
Emmanuel Ameisen

Building Machine
Learning Powered
 Applications
Going from Idea to Product

Emmanuel Ameisen

Building Machine Learning
Powered Applications

Going from Idea to Product

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04511-3

[LSI]

Building Machine Learning Powered Applications
by Emmanuel Ameisen

Copyright © 2020 Emmanuel Ameisen. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell
Development Editor: Melissa Potter
Production Editor: Deborah Baker
Copyeditor: Kim Wimpsett
Proofreader: Christina Edwards

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

February 2020: First Edition

Revision History for the First Edition
2020-01-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492045113 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Building Machine Learning Powered
Applications, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

Table of Contents

Preface. ix

Part I. Find the Correct ML Approach

1. From Product Goal to ML Framing. 3
Estimate What Is Possible 4

Models 5
Data 13

Framing the ML Editor 15
Trying to Do It All with ML: An End-to-End Framework 16
The Simplest Approach: Being the Algorithm 17
Middle Ground: Learning from Our Experience 18

Monica Rogati: How to Choose and Prioritize ML Projects 20
Conclusion 22

2. Create a Plan. 23
Measuring Success 23

Business Performance 24
Model Performance 25
Freshness and Distribution Shift 28
Speed 30

Estimate Scope and Challenges 31
Leverage Domain Expertise 31
Stand on the Shoulders of Giants 32

ML Editor Planning 36
Initial Plan for an Editor 36
Always Start with a Simple Model 36

iii

To Make Regular Progress: Start Simple 37
Start with a Simple Pipeline 37
Pipeline for the ML Editor 39

Conclusion 40

Part II. Build a Working Pipeline

3. Build Your First End-to-End Pipeline. 45
The Simplest Scaffolding 45
Prototype of an ML Editor 47

Parse and Clean Data 47
Tokenizing Text 48
Generating Features 48

Test Your Workflow 50
User Experience 50
Modeling Results 51

ML Editor Prototype Evaluation 52
Model 53
User Experience 53

Conclusion 54

4. Acquire an Initial Dataset. 55
Iterate on Datasets 55

Do Data Science 56
Explore Your First Dataset 57

Be Efficient, Start Small 57
Insights Versus Products 58
A Data Quality Rubric 58

Label to Find Data Trends 64
Summary Statistics 65
Explore and Label Efficiently 67
Be the Algorithm 82
Data Trends 84

Let Data Inform Features and Models 85
Build Features Out of Patterns 85
ML Editor Features 88

Robert Munro: How Do You Find, Label, and Leverage Data? 89
Conclusion 90

iv | Table of Contents

Part III. Iterate on Models

5. Train and Evaluate Your Model. 95
The Simplest Appropriate Model 95

Simple Models 96
From Patterns to Models 98
Split Your Dataset 99
ML Editor Data Split 105
Judge Performance 106

Evaluate Your Model: Look Beyond Accuracy 109
Contrast Data and Predictions 109
Confusion Matrix 110
ROC Curve 111
Calibration Curve 114
Dimensionality Reduction for Errors 116
The Top-k Method 116
Other Models 121

Evaluate Feature Importance 121
Directly from a Classifier 122
Black-Box Explainers 123

Conclusion 125

6. Debug Your ML Problems. 127
Software Best Practices 127

ML-Specific Best Practices 128
Debug Wiring: Visualizing and Testing 130

Start with One Example 130
Test Your ML Code 136

Debug Training: Make Your Model Learn 140
Task Difficulty 142
Optimization Problems 144

Debug Generalization: Make Your Model Useful 146
Data Leakage 147
Overfitting 147
Consider the Task at Hand 150

Conclusion 151

7. Using Classifiers for Writing Recommendations. 153
Extracting Recommendations from Models 154

What Can We Achieve Without a Model? 154
Extracting Global Feature Importance 155
Using a Model’s Score 156

Table of Contents | v

Extracting Local Feature Importance 157
Comparing Models 159

Version 1: The Report Card 160
Version 2: More Powerful, More Unclear 160
Version 3: Understandable Recommendations 162

Generating Editing Recommendations 163
Conclusion 167

Part IV. Deploy and Monitor

8. Considerations When Deploying Models. 171
Data Concerns 172

Data Ownership 172
Data Bias 173
Systemic Bias 174

Modeling Concerns 175
Feedback Loops 175
Inclusive Model Performance 177
Considering Context 177
Adversaries 178
Abuse Concerns and Dual-Use 179

Chris Harland: Shipping Experiments 180
Conclusion 182

9. Choose Your Deployment Option. 183
Server-Side Deployment 183

Streaming Application or API 184
Batch Predictions 186

Client-Side Deployment 188
On Device 189
Browser Side 191

Federated Learning: A Hybrid Approach 191
Conclusion 193

10. Build Safeguards for Models. 195
Engineer Around Failures 195

Input and Output Checks 196
Model Failure Fallbacks 200

Engineer for Performance 204
Scale to Multiple Users 204
Model and Data Life Cycle Management 207

vi | Table of Contents

Data Processing and DAGs 210
Ask for Feedback 211
Chris Moody: Empowering Data Scientists to Deploy Models 214
Conclusion 216

11. Monitor and Update Models. 217
Monitoring Saves Lives 217

Monitoring to Inform Refresh Rate 217
Monitor to Detect Abuse 218

Choose What to Monitor 219
Performance Metrics 219
Business Metrics 222

CI/CD for ML 223
A/B Testing and Experimentation 224
Other Approaches 227

Conclusion 228

Index. 231

Table of Contents | vii

Preface

The Goal of Using Machine Learning Powered Applications
Over the past decade, machine learning (ML) has increasingly been used to power a
variety of products such as automated support systems, translation services, recom‐
mendation engines, fraud detection models, and many, many more.

Surprisingly, there aren’t many resources available to teach engineers and scientists
how to build such products. Many books and classes will teach how to train ML mod‐
els or how to build software projects, but few blend both worlds to teach how to build
practical applications that are powered by ML.

Deploying ML as part of an application requires a blend of creativity, strong engi‐
neering practices, and an analytical mindset. ML products are notoriously challeng‐
ing to build because they require much more than simply training a model on a
dataset. Choosing the right ML approach for a given feature, analyzing model errors
and data quality issues, and validating model results to guarantee product quality are
all challenging problems that are at the core of the ML building process.

This book goes through every step of this process and aims to help you accomplish
each of them by sharing a mix of methods, code examples, and advice from me and
other experienced practitioners. We’ll cover the practical skills required to design,
build, and deploy ML–powered applications. The goal of this book is to help you suc‐
ceed at every part of the ML process.

Use ML to Build Practical Applications
If you regularly read ML papers and corporate engineering blogs, you may feel over‐
whelmed by the combination of linear algebra equations and engineering terms. The
hybrid nature of the field leads many engineers and scientists who could contribute
their diverse expertise to feel intimidated by the field of ML. Similarly, entrepreneurs

ix

and product leaders often struggle to tie together their ideas for a business with what
is possible with ML today (and what may be possible tomorrow).

This book covers the lessons I have learned working on data teams at multiple com‐
panies and helping hundreds of data scientists, software engineers, and product man‐
agers build applied ML projects through my work leading the artificial intelligence
program at Insight Data Science.

The goal of this book is to share a step-by-step practical guide to building ML–pow‐
ered applications. It is practical and focuses on concrete tips and methods to help you
prototype, iterate, and deploy models. Because it spans a wide range of topics, we will
go into only as much detail as is needed at each step. Whenever possible, I will pro‐
vide resources to help you dive deeper into the topics covered if you so desire.

Important concepts are illustrated with practical examples, including a case study that
will go from idea to deployed model by the end of the book. Most examples will be
accompanied by illustrations, and many will contain code. All of the code used in this
book can be found in the book’s companion GitHub repository.

Because this book focuses on describing the process of ML, each chapter builds upon
concepts defined in earlier ones. For this reason, I recommend reading it in order so
that you can understand how each successive step fits into the entire process. If you
are looking to explore a subset of the process of ML, you might be better served with
a more specialized book. If that is the case, I’ve shared a few recommendations.

Additional Resources
• If you’d like to know ML well enough to write your own algorithms from scratch,

I recommend Data Science from Scratch, by Joel Grus. If the theory of deep learn‐
ing is what you are after, the textbook Deep Learning (MIT Press), by Ian Good‐
fellow, Yoshua Bengio, and Aaron Courville, is a comprehensive resource.

• If you are wondering how to train models efficiently and accurately on specific
datasets, Kaggle and fast.ai are great places to look.

• If you’d like to learn how to build scalable applications that need to process a lot
of data, I recommend looking at Designing Data-Intensive Applications (O’Reilly),
by Martin Kleppmann.

If you have coding experience and some basic ML knowledge and want to build ML–
driven products, this book will guide you through the entire process from product
idea to shipped prototype. If you already work as a data scientist or ML engineer, this
book will add new techniques to your ML development tool. If you do not know how
to code but collaborate with data scientists, this book can help you understand the
process of ML, as long as you are willing to skip some of the in-depth code examples.

Let’s start by diving deeper into the meaning of practical ML.

x | Preface

Practical ML
For the purpose of this introduction, think of ML as the process of leveraging pat‐
terns in data to automatically tune algorithms. This is a general definition, so you will
not be surprised to hear that many applications, tools, and services are starting to
integrate ML at the core of the way they function.

Some of these tasks are user-facing, such as search engines, recommendations on
social platforms, translation services, or systems that automatically detect familiar
faces in photographs, follow instructions from voice commands, or attempt to pro‐
vide useful suggestions to finish a sentence in an email.

Some work in less visible ways, silently filtering spam emails and fraudulent accounts,
serving ads, predicting future usage patterns to efficiently allocate resources, or
experimenting with personalizing website experiences for each user.

Many products currently leverage ML, and even more could do so. Practical ML
refers to the task of identifying practical problems that could benefit from ML and
delivering a successful solution to these problems. Going from a high-level product
goal to ML–powered results is a challenging task that this book tries to help you to
accomplish.

Some ML courses will teach students about ML methods by providing a dataset and
having them train a model on them, but training an algorithm on a dataset is a small
part of the ML process. Compelling ML–powered products rely on more than an
aggregate accuracy score and are the results of a long process. This book will start
from ideation and continue all the way through to production, illustrating every step
on an example application. We will share tools, best practices, and common pitfalls
learned from working with applied teams that are deploying these kinds of systems
every day.

What This Book Covers
To cover the topic of building applications powered by ML, the focus of this book is
concrete and practical. In particular, this book aims to illustrate the whole process of
building ML–powered applications.

To do so, I will first describe methods to tackle each step in the process. Then, I will
illustrate these methods using an example project as a case study. The book also con‐
tains many practical examples of ML in industry and features interviews with profes‐
sionals who have built and maintained production ML models.

The entire process of ML
To successfully serve an ML product to users, you need to do more than simply train
a model. You need to thoughtfully translate your product need to an ML problem,

Preface | xi

gather adequate data, efficiently iterate in between models, validate your results, and
deploy them in a robust manner.

Building a model often represents only a tenth of the total workload of an ML project.
Mastering the entire ML pipeline is crucial to successfully build projects, succeed at
ML interviews, and be a top contributor on ML teams.

A technical, practical case study
While we won’t be re-implementing algorithms from scratch in C, we will stay practi‐
cal and technical by using libraries and tools providing higher-level abstractions. We
will go through this book building an example ML application together, from the ini‐
tial idea to the deployed product.

I will illustrate key concepts with code snippets when applicable, as well as figures
describing our application. The best way to learn ML is by practicing it, so I encour‐
age you to go through the book reproducing the examples and adapting them to build
your own ML–powered application.

Real business applications
Throughout this book, I will include conversations and advice from ML leaders who
have worked on data teams at tech companies such as StitchFix, Jawbone, and Figur‐
eEight. These discussions will cover practical advice garnered after building ML
applications with millions of users and will correct some popular misconceptions
about what makes data scientists and data science teams successful.

Prerequisites
This book assumes some familiarity with programming. I will mainly be using
Python for technical examples and assume that the reader is familiar with the syntax.
If you’d like to refresh your Python knowledge, I recommend The Hitchhiker’s Guide
to Python (O’Reilly), by Kenneth Reitz and Tanya Schlusser.

In addition, while I will define most ML concepts referred to in the book, I will not
cover the inner workings of all ML algorithms used. Most of these algorithms are
standard ML methods that are covered in introductory-level ML resources, such as
the ones mentioned in “Additional Resources” on page x.

Our Case Study: ML–Assisted Writing
To concretely illustrate this idea, we will build an ML application together as we go
through this book.

As a case study, I chose an application that can accurately illustrate the complexity of
iterating and deploying ML models. I also wanted to cover a product that could pro‐

xii | Preface

duce value. This is why we will be implementing a machine learning–powered writing
assistant.

Our goal is to build a system that will help users write better. In particular, we will
aim to help people write better questions. This may seem like a very vague objective,
and I will define it more clearly as we scope out the project, but it is a good example
for a few key reasons.

Text data is everywhere
Text data is abundantly available for most use cases you can think of and is core
to many practical ML applications. Whether we are trying to better understand
the reviews of our product, accurately categorize incoming support requests, or
tailor our promotional messages to potential audiences, we will consume and
produce text data.

Writing assistants are useful
From Gmail’s text prediction feature to Grammarly’s smart spellchecker, ML–
powered editors have proven that they can deliver value to users in a variety of
ways. This makes it particularly interesting for us to explore how to build them
from scratch.

ML–assisted writing is self-standing
Many ML applications can function only when tightly integrated into a broader
ecosystem, such as ETA prediction for ride-hailing companies, search and rec‐
ommendation systems for online retailers, and ad bidding models. A text editor,
however, even though it could benefit from being integrated into a document
editing ecosystem, can prove valuable on its own and be exposed through a sim‐
ple website.

Throughout the book, this project will allow us to highlight the challenges and associ‐
ated solutions we suggest to build ML–powered applications.

The ML Process
The road from an idea to a deployed ML application is long and winding. After see‐
ing many companies and individuals build such projects, I’ve identified four key suc‐
cessive stages, which will each be covered in a section of this book.

1. Identifying the right ML approach: The field of ML is broad and often proposes a
multitude of ways to tackle a given product goal. The best approach for a given
problem will depend on many factors such as success criteria, data availability,
and task complexity. The goals of this stage are to set the right success criteria
and to identify an adequate initial dataset and model choice.

2. Building an initial prototype: Start by building an end-to-end prototype before
working on a model. This prototype should aim to tackle the product goal with

Preface | xiii

no ML involved and will allow you to determine how to best apply ML. Once a
prototype is built, you should have an idea of whether you need ML, and you
should be able to start gathering a dataset to train a model.

3. Iterating on models: Now that you have a dataset, you can train a model and eval‐
uate its shortcomings. The goal of this stage is to repeatedly alternate between
error analysis and implementation. Increasing the speed at which this iteration
loop happens is the best way to increase ML development speed.

4. Deployment and monitoring: Once a model shows good performance, you should
pick an adequate deployment option. Once deployed, models often fail in unex‐
pected ways. The last two chapters of this book will cover methods to mitigate
and monitor model errors.

There is a lot of ground to cover, so let’s dive right in and start with Chapter 1!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xiv | Preface

This element indicates a warning or caution.

Using Code Examples
Supplemental code examples for this book are available for download at https://
oreil.ly/ml-powered-applications.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: Building Machine Learn‐
ing Powered Applications by Emmanuel Ameisen (O’Reilly). Copyright 2020 Emma‐
nuel Ameisen, 978-1-492-04511-3.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

Preface | xv

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can access the web page for this book, where we list errata, examples, and any
additional information, at https://oreil.ly/Building_ML_Powered_Applications.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The project of writing this book started as a consequence of my work mentoring Fel‐
lows and overseeing ML projects at Insight Data Science. For giving me the opportu‐
nity to lead this program and for encouraging me to write about the lessons learned
doing so, I’d like to thank Jake Klamka and Jeremy Karnowski, respectively. I’d also
like to thank the hundreds of Fellows I’ve worked with at Insight for allowing me to
help them push the limits of what an ML project can look like.

Writing a book is a daunting task, and the O’Reilly staff helped make it more manage‐
able every step of the way. In particular, I would like to thank my editor, Melissa Pot‐
ter, who tirelessly provided guidance, suggestions, and moral support throughout the
journey that is writing a book. Thank you to Mike Loukides for somehow convincing
me that writing a book was a reasonable endeavor.

Thank you to the tech reviewers who combed through early drafts of this book,
pointing out errors and offering suggestions for improvement. Thank you Alex Gude,
Jon Krohn, Kristen McIntyre, and Douwe Osinga for taking the time out of your busy
schedules to help make this book the best version of itself that it could be. To data
practitioners whom I asked about the challenges of practical ML they felt needed the

xvi | Preface

most attention, thank you for your time and insights, and I hope you’ll find that this
book covers them adequately.

Finally, for their unwavering support during the series of busy weekends and late
nights that came with writing this book, I’d like to thank my unwavering partner
Mari, my sarcastic sidekick Eliott, my wise and patient family, and my friends who
refrained from reporting me as missing. You made this book a reality.

Preface | xvii

PART I

Find the Correct ML Approach

Most individuals or companies have a good grasp of which problems they are interes‐
ted in solving—for example, predicting which customers will leave an online platform
or building a drone that will follow a user as they ski down a mountain. Similarly,
most people can quickly learn how to train a model to classify customers or detect
objects to reasonable accuracy given a dataset.

What is much rarer, however, is the ability to take a problem, estimate how best to
solve it, build a plan to tackle it with ML, and confidently execute on said plan. This is
often a skill that has to be learned through experience, after multiple overly ambitious
projects and missed deadlines.

For a given product, there are many potential ML solutions. In Figure I-1, you can see
a mock-up of a potential writing assistant tool on the left, which includes a suggestion
and an opportunity for the user to provide feedback. On the right of the image is a
diagram of a potential ML approach to provide such recommendations.

Figure I-1. From product to ML

This section starts by covering these different potential approaches, as well as meth‐
ods to choose one over the others. It then dives into methods to reconcile a model’s
performance metrics with product requirements.

To do this, we will tackle two successive topics:

Chapter 1
By the end of this chapter, you will be able to take an idea for an application, esti‐
mate whether it is possible to solve, determine whether you would need ML to do
so, and figure out which kind of model would make the most sense to start with.

Chapter 2
In this chapter, we will cover how to accurately evaluate your model’s perfor‐
mance within the context of your application’s goals and how to use this measure
to make regular progress.

CHAPTER 1

From Product Goal to ML Framing

ML allows machines to learn from data and behave in a probabilistic way to solve
problems by optimizing for a given objective. This stands in opposition to traditional
programming, in which a programmer writes step-by-step instructions describing
how to solve a problem. This makes ML particularly useful to build systems for which
we are unable to define a heuristic solution.

Figure 1-1 describes two ways to write a system to detect cats. On the left, a program
consists of a procedure that has been manually written out. On the right, an ML
approach leverages a dataset of photos of cats and dogs labeled with the correspond‐
ing animal to allow a model to learn the mapping from image to category. In the ML
approach, there is no specification of how the result should be achieved, only a set of
example inputs and outputs.

Figure 1-1. From defining procedures to showing examples

ML is powerful and can unlock entirely new products, but since it is based on pattern
recognition, it introduces a level of uncertainty. It is important to identify which parts

3

of a product would benefit from ML and how to frame a learning goal in a way that
minimizes the risks of users having a poor experience.

For example, it is close to impossible (and extremely time-consuming to attempt) for
humans to write step-by-step instructions to automatically detect which animal is in
an image based on pixel values. By feeding thousands of images of different animals
to a convolutional neural network (CNN), however, we can build a model that per‐
forms this classification more accurately than a human. This makes it an attractive
task to tackle with ML.

On the other side, an application that calculates your taxes automatically should rely
on guidelines provided by the government. As you may have heard, having errors on
your tax return is generally frowned upon. This makes the use of ML for automati‐
cally generating tax returns a dubious proposition.

You never want to use ML when you can solve your problem with a manageable set of
deterministic rules. By manageable, I mean a set of rules that you could confidently
write and that would not be too complex to maintain.

So while ML opens up a world of different applications, it is important to think about
which tasks can and should be solved by ML. When building products, you should
start from a concrete business problem, determine whether it requires ML, and then
work on finding the ML approach that will allow you to iterate as rapidly as possible.

We will cover this process in this chapter, starting with methods to estimate what
tasks are able to be solved by ML, which ML approaches are appropriate for which
product goals, and how to approach data requirements. I will illustrate these methods
with the ML Editor case study that we mentioned in “Our Case Study: ML–Assisted
Writing” on page xii, and an interview with Monica Rogati.

Estimate What Is Possible
Since ML models can tackle tasks without humans needing to give them step-by-step
instructions, that means they are able to perform some tasks better than human
experts (such as detecting tumors from radiology images or playing Go) and some
that are entirely inaccessible to humans (such as recommending articles out of a pool
of millions or changing the voice of a speaker to sound like someone else).

The ability of ML to learn directly from data makes it useful in a broad range of appli‐
cations but makes it harder for humans to accurately distinguish which problems are
solvable by ML. For each successful result published in a research paper or a corpo‐
rate blog, there are hundreds of reasonable-sounding ideas that have entirely failed.

While there is currently no surefire way to predict ML success, there are guidelines
that can help you reduce the risk associated with tackling an ML project. Most impor‐
tantly, you should always start with a product goal to then decide how best to solve it.

4 | Chapter 1: From Product Goal to ML Framing

At this stage, be open to any approach whether it requires ML or not. When consider‐
ing ML approaches, make sure to evaluate those approaches based on how appropri‐
ate they are for the product, not simply on how interesting the methods are in a
vacuum.

The best way to do this is by following two successive steps: (1) framing your product
goal in an ML paradigm, and (2) evaluating the feasibility of that ML task. Depending
on your evaluation, you can readjust your framing until we are satisfied. Let’s explore
what these steps really mean.

1. Framing a product goal in an ML paradigm: When we build a product, we start by
thinking of what service we want to deliver to users. As we mentioned in the
introduction, we’ll illustrate concepts in this book using the case study of an edi‐
tor that helps users write better questions. The goal of this product is clear: we
want users to receive actionable and useful advice on the content they write. ML
problems, however, are framed in an entirely different way. An ML problem con‐
cerns itself with learning a function from data. An example is learning to take in a
sentence in one language and output it in another. For one product goal, there
are usually many different ML formulations, with varying levels of implementa‐
tion difficulty.

2. Evaluating ML feasibility: All ML problems are not created equal! As our under‐
standing of ML has evolved, problems such as building a model to correctly clas‐
sify photos of cats and dogs have become solvable in a matter of hours, while
others, such as creating a system capable of carrying out a conversation, remain
open research problems. To efficiently build ML applications, it is important to
consider multiple potential ML framings and start with the ones we judge as the
simplest. One of the best ways to evaluate the difficulty of an ML problem is by
looking at both the kind of data it requires and at the existing models that could
leverage said data.

To suggest different framings and evaluate their feasibility, we should examine two
core aspects of an ML problem: data and models.

We will start with models.

Models
There are many commonly used models in ML, and we will abstain from giving an
overview of all of them here. Feel free to refer to the books listed in “Additional
Resources” on page x for a more thorough overview. In addition to common models,
many model variations, novel architectures, and optimization strategies are published
on a weekly basis. In May 2019 alone, more than 13,000 papers were submitted to
ArXiv, a popular electronic archive of research where papers about new models are
frequently submitted.

Estimate What Is Possible | 5

It is useful, however, to share an overview of different categories of models and how
they can be applied to different problems. To this end, I propose here a simple taxon‐
omy of models based on how they approach a problem. You can use it as a guide for
selecting an approach to tackle a particular ML problem. Because models and data
are closely coupled in ML, you will notice some overlap between this section and
“Data types” on page 13.

ML algorithms can be categorized based on whether they require labels. Here, a label
refers to the presence in the data of an ideal output that a model should produce for a
given example. Supervised algorithms leverage datasets that contain labels for inputs,
and they aim to learn a mapping from inputs to labels. Unsupervised algorithms, on
the other hand, do not require labels. Finally, weakly supervised algorithms leverage
labels that aren’t exactly the desired output but that resemble it in some way.

Many product goals can be tackled by both supervised and unsupervised algorithms.
A fraud detection system can be built by training a model to detect transactions that
differ from the average one, requiring no labels. Such a system could also be built by
manually labeling transactions as fraudulent or legitimate, and training a model to
learn from said labels.

For most applications, supervised approaches are easier to validate since we have
access to labels to assess the quality of a model’s prediction. This also makes it easier
to train models since we have access to desired outputs. While creating a labeled data‐
set can sometimes be time-consuming initially, it makes it much easier to build and
validate models. For this reason, this book will mostly cover supervised approaches.

With that being said, determining which kind of inputs your model will take in and
which outputs it will produce will help you narrow down potential approaches signif‐
icantly. Based on these types, any of the following categories of ML approaches could
be a good fit:

• Classification and regression
• Knowledge extraction
• Catalog organization
• Generative models

I’ll expand on these further in the following section. As we explore these different
modeling approaches, I recommend thinking about which kind of data you have
available to you or could gather. Oftentimes, data availability ends up being the limit‐
ing factor in model selection.

6 | Chapter 1: From Product Goal to ML Framing

Classification and regression
Some projects are focused on effectively classifying data points between two or more
categories or attributing them a value on a continuous scale (referred to as regression
instead of classification). Regression and classification are technically different, but
oftentimes methods to tackle them have significant overlap, so we lump them
together here.

One of the reasons classification and regression are similar is because most classifica‐
tion models output a probability score for a model to belong to a category. The classi‐
fication aspect then boils down to deciding how to attribute an object to a category
based on said scores. At a high level, a classification model can thus be seen as a
regression on probability values.

Commonly, we classify or score individual examples, such as spam filters that classify
each email as valid or junk, fraud detection systems that classify users as fraudulent or
legitimate, or computer vision radiology models that classify bones as fractured or
healthy.

In Figure 1-2, you can see an example of classifying a sentence according to its senti‐
ment, and the topic it covers.

Figure 1-2. Classifying a sentence in multiple categories

In regression projects, instead of attributing a class to each example, we give them a
value. Predicting the sale price of a home based on attributes such as how many
rooms it has and where it is located is an example of a regression problem.

In some cases, we have access to a series of past data points (instead of one) to predict
an event in the future. This type of data is often called a time series, and making pre‐
dictions from a series of data points is referred to as forecasting. Time-series data
could represent a patient’s medical history or a series of attendance measurements
from national parks. These projects often benefit from models and features that can
leverage this added temporal dimension.

Estimate What Is Possible | 7

In other cases, we attempt to detect unusual events from a dataset. This is called
anomaly detection. When a classification problem is trying to detect events that repre‐
sent a small minority of the data and thus are hard to detect accurately, a different set
of methods is often required. Picking a needle out of a haystack is a good analogy
here.

Good classification and regression work most often requires significant feature selec‐
tion and feature engineering work. Feature selection consists of identifying a subset of
features that have the most predictive value. Feature generation is the task of identify‐
ing and generating good predictors of a target by modifying and combining existing
features of a dataset. We will cover both of these topics in more depth in Part III.

Recently, deep learning has shown a promising ability to automatically generate use‐
ful features from images, text, and audio. In the future, it may play a larger part in
simplifying feature generation and selection, but for now, they remain integral parts
of the ML workflow.

Finally, we can often build on top of the classification or score described earlier to
provide useful advice. This requires building an interpretable classification model
and using its feature to generate actionable advice. More on this later!

Not all problems aim to attribute a set of categories or values to an example. In some
cases, we’d like to operate at a more granular level and extract information from parts
of an input, such as knowing where an object is in a picture, for example.

Knowledge extraction from unstructured data
Structured data is data that is stored in a tabular format. Database tables and Excel
sheets are good examples of structured data. Unstructured data refers to datasets that
are not in a tabular format. This includes text (from articles, reviews, Wikipedia, and
so on), music, videos, and songs.

In Figure 1-3, you can see an example of structured data on the left and unstructured
data on the right. Knowledge extraction models focus on taking a source of unstruc‐
tured data and extracting structure out of it using ML.

In the case of text, knowledge extraction can be used to add structure to reviews, for
example. A model can be trained to extract aspects such as cleanliness, service quality,
and price from reviews. Users could then easily access reviews that mention topics
they are interested in.

8 | Chapter 1: From Product Goal to ML Framing

Figure 1-3. Example types of structured and unstructured data

In the medical domain, a knowledge extraction model could be built to take raw text
from medical papers as input, and extract information such as the disease that is dis‐
cussed in the paper, as well as the associated diagnosis and its performance. In
Figure 1-4, a model takes a sentence as an input and extracts which words refer to a
type of media and which words refer to the title of a media. Using such a model on
comments in a fan forum, for example, would allow us to generate summaries of
which movies frequently get discussed.

Figure 1-4. Extracting media type and title from a sentence

For images, knowledge extraction tasks often consist of finding areas of interest in an
image and categorizing them. Two common approaches are depicted in Figure 1-5:
object detection is a coarser approach that consists of drawing rectangles (referred to

Estimate What Is Possible | 9

as bounding boxes) around areas of interest, while segmentation precisely attributes
each pixel of an image to a given category.

Figure 1-5. Bounding boxes and segmentation masks

Sometimes, this extracted information can be used as an input to another model. An
example is using a pose detection model to extract key points from a video of a yogi,
and feeding those key points to a second model that classifies the pose as correct or
not based on labeled data. Figure 1-6 shows an example of a series of two models that
could do just this. The first model extracts structured information (the coordinates of
joints) from unstructured data (a photo), and the second one takes these coordinates
and classifies them as a yoga pose.

Figure 1-6. Yoga pose detection

The models we’ve seen so far focus on generating outputs conditioned on a given
input. In some cases such as search engines or recommendation systems, the product
goal is about surfacing relevant items. This is what we will cover in the following
category.

10 | Chapter 1: From Product Goal to ML Framing

Catalog organization
Catalog organization models most often produce a set of results to present to users.
These results can be conditioned on an input string typed into a search bar, an uploa‐
ded image, or a phrase spoken to a home assistant. In many cases such as streaming
services, this set of results can also be proactively presented to the user as content
they may like without them making a request at all.

Figure 1-7 shows an example of such a system that volunteers potential candidate
movies to watch based on a movie the user just viewed, but without having the user
perform any form of search.

Figure 1-7. Movie recommendations

These models thus either recommend items that are related to an item the user already
expressed interest in (similar Medium articles or Amazon products) or provide a use‐
ful way to search through a catalog (allowing users to search for items by typing text
or submitting their own photos).

These recommendations are most often based on learning from previous user pat‐
terns, in which case they are called collaborative recommendation systems. Some‐
times, they are based on particular attributes of items, in which case they are called
content-based recommendation systems. Some systems leverage both collaborative
and content-based approaches.

Estimate What Is Possible | 11

Finally, ML can also be used for creative purposes. Models can learn to generate aes‐
thetically pleasing images, audio, and even amusing text. Such models are referred to
as generative models.

Generative models
Generative models focus on generating data, potentially dependent on user input.
Because these models focus on generating data rather than classifying it in categories,
scoring it, extracting information from it, or organizing it, they usually have a wide
range of outputs. This means that generative models are uniquely fit for tasks such as
translation, where outputs are immensely varied.

On the other side, generative models are often used to train and have outputs that are
less constrained, making them a riskier choice for production. For that reason, unless
they are necessary to attain your goal, I recommend starting with other models first.
For readers who would like to dive deeper into generative models, however, I recom‐
mend the book Generative Deep Learning, by David Foster.

Practical examples include translation, which maps sentences in one language to
another; summarization; subtitle generation, which maps videos and audio tracks to
transcripts; and neural style transfer (see Gatys et al., “A Neural Algorithm of Artistic
Style”), which maps images to stylized renditions.

Figure 1-8 shows an example of a generative model transforming a photograph on
the left by giving it a style similar to a painting shown in the vignette on the right side.

Figure 1-8. Style transfer example from Gatys et al., “A Neural Algorithm of Artistic
Style”

As you can tell by now, each type of model requires a different type of data to be
trained on. Commonly, a choice of a model will strongly depend on the data you are
able to obtain—data availability often drives model selection.

12 | Chapter 1: From Product Goal to ML Framing

Let’s cover a few common data scenarios and associated models.

Data
Supervised ML models leverage patterns in data to learn useful mappings between
inputs and outputs. If a dataset contains features that are predictive of the target out‐
put, it should be possible for an appropriate model to learn from it. Most often, how‐
ever, we do not initially have the right data to train a model to solve a product use
case from end-to-end.

For example, say we are training a speech recognition system that will listen for
requests from customers, understand their intent, and perform actions depending on
said intent. When we start working on this project, we may define a set of intents we
would want to understand, such as “playing a movie on the television.”

To train an ML model to accomplish this task, we would need to have a dataset con‐
taining audio clips of users of diverse backgrounds asking in their own terms for the
system to play a movie. Having a representative set of inputs is crucial, as any model
will only be able to learn from the data that we present to it. If a dataset contains
examples from only a subset of the population, a product will be useful to only that
subset. With that in mind, because of the specialized domain we have selected, it is
extremely unlikely that a dataset of such examples already exists.

For most applications we would want to tackle, we will need to search for, curate, and
collect additional data. The data acquisition process can vary widely in scope and
complexity depending on the specifics of a project, and estimating the challenge
ahead of time is crucial in order to succeed.

To start, let’s define a few different situations you can find yourself in when searching
for a dataset. This initial situation should be a key factor in deciding how to proceed.

Data types
Once we’ve defined a problem as mapping inputs to outputs, we can search for data
sources that follow this mapping.

For fraud detection, these could be examples of fraudulent and innocent users, along
with features of their account that we could use to predict their behavior. For transla‐
tion, this would be a corpus of sentence pairs in the source and target domains. For
content organization and search, this could be a history of past searches and clicks.

We will rarely be able to find the exact mapping we are looking for. For this reason, it
is useful to consider a few different cases. Think of this as a hierarchy of needs for
data.

Estimate What Is Possible | 13

Data availability
There are roughly three levels of data availability, from best-case scenario to most
challenging. Unfortunately, as with most other tasks, you can generally assume that
the most useful type of data will be the hardest to find. Let’s go through them.

Labeled data exists
This is the leftmost category in Figure 1-9. When working on a supervised
model, finding a labeled dataset is every practitioner’s dream. Labeled here means
that many data points contain the target value that the model is trying to predict.
This makes training and judging model quality much easier, as labels provide
ground truth answers. Finding a labeled dataset that fits your needs and is freely
available on the web is rare in practice. It is common, however, to mistake the
dataset that you find for the dataset that you need.

Weakly labeled data exists
This is the middle category in Figure 1-9. Some datasets contain labels that are
not exactly a modeling target, but somewhat correlated with it. Playback and skip
history for a music streaming service are examples of a weakly labeled dataset for
predicting whether a user dislikes a song. While a listener may have not marked a
song as disliked, if they skipped it as it was playing, it is an indication that they
may have not been fond of it. Weak labels are less precise by definition but often
easier to find than perfect labels.

Unlabeled data exists
This category is on the right side of Figure 1-9. In some cases, while we do not
have a labeled dataset mapping desired inputs to outputs, we at least have access
to a dataset containing relevant examples. For the text translation example, we
might have access to large collections of text in both languages, but with no direct
mapping between them. This means we need to label the dataset, find a model
that can learn from unlabeled data, or do a little bit of both.

We need to acquire data
In some cases, we are one step away from unlabeled data, as we need to first
acquire it. In many cases, we do not have a dataset for what we need and thus will
need to find a way to acquire such data. This is often seen as an insurmountable
task, but many methods now exist to rapidly gather and label data. This will be
the focus of Chapter 4.

For our case study, an ideal dataset would be a set of user-typed questions, along with
a set of better worded questions. A weakly labeled dataset would be a dataset of many
questions with some weak labels indicative of their quality such as “likes” or
“upvotes.” This would help a model learn what makes for good and bad questions but
would not provide side-by-side examples for the same question. You can see both of
these examples in Figure 1-9.

14 | Chapter 1: From Product Goal to ML Framing

Figure 1-9. Data availability versus data usefulness

In general in ML, a weakly labeled dataset refers to a dataset that contains informa‐
tion that will help a model learn, but not the exact ground truth. In practice, most
datasets that we can gather are weakly labeled.

Having an imperfect dataset is entirely fine and shouldn’t stop you. The ML process is
iterative in nature, so starting with a dataset and getting some initial results is the best
way forward, regardless of the data quality.

Datasets are iterative
In many cases, since you will not be able to immediately find a dataset containing a
direct mapping from inputs to your desired output, I suggest progressively iterating
on the way you formulate the problem, making it easier to find an adequate dataset to
start with. Each dataset you explore and use will provide you with valuable informa‐
tion that you can use to curate the next version of your dataset and generate useful
features for your models.

Let’s now dive into the case study and see how we can use what we’ve learned to iden‐
tify different models and datasets we could use, and choose the most appropriate.

Framing the ML Editor
Let’s see how we could iterate through a product use case to find the right ML fram‐
ing. We’ll get through this process by outlining a method to progress from a product
goal (helping users write better questions) to an ML paradigm.

We would like to build an editor that accepts questions by users and improves them
to be better written, but what does “better” mean in this case? Let’s start by defining
the writing assistant’s product goal a little more clearly.

Framing the ML Editor | 15

Many people use forums, social networks, and websites such as Stack Overflow to
find answers to their questions. However, the way that people ask questions has a dra‐
matic impact on whether they receive a useful answer. This is unfortunate both for
the user looking to get their question answered and for future users that may have the
same problem and could have found an existing answer useful. To that end, our goal
will be to build an assistant that can help users write better questions.

We have a product goal and now need to decide which modeling approach to use. To
make this decision, we will go through the iteration loop of model selection and data
validation mentioned earlier.

Trying to Do It All with ML: An End-to-End Framework
In this context, end-to-end means using a single model to go from input to output
with no intermediary steps. Since most product goals are very specific, attempting to
solve an entire use case by learning it from end-to-end often requires custom-built
cutting-edge ML models. This may be the right solution for teams that have the
resources to develop and maintain such models, but it is often worth it to start with
more well-understood models first.

In our case, we could attempt to gather a dataset of poorly formulated questions, as
well as their professionally edited versions. We could then use a generative model to
go straight from one text to the other.

Figure 1-10 depicts what this would look like in practice. It shows a simple diagram
with user input on the left, the desired output on the right, and a model in between.

Figure 1-10. End-to-end approach

As you’ll see, this approach comes with significant challenges:

Data
To acquire such a dataset, we would need to find pairs of questions with the same
intent but of different wording quality. This is quite a rare dataset to find as is.
Building it ourselves would be costly as well, as we would need to be assisted by
professional editors to generate this data.

Model
Models going from one sequence of text to another, seen in the generative mod‐
els category discussed earlier, have progressed tremendously in recent years.
Sequence-to-sequence models (as described in the paper by I. Sutskever et al.,

16 | Chapter 1: From Product Goal to ML Framing

“Sequence to Sequence Learning with Neural Networks”) were originally pro‐
posed in 2014 for translation tasks and are closing the gap between machine and
human translation. The success of these models, however, has mostly been on
sentence-level tasks, and they have not been frequently used to process text
longer than a paragraph. This is because so far, they have not been able to capture
long-term context from one paragraph to another. Additionally, because they
usually have a large number of parameters, they are some of the slowest models
to train. If a model is trained only once, this is not necessarily an issue. If it needs
to be retrained hourly or daily, training time can become an important factor.

Latency
Sequence-to-sequence models are often autoregressive models, meaning they
require the model’s output of the previous word to start working on the next.
This allows them to leverage information from neighboring words but causes
them to be slower to train and slower to run inference on than the simpler mod‐
els. Such models can take a few seconds to produce an answer at inference time,
as opposed to subsecond latency for simpler models. While it is possible to opti‐
mize such a model to run quickly enough, it will require additional engineering
work.

Ease of implementation
Training complex end-to-end models is a very delicate and error-prone process,
as they have many moving parts. This means that we need to consider the trade‐
off between a model’s potential performance and the complexity it adds to a pipe‐
line. This complexity will slow us down when building a pipeline, but it also
introduces a maintenance burden. If we anticipate that other teammates may
need to iterate on and improve on your model, it may be worthwhile to choose a
set of simpler, more well-understood models.

This end-to-end approach could work, but it will require a lot of upfront data gather‐
ing and engineering effort, with no success guarantee, so it would be worthwhile to
explore other alternatives, as we will cover next.

The Simplest Approach: Being the Algorithm
As you’ll see in the interview at the end of this section, it is often a great idea for data
scientists to be the algorithm before they implement it. In other words, to understand
how to best automate a problem, start by attempting to solve it manually. So, if we
were editing questions ourselves to improve readability and the odds of getting an
answer, how would we go about it?

A first approach would be to not use data at all but leverage prior art to define what
makes a question or a body of text well written. For general writing tips, we could
reach out to a professional editor or research newspapers’ style guides to learn more.

Framing the ML Editor | 17

In addition, we should dive into a dataset to look at individual examples and trends
and let those inform our modeling strategy. We will skip this for now as we will cover
how to do this in more depth in Chapter 4.

To start, we could look at existing research to identify a few attributes we might use to
help people write more clearly. These features could include factors such as:

Prose simplicity
We often give new writers the advice to use simpler words and sentence struc‐
tures. We could thus establish a set of criteria on the appropriate sentence and
word length, and recommend changes as needed.

Tone
We could measure the use of adverbs, superlatives, and punctuation to measure
the polarity of the text. Depending on the context, more opinionated questions
may receive fewer answers.

Structural features
Finally, we could try to extract the presence of important structural attributes
such as the use of greetings or question marks.

Once we have identified and generated useful features, we can build a simple solution
that uses them to provide recommendations. There is no ML involved here, but this
phase is crucial for two reasons: it provides a baseline that is very quick to implement
and will serve as a yardstick to measure models against.

To validate our intuition about how to detect good writing, we can gather a dataset of
“good” and “bad” text and see if we can tell the good from the bad using these
features.

Middle Ground: Learning from Our Experience
Now that we have a baseline set of features, we can attempt to use them to learn a
model of style from a body of data. To do this we can gather a dataset, extract the
features we described earlier from it, and train a classifier on it to separate good and
bad examples.

Once we have a model that can classify written text, we can inspect it to identify
which features are highly predictive and use those as recommendations. We will see
how to do this in practice in Chapter 7.

Figure 1-11 describes this approach. On the left side, a model is trained to classify a
question as good or bad. On the right side, the trained model is given a question and
scores candidate reformulations of this question that will lead to it receiving a better
score. The reformulation with the highest score is recommended to the user.

18 | Chapter 1: From Product Goal to ML Framing

Figure 1-11. A middle ground between manual and end-to-end

Let’s examine the challenges we outlined in “Trying to Do It All with ML: An End-to-
End Framework” on page 16 and see whether the classifier approach makes them any
easier:

Dataset
We could obtain a dataset of good and bad examples by gathering questions from
an online forum along with some measure of their quality, such as the number of
views or upvotes. As opposed to the end-to-end approach, this does not require
us to have access to revisions of the same questions. We simply need a set of good
and bad examples we can hope to learn aggregate features from, which is an eas‐
ier dataset to find.

Model
We need to consider two things here: how predictive a model is (can it efficiently
separate good and bad articles?) and how easily features can be extracted from it
(can we see which attributes were used to classify an example?). There are many
potential models that we could use here, along with different features we could
extract from text to make it more explainable.

Latency
Most text classifiers are quite quick. We could start with a simple model such as a
random forest, which can return results in less than a tenth of a second on regu‐
lar hardware, and move on to more complex architectures if needed.

Ease of implementation
Compared to text generation, text classification is relatively well understood,
meaning building such a model should be relatively quick. Many examples of
working text classification pipelines exist online, and many such models have
already been deployed to production.

Framing the ML Editor | 19

If we start with a human heuristic and then build this simple model, we will quickly
be able to have an initial baseline, and the first step toward a solution. Moreover, the
initial model will be a great way to inform what to build next (more on this in
Part III).

For more on the importance of starting with simple baselines, I sat down with Mon‐
ica Rogati, who shares some of the lessons she has learned helping data teams deliver
products.

Monica Rogati: How to Choose and Prioritize ML Projects
After getting her Ph.D. in computer science, Monica Rogati started her career at
LinkedIn where she worked on core products such as integrating ML into the People
You May Know algorithm and built the first version of job-to-candidate matching.
She then became VP of data at Jawbone where she built and led the entire data team.
Monica is now an adviser to dozens of companies whose number of employees ranges
from 5 to 8,000. She has kindly agreed to share some of the advice she often gives to
teams when it comes to designing and executing on ML products.

Q: How do you scope out an ML product?

A: You have to remember that you are trying to use the best tools to solve a problem,
and only use ML if it makes sense.

Let’s say you wanted to predict what a user of an application will do and show it to
them as a suggestion. You should start by combining discussions on modeling and
product. Among other things, this includes designing the product around handling
ML failures gracefully.

You could start by taking into account the confidence our model has in its prediction.
We could then formulate our suggestions differently based on the confidence score. If
the confidence is above 90%, we present the suggestion prominently; if it is over 50%,
we still display it but with less emphasis, and we do not display anything if the confi‐
dence is below this score.

Q: How do you decide what to focus on in an ML project?

A: You have to find the impact bottleneck, meaning the piece of your pipeline that
could provide the most value if you improve on it. When working with companies, I
often find that they may not be working on the right problem or not be at the right
growth stage for this.

There are often problems around the model. The best way to find this out is to
replace the model with something simple and debug the whole pipeline. Frequently,
the issues will not be with the accuracy of your model. Frequently, your product is
dead even if your model is successful.

20 | Chapter 1: From Product Goal to ML Framing

Q: Why do you usually recommend starting with a simple model?

A: The goal of our plan should be to derisk our model somehow. The best way to do
this is to start with a “strawman baseline” to evaluate worst-case performance. For our
earlier example, this could be simply suggesting whichever action the user previously
took.

If we did this, how often would our prediction be correct, and how annoying would
our model be to the user if we were wrong? Assuming that our model was not much
better than this baseline, would our product still be valuable?

This applies well to examples in natural language understanding and generation such
as chatbots, translation, Q&A, and summarization. Oftentimes in summarization, for
example, simply extracting the top keywords and categories covered by an article is
enough to serve most users’ needs.

Q: Once you have your whole pipeline, how do you identify the impact bottleneck?

A: You should start with imagining that the impact bottleneck is solved, and ask your‐
self whether it was worth the effort you estimated it would take. I encourage data sci‐
entists to compose a tweet and companies to write a press release before they even
start on a project. That helps them avoid working on something just because they
thought it was cool and puts the impact of the results into context based on the effort.

The ideal case is that you can pitch the results regardless of the outcome: if you do
not get the best outcome, is this still impactful? Have you learned something or vali‐
dated some assumptions? A way to help with this is to build infrastructure to help
lower the required effort for deployment.

At LinkedIn, we had access to a very useful design element, a little window with a few
rows of text and hyperlinks, that we could customize with our data. This made it eas‐
ier to launch experiments for projects such as job recommendations, as the design
was already approved. Because the resource investment was low, the impact did not
have to be as large, which allowed for a faster iteration cycle. The barrier then
becomes about nonengineering concerns, such as ethics, fairness, and branding.

Q: How do you decide which modeling techniques to use?

A: The first line of defense is looking at the data yourself. Let’s say we want to build a
model to recommend groups to LinkedIn users. A naive way would be to recommend
the most popular group containing their company’s name in the group title. After
looking at a few examples, we found out one of the popular groups for the company
Oracle was “Oracle sucks!” which would be a terrible group to recommend to Oracle
employees.

It is always valuable to spend the manual effort to look at inputs and outputs of your
model. Scroll past a bunch of examples to see if anything looks weird. The head of my

Monica Rogati: How to Choose and Prioritize ML Projects | 21

department at IBM had this mantra of doing something manually for an hour before
putting in any work.

Looking at your data helps you think of good heuristics, models, and ways to reframe
the product. If you rank examples in your dataset by frequency, you might even be
able to quickly identify and label 80% of your use cases.

At Jawbone, for example, people entered “phrases” to log the content of their meals.
By the time we labeled the top 100 by hand, we had covered 80% of phrases and had
strong ideas of what the main problems we would have to handle, such as varieties of
text encoding and languages.

The last line of defense is to have a diverse workforce that looks at the results. This
will allow you to catch instances where a model is exhibiting discriminative behavior,
such as tagging your friends as a gorilla, or is insensitive by surfacing painful past
experiences with its smart “this time last year” retrospective.

Conclusion
As we’ve seen, building an ML-powered application starts with judging feasibility and
picking an approach. Most often, picking a supervised approach is the simplest way
to get started. Among those, classification, knowledge extraction, catalog organiza‐
tion, or generative models are the most common paradigms in practice.

As you are picking an approach, you should identify how easily you’ll be able to
access strongly or weakly labeled data, or any data at all. You should then compare
potential models and datasets by defining a product goal and choosing the modeling
approach that best allows you to accomplish this goal.

We illustrated these steps for the ML Editor, opting to start with simple heuristics and
a classification-based approach. And finally, we covered how leaders such as Monica
Rogati have been applying these practices to successfully ship ML models to users.

Now that we have chosen an initial approach, it is time to define success metrics and
create an action plan to make regular progress. This will involve setting minimal per‐
formance requirements, doing a deep dive into available modeling and data resour‐
ces, and building a simple prototype.

We will cover all of those in Chapter 2.

22 | Chapter 1: From Product Goal to ML Framing

CHAPTER 2

Create a Plan

In the previous chapter, we covered how to estimate if ML is necessary, find where it
could be most appropriately used, and convert a product goal to the most appropriate
ML framing. In this chapter, we will cover the use of metrics to track ML and product
progress and compare different ML implementations. Then, we will identify methods
to build a baseline and plan modeling iterations.

I have had the unfortunate opportunity to see many ML projects be doomed from the
start due to a misalignment between product metrics and model metrics. More
projects fail by producing good models that aren’t helpful for a product rather than
due to modeling difficulties. This is why I wanted to dedicate a chapter to metrics and
planning.

We will cover tips to leverage existing resources and the constraints of your problem
to build an actionable plan, which will dramatically simplify any ML project.

Let’s start with defining performance metrics in more detail.

Measuring Success
When it comes to ML, the first model we build should be the simplest model that
could address a product’s needs, because generating and analyzing results is the fast‐
est way to make progress in ML. In the previous chapter, we covered three potential
approaches of increasing complexity for the ML Editor. Here they are as a reminder:

Baseline; designing heuristics based on domain knowledge
We could start with simply defining rules ourselves, based on prior knowledge of
what makes for well-written content. We will test these rules by seeing if they
help differentiate between well-written text and poorly written text.

23

Simple model; classifying text as good or bad, and using the classifier to generate recom‐
mendations

We could then train a simple model to differentiate between good and bad ques‐
tions. Provided that the model performs well, we can then inspect it to see which
features it found to be highly predictive of a good question, and use those fea‐
tures as recommendations.

Complex model; training an end-to-end model that goes from bad text to good text
This is the most complex approach, both in terms of model and data, but if we
had the resources to gather the training data and build and maintain a complex
model, we could solve the product requirements directly.

All of these approaches are different and may evolve as we learn more from proto‐
types along the way, but when working on ML, you should define a common set of
metrics to compare the success of modeling pipelines.

You Don’t Always Need ML
You may have noticed that the baseline approach does not rely on
ML at all. As we discussed in Chapter 1, some features do not
require ML. It is important to also realize that even features that
could benefit from ML can often simply use a heuristic for their
first version. Once the heuristic is being used, you may even realize
that you do not need ML at all.
Building a heuristic is also often the fastest way to build a feature.
Once the feature is built and used, you’ll have a clearer view of your
user’s needs. This will allow you to evaluate whether you need ML,
and select a modeling approach.
In most cases, starting without ML is the fastest way to build an
ML product.

To that end, we will cover four categories of performance that have a large impact on
the usefulness of any ML product: business metrics, model metrics, freshness, and
speed. Clearly defining these metrics will allow us to accurately measure the perfor‐
mance of each iteration.

Business Performance
We’ve talked about the importance of starting with a clear product or feature goal.
Once this goal is clear, a metric should be defined to judge its success. This metric
should be separate from any model metrics and only be a reflection of the product’s
success. Product metrics may be as simple as the number of users a feature attracts or
more nuanced such as the click-through rate (CTR) of the recommendations we
provide.

24 | Chapter 2: Create a Plan

Product metrics are ultimately the only ones that matter, as they represent the goals
of your product or feature. All other metrics should be used as tools to improve prod‐
uct metrics. Product metrics, however, do not need to be unique. While most projects
tend to focus on improving one product metric, their impact is often measured in
terms of multiple metrics, including guardrail metrics, metrics that shouldn’t decline
below a given point. For example, an ML project can aim to increase a given metric
such as CTR, while also holding other metrics steady, such as the average user session
length, for example.

For the ML Editor, we will pick a metric that measures the usefulness of a recommen‐
dation. For example, we could use the proportion of times that users follow sugges‐
tions. In order to compute such a metric, the interface of the ML editor should
capture whether a user approves of a suggestion, by overlaying it above the input and
making it clickable, for example.

We’ve seen that each product lends itself to many potential ML approaches. To meas‐
ure the effectiveness of an ML approach, you should track model performance.

Model Performance
For most online products, the ultimate product metric that determines the success of
a model is the proportion of visitors who use the output of a model out of all the visi‐
tors who could benefit from it. In the case of a recommendation system, for example,
performance is often judged by measuring how many people click on recommended
products (see Chapter 8 for potential pitfalls of this approach).

When a product is still being built and not deployed yet, it is not possible to measure
usage metrics. To still measure progress, it is important to define a separate success
metric called an offline metric or a model metric. A good offline metric should be pos‐
sible to evaluate without exposing a model to users, and be as correlated as possible
with product metrics and goals.

Different modeling approaches use different model metrics, and changing
approaches can make it much easier to reach a level of modeling performance that is
sufficient to accomplish product goals.

For example, let’s say you are trying to offer helpful suggestions to users as they type a
search query on an online retail website. You’ll measure the success of this feature by
measuring CTR, how often users click on the suggestions you make.

To generate the suggestions, you could build a model that attempts to guess the words
a user will type and present the predicted completed sentence to them as they write.
You could measure the performance of this model by computing its word-level accu‐
racy, calculating how often it predicts the correct next set of words. Such a model
would need to reach extremely high accuracy to help increase the product’s CTR,

Measuring Success | 25

because a prediction error of one word would be enough to render a suggestion use‐
less. This approach is sketched out on the left side of Figure 2-1.

Another approach would be to train a model that classifies user input into categories
in your catalog and suggests the three most likely predicted categories. You’d measure
the performance of your model using accuracy over all categories rather than accu‐
racy over every English word. Since the number of categories in a catalog is much
smaller than the English vocabulary, this would be a much easier modeling metric to
optimize. In addition, the model only needs to predict one category correctly to gen‐
erate a click. It is much easier for this model to increase the product’s CTR. You can
see a mock-up of how this approach would work in practice on the right side of
Figure 2-1.

Figure 2-1. Slightly altering a product can make modeling tasks much easier

As you can see, small changes to the interaction between the model and product can
make it possible to use a more straightforward modeling approach and deliver results
more reliably. Here are a few other examples of updating an application to make a
modeling task easier:

• Changing an interface so that a model’s results can be omitted if they are below a
confidence threshold. When building a model to autocomplete a sentence typed
by the user, for example, the model may perform well only on a subset of senten‐
ces. We can implement logic to only show a suggestion to users if the model’s
confidence score exceeds 90%.

• Presenting a few other predictions or heuristics in addition to a model’s top predic‐
tion. For example, most websites display more than one recommendation

26 | Chapter 2: Create a Plan

suggested by a model. Displaying five candidate items instead of just one makes
it more likely that suggestions will be useful to users, even if the model is the
same.

• Communicating to users that a model is still in an experimental phase and giving
them opportunities to provide feedback. When automatically detecting a language
that is not in the user’s native tongue and translating it for them, websites often
add a button for a user to let them know whether the translation was accurate
and useful.

Even when a modeling approach is appropriate for a problem, it can sometimes be
worthwhile to generate additional model metrics that correlate better with product
performance.

I once worked with a data scientist who built a model to generate HTML from hand-
drawn sketches of simple websites (see his post, “Automated Front-End Development
Using Deep Learning”). The model’s optimization metric compares each predicted
HTML token to the correct one using cross-entropy loss. The goal of the product,
however, is for the generated HTML to produce a website that looks like the input
sketch, regardless of the order of tokens.

Cross-entropy does not account for alignment: if a model generates a correct HTML
sequence except for one extra token at the start, all of the tokens will be shifted by one
compared to the target. Such an output would lead to a very high loss value, despite
producing an almost ideal result. This means that when trying to evaluate the useful‐
ness of the model, we should look beyond its optimization metric. In this example,
using a BLEU Score provides a better measurement of the similarity between the gen‐
erated HTML and the ideal output.

Finally, a product should be designed with reasonable assumptions of model perfor‐
mance in mind. If a product relies on a model being perfect to be useful, it is very
likely to produce inaccurate or even dangerous results.

For example, if you are building a model that lets you take a picture of a pill and tells
patients its type and dosage, what is the worst accuracy a model could have and still
be useful? If this accuracy requirement is hard to attain with current methods, could
you redesign your product to make sure users are well served by it and not put at risk
by prediction errors it could make?

In our case, the product we want to build will provide writing advice. Most ML mod‐
els have certain input they excel at and certain inputs they will struggle with. From a
product standpoint, if we are not able to help—we need to make sure we are not
going to hurt—we would like to limit the amount of time that we output a result that
is worse than the input. How could we express this in model metrics?

Measuring Success | 27

Let’s say we build a classification model that attempts to predict whether a question is
good as measured by the number of upvotes it received. The classifier’s precision
would be defined as the proportion of questions that are truly good out of the ones it
predicts as good. Its recall on the other side is the proportion of questions that it pre‐
dicts as good out of all the good questions in the dataset.

If we want to always have advice that is relevant, we would want to prioritize the
model’s precision because when a high-precision model classifies a question as good
(and thus makes a recommendation), there is a high chance that this question is
actually good. High precision means that when we do make a recommendation, it
will tend to be correct. For more about why high-precision models are more useful
for writing recommendations, feel free to refer to “Chris Harland: Shipping Experi‐
ments” on page 180.

We measure such metrics by looking through the outputs of a model on a representa‐
tive validation set. We will dive into what this means in “Evaluate Your Model: Look
Beyond Accuracy” on page 109, but for now, think of a validation set as a set of data
that is held out from training and used to estimate how your model performs on
unseen data.

Initial model performance is important, but so is the ability of a model to stay useful
in the face of changing user behavior. A model trained on a given dataset will perform
well on similar data, but how do we know whether we need to update a dataset?

Freshness and Distribution Shift
Supervised models draw their predictive power from learning correlations between
input features and prediction targets. This means that most models need to have been
exposed to training data that is similar to a given input to perform well on it. A model
that was trained to predict the age of a user from a photo using only photos of men
will not perform well on photos of women. But even if a model is trained on an ade‐
quate dataset, many problems have a distribution of data that changes as time goes
on. When the distribution of the data shifts, the model often needs to change as well
in order to maintain the same level of performance.

Let’s imagine that after noticing the impact of rain on traffic in San Francisco, you
built a model to predict traffic conditions based on the amount of rain in the past
week. If you built your model in October using data from the past 3 months, your
model was likely trained on data with daily precipitation lower than an inch. See
Figure 2-2 for an example of how such a distribution might look. As winter
approaches, the average precipitation will become closer to 3 inches, which is higher
than anything the model was exposed to during training, as you can see in Figure 2-2.
If the model isn’t trained on more recent data, it will struggle to keep performing well.

28 | Chapter 2: Create a Plan

Figure 2-2. Changing distributions

In general, a model can perform well on data it hasn’t seen before as long as it is simi‐
lar enough to the data it was exposed to during training.

Not all problems have the same freshness requirements. Translation services for
ancient languages can expect the data they operate to remain relatively constant,
while search engines need to be built with the assumption that they will need to
evolve as fast as users change their search habits.

Depending on your business problem, you should consider how hard it will be to
keep models fresh. How often will you need to retrain models, and how much will it
cost you each time we do so?

For the ML editor, we imagine that the cadence at which the definition of “well-
formulated English prose” changes is relatively low, perhaps in the order of a year.
Freshness requirements would change if we targeted specific domains, however. For
example, the right way to ask a question about mathematics will change much more
slowly than the best phrasing of questions concerning music trends. Since we esti‐
mate that models will need to be retrained every year, we will require fresh data to
train on yearly.

Our baseline and simple model can both learn from unpaired data, which makes the
data gathering process simpler (we’d simply need to find new questions from the last
year). The complex model requires paired data, meaning we will have to find exam‐
ples of the same sentences, said in a “good” and “bad” way, every year. This means
satisfying the freshness requirement we’ve defined will be much harder for a model
requiring paired data, since it is more time-consuming to acquire an updated dataset.

Measuring Success | 29

For most applications, popularity can help alleviate data gathering requirements. If
our question phrasing service goes viral, we could add a button for users to rate the
quality of outputs. We could then gather past inputs from users along with the mod‐
el’s predictions and associated user ratings and use them as a training set.

For an application to be popular, however, it should be useful. Oftentimes, this
requires responding to user requests in a timely manner. The speed at which a model
can deliver predictions is thus an important factor to take into account.

Speed
Ideally, a model should deliver a prediction quickly. This allows users to interact with
it more easily and makes it easier to serve a model to many concurrent users. So how
fast does a model need to be? For some use cases, such as translating a short sentence,
users will expect an answer immediately. For others, such as a medical diagnosis,
patients would be happy to wait 24 hours if it meant that they would get the most
accurate results.

In our case, we will consider two potential ways we could deliver suggestions:
through a submission box where the user writes, clicks Submit, and gets a result or by
dynamically updating each time the user enters a new letter. While we may want to
favor the latter because we would be able to make the tool much more interactive, it
would require models to perform much faster.

We could conceivably imagine a user waiting a couple seconds for a result once they
click a submission button, but for a model to run as a user is editing text, it would
need to run significantly under a second. The most powerful models take longer to
process data, so as we iterate through models, we will keep this requirement in mind.
Any model we use should be able to process an example through its whole pipeline in
under two seconds.

Model inference runtimes increase as models get more complex. The difference is sig‐
nificant even in a domain where each individual data point can be relatively small
data such as NLP (as opposed to tasks on live videos, for example). On the text data
used for the case study in this book, for example, an LSTM is about three times
slower than a random forest (around 22 ms for an LSTM, while the random forest
takes only 7 ms). On an individual datapoint, this difference are small, but they can
quickly add up when needing to run inference on tens of thousands of examples at a
time.

For complex applications where an inference call will be associated with multiple net‐
work calls or database queries, model execution time can become short compared to
the rest of the application logic. In those cases, the speed of said models becomes less
of an issue.

30 | Chapter 2: Create a Plan

Depending on your problem, there are other categories you could consider, such as
hardware constraints, development time, and maintainability. It is important to
develop an understanding of your needs before choosing a model so that you make
sure to pick said model in an informed way.

Once you identify requirements and associated metrics, it’s time to start making a
plan. This requires estimating the challenges that lie ahead. In the next section, I’ll
cover ways to leverage prior work and explore a dataset to decide what to build next.

Estimate Scope and Challenges
As we’ve seen, ML performance is often reported in terms of model metrics. While
these metrics are useful, they should be used to improve the product metrics we
defined, which represent the actual task we are trying to solve. As we iterate on a
pipeline, we should keep in mind product metrics and aim to improve them.

The tools we have covered so far will help us determine whether a project is worth
tackling at all, and measure how well we are currently doing. A logical next step is to
sketch out a plan of attack to estimate the scope and duration of a project and antici‐
pate potential roadblocks.

In ML, success generally requires understanding the context of the task well, acquir‐
ing a good dataset, and building an appropriate model.

We will cover each of these categories in the following section.

Leverage Domain Expertise
The simplest model we can start with is a heuristic: a good rule of thumb based on
knowledge of the problem and the data. The best way to devise heuristics is to see
what experts are currently doing. Most practical applications are not entirely novel.
How do people currently solve the problem you are trying to solve?

The second best way to devise heuristics is to look at your data. Based on your data‐
set, how would you solve this task if you were doing it manually?

To identify good heuristics, I recommend either learning from experts in the field or
getting familiar with the data. I’ll describe both in a little more detail next.

Learning from experts
For many domains we might want to automate, learning from experts in the domain
can save us dozens of hours of work. If we are attempting to build a predictive main‐
tenance system for factory equipment, for example, we should start by reaching out
to a factory manager to understand which assumptions we can reasonably make. This
could include understanding how often maintenance is currently performed, which

Estimate Scope and Challenges | 31

symptoms usually indicate that a machine will require maintenance soon, and the
legal requirements concerning maintenance.

There are, of course, examples where finding domain experts is likely to be difficult—
such as proprietary data for a novel use case like predicting usage of a unique website
feature. In these cases, however, we can often find professionals who have had to
tackle similar problems and learn from their experiences.

This will allow us to learn about useful features we can leverage, find pitfalls we
should avoid, and most importantly prevent us from reinventing the wheel that many
data scientists get a bad rep for.

Examining the data
As both Monica Rogati in “Monica Rogati: How to Choose and Prioritize ML
Projects” on page 20 and Robert Munro in “Robert Munro: How Do You Find, Label,
and Leverage Data?” on page 89 mention, it’s key to look at the data before we start
modeling.

Exploratory data analysis (EDA) is the process of visualizing and exploring a dataset,
often to get an intuition to a given business problem. EDA is a crucial part of building
any data product. In addition to EDA, it is crucial to individually label examples in
the way you hope a model would. Doing so helps validate assumptions and confirms
that you chose models that can appropriately leverage your dataset.

The EDA process will allow you to get an understanding of the trends in your data,
and labeling it yourself will force you to build a set of heuristics to solve your prob‐
lem. After having done both previous steps, you should have a clearer idea of which
kind of models will serve you best, as well as any additional data gathering and label‐
ing strategies we may require.

The next logical step is to see how others have tackled similar modeling problems.

Stand on the Shoulders of Giants
Have people solved similar problems? If so, the best way to get started is to under‐
stand and reproduce existing results. Look for public implementations either with
similar models or similar datasets, or both.

Ideally, this would involve finding open source code and an available dataset, but
these aren’t always easy to come by, especially for very specific products. Nevertheless,
the fastest way to get started on an ML project is to reproduce existing results and
then build on top of them.

In a domain with as many moving pieces as ML, it is crucial to stand on the shoulders
of giants.

32 | Chapter 2: Create a Plan

If you’re planning to use open source code or datasets in your
work, please make sure that you are allowed to do so. Most reposi‐
tories and datasets will include a license that defines acceptable
usages. In addition, credit any source you end up using, ideally
with a reference to their original work.

It can often be a good idea to build a convincing proof of concept before committing
significant resources to a project. Before using time and money to label data, for
example, we need to convince ourselves that we can build a model that will learn
from said data.

So, how do we find an efficient way to start? Like most topics we will cover in this
book, this includes two main parts: data and code.

Open data
You might not always be able to find a dataset that matches your desires, but you can
often find a dataset that is similar enough in nature to be helpful. What does a similar
dataset mean in this context? Thinking about ML models as mapping an input to an
output is helpful here. With this in mind, a similar dataset simply means a dataset
with similar input and output types (but not necessarily domains).

Frequently, models using similar inputs and outputs can be applied to entirely differ‐
ent contexts. On the left side of Figure 2-3 are two models that both predict a text
sequence from an image input. One is used to describe photos, while the other gener‐
ates HTML code for a website from a screenshot of said website. Similarly, the right
side of Figure 2-3 shows a model that predicts a type of food from a text description
in English, and another that predicts a music genre from a sheet music transcription.

Figure 2-3. Different models with similar inputs and outputs

Estimate Scope and Challenges | 33

For example, let’s say we are trying to build a model to predict viewership of news
articles but are struggling to find a dataset of news articles and associated view
counts. We could start with the openly accessible dataset of Wikipedia page traffic
statistics and train a predictive model on it. If we are happy with its performance, it is
reasonable to believe that given a dataset of views for a news article, our model could
perform reasonably well. Finding a similar dataset can help prove the validity of an
approach and makes it more reasonable to spend resources to acquire data.

This method also works when working on proprietary data. Oftentimes, the dataset
you need for a prediction task may not be easy to access. In some cases, the data you
would need is not being currently collected. In such cases, building a model that per‐
forms well on a similar dataset can often be the best way to convince stakeholders to
build a novel data collection pipeline or facilitate access to an existing one.

When it comes to publicly accessible data, new data sources and collections appear
regularly. The following are a few that I’ve found useful:

• The Internet archive maintains a set of datasets including website data, videos,
and books.

• The subreddit r/datasets is dedicated to sharing datasets.
• Kaggle’s Datasets page offers a large selection in a variety of domains.
• The UCI Machine Learning Repository is a vast resource of ML datasets.
• Google’s dataset search covers a large searchable index of accessible datasets.
• Common Crawl crawls and archives data from across the web and makes results

publicly available.
• Wikipedia also has a great evolving list of ML research datasets.

For most use cases, one of these sources will provide you with a dataset sufficiently
similar to the one you would need.

Training a model on this tangential dataset will allow you to prototype and validate
your results rapidly. In some cases, you can even train a model on a tangential dataset
and transfer some of its performance to your final dataset (more on this in Chap‐
ter 4).

Once you have an idea of which dataset you’ll start with, it is time to turn your atten‐
tion to models. While it can be tempting to simply start building your own pipeline
from scratch, it can often be worthwhile to at least observe what others have done.

Open source code
Searching for existing code can achieve two high-level goals. It lets us see which chal‐
lenges others have faced when doing similar modeling and surfaces potential issues
with the given dataset. For this reason, I recommend looking for both pipelines tack‐

34 | Chapter 2: Create a Plan

ling your product goal and code working with the dataset you have chosen. If you
find an example, the first step would be to reproduce its results yourself.

I have seen many data scientists attempt to leverage ML code they found online only
to find that they are unable to train the given models to a similar level of accuracy
claimed by the authors. Because new approaches are not always accompanied with
well-documented and functioning code, ML results are often hard to reproduce and
thus should always be verified.

Similar to your search for data, a good way to find similar codebases is to abstract
your problem to its input and output types and find codebases tackling problems
with similar types.

For example, when attempting to generate HTML code from screenshots of a website,
Tony Beltramelli, the author of the paper, “pix2code: Generating Code from a Graphi‐
cal User Interface Screenshot”, realized that his problem boiled down to translating
an image into a sequence. He leveraged existing architectures and best practices from
a field that was more mature and also generated sequences from images, meaning
image captioning! This allowed him to get excellent results on an entirely new task
and leverage years of work in an adjacent application.

Once you’ve looked at data and at code, you’re ready to move forward. Ideally, this
process has given you a few pointers to start your work and acquire a more nuanced
perspective on your problem. Let’s sum up the situations you can find yourself in
after looking for prior work.

Bring both together
As we just discussed, leveraging existing open code and datasets can help make
implementation faster. In the worst case, if none of the existing models performs well
on an open dataset, you now at least know that this project will require significant
modeling and/or data collection work.

If you have found an existing model that solves a similar task and managed to train it
on the dataset it was originally trained on, all that is left is to adapt it to your domain.
To do so, I recommend going through the following successive steps:

1. Find a similar open source model, ideally paired with a dataset it was trained on,
and attempt to reproduce the training results yourself.

2. Once you have reproduced the results, find a dataset that is closer to your use
case, and attempt to train the previous model on that dataset.

3. Once you have integrated the dataset to the training code, it is time to judge how
your model is doing using the metrics you defined and start iterating.

Estimate Scope and Challenges | 35

We’ll explore the pitfalls of each of these steps and how to overcome them starting in
Part II. For now, let’s go back to the case study and review the process we just
described.

ML Editor Planning
Let’s examine common writing advice and search for candidate datasets and models
for the ML editor.

Initial Plan for an Editor
We should start by implementing heuristics based on common writing guidelines.
We’ll gather these rules by searching existing guides for writing and editing, like those
described in “The Simplest Approach: Being the Algorithm” on page 17.

Our perfect dataset would consist of questions and their associated quality. First, we
should quickly find a similar dataset that is easier to acquire. Based on observed per‐
formance on this dataset, we will then expand and deepen our search if needed.

Social media posts and online forums are good examples of text associated with a
quality metric. Since most of these metrics exist to favor useful content, they often
include quality metrics such as “likes” or “upvotes.”

Stack Exchange, a network of Q&A communities, is a popular site for questions and
answers. There’s also an entire anonymized data dump of Stack Exchange on the
Internet Archive, one of the data sources we mentioned earlier. This is a great dataset
to start with.

We can build an initial model by using Stack Exchange questions and trying to pre‐
dict a question’s upvotes score from its content. We will also use this opportunity to
look through the dataset and label it, trying to find patterns.

The model we want to build attempts to classify text quality accurately, to then pro‐
vide writing recommendations. Many open source models exist for text classification;
check out this popular Python ML library scikit-learn tutorial on the topic.

Once we have a working classifier, we will cover how to leverage it to make recom‐
mendations in Chapter 7.

Now that we have a potential initial dataset, let’s transition to models and decide what
we should start with.

Always Start with a Simple Model
An important takeaway of this chapter is that the purpose of building an initial model
and dataset is to produce informative results that will guide further modeling and
data gathering work toward a more useful product.

36 | Chapter 2: Create a Plan

By starting with a simple model and extracting trends of what makes a Stack Over‐
flow question successful, we can quickly measure performance and iterate on it.

The opposite approach of trying to build a perfect model from scratch does not work
in practice. This is because ML is an iterative process where the fastest way to make
progress is to see how a model fails. The faster your model fails, the more progress
you will make. We will dive into this iterative process in much more detail in Part III.

We should keep caveats of each approach in mind, however. For example, the engage‐
ment that a question receives depends on many more factors than just the quality of
its formulation. The context of the post, the community it was posted in, the popular‐
ity of the poster, the time at which it was posted, and many other details that the ini‐
tial model will ignore also matter very much. To take such factors into account, we
will restrict our dataset to a subset of communities. Our first model will ignore all
metadata related to a post, but we will consider incorporating it if it seems necessary.

As such, our model uses what is often referred to as a weak label, one that is only
slightly correlated with the desired output. As we analyze how the model performs,
we will determine whether this label contains enough information for it to be useful.

We have a starting point, and we can now decide how we will progress. Making regu‐
lar progress in ML can often seem hard due to the unpredictable aspect of modeling.
It is hard to know ahead of time to which extent a given modeling approach will suc‐
ceed. Because of this, I’d like to share a few tips to make steady progress.

To Make Regular Progress: Start Simple
It is worth repeating that much of the challenge in ML is similar to one of the biggest
challenges in software—resisting the urge to build pieces that are not needed yet.
Many ML projects fail because they rely on an initial data acquisition and model
building plan and do not regularly evaluate and update this plan. Because of the sto‐
chastic nature of ML, it is extremely hard to predict how far a given dataset or model
will get us.

For that reason, it is vital to start with the simplest model that could address your
requirements, build an end-to-end prototype including this model, and judge its per‐
formance not simply in terms of optimization metrics but in terms of your product
goal.

Start with a Simple Pipeline
In the vast majority of cases, looking at the performance of a simple model on an ini‐
tial dataset is the best way to decide what task should be tackled next. The goal is then
to repeat this approach for each of the following steps, making small incremental

To Make Regular Progress: Start Simple | 37

improvements that are easy to track, rather than attempting to build the perfect
model in one go.

To do this, we will need to build a pipeline that can take data in and return results.
For most ML problems, there are actually two separate pipelines to consider.

Training
For your model to be able to make accurate predictions, you first need to train it.

A training pipeline ingests all of the labeled data you would like to train on (for some
tasks, datasets can be so large that they cannot fit on a single machine) and passes it
to a model. It then trains said model on the dataset until it reaches satisfactory perfor‐
mance. Most often, a training pipeline is used to train multiple models and compare
their performance on a held-out validation set.

Inference
This is your pipeline in production. It serves the results of a trained model to your
user.

At a high level, an inference pipeline starts by accepting input data and preprocessing
it. The preprocessing phase usually consists of multiple steps. Most commonly, these
steps will include cleaning and validating the input, generating features a model
needs, and formatting the data to a numerical representation appropriate for an ML
model. Pipelines in more complex systems also often need to fetch additional infor‐
mation the model needs such as user features stored in a database, for example. The
pipeline then runs the example through the model, applies any postprocessing logic,
and returns a result.

Figure 2-4 shows a flowchart of a typical inference and training pipeline. Ideally, the
cleaning and preprocessing steps should be the same for both training and inference
pipelines to ensure that a trained model receives data with the same format and char‐
acteristics at inference time.

Figure 2-4. Training and inference pipelines are complementary

38 | Chapter 2: Create a Plan

Pipelines for different models will be built with different concerns in mind, but gen‐
erally, the high-level infrastructure remains relatively stable. This is why it is valuable
to start by building both your training and inference pipeline end-to-end to quickly
evaluate the impact bottleneck Monica Rogati mentioned in “Monica Rogati: How to
Choose and Prioritize ML Projects” on page 20.

Most pipelines have a similar high-level structure, but because of differences in the
structure of datasets, the functions themselves often have nothing in common. Let’s
illustrate this by looking at the pipeline for the editor.

Pipeline for the ML Editor
For the editor, we will be building both training and inference pipelines using
Python, which is a common language of choice in ML. The goal in this first prototype
is to build an end-to-end pipeline without being too concerned with its perfection.

As it should be done in any work that takes time, we can, and will, revisit parts of it to
improve them. For training, we will write a pretty standard pipeline, one broadly
applicable to many ML problems and which has a few functions, mainly ones that:

• Load records of data.
• Clean data by removing incomplete records and input missing values when

necessary.
• Preprocess and format data in a way that can be understood by a model.
• Remove a set of data that will not be trained on but used to validate model results

(a validation set).
• Train a model on a given subset of data and return a trained model and summary

statistics.

For inference, we will leverage some functions from the training pipeline, as well as
writing a few custom ones. Ideally, we would need functions that:

• Load a trained model and keep it in memory (to provide faster results)
• Will preprocess (same as training)
• Gather any relevant outside information
• Will pass one example through a model (an inference function)
• Will postprocess, to clean up results before serving them to users

It is often easiest to visualize a pipeline as a flowchart, such as the one depicted for
Figure 2-5.

To Make Regular Progress: Start Simple | 39

Figure 2-5. Pipelines for the editor

In addition, we will write various analysis and exploration functions to help us diag‐
nose problems, such as:

• A function that visualizes examples the model performs the best and worst on
• Functions to explore data
• A function to explore model results

Many pipelines contain steps that validate inputs to the model and check its final out‐
puts. Such checks help with debugging, as you’ll see in Chapter 10, and help guaran‐
tee a standard of quality for an application by catching any poor results before
displaying them to a user.

Remember that when using ML, the outputs of models on unseen data can often be
unpredictable and will not always be satisfactory. For this reason, it is important to
acknowledge that models will not always work and to architect systems around this
potential for mistakes.

Conclusion
We have now seen how to define core metrics that allow us to compare entirely differ‐
ent models and understand the trade-offs between each of them. We covered resour‐
ces and methods to use to speed up the building process of your first few pipelines.
We then outlined an overview of what we’ll need to build for each pipeline to get a
first set of results.

We now have an idea framed as an ML problem, a way to measure progress, and an
initial plan. It is time to dive into the implementation.

40 | Chapter 2: Create a Plan

In Part II, we will dive into how to build a first pipeline and explore and visualize an
initial dataset.

Conclusion | 41

PART II

Build a Working Pipeline

Since researching, training, and evaluating models is a time-consuming process,
going in the wrong direction can be very costly in ML. This is why this book focuses
on reducing risk and identifying the highest priority to work on.

While Part I focused on planning in order to maximize our speed and chances of suc‐
cess, this chapter will dive into implementation. As Figure II-1 shows, in ML like in
much of software engineering, you should get to a minimum viable product (MVP)
as soon as possible. This section will cover just that: the quickest way to get a pipeline
in place and evaluating it.

Improving said model will be the focus of Part III of this book.

Figure II-1. The right way to build your first pipeline (reproduced with permission from
Henrik Kniberg)

We will build our initial model in two steps:

Chapter 3
In this chapter, we will build the structure and scaffolding of our application.
This will involve building a pipeline to take user input and return suggestions,
and a separate pipeline to train our models before we use them.

Chapter 4
In this chapter, we will focus on gathering and inspecting an initial dataset. The
goal here is to quickly identify patterns in our data and predict which of these
patterns will be predictive and useful for our model.

CHAPTER 3

Build Your First End-to-End Pipeline

In Part I, we started by covering how to go from product requirements to candidate
modeling approaches. Then, we moved on to the planning stage and described how
to find relevant resources and leverage them to make an initial plan of what to build.
Finally, we discussed how building an initial prototype of a functioning system was
the best way to make progress. This is what we will cover in this chapter.

This first iteration will be lackluster by design. Its goal is to allow us to have all the
pieces of a pipeline in place so that we can prioritize which ones to improve next.
Having a full prototype is the easiest way to identify the impact bottleneck that Mon‐
ica Rogati described in “Monica Rogati: How to Choose and Prioritize ML Projects”
on page 20.

Let’s start by building the simplest pipeline that could produce predictions from an
input.

The Simplest Scaffolding
In “Start with a Simple Pipeline” on page 37, we described how most ML models con‐
sist of two pipelines, training and inference. Training allows us to generate a high-
quality model, and inference is about serving results to users. See “Start with a Simple
Pipeline” on page 37 for more about the difference between training and inference.

For the first prototype of an application, we will focus on being able to deliver results
to users. This means that out of the two pipelines we described in Chapter 2, we will
start with the inference pipeline. This will allow us to quickly examine how users may
interact with the output of a model, therefore gathering useful information to make
training a model easier.

45

If we are only focusing on inference, we will ignore training for now. And since we
are not training a model, we can instead write some simple rules. Writing such rules
or heuristics is often a great way to get started. It is the quickest way to build a proto‐
type and allows us to see a simplified version of the full application right away.

While this may seem superfluous if we are aiming to implement an ML solution any‐
way (as we will later in the book), it is a critical forcing function to make us confront
our problem and devise an initial set of hypotheses about how best to solve it.

Building, validating, and updating hypotheses about the best way to model data are
core parts of the iterative model building process, which starts before we even build
our first model!

Here are a couple of examples of great heuristics from projects I
have seen used by Fellows I mentored at Insight Data Science.

• Code quality estimation: When building a model aiming to
predict whether a coder performed well on HackerRank (a
competitive coding website) from a sample of code, Daniel
started by counting the number of open and closed parenthe‐
ses, brackets, and curly braces.
In the majority of proper working code, the counts of opening
and closing brackets match, so this rule proved to be quite a
strong baseline. Furthermore, it gave him the intuition to
focus his modeling on using an abstract syntax tree to capture
even more structural information about code.

• Tree counting: When trying to count trees in a city from satel‐
lite imagery, after looking at some data, Mike started by devis‐
ing a rule estimating tree density based on counting the
proportion of green pixels in a given image.
It turns out that this approach worked for trees that were
spread apart but failed when it came to groves of trees. Again,
this helped define the next modeling steps, which focused on
building a pipeline that can handle densely grouped trees.

The vast majority of ML projects should start with a similar heuristic. The key is to
remember to devise it based on expert knowledge and data exploration and to use it
to confirm initial assumptions and speed up iteration.

Once you have a heuristic, it is time to create a pipeline that can gather input, pre-
process it, apply your rules to it, and serve results. This could be as simple as a Python
script you could call from the terminal or a web application that gathers a user’s cam‐
era feed to then serve live results.

46 | Chapter 3: Build Your First End-to-End Pipeline

The point here is to do for your product the same thing we did for your ML
approach, simplify it as much as possible, and build it so you have a simple functional
version. This is often referred to as an MVP (minimum viable product) and is a
battle-tested method for getting useful results as fast as possible.

Prototype of an ML Editor
For our ML editor, we will leverage common editing recommendations to craft a few
rules about what makes for good or bad questions and display the results of those
rules to users.

For a minimal version of our project that takes user input from the command line
and returns suggestions, we only need to write four functions, shown here:

input_text = parse_arguments()
processed = clean_input(input_text)
tokenized_sentences = preprocess_input(processed)
suggestions = get_suggestions(tokenized_sentences)

Let’s dive into each of them! We will keep the argument parser simple and start with
taking a string of text from the user, with no options. You can find the source code for
the example and all other code examples in this book’s GitHub repository.

Parse and Clean Data
First, we simply parse incoming data coming from the command line. This is rela‐
tively straightforward to write in Python.

def parse_arguments():
 """

 :return: The text to be edited
 """
 parser = argparse.ArgumentParser(
 description="Receive text to be edited"
)
 parser.add_argument(
 'text',
 metavar='input text',
 type=str
)
 args = parser.parse_args()
 return args.text

Whenever a model runs on user input, you should start by validating and verifying it!
In our case, users will type in data, so we will make sure that their input contains
characters we can parse. To clean our input, we will remove non-ASCII characters.
This shouldn’t restrict our users’ creativity too much and allow us to make reasonable
assumptions about what is in the text.

Prototype of an ML Editor | 47

def clean_input(text):
 """

 :param text: User input text
 :return: Sanitized text, without non ascii characters
 """
 # To keep things simple at the start, let's only keep ASCII characters
 return str(text.encode().decode('ascii', errors='ignore'))

Now, we need to preprocess our input and provide recommendations. To get us
started, we will lean on some of the existing research about classifying text we men‐
tioned in “The Simplest Approach: Being the Algorithm” on page 17. This will
involve counting words such as “told” and “said” and computing summary statistics
of syllables, words, and sentences to estimate sentence complexity.

To compute word-level statistics, we need to be able to identify words from sentences.
In the world of natural language processing, this is known as tokenization.

Tokenizing Text
Tokenization is not straightforward, and most simple methods you can think of, such
as splitting our input into words based on spaces or periods, will fail on realistic text
due to the diversity of ways words can be separated. Consider this sentence, provided
as an example by Stanford’s NLP class, for example:

“Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t amusing.”

Most simple methods will fail on this sentence due to the presence of periods and
apostrophes that carry various meanings. Instead of building our own tokenizer, we
will leverage nltk, a popular open source library, which allows us to do this in two
easy steps, as follows:

def preprocess_input(text):
 """

 :param text: Sanitized text
 :return: Text ready to be fed to analysis, by having sentences and
 words tokenized
 """
 sentences = nltk.sent_tokenize(text)
 tokens = [nltk.word_tokenize(sentence) for sentence in sentences]
 return tokens

Once our output is preprocessed, we can use it to generate features that will help
judge the quality of a question.

Generating Features
The last step is to write a few rules we could use to give advice to our users. For this
simple prototype, we will start by computing the frequency of a few common verbs

48 | Chapter 3: Build Your First End-to-End Pipeline

and connectors and then count adverb usage and determine the Flesch readability
score. We will then return a report of these metrics to our users:

def get_suggestions(sentence_list):
 """
 Returns a string containing our suggestions
 :param sentence_list: a list of sentences, each being a list of words
 :return: suggestions to improve the input
 """
 told_said_usage = sum(
 (count_word_usage(tokens, ["told", "said"]) for tokens in sentence_list)
)
 but_and_usage = sum(
 (count_word_usage(tokens, ["but", "and"]) for tokens in sentence_list)
)
 wh_adverbs_usage = sum(
 (
 count_word_usage(
 tokens,
 [
 "when",
 "where",
 "why",
 "whence",
 "whereby",
 "wherein",
 "whereupon",
],
)
 for tokens in sentence_list
)
)
 result_str = ""
 adverb_usage = "Adverb usage: %s told/said, %s but/and, %s wh adverbs" % (
 told_said_usage,
 but_and_usage,
 wh_adverbs_usage,
)
 result_str += adverb_usage
 average_word_length = compute_total_average_word_length(sentence_list)
 unique_words_fraction = compute_total_unique_words_fraction(sentence_list)

 word_stats = "Average word length %.2f, fraction of unique words %.2f" % (
 average_word_length,
 unique_words_fraction,
)
 # Using HTML break to later display on a webapp
 result_str += "
"
 result_str += word_stats

 number_of_syllables = count_total_syllables(sentence_list)
 number_of_words = count_total_words(sentence_list)

Prototype of an ML Editor | 49

 number_of_sentences = len(sentence_list)

 syllable_counts = "%d syllables, %d words, %d sentences" % (
 number_of_syllables,
 number_of_words,
 number_of_sentences,
)
 result_str += "
"
 result_str += syllable_counts

 flesch_score = compute_flesch_reading_ease(
 number_of_syllables, number_of_words, number_of_sentences
)

 flesch = "%d syllables, %.2f flesch score: %s" % (
 number_of_syllables,
 flesch_score,
 get_reading_level_from_flesch(flesch_score),
)

 result_str += "
"
 result_str += flesch

 return result_str

Voilà, we can now call our application from the command line and see its results live.
It is not very useful yet, but we have a starting point we can test and iterate from,
which we’ll do next.

Test Your Workflow
Now that we’ve built this prototype, we can test our assumptions about the way we’ve
framed our problem and how useful our proposed solution is. In this section, we will
take a look both at the objective quality of our initial rules and examine whether we
are presenting our output in a useful manner.

As Monica Rogati shared earlier, “Frequently, your product is dead even if your
model is successful.” If the method we have chosen excels at measuring question qual‐
ity but our product does not provide any advice to users to improve their writing, our
product will not be useful despite the quality of our method. Looking at our complete
pipeline, let’s evaluate both the usefulness of the current user experience and the
results of our handcrafted model.

User Experience
Let’s first examine how satisfying our product is to use, independently of the quality
of our model. In other words, if we imagine that we will eventually get a model that
performs well enough, is this the most useful way to present results to our users?

50 | Chapter 3: Build Your First End-to-End Pipeline

If we are building a tree census, for example, we may want to present our results as a
summary of a long-running analysis of an entire city. We may want to include the
number of reported trees, as well as broken-down statistics per neighborhood, and a
measure of the error on a gold standard test set.

In other words, we would want to make sure that the results we present are useful (or
will be if we improve our model). On the flip side, of course, we’d also like our model
to perform well. That is the next aspect we’ll evaluate.

Modeling Results
We mentioned the value of focusing on the right metric in “Measuring Success” on
page 23. Having a working prototype early on will allow us to identify and iterate on
our chosen metrics to make sure they represent product success.

As an example, if we were building a system to help users search for rental cars
nearby, we may use a metric such as discounted cumulative gain (DCG). DCG meas‐
ures ranking quality by outputting a score that is highest when the most relevant
items are returned earlier than others (see the Wikipedia article on DCG for more
information about ranking metrics). When initially building our tool, we may have
assumed that we wanted at least one useful suggestion to appear in our first five
results. We thus used DCG at 5 to score our model. However, when having users try
the tool, we may notice that users only ever consider the first three results displayed.
In that case, we should change our metric of success from DCG at 5 to 3.

The goal of considering both user experience and model performance is to make sure
we are working on the most impactful aspect. If your user experience is poor, improv‐
ing your model is not helpful. In fact, you may realize you would be better served
with an entirely different model! Let’s look at two examples.

Finding the impact bottleneck
The goal of looking both at modeling results and at the current presentation of the
product is to identify which challenge to tackle next. Most of the time, this will mean
iterating on the way we present results to our users (which could mean changing the
way we train our models) or improving model performance by identifying key failure
points.

While we will dive into error analysis more in Part III, we should identify failure
modes and appropriate ways to resolve them. It is important to determine whether
the most impactful task to work on is in the modeling or product domain, as they
each require different remediations. Let’s see an example of each:

On the product side
Let’s say you have built a model that looks at images of research papers and pre‐
dicts whether they will be accepted to top conferences (see Jia-Bin Huang’s paper

Test Your Workflow | 51

“Deep Paper Gestalt,” which tackles this issue). However, you’ve noticed that
returning only a probability of rejection to a user is not the most satisfying of
outputs. In this case, improving your model would not be helpful. It would make
sense to focus on extracting advice from the model so that we can help our users
improve their papers and increase their chances of being accepted.

On the model side
You’ve built a credit scoring model and are noticing that with all other factors
being equal, it assigns higher risks of defaulting to a certain ethnic group. This is
likely due to a bias in the training data you have been using, so you should gather
more representative data and build a new cleaning and augmentation pipeline to
attempt to address this. In this case, regardless of the manner in which you
present results, the model needs to be fixed. Examples like this are common and a
reason why you should always dive deeper than an aggregate metric and look at
the impact of your model on different slices of your data. This is what we will do
in Chapter 5.

To illustrate this further, let’s go through this exercise for our ML Editor.

ML Editor Prototype Evaluation
Let’s see how our initial pipeline fares both in terms of user experience and model
performance. Let’s start by throwing in a few inputs to our application. We will start
by testing a simple question, a convoluted question, and a full paragraph.

Since we are using a reading ease score, we would ideally like our workflow to return
a high score for the simple sentence, a low score for the convoluted one, and sugges‐
tions for improving our paragraph. Let’s actually run a few examples through our
prototype.

Simple question:

$ python ml_editor.py "Is this workflow any good?"
Adverb usage: 0 told/said, 0 but/and, 0 wh adverbs
Average word length 3.67, fraction of unique words 1.00
6 syllables, 5 words, 1 sentences
6 syllables, 100.26 flesch score: Very easy to read

Convoluted question:

$ python ml_editor.py "Here is a needlessly obscure question, that"\
"does not provide clearly which information it would"\
"like to acquire, does it?"

Adverb usage: 0 told/said, 0 but/and, 0 wh adverbs
Average word length 4.86, fraction of unique words 0.90
30 syllables, 18 words, 1 sentences
30 syllables, 47.58 flesch score: Difficult to read

52 | Chapter 3: Build Your First End-to-End Pipeline

Entire paragraph (that you’ll recognize from earlier):

$ python ml_editor.py "Ideally, we would like our workflow to return a positive"\
" score for the simple sentence, a negative score for the convoluted one, and "\
"suggestions for improving our paragraph. Is that the case already?"
Adverb usage: 0 told/said, 1 but/and, 0 wh adverbs
Average word length 4.03, fraction of unique words 0.76
52 syllables, 33 words, 2 sentences
52 syllables, 56.79 flesch score: Fairly difficult to read

Let’s examine these results using both of the aspects we’ve just defined.

Model
It is unclear whether our results align well with what we would consider quality writ‐
ing. The convoluted sentence and the entire paragraph receive a similar readability
score. Now, I will be the first to admit that my prose can sometimes be difficult to
read, but the earlier paragraph is more comprehensible than the convoluted sentence
we tested before it.

The attributes we are extracting from the text are not necessarily the most correlated
with “good writing.” This is usually due to not having defined success clearly enough:
given two questions, how can we say one is better than the other? When we build our
dataset in the next chapter, we will define this more clearly.

As expected, we have some modeling work to do, but are we even presenting results
in a useful manner?

User Experience
From the results shown earlier, two issues are immediately apparent. The information
we return is both overwhelming and irrelevant. The goal of our product is to provide
actionable recommendations to our users. The features and readability score are a
quality metric but will not help a user decide how to improve their submission. We
may want to boil down our recommendations to a single score, along with actionable
recommendations to improve it.

For example, we could suggest general changes such as using fewer adverbs, or work
at a more granular level by suggesting word- and sentence-level changes. Ideally, we
could present results by highlighting or underlining the parts of the input that require
users’ attention. I’ve added a mock-up of how this could look in Figure 3-1.

ML Editor Prototype Evaluation | 53

Figure 3-1. More actionable writing suggestions

Even if we were not able to directly highlight recommendations in the input string,
our product could benefit from providing recommendations similar to the ones on
the right side of Figure 3-1, which are more actionable than a list of scores.

Conclusion
We have built an initial inference prototype and used it to evaluate the quality of our
heuristics and the workflow of our product. This allowed us to narrow down our per‐
formance criteria and iterate on the way we would like to present results to our users.

For the ML Editor, we’ve learned that we should both focus on providing a better user
experience by providing actionable recommendations and improve our modeling
approach by looking at data to more clearly define what makes for a good question.

In the first three chapters, we’ve used our product goals to define which initial
approach to take, explored existing resources to make a plan for our approach, and
built an initial prototype to validate our plan and assumptions.

Now, it is time to dive into what is often the most overlooked part of an ML project—
exploring our dataset. In Chapter 4, we will see how to gather an initial dataset, assess
its quality, and iteratively label subsets of it to help guide our feature generation and
modeling decisions.

54 | Chapter 3: Build Your First End-to-End Pipeline

CHAPTER 4

Acquire an Initial Dataset

Once you have a plan to solve your product needs and have built an initial prototype
to validate that your proposed workflow and model are sound, it is time to take a
deeper dive into your dataset. We will use what we find to inform our modeling deci‐
sions. Oftentimes, understanding your data well leads to the biggest performance
improvements.

In this chapter, we will start by looking at ways to efficiently judge the quality of a
dataset. Then, we will cover ways to vectorize your data and how to use said vector‐
ized representation to label and inspect a dataset more efficiently. Finally, we’ll cover
how this inspection should guide feature generation strategies.

Let’s start by discovering a dataset and judging its quality.

Iterate on Datasets
The fastest way to build an ML product is to rapidly build, evaluate, and iterate on
models. Datasets themselves are a core part of that success of models. This is why
data gathering, preparation, and labeling should be seen as an iterative process, just
like modeling. Start with a simple dataset that you can gather immediately, and be
open to improving it based on what you learn.

This iterative approach to data can seem confusing at first. In ML research, perfor‐
mance is often reported on standard datasets that the community uses as benchmarks
and are thus immutable. In traditional software engineering, we write deterministic
rules for our programs, so we treat data as something to receive, process, and store.

ML engineering combines engineering and ML in order to build products. Our data‐
set is thus just another tool to allow us to build products. In ML engineering, choos‐
ing an initial dataset, regularly updating it, and augmenting it is often the majority of

55

the work. This difference in workflow between research and industry is illustrated in
Figure 4-1.

Figure 4-1. Datasets are fixed in research, but part of the product in industry

Treating data as part of your product that you can (and should) iterate on, change,
and improve is often a big paradigm shift for newcomers to the industry. Once you
get used to it, however, data will become your best source of inspiration to develop
new models and the first place you look for answers when things go wrong.

Do Data Science
I’ve seen the process of curating a dataset be the main roadblock to building ML
products more times than I can count. This is partly because of the relative lack of
education on the topic (most online courses provide the dataset and focus on the
models), which leads to many practitioners fearing this part of the work.

It is easy to think of working with data as a chore to tackle before playing with fun
models, but models only serve as a way to extract trends and patterns from existing
data. Making sure that the data we use exhibits patterns that are predictive enough for
a model to leverage (and checking whether it contains clear bias) is thus a fundamen‐
tal part of the work of a data scientist (in fact, you may have noticed the name of the
role is not model scientist).

This chapter will focus on this process, from gathering an initial dataset to inspecting
and validating its applicability for ML. Let’s start with exploring a dataset efficiently to
judge its quality.

56 | Chapter 4: Acquire an Initial Dataset

Explore Your First Dataset
So how do we go about exploring an initial dataset? The first step of course is to
gather a dataset. This is where I see practitioners get stuck the most often as they
search for a perfect dataset. Remember, our goal is to get a simple dataset to extract
preliminary results from. As with other things in ML, start simple, and build from
there.

Be Efficient, Start Small
For most ML problems, more data can lead to a better model, but this does not mean
that you should start with the largest possible dataset. When starting on a project, a
small dataset allows you to easily inspect and understand your data and how to model
it better. You should aim for an initial dataset that is easy to work with. Only once
you’ve settled on a strategy does it make sense to scale it up to a larger size.

If you are working at a company with terabytes of data stored in a cluster, you can
start by extracting a uniformly sampled subset that fits in memory on your local
machine. If you would like to start working on a side project trying to identify the
brands of cars that drive in front of your house, for example, start with a few dozens
of images of cars on streets.

Once you have seen how your initial model performs and where it struggles, you will
be able to iterate on your dataset in an informed manner!

You can find many existing datasets online on platforms such as Kaggle or Reddit or
gather a few examples yourself, either by scraping the web, leveraging large open
datasets such as found on the Common Crawl site, or generating data! For more
information, see “Open data” on page 33.

Gathering and analyzing data is not only necessary, it will speed you up, especially
early on in a project’s development. Looking at your dataset and learning about its
features is the easiest way to come up with a good modeling and feature generation
pipeline.

Most practitioners overestimate the impact of working on the model and underesti‐
mate the value of working on the data, so I recommend always making an effort to
correct this trend and bias yourself toward looking at data.

When examining data, it is good to identify trends in an exploratory fashion, but you
shouldn’t stop there. If your aim is to build ML products, you should ask yourself
what the best way to leverage these trends in an automated fashion is. How can these
trends help you power an automated product?

Explore Your First Dataset | 57

Insights Versus Products
Once you have a dataset, it is time to dive into it and explore its content. As we do so,
let’s keep in mind the distinction between data exploration for analysis purposes and
data exploration for product building purposes. While both aim to extract and under‐
stand trends in data, the former concerns itself with creating insights from trends
(learning that most fraudulent logins to a website happen on Thursdays and are from
the Seattle area, for example), while the latter is about using trends to build features
(using the time of a login attempt and its IP address to build a service that prevents
fraudulent accounts logins).

While the difference may seem subtle, it leads to an extra layer of complexity in the
product building case. We need to have confidence that the patterns we see will apply
to data we receive in the future and quantify the differences between the data we are
training on and the data we expect to receive in production.

For fraud prediction, noticing a seasonality aspect to fraudulent logins is the first step.
We should then use this observed seasonal trend to estimate how often we need to
train our models on recently gathered data. We will dive into more examples as we
explore our data more deeply later in this chapter.

Before noticing predictive trends, we should start by examining quality. If our chosen
dataset does not meet quality standards, we should improve it before moving on to
modeling.

A Data Quality Rubric
In this section, we will cover some aspects to examine when first working with a new
dataset. Each dataset comes with its own biases and oddities, which require different
tools to be understood, so writing a comprehensive rubric covering anything you may
want to look for in a dataset is beyond the scope of this book. Yet, there are a few
categories that are valuable to pay attention to when first approaching a dataset. Let’s
start with formatting.

Data format
Is the dataset already formatted in such a way that you have clear inputs and outputs,
or does it require additional preprocessing and labeling?

When building a model that attempts to predict whether a user will click on an ad, for
example, a common dataset will consist of a historical log of all clicks for a given time
period. You would need to transform this dataset so that it contains multiple instan‐
ces of an ad being presented to a user and whether the user clicked. You’d also want to
include any features of the user or the ad that you think your model could leverage.

58 | Chapter 4: Acquire an Initial Dataset

If you are given a dataset that has already been processed or aggregated for you, you
should validate that you understand the way in which the data was processed. If one
of the columns you were given contains an average conversion rate, for example, can
you calculate this rate yourself and verify that it matches with the provided value?

In some cases, you will not have access to the required information to reproduce and
validate preprocessing steps. In those cases, looking at the quality of the data will help
you determine which features of it you trust and which ones would be best left
ignored.

Data quality
Examining the quality of a dataset is crucial before you start modeling it. If you know
that half of the values for a crucial feature are missing, you won’t spend hours debug‐
ging a model to try to understand why it isn’t performing well.

There are many ways in which data can be of poor quality. It can be missing, it can be
imprecise, or it can even be corrupted. Getting an accurate picture of its quality will
not only allow you to estimate which level of performance is reasonable, it will make
it easier to select potential features and models to use.

If you are working with logs of user activity to predict usage of an online product, can
you estimate how many logged events are missing? For the events you do have, how
many contain only a subset of information about the user?

If you are working on natural language text, how would you rate the quality of the
text? For example, are there many incomprehensible characters? Is the spelling very
erroneous or inconsistent?

If you are working on images, are they clear enough that you could perform the task
yourself? If it is hard for you to detect an object in an image, do you think your
model will struggle to do so?

In general, which proportion of your data seems noisy or incorrect? How many
inputs are hard for you to interpret or understand? If the data has labels, do you tend
to agree with them, or do you often find yourself questioning their accuracy?

I’ve worked on a few projects aiming to extract information from satellite imagery,
for example. In the best cases, these projects have access to a dataset of images with
corresponding annotations denoting objects of interest such as fields or planes. In
some cases, however, these annotations can be inaccurate or even missing. Such
errors have a significant impact on any modeling approach, so it is vital to find out
about them early. We can work with missing labels by either labeling an initial dataset
ourselves or finding a weak label we can use, but we can do so only if we notice the
quality ahead of time.

Explore Your First Dataset | 59

After verifying the format and quality of the data, one additional step can help proac‐
tively surface issues: examining data quantity and feature distribution.

Data quantity and distribution
Let’s estimate whether we have enough data and whether feature values seem within a
reasonable range.

How much data do we have? If we have a large dataset, we should select a subset to
start our analysis on. On the other hand, if our dataset is too small or some classes are
underrepresented, models we train would risk being just as biased as our data. The
best way to avoid such bias is to increase the diversity of our data through data gath‐
ering and augmentation. The ways in which you measure the quality of your data
depend on your dataset, but Table 4-1 covers a few questions to get you started.

Table 4-1. A data quality rubric

Quality Format Quantity and distribution
Are any relevant fields ever
empty?

How many preprocessing steps does your data
require?

How many examples do you have?

Are there potential errors of
measurement?

Will you be able to preprocess it in the same
way in production?

How many examples per class? Are
any absent?

For a practical example, when building a model to automatically categorize customer
support emails into different areas of expertise, a data scientist I was working with,
Alex Wahl, was given nine distinct categories, with only one example per category.
Such a dataset is too small for a model to learn from, so he focused most of his effort
on a data generation strategy. He used templates of common formulations for each of
the nine categories to produce thousands more examples that a model could then
learn from. Using this strategy, he managed to get a pipeline to a much higher level of
accuracy than he would have had by trying to build a model complex enough to learn
from only nine examples.

Let’s apply this exploration process to the dataset we chose for our ML editor and esti‐
mate its quality!

ML editor data inspection
For our ML editor, we initially settled on using the anonymized Stack Exchange Data
Dump as a dataset. Stack Exchange is a network of question-and-answer websites,
each focused on a theme such as philosophy or gaming. The data dump contains
many archives, one for each of the websites in the Stack Exchange network.

For our initial dataset, we’ll choose a website that seems like it would contain broad
enough questions to build useful heuristics from. At first glance, the Writing commu‐
nity seems like a good fit.

60 | Chapter 4: Acquire an Initial Dataset

Each website archive is provided as an XML file. We need to build a pipeline to ingest
those files and transform them into text we can then extract features from. The fol‐
lowing example shows the Posts.xml file for datascience.stackexchange.com:

<?xml version="1.0" encoding="utf-8"?>
<posts>
 <row Id="5" PostTypeId="1" CreationDate="2014-05-13T23:58:30.457"
Score="9" ViewCount="516" Body="<p> "Hello World" example? "
OwnerUserId="5" LastActivityDate="2014-05-14T00:36:31.077"
Title="How can I do simple machine learning without hard-coding behavior?"
Tags="<machine-learning>" AnswerCount="1" CommentCount="1" />
 <row Id="7" PostTypeId="1" AcceptedAnswerId="10" ... />

To be able to leverage this data, we will need to be able to load the XML file, decode
the HTML tags in the text, and represent questions and associated data in a format
that would be easier to analyze such as a pandas DataFrame. The following function
does just this. As a reminder, the code for this function, and all other code through‐
out this book, can be found in this book’s GitHub repository.

import xml.etree.ElementTree as ElT

def parse_xml_to_csv(path, save_path=None):
 """
 Open .xml posts dump and convert the text to a csv, tokenizing it in the
 process
 :param path: path to the xml document containing posts
 :return: a dataframe of processed text
 """

 # Use python's standard library to parse XML file
 doc = ElT.parse(path)
 root = doc.getroot()

 # Each row is a question
 all_rows = [row.attrib for row in root.findall("row")]

 # Using tdqm to display progress since preprocessing takes time
 for item in tqdm(all_rows):
 # Decode text from HTML
 soup = BeautifulSoup(item["Body"], features="html.parser")
 item["body_text"] = soup.get_text()

 # Create dataframe from our list of dictionaries
 df = pd.DataFrame.from_dict(all_rows)
 if save_path:
 df.to_csv(save_path)
 return df

Even for a relatively small dataset containing only 30,000 questions this process takes
more than a minute, so we serialize the processed file back to disk to only have to

Explore Your First Dataset | 61

process it once. To do this, we can simply use panda’s to_csv function, as shown on
the final line of the snippet.

This is generally a recommended practice for any preprocessing required to train a
model. Preprocessing code that runs right before the model optimization process can
slow down experimentation significantly. As much as possible, always preprocess data
ahead of time and serialize it to disk.

Once we have our data in this format, we can examine the aspects we described ear‐
lier. The entire exploration process we detail next can be found in the dataset explora‐
tion notebook in this book’s GitHub repository.

To start, we use df.info() to display summary information about our DataFrame, as
well as any empty values. Here is what it returns:

>>>> df.info()

AcceptedAnswerId 4124 non-null float64
AnswerCount 33650 non-null int64
Body 33650 non-null object
ClosedDate 969 non-null object
CommentCount 33650 non-null int64
CommunityOwnedDate 186 non-null object
CreationDate 33650 non-null object
FavoriteCount 3307 non-null float64
Id 33650 non-null int64
LastActivityDate 33650 non-null object
LastEditDate 10521 non-null object
LastEditorDisplayName 606 non-null object
LastEditorUserId 9975 non-null float64
OwnerDisplayName 1971 non-null object
OwnerUserId 32117 non-null float64
ParentId 25679 non-null float64
PostTypeId 33650 non-null int64
Score 33650 non-null int64
Tags 7971 non-null object
Title 7971 non-null object
ViewCount 7971 non-null float64
body_text 33650 non-null object
full_text 33650 non-null object
text_len 33650 non-null int64
is_question 33650 non-null bool

We can see that we have a little over 31,000 posts, with only about 4,000 of them hav‐
ing an accepted answer. In addition, we can notice that some of the values for Body,
which represents the contents of a post, are null, which seems suspicious. We would
expect all posts to contain text. Looking at rows with a null Body quickly reveals they
belong to a type of post that has no reference in the documentation provided with the
dataset, so we remove them.

62 | Chapter 4: Acquire an Initial Dataset

Let’s quickly dive into the format and see if we understand it. Each post has a
PostTypeId value of 1 for a question, or 2 for an answer. We would like to see which
type of questions receive high scores, as we would like to use a question’s score as a
weak label for our true label, the quality of a question.

First, let’s match questions with the associated answers. The following code selects all
questions that have an accepted answer and joins them with the text for said answer.
We can then look at the first few rows and validate that the answers do match up with
the questions. This will also allow us to quickly look through the text and judge its
quality.

questions_with_accepted_answers = df[
 df["is_question"] & ~(df["AcceptedAnswerId"].isna())
]
q_and_a = questions_with_accepted_answers.join(
 df[["Text"]], on="AcceptedAnswerId", how="left", rsuffix="_answer"
)

pd.options.display.max_colwidth = 500
q_and_a[["Text", "Text_answer"]][:5]

In Table 4-2, we can see that questions and answers do seem to match up and that the
text seems mostly correct. We now trust that we can match questions with their asso‐
ciated answers.

Table 4-2. Questions with their associated answers

Id body_text body_text_answer
1 I’ve always wanted to start writing (in

a totally amateur way), but whenever I
want to start something I instantly get
blocked having a lot of questions and
doubts.\nAre there some resources on
how to start becoming a writer?\nl’m
thinking something with tips and easy
exercises to get the ball rolling.\n

When I’m thinking about where I learned most how to write, I think that
reading was the most important guide to me. This may sound silly, but by
reading good written newspaper articles (facts, opinions, scientific articles, and
most of all, criticisms of films and music), I learned how others did the job,
what works and what doesn’t. In my own writing, I try to mimic other people’s
styles that I liked. Moreover, I learn new things by reading, giving me a
broader background that I need when re…

2 What kind of story is better suited for
each point of view? Are there
advantages or disadvantages inherent
to them?\nFor example, writing in the
first person you are always following a
character, while in the third person you
can “jump” between story lines.\n

With a story in first person, you are intending the reader to become much
more attached to the main character. Since the reader sees what that character
sees and feels what that character feels, the reader will have an emotional
investment in that character. Third person does not have this close tie; a reader
can become emotionally invested but it will not be as strong as it will be in
first person.\nContrarily, you cannot have multiple point characters when you
use first person without ex…

3 I finished my novel, and everyone I’ve
talked to says I need an agent. How do
I find one?\n

Try to find a list of agents who write in your genre, check out their websites!
\nFind out if they are accepting new clients. If they aren’t, then check out
another agent. But if they are, try sending them a few chapters from your
story, a brief, and a short cover letter asking them to represent you.\nIn the
cover letter mention your previous publication credits. If sent via post, then I
suggest you give them a means of reply, whether it be an email or a stamped,
addressed envelope.\nAgents…

Explore Your First Dataset | 63

As one last sanity check, let’s look at how many questions received no answer, how
many received at least one, and how many had an answer that was accepted.

has_accepted_answer = df[df["is_question"] & ~(df["AcceptedAnswerId"].isna())]
no_accepted_answers = df[
 df["is_question"]
 & (df["AcceptedAnswerId"].isna())
 & (df["AnswerCount"] != 0)
]
no_answers = df[
 df["is_question"]
 & (df["AcceptedAnswerId"].isna())
 & (df["AnswerCount"] == 0)
]

print(
 "%s questions with no answers, %s with answers, %s with an accepted answer"
 % (len(no_answers), len(no_accepted_answers), len(has_accepted_answer))
)

3584 questions with no answers, 5933 with answers, 4964 with an accepted answer.

We have a relatively even split between answered and partially answered and unan‐
swered questions. This seems reasonable, so we can feel confident enough to carry on
with our exploration.

We understand the format of our data and have enough of it to get started. If you are
working on a project and your current dataset is either too small or contains a major‐
ity of features that are too hard to interpret, you should gather some more data or try
a different dataset entirely.

Our dataset is of sufficient quality to proceed. It is now time to explore it more in
depth, with the goal of informing our modeling strategy.

Label to Find Data Trends
Identifying trends in our dataset is about more than just quality. This part of the work
is about putting ourselves in the shoes of our model and trying to predict what kind
of structure it will pick up on. We will do this by separating data into different clus‐
ters (I will explain clustering in “Clustering” on page 80) and trying to extract com‐
monalities in each cluster.

The following is a step-by-step list to do this in practice. We’ll start with generating
summary statistics of our dataset and then see how to rapidly explore it by leveraging
vectorization techniques. With the help of vectorization and clustering, we’ll explore
our dataset efficiently.

64 | Chapter 4: Acquire an Initial Dataset

Summary Statistics
When you start looking at a dataset, it is generally a good idea to look at some sum‐
mary statistics for each of the features you have. This helps you both get a general
sense for the features in your dataset and identify any easy way to separate your
classes.

Identifying differences in distributions between classes of data early is helpful in ML,
because it will either make our modeling task easier or prevent us from overestimat‐
ing the performance of a model that may just be leveraging one particularly informa‐
tive feature.

For example, if you are trying to predict whether tweets are expressing a positive or
negative opinion, you could start by counting the average number of words in each
tweet. You could then plot a histogram of this feature to learn about its distribution.

A histogram would allow you to notice if all positive tweets were shorter than nega‐
tive ones. This could lead you to add word length as a predictor to make your task
easier or on the contrary gather additional data to make sure that your model can
learn about the content of the tweets and not just their length.

Let’s plot a few summary statistics for our ML editor to illustrate this point.

Summary statistics for ML editor
For our example, we can plot a histogram of the length of questions in our dataset,
highlighting the different trends between high- and low-score questions. Here is how
we do this using pandas:

import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle

"""
df contains questions and their answer counts from writers.stackexchange.com
We draw two histograms:
one for questions with scores under the median score
one for questions with scores over
For both, we remove outliers to make our visualization simpler
"""

high_score = df["Score"] > df["Score"].median()
We filter out really long questions
normal_length = df["text_len"] < 2000

ax = df[df["is_question"] & high_score & normal_length]["text_len"].hist(
 bins=60,
 density=True,
 histtype="step",
 color="orange",
 linewidth=3,

Label to Find Data Trends | 65

 grid=False,
 figsize=(16, 10),
)

df[df["is_question"] & ~high_score & normal_length]["text_len"].hist(
 bins=60,
 density=True,
 histtype="step",
 color="purple",
 linewidth=3,
 grid=False,
)

handles = [
 Rectangle((0, 0), 1, 1, color=c, ec="k") for c in ["orange", "purple"]
]
labels = ["High score", "Low score"]
plt.legend(handles, labels)
ax.set_xlabel("Sentence length (characters)")
ax.set_ylabel("Percentage of sentences")

We can see in Figure 4-2 that the distributions are mostly similar, with high-score
questions tending to be slightly longer (this trend is especially noticeable around the
800-character mark). This is an indication that question length may be a useful fea‐
ture for a model to predict a question’s score.

We can plot other variables in a similar fashion to identify more potential features.
Once we’ve identified a few features, let’s look at our dataset a little more closely so
that we can identify more granular trends.

66 | Chapter 4: Acquire an Initial Dataset

Figure 4-2. Histogram of the length of text for high- and low-score questions

Explore and Label Efficiently
You can only get so far looking at descriptive statistics such as averages and plots such
as histograms. To develop an intuition for your data, you should spend some time
looking at individual data points. However, going through points in a dataset at ran‐
dom is quite inefficient. In this section, I’ll cover how to maximize your efficiency
when visualizing individual data points.

Clustering is a useful method to use here. Clustering is the task of grouping a set of
objects in such a way that objects in the same group (called a cluster) are more similar
(in some sense) to each other than to those in other groups (clusters). We will use
clustering both for exploring our data and for our model predictions later (see
“Dimensionality reduction” on page 78).

Many clustering algorithms group data points by measuring the distance between
points and assigning ones that are close to each other to the same cluster. Figure 4-3
shows an example of a clustering algorithm separating a dataset into three different
clusters. Clustering is an unsupervised method, and there is often no single correct
way to cluster a dataset. In this book, we will use clustering as a way to generate some
structure to guide our exploration.

Because clustering relies on calculating the distance between data points, the way we
choose to represent our data points numerically has a large impact on which clusters
are generated. We will dive into this in the next section, “Vectorizing” on page 69.

Label to Find Data Trends | 67

Figure 4-3. Generating three clusters from a dataset

The vast majority of datasets can be separated into clusters based on their features,
labels, or a combination of both. Examining each cluster individually and the similar‐
ities and differences between clusters is a great way to identify structure in a dataset.

There are multiple things to look out for here:

• How many clusters do you identify in your dataset?
• Do each of these clusters seem different to you? In which way?
• Are any clusters much more dense than others? If so, your model is likely to

struggle to perform on the sparser areas. Adding features and data can help alle‐
viate this problem.

68 | Chapter 4: Acquire an Initial Dataset

• Do all clusters represent data that seems as “hard” to model? If some clusters
seem to represent more complex data points, make note of them so you can
revisit them when we evaluate our model’s performance.

As we mentioned, clustering algorithms work on vectors, so we can’t simply pass a set
of sentences to a clustering algorithm. To get our data ready to be clustered, we will
first need to vectorize it.

Vectorizing
Vectorizing a dataset is the process of going from the raw data to a vector that repre‐
sents it. Figure 4-4 shows an example of vectorized representations for text and tabu‐
lar data.

Figure 4-4. Examples of vectorized representations

There are many ways to vectorize data, so we will focus on a few simple methods that
work for some of the most common data types, such as tabular data, text, and images.

Tabular data. For tabular data consisting of both categorical and continuous features,
a possible vector representation is simply the concatenation of the vector representa‐
tions of each feature.

Continuous features should be normalized to a common scale so that features with
larger scale do not cause smaller features to be completely ignored by models. There
are various way to normalize data, but starting by transforming each feature such that
its mean is zero and variance one is often a good first step. This is often referred to as
a standard score.

Categorical features such as colors can be converted to a one-hot encoding: a list as
long as the number of distinct values of the feature consisting of only zeros and a

Label to Find Data Trends | 69

single one, whose index represents the current value (for example, in a dataset con‐
taining four distinct colors, we could encode red as [1, 0, 0, 0] and blue as [0, 0, 1, 0]).
You may be curious as to why we wouldn’t simply assign each potential value a num‐
ber, such as 1 for red and 3 for blue. It is because such an encoding scheme would
imply an ordering between values (blue is larger than red), which is often incorrect
for categorical variables.

A property of one-hot encoding is that the distance between any two given feature
values is always one. This often provides a good representation for a model, but in
some cases such as days of the week, some values may be more similar than the others
(Saturday and Sunday are both in the weekend, so ideally their vectors would be
closer together than Wednesday and Sunday, for example). Neural networks have
started proving themselves useful at learning such representations (see the paper
“Entity Embeddings of Categorical Variables”, by C. Guo and F. Berkhahn). These
representations have been shown to improve the performance of models using them
instead of other encoding schemes.

Finally, more complex features such as dates should be transformed in a few numeri‐
cal features capturing their salient characteristics.

Let’s go through a practical example of vectorization for tabular data. You can find the
code for the example in the tabular data vectorization notebook in this book’s GitHub
repository.

Let’s say that instead of looking at the content of questions, we want to predict the
score a question will get from its tags, number of comments, and creation date. In
Table 4-3, you can see an example of what this dataset would look like for the
writers.stackexchange.com dataset.

Table 4-3. Tabular inputs without any processing

Id Tags CommentCount CreationDate Score
1 <resources><first-time-author> 7 2010-11-18T20:40:32.857 32

2 <fiction><grammatical-person><third-person> 0 2010-11-18T20:42:31.513 20

3 <publishing><novel><agent> 1 2010-11-18T20:43:28.903 34

5 <plot><short-story><planning><brainstorming> 0 2010-11-18T20:43:59.693 28

7 <fiction><genre><categories> 1 2010-11-18T20:45:44.067 21

Each question has multiple tags, as well as a date and a number of comments. Let’s
preprocess each of these. First, we normalize numerical fields:

def get_norm(df, col):
 return (df[col] - df[col].mean()) / df[col].std()

tabular_df["NormComment"]= get_norm(tabular_df, "CommentCount")
tabular_df["NormScore"]= get_norm(tabular_df, "Score")

70 | Chapter 4: Acquire an Initial Dataset

Then, we extract relevant information from the date. We could, for example, choose
the year, month, day, and hour of posting. Each of these is a numerical value our
model can use.

Convert our date to a pandas datetime
tabular_df["date"] = pd.to_datetime(tabular_df["CreationDate"])

Extract meaningful features from the datetime object
tabular_df["year"] = tabular_df["date"].dt.year
tabular_df["month"] = tabular_df["date"].dt.month
tabular_df["day"] = tabular_df["date"].dt.day
tabular_df["hour"] = tabular_df["date"].dt.hour

Our tags are categorical features, with each question potentially being given any num‐
ber of tags. As we saw earlier, the easiest way to represent categorical inputs is to one-
hot encode them, transforming each tag into its own column, with each question
having a value of 1 for a given tag feature only if that tag is associated to this question.

Because we have more than three hundred tags in our dataset, here we chose to only
create a column for the five most popular ones that are used in more than five hun‐
dred questions. We could add every single tag, but because the majority of them
appear only once, this would not be helpful to identify patterns.

Select our tags, represented as strings, and transform them into arrays of tags
tags = tabular_df["Tags"]
clean_tags = tags.str.split("><").apply(
 lambda x: [a.strip("<").strip(">") for a in x])

Use pandas' get_dummies to get dummy values
select only tags that appear over 500 times
tag_columns = pd.get_dummies(clean_tags.apply(pd.Series).stack()).sum(level=0)
all_tags = tag_columns.astype(bool).sum(axis=0).sort_values(ascending=False)
top_tags = all_tags[all_tags > 500]
top_tag_columns = tag_columns[top_tags.index]

Add our tags back into our initial DataFrame
final = pd.concat([tabular_df, top_tag_columns], axis=1)

Keeping only the vectorized features
col_to_keep = ["year", "month", "day", "hour", "NormComment",
 "NormScore"] + list(top_tags.index)
final_features = final[col_to_keep]

In Table 4-4, you can see that our data is now fully vectorized, with each row consist‐
ing only of numeric values. We can feed this data to a clustering algorithm, or a
supervised ML model.

Label to Find Data Trends | 71

Table 4-4. Vectorized tabular inputs

Id Year Month Day Hour Norm-
Comment

Norm-
Score

Creative
writing

Fiction Style Char-
acters

Tech-
nique

Novel Pub-
lishing

1 2010 11 18 20 0.165706 0.140501 0 0 0 0 0 0 0

2 2010 11 18 20 -0.103524 0.077674 0 1 0 0 0 0 0

3 2010 11 18 20 -0.065063 0.150972 0 0 0 0 0 1 1

5 2010 11 18 20 -0.103524 0.119558 0 0 0 0 0 0 0

7 2010 11 18 20 -0.065063 0.082909 0 1 0 0 0 0 0

Vectorization and Data Leakage
You would usually use the same techniques to vectorize data to visualize it and to feed
it to a model. There is an important distinction, however. When you vectorize data to
feed it to a model, you should vectorize your training data and save the parameters
you used to obtain the training vectors. You should then use the same parameters for
your validation and test sets.

When normalizing data, for example, you should compute summary statistics such as
mean and standard deviation only on your training set (using the same values to nor‐
malize your validation data), and during inference in production.

Using both your validation and training data for normalization, or to decide which
categories to keep in your one-hot encoding, would cause data leakage, as you would
be leveraging information from outside your training set to create training features.
This would artificially inflate your model’s performance but make it perform worse in
production. We will cover this in more detail in “Data leakage” on page 102.

Different types of data call for different vectorization methods. In particular, text data
often requires more creative approaches.

Text data. The simplest way to vectorize text is to use a count vector, which is the
word equivalent of one-hot encoding. Start by constructing a vocabulary consisting
of the list of unique words in your dataset. Associate each word in our vocabulary to
an index (from 0 to the size of our vocabulary). You can then represent each sentence
or paragraph by a list as long as our vocabulary. For each sentence, the number at
each index represents the count of occurrences of the associated word in the given
sentence.

This method ignores the order of the words in a sentence and so is referred to as a
bag of words. Figure 4-5 shows two sentences and their bag-of-words representations.
Both sentences are transformed into vectors that contain information about the num‐
ber of times a word occurs in a sentence, but not the order in which words are
present in the sentence.

72 | Chapter 4: Acquire an Initial Dataset

Figure 4-5. Getting bag-of-words vectors from sentences

Using a bag-of-words representation or its normalized version TF-IDF (short for
Term Frequency–Inverse Document Frequency) is simple using scikit-learn, as you
can see here:

Create an instance of a tfidf vectorizer,
We could use CountVectorizer for a non normalized version
vectorizer = TfidfVectorizer()

Fit our vectorizer to questions in our dataset
Returns an array of vectorized text
bag_of_words = vectorizer.fit_transform(df[df["is_question"]]["Text"])

Multiple novel text vectorization methods have been developed over the years, start‐
ing in 2013 with Word2Vec (see the paper, “Efficient Estimation of Word Representa‐
tions in Vector Space,” by Mikolov et al.) and more recent approaches such as fastText
(see the paper, “Bag of Tricks for Efficient Text Classification,” by Joulin et al.). These
vectorization techniques produce word vectors that attempt to learn a representation
that captures similarities between concepts better than a TF-IDF encoding. They do
this by learning which words tend to appear in similar contexts in large bodies of text
such as Wikipedia. This approach is based on the distributional hypothesis, which
claims that linguistic items with similar distributions have similar meanings.

Concretely, this is done by learning a vector for each word and training a model to
predict a missing word in a sentence using the word vectors of words around it. The
number of neighboring words to take into account is called the window size. In
Figure 4-6, you can see a depiction of this task for a window size of two. On the left,
the word vectors for the two words before and after the target are fed to a simple
model. This simple model and the values of the word vectors are then optimized so
that the output matches the word vector of the missing word.

Label to Find Data Trends | 73

Figure 4-6. Learning word vectors, from the Word2Vec paper “Efficient Estimation of
Word Representations in Vector Space” by Mikolov et al.

Many open source pretrained word vectorizing models exist. Using vectors produced
by a model that was pretrained on a large corpus (oftentimes Wikipedia or an archive
of news stories) can help our models leverage the semantic meaning of common
words better.

For example, the word vectors mentioned in the Joulin et al. fastText paper are avail‐
able online in a standalone tool. For a more customized approach, spaCy is an NLP
toolkit that provides pretrained models for a variety of tasks, as well as easy ways to
build your own.

Here is an example of using spaCy to load pretrained word vectors and using them to
get a semantically meaningful sentence vector. Under the hood, spaCy retrieves the
pretrained value for each word in our dataset (or ignores it if it was not part of its
pretraining task) and averages all vectors in a question to get a representation of the
question.

import spacy

We load a large model, and disable pipeline unnecessary parts for our task
This speeds up the vectorization process significantly
See https://spacy.io/models/en#en_core_web_lg for details about the model
nlp = spacy.load('en_core_web_lg', disable=["parser", "tagger", "ner",
 "textcat"])

74 | Chapter 4: Acquire an Initial Dataset

We then simply get the vector for each of our questions
By default, the vector returned is the average of all vectors in the sentence
See https://spacy.io/usage/vectors-similarity for more
spacy_emb = df[df["is_question"]]["Text"].apply(lambda x: nlp(x).vector)

To see a comparison of a TF-IDF model with pretrained word embeddings for our
dataset, please refer to the vectorizing text notebook in the book’s GitHub repository.

Since 2018, word vectorization using large language models on even larger datasets
has started producing the most accurate results (see the papers “Universal Language
Model Fine-Tuning for Text Classification”, by J. Howard and S. Ruder, and “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”, by J.
Devlin et al.). These large models, however, do come with the drawback of being
slower and more complex than simple word embeddings.

Finally, let’s examine vectorization for another commonly used type of data, images.

Image data. Image data is already vectorized, as an image is nothing more but a mul‐
tidimensional array of numbers, often referred to in the ML community as tensors.
Most standard three-channel RGB images, for example, are simply stored as a list of
numbers of length equal to the height of the image in pixels, multiplied by its width,
multiplied by three (for the red, green, and blue channels). In Figure 4-7, you can see
how we can represent an image as a tensor of numbers, representing the intensity of
each of the three primary colors.

While we can use this representation as is, we would like our tensors to capture a little
more about the semantic meaning of our images. To do this, we can use an approach
similar to the one for text and leverage large pretrained neural networks.

Models that have been trained on massive classification datasets such as VGG (see the
paper by A. Simonyan and A. Zimmerman, “Very Deep Convolutional Networks for
Large-Scale Image Recognition”) or Inception (see the paper by C. Szegedy et al.,
“Going Deeper with Convolutions”) on the ImageNet dataset end up learning very
expressive representations in order to classify well. These models mostly follow a
similar high-level structure. The input is an image that passes through many succes‐
sive layers of computation, each generating a different representation of said image.

Finally, the penultimate layer is passed to a function that generates classification
probabilities for each class. This penultimate layer thus contains a representation of
the image that is sufficient to classify which object it contains, which makes it a useful
representation for other tasks.

Label to Find Data Trends | 75

Figure 4-7. Representing a 3 as a matrix of values from 0 to 1 (only showing the red
channel)

Extracting this representation layer proves to work extremely well at generating
meaningful vectors for images. This requires no custom work other than loading the
pretrained model. In Figure 4-8 each rectangle represents a different layer for one of
those pretrained models. The most useful representation is highlighted. It is usually
located just before the classification layer, since that is the representation that needs to
summarize the image best for the classifier to perform well.

76 | Chapter 4: Acquire an Initial Dataset

Figure 4-8. Using a pretrained model to vectorize images

Using modern libraries such as Keras makes this task much easier. Here is a function
that loads images from a folder and transforms them into semantically meaningful
vectors for downstream analysis, using a pretrained network available in Keras:

import numpy as np

from keras.preprocessing import image
from keras.models import Model
from keras.applications.vgg16 import VGG16
from keras.applications.vgg16 import preprocess_input

def generate_features(image_paths):
 """
 Takes in an array of image paths
 Returns pretrained features for each image
 :param image_paths: array of image paths
 :return: array of last-layer activations,
 and mapping from array_index to file_path
 """

 images = np.zeros(shape=(len(image_paths), 224, 224, 3))

 # loading a pretrained model
 pretrained_vgg16 = VGG16(weights='imagenet', include_top=True)

 # Using only the penultimate layer, to leverage learned features
 model = Model(inputs=pretrained_vgg16.input,
 outputs=pretrained_vgg16.get_layer('fc2').output)

 # We load all our dataset in memory (works for small datasets)
 for i, f in enumerate(image_paths):
 img = image.load_img(f, target_size=(224, 224))
 x_raw = image.img_to_array(img)
 x_expand = np.expand_dims(x_raw, axis=0)
 images[i, :, :, :] = x_expand

 # Once we've loaded all our images, we pass them to our model

Label to Find Data Trends | 77

 inputs = preprocess_input(images)
 images_features = model.predict(inputs)
 return images_features

Transfer Learning
Pretrained models are useful to vectorize our data, but they can also sometimes be
entirely adapted to our task. Transfer learning is the process of using a model that was
previously trained on one dataset or task for a different dataset or task. More than
simply reusing the same architecture or pipeline, transfer learning uses the previously
learned weights of a trained model as a starting point for a new task.

Transfer learning can in theory work from any task to any other, but it is commonly
used to improve performance on smaller datasets, by transferring weights from large
datasets such as ImageNet for computer vision or WikiText for NLP.

While transfer learning often improves performance, it also may introduce an addi‐
tional source of unwanted bias. Even if you clean your current dataset carefully, if you
use a model that was pretrained on the entirety of Wikipedia, for example, it could
carry over the gender bias shown to be present there (see the article “Gender Bias in
Neural Natural Language Processing,” by K. Lu et al.).

Once you have a vectorized representation, you can cluster it or pass your data to a
model, but you can also use it to more efficiently inspect your dataset. By grouping
data points with similar representations together, you can more quickly look at trends
in your dataset. We’ll see how to do this next.

Dimensionality reduction
Having vector representations is necessary for algorithms, but we can also leverage
those representations to visualize data directly! This may seem challenging, because
the vectors we described are often in more than two dimensions, which makes them
challenging to display on a chart. How could we display a 14-dimensional vector?

Geoffrey Hinton, who won a Turing Award for his work in deep learning, acknowl‐
edges this problem in his lecture with the following tip: “To deal with hyper-planes in
a 14-dimensional space, visualize a 3D space and say fourteen to yourself very loudly.
Everyone does it.” (See slide 16 from G. Hinton et al.’s lecture, “An Overview of the
Main Types of Neural Network Architecture” here.) If this seems hard to you, you’ll
be excited to hear about dimensionality reduction, which is the technique of repre‐
senting vectors in fewer dimensions while preserving as much about their structure
as possible.

Dimensionality reduction techniques such as t-SNE (see the paper by L. van der
Maaten and G. Hinton, PCA, “Visualizing Data Using t-SNE”), and UMAP (see the

78 | Chapter 4: Acquire an Initial Dataset

paper by L. McInnes et al, “UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction”) allow you to project high-dimensional data such as vec‐
tors representing sentences, images, or other features on a 2D plane.

These projections are useful to notice patterns in data that you can then investigate.
They are approximate representations of the real data, however, so you should vali‐
date any hypothesis you make from looking at such a plot by using other methods. If
you see clusters of points all belonging to one class that seem to have a feature in
common, check that your model is actually leveraging that feature, for example.

To get started, plot your data using a dimensionality reduction technique and color
each point by an attribute you are looking to inspect. For classification tasks, start by
coloring each point based on its label. For unsupervised tasks, you can color points
based on the values of given features you are looking at, for example. This allows you
to see whether any regions seem like they will be easy for your model to separate, or
trickier.

Here is how to do this easily using UMAP, passing it embeddings we generated in
“Vectorizing” on page 69:

import umap

Fit UMAP to our data, and return the transformed data
umap_emb = umap.UMAP().fit_transform(embeddings)

fig = plt.figure(figsize=(16, 10))
color_map = {
 True: '#ff7f0e',
 False:'#1f77b4'
}
plt.scatter(umap_emb[:, 0], umap_emb[:, 1],
 c=[color_map[x] for x in sent_labels],
 s=40, alpha=0.4)

As a reminder, we decided to start with using only data from the writers’ community
of Stack Exchange. The result for this dataset is displayed on Figure 4-9. At first
glance, we can see a few regions we should explore, such as the dense region of unan‐
swered questions on the top left. If we can identify which features they have in com‐
mon, we may discover a useful classification feature.

After data is vectorized and plotted, it is generally a good idea to start systematically
identifying groups of similar data points and explore them. We could do this simply
by looking at UMAP plots, but we can also leverage clustering.

Label to Find Data Trends | 79

Figure 4-9. UMAP plot colored by whether a given question was successfully answered

Clustering
We mentioned clustering earlier as a method to extract structure from data. Whether
you are clustering data to inspect a dataset or using it to analyze a model’s perfor‐
mance as we will do in Chapter 5, clustering is a core tool to have in your arsenal. I
use clustering in a similar fashion as dimensionality reduction, as an additional way
to surface issues and interesting data points.

A simple method to cluster data in practice is to start by trying a few simple algo‐
rithms such as k-means and tweak their hyperparameters such as the number of clus‐
ters until you reach a satisfactory performance.

80 | Chapter 4: Acquire an Initial Dataset

Clustering performance is hard to quantify. In practice, using a combination of data
visualization and methods such as the elbow method or a silhouette plot is sufficient
for our use case, which is not to perfectly separate our data but to identify regions
where our model may have issues.

The following is an example snippet of code for clustering our dataset, as well as visu‐
alizing our clusters using a dimensionality technique we described earlier, UMAP.

from sklearn.cluster import KMeans
import matplotlib.cm as cm

Choose number of clusters and colormap
n_clusters=3
cmap = plt.get_cmap("Set2")

Fit clustering algorithm to our vectorized features
clus = KMeans(n_clusters=n_clusters, random_state=10)
clusters = clus.fit_predict(vectorized_features)

Plot the dimentionality reduced features on a 2D plane
plt.scatter(umap_features[:, 0], umap_features[:, 1],
 c=[cmap(x/n_clusters) for x in clusters], s=40, alpha=.4)
plt.title('UMAP projection of questions, colored by clusters', fontsize=14)

As you can see in Figure 4-10, the way we would instinctively cluster the 2D repre‐
sentation does not always match with the clusters our algorithm finds on the vector‐
ized data. This can be because of artifacts in our dimensionality reduction algorithm
or a complex data topology. In fact, adding a point’s assigned cluster as a feature can
sometimes improve a model’s performance by letting it leverage said topology.

Once you have clusters, examine each cluster and try to identify trends in your data
on each of them. To do so, you should select a few points per cluster and act as if you
were the model, thus labeling those points with what you think the correct answer
should be. In the next section, I’ll describe how to do this labeling work.

Label to Find Data Trends | 81

Figure 4-10. Visualizing our questions, colored by cluster

Be the Algorithm
Once you’ve looked at aggregate metrics and cluster information, I’d encourage you
to follow the advice in “Monica Rogati: How to Choose and Prioritize ML Projects”
on page 20 and try to do your model’s job by labeling a few data points in each cluster
with the results you would like a model to produce.

If you have never tried doing your algorithm’s job, it will be hard to judge the quality
of its results. On the other side, if you spend some time labeling data yourself, you
will often notice trends that will make your modeling task much easier.

You might recognize this advice from our previous section about heuristics, and it
should not surprise you. Choosing a modeling approach involves making almost as
many assumptions about our data as building heuristics, so it makes sense for these
assumptions to be data driven.

You should label data even if your dataset contains labels. This allows you to validate
that your labels do capture the correct information and that they are correct. In our
case study, we use a question’s score as a measure of its quality, which is a weak label.
Labeling a few examples ourselves will allow us to validate the assumption that this
label is appropriate.

Once you label a few examples, feel free to update your vectorization strategy by
adding any features you discover to help make your data representation as informa‐

82 | Chapter 4: Acquire an Initial Dataset

tive as possible, and go back to labeling. This is an iterative process, as illustrated in
Figure 4-11.

Figure 4-11. The process of labeling data

To speed up your labeling, make sure to leverage your prior analysis by labeling a few
data points in each cluster you have identified and for each common value in your
feature distribution.

One way to do this is to leverage visualization libraries to interactively explore your
data. Bokeh offers the ability to make interactive plots. One quick way to label data is
to go through a plot of our vectorized examples, labeling a few examples for each
cluster.

Figure 4-12 shows a representative individual example from a cluster of mostly unan‐
swered questions. Questions in this cluster tended to be quite vague and hard to
answer objectively and did not receive answers. These are accurately labeled as poor
questions. To see the source code for this plot and an example of its use for the ML

Label to Find Data Trends | 83

Editor, navigate to the exploring data to generate features notebook in this book’s Git‐
Hub repository.

Figure 4-12. Using Bokeh to inspect and label data

When labeling data, you can choose to store labels with the data itself (as an addi‐
tional column in a DataFrame, for example) or separately using a mapping from file
or identifier to label. This is purely a matter of preference.

As you label examples, try to notice which process you are using to make your deci‐
sions. This will help with identifying trends and generating features that will help
your models.

Data Trends
After having labeled data for a while, you will usually identify trends. Some may be
informative (short tweets tend to be simpler to classify as positive or negative) and
guide you to generate useful features for your models. Others may be irrelevant corre‐
lations because of the way data was gathered.

Maybe all of the tweets we collected that are in French happen to be negative, which
would likely lead a model to automatically classify French tweets as negative. I’ll let
you decide how inaccurate that might be on a broader, more representative sample.

If you notice anything of the sort, do not despair! These kinds of trends are crucial to
identify before you start building models, as they would artificially inflate accuracy on
training data and could lead you to put a model in production that does not perform
well.

The best way to deal with such biased examples is to gather additional data to make
your training set more representative. You could also try to eliminate these features
from your training data to avoid biasing your model, but this may not be effective in
practice, as models frequently pick up on bias by leveraging correlations with other
features (see Chapter 8).

84 | Chapter 4: Acquire an Initial Dataset

Once you’ve identified some trends, it is time to use them. Most often, you can do
this in one of two ways, by creating a feature that characterizes that trend or by using
a model that will easily leverage it.

Let Data Inform Features and Models
We would like to use the trends we discover in the data to inform our data process‐
ing, feature generation, and modeling strategy. To start, let’s look at how we could
generate features that would help us capture these trends.

Build Features Out of Patterns
ML is about using statistical learning algorithms to leverage patterns in the data, but
some patterns are easier to capture for models than others. Imagine the trivial exam‐
ple of predicting a numerical value using the value itself divided by 2 as a feature. The
model would simply have to learn to multiply by 2 to predict the target perfectly. On
the other hand, predicting the stock market from historical data is a problem that
requires leveraging much more complex patterns.

This is why a lot of the practical gains of ML come from generating additional fea‐
tures that will help our models identify useful patterns. The ease with which a model
identifies patterns depends on the way we represent data and how much of it we have.
The more data you have and the less noisy your data is, the less feature engineering
work you usually have to do.

It is often valuable to start by generating features, however; first because we will usu‐
ally be starting with a small dataset and second because it helps encode our beliefs
about the data and debug our models.

Seasonality is a common trend that benefits from specific feature generation. Let’s say
that an online retailer noticed that most of their sales happens on the last two week‐
ends of the month. When building a model to predict future sales, they want to make
sure that it has the potential to capture this pattern.

As you’ll see, depending on how they represent dates, the task could prove quite diffi‐
cult for their models. Most models are only able to take numerical inputs (see “Vecto‐
rizing” on page 69 for methods to transform text and images into numerical inputs),
so let’s examine a few ways to represent dates.

Raw datetime
The simplest way to represent time is in Unix time, which represents “the number of
seconds that have elapsed since 00:00:00 Thursday, 1 January 1970.”

While this representation is simple, our model would need to learn some pretty com‐
plex patterns to identify the last two weekends of the month. The last weekend of

Let Data Inform Features and Models | 85

2018, for example (from 00:00:00 on the 29th to 23:59:59 on the 30th of December), is
represented in Unix time as the range from 1546041600 to 1546214399 (you can ver‐
ify that if you take the difference between both numbers, which represents an interval
of 23 hours, 59 minutes, and 59 seconds measured in seconds).

Nothing about this range makes it particularly easy to relate to other weekends in
other months, so it will be quite hard for a model to separate relevant weekends from
others when using Unix time as an input. We can make the task easier for a model by
generating features.

Extracting day of week and day of month
One way to make our representation of dates clearer would be to extract the day of
the week and day of the month into two separate attributes.

The way we would represent 23:59:59 on the 30th of December, 2018, for example,
would be with the same number as earlier, and two additional values representing the
day of the week (0 for Sunday, for example) and day of the month (30).

This representation will make it easier for our model to learn that the values related
to weekends (0 and 6 for Sunday and Saturday) and to later dates in the month corre‐
spond to higher activity.

It is also important to note that representations will often introduce bias to our
model. For example, by encoding the day of the week as a number, the encoding for
Friday (equal to five) will be five times greater than the one for Monday (equal to
one). This numerical scale is an artifact of our representation and does not represent
something we wish our model to learn.

Feature crosses
While the previous representation makes the task easier for our models, they would
still have to learn a complex relationship between the day of the week and the day of
the month: high traffic does not happen on weekends early in the month or on week‐
days late in the month.

Some models such as deep neural networks leverage nonlinear combinations of fea‐
tures and can thus pick up on these relationships, but they often need a significant
amount of data. A common way to address this problem is by making the task even
easier and introducing feature crosses.

A feature cross is a feature generated simply by multiplying (crossing) two or more
features with each other. This introduction of a nonlinear combination of features
allows our model to discriminate more easily based on a combination of values from
multiple features.

86 | Chapter 4: Acquire an Initial Dataset

In Table 4-5, you can see how each of the representations we described would look
for a few example data points.

Table 4-5. Representing your data in a clearer way will make it much easier for your
algorithms to perform well

Human representation Raw data (Unix
datetime)

Day of week
(DoW)

Day of month
(DoM)

Cross (DoW /
DoM)

Saturday, December 29, 2018, 00:00:00 1,546,041,600 7 29 174

Saturday, December 29, 2018, 01:00:00 1,546,045,200 7 29 174

… … … … …

Sunday, December 30, 2018, 23:59:59 1,546,214,399 1 30 210

In Figure 4-13, you can see how these feature values change with time and which
ones make it simpler for a model to separate specific data points from others.

Figure 4-13. The last weekends of the month are easier to separate using feature crosses
and extracted features

There is one last way to represent our data that will make it even easier for our model
to learn the predictive value of the last two weekends of the month.

Giving your model the answer
It may seem like cheating, but if you know for a fact that a certain combination of
feature values is particularly predictive, you can create a new binary feature that takes
a nonzero value only when these features take the relevant combination of values. In

Let Data Inform Features and Models | 87

our case, this would mean adding a feature called “is_last_two_weekends”, for exam‐
ple, that will be set to one only during the last two weekends of the month.

If the last two weekends are as predictive as we had supposed they were, the model
will simply learn to leverage this feature and will be much more accurate. When
building ML products, never hesitate to make the task easier for your model. Better to
have a model that works on a simpler task than one that struggles on a complex one.

Feature generation is a wide field, and methods exist for most types of data. Discus‐
sing every feature that is useful to generate for different types of data is outside the
scope of this book. If you’d like to see more practical examples and methods, I recom‐
mend taking a look at Feature Engineering for Machine Learning (O’Reilly), by Alice
Zheng and Amanda Casari.

In general, the best way to generate useful features is by looking at your data using the
methods we described and asking yourself what the easiest way is to represent it in a
way that will make your model learn its patterns. In the following section, I’ll describe
a few examples of features I generated using this process for the ML Editor.

ML Editor Features
For our ML Editor, using the techniques described earlier to inspect our dataset (see
details of the exploration in the exploring data to generate features notebook, in this
book’s GitHub repository), we generated the following features:

• Action verbs such as can and should are predictive of a question being answered,
so we added a binary value that checks whether they are present in each question.

• Question marks are good predictors as well, so we have generated a has_ques
tion feature.

• Questions about correct use of the English language tended not to get answers, so
we added a is_language_question feature.

• The length of the text of the question is another factor, with very short questions
tending to go unanswered. This led to the addition of a normalized question
length feature.

• In our dataset, the title of the question contains crucial information as well, and
looking at titles when labeling made the task much easier. This led to include the
title text in all the earlier feature calculations.

Once we have an initial set of features, we can start building a model. Building this
first model is the topic of the next chapter, Chapter 5.

Before moving on to models, I wanted to dive deeper on the topic of how to gather
and update a dataset. To do that, I sat down with Robert Munro, an expert in the field.

88 | Chapter 4: Acquire an Initial Dataset

I hope you enjoy the summary of our discussion here, and that it leaves you excited to
move on to our next part, building our first model!

Robert Munro: How Do You Find, Label, and Leverage
Data?
Robert Munro has founded several AI companies, building some of the top teams in
artificial intelligence. He was chief technology officer at Figure Eight, a leading data
labeling company during their biggest growth period. Before that, Robert ran product
for AWS’s first native natural language processing and machine translation services.
In our conversation, Robert shares some lessons he learned building datasets for ML.

Q: How do you get started on an ML project?

A: The best way is to start with the business problem, as it will give you boundaries to
work with. In your ML editor case study example, are you editing text that someone
else has written after they submit it, or are you suggesting edits live as somebody
writes? The first would let you batch process requests with a slower model, while the
second one would require something quicker.

In terms of models, the second approach would invalidate sequence-to-sequence
models as they would be too slow. In addition, sequence-to-sequence models today
do not work beyond sentence-level recommendations and require a lot of parallel text
to be trained. A faster solution would be to leverage a classifier and use the important
features it extracts as suggestions. What you want out of this initial model is an easy
implementation and results you can have confidence in, starting with naive Bayes on
bag of words features, for example.

Finally, you need to spend some time looking at some data and labeling it yourself.
This will give you an intuition for how hard the problem is and which solutions
might be a good fit.

Q: How much data do you need to get started?

A: When gathering data, you are looking to guarantee that you have a representative
and diverse dataset. Start by looking at the data you have and seeing if any types are
unrepresented so that you can gather more. Clustering your dataset and looking for
outliers can be helpful to speed up this process.

For labeling data, in the common case of classification, we’ve seen that labeling on the
order of 1,000 examples of your rarer category works well in practice. You’ll at least
get enough signal to tell you whether to keep going with your current modeling
approach. At around 10,000 examples, you can start to trust in the confidence of the
models you are building.

Robert Munro: How Do You Find, Label, and Leverage Data? | 89

As you get more data, your model’s accuracy will slowly build up, giving you a curve
of how your performance scales with data. At any point you only care about the last
part of the curve, which should give you an estimate of the current value more data
will give you. In the vast majority of cases, the improvement you will get from label‐
ing more data will be more significant than if you iterated on the model.

Q: What process do you use to gather and label data?

A: You can look at your current best model and see what is tripping it up. Uncertainty
sampling is a common approach: identify examples that your model is the most
uncertain about (the ones closest to its decision boundary), and find similar examples
to add to the training set.

You can also train an “error model” to find more data your current model struggles
on. Use the mistakes your model makes as labels (labeling each data point as “predic‐
ted correctly” or “predicted incorrectly”). Once you train an “error model” on these
examples, you can use it on your unlabeled data and label the examples that it pre‐
dicts your model will fail on.

Alternatively, you can train a “labeling model” to find the best examples to label next.
Let’s say you have a million examples, of which you’ve labeled only 1,000. You can
create a training set of 1,000 randomly sampled labeled images, and 1,000 unlabeled,
and train a binary classifier to predict which images you have labeled. You can then
use this labeling model to identify data points that are most different from what
you’ve already labeled and label those.

Q: How do you validate that your models are learning something useful?

A: A common pitfall is to end up focusing labeling efforts on a small part of the rele‐
vant dataset. It may be that your model struggles with articles that are about basket‐
ball. If you keep annotating more basketball articles, your model may become great at
basketball but bad at everything else. This is why while you should use strategies to
gather data, you should always randomly sample from your test set to validate your
model.

Finally, the best way to do it is to track when the performance of your deployed
model drifts. You could track the uncertainty of the model or ideally bring it back to
the business metrics: are your usage metrics gradually going down? This could be
caused by other factors, but is a good trigger to investigate and potentially update
your training set.

Conclusion
In this chapter, we covered important tips to efficiently and effectively examine a
dataset.

90 | Chapter 4: Acquire an Initial Dataset

We started by looking at the quality of data and how to decide whether it is sufficient
for our needs. Next, we covered the best way to get familiar with the type of data you
have: starting with summary statistics and moving on to clusters of similar points to
identify broad trends.

We then covered why it is valuable to spend some significant time labeling data to
identify trends that we can then leverage to engineer valuable features. Finally, we got
to learn from Robert Munro’s experience helping multiple teams build state-of-the-
art datasets for ML.

Now that we’ve examined a dataset and generated features we hope to be predictive,
we are ready to build our first model, which we will do in Chapter 5.

Conclusion | 91

PART III

Iterate on Models

Part I covered best practices to set up an ML project and track its progress. In Part II,
we saw the value of building an end-to-end pipeline as fast as possible along with
exploring an initial dataset.

Because of its experimental nature, ML is very much an iterative process. You should
plan to repeatedly iterate on models and data, following an experimental loop as pic‐
tured in Figure III-1.

Figure III-1. The ML loop

Part III will describe one iteration of the loop. When working on ML projects, you
should plan to go through multiple such iterations before expecting to reach satisfy‐
ing performance. Here is an overview of the chapters in this part of the book:

Chapter 5
In this chapter, we will train a first model and benchmark it. Then, analyze its
performance in depth and identify how it could be improved.

Chapter 6
This chapter covers techniques to build and debug models quickly and avoid
time-consuming errors.

Chapter 7
In this chapter, we will use the ML Editor as a case study to show how to leverage
a trained classifier to provide suggestions to users and build a fully functioning
suggestion model.

CHAPTER 5

Train and Evaluate Your Model

In the previous chapters we’ve covered how to identify the right problem to tackle,
make a plan to tackle it, build a simple pipeline, explore a dataset, and generate an
initial set of features. These steps have allowed us to gather enough information to
begin training an adequate model. An adequate model here means a model that is a
good fit for the task at hand and that has good chances of performing well.

In this chapter, we will start by briefly going over some concerns when choosing a
model. Then, we will describe best practices to separate your data, which will help
evaluate your models in realistic conditions. Finally, we’ll look at methods to analyze
modeling results and diagnose errors.

The Simplest Appropriate Model
Now that we are ready to train a model, we need to decide which model to start with.
It may be tempting to try every possible model, benchmark them all, and pick the one
with the best results on a held-out test set according to some metrics.

In general, this is not the best approach. Not only is it computationally intensive
(there are many sets of models and many parameters for each model, so realistically
you will only be able to test a suboptimal subset), it also treats models as predictive
black boxes and entirely ignores that ML models encode implicit assumptions about the
data in the way they learn.

Different models make different assumptions about the data and so are suited for dif‐
ferent tasks. In addition, since ML is an iterative field, you’ll want to pick models that
you can build and evaluate quickly.

Let’s first define how to identify simple models. Then, we will cover some examples of
data patterns and appropriate models to leverage them.

95

Simple Models
A simple model should be quick to implement, understandable, and deployable:
quick to implement because your first model will likely not be your last, understanda‐
ble because it will allow you to debug it more easily, and deployable because that is a
fundamental requirement for an ML-powered application. Let’s start by exploring
what I mean by quick to implement.

Quick to implement
Choose a model that will be simple for you to implement. Generally, this means pick‐
ing a well-understood model that has multiple tutorials written about it and that peo‐
ple will be able to help you with (especially if you ask well-formulated questions using
our ML Editor!). For a new ML-driven application, you will have enough challenges
to tackle in terms of processing data and deploying a reliable result that you should
initially do your best to avoid all model headaches.

If possible, start by using models from popular libraries such as Keras or scikit-learn,
and hold off before diving into an experimental GitHub repository that has no docu‐
mentation and hasn’t been updated in the last nine months.

Once your model is implemented, you’ll want to inspect and understand how it is lev‐
eraging your dataset. To do so, you need a model that is understandable.

Understandable
Model explainability and interpretability describe the ability for a model to expose
reasons (such as a given combination of predictors) that caused it to make predic‐
tions. Explainability can be useful for a variety of reasons, such as verifying that our
models are not biased in undesirable ways or explaining to a user what they could do
to improve prediction results. It also makes iterating and debugging much easier.

If you can extract the features a model relies on to make decisions, you’ll have a
clearer view of which features to add, tweak, or remove, or which model could make
better choices.

Unfortunately, model interpretability is often complex even for simple models and
sometimes intractable for larger ones. In “Evaluate Feature Importance” on page 121,
we will see ways to tackle this challenge and help you identify points of improvement
for your model. Among other things, we will use black-box explainers that attempt to
provide explanations of a model’s prediction regardless of its internal workings.

Simpler models such as logistic regression or decision trees tend to be easier to
explain as they provide some measure of feature importance, which is another reason
they are usually good models to try first.

96 | Chapter 5: Train and Evaluate Your Model

Deployable
As a reminder, the end goal of your model is to provide a valuable service to people
who will use it. This means when you think of which model to train, you should
always consider whether you will be able to deploy it.

We will cover deployment in Part IV, but you should already be thinking about ques‐
tions such as the following:

• How long will it take a trained model to make a prediction for a user? When
thinking of prediction latency, you should include not only the time it takes for a
model to output a result, but the delay in between when a user submits a predic‐
tion request and receives the result. This includes any preprocessing steps such as
feature generation, any network calls, and any postprocessing steps that happen
in between a model’s output and the data that is presented to a user.

• Is this inference pipeline fast enough for our use case if we take into account the
number of concurrent users we expect?

• How long does it take to train the model, and how often do we need to train it? If
training takes 12 hours and you need to retrain your model every 4 hours to be
fresh, not only will your compute bill be quite expensive, but your model will
always be out of date.

We can compare how simple models are by using a table such as Figure 5-1. As the
field of ML evolves and new tooling is built, models that may be complex to deploy or
hard to interpret today may become simpler to use, and this table will need to be
updated. For this reason, I suggest you build your own version based on your particu‐
lar problem domain.

Figure 5-1. Scoring models based on their simplicity

The Simplest Appropriate Model | 97

Even among models that are simple, interpretable, and deployable, there are still
many potential candidates. To choose a model, you should also take into account the
patterns you identified in Chapter 4.

From Patterns to Models
The patterns we have identified and the features we have generated should guide our
model choice. Let’s cover a few examples of patterns in the data and appropriate mod‐
els to leverage them.

We want to ignore feature scale
Many models will leverage larger features more heavily than smaller ones. This can be
fine in some cases, but undesirable in others. For models using optimization proce‐
dures like gradient descent such as neural networks, differences in feature scale can
sometimes lead to instability in the training procedure.

If you want to use both age in years (ranging from one to a hundred) and income in
dollars (let’s say our data reaches up to nine figures) as two predictors, you need to
make sure that your model is able to leverage the most predictive features, regardless
of their scale.

You can ensure this by preprocessing features to normalize their scale to have zero
mean and unit variance. If all features are normalized to the same range, a model will
consider each of them equally (at least initially).

Another solution is to turn to models that are not affected by differences in feature
scale. The most common practical examples are decision trees, random forests, and
gradient-boosted decision trees. XGBoost is an implementation of gradient-boosted
trees commonly used in production because of its robustness, as well as its speed.

Our predicted variable is a linear combination of predictors
Sometimes, there is good reason to believe that we can make good predictions using
only a linear combination of our features. In these cases, we should use a linear model
such as a linear regression for continuous problems or a logistic regression or naive
Bayes classifier for classification problems.

These models are simple, efficient, and often allow for a direct interpretation of their
weights that can help us identify important features. If we believe the relationships
between our features and our predicted variable are more complex, using a nonlinear
model such as a multilayer neural network or generating feature crosses (see the
beginning of “Let Data Inform Features and Models” on page 85) can help.

98 | Chapter 5: Train and Evaluate Your Model

Our data has a temporal aspect
If we are dealing with time series of data points where the value at a given time
depends on previous values, we would want to leverage models that explicitly encode
this information. Examples of such models include statistical models such as autore‐
gressive integrated moving average (ARIMA) or recurrent neural networks (RNN).

Each data point is a combination of patterns
When tackling problems in the image domain, for example, convolutional neural net‐
works (CNNs) have proven useful through their ability to learn translation-invariant
filters. This means that they are able to extract local patterns in an image regardless of
their position. Once a CNN learns how to detect an eye, it can detect it anywhere in
an image, not just in the places that it appeared in the training set.

Convolutional filters have proven useful in other fields that contain local patterns,
such as speech recognition or text classification, where CNNs have been used success‐
fully for sentence classification. For an example, see the implementation by Yoon Kim
in the paper, “Convolutional Neural Networks for Sentence Classification”.

There are many additional points to consider when thinking of the right models to
use. For most classical ML problems, I recommend using this handy flowchart that
the scikit-learn team helpfully provides. It provides model suggestions for many com‐
mon use cases.

ML Editor model
For the ML Editor, we would like our first model to be fast and reasonably easy to
debug. In addition, our data consists of individual examples, without a need to con‐
sider a temporal aspect (such as a series of questions, for example). For that reason,
we will start with a popular and resilient baseline, a random forest classifier.

Once you’ve identified a model that seems reasonable, it is time to train it. As a gen‐
eral guideline, you should not train your model on the entirety of the dataset you
gathered in Chapter 4. You’ll want to start by holding out some data from your train‐
ing set. Let’s cover why and how you should do that.

Split Your Dataset
The main goal of our model is to provide valid predictions for data that our users will
submit. This means that our model will eventually have to perform well on data that
it has never seen before.

When you train a model on a dataset, measuring its performance on the same dataset
only tells you how good it is at making predictions on data it has already seen. If you
only train a model on a subset of your data, you can then use the data the model was
not trained on to estimate how well it would perform on unseen data.

The Simplest Appropriate Model | 99

In Figure 5-2, you can see an example of a split into three separate sets (train, valida‐
tion, and test) based on an attribute of our dataset (the author of a question). In this
chapter, we will cover what each of these sets means, and how to think about them.

Figure 5-2. Splitting data on author while attributing the right proportion of questions to
each split

The first held-out set to consider is the validation set.

Validation set
To estimate how our model performs on unseen data, we purposefully hold out part
of our dataset from training and then use the performance on this held-out dataset as
a proxy for our model’s performance in production. The held-out set allows us to val‐
idate that our model can generalize to unseen data and thus is often called a valida‐
tion set.

You can choose different sections of your data to hold out as a validation set to evalu‐
ate your model and train it on the remaining data. Doing multiple rounds of this pro‐
cess helps control for any variance due to a particular choice of validation set and is
called cross-validation.

As you change your data preprocessing strategy and the type of model you use or its
hyperparameters, your model’s performance on the validation set will change (and
ideally improve). Using the validation set allows you to tune hyperparameters the
same way that using a training set allows a model to tune its parameters.

After multiple iterations of using the validation set to make model adjustments, your
modeling pipeline can become tailored specifically to performing well on your valida‐

100 | Chapter 5: Train and Evaluate Your Model

tion data. This defeats the purpose of the validation set, which is supposed to be a
proxy for unseen data. For this reason, you should hold out an additional test set.

Test set
Since we will go through multiple cycles of iteration on our model and measure its
performance on a validation set at each cycle, we may bias our model so that it per‐
forms well on the validation set. This helps our model generalize beyond the training
set but also carries the risk of simply learning a model that performs well only on our
particular validation sets. Ideally, we would want to have a model that works well on
new data that is hence not contained in the validation set.

For this reason, we usually hold out a third set called a test set, which serves as a final
benchmark of our performance on unseen data, once we are satisfied with our itera‐
tions. While using a test set is a best practice, practitioners sometimes use the valida‐
tion set as a test set. This increases the risk of biasing a model toward the validation
set but can be appropriate when running only a few experiments.

It is important to avoid using performance on the test set to inform modeling deci‐
sions, as this set is supposed to represent the unseen data we will face in production.
Adapting a modeling approach to perform well on the test set risks leading to overes‐
timating the performance of the model.

To have a model that performs in production, the data you train on should resemble
data produced by users who will interact with your product. Ideally, any kind of data
you could receive from users should be represented in your dataset. If that is not the
case, then keep in mind that your test set performance is indicative of performance
for only a subset of your users.

For the ML Editor, this means that users who do not conform to the demographics of
writers.stackoverflow.com may not be as well served by our recommendations. If we
wanted to address this problem, we should expand the dataset to contain questions
more representative of these users. We could start by incorporating questions from
other Stack Exchange websites to cover a broader set of topics, or different question
and answering websites altogether.

Correcting a dataset in such a manner can be challenging for a side project. When
building consumer-grade products, however, it is necessary to help model weaknesses
be caught early before users are exposed to them. Many of the failure modes we will
cover in Chapter 8 could have been avoided with a more representative dataset.

Relative proportions
In general, you should maximize the amount of data the model can use to learn from,
while holding out large enough validation and test sets to provide accurate perfor‐
mance metrics. Practitioners often use 70% of the data for training, 20% for valida‐

The Simplest Appropriate Model | 101

tion, and 10% for testing, but this depends entirely on the quantity of data. For very
large datasets, you can afford to use a larger proportion of data for training while still
having enough data to validate models. For smaller datasets, you may need to use a
smaller proportion for training in order to have a validation set that is large enough
to provide an accurate performance measurement.

Now you know why you’d want to split data, and which splits to consider, but how
should you decide which datapoint goes in each split? The splitting methods you use
have a significant impact on modeling performance and should depend on the partic‐
ular features of your dataset.

Data leakage
The method you use to separate your data is a crucial part of validation. You should
aim to make your validation/test set close to what you expect unseen data to be like.

Most often, train, validation, and test sets are separated by sampling data points ran‐
domly. In some cases, this can lead to data leakage. Data leakage happens when
(because of our training procedure) a model receives information during training
that it won’t have access to when being used in front of real users in production.

Data leakage should be avoided at all costs, because it leads to an inflated view of the
performance of our model. A model trained on a dataset exhibiting data leakage is
able to leverage information to make predictions that it will not have when it encoun‐
ters different data. This makes the task artificially easier for the model, but only due
to the leaked information. The model’s performance appears high on the held-out
data but will be much worse in production.

In Figure 5-3, I’ve drawn a few common causes where randomly splitting your data
into sets will cause data leakage. There are many potential causes of data leakage, and
we will explore two frequent ones next.

To start our exploration, let’s tackle the example at the top of Figure 5-3, temporal
data leakage. Then, we will move on to sample contamination, a category that encom‐
passes the bottom two examples in Figure 5-3.

102 | Chapter 5: Train and Evaluate Your Model

Figure 5-3. Splitting data randomly can often lead to data leakage

Temporal data leakage. In time-series forecasting, a model needs to learn from data
points in the past to predict events that have not happened yet. If we perform a ran‐
dom split on a forecasting dataset, we will introduce data leakage: a model that is
trained on a random set of points and evaluated on the rest will have access to train‐
ing data that happens after events it is trying to predict.

The model will perform artificially well on the validation and test sets but fail in pro‐
duction, because all it has learned is to leverage future information, which is unavail‐
able in the real world.

Once you are aware of it, temporal data leakage is usually easy to catch. Other types
of data leakage can give a model access to information it should not have during
training and artificially inflate its performance by “contaminating” its training data.
They can often be much harder to detect.

Sample contamination. A common source of data leakage lies in the level at which the
randomness occurs. When building a model to predict the grade students’ essays will
receive, a data scientist I was assisting once found that his model performed close to
perfect on a held-out test set.

On such a hard task, a model that performs so well should be closely examined as it
frequently indicates the presence of a bug or data leakage. Some would say that the
ML equivalent of Murphy’s law is that the more pleasantly surprised you are by the
performance of your model on your test data, the more likely you are to have an error
in your pipeline.

In this example, because most students had written multiple essays, splitting data ran‐
domly led to essays by the same students being present both in the training and in the
test sets. This allowed the model to pick up on features that identified students and

The Simplest Appropriate Model | 103

use that information to make accurate predictions (students in this dataset tended to
have similar grades across all their essays).

If we were to deploy this essay score predictor for future use, it would not be able to
predict useful scores for students it hadn’t seen before and would simply predict his‐
torical scores for students whose essays it has been trained on. This would not be use‐
ful at all.

To solve the data leakage in this example, a new split was made at the student rather
than the essay level. This meant that each student appeared either only in the training
set or only in the validation set. Since the task became much harder, this led to a
decrease in model accuracy. However, since the training task was now much closer to
what it would be in production, this new model was much more valuable.

Sample contamination can happen in nuanced ways in common tasks. Let’s take the
example of an apartment rental booking website. This website incorporates a click
prediction model that, given a user query and an item, predicts whether the user will
click on the item. This model is used to decide which listings to display to users.

To train such a model, this website could use a dataset of user features such as their
number of previous bookings, paired with apartments that were presented to them
and whether they clicked on them. This data is usually stored in a production data‐
base that can be queried to produce such pairs. If engineers of this website were to
simply query the database to build such a dataset, they would likely be faced with a
case of data leakage. Can you see why?

In Figure 5-4, I’ve sketched out an illustration of what can go wrong by depicting a
prediction for a specific user. At the top, you can see the features that a model could
use in production to provide a click prediction. Here, a new user with no previous
bookings is presented with a given apartment. At the bottom, you can see the state of
the features a few days later when engineers extract data from the database.

Figure 5-4. Data leakage can happen for subtle reasons, such as due to a lack of data
versioning

104 | Chapter 5: Train and Evaluate Your Model

Notice the difference in previous_bookings, which is due to user activity that hap‐
pened after they were initially presented with the listing. By using a snapshot of a
database, information about future actions of the user was leaked into the training
set. We now know that the user will eventually book five apartments! Such leakage
can lead a model trained with information at the bottom to output a correct predic‐
tion on the incorrect training data. The accuracy of the model on the generated data‐
set will be high because it is leveraging data it will not have access to in production.
When the model is deployed, it will perform worse than expected.

If you take anything away from this anecdote, it is to always investigate the results of a
model, especially if it shows surprisingly strong performance.

ML Editor Data Split
The dataset we are using to train our ML Editor contains questions asked on Stack
Overflow, as well as their answers. At first glance, a random split can seem sufficient
and is quite simple to implement in scikit-learn. We could, for example, write a func‐
tion like the one shown here:

from sklearn.model_selection import train_test_split

def get_random_train_test_split(posts, test_size=0.3, random_state=40):
 """
 Get train/test split from DataFrame
 Assumes the DataFrame has one row per question example
 :param posts: all posts, with their labels
 :param test_size: the proportion to allocate to test
 :param random_state: a random seed
 """
 return train_test_split(
 posts, test_size=test_size, random_state=random_state
)

There is a potential reach for leakage with such an approach; can you identify it?

If we think back to our use case, we know we would like our model to work on ques‐
tions it has not seen before, only looking at their content. On a question and answer‐
ing website, however, many other factors can play into whether a question is
answered successfully. One of these factors is the identity of the author.

If we split our data randomly, a given author could appear both in our training and
validation sets. If certain popular authors have a distinctive style, our model could
overfit on this style and reach artificially high performance on our validation set due
to data leakage. To avoid this, it would be safer for us to make sure each author
appears only in training or validation. This is the same type of leakage we described
in the student grading example earlier.

The Simplest Appropriate Model | 105

Using scikit-learn’s GroupShuffleSplit class and passing the feature representing an
author’s unique ID to its split method, we can guarantee that a given author appears
in only one of the splits.

from sklearn.model_selection import GroupShuffleSplit

def get_split_by_author(
 posts, author_id_column="OwnerUserId", test_size=0.3, random_state=40
):
 """
 Get train/test split
 Guarantee every author only appears in one of the splits
 :param posts: all posts, with their labels
 :param author_id_column: name of the column containing the author_id
 :param test_size: the proportion to allocate to test
 :param random_state: a random seed
 """
 splitter = GroupShuffleSplit(
 n_splits=1, test_size=test_size, random_state=random_state
)
 splits = splitter.split(posts, groups=posts[author_id_column])
 return next(splits)

To see a comparison between both splitting methods, refer to the splitting data note‐
book in this book’s GitHub repository.

Once a dataset is split, a model can be fit to the training set. We’ve covered the
required parts of a training pipeline in “Start with a Simple Pipeline” on page 37. In
the training of a simple model notebook in the GitHub repository for this book, I
show an example of an end-to-end training pipeline for the ML Editor. We will ana‐
lyze the results of this pipeline.

We’ve covered the main risks we want to keep in mind when splitting data, but what
should we do once our dataset is split and we’ve trained a model on the training split?
In the next section, we’ll talk about different practical ways to evaluate trained models
and how to leverage them best.

Judge Performance
Now that we have split our data, we can train our model and judge how it performed.
Most models are trained to minimize a cost function, which represents how far a
model’s predictions are from the true labels. The smaller the value of the cost func‐
tion, the better the model fits the data. Which function you minimize depends on
your model and your problem, but it is generally a good idea to take a look at its
value both on the training set and on the validation set.

This commonly helps estimate the bias-variance trade-off of our model, which meas‐
ures the degree to which our model has learned valuable generalizable information
from the data, without memorizing the details of our training set.

106 | Chapter 5: Train and Evaluate Your Model

I’m assuming familiarity with standard classification metrics, but
here is a short reminder just in case. For classification problems,
accuracy represents the proportion of examples a model predicts
correctly. In other words, it is the proportion of true results, which
are both true positives and true negatives. In cases with a strong
imbalance, a high accuracy can mask a poor model. If 99% of cases
are positive, a model that always predicts the positive class will
have 99% accuracy but may not be very useful. Precision, recall,
and f1 score address this limitation. Precision is the proportion of
true positives among examples predicted as positive. Recall is the
proportion of true positives among elements that had a positive
label. The f1 score is the harmonic mean of precision and recall.

In the training of a simple model notebook in this book’s GitHub repository, we train
a first version of a random forest using TF-IDF vectors and the features we identified
in “ML Editor Features” on page 88.

Here are the accuracy, precision, recall, and f1 scores for our training set and our vali‐
dation set.

Training accuracy = 0.585, precision = 0.582, recall = 0.585, f1 = 0.581
Validation accuracy = 0.614, precision = 0.615, recall = 0.614, f1 = 0.612

Taking a quick look at these metrics allows us to notice two things:

• Since we have a balanced dataset consisting of two classes, picking a class at ran‐
dom for every example would give us roughly 50% accuracy. Our model’s accu‐
racy reaches 61%, better than a random baseline.

• Our accuracy on the validation set is higher than on the training set. It seems our
model works well on unseen data.

Let’s dive deeper to find out more about the performance of the model.

Bias variance trade-off
Weak performance on the training set is a symptom of high bias, also called underfit‐
ting, which means a model has failed to capture useful information: it is not even able
to perform well on data points it has already been given the label for.

Strong performance on the training set but weak performance on the validation set is
a symptom of high variance, also called overfitting, meaning that a model has found
ways to learn the input/output mapping for the data it has been trained on, but what
it has learned does not generalize to unseen data.

Underfitting and overfitting are two extreme cases of the bias-variance trade-off,
which describes how the types of errors a model makes change as its complexity

The Simplest Appropriate Model | 107

increases. As model complexity grows, variance increases and bias decreases, and the
model goes from underfitting to overfitting. You can see this depicted in Figure 5-5.

Figure 5-5. As complexity increases, bias decreases but variance increases as well

In our case, since our validation performance is better than our training perfor‐
mance, we can see that our model is not overfitting the training data. We can likely
increase the complexity of our model or features to improve performance. Fighting
the bias-variance trade-off requires finding an optimal point between reducing bias,
which increases a model’s performance on the training set, and reducing variance,
which increases its performance on the validation set (often worsening training per‐
formance as a byproduct).

Performance metrics help generate an aggregate perspective of a model’s perfor‐
mance. This is helpful to guess how a model is doing but does not provide much intu‐
ition as to what precisely a model is succeeding or failing at. To improve our model,
we need to dive deeper.

Going beyond aggregate metrics
A performance metric helps determine whether a model has learned correctly from a
dataset or whether it needs to be improved. The next step is to examine results fur‐
ther in order to understand in which way a model is failing or succeeding. This is cru‐
cial for two reasons:

108 | Chapter 5: Train and Evaluate Your Model

Performance validation
Performance metrics can be very deceptive. When working on a classification
problem with severely imbalanced data such as predicting a rare disease that
appears in fewer than 1% of patients, any model that always predicts that a
patient is healthy will reach an accuracy of 99%, even though it has no predictive
power at all. There exists performance metrics suited for most problems (the f1
score would work better for the previous problem), but the key is to remember
that they are aggregate metrics and paint an incomplete picture of the situation.
To trust the performance of a model, you need to inspect results at a more granu‐
lar level.

Iteration
Model building is an iterative process, and the best way to start an iteration loop
is by identifying both what to improve and how to improve it. Performance met‐
rics do not help identify where a model is struggling and which part of the pipe‐
line needs improvement. Too often, I’ve seen data scientists try to improve model
performance by simply trying many other models or hyperparameters, or build‐
ing additional features haphazardly. This approach amounts to throwing darts at
the wall while blindfolded. The key to building successful models quickly is to
identify and address specific reasons models are failing.

With these two motivations in mind, we will cover a few ways to dive deeper into the
performance of a model.

Evaluate Your Model: Look Beyond Accuracy
There are a myriad of ways to inspect how a model is performing, and we will not
cover every potential evaluation method. We will focus on a few that are often helpful
to tease out what might be happening below the surface.

When it comes to investigating model performance, think of yourself as a detective
and each of the methods covered next as different ways to surface clues. We’ll start by
covering multiple techniques that contrast a model’s prediction with the data to
uncover interesting patterns.

Contrast Data and Predictions
The first step to evaluating a model in depth is to find more granular ways than
aggregate metrics to contrast data and predictions. We’d like to break down aggregate
performance metrics such as accuracy, precision, or recall on different subsets of our
data. Let’s see how to do this for the common ML challenge of classification.

You can find all the code examples in the comparing data to predictions notebook in
this book’s GitHub repository.

Evaluate Your Model: Look Beyond Accuracy | 109

For classification problems, I usually recommend starting by looking at a confusion
matrix, shown in Figure 5-6, whose rows represent each true class, and columns rep‐
resent the predictions of our model. A model with perfect predictions will have a con‐
fusion matrix with zeros everywhere except in the diagonal going from the top left to
the bottom right. In reality, that is rarely the case. Let’s take a look at why a confusion
matrix is often very useful.

Confusion Matrix
A confusion matrix allows us at a glance to see whether our model is particularly suc‐
cessful on certain classes and struggles on some others. This is particularly useful for
datasets with many different classes or classes that are imbalanced.

Oftentimes, I’ve seen models with impressive accuracy show a confusion matrix with
one column entirely empty, meaning that there is a class that the model never pre‐
dicts. This often happens for rare classes and can sometimes be harmless. If the rare
class represents an important outcome, however, such as a borrower defaulting on a
loan, a confusion matrix will help us notice the problem. We can then correct it by
weighing the rare class more heavily in our model’s loss function, for example.

The top row of Figure 5-6 shows that the initial model we’ve trained does well when it
comes to predicting low-quality questions. The bottom row shows that the model
struggles to detect all high-quality questions. Indeed, out of all the questions that
received a high score, our model only predicts their class correctly half of the time.
Looking at the right column, however, we can see that when the model predicts that a
question is high quality, its prediction tends to be accurate.

Confusion matrices can be even more useful when working on problems with more
than two classes. For example, I once worked with an engineer who was trying to
classify words from speech utterances who plotted a confusion matrix for his latest
model. He immediately noticed two symmetrical, off-diagonal values that were
abnormally high. These two classes (which each represented a word) were confusing
the model and the cause of a majority of its errors. Upon further inspection, it turns
out that the words that were confusing the model were when and where. Gathering
additional data for these two examples was enough to help the model better differen‐
tiate these similar-sounding words.

A confusion matrix allows us to compare a model’s predictions with the true classes
for each class. When debugging models, we may want to look deeper than their pre‐
dictions and examine the probabilities output by the model.

110 | Chapter 5: Train and Evaluate Your Model

Figure 5-6. Confusion matrix for an initial baseline on our question classification task

ROC Curve
For binary classification problems, receiver operating characteristic (ROC) curves
can also be very informative. An ROC curve plots the true positive rate (TPR) as a
function of the false positive rate (FPR).

The vast majority of models used in classification return a probability score that a
given example belongs to a certain class. This means that at inference time, we can
choose to attribute an example to a certain class if the probability given by the model
is above a certain threshold. This is usually called the decision threshold.

By default, most classifiers use a probability of 50% for their decision threshold, but
this is something we can change based on our use case. By varying the threshold reg‐
ularly from 0 to 1 and measuring the TPR and FPR at each point, we obtain an ROC
curve.

Evaluate Your Model: Look Beyond Accuracy | 111

Once we have a model’s prediction probability and the associated true labels, getting
FPRs and TPRs is simple using scikit-learn. We can then generate an ROC curve.

from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(true_y, predicted_proba_y)

Two details are important to understand for ROC curves such as the one plotted in
Figure 5-7. First, the diagonal line going between the bottom left to the top right rep‐
resents guessing randomly. This means that to beat a random baseline, a classifier/
threshold pair should be above this line. In addition, the perfect model would be rep‐
resented by the green dotted line on the top left.

Figure 5-7. ROC curve for an initial model

Because of these two details, classification models often use the area under the curve
(AUC) to represent performance. The larger the AUC, the closer to a “perfect” model
our classifier could be. A random model will have an AUC of 0.5, while a perfect

112 | Chapter 5: Train and Evaluate Your Model

model has an AUC of 1. When concerning ourselves with a practical application,
however, we should choose one specific threshold that gives us the most useful
TPR/FPR ratio for our use case.

For that reason, I recommend adding vertical or horizontal lines to an ROC curve
that represent our product needs. When building a system that routes customer
requests to staff if it is deemed urgent enough, the FPR you can afford is then entirely
determined by the capacity of your support staff and the number of users you have.
This means that any models with an FPR higher than that limit should not even be
considered.

Plotting a threshold on an ROC curve allows you to have a more concrete goal than
simply getting the largest AUC score. Make sure your efforts count toward your goal!

Our ML Editor model classifies questions as good or bad. In this context, the TPR
represents the proportion of high-quality questions our model correctly judges as
good. The FPR is the proportion of bad questions our model claims is good. If we do
not help our users, we’d like to at least guarantee we don’t harm them. This means
that we should not use any model that risks recommending bad questions too fre‐
quently. We should thus set a threshold for our FPR, such as 10%, for example, and
use the best model we can find under that threshold. In Figure 5-8, you can see this
requirement represented on our ROC curve; it has significantly reduced the space of
acceptable decision thresholds for models.

An ROC curve gives us a more nuanced view of how a model’s performance changes
as we make its predictions more or less conservative. Another way to look at a mod‐
el’s prediction probability is to compare its distributions with the true class distribu‐
tions to see whether it is well calibrated.

Evaluate Your Model: Look Beyond Accuracy | 113

Figure 5-8. Adding ROC lines representing our product need

Calibration Curve
Calibration plots are another informative plot for binary classification tasks, as they
can help us get a sense for whether our model’s outputted probability represents its
confidence well. A calibration plot shows the fraction of true positive examples as a
function of the confidence of our classifier.

For example, out of all the data points our classifier gives a probability of being classi‐
fied as positive that is higher than 80%, how many of those data points are actually
positive? A calibration curve for a perfect model will be a diagonal line from bottom
left to top right.

In Figure 5-9, we can see at the top that our model is well calibrated between .2
and .7, but not for probabilities outside of that range. Taking a look at the histogram

114 | Chapter 5: Train and Evaluate Your Model

of predicted probabilities below reveals that our model very rarely predicts probabili‐
ties outside of that range, which is likely leading to the extreme results shown earlier.
The model is rarely confident in its predictions.

Figure 5-9. A calibration curve: the diagonal line represents a perfect model (top); histo‐
gram of predicted values (bottom)

For many problems, such as predicting CTR in ad serving, the data will lead to our
models being quite skewed when probabilities get close to 0 or 1, and a calibration
curve will help us see this at a glance.

To diagnose the performance of a model, it can be valuable to visualize individual
predictions. Let’s cover methods to make this visualization process efficient.

Evaluate Your Model: Look Beyond Accuracy | 115

Dimensionality Reduction for Errors
We described vectorization and dimensionality reduction techniques for data explo‐
ration in “Vectorizing” on page 69 and “Dimensionality reduction” on page 78. Let’s
see how the same techniques can be used to make error analysis more efficient.

When we first covered how to use dimensionality reduction methods to visualize
data, we colored each point in a dataset by its class to observe the topology of labels.
When analyzing model errors, we can use different color schemes to identify errors.

To identify error trends, color each data point by whether a model’s prediction was
correct or not. This will allow you to identify types of similar data points a model per‐
forms poorly on. Once you identify a region in which a model performs poorly, visu‐
alize a few data points in it. Visualizing hard examples is a great way to generate
features represented in these examples to help a model fit them better.

To help surface trends in hard examples, you can also use the clustering methods
from “Clustering” on page 80. After clustering data, measure model performance on
each cluster and identify clusters where the model performs worst. Inspect data
points in these clusters to help you generate more features.

Dimensionality reduction techniques are one way of surfacing challenging examples.
To do so, we can also directly use a model’s confidence score.

The Top-k Method
Finding dense error regions helps identify failure modes for a model. Above, we used
dimensionality reduction to help us find such regions, but we can also directly use a
model itself. By leveraging prediction probabilities, we can identify data points that
were most challenging or for which a model was most uncertain. Let’s call this
approach the top-k method.

The top-k method is straightforward. First, pick a manageable number of examples to
visualize that we will call k. For a personal project where a single person will be visu‐
alizing results, start with ten to fifteen examples. For each class or cluster you have
previously found, visualize:

• The k best performing examples
• The k worst performing examples
• The k most uncertain examples

Visualizing these examples will help you identify examples that are easy, hard, or con‐
fusing to your model. Let’s dive into each category in more detail.

116 | Chapter 5: Train and Evaluate Your Model

The k best performing examples
First, display the k examples your model predicted correctly and was most confident
about. When visualizing those examples, aim to identify any commonality in feature
value among them that could explain model performance. This will help you identify
features that are successfully leveraged by a model.

After visualizing successful examples to identify features leveraged by a model, plot
unsuccessful ones to identify features it fails to pick up on.

The k worst performing examples
Display the k examples your model predicted incorrectly and was most confident
about. Start with k examples in training data and then validation.

Just like visualizing error clusters, visualizing k examples that a model performs the
worst on in a training set can help identify trends in data points the model fails on.
Display these data points to help you identify additional features that would make
them easier for a model.

When exploring an initial model’s error for the ML Editor, for example, I found that
some questions posted received a low score because they did not contain an actual
question. The model was not initially able to predict a low score for such questions,
so I added a feature to count question marks in the body of the text. Adding this fea‐
ture allowed the model to make accurate predictions for these “nonquestion”
questions.

Visualizing the k worst examples in the validation data can help identify examples
that significantly differ from the training data. If you do identify examples in the vali‐
dation set that are too hard, refer to tips in “Split Your Dataset” on page 99 to update
your data splitting strategy.

Finally, models are not always confidently right or wrong; they can also output uncer‐
tain predictions. I’ll cover those next.

The k most uncertain examples
Visualizing the k most uncertain examples consists of displaying examples for which
a model was least confident in its predictions. For a classification model, which this
book focuses mostly on, uncertain examples are ones where a model outputs as close
to an equal probability as possible for each class.

If a model is well calibrated (see “Calibration Curve” on page 114 for an explanation
of calibration), it will output uniform probabilities for examples that a human labeler
would be uncertain about as well. For a cat versus dog classifier, for example, a pic‐
ture containing both a dog and a cat would fall into that category.

Evaluate Your Model: Look Beyond Accuracy | 117

Uncertain examples in the training set are often a symptom of conflicting labels.
Indeed, if a training set contains two duplicate or similar examples that are each
labeled a different class, a model will minimize its loss during training by outputting
an equal probability for each class when presented with this example. Conflicting
labels thus lead to uncertain predictions, and you can use the top-k method to
attempt to find these examples.

Plotting the top-k most uncertain examples in your validation set can help find gaps
in your training data. Validation examples that a model is uncertain about but are
clear to a human labeler are often a sign that the model has not been exposed to this
kind of data in its training set. Plotting the top-k uncertain examples for a validation
set can help identify data types that should be present in the training set.

Top-k evaluation can be implemented in a straightforward manner. In the next sec‐
tion, I’ll share a working example.

Top-k implementation tips
The following is a simple top-k implementation that works with pandas DataFrames.
The function takes as input a DataFrame containing predicted probabilities and
labels and returns each of the top-k above. It can be found in this book’s GitHub
repository.

def get_top_k(df, proba_col, true_label_col, k=5, decision_threshold=0.5):
 """
 For binary classification problems
 Returns k most correct and incorrect example for each class
 Also returns k most unsure examples
 :param df: DataFrame containing predictions, and true labels
 :param proba_col: column name of predicted probabilities
 :param true_label_col: column name of true labels
 :param k: number of examples to show for each category
 :param decision_threshold: classifier decision boundary to classify as
 positive
 :return: correct_pos, correct_neg, incorrect_pos, incorrect_neg, unsure
 """
 # Get correct and incorrect predictions
 correct = df[
 (df[proba_col] > decision_threshold) == df[true_label_col]
].copy()
 incorrect = df[
 (df[proba_col] > decision_threshold) != df[true_label_col]
].copy()

 top_correct_positive = correct[correct[true_label_col]].nlargest(
 k, proba_col
)
 top_correct_negative = correct[~correct[true_label_col]].nsmallest(
 k, proba_col
)

118 | Chapter 5: Train and Evaluate Your Model

 top_incorrect_positive = incorrect[incorrect[true_label_col]].nsmallest(
 k, proba_col
)
 top_incorrect_negative = incorrect[~incorrect[true_label_col]].nlargest(
 k, proba_col
)

 # Get closest examples to decision threshold
 most_uncertain = df.iloc[
 (df[proba_col] - decision_threshold).abs().argsort()[:k]
]

 return (
 top_correct_positive,
 top_correct_negative,
 top_incorrect_positive,
 top_incorrect_negative,
 most_uncertain,
)

Let’s illustrate the top-k method by using it for the ML Editor.

Top-k method for the ML Editor
We’ll apply the top-k method to the first classifier that we trained. A notebook con‐
taining usage examples for the top-k method is available in this book’s GitHub reposi‐
tory.

Figure 5-10 shows the top two most correct examples for each class for our first ML
Editor model. The feature that differs the most between both classes is text_len,
which represents the length of the text. The classifier has learned that good questions
tend to be long, and poor ones are short. It relies heavily on text length to discrimi‐
nate between classes.

Evaluate Your Model: Look Beyond Accuracy | 119

Figure 5-10. Top-k most correct

Figure 5-11 confirms this hypothesis. The unanswered questions our classifier pre‐
dicts as most likely to be answered are the longest ones, and vice versa. This observa‐
tion also corroborates what we found in “Evaluate Feature Importance” on page 121,
where we saw text_len was the most important feature.

Figure 5-11. Top-k most incorrect

We’ve established that the classifier leverages text_len to easily identify answered
and unanswered questions, but that this feature is not sufficient and leads to misclas‐
sifications. We should add more features to improve our model. Visualizing more
than two examples would help identify more candidate features.

Using the top-k method on both training and validation data helps identify limits of
both our model and dataset. We’ve covered how it can help identify whether a model

120 | Chapter 5: Train and Evaluate Your Model

has the capacity to represent data, whether a dataset is balanced enough, and whether
it contains enough representative examples.

We mostly covered evaluation methods for classification models, since such models
are applicable for many concrete problems. Let’s briefly take a look at ways to inspect
performance when not doing classification.

Other Models
Many models can be evaluated using a classification framework. In object detection,
for example, where the goal is for a model to output bounding boxes around objects
of interest in an image, accuracy is a common metric. Since each image can have mul‐
tiple bounding boxes representing objects and predictions, calculating an accuracy
requires an additional step. First, computing the overlap between predictions and
labels (often using the Jaccard index) allows each prediction to be marked as correct
or incorrect. From there, one can calculate accuracy and use all the previous methods
in this chapter.

Similarly, when building models aiming to recommend content, the best way to iter‐
ate is often to test the model on a variety of categories and report its performance.
The evaluation then becomes similar to a classification problem, where each category
represents a class.

For types of problems where such methods may prove tricky, such as with generative
models, you can still use your previous exploration of data to separate a dataset in
multiple categories and generate performance metrics for each category.

When I worked with a data scientist building a sentence simplification model, exam‐
ining the model’s performance conditioned on sentence length showed that longer
sentences proved much harder for the model. This took inspection and hand labeling
but led to a clear next action step of augmenting the training data with longer senten‐
ces, which helped improve performance significantly.

We’ve covered many ways to inspect a model’s performance by contrasting its predic‐
tions with labels, but we can also inspect the model itself. If a model isn’t performing
well at all, it may be worthwhile to try to interpret its predictions.

Evaluate Feature Importance
An additional way to analyze a model’s performance is to inspect which features of
the data it is using to make predictions. Doing so is called feature importance analy‐
sis. Evaluating feature importance is helpful to eliminate or iterate on features that are
currently not helping the model. Feature importance can also help identify features
that are suspiciously predictive, which is often a sign of data leakage. We will start by

Evaluate Feature Importance | 121

generating feature importance for models that can do so easily and then cover cases
where such features may not be easy to extract directly.

Directly from a Classifier
To validate that a model is working correctly, visualize which features the model is
using or ignoring. For simple models such as regression or decision trees, extracting
the importance of features is straightforward by looking at the learned parameters of
the model.

For the first model we used in the ML Editor case study, which is a random forest, we
can simply use scikit-learn’s API to obtain a ranked list of the importance of all fea‐
tures. The feature importance code and its usages can be found in the feature impor‐
tance notebook in this book’s GitHub repository.

def get_feature_importance(clf, feature_names):
 importances = clf.feature_importances_
 indices_sorted_by_importance = np.argsort(importances)[::-1]
 return list(
 zip(
 feature_names[indices_sorted_by_importance],
 importances[indices_sorted_by_importance],
)
)

If we use the function above on our trained model, with some simple list processing
we can get a simple list of the ten most informative features:

Top 10 importances:

text_len: 0.0091
are: 0.006
what: 0.0051
writing: 0.0048
can: 0.0043
ve: 0.0041
on: 0.0039
not: 0.0039
story: 0.0039
as: 0.0038

There are a few things to notice here:

• The length of the text is the most informative feature.
• The other features we generated do not appear at all, with importances more than

an order of magnitude lower than others. The model was not able to leverage
them to meaningfully separate classes.

122 | Chapter 5: Train and Evaluate Your Model

• The other features represent either very common words, or nouns relevant to the
topic of writing.

Because our model and features are simple, these results can actually give us ideas for
new features to build. We could, for example, add a feature that counts the usage of
common and rare words to see if they are predictive of an answer receiving a high
score.

If features or models become complex, generating feature importances requires using
model explainability tools.

Black-Box Explainers
When features become complicated, feature importances can become harder to inter‐
pret. Some more complex models such as neural networks may not even be able to
expose their learned feature importances. In such situations, it can be useful to lever‐
age black-box explainers, which attempt to explain a model’s predictions independ‐
ently of its inner workings.

Commonly, these explainers identify predictive features for a model on a given data
point instead of globally. They do this by changing each feature value for a given
example and observing how the model’s predictions change as a consequence. LIME
and SHAP are two popular black-box explainers.

For an end-to-end example of using these, see the black-box explainer notebook in
the book’s GitHub repository.

Figure 5-12 shows an explanation provided by LIME around which words were most
important in deciding to classify this example question as high quality. LIME gener‐
ated these explanations by repeatedly removing words from the input question and
seeing which words make our model lean more towards one class or another.

Figure 5-12. Explaining one particular example

We can see that the model correctly predicted that the question would receive a high
score. However, the model was not confident, outputting only a 52% probability. The
right side of Figure 5-12 shows the most impactful words for the prediction. These
words do not seem like they should be particularly relevant to a question being of

Evaluate Feature Importance | 123

high quality, so let’s examine more examples to see if the model leverages more useful
patterns.

To get a quick sense of trends, we can use LIME on a larger sample of questions. Run‐
ning LIME on each question and aggregating the results can give us an idea of which
word our model finds predictive overall to make its decisions.

In Figure 5-13 we plot the most important predictions across 500 questions in our
dataset. We can see the trend of our model leveraging common words is apparent in
this larger sample as well. It seems that the model is having a hard time generalizing
beyond leveraging frequent words. The bag of words features representing rare words
most often have a value of zero. To improve on this, we could either gather a larger
dataset to expose our models to a more varied vocabulary, or create features that will
be less sparse.

Figure 5-13. Explaining multiple examples

124 | Chapter 5: Train and Evaluate Your Model

You’ll often be surprised by the predictors your model ends up using. If any features
are more predictive for the model than you’d expect, try to find examples containing
these features in your training data and examine them. Use this opportunity to dou‐
ble check how you split your dataset and watch for data leakage.

When building a model to automatically classify emails into different topics based on
their content, for example, an ML Engineer I was mentoring once found that the best
predictor was a three-letter code at the top of the email. It turns out this was an inter‐
nal code to the dataset that mapped almost perfectly to the labels. The model was
entirely ignoring the content of the email, and memorizing a pre-existing label. This
was a clear example of data leakage, which was only caught by looking at feature
importance.

Conclusion
We started this chapter by covering criteria to decide on an initial model based on all
we’ve learned so far. Then, we covered the importance of splitting data into multiple
sets, and methods to avoid data leakage.

After training an initial model, we took a deep dive into ways to judge how well it is
performing by finding different ways to compare and contrast its predictions to the
data. Finally, we went on to inspect the model itself by displaying feature importances
and using a black-box explainer to gain an intuition for the feature it uses to make
predictions.

By now, you should have some intuition about improvements you could make to
your modeling. This takes us to the topic of Chapter 6 where we will take a deeper
dive on methods to tackle the problems we’ve surfaced here, by debugging and
troubleshooting an ML pipeline.

Conclusion | 125

CHAPTER 6

Debug Your ML Problems

In the previous chapter, we trained and evaluated our first model.

Getting a pipeline to a satisfactory level of performance is hard and requires multiple
iterations. The goal of this chapter is to guide you through one such iteration cycle. In
this chapter, I will cover tools to debug modeling pipelines and ways to write tests to
make sure they stay working once we start changing them.

Software best practices encourage practitioners to regularly test, validate, and inspect
their code, especially for sensitive steps such as security or input parsing. This should
be no different for ML, where errors in a model can be much harder to detect than in
traditional software.

We will cover some tips that will help you make sure that your pipeline is robust and
that you can try it out without causing your entire system to fail, but first let’s dig into
software best practices!

Software Best Practices
For most ML projects, you will repeat the process of building a model, analyzing its
shortcomings, and addressing them multiple times. You are also likely to change each
part of your infrastructure more than once, so it is crucial to find methods to increase
iteration speed.

In ML just like with any other software project, you should follow time-tested soft‐
ware best practices. Most of them can be applied to ML projects with no modifica‐
tions, such as building only what you need, often referred to as the Keep It Stupid
Simple (KISS) principle.

ML projects are iterative in nature and go through many different iterations of data
cleaning and feature generation algorithms, as well as model choices. Even when

127

following these best practices, two areas often end up slowing down iteration speed:
debugging and testing. Speeding up debugging and test writing can have a significant
impact on any projects but is even more crucial for ML projects, where the stochastic
nature of models often turns a simple error into a days-long investigation.

Many resources exist to help you learn how to debug general programs, such as the
University of Chicago’s concise debugging guide. If, like most ML practitioners, your
language of choice is Python, I recommend looking through the Python documenta‐
tion for pdb, the standard library debugger.

More than most pieces of software, however, ML code can often execute seemingly
correctly but produce entirely absurd results. This means that while these tools and
tips apply as is to most ML code, they are not sufficient to diagnose common prob‐
lems. I illustrate this in Figure 6-1: while in most software applications, having strong
test coverage can give us a high level of confidence that our application is functioning
well, ML pipelines can pass many tests but still give entirely incorrect results. An ML
program doesn’t just have to run—it should produce accurate predictive outputs.

Figure 6-1. An ML pipeline can execute with no errors and still be wrong

Because ML presents an additional set of challenges when it comes to debugging, let’s
cover a few specific methods that help.

ML-Specific Best Practices
When it comes to ML more than any type of software, merely having a program exe‐
cute end-to-end is not sufficient to be convinced of its correctness. An entire pipeline
can run with no errors and produce an entirely useless model.

Let’s say your program loads data and passes it to a model. Your model takes in these
inputs and optimizes the model’s parameters based on a learning algorithm. Finally,

128 | Chapter 6: Debug Your ML Problems

your trained model produces outputs from a different set of data. Your program has
run without any visible bugs. The problem is that just by having your program run,
you have no guarantee at all that your model’s predictions are correct.

Most models simply take a numerical input of a given shape (say a matrix represent‐
ing an image) and output data of a different shape (a list of coordinates of key points
in the input image, for example). This means that most models will still run even if a
data processing step corrupted the data before passing it to the model, as long as the
data is still numeric and of a shape the model can take as input.

If your modeling pipeline performs poorly, how can you know whether it is due to
the quality of a model or the presence of a bug earlier in the process?

The best way to tackle these problems in ML is to follow a progressive approach. Start
by validating the data flow, then the learning capacity, and finally generalization and
inference. Figure 6-2 shows an overview of the process we will cover in this chapter.

Figure 6-2. The order in which to debug a pipeline

This chapter will take you through each of these three steps, explaining each one in
depth. It can be tempting to skip steps in this plan when faced with a perplexing bug,
but the vast majority of times I’ve found that following this principled approach is the
fastest way to identify and correct errors.

Let’s start by validating the data flow. The simplest way to do this is by taking a very
small subset of data and verifying that it can flow all the way through your pipeline.

Software Best Practices | 129

Debug Wiring: Visualizing and Testing
This first step is simple and will make life dramatically simpler once you adopt it:
start by making your pipelines work for a small subset of examples in your dataset.
This corresponds to the wiring step in Figure 6-2. Once you’ve made sure your pipe‐
line works for a few examples, you’ll be able to write tests to make sure your pipeline
keeps functioning as you make changes.

Start with One Example
The goal of this initial step is to verify that you are able to ingest data, transform it in
the right format, pass it to a model, and have the model output something correct. At
this stage, you aren’t judging whether your model can learn something, just whether
the pipeline can let data through.

Concretely this means:

• Selecting a few examples in your dataset
• Getting your model to output a prediction for these examples
• Getting your model to update its parameters to output the correct predictions for

these examples

The first two items are focused on verifying that our model can ingest input data and
produce a reasonable-looking output. This initial output will most likely be wrong
from a modeling perspective but will allow us to check that the data is flowing all the
way through.

The last item aims to make sure our model has the ability to learn a mapping from a
given input to the associated output. Fitting a few data points will not produce a use‐
ful model and will likely lead to overfitting. This process simply allows us to validate
that the model can update its parameters to fit a set of inputs and outputs.

Here is how this first step would look in practice: if you are training a model to pre‐
dict whether Kickstarter campaigns will be successful, you may be planning on train‐
ing it on all campaigns from the last few years. Following this tip, you should start by
checking whether your model can output a prediction for two campaigns. Then, use
the label for these campaigns (whether they were successful or not) to optimize the
model’s parameters until it predicts the correct outcome.

If we have chosen our model appropriately, it should have the capacity to learn from
our dataset. And if our model can learn from our entire dataset, it should have the
capacity to memorize a data point. The ability to learn from a few examples is a nec‐
essary condition for a model to learn from an entire dataset. It is also much easier to
validate than the entire learning process, so starting with one allows us to quickly
narrow down any potential future problems.

130 | Chapter 6: Debug Your ML Problems

The vast majority of errors that can come up at this initial stage relate to data mis‐
match: the data you are loading and preprocessing is fed to your model in a format
that it cannot accept. Since most models accept only numerical values, for example,
they may fail when a given value is left empty and has a null value.

Some cases of mismatch can be more elusive and lead to silent failure. A pipeline fed
values that are not in the correct range or shape may still run but would produce a
poorly performing model. Models that require normalized data will often still train
on nonnormalized data: they simply will not be able to fit it in a useful manner. Simi‐
larly, feeding a matrix of the wrong shape to a model can cause it to misinterpret the
input and produce incorrect outputs.

Catching such errors is harder, because they will manifest later in the process once we
evaluate the performance of a model. The best way to proactively detect them is to
visualize data as you build your pipeline and build tests to encode assumptions. We
will see how to do this next.

Visualization steps
As we’ve seen in previous chapters, while metrics are a crucial part of modeling work,
regularly inspecting and investigating our data is equally important. Observing just a
few examples to start makes it easier to notice changes or inconsistencies.

The goal of this process is to inspect changes at regular intervals. If you think of a
data pipeline as an assembly line, you’d want to inspect the product after every mean‐
ingful change. This means checking the value of your datapoint at every line is proba‐
bly too frequent, and looking only at the input and output values is definitely not
informative enough.

In Figure 6-3, I illustrate a few example inspection points you could use to take a look
at a data pipeline. In this example, we inspect the data at multiple steps, starting with
raw data all the way to model outputs.

Debug Wiring: Visualizing and Testing | 131

Figure 6-3. Potential inspection points

Next, we’ll cover a few key steps that are often worth inspecting. We’ll start with data
loading and move on to cleaning, feature generation, formatting, and model outputs.

Data loading
Whether you are loading your data from disk or through an API call, you will want to
verify that it is formatted correctly. This process is similar to the one you go through
when doing EDA but is done here within the context of the pipeline you have built to
verify that no error has led to the data becoming corrupted.

Does it contain all the fields you expect it to? Are any of these fields null or of con‐
stant value? Do any of the values lie in a range that seems incorrect, such as an age
variable sometimes being negative? If you are working with text or speech or images,
do the examples match your expectations of what they would look, sound, or read
like?

Most of our processing steps rely on assumptions we make about the structure of our
input data, so it is crucial to validate this aspect.

Because the goal here is to identify inconsistencies between our expectation of the
data and reality, you may want to visualize more than one or two data points. Visual‐
izing a representative sample will assure we do not only observe a “lucky” example
and wrongly assume all data points are of the same quality.

Figure 6-4 shows an example for our case study from the dataset exploration note‐
book in this book’s GitHub repository. Here, hundreds of posts in our archive are of
an undocumented post type and thus need to be filtered out. In the figure, you can

132 | Chapter 6: Debug Your ML Problems

see rows with a PostTypeId of 5, which is not referenced in the dataset documentation
and that we thus remove from the training data.

Figure 6-4. Visualizing a few rows of data

Once you’ve verified that the data conforms to expectations laid out in the dataset
documentation, it is time to start processing it for modeling purposes. This starts
with data cleaning.

Cleaning and feature selection
The next step in most pipelines is to remove any unnecessary information. This can
include fields or values that are not going to be used by the model but also any fields
that may contain information about our label that our model would not have access
to in production (see “Split Your Dataset” on page 99).

Remember that each feature you remove is a potential predictor for your model. The
task of deciding which features to keep and which features to remove is called feature
selection and is an integral part of iterating on models.

You should verify that no crucial information is lost, that all unneeded values are
removed, and that you have not left any extra information in our dataset that will
artificially boost our model’s performance by leaking information (see “Data leakage”
on page 102).

Once the data is cleaned, you’ll want to generate some features for your model to use.

Feature generation
When generating a new feature, such as adding the frequency of references to a prod‐
uct name in the description of a kickstarter campaign, for example, it is important to
inspect its values. You need to check that the feature values are populated and that the
values seem reasonable. This is a challenging task, as it requires not only identifying
all features but estimating reasonable values for each of these features.

Debug Wiring: Visualizing and Testing | 133

At this point, you do not need to analyze it any deeper, as this step is focusing on vali‐
dating assumptions about data flowing through the model, not the usefulness of the
data or the model yet.

Once features have been generated, you should make sure they can be passed to the
model in a format it can understand.

Data formatting
As we’ve discussed in earlier chapters, before passing data points to a model, you will
need to transform them to a format it can understand. This can include normalizing
input values, vectorizing text by representing it in a numerical fashion, or formatting
a black and white video as a 3D tensor (see “Vectorizing” on page 69).

If you are working on a supervised problem, you’ll use a label in addition to the
input, such as class names in classification, or a segmentation map in image segmen‐
tation. These will also need to be transformed to a model-understandable format.

In my experience working on multiple image segmentation problems, for example,
data mismatch between labels and model predictions is one of the most common
causes of errors. Segmentation models use segmentation masks as labels. These masks
are the same size as the input image, but instead of pixel values, they contain class
labels for each pixel. Unfortunately, different libraries use different conventions to
represent these masks, so the labels often end up in the wrong format, preventing the
model from learning.

I’ve illustrated this common pitfall in Figure 6-5. Let’s say a model expects segmenta‐
tion masks to be passed with a value of 255 for pixels that are of a certain class, and 0
otherwise. If a user instead assumes that pixels contained within the mask should
have a value of 1 instead of 255, they may pass their labeled masks in the format seen
in “provided.” This would lead the mask to be considered as almost entirely empty,
and the model would output inaccurate predictions.

Figure 6-5. Poorly formatted labels will prevent a model from learning

Similarly, classification labels are often represented as a list of zeros with a single one
at the index of the true class. A simple off-by-one error can lead to labels being

134 | Chapter 6: Debug Your ML Problems

shifted and a model learning to always predict the shifted-by-one label. This kind of
error can be hard to troubleshoot if you do not take the time to look at your data.

Because ML models will manage to fit to most numerical outputs regardless of
whether they have an accurate structure or content, this stage is where many tricky
bugs occur and where this method is useful to find them.

Here is an example of what such a formatting function looks like for our case study. I
generate a vectorized representation of our question text. Then, I append additional
features to this representation. Since the function consists of multiple transforma‐
tions and vector operations, visualizing the return value of this function will allow me
to verify that it does format data the way we intend it to.

def get_feature_vector_and_label(df, feature_names):
 """
 Generate input and output vectors using the vectors feature and
 the given feature names
 :param df: input DataFrame
 :param feature_names: names of feature columns (other than vectors)
 :return: feature array and label array
 """
 vec_features = vstack(df["vectors"])
 num_features = df[feature_names].astype(float)
 features = hstack([vec_features, num_features])
 labels = df["Score"] > df["Score"].median()
 return features, labels

features = [
 "action_verb_full",
 "question_mark_full",
 "text_len",
 "language_question",
]

X_train, y_train = get_feature_vector_and_label(train_df, features)

When working with text data especially, there are usually multiple steps involved
before data is properly formatted for a model. Going from a string of text to a toke‐
nized list to a vectorized representation including potential additional features is an
error-prone process. Even inspecting the shape of the objects at each step can help
catch many simple mistakes.

Once the data is in the appropriate format, you can pass it to a model. The last step is
to visualize and validate the model’s outputs.

Model output
At first, looking at outputs helps us see whether our model’s predictions are the right
type or shape (if we are predicting house price and duration on market, is our model
outputting an array of two numbers?).

Debug Wiring: Visualizing and Testing | 135

In addition, when fitting a model to only a couple data points, we should see its out‐
puts start matching the true label. If the model doesn’t fit the data points, this may be
an indication of the data being incorrectly formatted or becoming corrupted.

If the output of the model does not change at all during training, this may mean that
our model is actually not leveraging the input data. In such a case, I recommend
referring to “Stand on the Shoulders of Giants” on page 32 to validate that the model
is being used correctly.

Once we’ve gone through the entire pipeline for a few examples, it is time to write a
few tests to automate some of this visualization work.

Systematizing our visual validation
Going through the visualization work described earlier helps catch a significant
amount of bugs and is a good time investment for every novel pipeline. Validating
assumptions about how data is flowing through the model helps save a significant
amount of time down the line, which can now be spent focusing on training and
generalization.

Pipelines change often, however. As you update different aspects iteratively to
improve your model and modify some of the processing logic, how can you guaran‐
tee that everything is still working as intended? Going through the pipeline and visu‐
alizing an example at all steps each time you make any change would quickly get
tiring.

This is where the software engineering best practices we talked about earlier come
into play. It is time to isolate each part of this pipeline, and encode our observations
into tests that we will be able to run as our pipeline changes, to validate it.

Separate your concerns
Just like regular software, ML benefits greatly from a modular organization. To make
current and future debugging easier, separate each function so that you can check
that it individually works before looking at the broader pipeline.

Once a pipeline is broken down into individual functions, you’ll be able to write tests
for them.

Test Your ML Code
Testing a model’s behavior is hard. The majority of code in an ML pipeline is not
about the training pipeline or the model itself, however. If you look back to our pipe‐
line example in “Start with a Simple Pipeline” on page 37, most functions behave in a
deterministic way and can be tested.

136 | Chapter 6: Debug Your ML Problems

In my experience, helping engineers and data scientists debug their models, I’ve
learned that the vast majority of errors come from the way data is acquired, pro‐
cessed, or fed to the model. Testing data processing logic is thus crucial in order to
build a successful ML product.

For even more information about potential tests of an ML system, I recommend the
paper by E. Breck et al., “The ML Test Score: A Rubric for ML Production Readiness
and Technical Debt Reduction”, which contains many more examples and lessons
learned from deploying such systems at Google.

In this next section, we will describe useful tests to write for three key areas. In
Figure 6-6, you can see each of these areas, along with a few examples of tests that we
will describe next.

Figure 6-6. The three key areas to test

Pipelines start by ingesting data, so we’ll want to test that part first.

Test data ingestion
Data usually lives serialized on a disk or in a database. When moving data from stor‐
age to our pipeline, we should make sure to verify the integrity and correctness of the
data. We can start by writing tests that verify that the data points we load possess
every feature we’ll need.

The following are three tests validating that our parser returns the right type (a data‐
frame), that all important columns are defined, and that features are not all null. You
can find the tests we’ll cover in this chapter (and additional ones) in the tests folder
on this book’s GitHub repository.

def test_parser_returns_dataframe():
 """
 Tests that our parser runs and returns a DataFrame
 """
 df = get_fixture_df()

Debug Wiring: Visualizing and Testing | 137

 assert isinstance(df, pd.DataFrame)

def test_feature_columns_exist():
 """
 Validate that all required columns are present
 """
 df = get_fixture_df()
 for col in REQUIRED_COLUMNS:
 assert col in df.columns

def test_features_not_all_null():
 """
 Validate that no features are missing every value
 """
 df = get_fixture_df()
 for col in REQUIRED_COLUMNS:
 assert not df[col].isnull().all()

We can also test each feature for its type and validate that it is not null. Finally, we can
encode assumptions we have about the distribution and ranges of these values by
testing their average, minimum, and maximum values. Recently, libraries such as
Great Expectations have emerged to test the distributions of features directly.

Here, you can see how you could write a simple mean test:

ACCEPTABLE_TEXT_LENGTH_MEANS = pd.Interval(left=20, right=2000)

def test_text_mean():
 """
 Validate that text mean matches with exploration expectations
 """
 df = get_fixture_df()
 df["text_len"] = df["body_text"].str.len()
 text_col_mean = df["text_len"].mean()
 assert text_col_mean in ACCEPTABLE_TEXT_LENGTH_MEANS

These tests allow us to verify that no matter which changes are made on the storage
side or with the API of our data source, we can know that our model has access to the
same kind of data it was first trained on. Once we’re confident as to the consistency of
the data we ingest, let’s look at the next step in the pipeline, data processing.

Test data processing
After testing that the data that makes it to the beginning of our pipeline conforms to
our expectations, we should test that our cleaning and feature generation steps do
what we expect. We can start by writing tests for the preprocessing function we have,
verifying that it does indeed do what we intend it to. Also, we can write similar tests
to the data ingestion ones and focus on guaranteeing that our assumptions about the
state of the data going into our model are valid.

138 | Chapter 6: Debug Your ML Problems

This means testing for the presence, type, and characteristics of the data points after
our processing pipeline. The following are examples of tests for the presence of gen‐
erated features, their type, and minimum, maximum, and mean values:

def test_feature_presence(df_with_features):
 for feat in REQUIRED_FEATURES:
 assert feat in df_with_features.columns

def test_feature_type(df_with_features):
 assert df_with_features["is_question"].dtype == bool
 assert df_with_features["action_verb_full"].dtype == bool
 assert df_with_features["language_question"].dtype == bool
 assert df_with_features["question_mark_full"].dtype == bool
 assert df_with_features["norm_text_len"].dtype == float
 assert df_with_features["vectors"].dtype == list

 def test_normalized_text_length(df_with_features):
 normalized_mean = df_with_features["norm_text_len"].mean()
 normalized_max = df_with_features["norm_text_len"].max()
 normalized_min = df_with_features["norm_text_len"].min()
 assert normalized_mean in pd.Interval(left=-1, right=1)
 assert normalized_max in pd.Interval(left=-1, right=1)
 assert normalized_min in pd.Interval(left=-1, right=1)

These tests allow us to notice any changes to our pipelines that impact the input to
our model without having to write any additional tests. We will only need to write
new tests when we add new features or change the input to our model.

We can now feel confident both in the data we ingest and in the transformations we
apply to it, so it is time to test the next part of the pipeline, the model.

Test model outputs
Similarly to the two previous categories, we will write tests to validate that the values
the model outputs have the correct dimensions and ranges. We will also test predic‐
tions for specific inputs. This helps proactively detect regressions in prediction qual‐
ity in new models and guarantee that any model we use always produces the expected
output on these example inputs. When a new model shows better aggregate perfor‐
mance, it can be hard to notice whether its performance worsened on specific types
of inputs. Writing such tests helps detect such issues more easily.

In the following examples, I start by testing the shape of the predictions of our model,
as well as their values. The third test aims to prevent regressions by guaranteeing that
the model classifies a specific poorly worded input question as low quality.

def test_model_prediction_dimensions(
 df_with_features, trained_v1_vectorizer, trained_v1_model
):
 df_with_features["vectors"] = get_vectorized_series(
 df_with_features["full_text"].copy(), trained_v1_vectorizer

Debug Wiring: Visualizing and Testing | 139

)

 features, labels = get_feature_vector_and_label(
 df_with_features, FEATURE_NAMES
)

 probas = trained_v1_model.predict_proba(features)
 # the model makes one prediction per input example
 assert probas.shape[0] == features.shape[0]
 # the model predicts probabilities for two classes
 assert probas.shape[1] == 2

def test_model_proba_values(
 df_with_features, trained_v1_vectorizer, trained_v1_model
):
 df_with_features["vectors"] = get_vectorized_series(
 df_with_features["full_text"].copy(), trained_v1_vectorizer
)

 features, labels = get_feature_vector_and_label(
 df_with_features, FEATURE_NAMES
)

 probas = trained_v1_model.predict_proba(features)
 # the model's probabilities are between 0 and 1
 assert (probas >= 0).all() and (probas <= 1).all()

def test_model_predicts_no_on_bad_question():
 input_text = "This isn't even a question. We should score it poorly"
 is_question_good = get_model_predictions_for_input_texts([input_text])
 # The model classifies the question as poor
 assert not is_question_good[0]

We first visually inspected the data to verify it remained useful and usable throughout
our pipeline. Then, we wrote tests to guarantee these assumptions remain correct as
our processing strategy evolves. It is now time to tackle the second part of Figure 6-2,
debugging the training procedure.

Debug Training: Make Your Model Learn
Once you’ve tested your pipeline and validated that it works for one example, you
know a few things. Your pipeline takes in data and successfully transforms it. It then
passes this data to a model in the right format. Finally, the model can take a few data
points and learn from them, outputting the correct results.

It is now time to see whether your model can work on more than a few data points
and learn from your training set. The focus of this next section is on being able to
train your model on many examples and have it fit to all of your training data.

140 | Chapter 6: Debug Your ML Problems

To do so, you can now pass your entire training set to your model and measure its
performance. Alternatively, if you have a large amount of data, you can instead grad‐
ually increase the quantity of data you feed to your model while keeping an eye on
aggregate performance.

One advantage of progressively increasing the size of your training dataset is that
you’ll be able to measure the effect of additional data on the performance of your
model. Start with a few hundred examples, and then move to a few thousand, before
passing in your whole dataset (if your dataset is smaller than a thousand examples,
feel free to skip straight to using it in its entirety).

At each step, fit your model on the data and evaluate its performance on the same
data. If your model has the capacity to learn from the data you are using, its perfor‐
mance on the training data should stay relatively stable.

To contextualize model performance, I recommend generating an estimate of what an
acceptable error level for your task is by labeling a few examples yourself, for exam‐
ple, and comparing your predictions to the true label. Most tasks also come with an
irreducible error, representing the best performance given the complexity of the task.
See Figure 6-7 for an illustration of usual training performance compared to such
metrics.

A model’s performance on the whole dataset should be worse than when using only
one example, since memorizing an entire training set is harder than a single example,
but should still remain within the boundaries defined earlier.

If you are able to feed your entire training set and the performance of your model
reaches the requirement you defined when looking at your product goal, feel free to
move on to the next section! If not, I’ve outlined a couple common reasons a model
can struggle on a training set in the next section.

Debug Training: Make Your Model Learn | 141

Figure 6-7. Training accuracy as a function of dataset size

Task Difficulty
If a model’s performance is drastically lower than expected, the task may be too diffi‐
cult. To evaluate how hard a task is, consider:

• The quantity and diversity of data you have
• How predictive the features you have generated are
• The complexity of your model

Let’s look at each of those in a little more detail.

Data quality, quantity, and diversity
The more diverse and complex your problem is, the more data you will need for a
model to learn from it. For your model to learn patterns, you should aim to have
many examples of each type of data you have. If you are classifying pictures of cats as
one of a hundred possible breeds, for example, you’d need many more pictures than if
you were simply trying to tell cats apart from dogs. In fact, the quantity of data you
need often scales exponentially with the number of classes, as having more classes
means more opportunities for misclassification.

142 | Chapter 6: Debug Your ML Problems

In addition, the less data you have, the more impact any errors in your labels or any
missing values have. This is why it is worth spending the time to inspect and verify
features and labels of your dataset.

Finally, most datasets contain outliers, data points that are radically different from
others and very hard for a model to handle. Removing outliers from your training set
can often improve the performance of a model by simplifying the task at hand, but it
is not always the right approach: if you believe that your model may encounter simi‐
lar data points in production, you should keep outliers and focus on improving your
data and model so that the model can successfully fit to them.

The more complex a dataset is, the more helpful it can be to work on ways to repre‐
sent your data that will make it easier for a model to learn from it. Let’s look at what
this means.

Data representation
How easy is it to detect the patterns you care about using only the representation you
give your model? If a model is struggling to perform well on training data, you should
add features that make the data more expressive and thus help the model learn better.

This can consist of novel features we had previously decided to ignore but that may
be predictive. In our ML Editor example, a first iteration of the model only took into
account the text in the body of a question. After exploring the dataset further, I
noticed that question titles are often very informative as to whether a question is
good or not. Incorporating that feature back into the dataset allowed the model to
perform better.

New features can often be generated by iterating on existing ones or combining them
in a creative manner. We saw an example of this in “Let Data Inform Features and
Models” on page 85, when we looked at ways to combine the day of the week and day
of the month to generate a feature that was relevant to a particular business case.

In some cases, the problem lies with your model. Let’s look at these cases next.

Model capacity
Increasing data quality and improving features often provides the largest benefits.
When a model is the cause for poor performance, it can often mean that it is not ade‐
quate to the task at hand. As we saw in “From Patterns to Models” on page 98, spe‐
cific datasets and problems call for specific models. A model that is not appropriate
for a task will struggle to perform on it, even if it was able to overfit a few examples.

If a model struggles on a dataset that seems to have many predictive features, start by
asking yourself whether you are using the right type of model. If possible, use a sim‐
pler version of the given model to more easily inspect it. For example, if a random

Debug Training: Make Your Model Learn | 143

forest model isn’t performing at all, try a decision tree on the same task and visualize
its splits to examine whether they use the features you thought would be predictive.

On the other hand, the model you are using may be too simple. Starting with the sim‐
plest model is good to quickly iterate, but some tasks are entirely out of reach of some
models. To tackle them, you may need to add complexity to your model. To verify
that a model is indeed adapted to a task, I recommend looking at prior art as we
described in “Stand on the Shoulders of Giants” on page 32. Find examples of similar
tasks, and examine which models were used to tackle them. Using one of those mod‐
els should be a good starting point.

If the model seems appropriate for the task, its lackluster performance could be due
to the training procedure.

Optimization Problems
Starting by validating that a model can fit a small set of examples makes us confident
that data can flow back and forth. We do not know, however, whether our training
procedure can adequately fit a model to the entire dataset. The method that our
model is using to update its weights may be inadequate for our current dataset. Such
problems often occur in more complex models such as neural networks, where
hyperparameter choice can have a significant impact on training performance.

When dealing with models that are fit using gradient descent techniques such as neu‐
ral networks, using visualization tools such as TensorBoard can help surface training
problems. When plotting the loss during your optimization process, you should see it
decline steeply initially and then gradually. In Figure 6-8, you can see an example of a
TensorBoard dashboard depicting a loss function (cross-entropy in this case) as train‐
ing progresses.

Such a curve can show that the loss is decreasing very slowly, indicating that a model
may be learning too slowly. In such a case, you could increase the learning rate and
plot the same curve to see whether the loss decreases faster. If a loss curve looks very
unstable, on the other hand, it may be due to the learning rate being too large.

144 | Chapter 6: Debug Your ML Problems

Figure 6-8. TensorBoard dashboard screenshot from the TensorBoard documentation

In addition to the loss, visualizing weight values and activations can help you identify
if a network is not learning properly. In Figure 6-9, you can see a change in the distri‐
bution of the weights as training progresses. If you see the distributions remain stable
for a few epochs, it may be a sign that you should increase the learning rate. If they
vary too much, lower it instead.

Debug Training: Make Your Model Learn | 145

Figure 6-9. Weight histograms changing as training progresses

Successfully fitting a model to the training data is an important milestone in an ML
project, but it is not the last step. The end goal of building an ML product is to build a
model that can perform well on examples it has never seen before. To do this, we
need a model that can generalize well to unseen examples, so I’ll cover generalization
next.

Debug Generalization: Make Your Model Useful
Generalization is the third and final part of Figure 6-2 and focuses on getting an ML
model to work well on data it has not seen before. In “Split Your Dataset” on page 99,
we saw the importance of creating separate training, validation, and test splits to eval‐
uate a model’s ability to generalize to unseen examples. In “Evaluate Your Model:
Look Beyond Accuracy” on page 109, we covered methods to analyze the perfor‐
mance of a model and identify potential additional features to help improve it. Here,
we’ll cover some recommendations when a model still fails to perform on the valida‐
tion set after multiple iterations.

146 | Chapter 6: Debug Your ML Problems

Data Leakage
We covered data leakage in more detail in “Data leakage” on page 102, but I want to
mention it here within the context of generalization. A model will often initially per‐
form worse on the validation set than the training set. This is to be expected since it is
harder to make predictions on data that a model has not been exposed to before than
on data it was trained to fit.

When looking at validation loss and training loss during training
before it is complete, validation performance may appear better
than training performance. This is because the training loss accu‐
mulates over the epoch as the model is trained, while the validation
loss is calculated after the epoch has completed, using the latest
version of the model.

If validation performance is better than training performance, it can sometimes be
due to data leakage. If examples in the training data contain information about others
in the validation data, a model will be able to leverage this information and perform
well on the validation set. If you are surprised by validation performance, inspect the
features a model uses and see if they show data leakage. Fixing such a leakage issue
will lead to a lower validation performance, but a better model.

Data leakage can lead us to believe that a model is generalizing when it really isn’t. In
other cases, it is clear from looking at performance on a held-out validation set that
the model performs well only on training. In those kinds of cases, the model may be
overfitting.

Overfitting
In “Bias variance trade-off ” on page 107, we saw that when a model is struggling to fit
the training data, we say the model is underfitting. We also saw that the opposite of
underfitting is overfitting, and this is when our model fits our training data too well.

What does fitting data too well mean? It means that instead of learning generalizable
trends that correlate with good or poor writing, for example, a model may pick up on
specific patterns present in individual examples in a training set that are not present
in different data. Those patterns help it get a high score on the training set but aren’t
useful to classify other examples.

Figure 6-10 shows a practical example of overfitting and underfitting for a toy data‐
set. The overfit model fits the training data perfectly but doesn’t accurately approxi‐
mate the underlying trend; thus, it fails to accurately predict unseen points. The
underfit model does not capture the trend of the data at all. The model labeled rea‐
sonable fit performs worse on the training data than the overfit model but better on
unseen data.

Debug Generalization: Make Your Model Useful | 147

Figure 6-10. Overfitting versus underfitting

When a model performs drastically better on the training set than on the test set, that
usually means that it is overfit. It has learned the specific details of the training data
but is not able to perform on unseen data.

Since overfitting is due to a model learning too much about training data, we can pre‐
vent it by reducing the ability of a model to learn from a dataset. There are a few ways
to do that, which we’ll cover here.

Regularization
Regularization adds a penalty on a model’s capacity to represent information. Regula‐
rizing aims to limit the ability of a model to focus on many irrelevant patterns and
encourages it to pick fewer, more predictive features.

A common way to regularize a model is to impose a penalty on the absolute value of
its weights. For models such as linear and logistic regression, for example, L1 and L2
regularization add an additional term to the loss function that penalizes large weights.
In the case of L1, this term is the sum of the absolute value of weights. For L2, it is the
sum of the squared values of weight.

Different regularization methods have different effects. L1 regularization can help
select informative features by setting uninformative ones to zero (read more on the
“Lasso (statistics)” Wikipedia page). L1 regularization is also useful when some fea‐
tures are correlated by encouraging the model to leverage only one of them.

Regularization methods can also be model specific. Neural networks often use drop‐
out as a regularization method. Dropout randomly ignores some proportion of neu‐
rons in a network during training. This prevents a single neuron from becoming

148 | Chapter 6: Debug Your ML Problems

excessively influential, which could enable the network to memorize aspects of train‐
ing data.

For tree-based models such as random forests, reducing the maximum depth of trees
reduces the ability of each tree to overfit to the data and thus helps regularize the for‐
est. Increasing the number of trees used in a forest also regularizes it.

Another way to prevent a model from overfitting to training data is to make the data
itself harder to overfit to. We can do this through a process called data augmentation.

Data augmentation
Data augmentation is the process of creating new training data by slightly altering
existing data points. The goal is to artificially produce data points that are different
from existing ones in order to expose a model to a more varied type of input. Aug‐
mentation strategies depend on the type of data. In Figure 6-11, you can see a few
potential augmentations for images.

Figure 6-11. A few examples of data augmentation for images

Data augmentation makes a training set less homogeneous and thus more complex.
This makes fitting the training data harder but exposes a model to a wider range of
inputs during training. Data augmentation often leads to lower performance on the

Debug Generalization: Make Your Model Useful | 149

training set but higher performance on unseen data such as a validation set and
examples in production. This strategy is especially effective if we can use augmenta‐
tion to make our training set more similar to examples in the wild.

I once helped an engineer use satellite imagery to detect flooded roads after a hurri‐
cane. The project was challenging, since he only had access to labeled data for non-
flooded cities. To help improve his model’s performance on hurricane imagery, which
is significantly darker and lower quality, they built augmentation pipelines that made
training images look darker and blurrier. This lowered training performance since
the roads were now harder to detect. On the other hand, it increased the model’s per‐
formance on the validation set because the augmentation process exposed the model
to images that were more similar to the ones it would encounter in the validation set.
Data augmentation helped make the training set more representative and thus made
the model more robust.

If after using the methods described earlier a model still performs poorly on a valida‐
tion set, you should iterate on the dataset itself.

Dataset redesign
In some cases, a difficult training/validation split can lead to a model underfitting
and struggling on the validation set. If a model is exposed to only easy examples in its
training set and only challenging ones in its validation set, it will be unable to learn
from difficult data points. Similarly, some categories of examples may be underrepre‐
sented in the training set, preventing a model ever from learning from them. If a
model is trained to minimize an aggregate metric, it risks fitting mostly the majority
of classes, ignoring minority ones.

While augmentation strategies can help, redesigning a training split to make it more
representative is often the best path forward. When doing this, we should carefully
control for data leakage and make the splits as balanced as possible in terms of diffi‐
culty. If the new data split allocates all the easy examples to the validation set, the
model’s performance on the validation set will be artificially high, but it will not
translate to results in production. To alleviate concerns that data splits may be of
unequal quality, we can use k-fold cross-validation, where we perform k successive
different splits, and measure the performance of the model on each split.

Once we’ve balanced our training and validation set to make sure that they are of
similar complexity, our model’s performance should improve. If the performance is
still not satisfactory, we may be simply tackling a really hard problem.

Consider the Task at Hand
A model can struggle to generalize because the task is too complex. The input we are
using may not be predictive of the target, for example. To make sure the task you are

150 | Chapter 6: Debug Your ML Problems

tackling is of appropriate difficulty for the current state of ML, I suggest referring
once more to “Stand on the Shoulders of Giants” on page 32, where I described how
to explore and evaluate the current state of the art.

In addition, having a dataset does not mean that a task is solvable. Consider the
impossible task of accurately predicting random outputs from random inputs. You
could build a model that performs well on a training set by memorizing it, but this
model would not be able to accurately predict other random outputs from random
inputs.

If your models aren’t generalizing, your task may be too hard. There may not be
enough information in your training examples to learn meaningful features that will
be informative for future data points. If that is the case, then the problem you have is
not well suited for ML, and I would invite you to revisit Chapter 1 to find a better
framing.

Conclusion
In this chapter, we covered the three successive steps you should follow to get a model
to work. First, debug the wiring of your pipeline by inspecting the data and writing
tests. Then, get a model to perform well on a training test to validate that it has the
capacity to learn. Finally, verify that it is able to generalize and produce useful outputs
on unseen data.

This process will help you debug models, build them faster, and make them more
robust. Once you have built, trained, and debugged your first model, the next step is
to judge its performance and either iterate on it or deploy it.

In Chapter 7, we will cover how to use a trained classifier to provide actionable rec‐
ommendations for users. We will then compare candidate models for the ML Editor
and decide which one should be used to power these recommendations.

Conclusion | 151

CHAPTER 7

Using Classifiers for Writing
Recommendations

The best way to make progress in ML is through repeatedly following the iterative
loop depicted in Figure 7-1, which we saw in the introduction to Part III. Start by
establishing a modeling hypothesis, iterate on a modeling pipeline, and perform
detailed error analysis to inform your next hypothesis.

Figure 7-1. The ML loop

The previous chapters described multiple steps in this loop. In Chapter 5, we covered
how to train and score a model. In Chapter 6, we shared advice on how to build mod‐
els faster and troubleshoot ML-related errors. This chapter closes an iteration of the

153

loop by first showcasing methods to use trained classifiers to provide suggestions to
users, then selecting a model to use for the ML Editor, and finally combining both to
build a working ML Editor.

In “ML Editor Planning” on page 36 we outlined our plan for the ML Editor, which
consists of training a model that classifies questions into high- and low-score cate‐
gories and use this trained model to guide users to write better questions. Let’s see
how we can use such a model to provide writing advice to users.

Extracting Recommendations from Models
The goal of the ML Editor is to provide writing recommendations. Classifying a ques‐
tion as good or bad is a first step in this direction since it makes it possible to display
the current quality of a question to a user. We’d like to go one step beyond this and
help users improve the formulation of their questions by providing them with action‐
able recommendations.

This section covers methods to provide such recommendations. We will start with
simple approaches that rely on aggregate feature metrics and do not require the use of
a model at inference time. Then, we will see how to both use a model’s score and its
sensitivity to perturbations to generate more personalized recommendations. You can
find examples of each of the methods showcased in this chapter applied to the ML
Editor in the generating recommendations notebook on this book’s GitHub site.

What Can We Achieve Without a Model?
Training a model that performs well is achieved through multiple iterations of the ML
loop. Each iteration helps create a better set of features through researching prior art,
iterating on potential datasets, and examining model results. To provide users with
recommendations, you can leverage this feature iteration work. This approach does
not necessarily require running a model on each question a user submits and focuses
instead on making general recommendations.

You can do so either by using the features directly or by incorporating a trained
model to help select relevant ones.

Using feature statistics
Once predictive features have been identified, they can be directly communicated to a
user without using a model. If the mean value of a feature is significantly different for
each class, you can share this information directly to help users nudge their examples
in the direction of the target class.

One of the features we identified early on for the ML Editor was the presence of ques‐
tion marks. Inspecting the data showed that questions with high scores tend to have

154 | Chapter 7: Using Classifiers for Writing Recommendations

fewer question marks. To use this information to generate recommendations, we can
write a rule that warns a user if the proportion of question marks in their question is
much larger than in highly rated questions.

Visualizing average feature values for each label can be done in a few lines of code
using pandas.

class_feature_values = feats_labels.groupby("label").mean()
class_feature_values = class_feature_values.round(3)
class_feature_values.transpose()

Running the previous code produces the result shown in Table 7-1. In these results,
we can see that many of the features we’ve generated have significantly different val‐
ues for high- and low-score questions, labeled True and False here.

Table 7-1. Differences in feature values between classes

Label False True
num_questions 0.432 0.409

num_periods 0.814 0.754

num_commas 0.673 0.728

num_exclam 0.019 0.015

num_quotes 0.216 0.199

num_colon 0.094 0.081

num_stops 10.537 10.610

num_semicolon 0.013 0.014

num_words 21.638 21.480

num_chars 822.104 967.032

Using feature statistics is a simple way to provide robust recommendations. It is in
many ways similar to the heuristic approach that we first built in “The Simplest
Approach: Being the Algorithm” on page 17.

When comparing feature values between classes, it can be hard to identify which fea‐
tures contribute the most to a question being classified a certain way. To estimate this
better, we can use feature importance.

Extracting Global Feature Importance
We first showed examples of generating feature importance in the context of model
evaluation in “Evaluate Feature Importance” on page 121. Feature importances can
also be used to prioritize feature-based recommendations. When displaying
recommendations to users, features that are most predictive for a trained classifier
should be prioritized.

Extracting Recommendations from Models | 155

Next, I’ve displayed the results of a feature importance analysis for a question classifi‐
cation model that uses a total of 30 features. Each of the top features has a much
larger importance than the bottom features. Guiding users to act based on these top
features first will help them improve their questions faster according to the model.

Top 5 importances:

num_chars: 0.053
num_questions: 0.051
num_periods: 0.051
ADV: 0.049
ADJ: 0.049

Bottom 5 importances:

X: 0.011
num_semicolon: 0.0076
num_exclam: 0.0072
CONJ: 0
SCONJ: 0

Combining feature statistics and feature importance can make recommendations
more actionable and focused. The first approach provides target values for each fea‐
ture, while the latter prioritizes a smaller subset of the most important features to dis‐
play. These approaches also provide recommendations quickly, since they do not
require running a model at inference time, only checking an input against feature sta‐
tistics for the most important features.

As we saw in “Evaluate Feature Importance” on page 121, extracting feature impor‐
tances can be more difficult for complex models. If you are using a model that does
not expose feature importances, you can leverage a black-box explainer on a large
sample of examples to attempt to infer their values.

Feature importance and feature statistics come with another drawback, which is that
they do not always provide accurate recommendations. Since recommendations are
based on statistics aggregated over the entire dataset, they will not be applicable to
each individual example. Feature statistics only provide general recommendations,
such as “questions that contain more adverbs tend to receive higher ratings.” How‐
ever, there exists examples of questions with a below average proportion of adverbs
that receive a high score. Such recommendations are not useful for these questions.

In the next two sections, we will cover methods to provide more granular recommen‐
dations that work at the level of individual examples.

Using a Model’s Score
Chapter 5 described how classifiers output a score for each example. The example is
then assigned a class based on whether this score is above a certain threshold. If a

156 | Chapter 7: Using Classifiers for Writing Recommendations

model’s score is well calibrated (see “Calibration Curve” on page 114 for more on cali‐
bration), then it can be used as an estimate of the probability of an input example
belonging to the given class.

To display a score instead of a class for a scikit-learn model, use the predict_proba
function and select the class for which you’d like to display a score.

probabilities is an array containing one probability per class
probabilities = clf.predict_proba(features)

Positive probas contains only the score of the positive class
positive_probs = clf[:,1]

If it is well calibrated, presenting a score to users allows them to track improvements
in their question as they follow recommendations to modify it, leading to it receiving
a higher score. Quick feedback mechanisms like a score help users have an increased
sense of trust in the recommendations provided by a model.

On top of a calibrated score, a trained model can also be used to provide recommen‐
dations to improve a specific example.

Extracting Local Feature Importance
Recommendations can be generated for an individual example by using a black-box
explainer on top of a trained model. In “Evaluate Feature Importance” on page 121,
we saw how black-box explainers estimate the importance of feature values for a spe‐
cific example by repeatedly applying slight perturbations to input features and
observing changes in the model’s predicted score. This makes such explainers a great
tool to provide recommendations.

Let’s demonstrate this using the LIME package to generate explanations for an exam‐
ple. In the following code example, we first instantiate a tabular explainer, and then
we choose an example to explain in our test data. We show the explanations in the
generating recommendations notebook on this book’s GitHub repository, and display
them in array format.

from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(
 train_df[features].values,
 feature_names=features,
 class_names=["low", "high"],
 discretize_continuous=True,
)

idx = 8
exp = explainer.explain_instance(
 test_df[features].iloc[idx, :],
 clf.predict_proba,

Extracting Recommendations from Models | 157

 num_features=10,
 labels=(1,),
)

print(exp_array)
exp.show_in_notebook(show_table=True, show_all=False)
exp_array = exp.as_list()

Running the previous code produces the plot shown in Figure 7-2 as well as the array
of feature importances shown in the following code. The model’s predicted probabili‐
ties are displayed on the left side of the figure. In the middle of the figure, feature val‐
ues are ranked by their contributions to the prediction.

Figure 7-2. Explanations as recommendations

Those values are identical to the ones in the more readable console output below.
Each row in this output represents a feature value and its impact on the score of the
model. For example, the fact that the feature num_diff_words had a value lower than
88.00 lowered the score of the model by about .038. According to this model, increas‐
ing the length of the input question beyond this number would increase its quality.

[('num_diff_words <= 88.00', -0.038175093133182826),
 ('num_questions > 0.57', 0.022220445063244717),
 ('num_periods <= 0.50', 0.018064270196074716),
 ('ADJ <= 0.01', -0.01753028452563776),
 ('408.00 < num_chars <= 655.00', -0.01573650444507041),
 ('num_commas <= 0.39', -0.015551364531963608),
 ('0.00 < PROPN <= 0.00', 0.011826217792851488),
 ('INTJ <= 0.00', 0.011302327527387477),
 ('CONJ <= 0.00', 0.0),
 ('SCONJ <= 0.00', 0.0)]

For more usage examples, please refer to the generating recommendations notebook
in the book’s GitHub repository.

158 | Chapter 7: Using Classifiers for Writing Recommendations

Black-box explainers can generate accurate recommendations for an individual
model, but they do come with a drawback. These explainers generate estimates by
perturbing input features and running a model on each perturbed input, so using
them to generate recommendations is slower than the methods discussed. For exam‐
ple, the default number of perturbations that LIME uses to evaluate feature impor‐
tance is 500. This makes this method two orders of magnitude slower than methods
that need to run a model only once and even slower than ones that do not need to
run a model at all. On my laptop, running LIME on an example question takes a little
over 2 seconds. Such a delay could prevent us from serving recommendations to
users as they are typing and require them to submit questions manually instead.

Just like many ML models, the recommendation methods we’ve seen here present a
trade-off between accuracy and latency. The right recommendation for a product
depends on its requirements.

Every recommendation method we’ve covered relies on features that were generated
during model iteration, and some of them leverage the models that were trained as
well. In the next section, we’ll compare different model options for the ML Editor and
decide which one is the most appropriate for recommendations.

Comparing Models
“Measuring Success” on page 23 covered important metrics to judge the success of a
product. “Judge Performance” on page 106 described methods to evaluate models.
Such methods can also be used to compare successive iterations of models and fea‐
tures to identify top-performing ones.

In this section we will choose a subset of key metrics and use them to evaluate three
successive iterations of the ML Editor in terms of model performance and usefulness
of recommendations.

The goal of the ML Editor is to provide recommendations using the techniques men‐
tioned. To power such recommendations, a model should match the following
requirements. It should be well calibrated so that its predicted probabilities represent
a meaningful estimate of the quality of a question. As we covered in “Measuring Suc‐
cess” on page 23, it should have high precision so that the recommendations it makes
are accurate. The features it uses should be understandable to a user, since they will
serve as the basis for recommendations. Finally, it should be fast enough to allow us
to use a black-box explainer to provide recommendations.

Let’s describe a few successive modeling approaches for the ML Editor and compare
their performance. The code for these performance comparisons can be found in the
comparing models notebook in this book’s GitHub repository.

Comparing Models | 159

Version 1: The Report Card
In Chapter 3, we built a first version of the editor that was entirely based on heuris‐
tics. This first version used hard-coded rules meant to encode readability and dis‐
played results to users in a structured format. Building this pipeline allowed us to
modify our approach and focus ML efforts on providing clearer recommendations,
rather than a set of measurements.

Since this initial prototype was built in order to develop an intuition for the problem
we were tackling, we won’t be comparing it to other models here.

Version 2: More Powerful, More Unclear
After building a heuristic-based version and exploring the Stack Overflow dataset, we
settled on an initial modeling approach. The simple model we trained can be found in
the simple model notebook in this book’s GitHub repository.

This model used a combination of features generated by vectorizing text using the
methods described in “Vectorizing” on page 69 and manually created features that
were surfaced during data exploration. When first exploring the dataset, I noticed a
few patterns:

• Longer questions received higher scores.
• Questions that were specifically about use of the English language received lower

scores.
• Questions that contained at least one question mark received higher scores.

I created features to encode these assumptions by counting the length of the text, the
presence of words such as punctuate and abbreviate, and the frequency of question
marks.

In addition to these features, I vectorized input questions using TF-IDF. Using a sim‐
ple vectorization scheme allows me to tie a model’s feature importances back to indi‐
vidual words, which can allow for word-level recommendations using the methods
described earlier.

This first approach showed acceptable aggregate performance, with a precision of
0.62. Its calibration, however, left much to be desired, as you can see in Figure 7-3.

160 | Chapter 7: Using Classifiers for Writing Recommendations

Figure 7-3. V2 model calibration

After inspecting this model’s feature importances, I realized the only predictive man‐
ually created feature was question length. Other generated features had no predictive
power. Exploring the dataset once more revealed a few more features that seemed
predictive:

• A restrained usage of punctuation seemed to be predictive of high scores.
• Questions that were more emotionally charged seemed to receive a lower score.
• Questions that were descriptive and used more adjectives seemed to receive a

higher score.

To encode these new hypotheses, I generated a new set of features. I created counts
for each possible punctuation element. I then created counts that for each part-of-
speech category, such as verb or adjective, measured how many words in a question
belonged to that category. Finally, I added a feature to encode the emotional senti‐
ment of a question. For more details about these features, refer to the second model
notebook in this book’s GitHub repository.

Comparing Models | 161

This updated version of the model performed slightly better in aggregate, with a pre‐
cision of 0.63. Its calibration did not improve upon the previous model. Displaying
the feature importances for this model revealed that this model exclusively relies on
the manually crafted features, revealing that these features have some predictive
power.

Having a model rely on such understandable features makes it easier to explain rec‐
ommendations to a user than when using vectorized word-level features. For exam‐
ple, the most important word-level features for this model are the words are and
what. We can guess why these words may be correlated with question quality, but rec‐
ommending to a user that they should reduce or increase the occurrence of arbitrary
words in their question does not make for clear recommendations.

To address this limitation of a vectorized representation and recognizing that the
manually crafted features were predictive, I attempted to build a simpler model that
does not use any vectorization features.

Version 3: Understandable Recommendations
The third model contains only the features described earlier (counts of punctuation
and parts of speech, question sentiment, and question length). The model thus only
uses 30 features, as opposed to more than 7,000 when using vectorized representa‐
tions. See the third model notebook in this book’s GitHub repository for more details.
Removing vectorized features and keeping manual ones allows the ML Editor to only
leverage features that are explainable to a user. However, it may lead to a model per‐
forming more poorly.

In terms of aggregate performance, this model does perform worse than previous
ones with a precision of 0.597. However, it is significantly better calibrated than pre‐
vious models. In Figure 7-4, you can see that model 3 is well calibrated for most prob‐
abilities, even ones above .7 that other models struggle with. The histogram shows
that this is due to this model predicting such probabilities more often than other
models as well.

Because of the increased range of scores it produces and the improved calibration of
scores, this model is the best choice when it comes to displaying a score to guide
users. When it comes to making clear recommendations, this model is also the best
choice since it only relies on explainable features. Finally, because it relies on fewer
features than other models, it is also the fastest to run.

162 | Chapter 7: Using Classifiers for Writing Recommendations

Figure 7-4. Calibration comparison

Model 3 is the best choice for the ML Editor and is thus the model we should deploy
for an initial version. In the next section, we will briefly cover how to use this model
with the recommendation techniques to provide editing recommendations to users.

Generating Editing Recommendations
The ML Editor can benefit from any of the four methods we described to generate
recommendations. In fact, all of these methods are showcased in the generating rec‐
ommendations notebook in the book’s GitHub repository. Because the model we are
using is fast, we will illustrate the most elaborate approach here, using black-box
explainers.

Let’s start by taking a look at the entire recommendation function that takes in a
question and provides editing advice based on a trained model. Here is what this
function looks like:

def get_recommendation_and_prediction_from_text(input_text, num_feats=10):
 global clf, explainer
 feats = get_features_from_input_text(input_text)

Generating Editing Recommendations | 163

 pos_score = clf.predict_proba([feats])[0][1]

 exp = explainer.explain_instance(
 feats, clf.predict_proba, num_features=num_feats, labels=(1,)
)
 parsed_exps = parse_explanations(exp.as_list())
 recs = get_recommendation_string_from_parsed_exps(parsed_exps)
 return recs, pos_score

Calling this function on an example input and pretty printing its results produces rec‐
ommendations such as the following ones. We can then display these recommenda‐
tions to users to allow them to iterate on their question.

>> recos, score = get_recommendation_and_prediction_from_text(example_question)
>> print("%s score" % score)
0.4 score
>> print(*recos, sep="\n")
Increase question length
Increase vocabulary diversity
Increase frequency of question marks
No need to increase frequency of periods
Decrease question length
Decrease frequency of determiners
Increase frequency of commas
No need to decrease frequency of adverbs
Increase frequency of coordinating conjunctions
Increase frequency of subordinating conjunctions

Let’s break this function down. Starting with its signature, the function takes as argu‐
ments an input string representing a question, as well as an optional argument deter‐
mining how many of the most important features to make recommendations for. It
returns recommendations, as well as a score representing the current quality of the
question.

Diving into the body of the question, the first line refers to two globally defined vari‐
ables, the trained model and an instance of a LIME explainer like the one we defined
in “Extracting Local Feature Importance” on page 157. The next two lines generate
features from the input text and pass these features to the classifier for it to predict.
Then, exp is defined by using LIME to generate explanations.

The last two function calls turn these explanations into human-readable recommen‐
dations. Let’s see how by looking at the definitions of these functions, starting with
parse_explanations.

def parse_explanations(exp_list):
 global FEATURE_DISPLAY_NAMES
 parsed_exps = []
 for feat_bound, impact in exp_list:
 conditions = feat_bound.split(" ")

 # We ignore doubly bounded conditions , e.g. 1 <= a < 3 because

164 | Chapter 7: Using Classifiers for Writing Recommendations

 # they are harder to formulate as a recommendation
 if len(conditions) == 3:
 feat_name, order, threshold = conditions

 simple_order = simplify_order_sign(order)
 recommended_mod = get_recommended_modification(simple_order, impact)

 parsed_exps.append(
 {
 "feature": feat_name,
 "feature_display_name": FEATURE_DISPLAY_NAMES[feat_name],
 "order": simple_order,
 "threshold": threshold,
 "impact": impact,
 "recommendation": recommended_mod,
 }
)
 return parsed_exps

This function is long, but it is accomplishing a relatively simple goal. It takes the array
of feature importances returned by LIME and produces a more structured dictionary
that can be used in recommendations. Here is an example of this transformation:

exps is in the format of LIME explanations
>> exps = [('num_chars <= 408.00', -0.03908691525058592),
 ('DET > 0.03', -0.014685507408497802)]

>> parse_explanations(exps)

[{'feature': 'num_chars',
 'feature_display_name': 'question length',
 'order': '<',
 'threshold': '408.00',
 'impact': -0.03908691525058592,
 'recommendation': 'Increase'},
 {'feature': 'DET',
 'feature_display_name': 'frequency of determiners',
 'order': '>',
 'threshold': '0.03',
 'impact': -0.014685507408497802,
 'recommendation': 'Decrease'}]

Notice that the function call converted the threshold value displayed by LIME to a
recommendation of whether a feature value should be increased or decreased. This is
done using the get_recommended_modification function displayed here:

def get_recommended_modification(simple_order, impact):
 bigger_than_threshold = simple_order == ">"
 has_positive_impact = impact > 0

 if bigger_than_threshold and has_positive_impact:
 return "No need to decrease"
 if not bigger_than_threshold and not has_positive_impact:

Generating Editing Recommendations | 165

 return "Increase"
 if bigger_than_threshold and not has_positive_impact:
 return "Decrease"
 if not bigger_than_threshold and has_positive_impact:
 return "No need to increase"

Once the explanations are parsed to recommendations, all that is left is to display
them in an appropriate format. This is accomplished by the last function call in
get_recommendation_and_prediction_from_text, which is displayed here:

def get_recommendation_string_from_parsed_exps(exp_list):
 recommendations = []
 for feature_exp in exp_list:
 recommendation = "%s %s" % (
 feature_exp["recommendation"],
 feature_exp["feature_display_name"],
)
 recommendations.append(recommendation)
 return recommendations

If you’d like to experiment with this editor and iterate on it, feel free to refer to the
generating recommendations notebook in this book’s GitHub repository. At the end
of the notebook, I’ve included an example of using the model recommendations to
rephrase a question multiple times and increase its score. I’m reproducing this exam‐
ple here to demonstrate how such recommendations can be used to guide users’ edit‐
ing questions.

// First attempt at a question
>> get_recommendation_and_prediction_from_text(
 """
I want to learn how models are made
"""
)

0.39 score
Increase question length
Increase vocabulary diversity
Increase frequency of question marks
No need to increase frequency of periods
No need to decrease frequency of stop words

// Following the first three recommendations
>> get_recommendation_and_prediction_from_text(
 """
I'd like to learn about building machine learning products.
Are there any good product focused resources?
Would you be able to recommend educational books?
"""
)

0.48 score
Increase question length

166 | Chapter 7: Using Classifiers for Writing Recommendations

Increase vocabulary diversity
Increase frequency of adverbs
No need to decrease frequency of question marks
Increase frequency of commas

// Following the recommendations once more
>> get_recommendation_and_prediction_from_text(
 """
I'd like to learn more about ML, specifically how to build ML products.
When I attempt to build such products, I always face the same challenge:
how do you go beyond a model?
What are the best practices to use a model in a concrete application?
Are there any good product focused resources?
Would you be able to recommend educational books?
"""
)

0.53 score

Voilà, we now have a pipeline that can take in a question and provide actionable rec‐
ommendations to users. This pipeline is by no means perfect, but we now have a
working end-to-end ML-powered editor. If you’d like to try your hand at improving
it, I encourage you to interact with this current version and identify failure modes to
address. Interestingly, while models can always be iterated upon, I would argue that
the most promising aspect to improve for this editor would be to generate new fea‐
tures that are even clearer to users.

Conclusion
In this chapter, we’ve covered different methods to generate suggestions from a
trained classification model. With these methods in mind, we compared different
modeling approaches for the ML Editor and chose the one that would optimize our
product goal of helping users ask better questions. We then built an end-to-end pipe‐
line for the ML Editor and used it to provide recommendations.

The model we settled on still has much room for improvement and can benefit from
more iteration cycles. If you’d like to practice using the concepts we outlined in
Part III, I encourage you to go through these cycles yourself. Overall, every chapter in
Part III represents one aspect of the ML iteration loop. To progress on ML projects,
repeatedly go through the steps outlined in this section until you estimate that a
model is ready to be deployed.

In Part IV, we will cover risks that come with deploying models, how to mitigate
them, and methods to monitor and react to model performance variability.

Conclusion | 167

PART IV

Deploy and Monitor

Once we have built a model and validated it, we would like to give users access to it.
There are many different methods to surface ML models. The simplest case involves
building a small API, but in order to guarantee that your models run well for all of
your users, you will need more.

See Figure IV-1 for an illustration of some of the systems we will cover in the next few
chapters and that usually accompany a model in production.

Figure IV-1. Typical production modeling pipeline

Production ML pipelines need to be able to detect data and model failures and handle
them with grace. Ideally, you should also aim to proactively predict any failure and

have a strategy to deploy updated models. If any of this sounds challenging to you,
worry not! This is what we will cover in Part IV.

Chapter 8
Before deploying, we should always perform a final round of validation. The goal
is to thoroughly examine potential abuse and negative uses of our models and do
our best to anticipate and build safeguards around them.

Chapter 9
We will cover different methods and platforms to deploy models and how you
would go about choosing one versus the other.

Chapter 10
In this chapter, we will learn how to build a robust production environment that
can support models. This includes detecting and addressing model failure, opti‐
mizing model performance, and systematizing retraining.

Chapter 11
In this final chapter, we will tackle the crucial step of monitoring. In particular,
we will cover why we need to monitor models, the best ways to monitor models,
and how we can couple our monitoring setup to our deployment strategy.

CHAPTER 8

Considerations When Deploying Models

The previous chapters covered model training and generalization performance. These
are necessary steps to deploy a model, but they are not sufficient to guarantee the suc‐
cess of an ML-powered product.

Deploying a model requires a deeper dive into failure modes that could impact users.
When building products that learn from data, here are a few questions you should
answer:

• How was the data you are using collected?
• What assumptions is your model making by learning from this dataset?
• Is this dataset representative enough to produce a useful model?
• How could the results of your work be misused?
• What is the intended use and scope of your model?

The field of data ethics aims to answer some of these questions, and the methods used
are constantly evolving. If you’d like to dive deeper, O’Reilly has a comprehensive
report on the subject, Ethics and Data Science, by Mike Loukides et al.

In this chapter, we will discuss some concerns around data collection and usage and
the challenges involved with making sure models keep working well for everyone. We
will conclude the section with a practical interview covering tips to translate model
predictions to user feedback.

Let’s start by looking at data, first covering ownership concerns and then moving on
to bias.

171

Data Concerns
In this section, we will start by outlining tips to keep in mind when you store, use,
and generate data. We will start by covering data ownership and the responsibilities
that come with storing data. Then, we will discuss common sources of bias in datasets
and methods to take this bias into account when building models. Finally, we’ll cover
examples of the negative consequences of such biases and why they are important to
mitigate.

Data Ownership
Data ownership refers to the requirements associated with the collection and use of
data. Here are a few important aspects to consider with regard to data ownership:

• Data collection: Are you legally authorized to collect and use the dataset you want
to train your model on?

• Data usage and permission: Have you clearly explained to your users why you
needed their data and how you wanted to use it, and did they agree?

• Data storage: How are you storing your data, who has access to it, and when will
you delete it?

Collecting data from users can help personalize and tailor product experiences. It also
implies both moral and legal responsibilities. While there has always been a moral
obligation to safe-keep data provided by users, new regulations increasingly make it a
legal one. In Europe, for example, the GDPR regulation now sets strict guidelines
regarding data collection and processing.

For organizations storing large amounts of data, data breaches represent a significant
liability risk. Such breaches both erode the trust of users in the organization and often
lead to legal action. Limiting the amount of data collected thus limits legal exposure.

For our ML editor, we will start by using publicly available datasets, which were col‐
lected with the agreement of users and are stored online. If we wanted to record addi‐
tional data, such as records of how our service is used in order to improve it, we
would have to clearly define a data collection policy and share it with users.

In addition to data collection and storage, it is important to consider whether using
collected data may lead to poor performance. A dataset is appropriate to use in some
cases, but not in others. Let’s explore why.

172 | Chapter 8: Considerations When Deploying Models

Data Bias
Datasets are the result of specific data collection decisions. These decisions lead to
datasets presenting a biased view of the world. ML models learn from datasets and
thus will reproduce these biases.

For example, let’s say a model is trained on historical data to predict leadership skills
by forecasting the likelihood of a person becoming a CEO based on information
including their gender. Historically, according to the “The Data on Women Leaders”
fact sheet compiled by the Pew Research Center, most Fortune 500 CEOs have been
male. Using this data to train a model will lead to it learning that being male is a val‐
uable predictor of leadership. Being male and being a CEO are correlated in the
chosen dataset due to societal reasons, which led to fewer opportunities for women to
even be considered for such roles. By blindly training a model on this data and using
it to make predictions, we would simply be reinforcing biases of the past.

It can be tempting to consider data as ground truth. In reality, most datasets are a col‐
lection of approximate measurements that ignore a larger context. We should start
with the assumption that any dataset is biased and estimate how this bias will affect
our model. We can then take steps to improve a dataset by making it more represen‐
tative and adjust models to limit their ability to propagate existing bias.

Here are a few examples of common sources of errors and biases in datasets:

• Measurement errors or corrupted data: Each data point comes with uncertainty
due to the method used to produce it. Most models ignore such uncertainty and
can thus propagate systematic measurement errors.

• Representation: Most datasets present an unrepresentative view of a population.
Many early face recognition datasets mostly contained images of white men. This
led to models performing well for this demographic but failing on others.

• Access: Some datasets can be harder to find than others. For example, English text
is easier to gather online than other languages. This ease of access leads to most
of the state-of-the-art language models being trained exclusively on English data.
As a consequence, English speakers will have access to better ML-powered serv‐
ices than non-English speakers. This disparity often is self-reinforcing, as the
additional volume of users for English products helps make those models even
better compared to ones for other languages.

Test sets are used to evaluate the performance of models. For this reason, you should
take special care to make sure that your test set is as accurate and representative as
possible.

Data Concerns | 173

Test sets
Representation appears in every ML problem. In “Split Your Dataset” on page 99, we
covered the value of separating data in different sets to evaluate a model’s perfor‐
mance. When doing this, you should attempt to build a test set that is inclusive, rep‐
resentative, and realistic. This is because a test set serves as a proxy for performance
in production.

To do this, when designing your test set, think of every user that could interact with
your model. To improve the chances that every user has an equally positive experi‐
ence, try to include examples representative of every type of user in your test set.

Design your test set to encode product goals. When building a diagnosis model,
you’ll want to make sure that it performs adequately for all genders. To evaluate
whether that is the case, you’ll need to have them all represented in your test set.
Gathering a diverse set of point of views can help with this endeavor. If you can,
before deploying a model, give a diverse set of users an opportunity to examine it,
interact with it, and share feedback.

I want to make a final point when it comes to bias. Models are often trained on his‐
torical data, which represents the state of the world in the past. Because of this, bias
most often affects populations that are already disenfranchised. Working to eliminate
bias is thus an endeavor that can help make systems fairer for the people who need it
most.

Systemic Bias
Systemic bias refers to institutional and structural policies that have led to some pop‐
ulations being unfairly discriminated against. Because of this discrimination, such
populations are often over- or underrepresented in historical datasets. For example, if
societal factors have contributed to some populations being historically overrepresen‐
ted in criminal arrest databases, an ML model trained from that data will encode this
bias and carry it forward to modern-day predictions.

This can have disastrous consequences and lead to the marginalization of subsets of
the population. For a concrete example, see J. Angwin et al.’s “Machine Bias” ProPubl‐
ica report, on ML bias for crime prediction.

Removing or limiting bias in a dataset is challenging. When trying to prevent a model
from being biased against certain features such as ethnicity or gender, some have
tried to remove the attribute in question from the list of features that a model uses to
make predictions.

In practice, simply removing a feature does not prevent a model from being biased
against it, because most datasets contain many other features that are strongly corre‐
lated with it. For example, ZIP code and income are highly correlated with ethnicity

174 | Chapter 8: Considerations When Deploying Models

in the United States. If you remove only one feature, a model may be just as biased,
albeit in ways that are harder to detect.

Instead, you should be explicit about which fairness constraints you are trying to
enforce. For example, you could follow the approach outlined in the paper by M. B.
Zafar et al., “Fairness Constraints: Mechanisms for Fair Classification”, where the
fairness of a model is measured using the p% rule. The p% rule is defined as “the ratio
between the percentage of subjects having a certain sensitive attribute value receiving
a positive outcome and the percentage of subjects not having that value receiving the
same outcome should be no less than p:100.” Using such a rule allows us to quantify
bias and thus address it better, but it requires keeping track of the feature we’d like a
model not to be biased against.

In addition to evaluating risk, biases, and errors in a dataset, ML requires evaluating
models.

Modeling Concerns
How can we minimize the risk of a model introducing undesirable bias?

There are multiple ways that models can impact users negatively. First, we’ll tackle
runaway feedback loops, and then we’ll explore the risks of a model discreetly failing
on a small segment of the population. We will then discuss the importance of contex‐
tualizing ML predictions appropriately for users and end this section by covering the
risk of having nefarious actors abusing models.

Feedback Loops
In most ML-powered systems, having a user follow a model’s recommendation will
make it more likely for future models to make the same recommendation. When left
unchecked, this phenomenon can lead to models entering a self-reinforcing feedback
loop.

For example, if we train a model to recommend videos to users and our first version
of the model is slightly more likely to recommend videos of cats than dogs, then users
will watch more cat videos than dog videos on average. If we train a second version of
the model using a dataset of historical recommendations and clicks, we will incorpo‐
rate the first model’s bias into our dataset, and our second model will favor cats much
more heavily.

Since content recommendation models often get updated multiple times a day, it
would not take long before our most recent version of the model recommends exclu‐
sively cat videos. You can see an example of this in Figure 8-1. Due to an initial popu‐
larity of a cat video, the model progressively learns to recommend more cat videos,
until it reaches the state on the right, only ever recommending cat videos.

Modeling Concerns | 175

Figure 8-1. Example of a feedback loop

Filling the internet up with cat videos might not seem like a tragedy, but you can
imagine how these mechanisms can rapidly reinforce negative biases and recommend
inappropriate or dangerous content to unsuspecting users. In fact, models that
attempt to maximize the probability of a user clicking will learn to recommend click‐
bait content, content that is very tempting to click but does not provide any value to
the user.

Feedback loops also tend to introduce bias to favor a minority of very active users. If
a video platform uses the number of clicks on each video to train its recommendation
algorithm, it risks having its recommendation overfit to its most active users who
represent the vast majority of clicks. Every other user of the platform would then be
exposed to the same videos regardless of their individual preferences.

To limit negative effects of feedback loops, choose a label that is less prone to creating
such a loop. Clicks only measure whether a user opens a video, not whether they
enjoy it. Using clicks as an optimization goal leads to recommending more eye-
catching content, without any concerns for its relevance. Replacing the target metric
with watch time, which is more correlated with the user satisfaction, would help alle‐
viate such a feedback loop.

Even then, recommendation algorithms that optimize for engagement of any sort
always carry the risk of degenerating into a feedback loop since their only objective is
to maximize a practically limitless metric. For example, even if an algorithm optimi‐
zes for watch time to encourage more engaging content, the state of the world that
would maximize this metric is one where every user spent their entire day watching
videos. Using such engagement metrics may help increase usage, but this raises the
question of whether that is always a worthwhile goal to optimize for.

176 | Chapter 8: Considerations When Deploying Models

In addition to the risk of creating feedback loops, models can also exhibit poorer per‐
formance than expected in production despite receiving convincing scores on offline
validation metrics.

Inclusive Model Performance
In “Evaluate Your Model: Look Beyond Accuracy” on page 109, we covered a variety
of evaluation metrics that attempt to judge performance on different subsets of a
dataset. This type of analysis is helpful to ensure that a model performs equally well
for different types of users.

This is especially important when training new versions of existing models and decid‐
ing whether to deploy them. If you only compare aggregate performance, you could
fail to notice a significant degradation of performance on a segment of the data.

Failure to notice such degradation of performance has led to catastrophic product
failures. In 2015, an automated photo-tagging system categorized photos of African
American users as gorillas (see this 2015 BBC article). This is an appalling failure and
a consequence of not validating a model on a representative set of inputs.

This sort of issue can arise when updating an existing model. Say you are updating a
facial recognition model, for example. The previous model had an accuracy of 90%,
and the new one has an accuracy of 92%. Before deploying this new model, you
should benchmark its performance on a few different subsets of users. You may find
that while the performance has slightly improved in aggregate, the new model’s accu‐
racy is performing very poorly for photos of women over the age of 40, so you should
abstain from deploying it. Instead, you should modify the training data to add more
representative examples and retrain a model that can perform well for every category.

Omitting such benchmarks can lead to models not working for a significant propor‐
tion of their intended audience. Most models will never work for every possible
input, but it is important to validate that they work for all expected ones.

Considering Context
Users will not always be aware that a given piece of information originated as a pre‐
diction from a ML model. Whenever possible, you should share the context of a pre‐
diction with a user, so they can make an informed decision as to how to leverage it.
To do so, you can start by describing to them how the model was trained.

There is no industry-standard “model disclaimer” format yet, but active research in
this area has shown promising formats, such as model cards (see this article by M.
Mitchell et al., “Model Cards for Model Reporting”), a documentation system for
transparent model reporting. In the proposed approach, a model is accompanied by
metadata about how it was trained, which data it was tested on, what its intended use
is, and more.

Modeling Concerns | 177

In our case study, the ML Editor provides feedback based on a specific dataset of
questions. If we were to deploy it as a product, we would include a disclaimer about
the types of inputs the model is expected to perform well on. Such a disclaimer could
be as simple as “This product attempts to recommend better ways to phrase a ques‐
tion. It was trained on questions from the writing Stack Exchange and may thus
reflect the particular preferences of that community.”

Keeping well-meaning users informed is important. Now, let’s look at potential chal‐
lenges that can come from less-friendly users.

Adversaries
Some ML projects need to consider the risk of having models be defeated by adversa‐
ries. Fraudsters may attempt to fool a model that is tasked with detecting suspicious
credit card transactions. Alternatively, adversaries may want to probe a trained model
to glean information they should not be allowed to access about the underlying train‐
ing data, such as sensitive user information.

Defeating a model
Many ML models are deployed to protect accounts and transactions from fraudsters.
In turn, fraudsters attempt to defeat these models by fooling them into believing they
are legitimate users.

If you are trying to prevent fraudulent logins to an online platform, for example, you
may want to consider sets of features that would include the user’s country of origin
(many large-scale attacks use multiple servers from the same region). If you train a
model on such features, you risk introducing bias against nonfraudulent users in
countries where fraudsters live. In addition, relying only on such a feature will make
it easy for malicious actors to fool your systems by faking their location.

To defend against adversaries, it is important to regularly update models. As attackers
learn existing patterns of defense and adapt their behavior to defeat them, update
your models so that they can quickly classify this new behavior as fraudulent. This
requires monitoring systems so that we can detect changes of patterns in activity. We
will cover this in more detail in Chapter 11. In many cases, defending against attack‐
ers requires generating new features to better detect their behavior. Feel free to refer
to “Let Data Inform Features and Models” on page 85 for a refresher on feature
generation.

The most common type of attack on models aims to fool them into a wrong predic‐
tion, but other types of attacks exist. Some attacks aim to use a trained model to learn
about the data it was trained on.

178 | Chapter 8: Considerations When Deploying Models

Exploiting a model
More than simply fooling a model, attackers could use it to learn private information.
A model reflects the data it was trained on, so one could use its predictions to infer
patterns in the original dataset. To illustrate this idea, consider the example of a clas‐
sification model trained on a dataset containing two examples. Each example is of a
different class, and both examples differ only by a single feature value. If you gave an
attacker access to a model trained on this dataset and allowed them to observe its pre‐
dictions to arbitrary inputs, they could eventually infer that this feature is the only
predictive one in the dataset. Similarly, an attacker could infer the distribution of fea‐
tures within the training data. These distributions often receive sensitive or private
information.

In the fraudulent login detection example, let’s imagine that ZIP code is one of the
required fields at login. An attacker could attempt to log in with many different
accounts, testing different ZIP codes to see which values lead to a successful login.
Doing so would allow them to estimate the distribution of ZIP codes in the training
set and thus the geographical distribution of this website’s customers.

The simplest way to limit the efficiency of such attacks is to limit the number of
requests a given user can make, thereby limiting their ability to explore feature values.
This is not a silver bullet, as sophisticated attackers may be able to create multiple
accounts to circumvent such a limit.

The adversaries described in this section are not the only nefarious users you should
be concerned with. If you choose to share your work with the wider community, you
should also ask yourself whether it could be used for dangerous applications.

Abuse Concerns and Dual-Use
Dual-use describes technologies that are developed for one purpose but can be used
for others. Because of ML’s ability to perform well on datasets of similar types (see
Figure 2-3), ML models often present a dual-use concern.

If you build a model that allows people to change their voice to sound like their
friends’, could it be misused to impersonate others without their consent? If you do
choose to build it, how could you include the proper guidance and resources to make
sure that users understand the proper use of your model?

Similarly, any model that can accurately classify faces has dual-use implications for
surveillance. While such a model may originally be built to enable a smart doorbell, it
could then be used to automatically track individuals across a city-wide network of
cameras. Models are built using a given dataset but can present risks when retrained
on other similar datasets.

Modeling Concerns | 179

There are currently no clear best practices on considering dual-use. If you believe
your work could be exploited for unethical uses, I encourage you to consider making
it harder to reproduce for that purpose or to engage in thoughtful discussion with the
community. Recently, OpenAI made the decision to not release its most powerful lan‐
guage model because of concerns that it may make spreading disinformation online
much easier (see OpenAI’s announcement post, “Better Language Models and Their
Implications”). While this was a relatively novel decision, I wouldn’t be surprised if
such concerns are raised more often going forward.

To conclude this chapter, in the next section I am sharing a discussion with Chris
Harland, currently director of engineering at Textio, who has an abundance of experi‐
ence deploying models to users and presenting the results with enough context to
make them useful.

Chris Harland: Shipping Experiments
Chris has a Ph.D. in physics and worked on a variety of ML tasks including computer
vision to extract structured information from receipts for expensing software. He
worked on the search team at Microsoft, where he realized the value of ML engineer‐
ing. Chris then joined Textio, a company that builds augmented writing products to
help users write more compelling job descriptions. Chris and I sat down to discuss
his experience shipping ML-powered products and how he approaches validating
results beyond accuracy metrics.

Q: Textio uses ML to directly guide users. How is that different from other ML tasks?

A: When you only focus on predictions, such as when to buy gold or who to follow
on Twitter, you can tolerate some amount of variance. When you do guidance for
writing, that is not the case, because your recommendations carry a lot of subtext.

If you tell me to write 200 more words, your model should be consistent and allow
the user to follow its advice. Once the user writes 150 words, the model can’t change
its mind and recommend to lower the word count.

Guidance also requires clarity: “remove stop words by 50%” is a confusing instruc‐
tion, but “reduce the length of these 3 sentences” may help users in a more actionable
way. A challenge then becomes maintaining performance while using features that
are more human understandable.

Essentially, ML writing assistants guide the user through our feature space from an
initial point to a better one according to our model. Sometimes, this can involve pass‐
ing through points that are worse, which can be a frustrating user experience. The
product needs to be built with these constraints in mind.

Q: What are good ways to perform this guidance?

180 | Chapter 8: Considerations When Deploying Models

A: For guidance, precision is much more interesting than recall. If you think of giving
advice to a person, recall would be the ability to give advice in all potential relevant
domains and some irrelevant ones (of which there are many), while precision would
be giving advice in a few promising domains ignoring potential other ones.

When giving advice, the cost of being wrong is very high, so precision is the most
useful. Users will also learn from recommendations that your model has previously
given and apply them unprompted to future inputs, which makes the precision of
these recommendations even more important.

In addition, since we surface different factors, we measure whether users actually take
advantage of them. If not, we should understand why not. A practical example is our
“active to passive ratio” feature, which was underutilized. We realized that this was
because of the recommendation not being actionable enough, so we improved it by
highlighting the words themselves that we recommend changing.

Q: How do you find new ways to guide your users or new features?

A: Both top-down and bottom-up approaches are valuable.

Top-down hypothesis investigation is domain knowledge-driven and basically con‐
sists of feature matching from prior experience. This can come from product or sales
teams, for example. A top-down hypothesis may look like “we believe that there is
something about the mystery aspect of recruiting emails that helps drive engage‐
ment.” The challenge in top-down is usually to find a practical way to extract that fea‐
ture. Only then can we validate whether the feature is predictive.

Bottom-up aims to introspect a classification pipeline to understand what it finds
predictive. If we have a general representation of text such as word vectors, tokens,
and parts of speech annotations that we then feed to ensembles of models to classify
as good or bad text, which features are most predictive of our classification? Domain
experts will often be the best equipped to identify these patterns from a model’s pre‐
dictions. The challenge is then to find a way to make these features human under‐
standable.

Q: How do you decide when a model is good enough?

A: You shouldn’t underestimate how far a small text dataset of relevant language gets
you. It turns out that using only a thousand documents in your domain is enough for
many use cases. Having an ability to label that small set of data is worthwhile. You can
then start by testing your model on out-of-sample data.

You should make it easy to run experiments. An overwhelming majority of the ideas
you have about changing your product end up having a net effect that is null, which
should allow you to be a little less worried about new features.

Chris Harland: Shipping Experiments | 181

Finally, building a bad model is fine and is what you should start with. Fixing the bad
models will make your product much more robust to problems and help it evolve
faster.

Q: How do you see how a model is doing once it is in production?

A: When in production, expose your model’s predictions to users clearly and let them
override it. Log feature values, predictions, and overwrites so that you can monitor
them and analyze them later. If your model produces a score, finding ways to com‐
pare this score to usage of your recommendations can be an additional signal. If you
are predicting whether an email will be opened, for example, it can be extremely val‐
uable to get access to the ground truth data from your users so you can improve your
model.

The ultimate success metric is customer success, which is the most delayed and is
influenced by many other factors.

Conclusion
We started by covering concerns with using and storing data. Then, we dove into
causes of bias in datasets and tips to identify and reduce them. Next, we looked at the
challenges that models face in the wild and how to reduce the risks associated with
exposing them to users. Finally, we looked at how to architect systems so that they are
designed to be resilient to errors.

These are complex issues, and the field of ML still has much to do to tackle all poten‐
tial forms of abuse. The first step is for all practitioners to be aware of these concerns
and to be mindful of them in their own projects.

We are now ready to deploy models. To start, we will explore the trade-offs between
different deployment options in Chapter 9. Then, we will cover methods to mitigate
some of the risks associated with deploying models in Chapter 10.

182 | Chapter 8: Considerations When Deploying Models

CHAPTER 9

Choose Your Deployment Option

The previous chapters covered the process of going from a product idea to an ML
implementation, as well as methods to iterate on this application until you are ready
to deploy it.

This chapter covers different deployment options and the trade-offs between each of
them. Different deployment approaches are suited to different sets of requirements.
When considering which one to choose, you’ll want to think of multiple factors such
as latency, hardware and network requirements, as well as privacy, cost, and complex‐
ity concerns.

The goal of deploying a model is to allow users to interact with it. We will cover com‐
mon approaches to achieve this goal, as well as tips to decide between approaches
when deploying models.

We will start with the simplest way to get started when deploying models and spin‐
ning up a web server to serve predictions.

Server-Side Deployment
Server-side deployment consists of setting up a web server that can accept requests
from clients, run them through an inference pipeline, and return the results. This sol‐
ution fits within a web development paradigm, as it treats models as another end‐
point in an application. Users have requests that they send to this endpoint, and they
expect results.

There are two common workloads for server-side models, streaming and batch.
Streaming workflows accept requests as they come and process them immediately.
Batch workflows are run less frequently and process a large number of requests all at
once. Let’s start by looking at streaming workflows.

183

Streaming Application or API
The streaming approach considers a model as an endpoint that users can send
requests to. In this context, users can be end users of an application or an internal
service that relies on predictions from a model. For example, a model that predicts
website traffic could be used by an internal service that is charged with adjusting the
number of servers to match the predicted amount of users.

In a streaming application, the code path for a request goes through a set of steps that
are the same as the inference pipeline we covered in “Start with a Simple Pipeline” on
page 37. As a reminder, these steps are:

1. Validate the request. Verify values of parameters passed, and optionally check
whether the user has the correct permissions for this model to be run.

2. Gather additional data. Query other data sources for any additional needed data
we may need, such as information related to a user, for example.

3. Preprocess data.
4. Run the model.
5. Postprocess the results. Verify that the results are within acceptable bounds. Add

context to make it understandable to the user, such as explaining the confidence
of a model.

6. Return a result.

You can see this sequence of steps illustrated in Figure 9-1.

Figure 9-1. Streaming API workflow

The endpoint approach is quick to implement but requires infrastructure to scale lin‐
early with the current number of users, since each user leads to a separate inference
call. If traffic increases beyond the capacity of a server to handle requests, they will
start to be delayed or even fail. Adapting such a pipeline to traffic patterns thus

184 | Chapter 9: Choose Your Deployment Option

requires being able to easily launch and shut down new servers, which will require
some level of automation.

For a simple demo such as the ML Editor, however, which is only meant to be visited
by a few users at a time, a streaming approach is usually a good choice. To deploy the
ML Editor, we use a lightweight Python web application such as Flask, which makes it
easy to set up an API to serve a model with a few lines of code.

You can find the deployment code for the prototype in the book’s GitHub repository,
but I’ll give a high-level overview here. The Flask application consists of two parts, an
API that takes in requests and sends them to a model for processing using Flask, and
a simple website built in HTML for users to input their text and to display results.
Defining such an API does not require much code. Here, you can see two functions
that handle the bulk of the work to serve the v3 of the ML Editor:

from flask import Flask, render_template, request

@app.route("/v3", methods=["POST", "GET"])
def v3():
 return handle_text_request(request, "v3.html")

def handle_text_request(request, template_name):
 if request.method == "POST":
 question = request.form.get("question")
 suggestions = get_recommendations_from_input(question)
 payload = {"input": question, "suggestions": suggestions}
 return render_template("results.html", ml_result=payload)
 else:
 return render_template(template_name)

The v3 function defines a route, which allows it to determine the HTML to display
when a user accesses the /v3 page. It uses the function handle_text_request to
decide what to display. When a user first accesses the page, the request type is GET and
so the function displays an HTML template. A screenshot of this HTML page is
shown in Figure 9-2. If a user clicks the “Get recommendation” button, the request
type is POST, so handle_text_request retrieves the question data, passes it to a
model, and returns the model output.

Server-Side Deployment | 185

Figure 9-2. Simple webpage to use a model

A streaming application is required when strong latency constraints exist. If the
information a model needs will be available only at prediction time and the model’s
prediction is required immediately, you will need a streaming approach. For example,
a model that predicts the price for a specific trip in a ride hailing app requires infor‐
mation about the user’s location and the current availability of drivers to make a pre‐
diction, which is available only at request time. Such a model also needs to output a
prediction immediately, since it must be displayed to the user for them to decide
whether to use the service.

In some other cases, the information required to compute predictions is available
ahead of time. In those cases, it can be easier to process a large number of requests at
once rather than processing them as they arrive. This is called batch prediction, and
we will cover it next.

Batch Predictions
The batch approach considers the inference pipeline as a job that can be run on mul‐
tiple examples at once. A batch job runs a model on many examples and stores pre‐
dictions so they can be used when needed. Batch jobs are appropriate when you have
access to the features needed for a model before the model’s prediction is required.

For example, let’s say you’d like to build a model to provide each salesperson on your
team with a list of companies that are the most valuable prospects to contact. This is a
common ML problem called lead scoring. To train such a model, you could use fea‐
tures such as historical email conversations and market trends. Such features are
available before a salesperson is deciding which prospect to contact, which is when a
prediction is required. This means you could compute a list of prospects in a nightly

186 | Chapter 9: Choose Your Deployment Option

batch job and have the results ready to be displayed by the morning, when they will
be needed.

Similarly, an app that uses ML to prioritize and rank the most important message
notifications to read in the morning does not have strong latency requirements. An
appropriate workflow for this app would be to process all unread emails in a batch in
the morning and save the prioritized list for when the user needs it.

A batch approach requires as many inference runs as a streaming approach, but it can
be more resource efficient. Because predictions are done at a predetermined time and
the number of predictions is known at the start of a batch, it is easier to allocate and
parallelize resources. In addition, a batch approach can be faster at inference time
since results have been precomputed and only need to be retrieved. This provides
similar gains to caching.

Figure 9-3 shows the two sides of this workflow. At batch time, we compute predic‐
tions for all the data points and store the results we produce. At inference time, we
retrieve the precomputed results.

Figure 9-3. Example of batch workflow

It is also possible to use a hybrid approach. Precompute in as many cases as possible
and at inference time either retrieve precomputed results or compute them on the
spot if they are not available or are outdated. Such an approach produces results as
rapidly as possible, since anything that can be computed ahead of time will be. It
comes with the cost of having to maintain both a batch pipeline and a streaming
pipeline, which significantly increases the complexity of a system.

We’ve covered two common ways of deploying applications on a server, streaming
and batch. Both of these approaches require hosting servers to run inference for cus‐
tomers, which can quickly become costly if a product becomes popular. In addition,
such servers represent a central failure point for your application. If the demand for

Server-Side Deployment | 187

predictions increases suddenly, your servers may not be able to accommodate all of
the requests.

Alternatively, you could process requests directly on the devices of the clients making
them. Having models run on users’ devices reduces inference costs and allows you to
maintain a constant level of service regardless of the popularity of your application,
since clients are providing the necessary computing resources. This is called client-
side deployment.

Client-Side Deployment
The goal of deploying models on the client side is to run all computations on the cli‐
ent, eliminating the need for a server to run models. Computers, tablets, modern
smartphones, and some connected devices such as smart speakers or doorbells have
enough computing power to run models themselves.

This section only covers trained models being deployed on device for inference, not
training a model on the device. Models are still trained in the same manner and are
then sent to the device for inference. The model can make its way to the device by
being included in an app, or it can be loaded from a web browser. See Figure 9-4 for
an example workflow to package a model in an application.

Figure 9-4. A model running inference on device (we can still train on a server)

Pocket-sized devices offer more limited compute power than powerful servers, so this
approach limits the complexity of the models that can be used, but having models run
on device can offer multiple advantages.

First, this reduces the need to build infrastructure that can run inference for every
single user. In addition, running models on devices reduces the quantity of data that
needs to be transferred between the device and the server. This reduces network
latency and can even allow an application to run with no access to the network.

188 | Chapter 9: Choose Your Deployment Option

Finally, if the data required for inference contains sensitive information, having a
model run on device removes the need for this data to be transferred to a remote
server. Not having sensitive data on servers lowers the risk of an unauthorized third
party accessing this data (see “Data Concerns” on page 172 for why this can be a seri‐
ous risk).

Figure 9-5 compares the workflow for getting a prediction to a user for server-side
models and client-side models. At the top, you can see that the longest delay for a
server-side workflow is often the time it takes to transfer data to the server. On the
bottom, you can see that while client-side models incur next to no latency, they often
process examples slower than servers because of hardware constraints.

Figure 9-5. Running on a server, or locally

Just like for server-side deployment, there are multiple ways to deploy applications
client side. In the following sections, we will cover two methods, deploying models
natively and running them through the browser. These approaches are relevant for
smartphones and tablets, which have access to an app store and web browser, but not
for other connected devices such as microcontrollers, which we will not cover here.

On Device
Processors in laptops and phones are not usually optimized to run ML models and so
will execute an inference pipeline slower. For a client-side model to run quickly and
without draining too much power, it should be as small as possible.

Reducing model size can be done by using a simpler model, reducing a model’s num‐
ber of parameters or the precision of calculations. In neural networks, for example,
weights are often pruned (removing those with values close to zero) and quantized

Client-Side Deployment | 189

(lowering the precision of weights). You may also want to reduce the number of fea‐
tures your model uses to further increase efficiency. In recent years, libraries such as
Tensorflow Lite have started providing useful tools to reduce the size of models and
help make them more easily deployable on mobile devices.

Because of these requirements, most models will suffer a slight performance loss by
being ported on device. Products that cannot tolerate model performance degrada‐
tion such as ones that rely on cutting-edge models that are too complex to be run on
a device such as a smartphone should be deployed on a server. In general, if the time
it would take to run inference on device is larger than the time it would take to trans‐
mit data to the server to be processed, you should consider running your model in
the cloud.

For other applications such as predictive keyboards on smartphones that offer sug‐
gestions to help type faster, the value of having a local model that does not need
access to the internet outweighs the accuracy loss. Similarly, a smartphone application
built to help hikers identify plants by taking a photo of them should work offline so
that it can be used on a hike. Such an application would require a model to be
deployed on device, even if it means sacrificing prediction accuracy.

A translation app is another example of an ML-powered product that benefits from
functioning locally. Such an app is likely to be used abroad where users may not have
network access. Having a translation model that can run locally becomes a require‐
ment, even if it isn’t as precise as a more complex one that could run only on a server.

In addition to network concerns, running models in the cloud adds a privacy risk.
Sending user data to the cloud and storing it even temporarily increases the odds of
an attacker getting access to it. Consider an application as benign as superimposing
filters on photos. Many users may not feel comfortable with their photos being trans‐
mitted to a server for processing and stored indefinitely. Being able to guarantee to
users that their photos never leave the device is an important differentiator in an
increasingly privacy conscious world. As we saw in “Data Concerns” on page 172, the
best way to avoid putting sensitive data at risk is making sure it never leaves the
device or gets stored on your servers.

On the other hand, quantizing pruning and simplifying a model is a time-consuming
process. On-device deployment is only worthwhile if the latency, infrastructure, and
privacy benefits are valuable enough to invest the engineering effort. For the ML Edi‐
tor, we will limit ourselves to a web-based streaming API.

Finally, optimizing models specifically so they run on a certain type of device can be
time-consuming, as the optimization process may differ between devices. More
options exist to run models locally, including ones that leverage commonalities
between devices to reduce required engineering work. An exciting area in this
domain is ML in the browser.

190 | Chapter 9: Choose Your Deployment Option

Browser Side
Most smart devices have access to a browser. These browsers have often been opti‐
mized to support fast graphical calculations. This has led to rising interest in libraries
that use browsers to have the client perform ML tasks.

The most popular of these frameworks is Tensorflow.js, which makes it possible to
train and run inference in JavaScript in the browser for most differentiable models,
even ones that were trained in different languages such as Python.

This allows users to interact with models through the browser without needing to
install any additional applications. In addition, since models run in the browser using
JavaScript, computations are done on the user’s device. Your infrastructure only needs
to serve the web page that includes the model weights. Finally, Tensorflow.js supports
WebGL, which allows it to leverage GPUs on the clients’ device if they are available to
make computations faster.

Using a JavaScript framework makes it easier to deploy a model on the client side
without requiring as much device-specific work as the previous approach. This
approach does come with the drawback of increasing bandwidth costs, since the
model will need to be downloaded by clients each time they open the page as opposed
to once when they install the application.

As long as the models you use are a few megabytes or smaller and can be downloaded
quickly, using JavaScript to run them on the client can be a useful way to lower server
costs. If server costs ever became an issue for the ML Editor, deploying the model
using a framework like Tensorflow.js would be one of the first methods I would rec‐
ommend exploring.

So far, we’ve considered clients purely to deploy models that have already been
trained, but we could also decide to train models on clients. In the next part, we will
explore when this could be useful.

Federated Learning: A Hybrid Approach
We have mostly covered different ways to deploy models that we have already trained
(ideally by following the guidelines in the previous chapters) and that we are now
choosing how to deploy. We have looked at different solutions for getting a unique
model in front of all our users, but what if we wanted each user to have a different
model?

Figure 9-6 shows the difference between a system at the top that has a common
trained model for all users and one at the bottom where each user has a slightly dif‐
ferent version of the model.

Federated Learning: A Hybrid Approach | 191

Figure 9-6. One big model or many individual ones

For many applications such as content recommendation, giving writing advice, or
healthcare, a model’s most important source of information is the data it has about
the user. We can leverage this fact by generating user-specific features for a model, or
we can decide that each user should have their own model. These models can all
share the same architecture, but each user’s model will have different parameter val‐
ues that reflect their individual data.

This idea is at the core of federated learning, an area of deep learning that has been
getting increasing attention recently with projects such as OpenMined. In federated
learning, each client has their own model. Each model learns from their user’s data
and sends aggregated (and potentially anonymized) updates to the server. The server
leverages all updates to improve its model and distills this new model back to individ‐
ual clients.

Each user receives a model that is personalized to their needs, while still benefiting
from aggregate information about other users. Federated learning improves privacy
for users because their data is never transferred to the server, which only receives
aggregated model updates. This stands in contrast to training a model the traditional
way by collecting data about each user and storing all of it on a server.

Federated learning is an exciting direction for ML, but it does add an additional layer
of complexity. Making sure that each individual model is performing well and that
the data transmitted back to the server is properly anonymized is more complicated
than training a single model.

Federated learning is already used in practical applications by teams that have the
resources to deploy it. For example, as described in this article by A. Hard et al., “Fed‐
erated Learning for Mobile Keyboard Prediction”, Google’s GBoard uses federated
learning to provide next-word predictions for smartphone users. Because of the
diversity of writing styles among users, building a unique model that performs well
for all users proved challenging. Training models at the user level allows GBoard to
learn about user-specific patterns and to provide better predictions.

192 | Chapter 9: Choose Your Deployment Option

We’ve covered multiple ways to deploy models on servers, on devices, or even on
both. You should consider each approach and its trade-offs based on the require‐
ments of your application. As with other chapters in this book, I encourage you to
start with a simple approach and move to a more complex one only once you’ve vali‐
dated that it is necessary.

Conclusion
There are multiple ways to serve an ML-powered application. You can set up a
streaming API to allow a model to process examples as they arrive. You can use a
batch workflow that will process multiple data points at once on a regular schedule.
Alternatively, you can choose to deploy your models on the client side by either pack‐
aging them in an application or serving them through a web browser. Doing so would
lower your inference costs and infrastructure needs but make your deployment pro‐
cess more complex.

The right approach depends on your application’s needs, such as latency require‐
ments, hardware, network and privacy concerns, and inference costs. For a simple
prototype like the ML Editor, start with an endpoint or a simple batch workflow and
iterate from there.

Deploying a model comes with more than just exposing it to users, however. In
Chapter 10, we will cover methods to build safeguards around models to mitigate
errors, engineering tools to make the deployment process more effective, and
approaches to validate that models are performing the way they should be.

Conclusion | 193

CHAPTER 10

Build Safeguards for Models

When designing databases or distributed systems, software engineers concern them‐
selves with fault tolerance, the ability for a system to continue working when some of
its components fail. In software, the question is not whether a given part of the sys‐
tem will fail, but when. The same principles can be applied to ML. No matter how
good a model is, it will fail on some examples, so you should engineer a system that
can gracefully handle such failures.

In this chapter, we will cover different ways to help prevent or mitigate failures. First,
we’ll see how to verify the quality of the data that we receive and produce and use this
verification to decide how to display results to users. Then, we will take a look at ways
to make a modeling pipeline more robust to be able to serve many users efficiently.
After that, we’ll take a look at options to leverage user feedback and judge how a
model is performing. We’ll end the chapter with an interview with Chris Moody
about deployment best practices.

Engineer Around Failures
Let’s cover some of the most likely ways for an ML pipeline to fail. The observant
reader will notice that these failure cases are somewhat similar to the debugging tips
we saw in “Debug Wiring: Visualizing and Testing” on page 130. Indeed, exposing a
model to users in production comes with a set of challenges that mirrors the ones that
come with debugging a model.

Bugs and errors can show up anywhere, but three areas in particular are most impor‐
tant to verify: the inputs to a pipeline, the confidence of a model, and the outputs it
produces. Let’s address each in order.

195

Input and Output Checks
Any given model was trained on a specific dataset that exhibited particular character‐
istics. The training data had a certain number of features, and each of these features
was of a certain type. Furthermore, each feature followed a given distribution that the
model learned in order to perform accurately.

As we saw in “Freshness and Distribution Shift” on page 28, if production data is dif‐
ferent from the data a model was trained on, a model may struggle to perform. To
help with this, you should check the inputs to your pipeline.

Check inputs
Some models may still perform well when faced with small differences in data distri‐
butions. However, if a model receives data that is very different from its training data
or if some features are missing or of an unexpected type, it will struggle to perform.

As we saw previously, ML models are able to run even when given incorrect inputs
(as long as these inputs are of the right shape and type). Models will produce outputs,
but these outputs may be widely incorrect. Consider the example illustrated in
Figure 10-1. A pipeline classifies a sentence into one of two topics by first vectorizing
it and applying a classification model on the vectorized representation. If the pipeline
receives a string of random characters, it will still transform it into a vector, and the
model will make a prediction. This prediction is absurd, but there is no way to know
it only by looking at the results of the model.

Figure 10-1. Models will still output a prediction for random inputs

196 | Chapter 10: Build Safeguards for Models

To prevent a model from running on incorrect outputs, we need to detect that these
inputs are incorrect before passing them to the model.

Checks Versus Tests
In this section, we are speaking of input checks, as opposed to the input tests we saw
in “Test Your ML Code” on page 136. The difference is subtle but important. Tests
validate that code behaves as expected given a known, predetermined input. Tests are
commonly run every time code or models change to validate that a pipeline still
works properly. The input checks in this section are part of the pipeline itself and
change the control flow of a program based on the quality of inputs. Input checks that
fail may result in running a different model or not running a model at all.

The checks cover similar domains to the tests in “Test Your ML Code” on page 136.
In order of importance, they will:

1. Verify that all necessary features are present
2. Check every feature type
3. Validate feature values

Verifying feature values in isolation can be hard, as feature distributions can be com‐
plex. A simple way to perform such validation is to define a reasonable range of val‐
ues a feature could take and validate that it falls within that range.

If any of the input checks fail, the model should not run. What you should do
depends on the use case. If the data that is missing represents a core piece of informa‐
tion, you should return an error specifying the source of the error. If you estimate
that you can still provide a result, you can replace a model call with a heuristic. This is
an additional reason to start any ML project by building a heuristic; it provides you
with an option to fall back on!

In Figure 10-2, you can see an example of this logic, where the path taken depends on
the results of the input checks.

Engineer Around Failures | 197

Figure 10-2. Example branching logic for input checks

Following is an example of some control flow logic from the ML Editor that checks
for missing features and feature types. Depending on the quality of the input, it either
raises an error or runs a heuristic. I’ve copied the example here, but you can also find
it on this book’s GitHub repository with the rest of the ML Editor code.

def validate_and_handle_request(question_data):
 missing = find_absent_features(question_data)
 if len(missing) > 0:
 raise ValueError("Missing feature(s) %s" % missing)

 wrong_types = check_feature_types(question_data)
 if len(wrong_types) > 0:
 # If data is wrong but we have the length of the question, run heuristic
 if "text_len" in question_data.keys():
 if isinstance(question_data["text_len"], float):
 return run_heuristic(question_data["text_len"])
 raise ValueError("Incorrect type(s) %s" % wrong_types)

 return run_model(question_data)

Verifying model inputs allows you to narrow down failure modes and identify data
input issues. Next, you should validate a model’s outputs.

Model outputs
Once a model makes a prediction, you should determine whether it should be dis‐
played to the user. If the prediction falls outside of an acceptable range of answers for
a model, you should consider not displaying it.

For example, if you are predicting the age of a user from a photo, output values
should be between zero to a little over 100 years old (if you are reading this book in
the year 3000, feel free to adjust the bounds). If a model outputs a value outside of
this range, you should not display it.

198 | Chapter 10: Build Safeguards for Models

In this context, an acceptable outcome is not only defined by an outcome that is plau‐
sible. It also depends on your estimation of the kind of outcome that would be useful
to our user.

For our ML editor, we want to only provide recommendations that are actionable. If a
model predicts that everything a user wrote should be entirely deleted, this would
consist of a rather useless (and insulting) recommendation. Here is an example snip‐
pet validating model outputs and reverting to a heuristic if necessary:

def validate_and_correct_output(question_data, model_output):
 # Verify type and range and raise errors accordingly
 try:
 # Raises value error if model output is incorrect
 verify_output_type_and_range(model_output)
 except ValueError:
 # We run a heuristic, but could run a different model here
 run_heuristic(question_data["text_len"])

 # If we did not raise an error, we return our model result
 return model_output

When a model fails, you can revert to a heuristic just as we saw earlier or to a simpler
model you may have built earlier. Trying an earlier type of model can often be worth‐
while because different models may have uncorrelated errors.

I’ve illustrated this on a toy example in Figure 10-3. On the left, you can see a better-
performing model with a more complex decision boundary. On the right, you can see
a worse, simpler model. The worse model makes more mistakes, but its mistakes are
different from the complex model because of the different shape of its decision
boundary. Because of this, the simpler model gets some examples right that the com‐
plex model gets wrong. This is the intuition for why using a simple model as a backup
is a reasonable idea when a primary model fails.

If you do use a simpler model as a backup, you should also validate its outputs in the
same manner and fall back to a heuristic or display an error if they do not pass your
checks.

Validating that the outputs of a model are in a reasonable range is a good start, but it
isn’t sufficient. In the next section, we will cover additional safeguards we can build
around a model.

Engineer Around Failures | 199

Figure 10-3. A simpler model often makes different errors

Model Failure Fallbacks
We have built safeguards to detect and correct erroneous inputs and outputs. In some
cases, however, the input to our model can be correct, and our model’s output can be
reasonable while being entirely wrong.

To go back to the example of predicting a user’s age from a photo, guaranteeing that
the age predicted by the model is a plausible human age is a good start, but ideally
we’d like to predict the correct age for this specific user.

No model will be right 100 percent of the time, and slight mistakes can often be
acceptable, but as much as possible, you should aim to detect when a model is wrong.
Doing so allows you to potentially flag a given case as too hard and encourages users
to provide an easier input (in the form of a well-lit photo, for example).

There are two main approaches to detecting errors. The simplest one is to track the
confidence of a model to estimate whether an output will be accurate. The second one
is to build an additional model that is tasked with detecting examples a main model is
likely to fail on.

For the first method, classification models can output a probability that can be used
as an estimate of the model’s confidence in its output. If those probabilities are well
calibrated (see “Calibration Curve” on page 114), they can be used to detect instances
where a model is uncertain and decide not to display results to a user.

Sometimes, models are wrong despite assigning a high probability to an example.
This is where the second approach comes in: using a model to filter out the hardest
inputs.

200 | Chapter 10: Build Safeguards for Models

Filtering model
On top of not always being trustworthy, using a model’s confidence score comes with
another strong drawback. To get this score, the entire inference pipeline needs to be
run regardless of whether its predictions will be used. This is especially wasteful when
using more complex models that need to be run on a GPU, for example. Ideally, we
would like to estimate how well a model will perform on an example without running
the model on it.

This is the idea behind filtering models. Since you know some inputs will be hard for
a model to handle, you should detect them ahead of time and not bother running a
model on them at all. A filtering model is the ML version of input tests. It is a binary
classifier that is trained to predict whether a model will perform well on a given
example. The core assumption between such a model is that there are trends in the
kind of data points that are hard for the main model. If such hard examples have
enough in common, the filtering model can learn to separate them from easier
inputs.

Here are some types of inputs you may want a filtering model to catch:

• Inputs that are qualitatively different from ones the main model performs well on
• Inputs that the model was trained on but struggled with
• Adversarial inputs that are meant to fool the main model

In Figure 10-4, you can see an updated example of the logic in Figure 10-2, which
now includes a filtering model. As you can see, the filtering model is only run if the
input checks pass, because you only need to filter out inputs that could have made
their way to the “Run Model” box.

To train a filtering model, you simply need to gather a dataset containing two cate‐
gories of examples; categories that your main model succeeded on and others that it
failed on. This can be done using our training data and requires no additional data
collection!

Engineer Around Failures | 201

Figure 10-4. Adding a filtering step to our input checks (bolded)

In Figure 10-5, I show how to do this by leveraging a trained model and its result on a
dataset, as seen in the chart on the left. Sample some data points that the model pre‐
dicted correctly and some that the model failed on. You can then train a filtering
model to predict which of the data points are ones that the original model failed on.

Figure 10-5. Getting training data for a filtering model

Once you have a trained classifier, training a filtering model can be relatively straight‐
forward. Given a test set and a trained classifier, the following function will do just
that.

def get_filtering_model(classifier, features, labels):
 """
 Get prediction error for a binary classification dataset
 :param classifier: trained classifier
 :param features: input features
 :param labels: true labels

202 | Chapter 10: Build Safeguards for Models

 """
 predictions = classifier.predict(features)
 # Create labels where errors are 1, and correct guesses are 0
 is_error = [pred != truth for pred, truth in zip(predictions, labels)]

 filtering_model = RandomForestClassifier()
 filtering_model.fit(features, is_error)
 return filtering_model

This approach is used by Google for their Smart Reply feature, which suggests a few
short responses to an incoming email (see this article by A. Kanan et al., “Smart
Reply: Automated Response Suggestion for Email”). They use what they call a trigger‐
ing model, responsible for deciding whether to run the main model that suggests
responses. In their case, only about 11% of emails are suitable for this model. By
using a filtering model, they reduce their infrastructure needs by an order of magni‐
tude.

A filtering model generally needs to satisfy two criteria. It should be fast since its
whole purpose is to reduce the computational burden, and it should be good at elimi‐
nating hard cases.

A filtering model that tries to identify hard cases doesn’t need to be able to catch all of
them; it simply needs to detect enough to justify the added cost of running it on each
inference. Generally, the faster your filtering model is, the less effective it needs to be.
Here is why:

Let’s say your average inference time using only one model is i.

Your average inference time using a filtering model will be f + i 1 − b where f is the
execution time of your filtering model, and b is the average proportion of examples it
filters out (b for block).

To reduce your average inference time by using a filtering model, you thus need to
have f + i 1 − b < i, which translates to f

i < b.

This means the proportion of cases your model filters out needs to be higher than the
ratio between its inference speed and the speed of your larger model.

For example, if your filtering model is 20 times faster than your regular model
(f

i = 5 %), it would need to block more than 5% of cases (5 % < b) to be useful in
production.

Of course, you would also need to make sure that the precision of your filtering
model is good, meaning that the majority of the inputs it blocks are actually too hard
for your main model.

Engineer Around Failures | 203

One way to do this would be to regularly let a few examples through that your filter‐
ing model would have blocked and examine how your main model does on them. We
will cover this in more depth in “Choose What to Monitor” on page 219.

Since the filtering model is different from the inference model and trained specifically
to predict hard cases, it can detect these cases more accurately than by relying on the
main model’s probability output. Using a filtering model thus helps both decreasing
the likelihood of poor results and improving resource usage.

For these reasons, adding filtering models to existing input and output checks can
significantly increase the robustness of a production pipeline. In the next section, we
will tackle more ways to make pipelines robust by discussing how to scale ML appli‐
cations to more users and how to organize complex training processes.

Engineer for Performance
Maintaining performance when deploying models to production is a significant chal‐
lenge, especially as a product becomes more popular and new versions of a model get
deployed regularly. We will start this section by discussing methods to allow models
to process large amounts of inference requests. Then, we will cover features that make
it easier to regularly deploy updated model versions. Finally, we will discuss methods
to reduce variance in performance between models by making training pipelines
more reproducible.

Scale to Multiple Users
Many software workloads are horizontally scalable, meaning that spinning up addi‐
tional servers is a valid strategy to keep response time reasonable when the number of
requests increases. ML is no different in this aspect, as we can simply spin up new
servers to run our models and handle the extra capacity.

If you use a deep learning model, you may need a GPU to serve
results in an acceptable time. If that is the case and you are expect‐
ing to have enough requests to require more than a single GPU-
enabled machine, you should run your application logic and your
model inference on two different servers.
Because GPU instances are often an order of magnitude more
expensive than regular instances for most cloud providers, having
one cheaper instance scale out your application and GPU instances
tackling only inference will significantly lower your compute costs.
When using this strategy, you should keep in mind that you are
introducing some communication overhead and make sure that
this is not too detrimental to your use case.

204 | Chapter 10: Build Safeguards for Models

In addition to increasing resource allocation, ML lends itself to efficient ways to han‐
dle additional traffic, such as caching.

Caching for ML
Caching is the practice of storing results to function calls so that future calls to this
function with the same parameters can be run faster by simply retrieving the stored
results. Caching is a common practice to speed up engineering pipelines and is very
useful for ML.

Caching inference results. A least recently used (LRU) cache is a simple caching
approach, which entails keeping track of the most recent inputs to a model and their
corresponding outputs. Before running the model on any new input, look up the
input in the cache. If a corresponding entry is found, serve the results directly from
the cache. Figure 10-6 shows an example of such a workflow. The first row represents
the caching step when an input is initially encountered. The second row depicts the
retrieval step once the same input is seen again.

Figure 10-6. Caching for an image captioning model

This sort of caching strategy works well for applications where users will provide the
same kind of input. It is not appropriate if each input is unique. If an application
takes in photos of paw prints to predict which animal they belong to, it should rarely
receive two identical photos, so a LRU cache would not help.

When using caching, you should only cache functions with no side effects. If a
run_model function also stores results to a database, for example, using an LRU cache
will cause duplicate function calls to not be saved, which may not be the intended
behavior.

Engineer for Performance | 205

In Python, the functools module proposes a default implementation of an LRU
cache that you can use with a simple decorator, as shown here:

from functools import lru_cache

@lru_cache(maxsize=128)
def run_model(question_data):
 # Insert any slow model inference below
 pass

Caching is most useful when retrieving features, processing them, and running infer‐
ence is slower than accessing a cache. Depending on your approach to caching (in
memory versus on disk, for example) and the complexity of the model you are using,
caching will have different degrees of usefulness.

Caching by indexing. While the caching method described is not appropriate when
receiving unique inputs, we can cache other aspects of the pipeline that can be pre‐
computed. This is easiest if a model does not only rely on user inputs.

Let’s say we are building a system that allows users to search for content that is related
to either a text query or an image they provide. It is unlikely that caching user queries
would boost performance by much if we expect queries to vary significantly. Since we
are building a search system, however, we have access to a list of potential items in
our catalog that we could return. This list is known to us in advance, whether we are
an online retailer or a document indexing platform.

This means that we could precompute modeling aspects that depend only on the
items in our catalog. If we chose a modeling approach that allows us to do this com‐
putation ahead of time, we can make inference significantly faster.

For this reason, a common approach when building a search system is to first embed
all indexed documents to a meaningful vector (refer to “Vectorizing” on page 69 for
more on vectorization methods). Once embeddings are created, they can be stored in
a database. This is illustrated on the top row of Figure 10-7. When a user submits a
search query, it is embedded at inference time, and a lookup is performed in the data‐
base to find the most similar embeddings and return the products that correspond to
these embeddings. You can see this illustrated in the bottom row of Figure 10-7.

This approach significantly speeds up inference since most of the calculations have
been done ahead of time. Embeddings have been successfully used in large-scale pro‐
duction pipelines at companies such as Twitter (see this post on Twitter’s blog) and
Airbnb (see this article by M. Haldar et al., “Applying Deep Learning To Airbnb
Search”.

206 | Chapter 10: Build Safeguards for Models

Figure 10-7. A search query with cached embeddings

Caching can improve performance, but it adds a layer of complexity. The size of the
cache becomes an additional hyperparameter to tune depending on your application’s
workload. In addition, any time a model or the underlying data is updated, the cache
needs to be cleared in order to prevent it from serving outdated results. More gener‐
ally, updating a model running in production to a new version often requires care. In
the next section, we will cover a few domains that can help make such updates easier.

Model and Data Life Cycle Management
Keeping caches and models up-to-date can be challenging. Many models require reg‐
ular retraining to maintain their level of performance. While we will cover when to
retrain your models in Chapter 11, I’d like to briefly talk about how to deploy updated
models to users.

A trained model is usually stored as a binary file containing information about its
type and architecture, as well as its learned parameters. Most production applications
load a trained model in memory when they start and call it to serve results. A simple
way to replace a model with a newer version is to replace the binary file the applica‐
tion loads. This is illustrated in Figure 10-8, where the only aspect of the pipeline that
is impacted by a new model is the bolded box.

In practice, however, this process is often much more involved. Ideally, an ML appli‐
cation produces reproducible results, is resilient to model updates, and is flexible
enough to handle significant modeling and data processing changes. Guaranteeing
this involves a few additional steps that we will cover next.

Engineer for Performance | 207

Figure 10-8. Deploying an updated version of the same model can seem like a simple
change

Reproducibility
To track down and reproduce errors, you’ll need to know which model is running in
production. To do so requires keeping an archive of trained models and the datasets
they were trained on. Each model/dataset pair should be assigned a unique identifier.
This identifier should be logged each time a model is used in production.

In Figure 10-9, I’ve added these requirements to the load and save boxes to represent
the complexity this adds to an ML pipeline.

Figure 10-9. Adding crucial metadata when saving and loading

208 | Chapter 10: Build Safeguards for Models

In addition to being able to serve different versions of existing models, a production
pipeline should aim to update models without significant downtime.

Resilience
Enabling an application to load a new model once it is updated requires building a
process to load a newer model, ideally without disrupting service to your users. This
can consist of launching a new server serving the updated model and slowly transi‐
tion traffic to it, but it quickly becomes more complex for larger systems. If a new
model performs poorly, we’d like to be able to roll back to the previous one. Doing
both of these tasks properly is challenging and would traditionally be categorized in
the realm of DevOps. While we won’t cover this domain in depth, we will introduce
monitoring in Chapter 11.

Production changes can be more complex than updating a model. They can include
large changes to data processing, which should also be deployable.

Pipeline flexibility
We previously saw that the best way to improve a model is often by iterating on data
processing and feature generation. This means that new versions of a model will often
require additional preprocessing steps or different features.

This kind of change is reflected in more than just the model binary and would often
be tied to a new version of your application. For this reason, the application version
should also be logged when a model makes a prediction in order to make this predic‐
tion reproducible.

Doing so adds another level of complexity to our pipeline, depicted with the added
preprocessing and postprocessing boxes in Figure 10-10. These now also need to be
reproducible and modifiable.

Deploying and updating models is challenging. When building a serving infrastruc‐
ture, the most important aspect is to be able to reproduce the results of a model run‐
ning in production. This means tying each inference call to the model that was run,
the dataset that model was trained on, and the version of the data pipeline that served
this model.

Engineer for Performance | 209

Figure 10-10. Adding model and application version

Data Processing and DAGs
To produce reproducible results as described earlier, a training pipeline should also
be reproducible and deterministic. For a given combination of dataset, preprocessing
steps, and model, a training pipeline should produce the same trained model on
every training run.

Many successive transformation steps are required to building a model, so pipelines
will often break at different locations. This makes guaranteeing that each part was run
successfully and that they were all run in the right order.

One way to make this challenge easier is by representing our process of going from
raw data to trained model as a directed acyclic graph (DAG), with each node repre‐
senting a processing step and each step representing a dependency between two
nodes. This idea is at the core of dataflow programming, a programming paradigm
that the popular ML library TensorFlow is based on.

DAGs can be a natural way to visualize preprocessing. In Figure 10-11, each arrow
represents a task that depends on another one. The representation allows us to keep
each task simple, using the graph structure to express complexity.

210 | Chapter 10: Build Safeguards for Models

Figure 10-11. An example of a DAG for our application

Once we have a DAG, we can then guarantee that we follow the same set of opera‐
tions for each model that we produce. There are multiple solutions to define DAGs
for ML, including active opensource projects such as Apache Airflow or Spotify’s
Luigi. Both packages allow you to define DAGs and provide a set of dashboards to
allow you to monitor the progress of your DAGs and any associated logs.

When first building an ML pipeline, using a DAG can be unnecessarily cumbersome,
but once a model becomes a core part of a production system, reproducibility
requirements make DAGs very compelling. Once models are being regularly
retrained and deployed, any tool that helps systematize, debug, and version a pipeline
will become a crucial time-saver.

To conclude this chapter, I will cover an additional and direct way to guarantee that a
model is performing well—asking users.

Ask for Feedback
This chapter covered systems that can help ensure we give every user an accurate
result in a timely manner. To guarantee the quality of results, we covered tactics to
detect whether a model’s predictions are inaccurate. Why don’t we ask users?

You can gather feedback from users both by explicitly asking for feedback and by
measuring implicit signals. You can ask for explicit feedback when displaying a mod‐
el’s prediction, by accompanying it with a way for users to judge and correct a predic‐
tion. This can be as simple as a dialog asking “was this prediction useful?” or
something more subtle.

Ask for Feedback | 211

The budgeting application Mint, for example, categorizes each transaction on an
account automatically (categories include Travel, Food, etc.). As depicted in
Figure 10-12, each category is shown in the UI as a field the user can edit and correct
if needed. Such systems allow valuable feedback to be collected to continuously
improve models in a way that is less intrusive than a satisfaction survey, for example.

Figure 10-12. Let users fix mistakes directly

Users cannot provide feedback for each prediction a model makes, so gathering
implicit feedback is an important way to judge ML performance. Gathering such
feedback consists of looking at actions users perform to infer whether a model pro‐
vided useful results.

Implicit signals are useful but harder to interpret. You shouldn’t hope to find an
implicit signal that always correlates with model quality, only one that does so in
aggregate. For example, in a recommendation system, if a user clicks on a recom‐
mended item, you can reasonably assume that the recommendation was valid. This
will not be true in all cases (people click on the wrong things sometimes!), but as long
as it is true more often than not, it is a reasonable implicit signal.

By collecting this information, as shown in Figure 10-13, you can then estimate how
often users found results useful. The collection of such implicit signals is useful but
comes with the added risk of collecting and storing this data and potentially intro‐
ducing negative feedback loops as we discussed in Chapter 8.

212 | Chapter 10: Build Safeguards for Models

Figure 10-13. User actions as a source for feedback

Building implicit feedback mechanisms in your product can be a valuable way to
gather additional data. Many actions can be considered a mix of implicit and explicit
feedback.

Let’s say we added a “Ask the question on Stack Overflow” button to the recommen‐
dations of our ML editor. By analyzing which predictions led to users clicking this
button, we could measure the proportion of recommendations that were good
enough to be posted as questions. By adding this button, we aren’t directly asking
users whether the suggestion is good, but we allow them to act on it, thus giving us a
“weak label” (see “Data types” on page 13 for a reminder on weakly labeled data) of
question quality.

In addition to being a good source of training data, implicit and explicit user feed‐
back can be the first way to notice a degradation in performance in an ML product.
While ideally errors should be caught before being displayed to users, monitoring
such feedback helps detect and fix bugs quicker. We will cover this in more detail in
Chapter 11.

Ask for Feedback | 213

Strategies for deploying and updating models vary tremendously depending on the
size of a team and their experience with ML. Some of the solutions in this chapter are
excessively complex for a prototype such as the ML Editor. On the other hand, some
teams that have invested a significant amount of resources into ML have built com‐
plex systems that allow them to simplify their deployment process and guarantee a
high level of quality to users. Next, I’ll share an interview with Chris Moody, who
leads Stitch Fix’s AI Instruments team and will take us through their philosophy
when it comes to deploying ML models.

Chris Moody: Empowering Data Scientists to
Deploy Models
Chris Moody came from a physics background from Caltech and UCSC and is now
leading Stitch Fix’s AI Instruments team. He has an avid interest in NLP and has dab‐
bled in deep learning, variational methods, and Gaussian processes. He’s contributed
to the Chainer deep learning library, contributed to the super fast Barnes–Hut ver‐
sion of t-SNE to scikit-learn, and written (one of the few!) sparse tensor factorization
libraries in Python. He also built his own NLP model, lda2vec.

Q: What part of the model life cycle do data scientists work on at Stitch Fix?

A: At Stitch Fix, data scientists own the entire modeling pipeline. This pipeline is
broad and includes things such as ideation, prototyping, design and debugging, ETL,
and model training in languages and frameworks such as scikit-learn, pytorch, and R.
In addition, data scientists are in charge of setting up systems to measure metrics and
building “sanity checks” for their models. Finally, data scientists run the A/B test,
monitor errors and logs, and redeploy updated model versions as needed based on
what they observe. To be able to do this, they leverage the work done by the platform
and engineering team.

Q: What does the platform team do to make data science work easier?

A: The goal of engineers on the platform team is to find the right abstractions for
modeling. This means they need to understand how a data scientist works. Engineers
don’t build individual data pipelines for data scientists working on a given project.
They build solutions that enable data scientists to do so themselves. More generally,
they build tools to empower data scientists to own the entire workflow. This empow‐
ers engineers to spend more time making the platform better and less time building
one-off solutions.

Q: How do you judge the performance of models once they are deployed?

A: A big part of Stitch Fix’s strength is in making humans and algorithms work
together. For example, Stitch Fix spends a lot of time thinking about the right way to
present information to their stylists. Fundamentally, if you have an API that exposes

214 | Chapter 10: Build Safeguards for Models

your model on one end and a user such as a stylist or merchandise buyer on the other
hand, how should you design interactions between them?

At first glance, you could be tempted to build a frontend to simply present the results
of your algorithm to users. Unfortunately, this can lead users to feel like they have no
control over the algorithm and the overall system and can lead to frustration when it
isn’t performing well. Instead, you should think about this interaction as a feedback
loop, allowing users to correct and adjust results. Doing so lets users train algorithms
and have a much larger impact on the entire process by being able to give feedback.
In addition, this allows you to gather labeled data to judge the performance of your
models.

To do this well, data scientists should ask themselves how they can expose a model to
a user in order to both make their job easier and empower them to make the model
better. This means that since data scientists know best what kind of feedback would
be the most useful for their models, it is integral for them to own the process end-to-
end up to this point. They can catch any errors because they can see the entire feed‐
back loop.

Q: How do you monitor and debug models?

A: When your engineering team builds great tooling, monitoring and debugging get
much easier. Stitch Fix has built an internal tool that takes in a modeling pipeline and
creates a Docker container, validates arguments and return types, exposes the infer‐
ence pipeline as an API, deploys it on our infrastructure, and builds a dashboard on
top of it. This tooling allows data scientists to directly fix any errors that happen dur‐
ing or after deployment. Because data scientists are now in charge of troubleshooting
models, we have also found that this setup incentivizes simple and robust models that
tend to break more rarely. Ownership of the entire pipeline leads individuals to opti‐
mize for impact and reliability, rather than model complexity.

Q: How do you deploy new model versions?

A: In addition, data scientists run experiments by using a custom-built A/B testing
service that allows them to define granular parameters. They then analyze test results,
and if they are deemed conclusive by the team, they deploy the new version
themselves.

When it comes to deployment, we use a system similar to canary development where
we start by deploying the new version to one instance and progressively update
instances while monitoring performance. Data scientists have access to a dashboard
that shows the number of instances under each version and continuous performance
metrics as the deployment progresses.

Chris Moody: Empowering Data Scientists to Deploy Models | 215

Conclusion
In this chapter, we’ve covered ways to make our responses more resilient by detecting
potential failures of our model proactively and finding ways to mitigate them. This
has included both deterministic validation strategies and the use of filtering models.
We also covered a few of the challenges that come with keeping a production model
up-to-date. Then, we discussed some of the ways that we can estimate how well a
model is performing. Finally, we took a look at a practical example of a company that
deploys ML frequently and at large scale, and the processes they have built to do so.

In Chapter 11, we will cover additional methods to keep an eye on the performance
of models and leverage a variety of metrics to diagnose the health of an ML-powered
application.

216 | Chapter 10: Build Safeguards for Models

CHAPTER 11

Monitor and Update Models

Once a model is deployed, its performance should be monitored just like any other
software system. As they did in “Test Your ML Code” on page 136, regular software
best practices apply. And just like in “Test Your ML Code” on page 136, there are
additional things to consider when dealing with ML models.

In this chapter, we will describe key aspects to keep in mind when monitoring ML
models. More specifically, we will answer three questions:

1. Why should we monitor our models?
2. How do we monitor our models?
3. What actions should our monitoring drive?

Let’s start by covering how monitoring models can help decide when to deploy a new
version or surface problems in production.

Monitoring Saves Lives
The goal of monitoring is to track the health of a system. For models, this means
monitoring their performance and the quality of their predictions.

If a change in user habits suddenly causes a model to produce subpar results, a good
monitoring system will allow you to notice and react as soon as possible. Let’s cover
some key issues that monitoring can help us catch.

Monitoring to Inform Refresh Rate
We saw in “Freshness and Distribution Shift” on page 28 that most models need to be
regularly updated to maintain a given level of performance. Monitoring can be used
to detect when a model is not fresh anymore and needs to be retrained.

217

For example, let’s say that we use the implicit feedback that we get from our users
(whether they click on recommendations, for example) to estimate the accuracy of a
model. If we continuously monitor the accuracy of the model, we can train a new
model as soon as accuracy drops below a defined threshold. Figure 11-1 shows a
timeline of this process, with retraining events happening when accuracy dips below
a threshold.

Figure 11-1. Monitoring to trigger redeploy

Before redeploying an updated model, we would need to verify that the new model is
better. We will cover how to do this later in this section, “CI/CD for ML” on page 223.
First, let’s tackle other aspects to monitor, such as potential abuse.

Monitor to Detect Abuse
In some cases such as when building abuse prevention or fraud detection systems, a
fraction of users are actively working to defeat models. In these cases, monitoring
becomes a key way to detect attacks and estimate their success rate.

A monitoring system can use anomaly detection to detect attacks. When tracking
every attempt to log in to a bank’s online portal, for example, a monitoring system
could raise an alert if the number of login attempts suddenly increased tenfold, which
could be a sign of an attack.

This monitoring could raise an alert based on a threshold value being crossed, as you
can see in Figure 11-2, or include more nuanced metrics such as the rate of increase
of login attempts. Depending on the complexity of attacks, it may be valuable to build
a model to detect such anomalies with more nuance than a simple threshold could.

218 | Chapter 11: Monitor and Update Models

Figure 11-2. An obvious anomaly on a monitoring dashboard. You could build an addi‐
tional ML model to automatically detect it.

In addition to monitoring freshness and detecting anomalies, which other metrics
should we monitor?

Choose What to Monitor
Software applications commonly monitor metrics such as the average time it takes to
process a request, the proportion of requests that fail to be processed, and the amount
of available resources. These are useful to track in any production service and allow
for proactive remediation before too many users are impacted.

Next, we will cover more metrics to monitor to detect when a model’s performance is
starting to decline.

Performance Metrics
A model can become stale if the distribution of data starts to change. You can see this
illustrated in Figure 11-3.

Choose What to Monitor | 219

Figure 11-3. Example of drift in a feature’s distribution

When it comes to distribution shifts, both the input and the output distribution of
data can change. Consider the example of a model that tries to guess which movie a
user will watch next. Given the same user history as an input, the model’s prediction
should change based on new entries in a catalog of available movies.

• Tracking changes in the input distribution (also called feature drift) is easier than
tracking the output distribution, since it can be challenging to access the ideal
value of outputs to satisfy users.

• Monitoring the input distribution can be as simple as monitoring summary statis‐
tics such as the mean and variance of key features and raising an alert if these
statistics drift away from the values in the training data by more than a given
threshold.

• Monitoring distribution shifts can be more challenging. A first approach is to
monitor the distribution of model outputs. Similarly to inputs, a significant
change in the distribution of outputs may be a sign that model performance has
degraded. The distribution of the results users would have liked to see, however,
can be harder to estimate.

One of the reasons for why estimating ground truth can be hard is that a model’s
actions can often prevent us from observing it. To see why that may be the case, con‐
sider the illustration of a credit card fraud detection model in Figure 11-4. The distri‐
bution of the data that the model will receive is on the left side. As the model makes

220 | Chapter 11: Monitor and Update Models

predictions on the data, application code acts on these predictions by blocking any
transaction predicted as fraudulent.

Once a transaction is blocked, we are thus unable to observe what would have hap‐
pened if we had let it through. This means that we are not be able to know whether
the blocked transaction was actually fraudulent or not. We are only able to observe
and label the transactions we let through. Because of having acted on a model’s pre‐
dictions, we are only able to observe a skewed distribution of nonblocked transac‐
tions, represented on the right side.

Figure 11-4. Taking action based on a model’s predictions can bias the observed distribu‐
tion of data

Only having access to a skewed sample of the true distribution makes it impossible to
correctly evaluate a model’s performance. This is the focus of counterfactual evalua‐
tion, which aims to evaluate what would have happened if we hadn’t actioned a
model. To perform such evaluation in practice, you can withhold running a model on
a small subset of examples (see the article by Lihong Li et al., “Counterfactual Estima‐
tion and Optimization of Click Metrics for Search Engines”). Not acting on a random
subset of examples will then allow us to observe an unbiased distribution of fraudu‐
lent transactions. By comparing model predictions to true outcomes for the random
data, we can begin to estimate a model’s precision and recall.

This approach provides a way to evaluate models but comes at the cost of letting a
proportion of fraudulent transactions go through. In many cases, this trade-off can be
favorable since it allows for model benchmarking and comparisons. In some cases,
such as in medical domains where outputting a random prediction is not acceptable,
this approach should not be used.

Choose What to Monitor | 221

In “CI/CD for ML” on page 223, we’ll cover other strategies to compare models and
decide which ones to deploy, but first, let’s cover the other key types of metrics to
track.

Business Metrics
As we’ve seen throughout this book, the most important metrics are the ones related
to product and business goals. They are the yardstick against which we can judge our
model’s performance. If all of the other metrics are in the green and the rest of the
production system is performing well but users don’t click on search results or use
recommendations, then a product is failing by definition.

For this reason, product metrics should be closely monitored. For systems such as
search or recommendation systems, this monitoring could track the CTR, the ratio at
which people that have seen a model’s recommendation clicked on it.

Some applications may benefit from modifications to the product to more easily track
product success, similarly to the feedback examples we saw in “Ask for Feedback” on
page 211. We discussed adding a share button, but we could track feedback at a more
granular level. If we can have users click on recommendations in order to implement
them, we can track whether each recommendation was used and use this data to train
a new version of the model. Figure 11-5 shows an illustrated comparison between the
aggregate approach on the left side and the granular one on the right.

Figure 11-5. Proposing word-level suggestions gives us more opportunities to collect user
feedback

Since I do not expect the ML Editor prototype to be used frequently enough for the
method described to provide a large enough dataset, we will abstain from building it
here. If we were building a product we were intending to maintain, collecting such

222 | Chapter 11: Monitor and Update Models

data would allow us to get precise feedback about which recommendations the user
found the most useful.

Now that we have discussed reasons and methods to monitor models, let’s cover ways
to address any issues detected by monitoring.

CI/CD for ML
CI/CD stands for continuous integration (CI) and continuous delivery (CD). Roughly
speaking, CI is the process of letting multiple developers regularly merge their code
back into a central codebase, while CD focuses on improving the speed at which new
versions of software can be released. Adopting CI/CD practices allows individuals
and organizations to quickly iterate and improve on an application, whether they are
releasing new features or fixing existing bugs.

CI/CD for ML thus aims to make it easier to deploy new models or update existing
ones. Releasing updates quickly is easy; the challenge comes in guaranteeing their
quality.

When it comes to ML, we saw that having a test suite is not enough to guarantee that
a new model improves upon a previous one. Training a new model and testing that it
performs well on held-out data is a good first step, but ultimately, as we saw earlier,
there is no substitute for live performance to judge the quality of a model.

Before deploying a model to users, teams will often deploy them in what Schelter et
al., in their paper, “On Challenges in Machine Learning Model Management”, refer to
as shadow mode. This refers to the process of deploying a new model in parallel to an
existing one. When running inference, both models’ predictions are computed and
stored, but the application only uses the prediction of the existing model.

By logging the new predicted value and comparing it both to the old version and to
ground truth when it is available, engineers can estimate a new model’s performance
in a production environment without changing the user experience. This approach
also allows to test the infrastructure required to run inference for a new model that
may be more complex than the existing one. The only thing shadow mode doesn’t
provide is the ability to observe the user’s response to the new model. The only way to
do that is to actually deploy it.

Once a model has been tested, it is a candidate for deployment. Deploying a new
model comes with the risk of exposing users to a degradation of performance. Miti‐
gating that risk requires some care and is the focus of the field of experimentation.

Figure 11-6 shows a visualization of each of the three approaches we covered here,
from the safest one of evaluating a mode on a test set to the most informative and
dangerous one of deploying a model live in production. Notice that while shadow
mode does require engineering effort in order to be able to run two models for each

CI/CD for ML | 223

inference step, it allows for the evaluation of a model to be almost as safe as using a
test set and provides almost as much information as running it in production.

Figure 11-6. Ways to evaluate a model, from safest and least accurate to riskiest and
most accurate

Since deploying models in production can be a risky process, engineering teams have
developed methods to deploy changes incrementally, starting by showing new results
to only a subset of users. We will cover this next.

A/B Testing and Experimentation
In ML, the goal of experimentation is to maximize chances of using the best model,
while minimizing the cost of trying out suboptimal models. There are many experi‐
mentation approaches, the most popular being A/B testing.

The principle behind A/B testing is simple: expose a sample of users to a new model,
and the rest to another. This is commonly done by having a larger “control” group
being served the current model and a smaller “treatment” group being served a new
version that we want to test. Once we have run an experiment for a sufficient amount
of time, we compare the results for both groups and choose the better model.

In Figure 11-7, you can see how to randomly sample users from a total population to
allocate them to a test set. At inference time, the model used for a given user is deter‐
mined by their allocated group.

The idea behind A/B testing is simple, but experimental design concerns such as
choosing the control and the treatment group, deciding which amount of time is suf‐
ficient, and evaluating which model performs better are all challenging issues.

224 | Chapter 11: Monitor and Update Models

Figure 11-7. An example of an A/B test

In addition, A/B testing requires the building of additional infrastructure to support
the ability to serve different models to different users. Let’s cover each of these chal‐
lenges in more detail.

Choosing groups and duration
Deciding which users should be served which model comes with a few requirements.
Users in both groups should be as similar as possible so that any observed difference
in outcome can be attributed to our model and not to a difference in cohorts. If all
users in group A are power users and group B contains only occasional users, the
results of an experiments will not be conclusive.

In addition, the treatment group B should be large enough to draw a statistically
meaningful conclusion, but as small as possible to limit exposure to a potentially
worse model. The duration of the test presents a similar trade-off: too short and we
risk not having enough information, too long and we risk losing users.

These two constraints are challenging enough, but consider for a minute the case of
large companies with hundreds of data scientists who run dozens of A/B tests in par‐
allel. Multiple A/B tests may be testing the same aspect of the pipeline at the same
time, making it harder to determine the effect of an individual test accurately. When
companies get to this scale, this leads them to building experimentation platforms to
handle the complexity. See Airbnb’s ERF, as described in Jonathan Parks’s article,
“Scaling Airbnb’s Experimentation Platform”; Uber’s XP as described in A. Deb et al.’s
post, “Under the Hood of Uber’s Experimentation Platform”; or the GitHub repo for
Intuit’s open source Wasabi.

CI/CD for ML | 225

Estimating the better variant
Most A/B tests choose a metric they would like to compare between groups such as
CTR. Unfortunately, estimating which version performed better is more complex
than selecting the group with the highest CTR.

Since we expect there to be natural fluctuations in any metric results, we first need to
determine whether results are statistically significant. Since we are estimating a differ‐
ence between two populations, the most common tests that are used are two-sample
hypothesis tests.

For an experiment to be conclusive, it needs to be run on a sufficient amount of data.
The exact quantity depends on the value of the variable we are measuring and the
scale of the change we are aiming to detect. For a practical example, see Evan Miller’s
sample size calculator.

It is also important to decide on the size of each group and the length of the experi‐
ment before running it. If you instead continuously test for significance while an A/B
test is ongoing and declare the test successful as soon as you see a significant result,
you will be committing a repeated significance testing error. This kind of error con‐
sists of severely overestimating the significance of an experiment by opportunistically
looking for significance (once again, Evan Miller has a great explanation here).

While most experiments focus on comparing the value of a single
metric, it is important to also consider other impacts. If the average
CTR increases but the number of users who stop using the product
doubles, we probably should not consider a model to be better.
Similarly, results of A/B tests should take into account results for
different segments of users. If the average CTR increases but the
CTR for a given segment plummets, it may be better to not deploy
the new model.

Implementing an experiment requires the ability to assign users to a group, track each
user’s assignment, and present different results based on it. This necessitates building
additional infrastructure, which we cover next.

Building the infrastructure
Experiments also come with infrastructure requirements. The simplest way to run an
A/B test is to store each user’s associated group with the rest of user-related informa‐
tion, such as in a database.

The application can then rely on branching logic that decides which model to run
depending on the given field’s value. This simple approach works well for systems
where users are logged in but becomes significantly harder if a model is accessible to
logged-out users.

226 | Chapter 11: Monitor and Update Models

This is because experiments usually assume that each group is independent and
exposed to only one variant. When serving models to logged out users, it becomes
harder to guarantee that a given user was always served the same variant across each
session. If most users are exposed to multiple variants, this could invalidate the
results of an experiment.

Other information to identify users such as browser cookies and IP addresses can be
used to identify users. Once again, however, such approaches require building new
infrastructure, which may be hard for small, resource-constrained teams.

Other Approaches
A/B testing is a popular experimentation method, but other approaches exist that try
to address some of A/B testing’s limitations.

Multiarmed bandits are a more flexible approach that can test variants continually
and on more than two alternatives. They dynamically update which model to serve
based on how well each option is performing. I’ve illustrated how multiarmed bandits
work in Figure 11-8. Bandits continuously keep a tally of how each alternative is per‐
forming based on the success of each request they route. Most requests are simply
routed to the current best alternative, as shown on the left. A small subset of requests
gets routed to a random alternative, as you can see on the right. This allows bandits to
update their estimate of which model is the best and detect if a model that is currently
not being served is starting to perform better.

Figure 11-8. Multiarmed bandits in practice

Contextual multiarmed bandits take this process even further, by learning which
model is a better option for each particular user. For more information, I recommend
this overview by the Stitch Fix team.

CI/CD for ML | 227

While this section covered the usage of experimentation to validate
models, companies increasingly use experimentation methods to
validate any significant change they make to their applications.
This allows them to continuously evaluate which functionality
users are finding useful and how new features are performing.

Because experimentation is such a hard and error-prone process, multiple startups
have started offering “optimization services” allowing customers to integrate their
applications with a hosted experimentation platform to decide which variants per‐
form best. For organizations without a dedicated experimentation team, such solu‐
tions may be the easiest way to test new model versions.

Conclusion
Overall, deploying and monitoring models is still a relatively new practice. It is a cru‐
cial way to verify that models are producing value but often requires significant
efforts both in terms of infrastructure work and careful product design.

As the field has started to mature, experimentation platforms such as Optimizely have
emerged to make some of this work easier. Ideally, this should empower builders of
ML applications to make them continuously better, for everyone.

Looking back at all the systems described in this book, only a small subset aims to
train models. The majority of work involved with building ML products consists of
data and engineering work. Despite this fact, most of the data scientists I have men‐
tored found it easier to find resources covering modeling techniques and thus felt
unprepared to tackle work outside of this realm. This book is my attempt at helping
bridge that gap.

Building an ML application requires a broad set of skills in diverse domains such as
statistics, software engineering, and product management. Each part of the process is
complex enough to warrant multiple books being written about it. The goal of this
book is to provide you with a broad set of tools to help you build such applications
and let you decide which topics to explore more deeply by following the recommen‐
dations outlined in “Additional Resources” on page x, for example.

With that in mind, I hope this book gave you tools to more confidently tackle the
majority of the work involved with building ML-powered products. We’ve covered
every part of the ML product life cycle, starting by translating a product goal to an
ML approach, then finding and curating data and iterating on models, before validat‐
ing their performance and deploying them.

Whether you’ve read this book cover to cover or dove into specific sections that were
most relevant to your work, you should now have the required knowledge to start
building your own ML-powered applications. If this book has helped you to build

228 | Chapter 11: Monitor and Update Models

something or if you have any questions or comments about its content, please reach
out to me by emailing mlpoweredapplications@gmail.com. I look forward to hearing
from you and seeing your ML work.

Conclusion | 229

Index

A
A/B testing, 224
accuracy

defined, 107
looking beyond, 109

adversarial actors
abuse and dual-use, 179, 218
defeating ML models, 178
exploiting models, 179

aggregate metrics, 108, 177
algorithms

being the algorithm, 17, 82
classification and regression, 7
clustering analysis, 67
k-means, 80
supervised versus unsupervised, 6, 28

anomaly detection, 8, 218
Apache Airflow, 211
applications (see also ML-powered applica‐

tions)
building practical, ix
challenges of applying ML to, ix
determining what is possible, 4, 20
process of building ML–powered, xiii

AUC (area under the curve), 112
automated photo tagging systems, 177
AutoRegressive Integrated Moving Average

(ARIMA), 99
autoregressive models, 17

B
bag of words, 72
batch predictions, 186
BERT, 75

bias
data bias, 173
systemic bias, 174

bias-variance trade-off, 106-108
black-box explainers, 123, 157
BLEU Score, 27
Bokeh, 83
bounding boxes, 9

C
caching

defined, 205
by indexing, 206
inference results, 205

calibration curves, 114, 156
case study (writing assistant tool)

assessing data quality, 60-64
data ethics, 172
extracting recommendations, 154-159
feature generation, 88
framing in ML paradigm, 15-20

being the algorithm, 17
end-to-end framework, 16
learning from data (classifier approach),

18
initial prototype

building, 47-50
evaluating, 52-54

mock-up diagram, 1
model comparison, 159-163
model evaluation

feature importance, 122
top-k method, 117, 119

model selection, 99

231

model training
judging performance, 107
split datasets, 105

overview of, xii
performance metrics

freshness and distribution shift, 29
recommendation usefulness, 25

planning
initial editor plan, 36
levels of increasing complexity, 23
simple pipeline, 39
simple starting model, 36

visualizing and exploring data
inspecting and labeling using Bokeh, 83
summary statistics, 65

catalog organization, 11
CI/CD (continuous improvement/continuous

delivery)
A/B testing and experimentation, 224
defined, 223
shadow mode deployment, 223

classification and regression, 7, 18, 110
cleaning data, 47
click-through rate (CTR), 24, 115, 222
client-side deployment, 188
clustering analysis, 67, 80, 116
code examples, obtaining and using, xv
code quality estimation, 46
collaborative filtering recommendation sys‐

tems, 11
comments and questions, xvi
Common Crawl, 57
computer vision, 7, 180
confidence scores, 201
confusion matrices, 110
considering application context, 177
content-based recommendation systems, 11,

175
convolutional neural networks (CNNs), 4, 99
corrupted data, 173
count vectors, 72
counterfactual evaluation, 221
cross-entropy, 27, 144
cross-validation, 100

D
data and datasets

acquiring initial datasets, 14, 57
assessing quality of, 58-64

assuring representative training data, 101,
174

common sources of errors in, 173
data leakage, 72, 102-106, 147
data mismatch, 131
data types, 13
determining available data, 6, 14
expert advice on finding, labeling, and lev‐

eraging, 89
freshness and distribution shift, 28, 219
imperfect datasets, 15
iterative nature of, 15, 55
life cycle management, 207-209
normalizing data, 69
parsing and cleaning data, 47
preprocessing data, 61, 100, 210
publicly accessible data, 32, 57
quality, quantity, and diversity of data, 142
removing bias from, 174
role in machine learning, 56
split datasets, 99-105
Stack Exchange, 36
structured versus unstructured data, 8
tangential datasets, 34
time series data, 7, 99
training speech recognition systems, 13
validating data flow, 130-140
visualizing and exploring data

clustering analysis, 67, 80
dimensionality reduction, 78
exploratory data analysis, 32
finding data trends, 64, 84
process of labeling data, 82
summary statistics, 65
vectorization, 69-78

weakly labeled data, 14
data augmentation strategies, 149
data ethics

data bias, 173
data ownership, 172
questions you should ask, 171
resources for, 171
systemic bias, 174

debugging
generalization, 146-151

data augmentation, 149
data leakage, 147
dataset redesign, 150
overfitting, 147

232 | Index

overly complex tasks, 150
regularization, 148

ML-specific best practices, 128
resources for, 128
software best practices, 127
testing ML code, 136-140

data ingestion, 137
data processing, 138
model outputs, 139

training process, 140-146
optimization problems, 144
task difficulty, 142

validating data flow, 130-140
cleaning and feature selection, 133
data formatting, 134
data loading, 132
feature generation, 133
initial steps, 130
model output, 135
modular organization, 136
systematizing visual validation, 136
visualization steps, 131

decision threshold, 111
decision trees, 98
deployment and monitoring

deployability, 97
deploying updated models to users, 207
deployment options

client-side deployment, 188
hybrid approach, 191
server-side deployment, 183-188

deployment planning
data concerns, 172-175
expert advice on shipping ML-powered

products, 180
modeling concerns, 175-180
questions you should ask, 171

monitoring and updating models
CI/CD for ML, 223-228
key issues discovered by, 217
selecting metrics to monitor, 219-223

safeguards for models
creating robust pipelines, 204-211
expert advice on deploying ML models,

214
incorporating user feedback, 211
model failure fallbacks, 200-204
verifying data quality, 196-199

shadow mode deployment, 223

detecting attacks, 218
dimensionality reduction, 78, 116
directed acyclic graphs (DAGs), 210-211
discounted cumulative gain (DCG), 51
distribution shift, 28-30, 219
domain expertise, 31
dropout, 148
dual-use technologies, 179

E
Elbow method, 81
end-to-end frameworks

challenges of, 16
debugging (see debugging)
inference pipeline, 45
testing workflow, 50-52

error analysis
detecting errors, 200
dimensionality reduction, 116
modeling versus product domains, 51

experimentation, 224
explainability, 96
exploratory data analysis (EDA), 32

F
f1 score, defined, 107
fairness constraints, 175
false positive rate (FPR), 111
fastText, 73
feasibility, determining, 5, 20-22, 24
feature crosses, 86
feature drift, 220
feature generation

building features out of patterns, 85-88
defined, 8
example of, 48
inspecting feature values, 133
visualizing hard examples, 116

feature importance
evaluating, 18, 121
extracting, 155

feature scale, ignoring, 98
feature selection, 8, 133
feature statistics, 154
federated learning, 191
feedback loops, 175
feedback, requesting, 211
filtering models, 201
forecasting, 7, 58

Index | 233

fraud detection systems
classifying individual examples, 7
defending against attacks, 178, 218
illustration of, 220
labeled or unlabeled data for, 6
seasonality aspect of, 58

freshness, 28-30

G
generative models, 12
global feature importance, 155
gradient descent, 98, 144
gradient-boosted decision trees, 98
GroupShuffleSplit class, 106
guardrail metrics, 25

H
Harland, Chris, 180
heuristics

benefits of building, 24
examples of great, 46
identifying good, 31

I
image data

automated photo tagging systems, 177
knowledge extraction, 9
selecting models based on, 99
vectorizing, 75-78

ImageNet, 75, 78
impact bottlenecks

benefits of prototypes for identifying, 45
defined, 20
finding, 51

implementation
challenges of end-to-end models, 17
quick to implement models, 96

implicit signals, measuring, 211
inclusive model performance, 177
indexing, 206
inference pipeline, 45
informing users, 177
input checks, 196
input distribution, 220
Insight Data Science, 46
interpretability, 96

J
Jaccard index, 121

K
k-means algorithm, 80
Kaggle, 57
Keras, 77
KISS (Keep It Stupid Simple), 127
knowledge extraction

from images, 9
structured versus unstructured data, 8

L
L1 and L2 regularization, 148
labels

applying efficiently, 67
labeled versus unlabeled data, 6
levels of data availability based on, 14
poorly formatted, 134
process of labeling data, 82

lead scoring, 186
least recently used (LRU) cache, 205
life cycle management, 207-209
LIME, 123, 157
linear regression, 98
local feature importance, 157
logistic regression, 98
loss functions, 144
Luigi, 211

M
machine learning (ML)

additional resources, x
approach to learning, xii
best practices, 128
challenges of applying to applications, ix
data ethics and, 171
defined, xi
identifying the right ML approach, 1-22, 24
predicting success of applications using, 4
prerequisites to learning, xii
process of building ML–powered applica‐

tions, xi, xiii
products powered by, ix, xi
versus traditional programming, 3, 55

mapping inputs to outputs, 13
measurement errors, 173
metrics (see performance metrics)

234 | Index

metrics for binary classification, 111
Minimum Viable Product (MVP), 43
ML writing assistants, 180
ML-powered applications

building initial prototype, 43-91
first end-to-end pipeline, 45-54
initial dataset, 55-91

deployment and monitoring, 169-229
building model safeguards, 195-216
deployment options, 183-193
deployment planning, 171-182
monitoring and updating models,

217-229
determining what is possible, 4, 20-22
identifying the right ML approach, 1-41

creating a plan, 23-41
from product goal to ML framing, 3-22

iterating on models, 46, 93-167
core parts of process, 46
debugging, 127-151
training and evaluation, 95-125
using classifiers for writing recommen‐

dations, 153-167
ML–powered applications

build challenges, ix
build process overview, xi-xiv

ML–powered editors, xiii (see also case study)
model disclaimers, 177
model metrics, 25
models

debugging (see debugging)
evaluating

calibration curves, 114
confusion matrices, 110
contrasting data and predictions, 109
error analysis, 116
feature importance, 121-125
looking beyond accuracy, 109
ROC curves, 111
top-k method, 116-121

identifying failure modes and resolutions,
52, 101, 195-204

key to building successful, 109
levels of increasing complexity, 23
performance metrics, 25-28

generating additional model metrics, 27
making modeling tasks easier, 26
model precision, 28
reasonable expectations for, 27

selecting, 3-5, 95-109
based on data patterns, 98
benefits of prototypes for, 51
data driven assumptions, 82
determining deployability, 97
estimating what is possible, 4
flowchart for, 99
quick to implement, 96
scoring models based on simplicity, 97
understandable models, 96

taxonomy of
autoregressive, 17
catalog organization, 11
classification and regression, 7
end-to-end, 16
generative, 12
knowledge extraction from unstructured

data, 8
labeled versus unlabeled data, 6, 14
list of approaches, 6
sequence-to-sequence, 16
structured versus unstructured data, 8
supervised versus unsupervised, 6, 28

training
data leakage, 102
eliminating undesirable bias in, 175-180
judging performance, 106-109
relative proportions of data, 101
split datasets, 99
test datasets, 101, 174
validation datasets, 100

Moody, Chris, 214
movie recommendations, 11
multi-layer neural networks, 98
Munro, Robert, 89

N
naive Bayes classifiers, 98
natural language processing, 74, 89
neural networks, 144
neural style transfer, 12
nonlinear models, 98

O
object detection, 9, 121
offline metrics, 25
one-hot encoding, 69
open source code, 32, 34
optimization problems, 144

Index | 235

outliers, 143
output checks, 198
overfitting, 107, 147

P
parsing and cleaning data, 47
patterns

building features out of, 85-88
selecting models based on, 98

PCA (Principal Component Analysis), 78
performance metrics

business performance, 24, 222
deceptive nature of, 109
freshness and distribution shift, 28-30, 219
measuring success, 23
model performance, 25-28

degradation of performance, 177
generating additional model metrics, 27
making modeling tasks easier, 26
model precision, 28
reasonable expectations for, 27

speed, 30
performance, engineering for

data processing and DAGs, 210-211
model and data life cycle management,

207-209
scaling to multiple users, 204-207

pipelines
creating robust, 204-211
debugging (see debugging)
flexibility of, 209
types of, 45

planning
estimating scope and challenges, 31
exploratory data analysis (EDA), 32
leveraging domain expertise, 31
simple starting model, 37-40
understanding and reproducing existing

results, 32-36
precision, defined, 107
preprocessing data, 61, 100, 210
private information, protecting, 179
product goals

estimating scope and challenges, 31
evaluating ML feasibility, 5, 24
framing in ML paradigm, 15-20

being the algorithm, 17, 82
end-to-end framework, 16
expert advice on, 20

learning from data (classifier approach),
18

overview of, 22
steps for, 5

identifying failure modes and resolutions,
51, 101

misalignment with model metrics, 23
product metrics, 24
prototypes

benefits of building, 51
building initial, 45, 47-50
evaluating, 52
inference pipeline, 45
selecting heuristics, 46
testing workflow, 50-52

publicly accessible data, 34

Q
questions and comments, xvi

R
random forests, 98, 149
recall, defined, 107
Recurrent Neural Networks (RNN), 99
refresh rate, 217
regression and classification, 7, 18, 110
regularization, 148
representation, 173
reproducibility, 208
resilience, 209
RGB images, 75
ROC (receiver operating characteristic) curves,

111
Rogati, Monica, 20, 82

S
sample contamination, 103
seasonality, 85
segmentation masks, 9, 134
self-reinforcing feedback loops, 175
sentence simplification model, 121
sentiment classification, 7, 65
sequence-to-sequence models, 16
server-side deployment, 183-188
shadow mode deployment, 223
SHAP, 123
Silhouette plots, 81
simple models

236 | Index

characteristics of, 96
scoring models based on simplicity, 97

Smart Reply feature, 203
software best practices, 127
spaCy, 74
spam filters, 7
speech recognition systems, 13, 99, 110
speed, 30
Stack Exchange, 36
Stack Overflow, 16
standard score, 69
streaming applications, 184
structured data, 8
subtitle generation, 12
summarization tasks, 12
summary statistics, 65, 220
supervised algorithms, 6, 28
systemic bias, 174

T
t-SNE, 78
tabular data, vectorizing, 69-72
tangential datasets, 34
task difficulty

data quality, quantity, and diversity, 142
data representation, 143, 174
model capacity, 143
overview of, 142

temporal data leakage, 103
Tensorboard, 144
tensors, 75
test sets, 101, 174
text data

classifying, 99
properly formatted, 135
tokenizing, 48
vectorizing, 72-75

TF-IDF (Term Frequency-Inverse Document
Frequency), 73

time series data, 7, 99, 103
tokenization, 48
top-k method

identifying challenging data points with, 116
implementation tips, 118
k best performing examples, 117
k most uncertain examples, 117
k worst performing examples, 117

training loss, 147
transfer learning, 78

translation invariant filters, 99
translation tasks, 12, 17
triggering models, 203
true positive rate (TPR), 111

U
ULMFit, 75
UMAP, 78
underfitting, 107, 147
understandable models, 96
Unix time, 85
unstructured data, 8
unsupervised algorithms, 6
usage metrics, 25
user experience, evaluating, 50, 53, 211

V
validation loss, 147
validation sets, 100
vectorization

data leakage and, 72
defined, 69
image data, 75-78
tabular data, 69-72
text data, 72-75

VGG, 75
visualization libraries, 83

W
weak labels, 37
weakly labeled data, 14
weakly supervised algorithms, 6
weight histograms, 145
WikiText, 78
window size, 73
word embeddings, pretrained, 75
Word2Vec, 73
workflow, testing, 50-52
writing assistant tool, xii, 180 (see also case

study)
writing recommendation systems

best way to iterate, 121
comparing models, 159-163

heuristic-based version, 160
key metrics, 159
leveraging features explainable to users,

162
simple model, 160

Index | 237

extracting recommendations from models,
154-159
using a model's score, 156
using feature statistics, 154
using global feature importance, 155
using local feature importance, 157

generating editing recommendations,
163-167

judging performance of, 25
monitoring, 222

X
XGBoost, 98

238 | Index

About the Author
Emmanuel Ameisen has been building ML-powered products for years. He is cur‐
rently working on ML engineering at Stripe. Previously, he was head of AI at Insight
Data Science, where he led more than 150 ML projects. Before, Emmanuel was a data
scientist at Zipcar, where he worked on on-demand prediction and building frame‐
works and services to help deploy ML models in production. He has a background at
the intersection of ML and business, with an M.S. in AI from Université Paris-Sud, an
M.S. in Engineering from CentraleSupélec, and an M.S. in Management from ESCP
Europe.

Colophon
The animal on the cover of Building Machine Learning Powered Applications is the
poplar admiral butterfly (Limenitis populi). This butterfly is a large but increasingly
rare butterfly of North Africa, northern Asia, the Middle East, and Europe.

Poplar admirals have a three-inch wingspan. Its wings are white-spotted dark brown
above with margins of slate and orange, and undersides marked in orange.

In late August, butterflies lay their eggs on the leaves of poplar trees (mostly trem‐
bling aspen, Populus tremula), as the caterpillars eat only these leaves. Caterpillars
have horn-like appendages, and molt through shades of green and brown as they
grow, for camouflage. They begin growing in late summer, but in the fall start spin‐
ning silk for a protective cocoon where they overwinter. In spring, they re-emerge as
the first poplar leaves bud and immediately begin feeding, to complete their final
transition: in late May, they attach themselves with silk to a leaf and grow a hard sur‐
face skin in which they pupate, emerging as butterflies in June and July.

Unlike most butterflies, poplar admirals do not visit flowers for nectar, instead using
their probing proboscis to draw food and nutrients from carrion, animal droppings,
tree sap, and the salts in mud (and at times the salts in human sweat). They seem
attracted to smells of decomposition.

Poplar admiral numbers are declining as deciduous forests are cleared for develop‐
ment, though its current IUCN Red List is “Least Concern.” Many of the animals on
O’Reilly covers are endangered; all of them are important to the world.

The color illustration on the cover is by Jose Marzan Jr., based on a black-and-white
engraving from the Meyers Kleines Lexicon. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Preface
	The Goal of Using Machine Learning Powered Applications
	Use ML to Build Practical Applications
	Additional Resources

	Practical ML
	What This Book Covers
	Prerequisites
	Our Case Study: ML–Assisted Writing
	The ML Process

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Find the Correct ML Approach
	Chapter 1. From Product Goal to ML Framing
	Estimate What Is Possible
	Models
	Data

	Framing the ML Editor
	Trying to Do It All with ML: An End-to-End Framework
	The Simplest Approach: Being the Algorithm
	Middle Ground: Learning from Our Experience

	Monica Rogati: How to Choose and Prioritize ML Projects
	Conclusion

	Chapter 2. Create a Plan
	Measuring Success
	Business Performance
	Model Performance
	Freshness and Distribution Shift
	Speed

	Estimate Scope and Challenges
	Leverage Domain Expertise
	Stand on the Shoulders of Giants

	ML Editor Planning
	Initial Plan for an Editor
	Always Start with a Simple Model

	To Make Regular Progress: Start Simple
	Start with a Simple Pipeline
	Pipeline for the ML Editor

	Conclusion

	Part II. Build a Working Pipeline
	Chapter 3. Build Your First End-to-End Pipeline
	The Simplest Scaffolding
	Prototype of an ML Editor
	Parse and Clean Data
	Tokenizing Text
	Generating Features

	Test Your Workflow
	User Experience
	Modeling Results

	ML Editor Prototype Evaluation
	Model
	User Experience

	Conclusion

	Chapter 4. Acquire an Initial Dataset
	Iterate on Datasets
	Do Data Science

	Explore Your First Dataset
	Be Efficient, Start Small
	Insights Versus Products
	A Data Quality Rubric

	Label to Find Data Trends
	Summary Statistics
	Explore and Label Efficiently
	Be the Algorithm
	Data Trends

	Let Data Inform Features and Models
	Build Features Out of Patterns
	ML Editor Features

	Robert Munro: How Do You Find, Label, and Leverage Data?
	Conclusion

	Part III. Iterate on Models
	Chapter 5. Train and Evaluate Your Model
	The Simplest Appropriate Model
	Simple Models
	From Patterns to Models
	Split Your Dataset
	ML Editor Data Split
	Judge Performance

	Evaluate Your Model: Look Beyond Accuracy
	Contrast Data and Predictions
	Confusion Matrix
	ROC Curve
	Calibration Curve
	Dimensionality Reduction for Errors
	The Top-k Method
	Other Models

	Evaluate Feature Importance
	Directly from a Classifier
	Black-Box Explainers

	Conclusion

	Chapter 6. Debug Your ML Problems
	Software Best Practices
	ML-Specific Best Practices

	Debug Wiring: Visualizing and Testing
	Start with One Example
	Test Your ML Code

	Debug Training: Make Your Model Learn
	Task Difficulty
	Optimization Problems

	Debug Generalization: Make Your Model Useful
	Data Leakage
	Overfitting
	Consider the Task at Hand

	Conclusion

	Chapter 7. Using Classifiers for Writing Recommendations
	Extracting Recommendations from Models
	What Can We Achieve Without a Model?
	Extracting Global Feature Importance
	Using a Model’s Score
	Extracting Local Feature Importance

	Comparing Models
	Version 1: The Report Card
	Version 2: More Powerful, More Unclear
	Version 3: Understandable Recommendations

	Generating Editing Recommendations
	Conclusion

	Part IV. Deploy and Monitor
	Chapter 8. Considerations When Deploying Models
	Data Concerns
	Data Ownership
	Data Bias
	Systemic Bias

	Modeling Concerns
	Feedback Loops
	Inclusive Model Performance
	Considering Context
	Adversaries
	Abuse Concerns and Dual-Use

	Chris Harland: Shipping Experiments
	Conclusion

	Chapter 9. Choose Your Deployment Option
	Server-Side Deployment
	Streaming Application or API
	Batch Predictions

	Client-Side Deployment
	On Device
	Browser Side

	Federated Learning: A Hybrid Approach
	Conclusion

	Chapter 10. Build Safeguards for Models
	Engineer Around Failures
	Input and Output Checks
	Model Failure Fallbacks

	Engineer for Performance
	Scale to Multiple Users
	Model and Data Life Cycle Management
	Data Processing and DAGs

	Ask for Feedback
	Chris Moody: Empowering Data Scientists to Deploy Models
	Conclusion

	Chapter 11. Monitor and Update Models
	Monitoring Saves Lives
	Monitoring to Inform Refresh Rate
	Monitor to Detect Abuse

	Choose What to Monitor
	Performance Metrics
	Business Metrics

	CI/CD for ML
	A/B Testing and Experimentation
	Other Approaches

	Conclusion

	Index
	About the Author
	Colophon

