power connection).

Light-dependent resistors (LDRs) or photoresistors are variable

resistors that alter the resistance depending on the available light. They

cost a few cents and are simple to use. They are a great way to augment

your Pi with light-sensing capabilities.

Fuses exist to protect circuits in the event of a failure. If there’s a short-

circuit, or other failure resulting in a runway current draw, the fuse breaks

and breaks the circuit. Ensure you use fuses rated for your application, and

don’t use a bigger fuse, or worse – replace one with aluminum foil!

A piezo is a fascinating device that converts electrical energy into

sound by expanding or contracting a thin membrane. By varying

the amount of time power is applied for (and sizing the membrane

accordingly), you can produce a beep or buzzing sound. If so desired, you

can even play a tune on one, but that’s not covered in this book. These cost

$1–$2.

Finally, the KY-032 infrared (IR) unit is a tiny circuit. It uses an

integrated circuit (IC) to generate, pulse, transmit, and then measure IR

signals bouncing off nearby subjects. Available for a few dollars, this circuit

is easy to implement and is a brilliant way to enhance your car.

Chapter 3 projeCt overview

63

 Equipment List
This list serves as a master list of everything you need to follow along with

these projects. These are repeated during the projects, but if you’d like to

buy them all in one go, then here’s what you need. In some cases, it may

not be possible to buy the exact item required – and that’s OK. For the vast

majority of items, a close enough match is almost always as good as the

original item, but in circumstances where a close match is critical, these

items are denoted with an asterisk (*).

Core Components

• 1 x Raspberry Pi 4 Model B (or newer)

• 1 x Pi power supply (3A, USB Type-C)

• 1 x 8GB (minimum) class 10 microSD card*

• 1 x stylish Pi case (optional)

• 1 x 3.5-inch or larger LCD HDMI display*

• 1 x micro-HDMI to full-size HDMI cable

• 1 x USB keyboard

• 1 x USB mouse

• 1 x official Pi Camera module V2*

• 1 x jewelers’ screwdriver set

Electronic Components

• 1 x 830-point breadboard*

• Assorted breadboard jumper wires – male and female

• 1 x Dallas DS18B20 temperature sensor unit (with

integrated 4.7k ohm, 0.25 watt resistor)

• 1 x miniature momentary tactile switch

Chapter 3 projeCt overview

64

• 1 x photoresistor/light-dependent resistor

• 2 x 23k ohm, 0.25 watt resistors

• 2 x 250mA fuses*

• 1 x 3v piezo element

• 1 x 3v KY-032 IR sensor module

 Chapter Summary
This chapter presents and equips you with everything required to

begin the project. You should understand the software side, how the

application will be structured, and what language and frameworks you’ll

use. You learned the basic theory of how this application will read its

sensors, and present that data to the display. Not only do you have a basic

understanding of the electronic components that power this system,

but you have a shopping list of exactly what you need to buy to begin

construction of your own smart car dashboard.

In the next chapter, you’ll learn how to prepare your computer to

write Python, run unit tests, and safely store your code in a version control

system.

Chapter 3 projeCt overview

65© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_4

CHAPTER 4

Local Development
Configuration
Chapter goal: Configure your computer to write Python
and develop the application. Set up a local development
environment on your computer. Configure a Git
repository to store your code, and learn how to run both
your code and unit tests on your computer.

Throughout this book, you’ve mainly learned theoretical computer

science, case studies, and best practices, along with an introduction to the

Pi and an overview of the software and hardware needed to follow along

with these projects. You should now know the “why,” but not the “how.”

This practical chapter covers the first steps needed to begin building the

project.

A local development environment is the first and the most important

tool in your software developer’s toolkit. This lets you write code, write

unit tests, safely store and version your code, and rapidly make changes

with instant feedback. By running the project on your computer, you can

quickly iterate over new designs and features and experiment with code.

You don’t even need a Raspberry Pi at this stage.

https://doi.org/10.1007/978-1-4842-6080-7_4#DOI

66

Note Running code on your computer instead of the Pi itself
provides one major benefit: speed! It’s far quicker and easier to run
your code locally instead of remotely. With a build pipeline hanging
off your Git repo, it could take several minutes to deploy code to
the Pi. This doesn’t sound like a lot, but it gets tedious very quickly,
especially if you change something simple like a comma or a bracket.
Running code on your computer lets you instantly see the changes –
it’s as fast as pressing save.

There is a time and a place for running and testing code on the Pi
itself, as your computer is not a Pi and behaves very differently in
terms of supported hardware, processing speed, and CPU instruction
set. Later on, you’ll learn when and why to deploy to your Pi.

Throughout this book, the instructions given are specifically for macOS

Unix and the Raspberry Pi’s Debian-based Raspbian operating systems.

Linux users should have no problem running the commands on a different

operating system – in some cases, they are the same commands. Microsoft

Windows users may struggle to complete some of the console-heavy

instructions.

Despite its popularity with consumers, writing code on a Windows

machine is more difficult than it should be, and the vast majority of

Windows development machines are used for working with Microsoft

technologies. If you’re attempting this project on a Windows computer,

pay special attention to the instructions. Once you know what you need

to do, you may need to figure out how to achieve this in Windows. Often,

a simple console command on Mac or Linux requires a GUI installer on

Windows.

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

67

 Getting Started with Python
Almost any current version of Python will work with these projects

(although you may have to perform your own troubleshooting and

investigation if certain features are not available in older releases of

Python). I don’t recommend you use Python version 2 releases, as

discussed in Chapter 2. Many new Python modules will simply not work

with old versions of Python, and it is officially deprecated – meaning you

shouldn’t begin new projects with it.

Other languages could work with this project. Perhaps PHP, Java,

or Go would work, but at the very least, you’d need to know how to

develop in those languages, and much of the guidance in the following

chapters would be rendered useless by choosing a language other than

Python. You’d also need to learn how to interface with the sensors, and

how to read the camera stream and various other components for the

projects. The Official Pi APACHE server tutorial (www.raspberrypi.org/

documentation/remote-access/web-server/apache.md) may be a good

starting point for one of these alternative languages.

Don’t forget that the vast majority of Pi projects are implemented in

Python. There exists a vast range of articles, papers, Tweets, and tutorials

around Python on the Pi, which is significantly reduced when working in

other languages.

Python is quick to learn, easy to read, and uses standard English

keywords. Its popularity is going from strength to strength right now, and

the Pi is perfectly paired to work with Python as the go-to language.

In order to run any Python scripts, you need to install a Python

interpreter. This reads your Python code and translates it into instructions

your computer can understand. This happens in real time, and a Python

interpreter is often simply called Python. When you run code with Python

version 3.7 (www.python.org/downloads/release/python-370/), you are

simply using the Python interpreter, version 3.7.

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

http://www.raspberrypi.org/documentation/remote-access/web-server/apache.md
http://www.raspberrypi.org/documentation/remote-access/web-server/apache.md
http://www.python.org/downloads/release/python-370/

68

macOS comes with a Python interpreter preinstalled, but it’s not a

good practice to use this. This Python is required by some tools used by

your operating system. It can change without warning and is usually an

old version such as Python 2.7. There’s also the problem of dependencies.

Libraries you import into your code are called modules – your code is

dependent on these. If these modules are not part of the Python core

library, then you need to install them. If you have two projects both using

your system Python, then it’s common for both projects to install modules

and compete with each other. Perhaps the first project needs version one

of a module, but another project needs version two. This is difficult to

manage and frustrating to work with.

Solving this dependency problem is simple enough – in theory. You

can install specific versions of Python, and install your modules into a

virtual environment, which uses any version of Python you have installed.

Virtual environments keep all your modules isolated from other projects.

Everything installs into a self-contained place. You can create as many as

you like – one for each project is sufficient. This ensures that changes to

modules in project A don’t impact project B.

This project uses Python 3.7, so get started by installing this version.

Open a new Terminal either from your applications folder or by going to

Spotlight Search ➤ Terminal.
You could immediately install Python 3.7, but there’s a better way to

manage Python versions. A tool called Pyenv lets you install, uninstall,

manage, and switch Python versions on a per-project level. It’s easy to use

and takes away a lot of the hard work of managing multiple versions of

python.

Pyenv is a free tool available on GitHub at https://github.com/

pyenv/pyenv. A Windows fork is available at https://github.com/

pyenv- win/pyenv-win. Pyenv provides detailed installation instructions,

but installation through a tool called Homebrew is far simpler and is a

common approach for dev tools on macOS.

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv
https://github.com/pyenv-win/pyenv-win
https://github.com/pyenv-win/pyenv-win

69

Homebrew is a package manager for Mac and Linux. Available at

https://brew.sh/, Homebrew lets you install Mac packages (such as

pyenv) from your command line. It’s free, and marketed as “The Missing

Package Manager for macOS (or Linux).” Different packages are defined

as formulas, and you can see the full list at https://formulae.brew.sh/

formula/.

Back in your terminal, install Homebrew with the following command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.

com/Homebrew/install/master/install)"

This uses Ruby (included with macOS) to download a build script from

GitHub and then run it. This will install Homebrew on your computer,

but before running, it lists what it will install and what directories will be

created. Click Return to continue the installation. Various words, modules,

and formulas will fill up your terminal, but after a few short minutes, you

should see “Installation successful!” if everything went to plan. If your

installation failed, then take a look at the Homebrew troubleshooting tips

available at https://docs.brew.sh/Common-Issues.

Go ahead and use Homebrew to install pyenv:

brew install pyenv

Homebrew will update you on the status of this installation. Often it

begins by downloading the code for the latest package version and then

installing it, which Homebrew calls “pouring.”

Once installed, pyenv needs a configuration. This is done through the

pyenv init command. This ensures pyenv works properly when using any

other Python commands. Do this by adding the command to your

~/.bash_profile, which this command will do for you:

echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval

"$(pyenv init -)"\nfi' >> ~/.bash_profile

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://brew.sh/
https://formulae.brew.sh/formula/
https://formulae.brew.sh/formula/
https://docs.brew.sh/Common-Issues

70

Now restart your shell to pick up this change:

exec "$SHELL"

Note The .bash_profile is a configuration file for your bash shell
(mac Terminal). When you start a new bash session, the shell looks at
this config file. It’s used to configure packages and export variables.
Depending on your operating system, this file works and is named
slightly differently. macoS Catalina uses ZSh (.zshrc config file) as the
default interactive shell, and Linux systems may use additional files,
such as .bashrc. Check the pyenv installation guide at https://
github.com/pyenv/pyenv for detailed instructions across many
operating systems.

The intricacies of how pyenv works are complex, and well explained in

the pyenv GitHub repo. In short, whenever your Python applications run,

they specify the version of Python they need. Before this command reaches

your operating system’s Python interpreter, pyenv jumps in and redirects

the command to the version of Python managed by pyenv. It basically

intercepts Python commands and redirects them to the correct version of

Python.

The projects contained in this book use Python version 3.7. You can

install Python with pyenv. Pyenv has access to many different versions of

Python, so run this command to list the available versions of Python 3:

pyenv install --list | grep " 3\.[7]"

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv

71

This is really two commands in one. The first half (pyenv install --list)

lists all the versions of Python available to install with pyenv. As there are

hundreds of versions, that’s a bit excessive. The pipe symbol (|) instructs

the shell to run another command after pyenv has finished, using the

output of pyenv as the input to the next command. You can chain together

as many commands as you like this way. Finally, grep filters down the list

to only the Python 3.7 versions (grep “ 3\.[7]”). You can see the output of

this command in Figure 4-1.

Any version of Python 3.7 is suitable for these projects, but as a best

security practice, you should generally aim to install the latest stable

version unless it contains breaking changes. Python version 3.7.6 is the

version used by these projects (but newer versions should work just fine).

Install this Python interpreter with pyenv install (sample output shown in

Figure 4-2):

pyenv install 3.7.6

Figure 4-1. All the Python 3.7 versions listed by Pyenv

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

72

Just like the previous commands, pyenv lists the various steps in this

process as it goes. Once installed, you can list all the available Python

versions with pyenv versions (shown in Figure 4-3):

pyenv versions

Here you’ll see any versions of Python you’ve installed with pyenv,

alongside your system Python. The asterisk indicates your default Python.

Despite installing Python 3.7.6, this is still your system Python. Run a

Python shell to get the version and see (shown in Figure 4-4):

python --version

Figure 4-3. Installed Python versions listed by Pyenv

Figure 4-2. Console output during the installation of Python
version 3.7.6

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

73

To use the newly installed Python 3.7.6, you need to instruct pyenv

to configure 3.7.6 as the default Python. You can do this with the global
option:

pyenv global 3.7.6

Now when you get the Python version from a Python shell, it should

match the version you installed. Python 3.7.6 is now installed, and you can

move on to the next step.

Breaking changes are those which are not backward compatible
with previous software versions. If you’re upgrading to a breaking
version of a package, your code may not work properly, and you may
need to make changes to ensure it functions the same as it did with
the previous version.

Developers try to ensure changes don’t cause major issues, and you
can often upgrade packages without issue. In the case of breaking
changes, sometimes it’s just not possible to rework the code in a
way that doesn’t cause an issue for someone. a good example of a
breaking change is the migration from Python 2 to Python 3.

A Python package called Pipenv (https://github.com/pypa/pipenv)

is needed to handle your virtual environment. This solves many module

import issues and ensures any modules you use in this project won’t

interfere with other projects – either current or future.

Figure 4-4. Console output of the current system Python version

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://github.com/pypa/pipenv

74

Install Pipenv with the pip install command:

pip install pipenv

Pip is the default package installer for Python. In most instances, it is

installed alongside Python. This command instructs Pip to install Pipenv.

If you receive a warning about your version of Pip, you can install the latest

version with the upgrade command:

pip install --upgrade pip

Pip will install Pipenv into your global system Python. This seems

at odds with my recent advice to always install modules into a virtual

environment and never mess with system Python. In this case, Pipenv is

the virtual environment manager, which makes it tricky to install in its own

virtual environment. As Pipenv is the basis of virtual environments across

many Python projects on your computer, it receives a pardon and goes into

your global Python. Once installed, all future modules can install into their

own, isolated, virtual environments.

You’ll revisit Pipenv later on in this chapter, so for now, all you need to

do is install it.

 Git and GitHub Repository Configuration
Git is one of if not the most popular version control systems in use today,

and for good reason. Creating manual revisions of files may work for

graphic designers or writers, but the vast number of changes made by

software developers on a daily basis mandates the need for a robust code

storage solution.

Git lets you store, share, collaborate, restore, undo, experiment, and

back up your code easily, and it’s free. GitHub exists as a web platform

and remote Git host. While you may not need to share code with other

people, free, secure, online code hosting is a wonderful tool to have at your

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

75

disposal. Other tools exist, but GitHub is free to get started with and is very

popular with the open source community.

The official Raspberry Pi Git tutorial may assist you here, available at

https://projects.raspberrypi.org/en/projects/getting-started-

with-git.

Get started by visiting https://github.com and creating a free account

if you don’t already have one. Enter a username, an email address, and a

password right from the home screen (illustrated in Figure 4-5). Follow the

onscreen steps to confirm your email address by clicking a confirmation

link sent to you.

Figure 4-5. GitHub welcome screen

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://projects.raspberrypi.org/en/projects/getting-started-with-git
https://projects.raspberrypi.org/en/projects/getting-started-with-git
https://github.com

76

Once registered, you’ll see the main GitHub dashboard (Figure 4- 6).

To start this project, you need a repository, which is a place to store

related code. Generally, each individual project starts with a new

repository. When developing code based on another’s work, it’s common

to “fork” a repository. This copies all the code in a repo and makes

a new independent repo. Feel free to clone this project’s repository

from https://github.com/CoburnJoe/Pi-Car, but for the purposes of

education, you’ll re-create this entire code base from scratch in your own

brand-new repo.

Figure 4-6. Main GitHub dashboard

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://github.com/CoburnJoe/Pi-Car

77

From the left of the GitHub dashboard is a Repositories menu. Choose

the green New button from this menu. You need to complete some basic

information about your new repository (shown in Figure 4-7). These are as

follows:

• Repository name – This is unique to your account.

• Optional description – A brief overview of your project.

• Visibility – Public or private. With public access, anyone

can see and potentially contribute to your project. If

you’re not ready to share your code with the world

just yet, then choose private. Only you and people you

invite can see your private project.

Figure 4-7. GitHub new repository screen

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

78

• README initialization – A Git README file is where

you can write a quick guide to using this code, and it’s a

good practice to have one.

• .gitignore – .gitignore files tell Git not to include certain

files or folders when working on a project. Select the

Python option here for a boilerplate file.

When you’re ready, choose the Create repository button at the bottom

of the page. You’re almost ready to begin coding. The final step needed is

to get your new code and associated Git files onto your computer.

Note This Git configuration is all performed over the command line.
If you’re not comfortable with this, then various GUI Git tools exist
to aid you. I’d recommend learning the basics of Git first so you can
understand how these tools work instead of downloading and blindly
pressing buttons in one. If you’re still set on a Git GUI, then Github
Desktop (https://desktop.github.com/) or Sourcetree (www.
sourcetreeapp.com/) are both excellent choices, available for
both mac or Windows operating systems.

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://desktop.github.com/
http://www.sourcetreeapp.com/
http://www.sourcetreeapp.com/

79

After creating your repository (or selecting it from the repository menu

on the main GitHub dashboard), you’ll see the main repository overview

screen, shown in Figure 4-8. Choose Clone or download from the top right

and copy the link to the .git file of your repository. This lets Git know where

to find your project. For my repository, this looks like this:

https://github.com/CoburnJoe/Pi-Car.git

Your repository link will contain your username and repository name.

Pointing your computer to this repository is simple enough, but you need

Git itself installed for this to work. Open a new Terminal and install Git

with Homebrew:

brew install git

Figure 4-8. The GitHub repository landing page

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://github.com/CoburnJoe/Pi-Car.git

80

After installation, verify it is working with the Git version command:

git --version

This will spit out your current Git version. Finally, configure your local

Git name and email address. Git and GitHub will work without this, but it

helps Git associate your account with you:

git config --global user.name "Your Name"

git config --global user.email "The email address used with

your GitHub account"

You only need to do this configuration once after installing Git. Git

retains this information across all projects on your computer.

Jumping back to the repository link you previously copied, download

this using the Git clone command, followed by the repository link:

git clone https://github.com/CoburnJoe/Pi-Car.git

This will copy all the code from your repository onto your computer,

and the sample output is shown in Figure 4-9. It will link up Git to your

repo, so you can push and pull code and perform other Git associated

commands. You can now begin writing code.

Figure 4-9. Sample console output when Git cloning a repository

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

81

 Integrated Development Environment Setup
Now you have a way to run Python, a place for your code to live, and a way

to track changes, you need a way to write code. You may be familiar with

command-line editing tools such as Vi, Vim, or Nano, but an integrated

development environment (IDE) provides a wealth of useful tooling and

features not possible in (some) other editors.

Subtly different to text editors such as Notepad++ or Sublime Text,

IDEs let you

• Compile code without leaving the program

• Run unit tests and measure code coverage

• Debug code and halt execution at arbitrary points in

time

In addition to this, IDEs often provide helpful warnings and

information about your code as you write it. They point out where you may

have made a typo or otherwise named something wrong. They can analyze

your code and pull out docstrings, parameter names, and best practices.

IDEs shouldn’t be shied away from as they can greatly improve your

efficiency as a developer.

My personal preference for a Python IDE is PyCharm, by JetBrains.

One reason for this preference is familiarity. I know the tool well – don’t

underestimate the performance increase you can achieve by using tools,

languages, and frameworks you are familiar with (providing they are

suitable for the task at hand). PyCharm has built-in version control and

conflict management tools, and a wealth of extensive tools, features,

and extensions available. JetBrains (the developers of PyCharm) have a

wealth of experience behind them, and continue to expand their software

with useful tools, features, and bug fixes. In addition to this, there is large

online PyCharm community, where you can find help to any issues you

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

82

encounter. The PyCharm learning center is a good place to start (www.

jetbrains.com/pycharm/learning-center/).

Available for free at www.jetbrains.com/pycharm/, PyCharm has a

wealth of tools built-in to make your life easier as a developer and to save

you time when writing Python. A professional version is available, but for

all the projects in this book, the free community edition is sufficient.

Head over to the JetBrains website and download the latest version

of PyCharm community edition. As of writing, this is version 2019.3.3,

released in February 2020 (see Figure 4-10). JetBrains will ask for

your email address, but your download will start shortly after with no

requirement to provide it.

If you have a preferred Python IDE, there’s no reason you can’t use it

to follow along with this book. Most of the examples given are executed

through macOS X terminal commands, with only a small section geared

toward PyCharm-specific steps.

Figure 4-10. PyCharm download screen

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

http://www.jetbrains.com/pycharm/learning-center/
http://www.jetbrains.com/pycharm/learning-center/
http://www.jetbrains.com/pycharm/

83

Once downloaded, click the Mac disk image (ending in .DMG). This

will mount the image onto your desktop and bring up a finder window

(Figure 4-11). Use this window to drag PyCharm into your Applications

folder, thereby installing it. If you like to keep a clean computer, then

unmount the volume afterward by dragging it to the trash.

Figure 4-11. PyCharm Mac installation

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

84

Open PyCharm, and click through their first installation steps, as

shown in Figure 4-12. Accept the license agreement and use the default

themes and shortcut keys (or customize how you like to work). When you

get to the Welcome to PyCharm menu, choose Open and navigate to the

local copy of your code which you cloned from your GitHub repository.

This tells PyCharm that everything in this folder is your project. When

opening a project for the first time, PyCharm needs some time to update

its indexes, which you can see it doing in Figure 4-13.

Figure 4-12. PyCharm first time landing page

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

85

PyCharm consists of four main areas. You’ll learn more about specific

parts as you progress through the projects, but to start with, these are the

following:

 1. The Project is on the left.

 2. The Navigation Bar is at the top, with buttons on

the right.

 3. The Tool Window Bar is at the bottom.

 4. The Main code editor is on the right.

These four key areas are shown along with the main PyCharm screen

in Figure 4-14.

Figure 4-13. PyCharm updating its indexes

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

86

The project area lists details about your project. It lists all of your

files (including hidden files used by Git). The navigation bar shows you

where the current file lives in relation to the whole project. It also provides

options to run your unit tests and modify your Python configuration. The

tool window bar at the bottom provides lots of useful tools. A terminal is

here, along with a Python console, version control options, and many more

features. Finally, the main code editor is where you can read and write

your code. Double-click a file to see it here. You can work with multiple

files, split this into two or more views, and more.

You’re now ready to begin writing code. By default, PyCharm will

automatically save any changes for you in the background. This only

happens when PyCharm loses focus – often when you click another

application such as your web browser or another PyCharm tab.

Figure 4-14. The main PyCharm project view

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

87

 Python Virtual Environment Configuration
If you look at the bottom right of PyCharm, it says Python 2.7. This isn’t

correct, as you’re using Python 3.7 for this project. To fix this, you need to

use Pipenv to create a new virtual environment, and then point PyCharm

at that. Start with a new terminal session – either through the Mac

Terminal application or by pressing Terminal in the Tool Window Bar

at the bottom of PyCharm. Create a virtual environment with the pipenv
install command:

pipenv install

This will create a new virtual environment for you using your global

Python version, which is configured as Python 3.7 as per the previous

instructions on Pyenv. Pipenv provides a status bar on this progress, but as

you have no other modules to install yet, it shouldn’t take very long.

Back in your Project pane, you’ll notice two new files. The Pipfile.lock

lists all the packages your project needs, and the Pipfile does the same but

in a more human-readable way. The Pipfile looks something like this:

[[source]]

name = "pypi"

url = "https://pypi.org/simple"

verify_ssl = true

[dev-packages]

[packages]

[requires]

python_version = "3.7"

Let’s break down these four sections. The source specifies where

to look to find any Python packages you need. For the vast majority

of projects, this is always PyPI, which is the de facto Python module

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

88

repository. If you need to install modules not found on PyPI, you’ll need to

specify a different source here. The dev-packages area lists any packages

and versions you need to write your code, but which you don’t need in the

final build. This is often linting tools, or a unit testing module.

The packages section lists any modules and versions your code needs

to work. Finally, the requires section lists any other dependencies. Your

Python version 3.7 is listed here, which outlines what version of Python is

needed to run this project.

This file will grow as you build the projects and import more modules

(other than those modules found in the Python core code base). This

file lists the modules you need, but not necessarily specific versions.

Installing modules listed as “*” will install the latest build and associated

dependencies.

The Pipfile.lock contains mostly the same information, but it serves

a different purpose. This is locked or pinned to specific versions. It’s used

for systems, pipelines, and automated tooling to read and install modules

from. This won’t ever install a newer version; it’s always locked to a specific

version listed when the file was last generated. It also contains hashes of

modules, which allows pipenv to verify the contents are exactly the same

as those it expects. This again prevents accidental upgrade of packages and

protects against a polluted remote source, which may serve up poisoned or

otherwise “tampered with” modules.

Let’s install some basic modules and see how this file changes. Back in

the terminal, install Flask, Pytest, and Black:

pipenv install flask

pipenv install pytest --dev

pipenv install black --pre --dev

Flask is the Python microframework which is the basis of this whole

project. Pytest is a very popular unit testing framework. Notice how

the --dev flag is used. This tells Pipenv to install this package under the

dev-packages section of the pipfile. Finally, the Black package is an

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

89

uncompromising code formatter. It reformats your code to meet the Python

recommended styles outlined by the Python community. It’s listed as an

“uncompromising code formatter.” It handles the formatting of your code,

so you can think about the logic and the stuff that really matters. Black is still

in prerelease, so the --pre flag ensures pipenv knows you really do want to

install it. Using a tool such as Black is a great habit to get into, especially if

you come to work with multiple developers on the same code base. You’ll

no longer argue over trivial semantic issues such as placement of commas,

which quotes you used, or how long lines are. It sounds trivial, but

everyone has a preferred style of code formatting. By using Black, it makes

all the code consistent. Don’t overlook how important this is.

Back in your pipfile, you’ll see it has updated to reflect your new

modules:

[[source]]

name = "pypi"

url = "https://pypi.org/simple"

verify_ssl = true

[dev-packages]

pytest = "*"

black = "*"

[packages]

flask = "*"

[requires]

python_version = "3.7"

[pipenv]

allow_prereleases = true

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

90

One final step needed in the terminal is to regenerate the pipfile.lock.

Pipenv won’t always do this for you. It doesn’t want to potentially break

anything upstream of your local code by inadvertently locking a newer

package – maybe one that contains breaking changes. Go ahead and

generate this yourself with the pipenv lock command:

pipenv lock

Finally, let’s run some of these newly installed packages. In the

terminal, you can run Black by telling it which file or folder to work on:

Black $PWD

The keyword Black is needed to run Black itself. The special $PWD

statement is a bash command. It stands for ”print working directory.”

When used with Black, this means “run Black on all the code from the

folder your terminal is currently in.”

Notice how this command failed? Something along the lines of “bash:

black: command not found”? This is because Black is installed in your

virtual environment. You need to enter this virtual environment to use the

packages in it. Do so with Pipenv shell:

pipenv shell

Notice how your terminal now says the name of your virtual

environment in brackets at the start of each line. Yours may vary slightly,

but for me, my terminal now looks like this:

(Pi-Car) bash-3.2$

This is a helpful reminder that you are in a virtual environment.

Go ahead and run that Black command again. If everything is working

correctly, Black will say that it has nothing to do. This is perfectly fine – you

have no Python files to format yet (but if you did, Black is ready to format

them).

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

91

Now run some unit tests with Pytest:

pytest

Once again, Pytest will say there are no tests to run. This is not a

problem – you simply haven’t written them yet. You didn’t think unit

testing would be that easy, did you?

You’re now all set with your virtual environment. It works. You can

install packages and update your pipfile and pipfile.lock. One final step

is to point PyCharm to your fresh environment. From the bottom right

of PyCharm, click Python 2.7 and choose Add Interpreter. Choose

Virtualenv Environment from the left-hand menu and then choose

Existing Environment. Find your version of Python (3.7) listed in the

Interpreter drop-down menu and then click OK. This menu is shown in

Figure 4-15.

Figure 4-15. PyCharm’s “Add Python Interpreter” menu

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

92

PyCharm will do some figuring out and perhaps recalculate its indexes.

When it’s ready, the bottom right of PyCharm will now say “Python 3.7,”

followed by the name of your virtual environment. Now you can use a

virtual environment in the terminal, or with any buttons and tools within

PyCharm itself.

Note You may have noticed a Pipenv option from the PyCharm
interpreter menu, so why must you select virtualenv instead? Pipenv
is really a wrapper around the Python package Virtualenv. By using
Pipenv, it’s really created your virtual environments with virtualenv in
the background (along with a few other helpful things). feel free to
select Pipenv and create a new virtual environment this way instead.
It’s not possible to point PyCharm to an existing Pipenv virtual
environment without selecting virtualenv. Knowing how Pipenv works
in the background is a much better place to be in than blindly relying
on PyCharm to operate it for you in either case.

 Git Workflow
Now that you have two new files, let’s get these into your Git repository.

You could just crudely shove these into the master branch, but that’s not

very refined. Many businesses are not willing to tolerate code going to a

customer without a code review – other developers looking and approving

of the changes.

You could argue that this code is just for you, and there’s no other

developers working on it, so you’ll shove it wherever you please. This is a

valid approach, yet as you’ll see shortly, your Raspberry Pi will look at the

master branch. If you blindly cram unstable or even unfinished code into

it, your Pi may not work until you finish the code. This may be acceptable

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

93

just for you, but again, if this was a real product, website, or business,

things randomly breaking is not an acceptable option.

By creating a branch, you can safely work and experiment on code

away from the main branches, and all the other developers and systems

which rely on them. A common system is a master branch, which is your

production code. A develop branch is used for nearly ready or possibly

unstable changes. The code goes into a feature branch (often stemming

from develop) while it is developed. When ready to share, it gets pull
requested (PR’d) to develop. You won’t need to get other developer’s

approvals if it’s just you on this project, but PRs provide an easy way to

undo a whole feature at a time.

Once merged into develop, you can pull request (PR) to master if

you’re ready to go “live.” A final option is that of urgent bug fixes. If there’s a

problem on the master branch (and therefore your production code), this

can be fixed with a branch taken off master. This is known as a hotfix, and

it goes back to master, bypassing develop. Once the crisis is over, you can

merge it from master down to develop, to keep everything in sync.

With all that said, let’s go ahead and create a develop branch.

These projects won’t use feature branches, but feel free to if you’d like

the practice (the Git process remains unchanged). From the PyCharm

terminal, create a new local branch with the git checkout command:

git checkout -b develop

This creates a new branch called develop. The checkout command

lets you switch between local branches, and by using the -b flag, you can

create a new branch with a name – in this case, “develop.” Notice how

Git confirms the command it just executed, and the bottom right of your

PyCharm window shows the current branch.

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

94

Use git status to see a list of files that have changed and are either

staged already or untracked and uncommitted, shown in Figure 4-16:

git status

This returns three files so far (or more if you’ve made other changes):

.idea/

Pipfile

Pipfile.lock

The Pipfile and Pipfile.lock are expected changes, but what is the

.idea folder, and where did it come from? This is a PyCharm folder. You

don’t need it in your repository, and you can safely ignore it. To ignore this

folder from all your Git commands, you need to add it to your .gitignore.

Remember, GitHub automatically generated a Python-specific .gitignore

file for you. Add this folder to your .gitignore file with this command:

echo .idea/ >> .gitignore

Figure 4-16. Untracked files highlighted by Git

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

95

This is a bash command to add “.idea/” to your .gitignore file. You

don’t need to open the file; this will append to the end of it. Now when you

check the git status, you’ll see three files, but with a difference. The .idea

folder has gone, but it’s now been replaced by your .gitignore file. You’ve

modified this file, so you now need to commit it.

Committing in Git saves your changes at a point in time. This only

happens to your local Git repository, so it’s not the final say, but it’s an

important command to understand. Before you can commit changes,

however, you need to tell Git which files to commit. You could use

something like this:

git add .

But this is a bad practice. This command adds ALL changed files to

your local Git. You may accidentally commit testing files, passwords,

repository or access keys, or any other number of files you don’t want to

share. By explicitly adding the files you want to commit, you can avoid all

of these issues. Use git add to let Git know which files you want to commit:

git add .gitignore

git add Pipfile

git add Pipfile.lock

Figure 4-17. Tracked files highlighted by Git

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

96

If you run git status again, you’ll see all three of these files have turned

green, indicating that they have been staged ready to commit (shown in

Figure 4-17). Commit them with git commit:

git commit -m "First pipfile"

The -m option lets you type a message to accompany your commit.

Make this descriptive so that you can understand what this change is,

and any other developers who may look at this Git history in the future.

It sounds simple but lacking the discipline to write good messages here

will cause you trouble later on – either when you’re trying to track down

what changes occurred in a repo, or you start working with other people,

who look at you quizzically as to why you let your cat walk all over your

keyboard with regard to your commit messages.

The final step needed is to push these changes. This tells Git to get

all your changes and then commit and send it to the remote repository –

GitHub in this case. This gets the code off your machine. It backs it up

remotely and ensures other developers can see and work with it. Without

pushing to a remote repository, your code exists only on your computer.

As this branch does not exist in GitHub just yet, you need to tell Git to

make the branch on the remote repository first with the --set-upstream

option:

git push --set-upstream origin develop

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

97

Providing you’re not violating any repository rules configured on

GitHub, and there are no surprises (such as a bad Internet connection,

or an outage at GitHub), then you’ll see a push confirmation message,

highlighted in Figure 4-18. These may vary in time depending on the

number and size of the changes you are pushing.

When pushing to a repository that already exists on the remote, you

don’t need to be so specific:

git push origin develop

As a good rule of thumb, you should avoid pushing without specifying

where to push to. While a plain “git push” often works perfectly fine, it

pushes directly to the remote branch – which may not be what you expect.

By explicitly stating the branch to use, you avoid any risk of shoving your

changes into the wrong place.

Figure 4-18. Console output during the first push of code to a remote
repository

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

98

 Pull Requests
As discussed previously, pull requests are the best way to get your code

into another branch. They allow other developers to see and approve of

your changes, and they provide an excellent way to discuss the merits

of said code. Developers can comment on specific lines or changes, and

everyone gets to see your changes with a nicely formatted output. Even if

you’re not working with other developers, pull requests are a great way to

move code from one branch to another.

Before starting a pull request, you need to get all the changes from

the upstream branch into your branch. If you’re going from develop into

master, then develop needs all the changes in master, plus your new

additions. This places the onus of resolving conflicts and integrating all

changes on the pull request author. Solo developers will rarely encounter

any issues, but once you join a team, it’s common for a branch to fall

behind the main branch fairly quickly. Keeping your branch updated with

upstream changes is a good practice to employ.

Let’s merge a change from master to develop locally, and then pull

request results. Begin by switching to the master branch (assuming you

have no uncommitted work on the current branch):

git checkout master

Now get the latest changes from the remote master branch to your

local master branch:

git pull

Switch back to your local develop:

git checkout develop

Now merge your (local) master into your (local) develop:

git merge master

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

99

If your changes are small, this merge will continue without issue.

Should there be significant changes in either branch, then you may end

up with a merge conflict. Merge conflicts happen when two branches

contain changes to the same file and within the same lines. Git cannot

automatically merge the files for you in some cases, so you need to

manually do so. This is easy in PyCharm. Head over to VCS ➤ GIT ➤

Resolve Conflicts. This brings up the PyCharm Conflict menu, shown in

Figure 4-19. It lists all the files that have conflicts. You can choose to accept

Figure 4-19. Git conflicts highlighted by PyCharm

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

100

your changes or changes from the remote. If you need to pick and choose

changes from both branches, then double-click each file and work through

each change.

Once the conflicts are resolved, commit the changes:

git commit -m "Merged master"

and then push your branch:

git push origin develop

At this point in time (and providing nobody sneaks new changes into

master), your develop branch contains your changes plus all the changes

in master. Develop is now ready to pull request into master. This is the

stage where I’ll deviate from a command-line only Git tutorial. Git purists

may start hating now, but creating PRs from the command line requires

even more Git knowledge than is needed to start using Git right now.

GitHub shows the changes between branches in a much clearer way than

the stock Bash command line does, so now feels like an appropriate time

to use a GUI.

Head over to http://GitHub.com and select your project. From the

Project Navigation bar (Figure 4-20), choose the branches button. This

is preceded by a number, matching the number of open branches your

remote repository has. This is unaffected by how many local branches you

have providing they are not pushed to the remote.

Figure 4-20. GitHub Project Navigation bar

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

http://github.com

101

This overview lists all your branches, and is shown in Figure 4-21. Find

the develop branch (or any branch you wish to pull request from), and

click New pull request on the right-hand side. This loads the Create pull
request page, shown in Figure 4-22.

Figure 4-21. The GitHub branch overview page

Figure 4-22. GitHub’s new pull request page

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

102

This page is split into two sections. The top half contains details of

your pull request, the number of reviewers, pull request messages, labels,

assignees, and more. The bottom half outlines the number of commits

made and the changes they occurred on. It highlights any additions or

subtractions, along with any commit messages made on this branch.

In the top half, enter an appropriate title and description. What’s an

appropriate description? It is one that lets other developers know the

purpose of this pull request. There are no hard and fast rules here, but a

good place to start is these prompts:

 1. Reason – Why are you making this PR? What

problem does it solve?

 2. Rational – Why did you code it this way? Was there

another option that wouldn’t work in this scenario?

 3. Background – Other developers may not have the

context of a fix that you do.

 4. High-level list of changes (if significant).

 5. Any future changes to follow, or pull requests in

other repositories to accompany this change?

As a final sanity check, take a look at your commits and the diff. If this

was someone else’s code, what would you say? Have you left any debug

or test logic in the code? Is it ready to run in the destination branch, or

production? It’s OK to go back and make changes before finishing this

PR. Once ready, choose the big green Create pull request button to share

your changes with the world.

Once opened, it’s time to sit back and bask in that sweet sweet karma

that comes from being an awesome developer – go you! On a serious note,

it’s a bad practice to merge PRs without sign-off from other developers

in your team. Rules and regulations vary between businesses and teams,

but it’s not uncommon to face disciplinary action for failing to get enough

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

103

approvals on a pull request (accidents excluded). If you’re working on a

personal project without any other developers, go ahead and merge this

PR with the big green Merge pull request button. Providing there are no

conflicts (there shouldn’t be at this stage), your PR will merge without

issue. If you do encounter any conflicts, then revisit some of the previous

steps to merge and resolve them.

To keep your repository tidy, it’s a good idea to close feature branches

when merging PRs. This keeps branches around for a small purpose or

feature. Branches cost nothing, but having lots of old ones around can

clutter up your repository. Create new branches as and when you need

them. Common branches master and develop (and sometimes others)

rarely get closed.

 Repository Rules
Any good repository needs rules. Rules stop you committing directly to the

master branch, or merging a pull request without enough approvals. Once

again, when working solo you may not need as many rules, but they can

still keep you safe. This project uses CI/CD to automatically deploy code

from the master branch to the Pi (as you’ll see in the next chapter). Any

changes to the master branch could result in the Pi not working properly.

Sure, a home project on the Pi failing isn’t a big deal, but what about a

system customers are paying for, a military missile, or a medical system?

Small mistakes here could cost lives (as illustrated in some of the software

development case studies).

It’s hard enough to write bug-free software, so save yourself the trouble

and protect your branches! At the very least, branch permissions prevent

you from accidentally committing work-in-progress code to the wrong

branch.

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

104

To add branch permissions, head over to http://GitHub.com and load

up your repository. Choose Settings from the top navigation bar (as shown

in Figure 4-23). From the left navigation bar, select Branches and you’ll see

the Branch protection rules section. Any existing branch rules will appear

here. Let’s create a new branch rule by choosing Add rule.

This add branch rule screen lets you configure in-depth rules for a

branch. It’s possible to have a whole host of rules for your master branch,

and no rules at all for develop. It doesn’t make sense to have a blanket rule

policy for the whole repository. Let’s add rules to the master branch and

learn about the possible rule options in the process. Figure 4-24 shows the

branch protection rules page.

Figure 4-23. GitHub’s top navigation bar

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

http://github.com

105

The Branch name pattern defines what branch to apply this new rule

to. You can use the wildcard * operator here to match patterns, but for now,

master is sufficient.

Require pull request reviews before merging means that any pull

request must have a certain number of approvals before it can merge.

Not very helpful for solo developers, but incredibly useful for a team. The

Required approval reviews drop-down lets you specify how many reviews

are needed to merge. By enabling Dismiss stale pull request approvals
when new commits are pushed, GitHub will reset the approvals if the

Figure 4-24. Adding a branch protection rule in GitHub

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

106

code changes while a PR is open. Finally, Require review from code
owners means a designated code owner has to approve any PRs in

addition to the other rules. This is useful for any benevolent dictators to

have the final say over a code change.

Next, Require status checks to pass before merging means your

branch must meet any status checks before it can merge. This could be

a limit on the number of conflicts present, or that all the code from the

destination branch has already merged into the source branch. This is easy

to meet if you follow the Git steps on previous pages.

Require signed commits enforces a cryptographically verifiable

signature across all commits. This ensures users can trust project authors –

not something typically enforced on private projects.

The Require linear history option means all commits merging in a

PR go into the destination branch as one commit, instead of several. This

keeps the main branch tidy if there are lots of changes going in.

The Include administrators option applies these rules globally to any

user, or only to users who are not project administrators.

Finally, at the bottom is the Rules applied to everyone including
administrators section. Confusingly this doesn’t include the Include
administrators option from the previous section. Inside here, Allow force
pushes lets you allow or disable force pushing. Force pushes let you shove

code into a branch that may not otherwise go. This could be commits

which don’t have the matching commit history or don’t meet a particular

rule. It’s not advisable to enable this.

The Allow deletions option lets users delete this branch. You probably

don’t want this to happen on develop or master branches when using CI/

CD.

As a good starting point, you should require pull request reviews

before merging, with a suitable number of approvals – even one at this

moment is sufficient. Enable Dismiss stale pull request approvals when
new commits are pushed, and require status checks to pass. If these rules

are too prescriptive for you, or not strict enough to prevent problems, then

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

107

loosen or tighten them as you see fit once you get into the flow of Git and

your project.

GitHub’s Project Administration guide available at https://help.

github.com/en/github/administering-a-repository goes into extensive

detail with all of these options are more.

 Pipeline Configuration
A pipeline or build step is an essential part of a CI/CD process. Tools such

as Jenkins (https://jenkins.io/) or Travis CI (https://travis-ci.com/)

exist to let you completely automate the deployment process. From running

various tests and building other services to building and deploying images,

and rolling back changes, pipeline automation tools can save you a serious

amount of time and effort. While a large automation is little out of the scope

of this book, let’s discover how to run your unit tests automatically across

any branch.

Before configuring a pipeline process, let’s write a basic unit test first,

so your pipeline has something to run. Open up PyCharm and create a

new branch off develop with a suitable name:

git checkout develop

git pull

git checkout -b feat/tests

Create a new test folder at the top level inside your Pi-Car folder:

mkdir tests

Create two new files inside this folder. Pytest requires all test files to

begin with the word “test”, so create a test_practice.py file. The second file

is a blank file called __init__.py:

touch tests/test_practice.py

touch tests/__init__.py

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://help.github.com/en/github/administering-a-repository
https://help.github.com/en/github/administering-a-repository
https://jenkins.io/
https://travis-ci.com/

108

The touch command creates blank files. Why __init__.py? This special

file tells your Python interpreter that this folder contains Python modules.

You only need one per directory. They are often blank, and are an essential

requirement for working with Python. Go ahead and create another __
init__.py file at the top level:

touch __init__.py

Inside test_practice.py, create a very basic class and test:

class TestPractice:

 def test_one(self):

 assert 1 == 1

 assert "banana" == "banana"

Black your code and then run this first test with Pytest:

black $PWD

pytest tests

This command tells Pytest to run all the tests it finds in the tests folder,

and its output is shown in Figure 4-25. You could replace this with any

other folder and it will run the tests – providing the test names meet Pytest’s

standards. Notice how Pytest gives you a nice little test status? All your tests

should pass, and Pytest should indicate so with a green bar and a 100% sign.

Let’s make these tests fail. The Assert statement is used to test that a certain

condition is met. Change one of the asserts to something that is not a fact:

assert "apple" == "banana"

Figure 4-25. Passing unit tests

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

109

Now run your tests again – notice everything goes red (Figure 4-26)?

Pytest highlights exactly which test failed, and why. This information is

extremely useful when writing tests, or troubleshooting a failing test. Go

ahead and undo this failing change. Commit your change and push your

new branch:

git add __init__.py && git add tests/

git commit -m "Wrote a basic unit test"

git push --set-upstream origin feat/tests

Now you have a unit test. You have a local and remote branch called

feat/tests, and you know how to write assertions. Pull request and merge

your branch into master – you’ll need it there for this next step. Let’s get

GitHub to run these tests in your pipeline.

GitHub’s built-in pipeline process provides basic CI/CD functionality.

The GitHub Marketplace (https://github.com/marketplace) is full of

premium and free tools to provide extensive control over deployments, but

GitHub Actions is the quickest way to get started with (simple) CI/CD in

GitHub, and it’s built in to the core offering. You can see the introductory

page in Figure 4-27.

Figure 4-26. Failing unit tests

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

https://github.com/marketplace

110

Head over to your repository and choose Actions from the top

navigation bar. Here you’ll find several boilerplate actions to get you

started. Skip all of these, and choose the Set up a workflow yourself

button from the top right of this page. This next interface can look

daunting (Figure 4-28), but it’s not as complex as it looks. This lets you

configure exact actions to happen when a branch merges. This could be

deploying to Amazon Web Services (AWS), sending an email, or in this

case, running tests.

Figure 4-27. GitHub’s initial Actions page

Figure 4-28. Configuring a build pipeline in GitHub

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

111

GitHub Actions are configured using a YAML file. By default, GitHub

proposes you store this nested under .github/workflows and call it main.
yml. You can change this name and location from the top left of this action

configuration page. Alternatively, you can commit this file as is and then

pull and work on it locally. For now, let’s edit it online and let’s leave its

default file name and location. The benefit of editing this file in the GitHub

Actions file editor is automatic syntax correction. If you make a mistake,

or enter an invalid (but technically correct) command, GitHub will inform

you of the problem.

YAML is a recursive acronym for YAML ain’t markup language.
It’s a human-readable configuration language, used for config files
and build pipelines. It’s simple to use and nests commands through
indentation, colons, and hyphens.

GitHub’s actions are free (with some usage limits). You’re unlikely to

reach these limits for small projects or accounts where you rarely need

to build multiple branches concurrently. Actions support a huge amount

of customization. You can trigger builds when any code changes, or just

when certain branches run. You can name your tasks, limit the execution

time, run more than one in parallel, and lots more. Here’s the starter code

you need to run your unit tests:

name: Validate Build

on: [push, pull_request]

jobs:

 build:

 runs-on: ubuntu-latest

 strategy:

 matrix:

 python-version: [3.7]

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

112

 steps:

 - uses: actions/checkout@v1

 - name: Set up Python ${{ matrix.python-version }}

 uses: actions/setup-python@v1

 with:

 python-version: ${{ matrix.python-version }}

 - name: Install Dependencies

 run: |

 python -m pip install --upgrade pip

 pip install pipenv

 python -m pipenv install --dev --pre --system

 export PYTHONPATH="$PWD"

 - name: Black Check

 run: |

 black --check $PWD

 - name: Unit Tests

 run:

 pytest tests

Let’s break this down. This .yml file configures your build pipeline to

run in GitHub. Each individual line represents a configuration parameter.

Each line starts with its name, followed by a colon, and then the value.

Line breaks only exist to make it easier to read, and commands are further

subdivided and nested with tabs and hyphens – a bit like Python.

It’s possible to run multiple pipelines, each one performing a different

task. You can name a pipeline like this:

name: Validate Build

The on command specifies when to automatically run this pipeline.

You can put various options here. The push command will run the

pipeline whenever code is pushed to the repo. Pull_request runs this

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

113

pipeline whenever a pull request is made. This is a good starting point in

terms of useful places and times to run this pipeline:

on: [push, pull_request]

All the following commands are nested underneath the jobs section.

This is simply a grouping, and way to separate the pipeline actions from

the configuration and metadata:

Jobs:

Everything underneath the build section is used to configure the

prerequisites needed to run this pipeline. This is a good place to specify

the operating system and Python versions you want to test with. The runs-
on option lets you choose the operating system to test with – in this case,

the latest version of Ubuntu Linux. The matrix strategy offers you the

ability to run tests against several different versions of Python, specified

by the version numbers in square brackets ([3.7]). This build only tests

against Python version 3.7, but you can enter many different Python

versions here (separated by commas):

runs-on: ubuntu-latest

 strategy:

 matrix:

 python-version: [3.7]

The steps section configures the build steps. This installs specific

versions of Python, along with your project dependencies. It runs your unit

tests and checks the code that meets Black’s stringent requirements. If any

of these steps fail, the build will also fail. The uses name configures the

pipeline to require a dependency. Here’s how the pipeline gets the latest

version of your code:

- uses: actions/checkout@v1

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

114

The Install Dependencies step configures pip to install your project

dependencies. It adds several options to Pipenv and then exports your

Python path – just like you did on your computer:

 - name: Install Dependencies

 run:

 python -m pip install --upgrade pip

 pip install pipenv

 python -m pipenv install --dev --pre --system

 export PYTHONPATH="$PWD"

The Black Check step checks your code complies with the Black code

formatter. By using the --check option, Black won’t actually change any of

your code – it just checks there is nothing to change:

 - name: Black Check

 run:

 black --check $PWD

Finally, run the unit tests with Pytest:

 - name: Unit Tests

 run:

 pytest tests

When you’re ready, choose Start commit from the right-hand side of

the actions screen, and fill in the commit details, as shown in Figure 4-29.

Make sure you create a new branch, instead of committing to master.

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

115

To see this pipeline in action, head over to the Actions tab from the

main repository view (Figure 4-30). Here you can see all the historical

builds, their status, and any pipeline names. On the left you can filter by

the pipeline names – as defined at the top of your .yml file. On the right are

all the builds that have run in the past, ordered in chronological order. You

can filter these pipelines either by their name or other search criteria or

by using the predefined filters for event, status, branch, and actor (person

who made a change that kicked off the build).

Figure 4-29. Committing a change though GitHub’s web-based
interface

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

116

On the list of pipelines, you can see supplementary information about

that build. The green tick or red cross indicates if the build was successful

or not. Next is the name, followed by the most recent commit in that build.

The event that triggered this build (such as pull request or code push) is

listed after the words on. In the middle lists the branch this pipeline ran

against, and the user who changed something to trigger it. Finally, the

right-hand side lists the duration of this build, along with the time and date

it last ran. The three ellipses on the far right will take you to the workflow

configuration file once expanded.

Figure 4-31. Sample output of a GitHub pipeline

Figure 4-30. The Actions screen on GitHub

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

117

By clicking the build name, you can see detailed pipeline

information – shown in figure 4-31. By clicking the Python version number

on the left-hand side, you can see detailed build information. Here’s where

you’ll find the output of Black or Pytest, alongside any errors. This is a

valuable troubleshooting tool when configuring a new pipeline.

When you’re ready, pull request and merge this pipeline branch to

the master branch. Congratulations! You are now well on your way to

becoming an expert software developer. You’ll use this pipeline regularly

to assess the quality of your code. Whenever you push new code or create

a pull request, this pipeline will run. It will run your latest code and tests,

so you don’t need to worry about updating it. You may want to regularly

maintain it – adding new versions of Python as they become available, or

fine-tuning it to your preferences.

 Git Cheat Sheet
Now that you know enough Git to be dangerous, refer back to this cheat

sheet (Table 4-1) for a helpful reminder of the basics.

Table 4-1. A list of common Git commands

Command Description

git init Initialize a new git repository in the current

folder.

git add <file> Stage a single file into your local branch.

git add . add aLL files recognized by Git. Localized to

your current directory. Use wisely!

git commit -m "commit_

message"

Commit your staged changes with a

message.

(continued)

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

118

 Chapter Summary
This chapter has equipped you with everything necessary to write the code

for this project. You used Pyenv and Pipenv to manage different versions

of Python, and configure virtual environments for per-project dependency

management. You created your own Git repository on GitHub, and learned

how to create pull requests, and configured a build pipeline to run your

unit tests automatically.

You and your computer are now fully equipped to develop any Python

application you like, using industry-standard tools and best practices.

In the next chapter, you’ll continue this configuration by preparing the

Pi itself. You’ll learn how to install an operating system, install the latest

version of Python, and pull your application code and run it on the Pi itself.

Command Description

git commit Commit your staged changes without a

message (opens up your default console text

editor with a sample message).

git push origin develop Push your staged changes and commits to a

specific remote branch.

git push Push your staged changes and commits to

whatever your remote branch is. Use wisely!

git push --set- upstream

origin <branch_name>

Push your staged changes and commits to a

new remote branch.

git checkout <branch_name> Switch to a preexisting local branch.

git checkout -b <branch_name> Create a new local branch and switch to it.

git remote -v List the remote branches and repositories

your local branch is linked to.

Table 4-1. (continued)

ChaPTeR 4 LoCaL DeveLoPmenT ConfIGURaTIon

119© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_5

CHAPTER 5

Raspberry Pi Initial
Configuration
Chapter goal: Configure the Raspberry Pi for basic
operation. Connect your repository to the Pi and run the
latest version of the code.

You have a solid code base. You can write and run unit tests and format

your code with Black. You have a repo, can create pull requests, and have

a build pipeline that validates your code whenever you push to a branch

or create a pull request. If you don’t have any of these things, I strongly

advise you to go back and complete Chapter 4 before continuing with

this chapter. While some of the early Pi configuration is applicable to any

scenario, this chapter very quickly builds upon the artifact developed in

the previous.

Providing you own a Raspberry Pi and a suitable memory card and

power supply, then here’s how to turn it from a shiny, pretty, paperweight

into a functional minicomputer, complete with an operating system,

Python 3.7, Git, and a version of your code.

https://doi.org/10.1007/978-1-4842-6080-7_5#ESM

120

 Install an Operating System on Your
Memory Card
Before you can even think about using the Pi, you need to install an

operating system onto its microSD memory card. The Pi is designed to let

you easily swap different memory cards – it’s possible to use individual

cards for different projects. Before touching the Pi, let’s start with the

memory card and your computer.

Remember, you need an 8GB (or larger) microSD card which is a class

10 or faster. Huge storage capacities are not needed here, but high speed

and reliability is. Purchase a reputable brand such as Kingston, Samsung,

SanDisk, or PNY. Try to avoid second-hand cards or those of dubious

origin. It’s fine to recycle a known-good memory card, but buying cheap or

a bargain that looks too good to be true is often a recipe for disaster.

Several operating systems exist for the Pi – including vintage remakes

such as RISC OS and BSD derivative FreeBSD. Raspbian is the official

image supported by the Raspberry Pi Foundation, and it’s a Debian-

based (free) Linux operating system. It has a graphical interface, but like

most versions of Linux, its power is unlocked by the command line. The

Raspberry Pi Foundation provides a free Raspbian installation tool called

NOOBS, which stands for New Out Of Box Software. This free tool makes

it easy to configure your Pi for the first time, so let’s install it onto your

memory card.

Chapter 5 raspberry pi initial Configuration

121

Get started by downloading NOOBS from the Pi Foundation’s website:

www.raspberrypi.org/downloads/NOOBS/. Be sure to download the

full- fat NOOBS, and not NOOBS Lite, which is a stripped-back version for

installing over a network. You can see an example of the download buttons

in Figure 5-1. Extract this .zip file by double-clicking it. Figure 5-2 shows

the file extraction progress. You can delete the original file once extracted.

Once downloaded, you can start preparing your microSD card to

work with the Pi, and install NOOBS. You can’t just copy the file you

downloaded, you need to prepare the memory card in a specific way.

Figure 5-1. NOOBS download buttons from the Raspberry Pi website

Figure 5-2. Extracting NOOBS compressed file on macOS

Chapter 5 raspberry pi initial Configuration

http://www.raspberrypi.org/downloads/NOOBS/

122

Insert your microSD card into your computer (using a suitable USB

converter if required). You need to wipe this memory card to use it with the

Pi, so make sure there’s nothing you need left on it.

The easiest way to get NOOBS onto your memory card (and format it)

is to use a tool called ApplePi-Baker. This free Mac utility handles all the

hard work for you. Get started by downloading ApplePi-Baker v2 from

www.tweaking4all.com/hardware/raspberry-pi/applepi-baker-v2/.

Click your downloaded .dmg image file to mount it on your desktop, and

then drag ApplePi-Baker to your Applications folder using the finder

dialog window – shown in Figure 5-3.

Go ahead and choose Open if macOS asks you to confirm you want to

run this file (for security reasons) – shown in Figure 5-4. Now macOS will

prompt you to enter your password – this is needed so ApplePi-Baker can

install a helper tool to read and write drives. You’ll only need to do this the

first time you run ApplePi-Baker.

Figure 5-3. ApplePi-Baker installation on macOS

Chapter 5 raspberry pi initial Configuration

http://www.tweaking4all.com/hardware/raspberry-pi/applepi-baker-v2/

123

If you’re running macOS Catalina, then make sure you have all the

latest operating system updates. A bug in an early version of Catalina

prevents this tool from working. Newer versions of Catalina have

subsequently fixed this issue.

Figure 5-4. macOS security confirmation for ApplePiBaker

Figure 5-5. ApplePiBaker main screen

Chapter 5 raspberry pi initial Configuration

124

ApplePi-Baker has a gorgeous user interface, which you can see in

Figure 5-5. It supports a huge number of options, but for this project, you

will use it to restore an image onto your memory card. This process will use

your NOOBS file, and copy it to your memory card in a way that the Pi can

boot and read from it.

Warning installing noobs and using applepi-baker will delete all
existing data on your memory card. ensure you are using the correct
memory card, and there is no data present you still need before
proceeding.

From the left-hand side of ApplePi-Baker, under Select Disk(s), click

in this box and select the memory card you want to install NOOBS onto.

At the very bottom left of ApplePiBaker is a Functions bar. Open the

Advanced Disk Panel by pressing the hard drive icon. Here you’ll see your

selected memory card appear in a list on the right of ApplePiBaker. Right-
click your memory card, and then select Prepare Disk for NOOBS use

(Figure 5-6). This will format your memory card ready for the Pi to use.

Chapter 5 raspberry pi initial Configuration

125

The Status bar at the top of ApplePi-Baker shows the current progress

of this command, and when completed, you’ll see a green completed

message, shown in Figure 5-7. This process shouldn’t take very long – less

than a minute on a modern computer.

You can now close ApplePi-Baker. Your memory card is formatted

for use by the Pi, but it doesn’t have any files on it yet. Open the memory

card in finder (now called RASPBERRY). Copy the entire contents of your

extracted NOOBS files to the root level of your memory card.

Figure 5-6. ApplePiBaker preparing disk for NOOBS use

Figure 5-7. ApplePiBaker completed NOOBS preparation

Chapter 5 raspberry pi initial Configuration

126

Your NOOBS files may be contained within a folder. Don’t copy this

folder; copy everything inside it, such that your memory card folder

structure looks something like this:

RASPBERRY

 OS/

 bcm2708-rpi-b-plus.dtb

 ...

Your specific files may vary depending on your version of NOOBS.

When the process finishes, unmount your drive either by dragging it to the

trash or by right-clicking and choosing unmount. You’re now ready to get

the Pi side of this project running!

 Boot the Pi for the First Time
Begin by connecting the power supply to your Pi (but don’t turn on the

power just yet). Connect your display with the micro-HDMI to full-size

HDMI cable. The Pi has two HDMI outputs, so use HDMI0 – the one

closest to the power input. Connect a USB keyboard and install your

memory card. The memory card will only fit in one way – with the logo

facing away from the board, which you can see in Figure 5-8. This card will

appear “upside down” when the Pi is sitting the correct way up on your

desk. You don’t need a mouse at this stage (although one will work if you

connect it).

Chapter 5 raspberry pi initial Configuration

127

Note remember to always hold the pi at the edges of the board
as far as possible. try to avoid touching the sensitive components
directly, and never use it (without a case) on a conductive surface, as
you may cause a short-circuit.

When you’re ready, turn on the Pi by switching on the main power

supply. After the Pi boots, you’ll see the NOOBS main menu. Choose your

language with the L key and your keyboard layout with the 9 key. Navigate

within these submenus using the arrow keys and your enter key.

From this initial menu screen, choose Raspbian Full
[RECOMMENDED] and then press i to start the installation (Figure 5- 9).

Confirm you really do want to install Raspbian. Now you can sit back

and relax while the Pi does all the hard work of installing and configuring

Figure 5-8. Underside of Pi 4 showing microSD memory card
installed

Chapter 5 raspberry pi initial Configuration

128

Raspbian. You’ll see a status bar at the bottom of the screen, and various

mini-adverts and useful facts will cycle through while this happens.

Installation of Raspbian typically takes 20–30 minutes on the Pi 4

(although this will take longer on older models). Once installed, choose

OK when the Pi confirms it has installed Raspbian, and wait for it to

reboot.

By default, your Pi will boot into a graphical interface. You’ll still use

the command line for much of your configuration, but you may find it

easier to connect a mouse now. Follow the introductory message and

set your language preferences – shown in Figure 5-10. After setting your

language preferences, follow the onscreen prompt to set your password.

Right now, the default username and password on your Pi are “pi”

and “raspberry”. It’s recommended to change these to prevent anyone

accessing your Pi without your permission – either in-person or remotely.

Figure 5-9. NOOBS main installation screen

Chapter 5 raspberry pi initial Configuration

129

Next, choose your screen options, and then move on to your Wi-Fi

configuration. Choose your network and enter the password (if required).

This screen is shown in Figure 5-11. You need an Internet connection

to configure most of this project. Finally, perform a software update by

choosing Next on the software update configuration page. This process

may take a while (depending on the age of your NOOBS image). Anywhere

from 20 minutes to two hours is not unusual. Once updated, restart your Pi

by choosing Restart from the final screen of the introductory landing page.

Figure 5-10. Pi desktop first launch screen

Chapter 5 raspberry pi initial Configuration

130

 Configure SSH
Now you have a working Pi; let’s configure it so you can access it remotely

over the command line. This lets you tinker with the Pi from your desktop

computer remotely and makes it easy to write code, deploy, and then

configure the Pi all from the same computer. Feel free to skip this step if

you’d rather stay within the confines of the Pi itself, but remote access is a

very valuable feature to have.

SSH (secure shell) is the best tool to do this. It’s an encrypted protocol

to communicate between a client and a server. In this project, the Pi

is acting as the server, and your computer is the client. Stand-alone

SSH client tools exist, but you’ll use the Mac Terminal for all of these

operations.

Figure 5-11. Pi first launch Wi-Fi configuration screen

Chapter 5 raspberry pi initial Configuration

131

Start with the Pi itself. You need to determine the IP address of the Pi.

IP addresses are like ZIP codes for computers (although they can and do

often change). An external IP address is one used to identify your device

on the Internet. You don’t need one of these for the Pi unless you want to

remotely tinker with it from another location. An internal IP address is one

used only by your home network. What often happens is every device on

your network gets an internal IP address, and when they reach out to the

public Internet, they use the external IP address assigned to your router.

You could have dozens of devices on your network, each with their own

internal IP address, but all may share the same external IP address.

Open the Pi’s command line by choosing the Terminal icon on the top

left of your desktop. Use the ifconfig command to retrieve all the network

information for your Pi – shown in Figure 5-12:

ifconfig

Figure 5-12. Output of ifconfig network command

Chapter 5 raspberry pi initial Configuration

132

This tool is a network administrator tool for the command line, and it’s

included with Raspbian. If you connected to your network over Wi-Fi, look

for the wlan0 section in the output from ifconfig. The inet section lists the

IP address assigned to the Pi. This consists of four blocks of numbers, and

will begin with the numbers 192.168. This is the Pi’s internal IP address,

so it’s only unique within your home network. For me, the wlan0 section

produces the following output:

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.1.210 netmask 255.255.255.0 broadcast

192.168.1.255

 inet6 fe80::d2f8:a87e:49e1:6a7e prefixlen 64 scopeid

0x20<link>

 inet6 fd4c:fb45:dc0c:a800:c1a6:2335:ed4c:2

ca7 prefixlen 64 scopeid 0x0

Within that, you can see my Pi’s internal IP address is listed next to the

words inet:

inet 192.168.1.210

Your IP address will vary, but it will begin with 192.168. Back on your

Mac, open a new terminal and use the ping command to send several

packets to the Pi via its IP address (making sure to use your Pi’s internal IP

address):

ping 192.168.1.210

Ping is a tool used to test a network or network device. It sends a

simple message to the IP address, and expects an explicit reply. It’s a

simple tool and is perfect to check everything is working on a network. You

can see several ping replies in Figure 5-13. All being well, you should see a

reply consisting of the payload size, duration, and some other information.

Press Ctrl+C to stop pinging.

Chapter 5 raspberry pi initial Configuration

133

Keep this Pi’s IP address safe for now. It might change over time,

but it’s unlikely to change while you’re still using it. Back on the Pi, let’s

configure SSH.

Choose the Preferences menu option found by clicking the Raspberry

on the top left of the screen. Head over to the Interfaces tab, and press

enable under the SSH entry. Choose OK to finish the process. That’s it. SSH

is enabled on your Pi. It’s possible to configure SSH using the command

line, but until you have SSH access, it’s easier to use the Pi’s GUI for now.

Back on your Mac, you can now connect to your Pi in the Terminal

using the SSH command, followed by a username and IP address:

ssh pi@192.168.1.210

Make sure you swap the IP address here for your Pi’s IP address, which

you previously noted down. You’ll need to confirm the ECDSA fingerprint

of the Pi. This is a calculated string of characters, which let you know

the remote server really is what you think it is – as shown in Figure 5-14.

Should this change the next time you connect, your Mac will flag this up to

you. Enter yes when prompted to accept this first fingerprint. Enter your

Pi’s password to finish connecting.

Figure 5-13. Result of a network ping to the Pi

Chapter 5 raspberry pi initial Configuration

134

To remind you that you are connected to a remote server, the words at

the start of your shell session have changed from your Mac username and

computer name:

Joes-iMac:~ coburn$

to the Pi’s username:

pi@raspberrypi:~ $

This is a helpful reminder that you are working on a remote system,

shown in Figure 5-15.

 Pi Python Setup
If you remember back to Chapter 4 where you had to configure Python on

your computer, the same thing needs to happen on the Pi. If you look at the

Python version:

python --version

this returns something like:

Python 2.7.16

Figure 5-14. First time SSH connection to the Pi verification message

Figure 5-15. Bash SSH reminder

Chapter 5 raspberry pi initial Configuration

135

As this project is developed using Python 3, you need to install a

newer version of Python. These steps are explained in detail in the

previous chapter, so the following commands are provided with minimal

explanation except where the Pi differs from your computer. Start by

installing pyenv directly from its repo (along with various supporting

tools):

sudo apt-get install bzip2 libbz2-dev libreadline6

libreadline6-dev libffi-dev libssl1.0-dev sqlite3 libsqlite3-

dev -y

git clone https://github.com/pyenv/pyenv .pyenv

echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bashrc

echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bashrc

echo 'eval "$(pyenv init -)"' >> ~/.bashrc

. ~/.bashrc

The apt-get command is used to update and install packages. Sudo

is used to run these commands with a higher security clearance for your

user. The .bashrc file is a bash config file – this is the same as .zshrc or

.bash_profile on your Mac.

Figure 5-16. Python 3 installation sample output

Chapter 5 raspberry pi initial Configuration

136

If possible, try to install the same Python version as your computer

uses (this may take a long time to complete) – you can see a sample output

of this command in Figure 5-16:

pyenv install 3.7.6

Now configure Python, install Pipenv, and upgrade Pip:

pyenv global 3.7.6

sudo pip install pipenv

sudo pip install --upgrade pip

Finally, check your Python version:

python --version

All being well, this should return Python 3:

Python 3.7.6

 Cloning the Repository
Now that you have Python installed, it’s time to get your code on the Pi.

There are two approaches here. If you want to share your code with other

developers, then you could publish a package on https://pypi.org/.

This would let you install your code with Pip or Pipenv. For this project,

you won’t need a custom PyPI package. The Pi will pull the code from your

repository.

To start, check your current Terminal location with pwd:

pwd

This should output your home folder:

/home/pi

Chapter 5 raspberry pi initial Configuration

https://pypi.org/

137

This folder is a good place to store your code, so if you’re not there,

navigate to it with the cd command:

cd /home/pi

If you list the current directory (shown in Figure 5-17), you can see the

various user files and folders that already exist in this folder:

ls

Alternatively, you can see further information about these files with the

-lah flags:

ls -lah

Navigate into the Documents folder with cd (Linux is case sensitive):

cd Documents

Figure 5-17. Contents of the Pi’s filesystem at /home/pi/

Chapter 5 raspberry pi initial Configuration

138

Now clone the code base. You don’t need to create a folder – Git will

do this for you. Swap out the repository URL for your GitHub repository –

shown in Figure 5-18:

git clone https://github.com/CoburnJoe/Pi-Car

Verify the clone by creating a virtual environment (Figure 5-19) and

running the tests:

cd Pi-Car/

pipenv install --dev --pre

pipenv shell

export PYTHONPATH="$PWD"

pytest tests

Figure 5-19. Installing project dependencies with Pipenv

Figure 5-18. Cloning the project’s Git repository

Chapter 5 raspberry pi initial Configuration

139

Go ahead and deactivate the environment and traverse up a level:

exit

cd ../

You now have your code on your Pi, and it works! The next step is a

way to update the code. You don’t want to manually remote in and pull the

latest code every time you make a change.

 Keeping Code Updated
All of these methods of getting the code onto your Pi rely on some kind of

Git command to perform the work. Here’s how to write a script to do this for

you, which you can then run whenever you’d like to update the Pi’s code.

Back on your desktop computer, create a bash file at the top level of

your project folder and call it clone.sh:

touch clone.sh

This script will handle all aspects of pulling the latest code from Git.

You don’t have to add it to your repo if you’d prefer not to – it can live on

the Pi, no problem. Here’s the code you need:

#!/bin/bash

Update to the latest code

git checkout master && git pull

You can see this combines two Git commands, but what’s that

confusing first line? This convention lets your shell know what this script

is. It tells your shell that this is a bash script, with a helpful link to bash on

the machine itself. This could be a Python interpreter, or almost anything

else, depending on your code. This file would not work without this.

Hashes are used to denote comments, and here you can see a helpful

note left to future you, should you revisit this script in the future and

wonder as to its purpose.

Chapter 5 raspberry pi initial Configuration

140

Save this file, and head back to your terminal. Run it like this:

./clone.sh

What do you notice? On most computers, you won’t have permission

to execute the script, and your shell will complain with a message like this:

bash: ./clone.sh: Permission denied

Use the ls command to check file permissions:

ls -lah clone.sh

which returns the file permissions and ownership of the file:

-rw-r--r-- 1 coburn staff 72B Mar 9 19:15 clone.sh

There are lots of information presented here, but the most important

right now is displayed on the left. This information outlines the read, write,

and execute permissions for this file, both for you as the owner and for any

other users of your computer:

-rw-r--r--

Each character here represents some different information about

your file. I won’t go into the specifics and fine-grained control you have

available here. For now, all you need to know is that you only have read

and write access to your newly created file – your computer won’t let you

run it. Change the permissions with the chmod command:

chmod 775 clone.sh

This changes the file permissions. It lets you have read, write, and

execute permissions (denoted by the number 7), and it assigns anyone else

read and write permissions only (the number 5). If you’d like to learn more

about Linux file permissions, then visit Bri Hatch’s article in “Hacking Linux

Exposed”: www.hackinglinuxexposed.com/articles/20030417.html.

Check your permissions again with ls and notice how they have changed:

Chapter 5 raspberry pi initial Configuration

http://www.hackinglinuxexposed.com/articles/20030417.html

141

-rwxr-xr-x 1 coburn staff 72B Mar 9 19:16 clone.sh

Execute your file again, and you’ll see it pull the latest code from Git:

./clone.sh

Commit your code, and head over to your Pi’s terminal. Perform a

manual pull, relishing in the fact that this may be the last time you have to

do so:

git checkout master && git pull

Now run your script:

./clone.sh

Using this bash script, your Pi can update its code base from the master

branch. Whenever you’d like to get the latest version of the code onto your

Pi, simply run this command. Next you’ll use this script to automatically

update the code base as part of a wider first-boot installation sequence.

 Chapter Summary
This chapter equipped you and your Pi with everything needed to run

the Python code for this project. Not only did you install an operating

system to the Pi, but you installed Python 3.7 and installed your project

dependencies into a virtual environment. You configured SSH and created

an update script. You can now remotely access your Pi over your local

network and update the code to the head of the master branch from your

repository.

The next chapter introduces the code Python module Flask. This open

source package provides the core web application routing and logic on

which you’ll build your application.

Chapter 5 raspberry pi initial Configuration

143© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_6

CHAPTER 6

Getting Started
with Flask
Chapter goal: Get Flask running on your computer.
Learn the basics of Flask. Run Flask on the Pi and get it
to autostart your application when it boots.

As you learned back in Chapter 4, Flask is a Python microframework – but

what does that mean? Essentially, Flask is a web application framework. It

makes it easy for you to develop and run complex web applications. Using

Flask, you can write Python and have it executed when someone visits your

web page. The Flask project resides at https://flask.palletsprojects.

com/. It’s open source and available on GitHub at https://github.com/

pallets/flask. You can create a login and user registration system, web

admin panel, student management system, COVID-19 tracker, basic CRUD

(create, read, upload, delete) system, or almost anything else you can

imagine.

Flask has no opinion. It won’t force you to use specific databases or

code patterns – it leaves those choices up to you. If you’d like to avoid the

decision-making process, Django (www.djangoproject.com/) is a Python

framework with an opinion, but this book is based on Flask, and I’ll guide

you through every step of the way.

https://doi.org/10.1007/978-1-4842-6080-7_6#ESM
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://github.com/pallets/flask
https://github.com/pallets/flask
http://www.djangoproject.com/

144

Flask is maintained by an organization called Pallets (https://

palletsprojects.com/), and if you visit their GitHub profile at https://

github.com/pallets, you’ll see a vast number of exceedingly popular

projects. I can personally attest to the usefulness and quality of Python

code available from Pallets, and count myself fortunate to contribute to

Flask-SQLAlchemy (https://github.com/pallets/flask-sqlalchemy).

Anyway, I digress.

 First Flask Config
Flask is already included in your project. In Chapter 4 you included the

source code in your Pipfile. Flask is very simple to use. Begin by navigating

to your top-level Pi-Car folder in your Terminal, and creating these files

and folders:

mkdir Pi_Car

cd Pi_Car

mkdir config

touch config/__init__.py

touch config/local_config.py

touch __init__.py

touch app.py

Note By now you should be comfortable with Git and be able to
format your code with Black. If you need a reminder, take a look at the
Git cheat sheet at the end of Chapter 4. The rest of this book won’t
explicitly remind you to format and commit your code – remember to
do so on a regular basis! A good rule of thumb is any time you have a
significant change or working state, or when you’re taking a break or
have finished coding for the day, commit your work. It’s OK to commit
broken or incomplete code to feature branches (rarely to master).

ChApTer 6 GeTTInG STArTed wITh FlASK

https://palletsprojects.com/
https://palletsprojects.com/
https://github.com/pallets
https://github.com/pallets
https://github.com/pallets/flask-sqlalchemy

145

There are only two main files here – everything else is either a folder

or a Python init. The local_config.py file located inside the config folder

is where you’ll store your application configuration. Later on you’ll access

configurations here from any file in your project. It’s a centralized place to

store project settings. If you want to change a setting, it’s much easier to modify

it in one central place, rather than digging through the whole code base and

making potentially hundreds of changes. Here’s the code you need to get

started:

LOCAL DEVELOPMENT CONFIG FILE

https://flask.palletsprojects.com/en/1.1.x/config/

Flask-specific values

TESTING = True

APPLICATION_ROOT = "/"

PREFERRED_URL_SCHEME = "http"

Custom values

Possible logging levels:

CRITICAL - FATAL - ERROR - WARNING - INFO - DEBUG - NOTSET

LOGGER_LEVEL = "DEBUG"

LOG_FILE_NAME = "pi-car.log"

This config file is a Python file. You can write complex logic in here, but

it’s best to avoid doing so. You can freely assign, create, delete, or otherwise

modify these values. As you can see, there’s a mixture of Booleans, strings,

and comments. There’s nothing special about this code, but it is used to

modify the state of the application. Each variable is written in uppercase.

This naming convention indicates that these variables are constants – they

won’t (or should not) change during the execution of the code. On its own

this config does nothing. It’s only when implemented by your code in other

files that they begin to provide value. Here’s the breakdown of what each

one does.

ChApTer 6 GeTTInG STArTed wITh FlASK

146

The Flask-specific values section contains configurations for Flask

itself. These settings are read by Flask and used to change its behavior. The

TESTING variable exists to make your life easier as a developer and make

your application more secure (when not set). You may not want to use

these on a production server, but on your Pi (for personal use), and while

developing the code this is fine.

The APPLICATION_ROUTE informs Flask where your code lives

relative to the folder Flask is running from. The PREFERRED_URL_
SCHEME tells Flask to use a secure or insecure Hypertext Transfer

Protocol – HTTP or HTTPS. Encrypting your application traffic and

generating an SSL or TLS certificate is possible locally, but it’s not

required unless you want to run your code on the Internet. You can learn

more about all the possible Flask config options at https://flask.

palletsprojects.com/en/1.1.x/config/, but these are enough for you to

get started.

Cryptographic protocols SSl and TlS exist to establish an
encrypted connection between you and the server hosting the
website you want to visit. They ensure that any data sent between
you and a website is encrypted and not visible to anyone else. These
protocols are used by your bank, or websites with a padlock in the
Url bar, but a time is coming in the not-too-distant future whereby
every website you visit will use some form of encryption. SSl stands
for secure sockets layer, and TlS stands for transport layer security.
TlS is the successor to SSl.

The custom values section is where you’ll find configurations specific

to your application. These values won’t interfere with Flask itself, and

you’ll need to explicitly write your code to handle these. LOGGER_LEVEL

is used to increase or reduce the verbosity of the application logs – which

you’ll learn about in the following pages. LOG_FILE_NAME defines the

ChApTer 6 GeTTInG STArTed wITh FlASK

https://flask.palletsprojects.com/en/1.1.x/config/
https://flask.palletsprojects.com/en/1.1.x/config/

147

name of the file to record these logs to. You’ll expand on this config file as

you develop more code.

The app.py file is where the main Flask initialization happens. Here

is where you tell Flask how to work. You’ll configure different URL routes,

logging, security, and much more. It’s the central nervous system of your

app. This doesn’t mean you can smash all your code in here, however. As

you’ll learn later on, there are ways to split this code into other files to keep

it neat and follow OOP practices. For now, the starting code is fine to live

here. Here’s the code you need to get started:

import logging

from flask import Flask

from logging.handlers import RotatingFileHandler

def create_app(config_file="config/local_config.py"):

 app = Flask(__name__) # Initialize app

 app.config.from_pyfile(config_file, silent=False) # Read

in config from file

 # Configure file-based log handler

 log_file_handler = RotatingFileHandler(

 filename=app.config.get("LOG_FILE_NAME",

"config/pi- car.log"),

 maxBytes=10000000,

 backupCount=4,

)

 log_file_handler.setFormatter(

 logging.Formatter("[%(asctime)s] %(levelname)s in

%(module)s: %(message)s")

)

 app.logger.addHandler(log_file_handler)

 app.logger.setLevel(app.config.get("LOGGER_LEVEL", "ERROR"))

 app.logger.info("----- STARTING APP ------")

ChApTer 6 GeTTInG STArTed wITh FlASK

148

 @app.route("/")

 def hello_world():

 app.logger.info("Running first route")

 return "Hello, World!"

 app.logger.info("----- FINISHED STARTING APP -----")

 return app

This may look like a lot of code, but taken one line at a time, it’s not as

scary as it looks. Let’s jump right in. Start by importing some modules:

import logging

from flask import Flask

from logging.handlers import RotatingFileHandler

Imports are Python’s way of reusing code. Files you want to import are

called modules, but really they are just folders. You can import a whole

module, or smaller sections, and from subfolders. You can import your

own code, or code written by other people. All of these imports (so far)

are using modules installed previously by Pipenv. If Python can’t find a

module to import, it will complain by raising an error – otherwise known

as throwing an error, or throwing an exception. You can write code to

handle errors, but I’ll cover that when required.

Next, create a function called create_app. This is an application

factory, which is a fancy way of saying it is in charge of building the Flask

application. Functions (sometimes called methods) are blocks of code

neatly bundled together with a useful name. They let you recycle code by

bunching specific code together. Ideally, functions should not be too long,

and should perform one task. You’ll refactor this function later as your

code grows. Here’s the first line:

def create_app(config_file="config/local_config.py"):

ChApTer 6 GeTTInG STArTed wITh FlASK

149

The keyword def lets Python know you’d like to create a new function,

and that everything following the keyword is the function. After def comes

the function name – create_app in this case. Python naming convention

for functions is all lowercase, with underscores between words.

Next up are your parameters. These let you pass data to functions when

they are used. This data is accessible inside the function. Using parameters

like this lets you change the data every time you use your code. If you don’t

need to use different data, or your function can “figure out” what it needs,

you don’t need to use parameters. This function has one parameter called

config_file. It has a default value of config/local_config.py. If you don’t

provide this parameter, the default value is used instead. Default values are

optional – if you don’t specify one, your code will crash if you don’t supply

the parameter. This config file is used inside this function to point your

code to your config. It’s common to change configs depending on your

environment – production, on your computer, on the Pi, and so on.

Finally, the colon indicates the end of the function configuration, and

that everything that follows is the function’s code. Python uses indentation

to assign code to different objects, so ensure everything inside the function

lines up.

Here’s the first line of code inside the create_app function:

app = Flask(__name__) # Initialize app

This creates a variable called app and instantiates it as a Flask object.

You can see a comment following it – denoted by the hash sign at the start.

Comments are ignored by the Python interpreter, and exist to help you and

other developers in the future when revisiting code. Comments should

be clean and clear – don’t just copy what the code does. The comments in

these examples are more verbose than may typically be desirable, to really

help you out in your understanding.

Before going any further, let’s really dig into what this line does. If you

think back to Chapter 2 – the software development primer, you learned

about object-oriented programming and how classes are really just recipes

ChApTer 6 GeTTInG STArTed wITh FlASK

150

which define how a piece of code should work. Here, Flask is a class –

and it follows the class naming guidelines of Pascal Case. Pascal Case is

where the first letter of every word is uppercase, and the rest of the letters

are lowercase. This Flask class defines how code should work and what

it should do as designed by the Pallets team when creating Flask itself.

Therefore, app is a new instance of the Flask class.

The parameter __name__ is passed to the class. In Flask, this is a

parameter called import_name. You don’t have to specify this when using

classes or functions – but you can if you’d like to:

app = Flask(import_name=__name__) # Initialize app

This import_name lets Flask know where the application is running,

relative to your code base. It lets Flask figure out where to find all of its

other code. In Python, __name__ is a special variable. This evaluates to

the name of the current module – Pi-Car.Pi_Car.app in this file, which

represents the file name, the folder name, and the parent directory

name. Special variables in Python begin and end with dunder – double

underscores for both the prefix and suffix.

Next, configure your Flask application by pointing it to the config file

you created previously:

app.config.from_pyfile(config_file, silent=False) # Read in

config from file

Notice how the config_file variable is passed in here – you defined

this in your function definition, and as of right now, it references the file

in config/local_config.py. This helpful function loads all of your config

variables into your Flask app. Any changes you make to the config will get

automatically picked up by Flask whenever you restart the application. The

silent parameter instructs Flask to raise errors if that file does not exist. As

you only have one config file right now, it’s a good idea to leave this set to

False. If you wanted to use an optional config file – one which may or may

ChApTer 6 GeTTInG STArTed wITh FlASK

151

not exist, then setting silent to True is a good way to handle this. When

true, Flask will happily keep working, even if it can’t find the config file.

The next chunk of code handles application logging. Before discussing

this, let’s look at what logging is and why it’s so important.

Logs let you record information during the execution of an application.

Essentially they are just messages to yourself, written to aid you during

development and deployment. They are an essential metric and provide

much-needed visibility into the state of your application.

Logs are often divided into logging levels. Each log is classified into

a group depending on its relevance or severity. When looking at logs at a

later stage, it’s possible to filter these so as to see only the most relevant

results. It’s also possible to limit the creation of logs based on their level.

This is defined in your config file as LOGGER_LEVEL.

Logger levels can vary slightly between projects and frameworks, but

for the most part, they all work in the same way. Log levels operate in

descending order of priority. If you set a log level, your application will

output all logs of that level or higher. You’ll always see logs deemed more

important than the current log level, but anything less important will

be hidden. From most important to least important, the logging levels

available through Flask and this application are

• Critical

• Fatal

• Error

• Warning

• Info

• Debug

The critical level indicates there was a serious problem with the code –

perhaps a config file or variable is not configured. This should be reserved

for problems which prevent the application running at all, or very serious

ChApTer 6 GeTTInG STArTed wITh FlASK

152

issues which need resolving right now. Fatal is very similar to critical (and

in the Python core logging library, they are the same). Use fatal when you

encounter a problem that cannot be corrected or recovered from in the

code.

The error logging level is perhaps more common than most. Use

this to indicate that a problem has occurred, but not one that prevents

the whole application from working. This could be localized to a specific

request or function or tied to a specific action. Other requests and

functions may still work fine, just this one in particular may be impacted.

When working in a corporate environment, you may be fortunate

enough to have an operations team, sometimes known as DevOps or ops.

This team is responsible for running the infrastructure needed to execute

your code. A good rule of thumb is that critical, fatal, or error levels should

be serious enough to get your ops team out of bed, and will require some

corrective action. Granted, this car project has far fewer people working on

it, and an issue may not warrant immediate corrective action, but you can’t

fix what you don’t know about, so use sensible logs and log levels at every

opportunity.

The warning log level is much gentler, and often ignored. Use warning

levels to indicate that something undesirable happened, or something is

unavailable or inaccessible, but the application continues to operate just

fine. Perhaps the code is designed to handle this bad condition – but you

still want to know when it happens.

The info logging level is incredibly useful, but often one that is easy

to abuse. This level should be used to inform about the state of the

application. A good practice is to put info log statements at the start

and end of every function execution. Info could perhaps be used by a

nontechnical person to see that every step of a process is followed.

Finally, debug is a level that you can use for almost anything. If you

want to know the state of a variable at a point in time, or if a particular

code block is executed, use debug. Debug log levels exist to help you

as a developer understand what is happening in your code, down to a

ChApTer 6 GeTTInG STArTed wITh FlASK

153

very fine-grained level. You would not generally run applications at this

level in production, as it can be too verbose. Occasionally is fine, when

troubleshooting or deploying new systems, but when fully operational, a

higher log level is often used. I once worked on a Python application where

the server bill to store all the logs from running debug in production cost

more than the whole application cost to run.

This application uses log handlers to output logs to both a file and

the standout output, known as stdout, which is essentially your console.

Log handlers are used to configure all kinds of logging settings. You can

customize the format, file name, logging level, and more. By default, Flask

logging has a log handler which outputs to the console. This is very useful,

so let’s leave this as is. Create a new file-based log handler, using the

RotatingFileHandler class, previously imported from logging.handlers:

Configure file-based log handler

log_file_handler = RotatingFileHandler(

 filename=app.config.get("LOG_FILE_NAME", "config/pi-car.log"),

 maxBytes=10000000,

 backupCount=4,

)

This rotating file handler records all your logs to a file. Once the file

gets too large, it creates a new file. Once it reaches four new files, it goes

back to the first file and starts again. The file name defines what to call the

new files created for your logs. maxBytes is used to limit the maximum file

size in bytes. 10MB is specified here. Finally, backupCount specifies the

total number of log files to rotate around. Notice how these parameters are

named using CamelCase – the first letter of every word is uppercase, apart

from the first letter of the variable. This is not a Python convention, but

as you’ll come to find out, software developers all write code in different

styles, based on their preferences.

ChApTer 6 GeTTInG STArTed wITh FlASK

154

Notice how the file name looks like this:

app.config.get("LOG_FILE_NAME", "config/pi-car.log")

This reads the config variable LOG_FILE_NAME defined in your

config file and then loaded into the Flask config object. This is your first

introduction to defensive programming. Throughout this application,

you should ask yourself, “What happens if this piece of code fails?” In this

case, what will happen if LOG_FILE_NAME does not exist in your config?

Config is a dictionary object, and dictionaries support the get function.

This function safely retrieves data from dictionaries. If LOG_FILE_NAME

is not present in the config, get returns None instead of crashing your

application. Alternatively, you can specify a default value to use if the

LOG_FILE_NAME is not found. In summary, if you don’t set LOG_FILE_
NAME in your config, this code will fall back to using config/pi-car.log.

This makes your code powerful and resilient to failure. It can error-correct

itself to continue normal operation.

The alternative to the get function is accessing the dictionary by its key:

filename=["LOG_FILE_NAME"]

This will return the value defined in your config, but it will crash your

application if this key does not exist in the config dictionary. Now this will

raise a KeyError, which you could correct with a try/catch statement

(Python’s syntax uses the word Except here, but the terminology is Catch):

try:

 filename = ["LOG_FILE_NAME"]

except KeyError:

 filename = "config/pi-car.log"

log_file_handler = RotatingFileHandler(

 filename=filename

 ...

ChApTer 6 GeTTInG STArTed wITh FlASK

155

Try/catch statements are used liberally in Python (perhaps more so

than other languages). This way of handling exceptions is fine in many

cases, but in this particular case, it bloats the code when compared to

using the get function.

This code is another important pattern to learn. If you anticipate errors

may happen, wrap your code in a try/catch pattern. Any code inside the

try will let you handle the errors inside the except. You can handle specific

errors as shown earlier, or you can handle any error – although make sure

you don’t just wrap all your code in a massive try and catch any error.

Specific error handling is far more useful than blindly catching all errors. If

you want to assign the error itself to a variable, you can alias it:

try:

 filename = ["LOG_FILE_NAME"]

except KeyError as e:

 filename = "config/pi-car.log"

Now, e is a variable that contains more information about the problem.

You can and should log this with a suitable message, but as you’re still

configuring the logs at this stage, you may not be able to read the logs

yet. Finally, if you want to explicitly ignore an error, you can use the pass

keyword:

try:

 filename = ["LOG_FILE_NAME"]

except KeyError:

 pass

ChApTer 6 GeTTInG STArTed wITh FlASK

156

A dictionary is an object used to store data in key/value pairs using
curly braces. here’s a basic example:

my_dict = {

 "A": "Apples",

 "B": "Bananas",

}

Items on the left are the keys and items on the right are the values,
and you can now access items by their key (and square brackets):

my_dict["A"]

This will return you the value of “Apples”. As you learned about
earlier, defensive programming with dictionaries is an excellent way
to improve your code.

You can store any data in dictionaries, including complex objects or
nested dictionaries.

Back to your log handler, you need to explicitly set the logging level

in use by pulling the value out of your config file and using the setLevel
function:

log_file_handler.setLevel(app.config.get("LOGGER_LEVEL", "ERROR"))

Notice how this defensively retrieves the config value, or defaults to

ERROR.

Use the setFormatter function to define a format for your logs:

log_file_handler.setFormatter(

 logging.Formatter("[%(asctime)s] %(levelname)s in %(module)

s: %(message)s")

)

ChApTer 6 GeTTInG STArTed wITh FlASK

157

This injects useful data into your logs, which makes them far more

useful when reading at a later date – data such as the date and time they

were produced, the log level, and the file they came from. Such a log entry

may look like this:

[2020-04-04 11:26:38,333] INFO in app: Log message here...

Finally, you need to tell Flask about your new log handler, which is

done with the addHandler function:

app.logger.addHandler(log_file_handler)

You’re now ready to use logs all over your application! Here’s how to

log to the info level:

app.logger.info("----- STARTING APP ------")

Notice how you access the info attribute of the logger object in your

app object. Because your app is an instance of the Flask class, you have

access to app.logger, because Flask defined it in the class definition.

This is what makes object-oriented code so powerful. The ability to reuse

code (built by other people in many cases) can really speed up your

development time. You don’t need to defensively handle app.logger – you

can almost always rely on functions being available – provided you are

certain the object is what you think it is.

To log to the other log levels, replace info with the log level you want,

all in lowercase:

app.logger.critical("This is a critical log message")

app.logger.fatal("This is a fatal log message")

app.logger.error("This is an error log message")

app.logger.warning("This is a warning log message")

app.logger.info("This is an info log message")

app.logger.debug("This is a debug log message")

ChApTer 6 GeTTInG STArTed wITh FlASK

158

Later on you’ll learn how to log complex objects, but for now, play

around with logging different messages to different log levels.

Here’s the final piece of the Flask puzzle. Routes are a foundation of

any web app, and Flask is no different. Routes let users and developers

use memorable names in the URL, each one routing to a different piece

of code. Flask needs to know which routes exist, so here’s the code that

handles this first route:

@app.route("/")

def hello_world():

 app.logger.info("Running first route")

 return "Hello, World!"

This defines a route accessible at “/”. The function is called hello_
world, but this has no impact on the URL. Inside, you can see some basic

logging to the info level, and then it returns a string. In Flask, you must

return something inside your routes – this is what is shown when you load

this page in your browser.

You may be wondering what the @ sign used for. In Python, this is a

decorator. Decorators are ways of running functions, and are a common

pattern in Python. This essentially provides hello_world as a parameter to

the route function, which is defined in the Flask class, of which your app is

an instance of. Decorators keep your code neat, but they can be difficult to

write and get confusing when using multiple decorators on the same piece

of code.

Finally, as the very last line of code in create_app, you need to return

your app object:

return app

As this create_app function is an app factory, tasked with making Flask

apps, it needs to return the newly built and configured app to whatever

code requested it. Any code after this return statement will not run.

ChApTer 6 GeTTInG STArTed wITh FlASK

159

That’s it for the Flask code. It may be slightly larger than the very core

Flask code you need to get started, but you now have an app factory, which

implements some very important logging and route functionality. You’ve

learned some core concepts that you can carry with you to any project, and

you are now ready to run your app!

From the terminal, make sure you’re in a Pipenv shell from your top-

level project folder (which for me is Pi-Car). Configure your environment

by telling Flask where to find your app factory:

export FLASK_APP=Pi_Car.app

This line sets an environment variable called FLASK_APP with

the value of Pi_Car.app. This is your subfolder and your Python file.

The .py extension is not required. Flask will automatically read this

environment variable and go and use your create_app function inside

app.py. Optionally, configure the FLASK_ENV variable. Setting this to

development makes Flask much easier to work with. Flask will monitor

your code for any changes and reload the app if it detects any. It’s not

possible to configure this in your config file, as it needs setting before the

app launches:

export FLASK_ENV=development

Now run your app:

flask run

Visit http://127.0.0.1:5000/ in your browser. You’ll see your “Hello,

World!” message on the page, and your console will fill up with your

application logs (Figure 6-1)! You’ll see several Flask messages about the

environment, app name, and so on. You’ll also see your application logs.

Refresh the page and notice how more logs arrive.

ChApTer 6 GeTTInG STArTed wITh FlASK

http://127.0.0.1:5000/

160

Open the new pi-car.log file and you’ll also see your application logs.

The logs in your console are temporary and exist to help you out. When

running on the Pi, you’ll use this log file more often. You don’t need to

worry about storing this log file in Git – it’s already ignored through the

.gitignore template file GitHub created for you. You can see several sample

logs in Figure 6-2. Well done! You are well on your way to becoming a

Python expert!

Figure 6-2. First application logs

Figure 6-1. Output from running the Flask server

ChApTer 6 GeTTInG STArTed wITh FlASK

161

 Running Flask on the Pi
Now that you have a working application and know how to run Flask, let’s

get Flask running on the Pi and access it from your computer over your

local network. The start of this process is very similar to running Flask on

your computer. You need to get the latest code onto the Pi and boot the

server. Start by connecting to your Pi over SSH and navigate to the root

project directory:

cd Documents/Pi-Car

Now use your update script to pull the latest code from the master

branch:

./clone.sh

After updating, start a Pipenv shell:

pipenv shell

Finally, configure the environment and start the server – Figure 6-3

shows the sample output:

export FLASK_APP=Pi_Car.app

flask run

Notice the IP address Flask is running on:

* Running on http://127.0.0.1:5000/ (Press Ctrl+C to quit)

ChApTer 6 GeTTInG STArTed wITh FlASK

162

This 127.0.0.1 is known as your localhost address – sometimes called

a loopback address. It is an almost universal standard IP address to refer

to “this computer.” On your Pi, this address is the same. It’s the same

address on my desktop computer, your laptop, my Pi, or almost any other

computer. This is a reserved IP address, and it’s used to make developer’s

lives easier. When running your applications, it doesn’t make sense to

send packets out over the Internet, only to come back in to access your

application. Localhost addresses are often only accessible to the computer

that is running something on it – although you can expose them to the

Internet via a public-facing IP address.

Herein lies the problem. This localhost address works fine on your

computer – Flask runs on this address, and as you’re using the computer

Flask is running on, you can access it just fine. As the Pi is a different

computer to the one you are developing on, you need to tell Flask to

run on a different internal IP address, so that you can access it remotely.

When running inside your car, this localhost address works perfectly, but

while you’re still developing this project, it’s much easier to access the Pi

remotely.

Fortunately, Flask lets you change the IP address when you start the

project. Instead of Flask run, modify the command to change the IP

address, shown in Figure 6-4:

flask run --host=0.0.0.0

Figure 6-3. The Flask server running on the Pi

ChApTer 6 GeTTInG STArTed wITh FlASK

163

This tells Flask to listen on the IP address 0.0.0.0 – which is another

reserved network address. This IP address will never be used by an internal

or external network. You can freely use it for purposes such as this. Once

again, this is local to your computer or Pi – every computer has its own

0.0.0.0 IP address.

This IP address listens to all incoming connections. When you connect

to your Pi’s IP address, your traffic will route to Flask, which is essentially

listening to all incoming traffic on the Pi. On your desktop computer,

fire up your web browser of choice, and enter your Pi’s IP address in the

address bar:

http://192.168.1.210:5000/

Remember you can get your Pi’s IP address by running ifconfig on

the Pi and looking under the inet section for wlan0. Now you can access

the Flask application running on your Pi from your desktop computer.

You can see the logs in real time through your SSH session. For all

practical purposes, the Pi is acting as a remote web server, which you are

administering over the network. It doesn’t matter that the Pi may be on

your desk or tucked behind a cupboard – only the IP address changes for a

device next to you or 1000 miles away.

Figure 6-4. Flask server running on port 0.0.0.0

ChApTer 6 GeTTInG STArTed wITh FlASK

164

IP addresses power every device on the Internet or internal network.
The Domain Name System (dnS) defines how servers convert
memorable domain names such as google.com to hard to remember
Ip addresses such as 216.58.204.14. There’s nothing stopping you
from entering Ip addresses into your web browser, but letters and
words are much easier to remember. when you enter your pi’s Ip
address into your web browser, you’re skipping the domain name
lookup process, as you already know the Ip address you want.

Notice the 5000 at the end of your IP address? This is the port in use by

Flask. Ports in networking are communication endpoints. Computers have

a maximum of 65535 ports, and each one is associated with a service or

application. Certain ports are associated with services by default. Insecure

websites use port 80, for example, or TLS connections use port 443. When

entering a website, by default, browsers use port 80 or 443 unless told

otherwise. As Flask is running on port 5000, trying to connect over port 80

will not work. By using a colon, and specifying the port in the URL, you can

connect over the correct port.

Why 65535 ports? ports are stored as an unsigned 16-bit integer,
which provides a maximum of 65535 digits. This means you can
theoretically have 65535 applications running on your computer, all
listening on a different port from 0 to 65535. negative ports are not
supported in TCp/Ip applications.

You could configure Flask to run on port 80, but the Pi probably has

something already running on that port, and you can’t share ports which

are in use. For now, let’s stick with port 5000.

ChApTer 6 GeTTInG STArTed wITh FlASK

165

As for the IP address, you could bookmark this, or write it down, but in

the words of Python core developer Raymond Hettinger, “there must be a

better way!” By using a hosts file, you can create an easy-to-remember text-

based entry, which will redirect you to the Pi’s IP address. This is a bit like

running your own DNS server on your computer – you could even redirect

google.com to your Pi. Remember though that it’s only you who will see

this – it’s not that easy to hack servers.

You’ll need to perform this change on your desktop computer, not the

Pi. Start in your console and open the hosts file (it doesn’t matter what

folder you are currently in), shown in Figure 6-5:

sudo nano /private/etc/hosts

You’ll need to enter your password – the sudo command runs this

with the necessary privileges required to edit the file. Nano is a lightweight

console-based text editor, although if you’re a fan of Vi, Vim, or Emacs,

then you might be screaming at me right now. These alternative software

packages also work well, so use whatever you’re comfortable with.

Figure 6-5. macOS default hosts file entries

ChApTer 6 GeTTInG STArTed wITh FlASK

166

Each line in this file represents an independent host entry. The left

portion is the address to redirect to, and the right portion is the easy-to-

remember name. Notice how there are already several entries:

127.0.0.1 localhost

255.255.255.255 broadcasthost

::1 localhost

These default entries let you (and other applications) access 127.0.0.1

via the easy-to-remember name of localhost. Ensure you don’t change

these existing entries. Use your keyboard arrow keys to scroll to the bottom

of this file, and insert a new blank line with your return key. Enter your Pi’s

IP address on the left and an easy-to-remember name on the right:

192.168.1.210 pi-car

Figure 6-6 shows the now modified hosts file. Remember, your internal

IP address is different from mine. Press Ctrl+X to exit Nano, making sure to

type yes to save the file (shown in Figure 6-7), and then press return to use

the existing file name.

Figure 6-6. macOS hosts file with pi-car entry

ChApTer 6 GeTTInG STArTed wITh FlASK

167

Back in your web browser, you can access the Pi via pi-car now,

instead of 192.168.1.210. You’ll still need to use the port Flask is running

on, along with the protocol, like this: http://pi-car:5000/. You may need

to repeat this process if your Pi’s internal IP address changes – which is

possible but unlikely.

 Autostart Flask When the Pi Boots
Whenever the Pi boots, it needs to run the Flask server. There are many

ways to configure autorun behavior such as this on the Pi. Here’s how to

modify rc.local to configure everything you need for Flask to run when the

Pi boots. It will

• Ensure the Pi can access your Python 3 interpreter

• Configure the FLASK_APP environment variable

• Pull the latest code from your GitHub repository

• Create a virtual environment and install the

dependencies

• Run the Flask app

This stands for run control, and it exists to let you run commands

automatically when the Pi starts up. Commands here get executed by

the root user, without you having to log in to the Pi. This presents some

challenges, as all of your Python installations and files are relative to your

user, located in /home/pi/. As you’ll see shortly, it’s a simple process

to point the root user to the files necessary to run the server. You can

Figure 6-7. Nano file saving confirmation message

ChApTer 6 GeTTInG STArTed wITh FlASK

168

reference scripts here, but for this purpose, you can store your commands

directly in the file.

Begin by editing the rc.local file on the Pi:

sudo nano /etc/rc.local

Notice here there’s already some code here – several lines of comments

followed by a simple IP address retrieval. You can safely remove all of this

code. Enter this new code:

sleep 15

export PATH=/home/pi/.pyenv/shims:$PATH

export FLASK_APP=Pi_Car.app

cd /home/pi/Documents/Pi-Car/

./clone.sh

pipenv install

flask run --host=0.0.0.0 &

exit 0

Most of this should be familiar to you. Notice how it changes directory

into your /home/pi/ folder, exports the PATH into that directory, and

runs the Git clone script you created earlier. It also installs the latest

requirements from the Pipfile and runs the Flask server on the correct

address. You can see this from the Pi’s console in Figure 6-8.

ChApTer 6 GeTTInG STArTed wITh FlASK

169

At the start of the file, the sleep command delays execution for 15

seconds:

sleep 15

This ensures that the Pi can access the Internet to clone your latest

code. Without it, the Pi may not have finished configuring its network

devices and would therefore mean any commands requiring Internet

access (such as your Git clone) would fail.

When running the Flask server, pay special attention to the ampersand

at the end of the line:

pipenv run flask run --host=0.0.0.0 &

This isn’t a typo. It runs your Flask server in “background mode” as it

were. Without it, your server would run just fine, but this script would wait

for it to finish execution (which it may never do). By including this special

character, the Pi is free to go about any other business it needs to do.

Figure 6-8. Basic Pi rc.local configuration

ChApTer 6 GeTTInG STArTed wITh FlASK

170

Finally, there is the exit command:

exit 0

This is a bash exit code, specifically, the success code. Again, this

tells the Pi that everything executed successfully. It’s critically important

that you retain this line at the bottom of the file. Without it, the Pi would

not be able to determine if everything executed successfully, and may

prematurely kill off your server.

Save and exit Nano, and restart the Pi:

sudo reboot

Once the Pi starts up, point your web browser to the Pi’s domain and

port (http://pi-car:5000/), and you’ll see your hello world welcome

page. Well done, you have now completed possibly the hardest tasks of

all. As you progress through these projects, everything else will seem like

smooth sailing now that you have all your environments configured and a

(mostly) fully automated deployment pipeline.

 Chapter Summary
Throughout this chapter, you’ve installed and configured Flask and built

your first application routes. You learned how to run a Flask application

server on your local computer and how to do the same on the Pi. You’ve

configured your application logging – both to the standard out and to a

rotating log file handler. You configured the Pi to grab the latest code from

the repo and start the Flask application when it boots. You can access this

over your local network.

In the next chapter, you’ll connect a temperature sensor and modify

your application to read data from it.

ChApTer 6 GeTTInG STArTed wITh FlASK

171© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_7

CHAPTER 7

Temperature
Monitoring
Chapter goal: Install a temperature sensor and read the
values into the application.

Every car needs a temperature sensor. Knowing what the outside

temperature is useful for all kinds of purposes. At the basic level, it’s useful

to know if you should wear a coat and a hat because it’s cold, or to leave your

coat in the car because it’s warm out. On a functional level, it’s dangerous

to drive in low temperatures, with the risk of icy roads impacting your

driving style. By knowing that it’s cold outside, you can adjust your driving

accordingly. This project is an excellent basis for expansion – you could use

it to install additional sensors for your cabin or engine, for example.

 Hardware Configuration
Always turn off and disconnect the Pi’s power supply when working with

electronic circuits. While the low voltage used for these circuits will not

kill you and is unlikely to seriously injure you, it’s possible to damage

both the components and the Pi. It’s also possible to start a fire – either by

connecting a component wrong or creating a short-circuit, which causes a

https://doi.org/10.1007/978-1-4842-6080-7_7#DOI

172

part to overheat and subsequently ignites any nearby fuel sources, such as

paper, or the box the Pi came in. Always double-check your circuits before

applying power and never risk an accident by taking chances.

To sense the temperature, you need to connect the Pi to a temperature

sensor – illustrated in Figure 7-1. The Dallas DS18B20 is perfectly suited

for this. It’s tiny, low-power, and affordable. This sensor can vary in price,

depending on where you purchase it from. It’s likely to cost a few cents

from an electronic components retailer up to several dollars from Amazon

or a big-box store. If purchasing components individually, you’ll need

to also buy a 4.7k ohm resistor. I’d recommend you buy a complete unit

consisting of a DS18B20, 4.7k resistor, and integrated LED. Such a circuit

will greatly simplify your build, and costs just a few dollars more. Models

such as the ARCELI DS18B20 or the DollaTek DS18B20 are all suitable; just

make sure that they use the DS18B20 component.

Figure 7-1. DS18B20 temperature sensor wired into the Pi

Chapter 7 temperature monitoring

173

The DS18B20 is a digital thermometer, shown in Figure 7-2. It can

sense temperatures from -55°C to +125°C within an accuracy of 0.5°C. It

only requires one connecting cable between it and the Pi – besides power.

It’s also able to share this single data connection with multiple other units,

allowing potentially thousands of different temperature sensors to connect

to the Pi over one cable – although this project only requires one. This

interface of communication over one wire is called 1-wire. By default, the

Pi’s physical pin seven (GPIO4) handles this communication.

Begin by identifying the DS18B20. Notice how one side is curved, while

the other has a flat spot. Each of the three legs serves a different function,

Figure 7-2. DS18B20 temperature sensor module

Chapter 7 temperature monitoring

174

so make sure to connect everything correctly. Work with the flat spot facing

you. From left to right, these legs are as follows:

• Ground (GND) – This is the negative side, or 0 volts.

• Signal – This is where the Pi connects to retrieve the

temperature readings.

• Live – This is where your main power input comes in,

either 3.3V or 5V.

Look at the illustrated Pi drawing to see the completed circuit. If you’re

not sure how to read this, trace each wire back from its source, and copy it

to link your two components together. Note that this diagram uses the Pi 3,

which has a functionally identical pin layout to the Pi 4.

The Pi’s pins are numbered in two different ways – by their layout and

by their function. Pins are arranged in two rows of 20 and zigzag left to

right. The top-left pin is number one, the top-right pin is number two, the

pin one down from the top left is number three, and so on. Pins referenced

this way are using their physical or board location. The more popular

alternative references pins by their GPIO purpose. As many pins serve

specialist purposes, it makes sense to reference the main ones you need to

use. This order may appear a little jumbled up, but it greatly emphasizes

the GPIO pins over any others. This pin referencing style is called the

Broadcom layout, or BCM for short.

To identify the general-purpose input/output (GPIO) pins on your Pi,

connect over SSH and run the pinout command; the output of which is

shown in Figure 7-3:

pinout

Chapter 7 temperature monitoring

175

This command tells you the exact purpose of every GPIO pin on your

Pi – they vary slightly between older Pi models. Looking at the Pi 4 from

above, with the USB ports at the bottom and the GPIO pins on the top

right, the three pins you need for this project are as follows:

• 1 (physical) or 3v3 power (BCM) – 3.3V

• 6 (physical) or ground (BCM) – Ground or GND

• 7 (physical) or 4 (BCM) – GPIO4

Figure 7-3. Pi 4 GPIO pinout output of the pinout command

Chapter 7 temperature monitoring

176

The 3.3V and GND pins provide the electricity the sensor needs to

function. GPIO4 is a general-purpose data connection, which the Pi can

use to communicate with the outside world. Here’s where you’ll connect

the middle leg of your sensor.

Connect the DS18B20 to your Pi via the 4.7k ohm resistor. This resistor

serves a very important function. It prevents the sensor or the Pi from

creating a short-circuit and getting destroyed, and it’s called a pull-up

resistor. If connected to the ground instead of the positive voltage, its

name changes to a pull-down resistor. Figure 7-4 shows the wiring diagram

between the Pi, a breadboard, and the DS18B20 temperature sensor.

It also ensures that the readings from the sensor are accurate and not

muddled up with spurious readings. It helps to ensure the Pi can tell the

difference between the real sensor values and noise from the environment.

This noise isn’t audible; it’s interference from all around you – mains power,

other data signals, your wireless network, or various other things that exist to

interfere with your temperature reading. The Pi has built-in resistors on every

GPIO pin, but this sensor needs a slightly different value to operate correctly.

Once connected, go back and double-check your work before applying

power.

Figure 7-4. Breadboard wiring diagram for the temperature sensor

Chapter 7 temperature monitoring

177

 Pi Configuration
Open an SSH connection to your Pi. To begin using the Pi’s GPIO pin

with the temperature sensor, you need to configure it. The config.txt file

located inside the /boot/ folder configures several aspects of the Pi. HDMI

resolution, video quality, pin settings, and more are handled here. Begin

by opening this file in your command-line editor of choice:

sudo nano /boot/config.txt

Add this line at the bottom of the file, taking care to keep all remaining

values:

dtoverlay=w1-gpio

Save and exist, and then restart the Pi:

sudo reboot

Once restarted, the Pi will have access to its GPIO pins using the

1-wire protocol. This config option is a device tree overlay. It’s a bit like

a driver in Microsoft Windows systems. It lets the Pi’s Linux kernel have

access to many different hardware configurations, without getting into the

complex guts of operating system logic required to support such a variety

of hardware.

 Flask Temperature Sensor Logic
Back on your computer, you need to instruct the Pi (through Python) to

read the temperature values from the sensor. For this section of the project,

you’ll create a Sensors class, which will handle all current and future

communication with the Pi’s sensors. You’ll also learn about blueprints.

This Flask pattern lets you store your application code outside of the

create_app function.

Chapter 7 temperature monitoring

178

It’s possible to write 100% of the code to read these values, but it’s

much easier to use an open source library to handle the heavy lifting.

While it’s not too difficult to handle this yourself, it detracts from the main

focus of this project, and it isn’t as simple as you’d imagine. To facilitate

this process, the Python package W1ThermSensor (https://github.com/

timofurrer/w1thermsensor) needs installing. This works on both the Pi

and your desktop computer.

From inside a pipenv shell, install W1ThermSensor and regenerate the

Pipfile.lock:

pipenv install W1ThermSensor

pipenv lock

Create a folder to store your blueprints, along with a new blueprint file

called data. This should live inside your Pi_Car directory:

touch Pi_Car/data.py

This data.py file will contain your main Flask route. It will collate

the date from all the sensors, and serve it up, ready for the application to

consume later on. Create the sensors file, which will house your Sensors

class:

touch Pi_Car/sensors.py

Here’s the code you need for your sensors file:

from flask import current_app as app

try:

 from w1thermsensor import W1ThermSensor

except Exception:

 W1ThermSensor = None

Chapter 7 temperature monitoring

https://github.com/timofurrer/w1thermsensor
https://github.com/timofurrer/w1thermsensor

179

class Sensors:

 @staticmethod

 def get_external_temp():

 """

 Safely read the external temperature

 :return: Integer of current temperature

 """

 app.logger.info("Starting to read temperature sensor")

 try:

 sensor = W1ThermSensor()

 temperature = sensor.get_temperature()

 except TypeError as e:

 app.logger.warning(

 f"Unable to use primary temperature sensor in

this environment: {e}"

)

 temperature = 0

 except Exception as e:

 app.logger.error(

 f"Unknown problem with primary external

temperature sensor: {e}"

)

 temperature = 0

 app.logger.info("Finished reading temperature sensor")

 app.logger.debug(f"Temperature: {temperature}")

 return int(temperature)

Chapter 7 temperature monitoring

180

That may look like a lot of code, but much of it should be familiar by

now. Notice the copious use of logging, at various different levels. There

are only three lines needed to read a temperature – the library does much

of the work for you:

from w1thermsensor import W1ThermSensor

sensor = W1ThermSensor()

temperature = sensor.get_temperature()

Begin by importing the library into your code. Create a new sensor

object, based on the W1ThermSensor class. Finally, use the get_
temperature function to read the current temperature.

The rest of this logic is logging, and defensive handling. All of this

ensures the Pi can keep on working even if the temperature sensor is

removed. If you’re driving a car, it wouldn’t make sense for the radio to

break if the temperature sensor fails, and the same is true here. If this

logic is allowed to fail, the Pi cannot continue its work with all the other

(possibly more important) sensors. Notice how the temperature variable is

set to zero if any errors occur. This ensures that the temperature sensor can

fail entirely, and you’d only lose this data. No other aspect of the system is

impacted, which is how code should be designed almost all of the time.

Notice the exception handling around the library import:

try:

 from w1thermsensor import W1ThermSensor

except Exception:

 W1ThermSensor = None

Generally speaking, you should try to avoid generic exception handling.

This code handles any error, rather than certain specific errors. It’s a bit

of a brutish approach, but it works in this use case because of one specific

flaw in the library. By performing this import, the W1ThermSensor library

begins to run its code. Just importing it is enough for it to configure the

device to read the sensor. This sounds like a good thing, but it’s another

Chapter 7 temperature monitoring

181

anti-pattern. In Python and object-oriented programming languages, it’s

good to explicitly run your logic. Running code on import is an implicit

action – and you may not even know it’s happening.

It’s not possible to log this failure at the point of import. The Flask

logger is not accessible until you are in a class – imports get evaluated

before the app boots, so Flask hasn’t started configuring the app or the

logger when this code executes.

In this case, this import fails when running locally on your computer.

It only works on the Pi or other devices which support the 1-wire protocol.

This library provides custom exceptions you can handle, but again, just

importing these runs the config code, and fails again.

By setting W1ThermSensor to None upon error, you can safely run

this module on devices other than the Pi – such as your computer. Later

on, the exception handling around the temperature object creation also

handles this:

except TypeError:

 app.logger.warning("Unable to use primary temperature

sensor in this environment")

 temperature = 0

Trying to access the library code when it has failed and been set

to None raises a TypeError, which is safely handled (and logged

appropriately) here.

This library does provide the ability to prevent this behavior, but in my

opinion, it just pushes the same problem to a different part of your code.

This library is still one of the best for this purpose, and this minor issue

isn’t enough to completely derail the experience. It makes unit testing

more difficult, but you’ll notice there are no tests for this portion of the

code. While you could technically write some tests, they would deliver very

little value, as most of the work is handled by the library. In an ideal world,

you would write these tests, but software development is often performed

in an imperfect environment, and as such, the time to implement tests on

Chapter 7 temperature monitoring

182

this code (while considering the workarounds needed with the imports)

outweighs the benefits.

Finally, the value of temperature is cast to an integer using the int

function – which is part of Python’s core library. This ensures that it is

always a number and rounds it to the nearest whole number. How many

cars have you seen which display the precise temperature, to several

decimal places? It’s not necessary, and as the sensor is only accurate to

within half a degree anyway, you’re not losing critical information.

Inside data.py, here’s the code you need:

from flask import Blueprint, jsonify

from .sensors import Sensors

from flask import current_app as app

data_blueprint = Blueprint("data", __name__)

@data_blueprint.route("/")

def show():

 app.logger.info("Starting to retrieve core data")

 temperature = Sensors.get_external_temp()

 result = {"temperature": temperature}

 app.logger.info("Finished retrieving core data")

 app.logger.debug(f"Core data: {result}")

 return jsonify(result)

There are very few lines here. Much of it should be familiar from the

“Hello, world!” Flask route you created inside app.py.

Let’s start with this import:

from flask import current_app as app

Inside Flask, you can access the running app through current_app,

which is aliased to the shorter app. This lets you access your configs, your

logger object, and anything else configured by your create_app function.

Chapter 7 temperature monitoring

183

This app object is used to write the application logs in this file, which route

to the correct log handlers.

Blueprints are Flask’s way of letting you move application routes

outside of your create_app and into their own individual files. By creating

an instance of the Blueprint class called data_blueprint, you’re building

everything Flask needs to know about – using the decorator to tell Flask

that everything inside your function is part of the data blueprint:

@data_blueprint.route("/")

This forward slash is your URL route. It can be anything you like – it’s

what you’ll type in your browser’s URL bar. Note the call to your Sensor

class:

temperature = Sensors.get_external_temp()

You defined this function as a static method. It requires no access to

any other parts of the class, which means you don’t need to define an

instance of the class first, you can just access the object directly.

Finally, the data is returned as JSON using the jsonify function. This

converts it from a Python dictionary object to a JSON object – which is

essentially a string. Flask only allows specific shape objects or strings as

valid return types from routes, as it has to render these in the browser.

Back inside your app.py, you need to tell Flask about your new route.

Begin by importing it at the top of the file:

from .data import data_blueprint

Now remove your “Hello, World!” route from inside create_app, and

replace it with a blueprint registration:

app.register_blueprint(data_blueprint)

This is functionally equivalent to creating routes inside create_app,

but it keeps your logic very tidy, and compartmentalized into their own

Chapter 7 temperature monitoring

184

files, each with a specific purpose. This is what your complete app.py file

now looks like:

import logging

from flask import Flask

from logging.handlers import RotatingFileHandler

from .data import data_blueprint

def create_app(config_file="config/local_config.py"):

 app = Flask(__name__) # Initialize app

 app.config.from_pyfile(config_file, silent=False) # Read

in config from file

 # Configure file-based log handler

 log_file_handler = RotatingFileHandler(

 filename=app.config.get("LOG_FILE_NAME", "config/pi-

car.log"),

 maxBytes=10000000,

 backupCount=4,

)

 log_file_handler.setLevel(app.config.get("LOGGER_LEVEL",

"ERROR"))

 log_file_handler.setFormatter(

 logging.Formatter("[%(asctime)s] %(levelname)s in

%(module)s: %(message)s")

)

 app.logger.addHandler(log_file_handler)

 app.logger.info("----- STARTING APP ------")

 app.register_blueprint(data_blueprint)

 app.logger.info("----- FINISHED STARTING APP -----")

 return app

Chapter 7 temperature monitoring

185

Start Flask and load up your route in your web browser of choice.

Notice how your logs fill up with warnings, and there is no temperature

displayed. With no temperature sensor on your computer, it’s impossible

to read the temperature! The code is working perfectly – it continues to run

just fine without access to the temperature sensor. Commit your code and

perform a build on the Pi by restarting.

Visit your Pi’s URL, and bask in the overwhelming glory that is your

network-connected temperature sensor. The sample application logs are

shown in Figure 7-5, and Figure 7-6 shows the JSON output served to your

web browser. It may not look pretty, but it’s perfectly functional. Later on in

this book, you’ll learn how to make all the data you’re collecting look much

nicer, but for now, all you need to care about is functionality. I’ll never

forget a phrase I was told in my first programming job: “Make it work, and

then make it look pretty. It’s all well and good having flashy lights and

bright colors, but if it’s core function doesn’t work, nobody can use your

code.” It’s stuck with me ever since.

Figure 7-5. Application logs for the temperature sensor

Figure 7-6. JSON output of temperature sensor

Chapter 7 temperature monitoring

186

Finish testing your sensor by warming it up – either with your breath or

holding it (briefly) near a radiator or other heat source. Reload your app to

see the increased temperature displayed.

If you’re struggling to see these changes on your Pi, then open up

your application logs, visible in /home/pi/Documents/Pi-Car/pi-
car.log. What do you notice about them? Are there any errors or stack

traces visible? If so, go back and double-check your code. Test it first by

running it on your computer. You may need to change your logging level

to something more verbose first. Check your sensor is installed correctly

(making sure to shut down and unplug the Pi first).

 Chapter Summary
In this chapter you learned how to connect a digital temperature sensor

module to the Pi and defensively program your application to read this

data and expose it to the network through your Flask server. You also

learned how to write your code such that it can handle a total sensor

failure – either through incorrect wiring, a broken sensor, or any number of

other hardware faults that could prevent the sensor from working.

In the next chapter, you’ll continue to expand the system by building a

boot sensor.

Chapter 7 temperature monitoring

187© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_8

CHAPTER 8

Boot Sensor
Chapter goal: Install a boot sensor, and read its state
into your application.

The boot sensor serves an important function – it lets you know if the boot

is open! You’ll use a momentary switch for this purpose. If so desired, you

could expand or change this project to encompass car doors or even a

bonnet sensor.

 Hardware Configuration
Remember to disconnect the Pi’s power supply when connecting or

disconnecting any circuits.

This circuit uses a miniature momentary tactile switch. These cost a

few cents and measure roughly a quarter of an inch in diameter. They are

designed to bridge the gap between a solderless breadboard – as visible

in Figure 8-1 – or for integrating into your own circuits. Each button has

four legs, arranged in two pairs. Orient the button such that the legs are

facing horizontally, as if it was installed on a breadboard with the dividing

channel running vertically. The top-left and top-right legs are connected

as one pair. The bottom right and bottom left are also connected as the

second pair. This arrangement allows the buttons to span the gap in a

breadboard and connect two otherwise unconnected sides.

https://doi.org/10.1007/978-1-4842-6080-7_8#DOI

188

When the button is pressed, the pairs join up. Current is allowed to

flow from the top to the bottom pairs, and complete whatever circuit you

are using the button in. These buttons are only momentary acting. The

circuit is only completed when you hold the button down. Release the

button, and the connection is closed. You’ll need to handle any latching

action in the code (but that isn’t required for this project).

For this project, you won’t need a pull-down or pull-up resistor. The

Pi has built-in resistors for this purpose. The resistor used in the previous

circuits exists to help protect the sensor. As this is an extremely cheap

component, and it only serves one simple mechanical purpose, the Pi’s

built-in resistor is more than sufficient.

Figure 8-1. Boot sensor completed circuit on a breadboard

Chapter 8 Boot SenSor

189

You only need two pins for this project – the Pi’s ground and the GPIO

pin, which will detect the change. Figure 8-2 shows the wiring diagram for

this circuit. Connect the following:

• 6 (physical) or ground (BCM) – Ground or GND

• 8 (physical) or 14 (BCM) – GPIO 14

The GPIO pin will supply the current necessary to detect the button

press. When you are not pressing the button, GPIO pin 14 detects the Pi’s

internal voltage through its in-built pull-up resistor. This value is seen as

HIGH, 1, or ON. When you complete the circuit by pressing the button, the

signal changes to the ground. This state changes to LOW, 0, or OFF. This is

basic binary logic – each pin can have one of two states: on or off, high or

low, one or zero. Changes between these states are detected by the Pi.

Figure 8-2. Wiring diagram for the boot sensor

Chapter 8 Boot SenSor

190

Note the pi uses a mixture of pull-down and pull-up resistors
for its GpIo pins. While you can reconfigure each one to serve your
specific needs, always double-check the pi’s default values for pins.

After double-checking your work, apply power and boot up your Pi.

 Flask Boot Sensor Logic
This project requires no changes to the Pi’s operating system – it’s handled

entirely by Flask and your application logic. Most modern installations

on the Pi come with the required GPIO library preinstalled, but should

that not be the case on your Pi (for whatever reason), you’ll specify an

additional Python package in your Pipfile to avoid issues.

This button is used by your boot. When installed, the boot should

rest on the button, effectively completing the circuit. Therefore, when the

button is pressed, the boot is closed. When the boot is open, it’s no longer

pressing the button. By coding for these states accordingly, you’ll have a

functional boot sensor.

Begin by entering your project’s Pipenv shell and installing the

two packages used to interface Python and the GPIO pins. GPIOZero

is a modern wrapper for several older GPIO modules. It makes GPIO

communication in Python easier than ever. It’s well supported and has

a large community following. This internally uses several other libraries

for GPIO communication. If a certain library is not available on your Pi,

it’s capable of failing over to another library – and it can do this several

times. By default, the first GPIO communication library GPIOZero uses is

RPi.GPIO – which is the default library on Raspbian. PiGPIO is one of the

fail-over libraries, so by installing it, you have the best possible chance of

Chapter 8 Boot SenSor

191

avoiding issues, regardless of your Pi’s operating system. Install the two

Python packages:

pipenv install gpiozero

pipenv install pigpio

pypI is the default python package repository. Whenever you
download a package using PIP or Pyenv, your python interpreter
searches pypI. Why am I telling you this now? packages hosted on
pypI are not case sensitive. It’s a common practice to use case-
insensitive package names on pypI (although it makes no difference).
It’s important to clarify this fact, as both of these packages use
mixed-case naming conventions, yet the installation commands are
all in lowercase.

Once again, when running the application on your computer, the Pi’s

GPIO pins are not available. It’s possible to access them remotely through

one of the Python GPIO communication libraries, but it’s not necessary.

With your build process, and the speed at which the Pi can install new

changes, you can write code on your computer and ensure it runs and then

run it on the Pi to ensure it works fully.

Begin by modifying the Sensors class (inside sensors.py) by importing

the previously installed library:

from gpiozero import Button, exc

This imports the Button class, and the exc class from the gpiozero

module. It’s not necessary to import pigpio – gpiozero uses this internally

if there are errors with any other GPIO libraries it needs.

Create a new static method called get_boot_status. This function will

handle all aspects of the boot sensor. It will return a string outlining the

status of the boot. This function returns three different strings. If there was

Chapter 8 Boot SenSor

192

a problem (such as the GPIO pins not existing, in the case of your local

development computer), the function returns “Unknown”. When the boot

is closed (the button is pressed), the function returns “Closed”. Finally,

when the boot is open and the button is no longer held down, this function

returns “Open”.

Here’s the code you need:

@staticmethod

def get_boot_status():

 """

 Safely read the boot sensor and calculate the state - open/

closed/unknown

 :return: String - boot status

 """

 app.logger.info("Starting to read boot sensor")

 result = None

 status = None

 try:

 button = Button(pin=14)

 status = button.is_pressed

 except exc.BadPinFactory as e:

 app.logger.warning(f"Unable to use boot sensor in this

environment: {e}")

 result = "Unknown"

 except Exception as e:

 app.logger.error(f"Unknown problem with boot sensor:

{e}")

 result = "Unknown"

 if not result:

 if status:

 result = "Closed"

Chapter 8 Boot SenSor

193

 else:

 result = "Open"

 app.logger.debug(f"Boot: {result}")

 app.logger.info("Finished reading boot sensor")

 return result

Once again, notice the liberal use of logging at various levels. Even in

the case of a total failure, the function still continues to work. The overall

application may provide a diminished experience, but it still works. Failure

with the boot sensor should not and will not cause other sensors or the

whole system to fall over.

There are two main lines of code here. Create a new button, based on

the Button class from the gpiozero library:

button = Button(pin=14)

The pin parameter is the GPIO pin you connected your button to. Pin

14 is the BCM naming convention for the GPIO pin 14 you connected to

earlier. Now detect your button status using the is_pressed attribute:

status = button.is_pressed

This isn’t a function – it’s a variable from your button object. It’s

updated by the library whenever the button changes state. It’s a Boolean

value – True or False.

These objects are wrapped in a try/catch block, to handle any

exceptions. The Button class raises an exc.BadPinFactory exception if

there is a problem with the underlying GPIO libraries. This is a custom

exception implemented by GPIOZero. After handling this exception, a

generic Exception is handled. Handling generic exceptions like this is not

a bad practice, providing you have handled at least one specific error. Just

blindly wrapping code in generic exception handling is not a smart move,

but it’s perfectly fine to do once you’ve considered the most likely errors.

Chapter 8 Boot SenSor

194

In either error condition, the status is logged, and the final value is set to

“Unknown”.

At this point, the function could return – it’s finished its work, there’s

no point running any more code. Well, to ensure the final log statements

run, the function continues to its completion. Notice how the button value

checking is wrapped inside the check for result. If the result is None, then

there are no errors, and the final logic can execute.

Inside your data.py Flask route, add your new boot sensor call to the

show function:

boot_status = Sensors.get_boot_status()

Modify the resulting dictionary to contain the new value:

result = {"temperature": temperature, "boot": boot_status}

Your existing imports and logging are already sufficient for this new

change.

Start Flask on your computer, and load the main route in your web

browser. Your JSON payload should now contain information from the

boot sensor, like this:

{"boot":"Unknown","temperature":0}

Your logs will contain errors and warnings about pin libraries and

other boot sensor–related problems, yet the application continues to run,

despite a full failure in the boot sensor. These logs are polluted as there is

no boot sensor on your computer, and even if there was, the GPIO libraries

are designed to work on a Pi, so will need configuring on your computer.

This is the beauty of defensive programming. Despite running in an

unsuitable environment without access to the GPIO pins, your application

continues to work in “limp mode” – it may have reduced usefulness, but it

refuses to let a major error hold it back. Figure 8-3 shows the application

logs for a failing sensor.

Chapter 8 Boot SenSor

195

Commit your code and restart the Pi to pick up the latest changes. Visit

the Pi’s main application route, and observe the new sensor status:

{"boot":"Open","temperature":0}

As the button is not held down, your code is detecting this as an open

boot. In the real world, the boot will hold down this button. Hold the

button with your finger, and reload the page. The status should change to

“Closed”:

{"boot":"Closed","temperature":0}

If you don’t see this status, don’t panic. Go and check your application

logs – what do they say? Has the Pi completed its restart procedure? Have

the new libraries installed and is the latest code on the Pi? You can check

this through SSH. Navigate to the Pi-Car directory and check the status of

Git:

cd home/pi/Documents/Pi-Car

git pull

If up to date, git should inform you of the fact:

Already up to date.

Turn the Pi off and triple-check your wiring. Are the wires fully inserted

into the breadboard? Are you connected to the correct pins, ensuring your

pins match either the physical or Broadcom pin layout specific earlier?

Figure 8-3. Boot sensor application logs, with a failed boot sensor

Chapter 8 Boot SenSor

196

 First Unit Tests
Way back in the software development primer, I discussed test-driven

development (TDD) and how writing unit tests before application logic

produces better code. You may be wondering where the unit tests are

then? That’s a fair question, and it’s one with a simple answer – there are

none yet! I’m a firm believer in unit testing, but up until this point, you’re

still getting your feet wet with Python, Flask, and this application. It’s

difficult to write fully TDD code if you don’t yet understand what the code

will do or how it should behave. Unit tests can help you determine this, but

for simplicity, these first two projects have omitted the tests thus far. The

projects following this chapter utilize test-driven development, but for this

project, let’s write your first tests.

Let’s begin by breaking down what needs unit tests. Unit tests serve to

test small independent components. The Flask route inside data.py has

little logic to unit test. It ties together logic from the sensor class. This file

would be a good candidate for integration testing, as it ultimately displays

data to the outside world. App.py does little outside of Flask config and

implementing logging. There’s little purpose unit testing other code which

is already unit tested. As a general rule, you can rely on third-party libraries

to work and (hopefully) have unit tests. You don’t need to test these

libraries.

Therefore, sensors.py is the core file left. This is starting to grow and

implement your business logic. It’s the perfect file to write unit tests for.

As covered in the previous chapter, the get_external_temp function is not

getting tests in this project. The benefits from testing its tiny amount of

logic are far outweighed by the difficulties of working with the temperature

library. The get_boot_status function, however, is perfect. It implements

its own logic, with several simple conditions. Any reliance on third-party

logic is easy to replace in the tests, and it serves one purpose.

Chapter 8 Boot SenSor

197

This function returns the status of the boot sensor as a string. There are

three possible conditions:

• Open

• Closed

• Unknown

These conditions are determined by the error handling logic, or the

output of button.is_pressed. To tightly control the conditions inside this

test, you need to understand mocking. Mocking is the process of replacing

a component inside your code. This component is not the piece under test

at a given moment in time. This could be an API call, which costs you $1

every time it runs, a function to launch a missile, or some other expensive

logic to run. You can imagine the trouble that may arise from running

expensive or dangerous logic regularly in your tests. For this reason,

mocking external dependencies (external to the code under test) is an

essential part of unit testing.

For these tests, you’ll use the Pytest unit testing framework. This is an

extension to the older unittest library. Both are excellent and well-used

choices, although Pytest is fast becoming the go-to library for unit testing

in Python. It’s possible to unit test without a framework such as Pytest,

but it’s a lot more work. Pytest handles running the tests, ensuring they all

pass, showing you the error message for failures, and lots more. There’s no

need to reinvent the wheel and write your own test framework.

Inside your tests folder, delete the test_practice.py file. This fake test is

no longer required now that you are writing a real test. Tests and test files

should reflect the logic they are testing as far as possible. It’s OK to have

long names for unit test functions, providing they provide clarity to you

and other developers. Create a new file inside tests called test_sensors.py:

touch tests/test_sensors.py

Chapter 8 Boot SenSor

198

This file will contain all the tests for the sensors class, but it won’t work

just yet. Create two more files:

touch tests/conftest.py

touch Pi_Car/config/test_config.py

Conftest.py is a Pytest configuration file. Here’s where you can store

code and common test variables, accessible to all unit tests. The config file

test_config.py is another configuration file, just like your local_config.
py. This config file stores configs for when your app is running tests. You

may not always need the same configuration for tests as when running

the application. Start with the test_config.py. Here are the three lines you

need:

TESTING = True

LOGGER_LEVEL = "DEBUG"

FILE_LOGGING = False

You don’t need any other configuration options when running

tests. You may notice a new config item at the bottom of this file called

FILE_LOGGING. This is a new config item. Pytest will tell you what the

problem is and show the logs from STDOUT when the tests fail, so it’s a

bit redundant writing these to a log file as well. Making this a new config

item lets you disable file logging for tests and enable it again for the normal

application uses.

Add this new logging option to your local_config.py:

FILE_LOGGING = True

Now you need to implement it in your create_app app factory. Add an

if statement to your app.py:

if app.config.get("FILE_LOGGING"):

Chapter 8 Boot SenSor

199

Wrap all of the file based log handling inside this if. When this config

option is True, the file-based logs will get written. When False, the logs will

not get written. Here’s the new and improved create_app function:

def create_app(config_file="config/local_config.py"):

 app = Flask(__name__) # Initialize app

 app.config.from_pyfile(config_file, silent=False) # Read

in config from file

 if app.config.get("FILE_LOGGING"):

 # Configure file based log handler

 log_file_handler = RotatingFileHandler(

 filename=app.config.get("LOG_FILE_NAME", "config/

pi-car.log"),

 maxBytes=10000000,

 backupCount=4,

)

 log_file_handler.setFormatter(

 logging.Formatter("[%(asctime)s] %(levelname)s in

%(module)s: %(message)s")

)

 app.logger.addHandler(log_file_handler)

 app.logger.setLevel(app.config.get("LOGGER_LEVEL", "ERROR"))

 app.logger.info("----- STARTING APP ------")

 app.register_blueprint(data_blueprint)

 app.logger.info("----- FINISHED STARTING APP -----")

 return app

Chapter 8 Boot SenSor

200

Back in your unit tests, here are the contents of conftest.py:

import pytest

from Pi_Car.app import create_app

@pytest.fixture(scope="session", autouse=True)

def build_testing_app():

 """

 Builds a testing app with basic application context

 """

 app = create_app(config_file="config/test_config.py")

 app.app_context().push()

 yield app

This introduces several Pytest patterns. The build_testing_app

function is a Pytest fixture. Fixtures let you share code between tests. This

fixture builds a Flask app using your application factory (create_app). To

run tests against Flask code, or code which uses Flask features, you need

an application running. This logic builds an app. The app_context is a

Flask object that gets populated when Flask runs. This gets populated

with all kinds of information which Flask needs to work. By pushing a

new context, you’re configuring Flask with everything it needs to handle

normal operations during your tests.

The yield statement is essentially the same as a return statement right

now, but yield serves a powerful purpose. Pytest will run this code until

the yield statement – it will build and return a Flask app. Once the tests

have finished executing, Pytest will return and run any code after the yield

statement. This lets you write logic to build requirements for tests, and

then more logic to destroy or reset these requirements. The yield statement

is a great way to reduce boilerplate code and get on with writing useful,

valuable code.

Chapter 8 Boot SenSor

201

Finally, the Pytest fixture decorator tells Pytest to use this function as

a fixture:

@pytest.fixture(scope="session", autouse=True)

Pytest fixtures are blocks of code that you can use in your tests. The

scope parameter configures when to run this code. The session value

means Pytest will run this code once at the start of your tests (and at the

end). Other scopes exist such as running code for every test, every class,

and more. Finally, the autouse parameter tells Pytest to run this code

automatically, rather than explicitly waiting for you to call the function.

Your conftest is now ready to start assisting your tests.

Back in your test_sensors.py, here are the first tests you need:

from unittest.mock import patch

from Pi_Car.sensors import Sensors

from gpiozero import exc

class TestSensors:

 @patch("Pi_Car.sensors.Button")

 def test_get_boot_status_bad_pin_factory(self,

mock_button):

 mock_button.side_effect = exc.BadPinFactory

 result = Sensors.get_boot_status()

 assert result == "Unknown"

 @patch("Pi_Car.sensors.Button")

 def test_get_boot_status_other_pin_error(self,

mock_button):

 mock_button.side_effect = TypeError

 result = Sensors.get_boot_status()

 assert result == "Unknown"

Chapter 8 Boot SenSor

202

 @patch("Pi_Car.sensors.Button")

 def test_get_boot_status_closed(self, mock_button):

 mock_button.return_value = type("Button", (),

{"is_pressed": True})

 result = Sensors.get_boot_status()

 assert result == "Closed"

 @patch("Pi_Car.sensors.Button")

 def test_get_boot_status_open(self, mock_button):

 mock_button.return_value = type("Button", (),

{"is_pressed": False})

 result = Sensors.get_boot_status()

 assert result == "Open"

Run these from your console using the Pytest command:

pytest

If you’d like to see the logs as well, use the -s flag (although Pytest will

only show logs when the tests fail):

pytest -s

There are four tests here, each with a unique and detailed name. Pytest

automatically runs any test files inside the test folder. Files beginning

with the word “test”, along with classes and functions, are run as tests. Any

function, file, or class which does not begin with “test” will not run.

Chapter 8 Boot SenSor

203

Note how Pytest provides you a test status – number of tests run and

the total number of passes. If they are all successful, the Pytest status bar

goes green (Figure 8-4). If there are any failures, Pytest indicates this with a

red status bar (Figure 8-5) and by pointing out the exact number of failures

and the condition.

Figure 8-5. Failing unit test run

Figure 8-4. Successful unit test run

Chapter 8 Boot SenSor

204

Play around with your sensor code by changing it to fail the tests –

change return types, and exception handling, and notice how the tests

fail. This is what makes well-written unit tests so powerful. By covering the

edge cases and core functionality, you can be confident that your tests will

pick up any existing functionality you may break when implementing new

features.

After importing the testing libraries, and some of the modules to test,

there are four test functions residing inside the TestSensors class. Each

function tests a specific condition of the get_boot_status function. These

four conditions are as follows:

 1. Bad pin factory – The GPIO library cannot read the

pins.

 2. Other pin error – The exception handling caught an

error when reading the GPIO pins.

 3. Closed – The function returns “Closed” when the

button is pressed.

 4. Open – The function returns “Open” when the

button is not pressed.

Each test functions in a similar way. They begin by configuring the

conditions required for the code under test to reach a certain state. They

then run the code and use assert statements to verify that the output of

the function is as expected when the code runs under the predefined

conditions.

Each test uses the patch decorator to mock the sensor library:

@patch("Pi_Car.sensors.Button")

This function is part of the unittest library, which Pytest extends. This

is a mock. As mentioned earlier, mocking lets you replace parts of your

code to make it run a certain way under test. Tests should be as repeatable

as possible. Right now, your defensive programming kicks in and

Chapter 8 Boot SenSor

205

manipulates the logic when certain libraries are not available. This is great

for ensuring your logic still works when running in different environments,

but it’s not consistent enough for a reliable test suite.

By mocking the GPIO library, you can control when, what, and how

this library works, to achieve the desired result. The first two functions use

side effects, with the side_effect property. This is a way to make your code

raise specific errors. As your function returns “Unknown” in two error

conditions, mocking these functions to raise both exc.BadPinFactory and

TypeError ensures these conditions are met during the tests.

The final two tests use the return_value attribute to force the Button

class to return a specific value for the is_pressed attribute. Remember,

you’re not testing that the external libraries work, you’re testing your

specific logic operates under given conditions. Because is_pressed is

an attribute and not a function (that is to say, it’s a variable assigned to

instances of the Button class), the return_value attribute lets you force a

function or attribute to return what you say it should.

You may be wondering why you can’t set the return value like this:

mock_button.is_pressed.return_value = True

Ordinarily, this would work. For functions, you can specify what they

should return exactly like this. However, as the is_pressed attribute is a

variable and not a function, it needs a little more assistance. By using the

type function (part of the Python core library), it’s possible to construct

entire fake objects to really manipulate your code under test:

mock_button.return_value = type("Button", (), {"is_pressed":

False})

The third parameter passed to this function is a dictionary. This

dictionary is essentially the name and return values for any attribute

you want to mock. You can see that test_get_boot_status_closed and

 test_get_boot_status_open return different values for is_pressed,

according to their test requirements.

Chapter 8 Boot SenSor

206

Asserts are a special utility in Python. Any assert statement is used by

tests or test-like logic to ensure that a condition meets the criteria. It’s a bit like

an if statement but uses far less lines of code, and it is automatically picked

up by test frameworks such as Pytest. Assert statements are like saying “make

sure this thing returns some specific value.” This logic checks that whatever

Sensors.get_boot_status() returns is a string with a value of “Open”:

result = Sensors.get_boot_status()

assert result == "Open"

If this condition is not met, the tests will fail.

It’s very important to ensure that you only use assert statements inside

test code. They may look like a shortcut to improve your code, but they are

not designed to run inside production code and will come back to hurt you at

some point in the future. It’s possible to disable assert statements altogether in

Python. This nets you a modest performance increase, and as you shouldn’t

use them for production code, it shouldn’t be a problem. With asserts

disabled, they will not evaluate, so any code actually relying on them will fail.

As you progress with these projects, I’ll show you some Pytest tricks to

reduce the lines of test code you need to write. I’ll also cover writing tests

in a fully TDD way, which can improve your overall code quality.

 Chapter Summary
In this chapter you installed and developed the code for a simple boot

sensor. You can expand this project to cover your car doors, bonnet, or any

other opening. You developed your first unit tests using Pytest and learned

how to write assertions, along with when not to use them. Once again, you

developed this code defensively, such that the application can continue to

work even with a total sensor failure.

In the next chapter, you’ll expand on your unit testing skills by

developing a light sensor.

Chapter 8 Boot SenSor

207© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_9

CHAPTER 9

Light Sensor
Chapter goal: Install a light sensor and read its state
into your application. Begin test-driven development and
enhance your unit testing skills.

For this project, you’ll use a light sensor to read in the available light, and

make an assessment – daytime or nighttime. This is another quick project,

but it serves a valuable purpose. Not only is it useful for your car to inform

you that it’s getting dark outside, but it is the valuable foundation for

any of your own future projects. You could expand this to switch on your

headlights automatically or turn on the cabin lights if it’s dark and you

open the door.

The code covered here may look familiar to the previous chapter,

which serves to reinforce your learning, but it also introduces you to

several unit-testing time savers. In this chapter you’ll learn how to

begin test-driven development, whereby you write unit tests before your

application code. You’ll also learn how to avoid test duplication and

quickly test multiple conditions using Pytest’s parametrize decorator.

 Hardware Configuration
Remember to disconnect the Pi’s power supply when connecting or

disconnecting any circuits.

https://doi.org/10.1007/978-1-4842-6080-7_9#DOI

208

To complete this project, you will need a photoresistor, sometimes

called a light-sensing resistor, light-dependent resistor, or LDR. LDRs cost

a few cents up to a dollar or two depending on the store. They are small,

lightweight, and fairly universally available within electronics stores. You

can buy LDRs from Amazon, or your local electronics store. You only need

one for this project, but buy several, as they are easy to lose. You won’t

need a stand-alone resistor for this project. Figure 9-1 shows the LDR

wired up to the Pi on a breadboard.

LDRs work like resistors – they limit the flow of electricity. What’s

special about this component is that the resistance varies depending on

the amount of available light. When there’s more light, the resistance

increases. When there’s less light, there is less resistance. The Pi can detect

these changes in resistance and convert this to a signal between zero (total

darkness) and one (bright daytime), and anywhere in between. You’ll use

Figure 9-1. Light-sensing circuit complete on a breadboard

Chapter 9 Light SenSor

209

the Pi’s built-in pull-up resistor on its GPIO pin to facilitate this circuit.

LDRs have no polarity – it does not matter which way round they are

connected.

You only need two pins for this project – the Pi’s 3.3v and the GPIO pin,

which will sense the resistance. Figure 9-2 shows the wiring diagram:

• 1 (physical) or 3.3v (BCM) – 3.3v

• 10 (physical) or 15 (BCM) – GPIO 15

Connect GPIO pin 15 to one side of the LDR. Connect the other side to

the Pi’s 3.3v pin. After double-checking your work, apply power and boot

up your Pi.

 Test-Driven Development Light Sensor Tests
Test-driven development (TDD) is the art of writing your unit tests before

fleshing out your code. By considering the edge cases, and the criteria

you need for your tests, you end up with better, cleaner code, which is less

bloated. By writing just enough code to pass the tests, you avoid adding

Figure 9-2. Wiring diagram for the light-sensing circuit

Chapter 9 Light SenSor

210

unnecessary features which are not required. You also gain a better

understanding of what exactly the code should do, and a full set of unit

tests as well. With a full suite of unit tests, you can be confident in any

future changes or refactoring, as the tests ensure the core logic still works.

Naturally, you’ll often have to write some code before the tests, so you

at least know the basic shape, especially if you’re experimenting with new

features, but for now, let’s start with the completed tests.

This light-sensing logic is very similar to the boto sensor logic. It uses the

LightSensor class of the gpiozero module. There’s some basic exception

handling to ensure the application still works in bad environments. After

that, the core logic converts the sensor values to a string-based status.

There are three conditions your new function can return:

• Unknown – There was a problem preventing the sensor

from working.

• Daytime – It’s bright outside.

• Nighttime – It’s dark outside.

Begin by writing two tests to cover the core exception handling:

@patch("Pi_Car.sensors.LightSensor")

def test_get_light_status_bad_pin_factory(self, mock_light_

sensor):

 mock_light_sensor.side_effect = exc.BadPinFactory

 result = Sensors.get_light_status()

 assert result == "Unknown"

@patch("Pi_Car.sensors.LightSensor")

def test_get_light_status_other_pin_error(self, mock_light_

sensor):

 mock_light_sensor.side_effect = TypeError

 result = Sensors.get_light_status()

 assert result == "Unknown"

Chapter 9 Light SenSor

211

These tests are very similar to the tests for the boot status function.

They use the patch function from the unittest library to mock certain

aspects of the GPIO modules, to tightly control the test conditions, and

to emulate a real failure. These tests use the get_light_status function,

which doesn’t exist yet! Your tests would totally fall over if you were to run

them now, but it’s important to think about the logic that’s happening

here. They assert that if there was an error (either a bad pin factory or

some other exception), the function returns an “Unknown” status. This is

a valuable test – it ensures your application doesn’t fall over due to a bad

environment or circuit.

The LDR returns a value between zero and one inclusive. You can use

this to determine if it’s day or night. Values greater than 0.5 are daytime,

and anything else is nighttime (or an error occurred). It’s not necessary

to test every possible value – there could be tens of thousands of possible

options! Often, you only need to test the edge cases – conditions where

it’s more likely you’ll have an error. There are eight different edge cases,

so these eight values should return the following values:

 1. 1 – Daytime

 2. 0.9 – Daytime

 3. 0.55 – Daytime

 4. 0.5 – Daytime

 5. 0.49 – Nighttime

 6. 0.4 – Nighttime

 7. 0 – Nighttime

 8. None – Unknown

Chapter 9 Light SenSor

212

Here’s the unit test to verify these conditions:

@pytest.mark.parametrize(

 "sensor_value, expected_result",

 [

 (1, "Daytime"),

 (0.9, "Daytime"),

 (0.55, "Daytime"),

 (0.5, "Daytime"),

 (0.49, "Nighttime"),

 (0.4, "Nighttime"),

 (0, "Nighttime"),

 (None, "Unknown"),

],

)

@patch("Pi_Car.sensors.LightSensor")

def test_get_light_status_values(

 self, mock_light_sensor, sensor_value, expected_result

):

 mock_light_sensor.return_value = type("Button", (),

{"value": sensor_value})

 result = Sensors.get_light_status()

 assert result == expected_result

Notice how this is only one unit test, yet it asserts all eight conditions.

It begins by mocking the sensor return value to the desired state and then

asserts the return string meets the expected result. You could write eight

different tests for these conditions, or manually code up every one in the

same test, but that’s a lot of work for essentially the same test. By using

the parametrize decorator function from Pytest, you can easily repeat the

same test with different data. This utility function makes it very easy for

you to test multiple edge cases, without having to fill up your tests with

Chapter 9 Light SenSor

213

repetitive logic. This function looks like this, and it sits above your test

function:

@pytest.mark.parametrize(

 "sensor_value, expected_result",

 [

 (1, "Daytime"),

 (0.9, "Daytime"),

 (0.55, "Daytime"),

 (0.5, "Daytime"),

 (0.49, "Nighttime"),

 (0.4, "Nighttime"),

 (0, "Nighttime"),

 (None, "Unknown"),

],

)

You can see that most of it contains your edge cases. Each pair of

sensor_value and expected_result represents one test run. Pytest will

automatically run the test eight times, changing the data every time.

 Flask Light Sensor Logic
Now that you understand the criteria your code needs to meet, you can

begin coding. Inside your Sensors class, expand your imports by importing

the LightSensor class from the gpiozero module. You already have this

module installed from the boot sensor project:

from gpiozero import Button, exc, LightSensor

Chapter 9 Light SenSor

214

Create a new static method called get_light_sensor. Here’s the code

you need:

@staticmethod

def get_light_status():

 """

 Safely read the available light and calculate a status -

daytime/dusk/nighttime/unknown

 :return: String - light status

 """

 app.logger.info("Starting to read available light")

 status = -1

 try:

 sensor = LightSensor(pin=15)

 status = float(sensor.value)

 except exc.BadPinFactory as e:

 app.logger.warning(f"Unable to use light sensor in this

environment: {e}")

 except Exception as e:

 app.logger.error(f"Unknown problem with light

sensor: {e}")

 if status == -1:

 result = "Unknown"

 elif status >= 0.5:

 result = "Daytime"

 else:

 result = "Nighttime"

 app.logger.debug(f"Light: {status} - {result}")

 app.logger.info("Finished reading available light")

 return result

Chapter 9 Light SenSor

215

Because this function uses the same gpiozero library as the boot

sensor logic, some of the exception handling and configuration looks

very similar. Instead of creating a Button object, this function creates a

LightSensor object called sensor. This sensor is pointed to your BCM

GPIO pin 15, which is the pin you connected your LDR to. The sensor

value is read using the value attribute. This is cast to a float data type, to

ensure that it’s always in the correct shape and to remove any unnecessary

characters and the extremely precise number of decimal places.

Floats store high-precision numbers, with lots of decimal places. It’s

not possible to store decimal values in integers.

Toward the bottom of the function is the core logic. This converts the

sensor values to a human-readable status:

if status == -1:

 result = "Unknown"

elif status >= 0.5:

 result = "Daytime"

else:

 result = "Nighttime"

You may be wondering why there is a third condition checking for a

value of minus one. This is because of none types. In Python, none is a

special type. Often, it’s used like null – there is no value set. The status

variable needs a default value. If there is an error with reading the sensor,

the status never gets set, so it needs to fall back to something. You could

fall back to a value of none, but that presents a problem. You can’t do

arithmetic checks on none values. As the sensor will only ever return

values between zero and one, a default value of minus one means that

there is no real value from the sensor, so the logic converts this to the

“Unknown” status.

Chapter 9 Light SenSor

216

Once the code is in place, run your unit tests with Pytest:

pytest

If your tests fail, double-check your logic is correct. You can see the

logs for the tests with the -s flag:

pytest -s

Once satisfied that all 14 tests pass, modify your main route inside

data.py to implement your new light sensor function:

light_status = Sensors.get_light_status()

result = {"temperature": temperature, "boot": boot_status,

"light": light_status}

Run your app locally and validate everything still works. Check your

logs don’t show any major issues. Remember, without access to the GPIO

pins on your computer, there will be warnings in the logs, but everything

should still work. When you’re ready, commit your code and perform a

build on the Pi.

Access the Pi’s main page from your web browser, and verify that you

can see the new sensor feeding back data like this:

{"boot":"Open","light":"Daytime","temperature":0}

Now perform a functional test. Cover the sensor, or otherwise turn

off the lights and close the curtains to emulate nighttime. Now reload

your page. You should see the sensor value change from “Daytime”

to “Nighttime”. Put the lights back on or uncover the sensor again and

perform a final validation check – the page should return “Daytime” again.

Well done! You now have a working light sensor, which you developed

using test-driven development!

Chapter 9 Light SenSor

217

 Chapter Summary
In this chapter you connected and coded the logic for an analog light

sensor. You wrote code to convert the light readings to human-readable

strings. You learned a new way to think about testing in the form of test-

driven development, and you learned some Pytest time savers, along with

mocking. These skills are valuable regardless of the programming language

you use.

In the next chapter, you’ll build two circuits to sense your car’s

reversing and fog lights.

Chapter 9 Light SenSor

219© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_10

CHAPTER 10

Fog and Reverse
Sensors
Chapter goal: Detect when the fog lights are on, or
when the car is in reverse. Refactor sensors class to
reduce duplication.

This project implements two further sensors to detect when the car is in

reverse gear, or the fog lights are on. These are two independent sensors,

but they are both identical in terms of code and hardware. By detecting

when the reversing light is enabled, it’s possible to identify when the car

is in the reverse gear. Later on, you’ll use this sensor to change the display

to provide more value for reversing. For the fog light sensor, this is only

needed for informational purposes – the completed dashboard will show

a fog light status image to the user. Not all cars have front-facing fog lights,

but most countries mandate operational rear fog lights for the vast majority

of vehicles.

 Hardware Configuration
Remember to disconnect the Pi’s power supply when connecting or

disconnecting any circuits.

https://doi.org/10.1007/978-1-4842-6080-7_10#DOI

220

The vast majority of cars manufactured in the last ~30 years (at least)

use a 12v electric system powered by a lead-acid battery. Some very old

cars may differ from this voltage, and there may be exceptions. Double-

check your car voltage in one of the three ways:

• Open the bonnet and look at the battery label.

• Search online for information about your make and

model of car.

• Read the manufacturers handbook.

While it’s very likely that your car runs on a 12v system, always double-

check! Failing to do so and making assumptions could lead to a potentially

fatal incident, with a best-case scenario being a burnt-out Pi and worst-

case scenario being a burnt-out car. Keep in mind that with this project,

a short-circuit from the car could destroy your Pi – even with the current-

limiting resistors and safety fuses in place.

As most car circuits operate at 12v, and the Pi runs at 3.3v, you’ll need

to install a resistor to protect the Pi from burning out just from basic

operation. If you don’t care about the physics, then use two 23k ohm,

0.25W resistors – one for each sensor circuit.

If your car has a voltage system other than 12v, or you’re interested

in the equations, then there are three calculations required to determine

the resistor size to use. Begin by calculating the voltage drop. This is the

difference between the car’s voltage and the Pi’s.

The formula for voltage drop is a simple one – subtract the Pi’s voltage

from the car’s voltage:

Vdrop = 14.7v - 3.3v

This gives you a voltage drop of 11.4v (14.7 - 3.3). You may be

wondering where 14.7v has come from, as I just discussed cars running at

12v. For cars that run on 12v battery systems, the actual voltage is slightly

higher when the engine is running – and it varies slightly depending on the

Chapter 10 Fog and reverse sensors

221

age of the battery, the condition, and the operating conditions at the time

of the measurement. A 12v car battery system often ranges between 12v

and 14.7v. For the next calculation, this voltage drop of 11.4v is known as

V – the force voltage.

Next, calculate the required resistance using Ohm’s law, and the

formula for resistance:

R = V / I

Resistance (R) in ohms equals force (V) in volts divided by the current

(I) in amps. You need the resistance, you have the voltage, so the only

missing component is the current (measured in amps). The Pi requires 0.5

milliamps (mA) of current. To achieve this, substitute your new figures into

the equation:

11.4 / 0.0005 = 22800

The voltage drop of 11.4 volts divided by the required current of 0.5mA

(0.0005A) equals a total of 22800 ohms, roughly 23k ohms. Perfect – with

two calculations, you know the required resistance necessary to protect the

Pi and allow it to detect when the bulbs are on. Using these values, you can

calculate the required power, to ensure the resistor can handle the power

coming from the car. The greater the power, the more work the resistor has

to do to convert electrical energy into heat (and the more heat generated).

To safely handle higher loads, resistors are specifically designed and rated

to work correctly. Ohm’s formula for power is as follows:

P = I2R

Power in watts equals current in amps (squared) multiplied by

resistance in ohms:

0.0005 x 0.0005 x 22800 = 0.0057

This formula states that the resistor power rating should be equal to

0.006W. As resistors are often manufactured in 0.25W increments, it’s not

practical to purchase anything smaller than 0.25W. It’s perfectly safe to use

Chapter 10 Fog and reverse sensors

222

a higher-rated resistor than what’s required. Using a lower-rated resistor is

not recommended, as it may not be able to handle the power provided.

As I mentioned in previous project chapters, the Pi uses a mixture of

pull-down and pull-up resistors. The two pins specified here both have

pull-down resistors enabled by default – which work just fine for this use.

Connect pin 15 (physical) or 22 (BCM) to the +12v line supplied to your

car’s reverse light. Connect pin 16 (physical) or 23 (BCM) to the +12v

line supplied to your car’s fog light. Ensure that the resistor sits between

the car’s circuits and the Pi’s GPIO pin. Connect the Pi’s ground to the

car’s ground – either the chassis or the 0v connector on the bulb sockets

themselves. Figure 10-1 shows the wiring diagram for this circuit.

When the lights are on, the GPIO pin sees +12v and, thus, detects the

bulb as on. When the lights are off, the GPIO pins get pulled to ground by

the built-in resistor and therefore are detected as off.

To test this on your breadboard, you can connect either a switch

or temporarily connect to the Pi’s 3.3v (without the resistor). When

connecting to the car, ensure you follow the safety advice in the following

chapters and include an inline fuse – one per GPIO pin. This fuse should

be as small as you can find – 250mA or lower. This will protect the Pi in the

event of a power surge, short-circuit, or other issue with the car’s systems.

Figure 10-1. Light sensor wiring diagram

Chapter 10 Fog and reverse sensors

223

In the event of a surge or other failure from the car, you may break a

GPIO pin, but your Pi should continue to function. Cars use high-current

circuits, with thick wires. By using a fuse, not only do you protect your Pi,

but you can also use thin wires (such as your breadboard jumper leads)

between the Pi and the fuse, making it much easier to work with.

 Fog and Reverse Sensors Logic
Before jumping fully into this code, let’s do some refactoring! The process

of refactoring involves improving (often by modifying) existing code in

some way. This project is essentially the same logic as the previous button

sensors. The Pi detects car lighting systems turning on or off exactly the

same as a button opening or closing a circuit. For this reason, it makes

sense to reuse some of the existing button logic. This keeps your code

smaller, reduces duplication, and makes it easier to use and easier to

introduce new features.

Much of the code inside get_boot_status is exception handling and

button object creation. By pulling this specific logic out into its own

function, you can easily reuse it for any other button projects.

Create a new static method called get_bool_pin. This function is

responsible for reading a button or button-like pin state and returning

True, False, or none in the case of an error. Almost all of this code exists in

the get_boot_status function:

@staticmethod

def get_bool_pin(pin):

 """

 Defensively read boolean pin as a button

 :param pin: GPIO pin (in BCM layout) to read

 :return: Boolean result -- pressed on not, or none

 """

 app.logger.info(f"Starting to read boolean value from pin:

{pin}")

Chapter 10 Fog and reverse sensors

224

 try:

 button = Button(pin=pin, pull_up=False)

 result = button.is_pressed

 except exc.BadPinFactory as e:

 app.logger.warning(f"Unable to use boot sensor in this

environment: {e}")

 result = None

 except Exception as e:

 app.logger.error(f"Unknown problem with boot sensor:

{e}")

 result = None

 app.logger.info(f"Finished reading boolean value from pin:

{pin}")

 return result

There is a subtle change here to the button object instantiation. A new

parameter pull_up is passed through as False. By default, the gpiozero

library converts all pins to use pull-up resistors. It also (confusingly)

inverts the logic, such that a state change results in a high signal, even if the

circuit is going to ground, and should be a low signal. This works fine for

the previous circuits but needs disabling for all the following circuits. This

change is backward-compatible with all the previous circuits – those pins

will revert to their default state of pull-up. All the GPIO pins in use going

forward default to pull-down and are required to pull down the circuits

to work. When gpiozero sets these to pull-up, it’s a breaking change to the

logic.

When the car bulbs are off, the Pi uses the pull-down resistors to detect

ground – no signal, the bulbs are off. When the bulbs are on, the Pi detects

+12v (14.7v in reality) as high.

Now modify the get_boot_status to use this new function. You’ll need

to convert this function from a static method to a class method. Class

Chapter 10 Fog and reverse sensors

225

methods can access other functions within a class, but still don’t require

instance-level access to objects. This function doesn’t need access to

specific data from the class, which may change depending on the object

instantiated, but it does need access to other shared utility functions.

Here’s the new and revised code:

@classmethod

def get_boot_status(cls):

 """

 Safely read the boot sensor and calculate the state - open/

closed/unavailable/unknown

 :return: String - boot status

 """

 app.logger.info("Starting to read boot sensor")

 button_status = cls.get_bool_pin(pin=14)

 if button_status is None:

 result = "Unknown"

 else:

 if button_status:

 result = "Closed"

 else:

 result = "Open"

 app.logger.debug(f"Boot: {result}")

 app.logger.info("Finished reading boot sensor")

 return result

Notice how much smaller it is? Most of the exception handling is now

handled by the utility function get_bool_pin. By passing in the pin to

read, this new function is accessible by any function, and get_boot_status

continues to operate as normal. Run your unit tests again and they should

all pass – the changes made to this function haven’t altered its use. This

is the real benefit of unit tests – you can refactor and otherwise change or

Chapter 10 Fog and reverse sensors

226

improve code with the confidence that it still works as it did before your

changes.

Create two new unit tests for your get_bool_pin function. These are

very similar to the other tests, differing only in that they expect none as a

value when there is an error:

@patch("Pi_Car.sensors.Button")

def test_get_bool_pin_bad_pin_factory(self, mock_button):

 mock_button.side_effect = exc.BadPinFactory

 result = Sensors.get_bool_pin(pin=None)

 assert result is None

@patch("Pi_Car.sensors.Button")

def test_get_bool_pin_other_pin_error(self, mock_button):

 mock_button.side_effect = TypeError

 result = Sensors.get_bool_pin(pin=None)

 assert result is None

Now you’re ready to write your new sensing functions, happy in the

knowledge that half the code is already written and waiting for you to use!

Because these new sensors are essentially just reading button states, you

could just use the new get_bool_pin function to handle all the work for

you, but to enhance your application with a little more logging, let’s create

two simple functions which wrap this utility function. Inside sensors.py

create two functions. These don’t need unit tests – they simply call get_
bool_pin with a suitable GPIO pin and log some data around the function

call:

@classmethod

def get_reverse_status(cls):

 """

 Safely read the reversing sensor

 :return: Boolean - reversing or not, or None

 """

Chapter 10 Fog and reverse sensors

227

 app.logger.info("Starting to read reverse sensor")

 result = cls.get_bool_pin(pin=22)

 app.logger.debug(f"Boot: {result}")

 app.logger.info("Finished reading reverse sensor")

 return result

@classmethod

def get_fog_light_status(cls):

 """

 Safely read the fog light sensor

 :return: Boolean - fog lights on or not, or None

 """

 app.logger.info("Starting to read fog light sensor")

 result = cls.get_bool_pin(pin=23)

 app.logger.debug(f"Fog: {result}")

 app.logger.info("Finished reading fog light sensor")

 return result

Finally, implement these new functions into your main application

route inside data.py (notice how Black has cleaned up the result

dictionary; now it’s starting to get longer than one line):

reverse_light = Sensors.get_reverse_status()

fog_light = Sensors.get_fog_light_status()

result = {

 "temperature": temperature,

 "boot": boot_status,

 "light": light_status,

 "reverse": reverse_light,

 "fog": fog_light,

}

Chapter 10 Fog and reverse sensors

228

The resulting main route now looks like this:

@data_blueprint.route("/")

def show():

 app.logger.info("Starting to retrieve core data")

 temperature = Sensors.get_external_temp()

 boot_status = Sensors.get_boot_status()

 light_status = Sensors.get_light_status()

 reverse_light = Sensors.get_reverse_status()

 fog_light = Sensors.get_fog_light_status()

 result = {

 "temperature": temperature,

 "boot": boot_status,

 "light": light_status,

 "reverse": reverse_light,

 "fog": fog_light,

 }

 app.logger.info("Finished retrieving core data")

 app.logger.debug(f"Core data: {result}")

 return jsonify(result)

Once committed and deployed, fire up your Pi’s application page from

your computer, and observe the sensor data. Simulate the car’s lights by

pressing the buttons and watching the values change.

 Chapter Summary
In this chapter you built two similar circuits to detect your car’s reverse

or fog lights. This is the easiest way to detect when the car is in the

reverse gear or has the fog lights switched on. Later on you’ll expand the

Chapter 10 Fog and reverse sensors

229

application to perform additional tasks based on the reverse state. The fog

light sensor is used to augment the driver’s experience, and you can apply

this circuit and application logic to any other car lighting component.

The next chapter covers the installation and software development of a

reversing camera, using the official Pi Camera module.

Chapter 10 Fog and reverse sensors

231© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_11

CHAPTER 11

Reversing Camera
Chapter goal: Configure the Pi Camera to act as a
reversing camera. Stream this video feed to the
application.

For this project, you’ll connect the Pi Camera to the Pi and stream the

video feed to a web page. You’ll learn how to configure the camera and

settings and get the best possible image quality. In later chapters, you’ll

use this camera in conjunction with several of the other reversing sensors

to build a complete reversing module, which automatically kicks in when

you engage the reverse gear.

The Pi Camera is unlike other cameras you may have used. There is

no button to take a picture, and there’s no memory card to save photos to.

There’s no battery, and it’s a fragile looking circuit which won’t survive one

trip to the beach. This Pi Camera is a camera module. It connects to the Pi

and relays camera data for the Pi to process. The camera module handles

reading the sensor stream, streaming data, adjusting light, and more, but

the Pi has to tell it what to do and perform some processing of its own, to

convert the raw stream into usable image formats.

It’s possible to complete this project with a USB webcam (and many of

the steps remain the same), but due to the vast number of different makes,

models, styles, and price tags of USB webcams, the number of variations

and slight changes needed for every model would not be possible to cover

in a sensible number of chapters.

https://doi.org/10.1007/978-1-4842-6080-7_11#DOI

232

For this project, you’ll need to purchase the official Raspberry Pi V2

camera module, shown in Figure 11-1. Introduced in April 2016, this

module is developed and built by the Raspberry Pi Foundation. It costs

roughly $25 and is available on Amazon, or from any other store which

sells Raspberry Pis. Similar clones of the camera module are available, as

are the earlier V1 versions, but for the simplest experience following this

chapter, you’ll have less issues with the V2 model.

 Camera Connection
Always turn off and disconnect the Pi’s power supply when working with

electronic circuits.

The Pi Camera connects to the Pi using a ribbon cable and the camera

serial interface, or CSI port. This thin cable is included with the camera.

Not only does it allow the Pi to communicate with the camera, but it

Figure 11-1. The Pi Camera V2.1

Chapter 11 reversing Camera

233

also supplies power to the camera. If you’ve been using an inadequate

power supply for your Pi, then the increased current draw required by the

camera may mandate the need for a suitable power supply. The 3A supply

specified in the Project Overview – Equipment List is sufficient for both the

Pi and the camera.

With the exception of the Pi Zero, every single Pi has the camera

connection port. This proprietary connection is cheap to manufacture,

although it’s not very durable. It’s not so fragile that you should be afraid of

using it, or using the Pi or connecting other peripherals or components to

your GPIO ports; just don’t go overboard by stressing the connector.

Begin by powering down the Pi and removing the power supply. The

camera module comes with the ribbon cable already connected – you

only need to connect the other end to the Pi itself – shown in Figure 11-2.

Locate the camera module port, which is a narrow, 1-inch long connector

Figure 11-2. Pi Camera ribbon cable installed on the Pi

Chapter 11 reversing Camera

234

behind the LAN port. Gently pull the connector’s plastic cover up, roughly

1/8th of an inch. It won’t fully detach.

Now gently insert the ribbon cable, with the exposed “pins” facing

away from the Pi’s I/O section, toward the HDMI and power connections –

as shown in Figure 11-3. Don’t force it. If you’re struggling, double-check

your cable is the correct orientation and that you’re inserting it square on,

and not at an angle. Once seated 1/8th of an inch, gently push the plastic

cover back down, clamping down on the cable. Visually inspect the cable,

and gently tug it, to ensure it’s seated properly. When ready, apply the

power and boot up the Pi.

Figure 11-3. Pi Camera ribbon cable installed on the Pi

Chapter 11 reversing Camera

235

 Pi Camera First Time Configuration
Connect to the Pi over SSH. To begin using the camera, you need to tell the

Pi it’s connected. You can do this with the raspi-config utility. The output

from this command is shown in Figure 11-4:

sudo raspi-config

Use the arrow and enter keys to navigate around this tool. Scroll

down and choose Interfacing Options. Figure 11-5 shows the Interfacing

Options menu. Choose P1 Camera, and select yes when asked to enable

the Pi Camera. Choose OK when the Pi confirms the camera is enabled.

Now use your right arrow key to select finish, and choose yes when the Pi

asks to restart.

Figure 11-4. The Pi configuration utility menu

Figure 11-5. Interfacing Options menu of the Pi configuration utility

Chapter 11 reversing Camera

236

Once restarted, you can test your camera. The raspistill utility is a

command-line tool to work with the Pi Camera, and it’s included with

your Raspbian install. Use it to save a test photo to your Pi’s desktop, called

“test_photo.jpg”:

raspistill -o Desktop/test_photo.jpg

You can inspect the contents of this photo file using the cat command:

cat Desktop/test_photo.jpg

This command produces nonsense. It dumps the contents of the

file to your terminal. As it’s a photo, the contents are not very readable.

To actually see the photo, use SCP to pull the photo from the Pi to your

computer over SSH:

scp pi@192.168.1.210:Desktop/test_photo.jpg /Users/coburn/

Desktop/

SCP stands for secure copy. It lets you copy files from one remote

location to another. This command is split into three sections. Begin with

the scp keyword. This invokes the secure copy tool. The next section is the

remote address and file location – separated by a colon. This looks for the

file in location Desktop/test_photo.jpg on the remote pi@192.168.1.210 –

your IP address will vary, or you could use your pi-car alias here. Finally,

specify the location on your computer to put the file, which is /Users/
coburn/Desktop/ on my computer – put yours wherever you like.

Chapter 11 reversing Camera

237

Open your photo and look at it. It may not be perfect – my photo is

blurry and upside down and visible in Figure 11-6. For now, providing that

you have something, then that will do. You’ll improve the quality and make it

usable later on, but right now, this test is about ensuring the module works

properly. If you can’t copy the file, double-check your scp command. Does

the file exist at all on the Pi? Was there a problem raspistill raised saving the

photo at all? Double-check your work and, if necessary, your wiring.

 Camera Live Stream Configuration
To work with this camera feed, the Pi will read in the camera data, interpret

it, process it, and stream it to the network over its TCP port. This section

isn’t configured in Python. There are many Python libraries available, but

Figure 11-6. Early, uncorrected Pi Camera photo

Chapter 11 reversing Camera

238

a solution which is both simple to configure and that works reliably (or can

be defensively programmed around) is difficult to achieve in Python.

For this section, you’ll use the Motion (https://motion-project.

github.io/) library to handle the stream. This is a Debian package for

working with the Pi Camera. It’s mainly designed around motion detection

and video recording (which would be an interesting extension project), yet

it has excellent streaming capabilities, and is configured with a config file.

It can run as a daemon, so the Pi can configure the stream itself when it

boots.

Update the Pi’s package list, and install Motion onto the Pi itself as a

package:

sudo apt-get update

sudo apt-get install motion

Configure the Motion daemon – this allows motion to start when the Pi

boots. Edit the motion file:

sudo nano /etc/default/motion

Change the start_motion_daemon option to yes, such that the whole

file looks like this:

Set to 'yes' to enable the motion daemon

start_motion_daemon=yes

Save and exit this file. Modify the file so it’s executable by all users, and

restart the Pi:

sudo chmod 777 /etc/default/motion

sudo reboot

When the Pi restarts, Motion will automatically start and begin

streaming. Use the service command to check on the status:

sudo service motion status

Chapter 11 reversing Camera

https://motion-project.github.io/
https://motion-project.github.io/

239

You can also use this command to stop, start, or restart services such as

motion, which you’ll do shortly:

sudo service motion start

sudo service motion stop

sudo service motion restart

Motion is now running, but you can’t see it. You can see evidence in the

motion logs:

cat /var/log/motion/motion.log

This is good, but application logs are no substitute for a camera feed –

they won’t stop you reversing into a tree! To configure motion further, edit

the motion.conf file, which defines all the possible settings for motion:

sudo nano /etc/motion/motion.conf

There are lots of options here, the vast majority of which you can safely

ignore and leave as is. Table 11-1 covers the core features you need to

change and what they do.

Table 11-1. Motion config changes required

Option Value Description Full config line

width 800 Width of the video in pixels. width 800

height 480 height of the video in pixels. height 480

framerate 30 number of frames (individual images)

to stream per second.

framerate 30

stream_quality 100 percentage quality of video stream. stream_quality 100

stream_

localhost

off restrict the video stream to the

pi only, or allow access over the

network.

stream_localhost

off

(continued)

Chapter 11 reversing Camera

240

When configured, save and exit the config file, and restart the motion

service:

sudo service motion restart

Now load the Pi in your web browser, and use Motion’s default

streaming port of 8081:

http://pi-car:8081/

Verify that you see the feed from the camera. Move around and observe

as it changes. Note the timestamp in the bottom-right corner of the video.

The stream is now ready to pull into your Flask application. You may need

to revisit these configuration settings as the project progresses. Perhaps

when you install the project into your car, the camera is rotated upside

down, or you need to change the quality. Figure 11-7 shows the rotated

image stream, complete with timestamp in the lower-right corner.

Table 11-1. (continued)

Option Value Description Full config line

ffmpeg_output_

movies

off record videos to the pi’s memory

card in addition to streaming.

ffmpeg_output_

movies off

stream_

maxrate

30 the maximum framerate to stream. stream_maxrate 30

rotate 180 rotate the video feed in degrees,

only works in increments of 90.

rotate 180

Chapter 11 reversing Camera

241

 Pi Camera Focus Adjustment
Like any camera, the Pi Camera V2 has a lens with adjustable focus.

There’s no autofocus, it’s purely manual – a mechanical lens adjustment. If

your video feed is blurry, and providing you haven’t increased the output

dimensions to huge numbers (which will reduce the quality), then you

may need to adjust the lens focus.

All cameras use a plane of focus (PoF). This imaginary line defines what

is and is not in focus at a given time. Adjusting the focus on a lens moves this

plane forward or backward. Everything parallel to the lens at a given distance

is in focus, and moving nearer or further from or to the lens gets increasingly

out of focus. An object 1M away could be in focus, and something right next

to the lens would be out of focus. For these reasons, you won’t be able to get

everything the camera sees in focus – it will be a compromise, which may

need adjusting once the camera is mounted on your car.

Figure 11-7. Rotated and refined Pi Camera photo

Chapter 11 reversing Camera

242

To adjust the Pi’s focus, identify the sensor and lens module on the

front of the Pi Camera module. The small black square in the middle of the

module houses the lens. Within this square, the lens features a hexagonal

casing, known as the lens barrel. By rotating this barrel, you can adjust the

plane of focus.

Use a small pair of pliers to grip the outer lens housing – shown in

Figure 11-8. Use a small screwdriver to nudge the lens barrel, and use the

indentation to grip your tool. Be very careful not to apply too much pressure.

Slipping here could damage the lens itself or risk pulling the entire lens

assembly away from the module itself. Treat this lens and this maintenance

step as you would a pair of glasses, or when putting contact lenses in.

Remember, this focus will need adjusting when the camera is installed

in your car.

Figure 11-8. Tools needed for Pi Camera lens focus adjustment

Chapter 11 reversing Camera

243

 Camera Flask Code
For this code section, you’ll create a new Flask route to serve the image.

Later on, you’ll expand this route to make use of the reversing sensors, but

for now, it simply serves the camera feed. This is a simple code change –

the Pi is already handling the hard work of the video.

Create the files needed for this section:

touch Pi_Car/reverse.py

mkdir Pi_Car/templates

touch Pi_Car/templates/reverse.html

The reverse.py file is the new route for this reversing screen. The

template file reverse.html is the markup to render this stream. It lives

inside the templates folder, which is a Flask pattern for storing markup

files.

Here’s the code you need for reverse.py:

from flask import Blueprint, render_template

from flask import current_app as app

reverse_blueprint = Blueprint("reverse", __name__)

@reverse_blueprint.route("/reverse/")

def reverse():

 app.logger.info("Starting to load reverse route")

 stream_port = app.config.get("STREAM_PORT", 8081)

 host = "pi-car"

 stream_url = f"http://{host}:{stream_port}"

 app.logger.debug(f"Camera streaming url: {stream_url}")

 app.logger.info("Finished loading reverse route")

 return render_template(template_name_or_list="reverse.

html", base_url=stream_url)

Chapter 11 reversing Camera

244

This is a new blueprint file. It defines a new route /reverse/ and

handles the logic to connect to the stream. There’s lots of logging (as

is standard across this project). This file uses the render_template

function from Flask. This function renders the contents of a template

to the browser – reverse.html. Notice how you don’t need to specify

the templates folder, as Flask already knows this is where to look for

templates. By using a render template, you can keep your code neater, as

all the HTML and markup-specific logic lives in the template itself, ready

for reuse by any of your application logic.

You can also pass data to templates. This route passes the stream_url
to the template. This stream URL is where the browser can find the video

feed. It’s a Fully Qualified Domain Name, or FQDN. It consists of the

protocol (http), host (pi-car), and stream port. Notice how the stream

port is pulled from the config even though it does not exist. This defensive

logic falls back to the 8081 stream port if the config is not set. This lets you

easily change the port in the future, just by modifying the config file. You

don’t have to dig through the code, which could use this port in numerous

locations in a bigger code base.

Here’s the code you need for the reverse.html template:

This isn’t valid HTML, but I cover that in detail in the tidying up

chapter toward the end of this book. For now, it’s sufficient. This tag tells

the browser to render an image. It points the browser toward the live

stream URL you built in the reverse.py file. Notice the dual curly braces

around the variable:

{{ base_url }}

This is Jinja, the templating language included with Flask. This renders

the value “http://pi-car:8081”, as specified in your back-end logic.

Chapter 11 reversing Camera

245

Finally, inside app.py, import your new blueprint:

from .reverse import reverse_blueprint

and then register the route:

app.register_blueprint(reverse_blueprint)

Your whole app.py file now looks like this:

import logging

from flask import Flask

from logging.handlers import RotatingFileHandler

from .data import data_blueprint

from .reverse import reverse_blueprint

def create_app(config_file="config/local_config.py"):

 app = Flask(__name__) # Initialize app

 app.config.from_pyfile(config_file, silent=False) # Read

in config from file

 if app.config.get("FILE_LOGGING"):

 # Configure file-based log handler

 log_file_handler = RotatingFileHandler(

 filename=app.config.get("LOG_FILE_NAME", "config/

pi-car.log"),

 maxBytes=10000000,

 backupCount=4,

)

 log_file_handler.setFormatter(

 logging.Formatter("[%(asctime)s] %(levelname)s in

%(module)s: %(message)s")

)

 app.logger.addHandler(log_file_handler)

Chapter 11 reversing Camera

246

 app.logger.setLevel(app.config.get("LOGGER_LEVEL", "ERROR"))

 app.logger.info("----- STARTING APP ------")

 app.register_blueprint(data_blueprint)

 app.register_blueprint(reverse_blueprint)

 app.logger.info("----- FINISHED STARTING APP -----")

 return app

Start Flask on your computer, and visit the new URL route at

http://127.0.0.1:5000/reverse/. Providing the Pi is on and the Motion

service is streaming the video feed, you’ll see the real-time video. Commit

your changes, and perform a build on the Pi. Visit the Pi’s URL and verify

the route also works there at http://pi-car:5000/reverse/ (shown in

Figure 11-9).

Figure 11-9. Flask application streaming the live video feed

Chapter 11 reversing Camera

http://127.0.0.1:5000/reverse/

247

Notice how you’re using port 5000 to access the application, but if

you look at the code rendered by the reverse route (by right-clicking and

choosing inspect to bring up your console developer tools), you’ll see

the stream is coming from http://pi-car:8081. This is due to ports, as

discussed in earlier chapters. The application runs on port 5000, but the

stream runs on port 8081. You don’t need to merge or combine the two –

they are independent data feeds coming out of the Pi.

 Chapter Summary
This chapter introduced to you the Pi Camera module. You learned how to

connect it to the Pi and fine-tune the settings to achieve the best possible

quality. You configured the Pi to stream the camera feed over the network

and created a basic template to pull this stream into your application.

This is the basis for your entire reversing module, which you’ll continue to

expand upon later on.

The next chapter shows you how to develop a reverse beeper, to

indicate the presence of a rear obstacle.

Chapter 11 reversing Camera

249© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_12

CHAPTER 12

Reversing Beeper
Chapter goal: Connect a piezo element and configure
the application to beep on command.

A beeper is an essential element of a modern car’s reversing system. When

used in conjunction with a distance sensor (see the next project chapter),

a system which beeps when you get near an object is an incredibly useful

utility. This project introduces a piezo element to produce beep sounds,

and the associated logic and application routes to do so.

 Piezo Connection
This project uses a piezo element to produce the beep sound. Piezo, or

piezoelectric elements, generate a charge from electrical energy. This

charge produces a squeezing or stretching of the material and generates a

noise. The size of the material and the amount and duration of electricity

supplied all impact the resulting output. Piezo elements are used in your

desktop computer to produce the startup beep after passing through

the POST stage of the startup sequence – although this is less common

now than it used to be. Another common use is as microphones in some

instruments. You can see this completed circuit in Figure 12-1.

https://doi.org/10.1007/978-1-4842-6080-7_12#DOI

250

POST stands for power-on self-test. It’s a series of tests carried
out by your computer before booting into the operating system. It
tests that your RAM, keyboard, drives, and other devices are working
correctly. Piezo elements were the perfect choice to indicate these
tests have passed – small, cheap, and easy to use!

You can buy piezo elements from Amazon, or your local electronics

store. To avoid confusion with piezos designed for musical instruments,

search for “5v piezo,” or elements designed for electronic circuits, or

Arduino/Pi projects. You can expect to pay around one dollar for a single

element, although they are often sold in bulk packs for a lower price per

unit. Many piezos work with a variety of different voltages – try to get one

designed for 3v.

Figure 12-1. Piezo wired into the Pi

ChAPteR 12 ReveRsIng BeePeR

251

Piezos have a polarity – they will only work one way round. Often they

come with pre-soldered positive and negative wires, but if not, one leg

is often marked as negative. You won’t cause any damage by installing a

piezo in reverse – it just won’t work properly, if at all.

Connect the negative leg to the Pi’s ground. Connect the positive leg

to physical pin 18 (GPIO pin 24). That’s it. Piezos don’t need any complex

hardware to run – you apply power and they emit a noise. The longer the

power is applied for, the longer and more intense the sound is. Figure 12-2

shows the wiring diagram for this circuit.

 Piezo Flask Logic
This piezo logic will live inside your Sensors class. You could argue

semantics that a piezo element is not a sensor – but it will respond to

sensor data. This project uses the Buzzer class from the gpiozero library.

Once configured, you’ll apply power to the element, wait for a set duration,

and then remove power. Begin with your unit tests. Add your two now

Figure 12-2. Piezo wiring diagram

ChAPteR 12 ReveRsIng BeePeR

252

standard tests for bad pin factory and other errors. These tests and

associated logic ensure your function will still work when not running on

the Pi itself. Inside test_sensors.py, expand the TestSensors class:

@patch("Pi_Car.sensors.Buzzer")

def test_beep_bad_pin_factory(self, mock_buzzer):

 mock_buzzer.side_effect = exc.BadPinFactory

 result = Sensors.beep()

 assert result is None

@patch("Pi_Car.sensors.Buzzer")

def test_beep_other_pin_error(self, mock_buzzer):

 mock_buzzer.side_effect = TypeError

 result = Sensors.beep()

 assert result is None

Inside sensors.py, add a new import for the time library, and import

Buzzer from gpiozero, such that all of your imports now look like this:

import time

from flask import current_app as app

from gpiozero import Button, exc, LightSensor, Buzzer

try:

 from w1thermsensor import W1ThermSensor

except Exception:

 W1ThermSensor = None

The time library is used to wait for the beep to complete. Now expand

the Sensors class with a new static method called beep:

@staticmethod

def beep(duration=1):

 """

 Issue a single "beep" sound

ChAPteR 12 ReveRsIng BeePeR

253

 :param duration: Time to sustain beep for, in seconds

 :return: None

 """

 app.logger.info("Starting beep")

 app.logger.debug(f"Beep duration: {duration}")

 try:

 buzzer = Buzzer(pin=24)

 buzzer.on()

 time.sleep(duration)

 buzzer.off()

 except exc.BadPinFactory as e:

 app.logger.warning(f"Unable to issue beep in this

environment: {e}")

 except Exception as e:

 app.logger.error(f"Unknown problem with beep: {e}")

 app.logger.info("Finished beep")

Much of the code here should look familiar. The error handling,

logging, and docstring are used throughout the other sensor functions.

The core of this code begins by creating a new buzzer object based on the

Buzzer class. This uses GPIO pin 24. After turning the buzzer on using

the on function, the sleep function from the time library is used to wait

one second. This duration variable defaults to one second, but you can

override it when you call this function.

The off function turns the buzzer off. In many cases, using time.
sleep like this is not a perfect pattern. The Pi has to wait for this action

to complete – it blocks the Pi from doing any other work. In this case, the

main dashboard will call this function in a background-like operation, so

the fact it blocks is not an issue. You could use the beep function from the

Buzzer class, along with the background parameter to avoid blocking

here, but it’s not going to cause a problem not doing so.

ChAPteR 12 ReveRsIng BeePeR

254

Finally, call your beep function (temporarily) from your main

application route inside data.py:

Sensors.beep()

Your completed route so far should look like this:

@data_blueprint.route("/")

def show():

 app.logger.info("Starting to retrieve core data")

 temperature = Sensors.get_external_temp()

 boot_status = Sensors.get_boot_status()

 light_status = Sensors.get_light_status()

 reverse_light = Sensors.get_reverse_status()

 fog_light = Sensors.get_fog_light_status()

 result = {

 "temperature": temperature,

 "boot": boot_status,

 "light": light_status,

 "reverse": reverse_light,

 "fog": fog_light,

 }

 Sensors.beep()

 app.logger.info("Finished retrieving core data")

 app.logger.debug(f"Core data: {result}")

 return jsonify(result)

Using this beep is just temporary, as the Pi has to wait the one second

for the beep to complete. It will delay the loading of your data by one

second. This is just a test for now, and I’ll show you how to optimize this

function during the cleaning up chapter. Once running locally, commit

your code and perform a build on the Pi. Load the Pi’s application page at

ChAPteR 12 ReveRsIng BeePeR

255

http://pi-car:5000 and listen for the beep. If you don’t hear one, double-

check your logic. Is the piezo element wired in reverse? What do the Pi’s

application logs show?

This simple project is quick to implement, yet provides a very valuable

feature for your overall project.

 Chapter Summary
This simple chapter showed you how to use a piezo element to emit a

“beep” sound on command. You learned how different size piezo elements

can alter the sound, as can different code parameters. This application

logic is once again ready to implement into your whole reversing module.

The next chapter shows you how to install a rear distance sensor,

which is used in conjunction with this chapter to produce a sound when a

rear obstacle appears.

ChAPteR 12 ReveRsIng BeePeR

257© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_13

CHAPTER 13

Distance Sensor
Chapter Goal: Install an IR distance sensor and detect
when an object is in range.

A distance sensor is an incredibly useful tool that many modern cars (and

few older or budget cars) have. When reversing (and in conjunction with

an audible beep sound), immediate feedback as to the distance of an

object seriously helps prevent an accident. This could be a child, another

car, a wall, or anything. This distance sensor is often called a parking

sensor, or parking assist, and it’s the final component of your reversing

module. While complex in nature, the sensor circuit handles all the hard

work for you, making this project one of the simplest.

 Distance Sensor Theory
There are several different ways to detect an object in close proximity to a car.

The theory is the same for most of the techniques. Sensors emit some kind

of signal. This could be sound, light, or electromagnetic pulses. This signal

bounces off nearby objects, and another sensor reads this returning signal.

The longer it takes to return, the further away the object is. In practice, it’s a

lot more complex than this, but that’s the basic principle. Many cars use a

combination of sensors, to detect objects around most of the car. This project

only covers one simple sensor, but you could expand it if you so desire.

https://doi.org/10.1007/978-1-4842-6080-7_13#DOI

258

A common hobby sensor is the ultrasonic range-finder, number

HC-SR04P. This cheap component uses soundwaves to detect objects.

These work well, and if you’d like to use one, the DistanceSensor class of

gpiozero (https://gpiozero.readthedocs.io/en/stable/api_input.

html#distancesensor-hc-sr04) handles the work for you. To use this

sensor requires three GPIO pins and several resistors arranged together as

a voltage divider.

To keep things simple, I’ve chosen to implement an infrared (IR) range

sensor using the KY-032 module. Everything you need is included in the

hardware module, and it’s extremely simple to wire up and code – especially

if you’ve completed the previous project chapters. These sensors cost a few

dollars and are available from Amazon or your local electronics store.

This sensor emits an infrared light, which bounces off nearby objects

back into the infrared detector. It’s already fine-tuned to the specific

wavelengths required and comes with its own integrated circuit to handle

the transmission for you. It has a maximum range of roughly 15 inches –

which may not match commercial car sensors – but it’s about on par with

the ultrasonic range-finder and is fairly standard for consumer sensors in

this price range.

 Distance Sensor Hardware
Always turn off and disconnect the Pi’s power supply when working with

electronic circuits.

To build this project, you’ll need a KY-032 IR sensor module. These

come in several minor variants. You’ll run this at 3.3v, but almost all of

the modules available operate at 3.3v–5v. Make sure you double-check.

Running at a lower voltage than required won’t break it, but it may not

work correctly, if at all. Most units come with four connection pins and a

jumper header to reconfigure the circuit. Alternatively, a three-pin model

also exists, which provides the exact same functionality.

Chapter 13 DistanCe sensor

https://gpiozero.readthedocs.io/en/stable/api_input.html#distancesensor-hc-sr04
https://gpiozero.readthedocs.io/en/stable/api_input.html#distancesensor-hc-sr04

259

Begin by studying your IR module, shown in Figure 13-1. Holding it

with the circuit toward you and the pins facing down there are four key

sections. At the top is the IR transmitter and receiver pair. This emits

and detects the signal. In the middle is the circuitry required to make

this module work, with the customization header toward the lower-right

side. To the left and right are two status LEDs. Below this are the two

potentiometers used to fine-tune settings, and finally the header pins are

at the bottom.

Figure 13-1. KY-032 IR sensor module

Chapter 13 DistanCe sensor

260

The left status LED is labelled as “PLED”. This stands for power LED.

It lights up to indicate that the module has power. The LED on the right is

labelled as “SLED”, which stands for status LED. This lights up when there

is an obstruction detected by the sensor. When clear, it turns off again.

These configuration potentiometers serve two independent

purposes. The potentiometer on the left adjusts the range. All the way

counterclockwise allows the sensor to operate at maximum range. All

the way clockwise limits the sensor to its minimum range. Use a small

screwdriver or your nail to adjust this fully counterclockwise. The right

potentiometer adjusts the frequency of the IR signal. This is preset at the

factory and does not need adjusting.

From left to right, the pins at the bottom are labelled as

• GND

• +

Figure 13-2. KY-032 IR sensor wiring diagram

Chapter 13 DistanCe sensor

261

• Out

• EN

Connect the Pi’s ground to GND. Connect the Pi’s 3.3v to +. Connect

physical pin 22 (GPIO pin 25) to Out. This is where the Pi will read the

sensor state. The final pin, marked EN, is an enable pin. You can optionally

use this to trigger sensor pings. By default, the module automatically sends

out sensor pings, configured using the jumper on the lower right. You can

ignore this pin. The wiring diagram is shown in Figure 13-2.

Once ready, connect the power supply and boot the Pi.

 Distance Sensor Flask Code
This sensor is very easy to code for. It produces a HIGH or LOW signal,

depending on object detection – much like a button. If an object is

detected within range, the SLED status LED lights up, and the sensor

returns a HIGH value. If no object is detected, the Pi’s pull-down resistor is

detected by the GPIO pin as LOW. For this reason, you can use the Button

class and your existing logic to read this data.

Create a new function to read this sensor called get_rear_distance_
sensor. Place it inside your Sensors class:

@classmethod

def get_rear_distance_sensor(cls):

 """

 Safely read the reversing sensor

 :return: Boolean - reversing or not, or None

 """

 app.logger.info("Starting to read distance sensor")

 result = cls.get_bool_pin(pin=25)

 if result:

 result = False

Chapter 13 DistanCe sensor

262

 else:

 result = True

 app.logger.debug(f"Rear distance sensor: {result}")

 app.logger.info("Finished reading distance sensor")

 return result

This function uses your get_bool_pin function to handle the

processing as a button. Because the gpiozero library inverts the state of

pins (depending on their configuration at runtime), you need to invert the

value. The simple logic here flips the values from True > False and False >

True:

if result:

 result = False

else:

 result = True

Finally, add the new sensor call to your main route inside data.py:

rear_distance = Sensors.get_rear_distance_sensor()

Make sure you update your result dictionary as well, such that your

whole route looks like this:

@data_blueprint.route("/")

def show():

 app.logger.info("Starting to retrieve core data")

 temperature = Sensors.get_external_temp()

 boot_status = Sensors.get_boot_status()

 light_status = Sensors.get_light_status()

 reverse_light = Sensors.get_reverse_status()

 fog_light = Sensors.get_fog_light_status()

 rear_distance = Sensors.get_rear_distance_sensor()

Chapter 13 DistanCe sensor

263

 result = {

 "temperature": temperature,

 "boot": boot_status,

 "light": light_status,

 "reverse": reverse_light,

 "rear_distance": rear_distance,

 "fog": fog_light,

 }

 Sensors.beep()

 app.logger.info("Finished retrieving core data")

 app.logger.debug(f"Core data: {result}")

 return jsonify(result)

Once verified on your machine, commit your code and perform a

build. Load the main page at http://pi-car:500 and check the result

under the rear_distance key. Reload the page several times while covering

and uncovering the sensor.

 Chapter Summary
In this chapter you build a rear distance sensor using an IR module.

You learned the differences between several different rear sensing

techniques and the pitfalls of consumer-level sensors. You coded around

some potentially confusing logic introduced by a third-party library and

continued to expand your application with clean, documented, and easy-

to- read code.

Well done! You now have everything in place to finish configuring your

car dashboard system. In the next chapter, I’ll cover bringing everything

together into a functional and usable system and performing final

polishing and system tuning.

Chapter 13 DistanCe sensor

265© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7_14

CHAPTER 14

System Polishing
Chapter goal: Use HTML and CSS to make the
dashboard usable and pretty. Fine-tune the system and
shape it into a working dashboard.

Up to this point, you’ve been working mainly with Python and Bash. You’ve

been writing sensor components and building circuits, with little thought

to the style or usability. You’ve been following my mantra of “make it work,

then make it pretty.” Well now the time has come to make it pretty. This is

one chapter where you have a lot of flexibility. Want to make it bright pink?

Fill the screen with cat photos, or a sentient AI able to perceive your every

move? That’s all possible, and totally up to your creativity. Don’t worry if

you’re not creative – I’ll show you how to make a minimalistic dashboard,

which you can use as a basis to expand on into something unique.

For this chapter, you’ll use several libraries to help make this

dashboard pretty. You’ll use Bootstrap (https://getbootstrap.com/) for

most of the styling and layout. You’ll also use Font Awesome (https://

fontawesome.com/) for some fantastic (and open source) icons. Font

Awesome has a paid-for, Pro service, but the free tier is more than good

enough for this project.

For most websites, a content delivery network (CDN) lets you quickly

and easily pull in these external assets. CDNs greatly speed up the user

experience on any website, and free public CDNs exist to host the required

https://doi.org/10.1007/978-1-4842-6080-7_14#DOI
https://getbootstrap.com/
https://fontawesome.com/
https://fontawesome.com/

266

resources for you. However, because the Pi is going in your car, it may

not always have (nor should it need to rely on) an Internet connection.

This makes public CDNs a no-go. I’ll show you how to download these

resources and serve them up locally from the Pi.

Public-facing websites also need to cater to a variety of users – from

very old browsers, small screens, and Internet connections to browsers

built-into games consoles, ultrafast modern computers, or even ancient

systems such as OS/2. On the Internet, you get it all, and it’s your job

as a developer to ensure that most visitors can see your website as you

intended. Fortunately, this dashboard is only for you to use. The Pi has a

known web browser, with a fixed-size screen. Every time you visit the page,

the Pi renders the content in the same way. This makes development and

testing slightly easier. At the expense of cutting corners, you can be happy

enough if it looks good on the Pi. You don’t need to worry about other

users or browser compatibility.

 Basic Dashboard Layout
Let’s begin by designing the basic dashboard (ignoring the reversing

screen for now). This will start as a “static” page. It won’t update based on

the data from the Pi; you’re just getting a feel for the design.

Start by downloading the assets for Bootstrap and Font Awesome. Visit

the Bootstrap download page (https://getbootstrap.com/docs/4.4/

getting- started/download/). The current version of Bootstrap is v4.4 –

but this is likely to change in the future, as new releases come out. Double-

check you’re on the latest version by clicking the “v4.4” on the top-right

corner of the screen and choosing the “latest” option from the version

drop-down menu (Figure 14-1). Scroll down to the “Compiled CSS and JS”

section, and choose download source. This will download a compressed

file, containing all the files Bootstrap needs to work – which is a lot.

Chapter 14 SyStem poliShing

https://getbootstrap.com/docs/4.4/getting-started/download/
https://getbootstrap.com/docs/4.4/getting-started/download/

267

Double-click this file to extract it. You now have a Bootstrap folder

called something like bootstrap-4.3.1-dist (your version number may

differ). Back in your project terminal, create a folder called static, inside

your Pi_Car folder:

mkdir Pi_Car/static

Now move the entire bootstrap folder into this static folder – either

through finder/your GUI tool of choice or over the command line:

mv /Users/coburn/Downloads/bootstrap-4.3.1-dist /Users/coburn/

Documents/Pi-Car/Pi_Car/static

Figure 14-1. Changing Bootstrap version before download

Chapter 14 SyStem poliShing

268

Modify the paths to suit your folder structure.

Bootstrap is now ready to use in your application, so let’s get Font

Awesome ready in much the same way. Create an account at Font

Awesome (https://fontawesome.com/) by choosing Start for Free shown

in Figure 14-2. Enter your email address and choose Send Kit Code. It’s

not possible to download Font Awesome without signing up.

After confirming your email address, visit the “Other Methods”

page (https://fontawesome.com/start#other-methods) and choose

download (Figure 14-3). From the next page, choose Download Font
Awesome Free for the Web. Confirm you have a new file downloaded

called something like fontawesome-free-5.13.0-web. This version

number is subject to change in the future, but Font Awesome will serve

you the new files as they become available.

Figure 14-2. Font Awesome getting started screen

Chapter 14 SyStem poliShing

https://fontawesome.com/
https://fontawesome.com/start#other-methods

269

Once again, double-click to extract the compressed files, and move

them into your static folder:

mv /Users/coburn/Downloads/fontawesome-free-5.13.0-web /Users/

coburn/Documents/Pi-Car/Pi_Car/static

Let’s create the core dashboard now. Inside your templates folder,

create a new file called main.html:

touch templates/main.html

Here’s the code you need:

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1, shrink-to-fit=no">

 <title>Pi Car</title>

 <meta name="description" content="Raspberry Pi based car

system">

 <meta name="author" content="Joe Coburn">

 <link href="static/fontawesome-free-5.13.0-web/css/all.css"

rel="stylesheet">

Figure 14-3. Font Awesome download button

Chapter 14 SyStem poliShing

270

 <link rel="stylesheet" type="text/css" href="static/

bootstrap-4.3.1-dist/css/bootstrap.min.css">

 <link rel="stylesheet" type="text/css" href="static/css/

style.css">

</head>

<body>

 <div class="container text-center text-light">

 <h1>Hello.</h1>

 <h2>Wednesday 8th January 2020</h2>

 <div class="row">

 <div class="col text-left">

 <i class="fas fa-clock"></i>15:50

 </div>

 <div class="col text-right">

 <i class="fas fa-snowflake"></i> 20° C

 <i class="fas fa-moon"></i>

 <i class="fas fa-sun"></i>Daytime

 </div>

 </div>

 <div class="row">

 <div class="col text-middle">

 <i class="fas fa-car icon-huge"></i>

 </div>

 </div>

 <div class="row">

 <div class="col text-middle">

 <i class="fas fa-exclamation"></i><span

class="exclamation">Boot is open

Chapter 14 SyStem poliShing

271

 <i class="fas fa-lightbulb"></i>Fog lights are on

 </div>

 </div>

 </div>

</body>

</html>

This may look like a lot, but it’s much simpler than it may first appear.

This isn’t code as such, it’s markup. Hypertext Markup Language, or

HTML, is the Internet standard markup language for websites. It can’t

perform calculations or logic, it’s simply instructions for the browser to

interpret. HTML is a markup language. With it, you can define tables,

boxes, text, images, and so on. Your browser understands these commands

and does its best to draw the elements you specify. Each browser

interprets these slightly differently, however, making cross-platform web

development more like a game of whack-a-mole if you’re not careful.

HTML does not render pretty colors or define the sizes of things aside

from a few browser defaults. Cascading Style Sheets, or CSS, almost always

accompanies HTML to make things pretty, but I’ll cover that after breaking

down this HTML.

HTML is a simple language, and your page will continue to work

even if you make a mistake – it might look a bit odd though, depending

on the error. HTML contains tags. A tag is an instruction and can contain

other text and other tags inside it. Tags need a matching tag to close them,

although there are exceptions, and self-closing tags. Think of HTML as

defining a series of boxes for text of images to sit in. This basic tag is a H1

element:

<h1>Hello.</h1>

It has an opening and a closing tag and contains the text “Hello”.

Chapter 14 SyStem poliShing

272

Starting at the top of the file, there are some tags to tell the browser this

is HTML and the language to use.

<!doctype html>

<html lang="en">

The doctype is a bit like a shebang in Bash scripts – it doesn’t

need closing. This HTML tag is closed at the end of the file. Therefore,

everything in this file is enclosed in the HTML tag.

Next is the head tag, with associated nested tags:

<head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width, initial-

scale=1, shrink-to-fit=no">

 <title>Pi Car</title>

 <meta name="description" content="Raspberry Pi based car

system">

 <meta name="author" content="Joe Coburn">

 <link href="/static/fontawesome-free-5.13.0-web/css/all.

css" rel="stylesheet">

 <link rel="stylesheet" type="text/css" href="/static/

bootstrap-4.3.1-dist/css/bootstrap.min.css">

 <link rel="stylesheet" type="text/css" href="/static/css/

style.css">

</head>

The head tag is used for page metadata. Things such as the page title,

character encoding (charset), and other metadata are defined here. Toward

the bottom you can see the link tags. These pull in your Bootstrap and Font

Awesome CSS files you downloaded earlier. This makes them accessible on

the page. This also references a style.css file. This doesn’t exist yet, but it’s

where you’ll write any custom CSS needed to style this page.

Chapter 14 SyStem poliShing

273

Moving on, the body tag is where the bulk of your page content lives.

You can see this is full of div tags, which are containers to store other

elements. H tags (H1, H2, etc.) are used for titles or larger text. You can see

these tags have multiple classes attached:

<div class="col text-right">

Classes are used to point HTML elements to a CSS style. This lets you

reuse CSS without copying and pasting it all over the place and lets you

target specific elements to style. The classes listed here are defined by

Bootstrap, with a little custom CSS.

Finally, there are the i tags:

<i class="fas fa-lightbulb"></i>

These elements use the Font Awesome classes to render the icons you

can see on the dashboard.

There are lots of different HTML elements, tags, and techniques,

but the premise is mostly the same across them all – different tags, each

supporting attributes such as class, each one with specific purpose. Some

tags have historical relevance, and some are no longer valid, as they are

deprecated due to their age or incompatibility.

Remember, this HTML is static right now – it’s hard-coded to always

display the same information – and isn’t tied into your sensor data.

Moving onto the CSS – most of this is handled for you by Bootstrap. As

far as CSS files go, this is quite a small file, at 33 lines long. Create a new

folder called CSS inside your static folder:

mkdir Pi_Car/static/css

Create a CSS file called style:

touch Pi_Car/static/css/style.css

Chapter 14 SyStem poliShing

274

This file will contain your custom CSS – any changes you need which

Bootstrap doesn’t handle for you. Here’s the code you need:

html,

body {

 font-size: 25px;

 background-color: var(--gray-dark);

 text-shadow: 2px 2px #000000;

 cursor: none;

 padding: 0;

}

i {

 margin-right: 10px;

}

.icon-huge {

 font-size: 350px;

 font-weight: bold;

 text-shadow: 4px 4px #000000;

}

.fa-snowflake {

 color: var(--blue);

}

.fa-sun {

 color: var(--yellow);

}

.fa-moon {

 color: var(--cyan);

}

Chapter 14 SyStem poliShing

275

.fa-exclamation,

.exclamation {

 color: var(--red);

}

CSS lets you change a huge number of stylistic and layout elements.

You can animate elements; change the size, color, and position of almost

anything; hide elements; and more. The changes here mostly impact the

size, and color of the text and icons.

Core HTML elements are targeted with their name – such as html.
Everything inside the curly braces is applied to elements that meet the

criteria. You can target multiple elements, high-level elements, or only

elements that exist inside a different element. Some of the colors use the

bootstrap variables. This uses the Bootstrap variable called “--blue”:

.fa-snowflake {

 color: var(--blue);

}

The cursor attribute ensures you won’t see the mouse cursor on the

screen. Not very useful for a website, but incredibly useful for a Pi project

such as this:

cursor: none;

Now that you have your HTML and CSS all ready, modify your

application route inside main.py to load the main.html template, using

the render_template function from Flask. Import the function:

from flask import Blueprint, jsonify, render_template

Then temporarily modify your route to ignore the data:

@data_blueprint.route("/")

def show():

Chapter 14 SyStem poliShing

276

 app.logger.info("Starting to retrieve core data")

 temperature = Sensors.get_external_temp()

 boot_status = Sensors.get_boot_status()

 light_status = Sensors.get_light_status()

 reverse_light = Sensors.get_reverse_status()

 fog_light = Sensors.get_fog_light_status()

 rear_distance = Sensors.get_rear_distance_sensor()

 result = {

 "temperature": "temperature",

 "boot": "boot_status",

 "light": "light_status",

 "reverse": "reverse_light",

 "rear_distance": "rear_distance",

 "fog": "fog_light",

 }

 Sensors.beep()

 app.logger.info("Finished retrieving core data")

 app.logger.debug(f"Core data: {result}")

 #return jsonify(result)

 return render_template("main.html")

Run the app on your computer and visit it in your web browser of

choice, found at http://127.0.0.1:5000/.

Chapter 14 SyStem poliShing

http://127.0.0.1:5000/

277

Figure 14-4. Static dashboard styling

Chapter 14 SyStem poliShing

278

Observe what it looks like (shown in Figure 14-4). The background

has a dark color, the text is white (with a slight shadow), and there are

various elements displaying (fake) data. There are icons next to some of

the items. There are currently too many icons – not all of these will be

visible when it’s hooked into your main dataset, but for now, commit the

code and perform a build on the Pi. Visit the Pi’s application at http://pi-

car:5000/ and verify the build. Resize your browser window and observe

how the layout reflows to fit. It may not always fit at all sizes, but that’s OK –

the Pi has a fixed-size screen.

Bootstrap is configured on this page for a responsive layout. That is

to say, as the size of your web browser changes, so does the layout of the

page. Figure 14-5 shows this dashboard on a different sized screen. This

doesn’t really matter for this project, as the Pi will always have the same

screen size, but it’s a good practice to get into (and Bootstrap does it all for

you).

Figure 14-5. Dashboard resized to the screen

Chapter 14 SyStem poliShing

279

Right now, the Pi boots up. It downloads the latest code, installs the

dependencies, and spins up the Flask server (accessible over the network).

It doesn’t have a screen, and it doesn’t open the web browser and load the

page for you – let’s fix that next.

 Autoload the Pi’s Web Browser
For a truly interaction-free startup process, the Pi needs to open a web

browser and visit the application it’s already running. Your installation

of Raspbian on the Pi comes with a web browser. It’s perhaps not as full

featured as your desktop computer browser, but it’s sufficient for this

project.

If it’s not currently connected, then plug in your Pi’s mini LCD display

using the full-size HDMI to micro-HDMI cable. Connect to the Pi over

SSH.

It’s perfectly possible to start a browser from the root user account,

perhaps in your rc.local, but that’s an imperfect solution. Right now, your

Pi boots to the Lightweight X11 Desktop Environment (LXDE) desktop.

This provides your GUI desktop interface, which so far you have ignored

in favor of a remote terminal session. This LXDE environment has control

over the HDMI display. It’s difficult to launch a browser which uses

this display through the existing boot scripts. Enter LXDE-pi/autostart.

Commands inside this file run when the desktop loads, for any user. Begin

by opening the file:

sudo nano /etc/xdg/lxsession/LXDE-pi/autostart

Under the existing options in here, add the following command:

/usr/bin/chromium-browser --no-first-run --noerrdialogs

--start-fullscreen --start-maximized --disable-notifications

--disable-infobars --kiosk --incognito http://localhost:5000

Chapter 14 SyStem poliShing

280

Save and exit the file. What does this do? It starts the Chromium

browser, located at /usr/bin/chromium-browser. It points it to your

localhost address and port of your Flask server, and it passes in several

options to the browser. These options start the browser without any

distractions. Fullscreen, kiosk mode prevents you from showing the URL

address bar or bookmarks and hides lots of alerts and warnings – perfect

for an integrated system such as this.

Restart the Pi and observe as the browser starts after booting to the

desktop environment. You may notice that the address cannot be found,

but after several minutes, it eventually arrives. This is because Flask is still

booting when the browser starts. Shortly I’ll show you how to speed this up

once you’re no longer actively developing the system.

For me, the Pi is running my display horizontally – and it won’t

switch automatically just by rotating the Pi. For my system, I know I want

a vertical display, so I need to configure that. If you’re happy with your

display as is, then you don’t need to worry about this step. Begin by editing

the displayed config file, called dispsetup.sh:

sudo nano /usr/share/dispsetup.sh

Now add this line before the exit 0, which must remain at the bottom of

the file:

DISPLAY=:0 xrandr --output HDMI-1 --rotate left

This tells the Pi to configure the primary display (DISPLAY=:0),

connected to HDMI 1. It rotates it 90 degrees to the left. To rotate different

directions, change left to one of the following:

• Left

• Right

• Inverted

• Normal

Chapter 14 SyStem poliShing

281

Now restart the Pi to see these changes take effect – shown in

Figure 14-6.

Figure 14-6. The almost completed dashboard

Chapter 14 SyStem poliShing

282

 Show Sensor Data
Up until now you have two fairly independent modules. The template

shows a nice-looking dashboard with hard-coded data, and the back-end

Python code reads all the sensors. Let’s link the two together. All the hard

work is already done, so it’s almost a simple case of pointing the templates

to the data. Modify your main route inside main.py.

Change the return to use Flask’s render_template, and pass the

sensor data to the main.html template. I’ve removed the beep and reverse

function calls, as these are not needed just yet. Here’s the revised code:

from flask import Blueprint, render_template

from .sensors import Sensors

from flask import current_app as app

from datetime import datetime

main_blueprint = Blueprint("main", __name__)

@main_blueprint.route("/")

def show():

 app.logger.info("Starting to retrieve core data")

 sensors = Sensors()

 temperature = sensors.get_external_temp()

 boot_status = sensors.get_boot_status()

 light_status = sensors.get_light_status()

 fog_light = sensors.get_fog_light_status()

 today = datetime.now()

 time = today.strftime("%H:%M")

 date = today.strftime("%A %d %B %Y")

 result = {

 "temperature": temperature,

 "boot": boot_status,

Chapter 14 SyStem poliShing

283

 "light": light_status,

 "fog": fog_light,

 "time": time,

 "date": date,

 }

 app.logger.info("Finished retrieving core data")

 app.logger.debug(f"Core data: {result}")

 return render_template("main.html", data=result)

Notice how the sensor data is passed to the template through the name

data. It’s a dictionary called result, but on the template itself, you’ll access

it through its new name of data. I’ve modified this to include the current

date and time – a useful change, which is simple with the Python core

library:

today = datetime.now()

time = today.strftime("%H:%M")

date = today.strftime("%A %d %B %Y")

The strftime function converts the datetime object into a readable

format.

Over inside the main.html template, you can access this data through

Jinja2 variables, like this:

{{ data.date }}

By using simple logic, or just spitting out the data, you can control

what’s shown to the screen. For example, here’s how to show the snowflake

icon only if it’s cold:

{% if data.temperature <=4 %}

 <i class="fas fa-snowflake"></i>

{% endif %}

Chapter 14 SyStem poliShing

284

Here’s the revised code for your body tag:

<div class="container text-center text-light">

 <h2>Hello.</h2>

 <h3>{{ data.date }}</h3>

 <div class="row">

 <div class="col text-left">

 <i class="fas fa-clock"></i>{{ data.time }}

 </div>

 <div class="col text-right">

 {% if data.temperature <=4 %}

 <i class="fas fa-snowflake"></i>

 {% endif %}

 {{ data.temperature }}° C

 {% if data.light == 'Daytime' %}

 <i class="fas fa-sun"></i>

 {% else %}

 <i class="fas fa-moon"></i>

 {% endif %}

 {{ data.light }}

 </div>

 </div>

 <div class="row">

 <div class="col text-middle">

 <i class="fas fa-car icon-huge"></i>

 </div>

 </div>

 <div class="row">

 <div class="col text-middle">

 {% if data.boot == 'Open' %}

Chapter 14 SyStem poliShing

285

 <i class="fas fa-exclamation"></i><span

class="exclamation">Boot is open

 {% endif %}

 {% if data.fog %}

 <i class="fas fa-lightbulb"></i>Fog lights are on

 {% endif %}

 </div>

 </div>

</div>

Remember the golden rule when working with templates – simple

logic to show/hide data or minor UI tweaks are fine. Complex logic or

calculations should live inside the Python classes!

Finally, let’s get this data to update in near-real time. Inside the head

tags, add this new meta tag:

<meta http-equiv="refresh" content="0.25">

This HTML tag instructs the browser to reload the page every quarter

of a second. It doesn’t actually do it that quickly, but it’s fairly fast. Now,

the page constantly reloads, getting fresh data every time. Commit your

code and push to the Pi. Once booted, observe the dashboard. Make

some changes such as holding down buttons, covering the light sensor, or

warming up the temperature sensor. Notice how the dashboard updates to

reflect these changes? Very nice – it’s almost complete now.

 Reversing Module Completion
Several of the stand-alone projects included components and sensors for

the reversing module. The Pi camera, beeper unit, and rear distance sensor

all require integrating into this dashboard.

Chapter 14 SyStem poliShing

286

Let’s begin with the reverse sensor. Check this every time the main

page loads – if it’s triggered (the car is in reverse gear), switch to the reverse

camera feed page. Starting with the Python code inside main.py, shuffle

the code around such that the reverse sensor is checked before any other

sensors – no point checking the temperature if the reversing screen will

run. Use a simple if to route to the reverse code if the sensor is detected:

reverse_light = sensors.get_reverse_status()

if reverse_light:

 return reverse()

The reverse name needs importing from the reverse.py file:

from .reverse import reverse

Now, whenever the main page detects the reverse sensor, it will

redirect and run the reverse route code. If you run this code on the Pi,

there’s one big problem. The video feed is loading from http://pi-

car:8081. This host does not resolve on the Pi – you only configured it

on your computer, so let’s fix that. Using a hosts entry like this means the

video feed can work on the Pi, or when accessing the Pi over the network –

it’s a far more flexible approach. On the Pi, edit your hosts file:

sudo nano /etc/hosts

Add a new entry to route pi-car to your localhost address:

127.0.0.1 pi-car

Now save and restart. When booted, hold down the reverse sensor

button (or otherwise trigger the sensor). You should see the Pi switch to

the video feed page – it’s not pretty yet, but it should work (providing you

configured the Pi camera and video stream in the previous projects).

Chapter 14 SyStem poliShing

287

Let’s improve this reversing page. It needs to call the beep and distance

sensor functions, the camera needs fitting to the page, and it needs some

styling. Here’s the revised HTML to go inside reverse.html:

<!doctype html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">

 <title>Pi Car</title>

 <meta name="description" content="Raspberry Pi based

car system">

 <meta name="author" content="Joe Coburn">

 <link rel="stylesheet" type="text/css" href="/static/

css/style.css">

 </head>

 <body>

 </body>

</html>

You could argue that you don’t need to “follow the rules” as it were.

This HTML adds little functionality, and as your dashboard isn’t on the

Internet, you don’t need to follow standards. That’s understandable – feel

free to skip this, but it’s a good practice to follow the standards. Shortly

you’ll modify this to include some essential code to read the sensors and

issue the beep.

Notice how most of this HTML in the head section is identical to the

main page – with a few stylesheets removed. In any big system, or website

with more than three or four pages, it makes sense to centralize this logic

Chapter 14 SyStem poliShing

288

to reduce duplication. For example, changing the name of your CSS file

requires updating the same tag in two files now. In this project with only

two basic templates, that’s an acceptable compromise. If you’re interested

in reducing this duplication, then look into Jinja macros (https://jinja.

palletsprojects.com/en/2.11.x/templates/#macros) – an excellent way

to reuse code.

You may need to rotate your camera again, based on your final screen

orientation. As with the first rotation, edit your motion config file to handle

this:

sudo nano /etc/motion/motion.conf

rotate 90

Revisit the reversing camera chapter for full motion config breakdown.

When you’re ready, commit your code and restart the Pi. Trigger the

reverse light sensor, and watch as your dashboard switches over to the

live camera feed – it’s really taking shape now. It’s not there yet, however.

The reversing page doesn’t switch back to the main dashboard when the

reverse gear is disengaged, and it doesn’t yet issue the beep or IR distance-

sensing reverse assist, so let’s fix that.

For this file, constantly restarting the page as was the case with the

main index page is too disruptive to the live video feed. It works, but the

video feed ends up slightly jittery. To accomplish this, you’ll use JavaScript.

JavaScript is a front-end programming language. It’s executed by your web

browser, and website visitors can often read the code itself. It’s not the

same thing as Java, and it’s perfect for running tasks “in the background”

using Asynchronous JavaScript and XML (AJAX). AJAX is used with

JavaScript to create asynchronous client-side applications. You could use

it on the previous page to update all the data, but it would require a fair

amount of JavaScript code, for little benefit.

Almost all of the modern Internet uses JavaScript in some way. It

doesn’t need installing either, as it’s part of the instructions your browser

can understand by default. Let’s not get too carried away though, as

Chapter 14 SyStem poliShing

https://jinja.palletsprojects.com/en/2.11.x/templates/#macros
https://jinja.palletsprojects.com/en/2.11.x/templates/#macros

289

JavaScript is horribly inconsistent (even with itself) and it’s much slower

than Python to execute. Still, it’s more than good enough for this small

task.

For this task, JavaScript will essentially load another web page, which

will route to Flask, ping the distance sensor, and issue a beep if an object

is nearby. JavaScript doesn’t need to change any data, or even look for a

successful response – it just hits this page and carries on as normal.

Create a new Flask route inside reverse.py called reverse_beep. This

needs a route of /reverse/beep/, which is the URL address your JavaScript

will load. Here’s the code:

@reverse_blueprint.route("/reverse/beep/")

def reverse_beep():

 sensors = Sensors()

 rear_distance_item = sensors.get_rear_distance_sensor()

 if rear_distance_item:

 sensors.beep()

 return “Success”

There are no surprises in this code. It calls the get_rear_distance_
sensor function from your Sensors class. If that returns True, it issues a

beep using the beep function. If you visit this new route from your browser,

you can see it in action (http://pi-car:5000/reverse/beep/). There is no

logging in this function – and for good reason. There’s enough logging in

the sensor code itself to handle this, and as this code could potentially run

four times every second, your logs will quickly fill up with too much noise

and become almost unusable.

Let’s write JavaScript to call this endpoint. Over in reverse.html, create

a script tag, which needs to live inside the head tag:

<script type="text/javascript">

</script>

Chapter 14 SyStem poliShing

290

Any JavaScript your write must be within a script tag. The script type

of text/javascript tells your browser that this script contains JavaScript.

Here’s your JavaScript AJAX code:

var runSensors = function() {

 var xhttp = new XMLHttpRequest();

 xhttp.open("GET", "/reverse/beep/", true);

 xhttp.send();

}

window.onload = function() {

 setInterval(runSensors, 250);

}

This code performs three core functions. It creates a function called

runSensors, following the JavaScript naming convention of CamelCase.

This function uses the XMLHttpRequest object to send an AJAX request

to your new /reverse/beep/ route. Next, it uses the setInterval function

to call your new runSensors function. SetInterval runs code regularly on

a schedule, defined by the number – 250 milliseconds in this case. Every

quarter of a second, JavaScript pings the /reverse/beep/ route to sense

objects and issue beeps. This does not care about the response, or the

duration.

The final argument to xhttp.open is set to true. This is the

asynchronous parameter – it instructs the browser to run this code in the

background while doing other tasks. No matter how slow this endpoint is,

it will still issue the next command, and the next, and so on. Remember,

this endpoint waits one second while issuing the beep.

Finally, window.onload ensures your code is loaded when the page

loads. Without this, your code would never execute at all.

Commit your code and perform a build. Trigger the reverse sensor

to load the reverse page. Now cover the distance sensor, and observe

the beeps. Now move your hand and listen – the beeps stop. If you

Chapter 14 SyStem poliShing

291

open your application logs, you’ll see the beep and distance sensor logs

corresponding to the AJAX requests every quarter of a second.

Finally, let’s write some code to check the reverse sensor. If it’s no

longer detecting the reverse bulb, JavaScript needs to switch back to the

main dashboard, and let that take over.

Back in Python, modify the reverse_beep function to call the main

reverse sensor, and return a status of Exit if it’s no longer detected:

@reverse_blueprint.route("/reverse/beep/")

def reverse_beep():

 sensors = Sensors()

 reverse_light = sensors.get_reverse_status()

 if not reverse_light:

 return "Exit"

 rear_distance_item = sensors.get_rear_distance_sensor()

 if rear_distance_item:

 sensors.beep()

 return "Success"

Finally, modify the JavaScript runSensors function to check the result

returned from the Python, and redirect to the dashboard if it equals Exit.

This uses the onreadystatechange function, and it checks the readyState

variables equals four – the operation is complete. Here’s the complete

JavaScript code:

var runSensors = function() {

 var xhttp = new XMLHttpRequest();

 xhttp.open("GET", "/reverse/beep/", true);

 xhttp.onreadystatechange = function() {

 if (xhttp.readyState === 4) {

 result = xhttp.response

Chapter 14 SyStem poliShing

292

 if (result === "Exit") {

 window.location.href = "/";

 }

 }

 }

 xhttp.send();

}

window.onload = function() {

 setInterval(runSensors, 250);

}

You can learn more about the different ready state options at https://

developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/

readyState.

Load the Pi’s main dashboard. Play around with triggering the reverse

sensor, and see it redirect to the reversing camera (with distance sensing

and beeps). Now remove power from the sensor and watch it send you

back to the dashboard. Excellent – the whole system is nearly finished now.

 Final Pi Improvements
Your system is now practically complete. The Python is done, there’s no

more code to write, and it’s fully working – pending installation in your car.

There are two tasks left to finish this system. You may have noticed your

Pi going to sleep to save energy. After five minutes or so, the display turns

off and your dashboard disappears. It’s still around – it’s accessible over

SSH and it operates just fine, but the screen is off. The Pi has switched off

its display output to save energy. This energy saving is a useful feature for

occasional use, but it’s a nuisance for a car dashboard project. While the

Pi has power and is running the application, it should send data to the

display. Let’s fix this.

Chapter 14 SyStem poliShing

https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/readyState
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/readyState
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/readyState

293

Modify the Debian display configuration file lightdm.conf:

sudo nano /etc/lightdm/lightdm.conf

This file contains configuration options for all kinds of system-level

display features. Scroll down to the [Seat:*] section. Uncomment the

xserver-command=X line by removing the hash symbol. Extend this line

to prevent the display from sleeping – shown in Figure 14-7:

xserver-command=X -s 0 dpms

Save and exit this file, taking care not to disrupt any other config lines.

Now restart your Pi and wait some time – roughly five to ten minutes

should be enough. Watch and see that your display now remains on

forevermore – if the Pi is on, so is the display.

Figure 14-7. Sample Debian display configuration file

Chapter 14 SyStem poliShing

294

The final change is to prevent the Pi from auto-updating its code base

from Git. This is slow – you have to code a delay into the script to ensure

the Internet connection exists, and it’s ugly. By waiting, downloading, and

then installing the latest dependencies and code, the LXDE has already

booted and started the browser. This leads to an ugly few minutes whereby

the browser is ready to go, but the server isn’t running yet. Besides, full CI/

CD perhaps isn’t the best paradigm for a car – having to wait for an update

before you can begin your journey isn’t the best experience – ever been

frustrated waiting for video game updates before?

Head back into your rc.local file from previous chapters, and comment

out all the slow stuff – the sleep, clone script, and pipenv install. Here’s the

final script contents:

#sleep 15

export PATH=/home/pi/.pyenv/shims:$PATH

export FLASK_APP=Pi_Car.app

cd /home/pi/Documents/Pi-Car/

#./clone.sh

#pipenv install

pipenv run flask run --host=0.0.0.0 &

exit 0

By commenting these lines out, you can easily reinstate them in

the future. A fun expansion project would be to push updates to the Pi,

or integrate your build chain to deploy to a small number of cars, and

continue the rollout once it’s stable and there are no reported issues over

a given period of time. If there are issues, automatically roll back to the

previous version. This is beyond the scope of this book, and it’s straying

into devops territory. For those interested, Ansible (www.ansible.com/) is a

great tool for this job.

Chapter 14 SyStem poliShing

http://www.ansible.com/

295

Restart your Pi and bask in your own brilliance. Watch the sheer speed

at which the Pi can start now that it’s no longer burdened by auto-updates.

It doesn’t need an Internet connection to work – it has everything it needs

in a self-contained package. Any sensor failures won’t hold it back, as

you programmed it defensively to operate in almost any environment.

Naturally, if lots of sensors fail, it may enter into limp mode – with

diminished functionality. That’s still far better than a total failure, and

often at times it’s not possible to work normally if there’s a huge system

failure.

This chapter cleans up the system and turns it into a functional and

pleasant dashboard. By building on the application logic developed in all

the previous chapters, there’s a lot of margin for customization here. All

the previous chapters develop the core logic, and so much of this chapter

is open to your interpretation. You learned how to switch between the

rear view camera and the main display and how to speed up the entire

application’s startup time. You learned about CDNs, CSS, JavaScript, and

HTML, along with AJAX and Chromium.

Throughout this book, you have learned how to write software. It’s

my hope that you really understood what’s happening at every level and

tediously typed out every line of code, instead of blindly loading up the

repository and doing a copy-paste job. I’d love to hear from you if you

enjoyed this book. Visit this book’s GitHub repository at https://github.

com/CoburnJoe/Pi-Car and say hello. Create a pull request and enhance

the code, or join any discussions around topics (either in this repo, or

anywhere else on GitHub). While GitHub doesn’t support direct messages

anymore, you can see my latest projects and contact details on my profile:

https://github.com/CoburnJoe.

Here are some possible expansion projects, all based on the hardware

and software you’ve used so far:

• Door sensors

• Boot sensor

Chapter 14 SyStem poliShing

https://github.com/CoburnJoe/Pi-Car
https://github.com/CoburnJoe/Pi-Car
https://github.com/CoburnJoe

296

• Headlight sensor

• Engine temperature sensor

• Random “message of the day” (perhaps based on the

time of day)

• Climate control options

• Dashboard “debug” overlay/reporting of sensor failure

to the dashboard

• Apple CarPlay/Android Auto support

• Multiple reversing sensors

• Report errors over the Internet

Last of all, remember that code is for humans. Computers will

understand almost any jumbled mess of spaghetti code, so make your code

simple and clear, such that anyone in the future can easily understand

its intent. Complex, clever, or otherwise convoluted code makes

modifications or troubleshooting more complex for everyone involved.

Chapter 14 SyStem poliShing

297© Joseph Coburn 2020
J. Coburn, Build Your Own Car Dashboard with a Raspberry Pi,
https://doi.org/10.1007/978-1-4842-6080-7

Index

A
Acceptance testing, 42
Adapter pattern, 27
Amazon Web Services (AWS), 51, 110
Ambulance-dispatch system, 34
ApplePiBaker

macOS, 122, 123
main screen, 123
NOOBS, 125

apt-get command, 135
ARCELI DS18B20/DollaTek

DS18B20, 172
Asynchronous JavaScript and XML

(AJAX), 288, 290, 295
Autostart Flask

exit command, 170
nano, 170
Pi boots, 167
Pipfile, 168
rc.local file, 168
sleep command, 169

B
Basic dashboard layout

bootstrap, 266, 267, 273, 278
cursor attribute, 275
custom CSS, 274, 275

designing, 266
doctype, 272
Font Awesome

download button, 269
started screen, 268

HTML, 271
render_template function, 275
resized screen, 278
route modification, 275
run application, 276
static folder, 267, 273
style.css file, 272
styling, 277
tags, 271
template folder, 269, 270

Beeper
piezo/piezoelectric

elements, 249, 251
reversing system, 249

Black package, 88
Black-box testing, 43
Black Check step, 114
Blacklists, 36
Booleans, 18
Boot Sensor, Flask

application logs, 194
Button class, 191
code, 192

https://doi.org/10.1007/978-1-4842-6080-7#DOI

298

get_boot_status, 191
GPIOZero, 189, 190
hardware configuration, 187
is_pressed attribute, 193
library, 191
Pi-Car directory, 195
PiGPIO, 190
pin parameter, 193
Python package, 190
show function, 194
try/catch block, 193
wiring diagram, 189

Branch rule screen, 104
Breadboards, 61
Broadcom (BCM) layout,

2, 4, 5, 174

C
Camera serial interface

(CSI), 10, 232
chmod command, 140
Class methods, 24
Client-side code, 57
Code parameters, 255
Compiled languages, 14
Consumer-level

sensors, 263
Content-based subscriptions, 32
Content delivery network (CDN)

external assets, 265
internet connection, 266

Cryptographic protocols, 146

D
Dallas DS18B20, 172
Data types, 17
Debugging, 45, 46

breakpoints, 48, 49
deployments, 51–53
logging, 47
rubber ducks, 46
version control, 49–51

Decorators, 27, 158
Defensive programming, 33–35
Device tree overlay, 177
Dictionary, 156
Distance sensor

Flask code, 261–263
hardware, 258, 260
IR module, 263
parking sensor/parking

assist, 257
theory, 257, 258

Domain Name System (DNS), 164
DS18B20

BCM, 174
digital thermometer, 173
legs, 174
Pi’s pins, 174

Dynamically typed languages, 16
Dynamic method, 25

E
Electronic components, 60, 63
Electronic parts, 60
Error logging level, 152

Boot Sensor, Flask (cont.)

INDEX

299

Event-driven programming, 31, 32
exc.BadPinFactory exception, 193

F
Facade pattern, 27
Factory pattern, 27
Failing unit tests, 109
Flask

APPLICATION_ROUTE, 146
application server, 170
app.py file, 147
comments, 149
config_file, 149, 150
configurations, 145
create_app, 148
creating files and folders, 144
custom values section, 146
decorator, 158
def, 149
FLASK_ENV variable, 159
Flask-specific values, 146
importing modules, 148
import_name, 150
logger levels (see Logger levels)
login and user registration

system, 143
pallets, 144
parameters, 149
Pascal Case, 150
Pipenv shell, 159
PREFERRED_URL_SCHEME, 146
Python microframework, 143
routes, 158

running,Pi (see Running
Flask, Pi)

specific databases/code
patterns, 143

testing, 146
throwing an error/throwing an

exception, 148
variables, 145

Flask
addHandler function, 157
backupCount, 153
.gitignore template, 160
info attribute, 157
LOG_FILE_NAME, 154
log handlers, 153
pi-car.log file, 160
rotating file handler, 153
setFormatter function, 156
setLevel function, 156
stdout, 153
try/catch statement, 154, 155

Flask temperature sensor
application logs, 185
app.py file, 184
class, 177
current_app, 182
data_blueprint, 183
data.py file, 178
exception handling, 180
get_temperature function, 180
int function, 182
jsonify function, 183
JSON output, 185
logging levels, 181, 186

INDEX

300

pipenv shell, 178
TypeError, 181
W1ThermSensor, 178

Fog and reverse sensors
application page, 228
class method, 225
data.py, 227
force voltage, 221
get_bool_pin, 223, 226
get_boot_status, 223
GPIO pin, 223
gpiozero library, 224
hardware configurations, 220
lighting component, 229
Ohm’s formula, 221
pull-down and pull-up

resistors, 222
refactoring, 223
resulting main route, 228
sensors.py, 226
static method, 224
wiring diagram, 222

Front-facing fog lights, 219
Fully Qualified Domain Name

(FQDN), 244

G
General-purpose input/output

(GPIO) pins
pinout command, 175
pull-down resistor, 176
pull-up resistor, 176

SSH, 174
USB port, 175

get_bool_pin function, 262
git checkout command, 93
Git clone command, 80
GitHub

actions page, 110
actions screen, 116
branch overview page, 101
branch protection rule, 105, 106
build pipeline, 110, 111
dashboard, 76
pipeline output, 116
Project Navigation bar, 100
PR page, 101, 102
repository landing page, 79
repository screen, 77, 78
top navigation bar, 104
web-based interface, 115
welcome screen, 75

.gitignore file, 94
Git repository, 74

add, 95
cheat sheet, 117
cloning, 80, 138
develop branch, 93
master branch, 93
output, 97
PR, 93
tracked files, 95, 96
untracked files, 94
version command, 80

GPIO pins, 190
Graphical user interface (GUI), 31, 56

Flask temperature sensor (cont.)

INDEX

301

H
Hardware configuration

DS18B20 temperature
sensor, 172, 173

electronic circuits, 171
1-wire, 173
physical/board location, 174

HDMI cable, 60
Homebrew, 69, 79
Hypertext Markup Language

(HTML), 56, 271
Hypertext Transfer Protocol

(HTTP), 146

I
Info logging level, 152
Install Dependencies, 114
Instance methods, 24
Integrated circuit (IC), 62
Integrated development

environment (IDE), 45, 81
Integration testing, 41, 42, 196
Internal acceptance testing, 42
International Electrotechnical

Commission (IEC), 40

J
Just-in-time compilation, 15

K
KY-032 module, 258

L
Light-dependent resistors (LDRs),

62, 208
Light sensor

Flask, 213–216
GPIO pin, 209
human-readable strings, 217
LDRs, 208
mocking, 217
TTD (see Test-driven

development (TTD))
unit-testing, 207
wiring diagram, 209

Lightweight X11 Desktop
Environment (LXDE), 279

Liskov substitution principle, 29
Load testing, 42
local_config.py file, 145
Local development environment, 65
Logger levels

application, 151
critical, 151
debug, 152
descending order of

priority, 151
error, 152
info, 152
warning, 152

M
macOS, 68

ApplePiBaker, 122
NOOBS, 121

INDEX

302

Matrix strategy, 113
microSD card, 59, 120
Mini-projects, 55
Mocking, 43, 197
Modules, 148

N
NOOBS, 128

O
Object-oriented programming

(OOP), 19
access modifiers, 22
classes, 20
design patterns, 26, 27
encapsulation, 21, 23, 24
inheritance, 21
polymorphism, 24–26
SOLID, 28–31

on command, 112

P, Q
Pascal Case, 150
Passing unit tests, 108
Photoresistors, 62
Pi

ansible, 294
Debian display configuration

file, 293
energy saving, 292
GitHub, 295

hardware/software, 295
limp mode, 295
LXDE, 294
microSD memory card

install, 127, 128
rc.local file, 294
self-contained package, 295
spaghetti code, 296
xserver-command=X line, 293

Pi camera
app.py file, 245
configuration, 235
flask code, 243, 246
focus adjustment, 242
FQDN, 244
imaginary line, 241
interfacing options, 235
lens barrel, 242
live stream configuration, 238
module, 242
motion config changes, 239
photo, 237
PoF, 241
port 5000, 247
raspi-config utility, 235
render_template function, 244
reverse.py file, 243, 244
rotated/refined, 241
route, 246
SCP, 236
service command, 238
slipping, 242
start_motion_daemon

option, 238

INDEX

303

timestamp, 240
Piezo logic

Arduino/Pi projects, 250
background parameter, 253
beep, 249, 252
buzzer class, 253
duration variable, 253
gpiozero library, 251
microphones, 249
Pi’s application, 254
sensors class, 251
TestSensors class, 252
time library, 252
wiring diagram, 251

Pipeline configuration, 107, 108
pipenv install command, 73, 87
pipenv lock command, 90
Pipenv shell, 90
pipfile.lock, 88, 90
Pi’s web browser, autoload

completed dashboard, 281
dispsetup.sh, 280
Flask, 280
LCD display, 279
LXDE, 279
opening file, 279
Raspbian, 279
rotating directions, 280

Plane of focus (PoF), 240, 241
Power-on self-test (POST), 250
Print statements, 48
Programming languages, 14

Java, 15
Python, 16

storage, 16
Project structure, 56
Public-facing websites, 266
Pull requests (PR), 93, 98, 100
Push command, 112
PyCharm, 82

community edition, 82
download screen, 82
Git conflicts, 99
index update, 85
landing page, 84
Mac installation, 83
parts, 85
project view, 86

pyenv GitHub repo, 70
pyenv init command, 69
Pytest fixture decorator, 201
Python

install modules, 68
output, 73
Pip, 74
Pyenv, 70–72
virtual environment, 87, 88, 91

Python 3
installation output, 135
vs. Python 2, 3, 18, 19

Python version 3.7.6., 72

R
Raspberry Pi

cloning, 136, 137
code updation, 139, 141
filesystem, 137

INDEX

304

history, 1, 2
ifconfig network command, 131
launch screen, 129
models, 2
NOOBS download, 121
Python setup, 134, 135
code updation, 139
SSH, 130, 131, 133, 134
Wi-Fi configuration screen, 130

Raspberry Pi 1, 5, 6
Raspberry Pi 2, 5
Raspberry Pi 3, 7, 8
Raspberry Pi 4, 3, 8, 9
Raspberry Pi Zero, 6, 7
rear_distance key, 263
Repository rules, 103
Resistors, 61
Reversing camera

connection, 232–234
image quality, 231
module, 231
Pi (see Pi camera)
Pi Camera V2.1, 232
USB webcam, 231

Reversing module
AJAX, 288
asynchronous parameter, 290
CamelCase, 290
functionality, 287
get_rear_distance_sensor

function, 289
HTML, 287
Javascript, 288

motion config file, 288
onreadystatechange

function, 291
reverse code, 286
reverse_beep function, 289, 291
script tag, 289
templates, 288
video feed, 286

Revolutions per minute (RPM), 57
Routes, 158
Rubber duck debugging, 46
Ruby, 69
Running Flask, Pi

address bar, 163
insecure websites, 164
internal/external network, 163
IP address, 161
localhost address, 162
loopback address, 162
macOS, 165
nano, 165, 167
pi-car entry, 166
Python, 165
return key, 166
root project directory, 161
sudo command, 165

S
Secure copy (SCP), 236
Secure programming, 36
Sensor data

head tags, 285
main.html template, 282

Raspberry Pi (cont.)

INDEX

305

result, 283
snowflake icon, 283

Sensor failure, 186
Software-as-a-service (SaaS)

models, 56
Software testing, 37

books, 37
TDD, 44
Therac-25, 38–41

Solderless breadboard, 60
Sprawling rambling spaghetti

code, 45
Statically typed languages, 16
Static methods, 23
System testing, 42

T
Tags, 271
Temperature sensor, 170

Breadboard wiring diagram, 176
functional level, 171
hardware (see Hardware

configuration)
Pi configuration, 177

Test-driven development (TDD),
44, 196

conditions, 212
edge cases, 211
exception handling, 210
get_light_status function, 211
gpiozero module, 210

LDR, 211
parametrize decorator

function, 212
Pytest, 213
unit tests, 210

Topic-based subscribers, 32

U
Unit testing, 41
Unit tests

app_context, 200
assert statements, 204, 206
autouse parameter, 201
build_testing_app function, 200
conftest.py, 198, 200
create_app function, 199
FILE_LOGGING, 198
Flask route, 196
framework, 197
get_boot_status

function, 196, 204
get_external_temp function, 196
is_pressed attribute, 205
mocking, 197
return_value attribute, 205
scope parameter, 201
sensors.py, 196
side_effect property, 205
TDD code, 196
test folder, 202
testing libraries, 204

INDEX

306

test_sensors.py, 197
yield statement, 200

V
Value attribute, 215
Version control, 14, 49, 50, 54

W, X
Warning log level, 152
White-box testing, 43

Y, Z
.yml file, 112

Unit tests (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Chapter 1: Raspberry Pi History
	A Brief History of Pi
	Raspberry Pi 1
	Raspberry Pi 2
	Raspberry Pi Zero
	Raspberry Pi 3
	Raspberry Pi 4

	Pi Cameras
	Chapter Summary

	Chapter 2: Software Development Primer
	Types of Programming Languages
	Data Types
	Python 2 vs. Python 3
	Object-Oriented Programming (OOP)
	Classes
	Inheritance
	Encapsulation
	Polymorphism
	Design Patterns
	SOLID Principles

	Event-Driven Programming
	Defensive Programming
	1992 London Ambulance Service Computer-Aided Ambulance-Dispatch System

	Testing
	Therac-25 Radiation Therapy Machine
	Test-Driven Development (TDD)

	Debugging
	Rubber Duck Debugging
	Logging
	Print Statements: The Pauper’s Logging

	Breakpoints

	Version Control with Git
	Deployments
	Chapter Summary

	Chapter 3: Project Overview
	Project Structure
	The Hardware
	Electronic Components

	Equipment List
	Chapter Summary

	Chapter 4: Local Development Configuration
	Getting Started with Python
	Git and GitHub Repository Configuration
	Integrated Development Environment Setup
	Python Virtual Environment Configuration
	Git Workflow
	Pull Requests
	Repository Rules
	Pipeline Configuration

	Git Cheat Sheet
	Chapter Summary

	Chapter 5: Raspberry Pi Initial Configuration
	Install an Operating System on Your Memory Card
	Boot the Pi for the First Time
	Configure SSH
	Pi Python Setup
	Cloning the Repository
	Keeping Code Updated
	Chapter Summary

	Chapter 6: Getting Started with Flask
	First Flask Config
	Running Flask on the Pi
	Autostart Flask When the Pi Boots

	Chapter Summary

	Chapter 7: Temperature Monitoring
	Hardware Configuration
	Pi Configuration
	Flask Temperature Sensor Logic
	Chapter Summary

	Chapter 8: Boot Sensor
	Hardware Configuration
	Flask Boot Sensor Logic
	First Unit Tests
	Chapter Summary

	Chapter 9: Light Sensor
	Hardware Configuration
	Test-Driven Development Light Sensor Tests
	Flask Light Sensor Logic
	Chapter Summary

	Chapter 10: Fog and Reverse Sensors
	Hardware Configuration
	Fog and Reverse Sensors Logic
	Chapter Summary

	Chapter 11: Reversing Camera
	Camera Connection
	Pi Camera First Time Configuration
	Camera Live Stream Configuration
	Pi Camera Focus Adjustment
	Camera Flask Code
	Chapter Summary

	Chapter 12: Reversing Beeper
	Piezo Connection
	Piezo Flask Logic
	Chapter Summary

	Chapter 13: Distance Sensor
	Distance Sensor Theory
	Distance Sensor Hardware
	Distance Sensor Flask Code
	Chapter Summary

	Chapter 14: System Polishing
	Basic Dashboard Layout
	Autoload the Pi’s Web Browser
	Show Sensor Data
	Reversing Module Completion
	Final Pi Improvements

	Index

