


[ FM-1 ]

Building Smart Homes with 
Raspberry Pi Zero

Build revolutionary and incredibly useful home 
automation projects with the all-new Pi Zero

Marco Schwartz

BIRMINGHAM - MUMBAI



[ FM-2 ]

Building Smart Homes with Raspberry Pi Zero

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2016

Production reference: 1241016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78646-695-2

www.packtpub.com

www.packtpub.com


[ FM-3 ]

Credits

Author
Marco Schwartz

Reviewer
Vasilis Tzivaras

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Prachi Bisht

Content Development Editor
Trusha Shriyan

Technical Editors
Nirant Carvalho

Naveenkumar Jain

Copy Editors
Safis Editing

Sneha Singh

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N Zagade

Cover Work
Shantanu N. Zagade



[ FM-4 ]

About the Author

Marco Schwartz is an electrical engineer, entrepreneur, and blogger. He has a 
master's degree in electrical engineering and computer science from Supélec, France, 
and a master's degree in micro engineering from the Ecole Polytechnique Fédérale de 
Lausanne (EPFL), Switzerland.

He has more than five years of experience working in the domain of electrical 
engineering. Marco's interests gravitate around electronics, home automation,  
the Arduino and Raspberry Pi platforms, open source hardware projects,  
and 3D printing.

He has several websites about Arduino, including the Open Home Automation 
website, which is dedicated to building home automation systems using open  
source hardware.

Marco has written another book on home automation and Arduino, called Home 
Automation With Arduino: Automate Your Home Using Open-source Hardware. He has  
also written a book on how to build Internet of Things projects with Arduino,  
called Internet of Things with the Arduino Yun, by Packt Publishing.



[ FM-5 ]

About the Reviewer

Vasilis Tzivaras is a software developer and hardware engineer who lives in 
Ioannina, Greece. He is currently an undergraduate student of the department of 
computer science and engineering at Ioannina. Along with his studies, he is working 
on many projects relevant to robotics, such as drones, home automation, and smart 
home systems using Arduino and the Raspberry Pi. He is also enthusiastic about 
clean energy solutions and cultural innovation ideas.

He has worked for the University Hospital of Ioannina as an assistant for various 
computer issues and has been a part of the support team of his CSE department 
for over a year. He has participated in IEEE UOI Student Branch and other big 
organizations, such as FOSSCOMM, with personal presentations for website 
designing, programming, Linux systems, and drones.

He is the chair of IEEE University of Ioannina Student Branch and has proposed 
many projects and solutions to automate homes and many other life problems by 
reducing the time of everyday routines. In addition to this, he has come up with 
ideas to entertain kids with funny and magical projects using Arduino-like hardware 
and open source software. Many of the projects can be found on his GitHub account 
under the name of BillyTziv.

Apart from Building Smart Homes with Raspberry Pi Zero and Internet of Things with 
Arduino Cookbook, he has also published a book named Building a Quadcopter with 
Arduino. He has also worked on another book Programming in C, which is not yet 
published. In addition to this, he has written for blogs, forums, guides, and small 
chapters, explaining and sharing his knowledge of computers, networks,  
and programming.



[ FM-6 ]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all 
Packt books and video courses, as well as industry-leading tools to help you plan 
your personal development and advance your career.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt


[ i ]

Table of Contents
Preface v
Chapter 1: Configuring Your Raspberry Pi Zero Board 1

Introducing the Raspberry Pi Zero board 1
Required components for the Zero board 3
Assembling the different components 8
Installing Raspbian 9
Configuring the board for remote access 10
Installing Node.js 14
Summary 15

Chapter 2: Measure Data Using Your Raspberry Pi Zero Board 17
Hardware and software requirements 18

Hardware configuration 18
Software configuration 20

Reading data from the sensor 21
Storing sensor data 22
Accessing the data remotely 24
Plotting the stored data 26
Summary 29

Chapter 3: Building a Smart Home Thermostat 31
Hardware and software requirements 31

Hardware configuration 33
Testing individual components 34
Building the thermostat 37
Controlling the thermostat remotely 41
Summary 46



Table of Contents

[ ii ]

Chapter 4: Controlling Appliances from the Raspberry Pi Zero 47
Hardware and software requirements 47
Controlling LEDs 49
Controlling the speed of a DC motor 54
Controlling home appliances 58
Summary 63

Chapter 5: Making a Smart Plug with the Raspberry Pi Zero 65
Hardware and software requirements 66

Hardware configuration 67
Configuring the smart plug 71
Creating an interface for the smart plug 74
Logging your energy consumption over time 78
Summary 80

Chapter 6: Sending Notifications using Raspberry Pi Zero 81
Hardware and software requirements 81
Making a motion sensor that sends text messages 83
Sending temperature alerts through email 92
Receiving measurement SATA through push notifications 97
Summary 102

Chapter 7: Use the Raspberry Pi Zero to Build a Security System 103
Hardware and software requirements 103
Building a motion sensor with the Pi Zero 104
Making a simple alarm module 106
Building a wireless security camera 108
Creating a security system 114
Summary 120

Chapter 8: Monitor Your Home from the Cloud 121
Hardware and software requirements 121
Monitoring data from a cloud dashboard 122
Creating a cloud dashboard for your devices 130
Accessing your security camera from anywhere 134
Summary 138

Chapter 9: Control Appliances from Anywhere 139
Hardware and software requirements 139
Control a LED from anywhere in the world 140
Creating several lamps from the cloud 143
Make a motion-activated lamp using IFTTT 144
Build an automated cloud thermostat 152



Table of Contents

[ iii ]

Chapter 10: Building a Home Automation System with  
Raspberry Pi Zero Boards 159

Hardware and software requirements 159
Building all the modules 160
Configuring the modules 163
Integrating the modules into a single interface 166
Automating your home 173
Accessing your home automation system from anywhere 174
Summary 175

Index 177





[ v ]

Preface
The Raspberry Pi is an amazing development platform that was introduced back 
in 2012, along with the release of the first board. However, due to its price, it was 
not convenient for people to use it for smart home applications, where you need to 
deploy several modules at different places of your home. Usually, people building 
smart homes with this board used it as a central hub.

However, in 2016 the Raspberry Pi foundation released the Zero board, which is 
a smaller and much cheaper version of the Raspberry Pi board, and this changed 
everything for the home automation field. Now, you can actually use several of  
these boards in a home automation system and enjoy all the power and flexibility  
of the Raspberry Pi for all your projects.

This is exactly what I will teach you to do in this book. You will learn how to use the 
Raspberry Pi Zero board in several home automation projects, in order for you to 
build a smart home that is really tailored to your needs.

What this book covers
Chapter 1, Configuring Your Raspberry Pi Zero Board, teaches you how to get started 
with your Raspberry Pi Zero board and also install everything that you need to  
carry out all the projects that you will find in this book.

Chapter 2, Measure Data Using Your Raspberry Pi Zero Board, teaches you how to 
measure data from a sensor using the Raspberry Pi Zero board. You will also 
learn how to measure data from the sensor, store this data on the Pi, and plot it 
graphically.

Chapter 3, Building a Smart Home Thermostat, gets you right into the core topic of this 
book, that is, building your first home automation system. In this chapter, we  
will build a simple thermostat that will allow you to regulate the temperature  
in your home.



Preface

[ vi ]

Chapter 4, Control Appliances from the Raspberry Pi Zero, shows you how to use the 
Raspberry Pi Zero board to easily control home appliances. As an example, we'll  
see how to control a DC motor and switch on/off appliances, such as lamps.

Chapter 5, Making a Smart Plug with the Raspberry Pi Zero, teaches you how to build 
your own version of a smart wireless plug that you can buy in a shop. We'll see how 
to build the same using the Raspberry Pi Zero board and how to customize it for 
your own needs.

Chapter 6, Sending Notifications using Raspberry Pi Zero, shows you how to send 
automated notifications from your Pi, for example to indicate that the temperature  
in your home is getting low. As examples, we'll see how to send text, email, and 
push notifications.

Chapter 7, Use the Raspberry Pi Zero to Build a Security System, shows you how to start 
integrating everything we saw so far in the book and build a security system using 
what we have learned so far. You'll, for example, learn how to transform your 
Raspberry Pi Zero board into a wireless security camera.

Chapter 8, Monitor Your Home from the Cloud, guides you through an amazing field:  
the Internet of Things. You will learn how to use the Internet of Things for your 
smart home and monitor it from anywhere in the world.

Chapter 9, Control Appliances from Anywhere, guides you into the field of the Internet  
of Things, this time by teaching you how to control home appliances from outside  
of your Wi-Fi network.

Chapter 10, Building a Home Automation System with Raspberry Pi Zero Boards, uses 
everything you learned in the book to build a complete home automation system  
for your entire home.

What you need for this book
For this book, the main component you will need is, of course, a Raspberry Pi Zero 
board. In the first chapter of the book, I will show you how to completely configure 
the board, so you can use it for the projects of this book. We will use some basic 
components at the start, such as sensors, and then move on to using more complex 
components. For every project, I will of course guide you step-by-step into building 
the hardware part so that you are not left behind.

On the software side, it is good if you actually have some existing programming 
skills, especially in JavaScript and in the Node.js framework. However, I will explain 
all the parts of each software piece of this book; so even if you don't have good 
programming skills in JavaScript you will be able to follow along.



Preface

[ vii ]

Who this book is for
This book is for all the people who want to automate their homes and make it 
smarter, while at the same time having complete control on what they are doing. If 
that's your case, you will learn everything there is to learn in this book, on how to 
use the amazing Raspberry Pi Zero board to automate your home.

This book is also for makers who have played in the past with other development 
boards, such as Arduino. If that's your case, you will learn how to use the power of 
the Raspberry Pi platform to build smart homes. You will also learn to create projects 
that can't easily be done with other platforms, such as creating a wireless security 
camera with the Pi Zero.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"You can now simply navigate to the IP address of the computer or Pi on which the 
application is running, followed by port 3000."

A block of code is set as follows:

var request = require('request');
var sensorLib = require('node-dht-sensor');

Any command-line input or output is written as follows:

sudo npm install express request

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "You  
can now just click on Stream to access the live stream from the camera."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.



Preface

[ viii ]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
book's webpage at the Packt Publishing website. This page can be accessed by 
entering the book's name in the Search box. Please note that you need to be  
logged in to your Packt account.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support


Preface

[ ix ]

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Building-Smart-Homes-with-Raspberry-Pi-Zero. We also 
have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or  
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

https://github.com/PacktPublishing/Building-Smart-Homes-with-Raspberry-Pi-Zero
https://github.com/PacktPublishing/Building-Smart-Homes-with-Raspberry-Pi-Zero
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ x ]

lease contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.



[ 1 ]

Configuring Your  
Raspberry Pi Zero Board

In the first chapter of this book, we are going to go through all the steps that are 
required to configure your Raspberry Pi Zero board so you can use it for all the 
projects we will see in this book.

First we will look at the list of components that are required to use the board. Then, 
we will install the Raspbian distribution, which will be the operating system we will 
use throughout this book, on the board. Finally, we'll see how to configure the board 
for remote, and how to install the Node.js framework that we will use in nearly all 
the projects of the book. Let's start!

Introducing the Raspberry Pi Zero board
The Raspberry Pi Zero is a board that was introduced in 2015, and the goal was 
to make a low-cost ($5), small-format board with most of the functionalities of the 
original Raspberry Pi board.



Configuring Your Raspberry Pi Zero Board

[ 2 ]

The following is an image of the Zero board:

In the center of the board, you will find the same System-on-a-Chip (SoC) as the 
original Raspberry Pi board, with a 1-GHz single-core processor, 512 MB of RAM, 
and a graphical processing unit.

The board has several inputs and outputs, like the 40-pin GPIO connector  
that we will use through this whole book to connect the board to sensors  
and other components.

There are also two USB ports (one for power, one for communication),  
one mini-HDMI port, and one SD card slot to put the operating system  
and other files in.



Chapter 1

[ 3 ]

The power consumption of the board was also reduced compared to the first board, 
going from 1.5W to 0.8W.

Required components for the Zero board
Even if the Raspberry Pi Zero board has a very small form factor, it actually can't be 
used alone, at least for the configuration step. Therefore, we are going to need a lot of 
additional components for all the projects of this book, and this is what I wanted to 
go through in this section.

The first thing you will need for your Pi Zero board is a micro-USB to USB converter, 
so you can plug regular USB devices into your board. This is an image of the cable I 
used for my Pi board:



Configuring Your Raspberry Pi Zero Board

[ 4 ]

Then, you will need some way to connect your Raspberry Pi Zero board to a 
computer screen. To do so, you will need a mini-HDMI to HDMI adapter:

In order to connect more than one device to the board, you will also need a regular 
USB hub:



Chapter 1

[ 5 ]

Later in this chapter, we are going to look at how to use the Raspberry Pi board 
remotely from your computer, so you don't need to always have it connected to  
an external screen. However, to begin with, you will need a keyboard and mouse  
to use it:

I recommend using a keyboard with a small track pad as well.



Configuring Your Raspberry Pi Zero Board

[ 6 ]

The Raspberry Pi Zero board doesn't come with onboard storage. Therefore, you 
will need to use a micro SD card to store the operating system. I recommend using at 
least an 8-GB SD card:

At some point, we are going to connect the Raspberry Pi Zero board to the Internet. 
We'll also need to connect it to your local network, so you can access it remotely. To 
do so, I recommend using a simple Wi-Fi USB dongle:



Chapter 1

[ 7 ]

Of course, you will need other components to use the Raspberry Pi Zero board that I 
haven't included here as usually, they are already on everyone's desk. For example, 
you will need a screen with an HDMI input to use the board. You will also need a 
micro-USB power supply, for example, the one you are using to charge your phone. 
The Raspberry Pi foundation says it should work with a power supply that can 
deliver at least 1A, but a 2A power supply is recommended.



Configuring Your Raspberry Pi Zero Board

[ 8 ]

Assembling the different components
Let's now look at how to assemble the required components so we can get started 
with your Raspberry Pi:

1. First, insert the micro-USB to USB adapter cable into one of the USB ports of 
the Pi (not the PWR one), and also plug the mini-HDMI cable to the Pi.

2. Then, connect all your required USB devices (for example, the Wi-Fi dongle) 
to the USB hub, and connect the USB to the Pi. Also, connect the Pi to an 
external screen using an HDMI cable.

3. This is how it should look when you are done, not showing the connections 
to the screen or the hub:



Chapter 1

[ 9 ]

4. At this point, don't connect it to the power yet—we first need to install 
Raspbian (the operating system) on the SD card.

Installing Raspbian
There are many operating systems that are available for the Raspberry Pi board, 
most of which are based on Linux. However, the one that is usually recommended is 
Raspbian, which is an operating system based on Debian that was specifically made 
for Raspberry Pi.

In order to install the Raspbian operating system on your Pi, the first step is to 
download the latest Raspbian image from the official Raspberry Pi website:

https://www.raspberrypi.org/downloads/raspbian/

Next, insert the micro SD card into your computer using an adapter (an adapter  
is usually given with the SD card). To actually configure the SD card, it's best to  
refer to the official installation guides. If you use Windows, please refer to the 
following URL:

https://www.raspberrypi.org/documentation/installation/installing-
images/windows.md

If you are using OS X, please refer to the following:

https://www.raspberrypi.org/documentation/installation/installing-
images/mac.md

Finally, if you are using Linux, you can refer to the following:

https://www.raspberrypi.org/documentation/installation/installing-
images/linux.md

Now, once you have Raspbian installed on your SD card, insert it into Raspberry Pi 
and connect the Raspberry Pi board to the power source via the micro-USB port.

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md


Configuring Your Raspberry Pi Zero Board

[ 10 ]

Then, after a while, you should see the desktop of your freshly installed Raspbian 
operating system:

If you can see this screen, congratulations; you now have a fully functional 
Raspberry Pi Zero board. Throughout the rest of this chapter, we are going to see 
how to configure the board so it can be accessed remotely, and how to install the 
Node.js framework on it.

Configuring the board for remote access
At the end of this chapter, you want to be able to access the board from your own 
computer, without having it connected to an external screen.



Chapter 1

[ 11 ]

The first step is to connect the Raspberry Pi board to your local Wi-Fi network. If you 
connected a Wi-Fi dongle to the Pi, you should see the Wi-Fi icon at the top of your 
Pi desktop. Click on it, and select your Wi-Fi network:

You will then be asked to enter the password for your network, and a few seconds 
later, you should be connected to your local Wi-Fi network and to the Internet.



Configuring Your Raspberry Pi Zero Board

[ 12 ]

Next, we need to enter the Raspberry Pi configuration panel so we can set some 
essential settings. You can find the Raspberry Pi Configuration tool inside the  
main Menu:

Inside the configuration tool, first press on Expand Filesystem:



Chapter 1

[ 13 ]

This will make sure that the Pi now has access to all the space available on the SD 
card. Also, click on the Interfaces tab and check that SSL is checked:



Configuring Your Raspberry Pi Zero Board

[ 14 ]

Inside the same configuration tool, you can also give a network name to your Pi.  
I simply called mine pizero.

We are now going to perform some tests from your computer to make sure that  
Raspberry Pi is correctly configured for remote access and that it has access to  
the Internet.

To do so, open a terminal window on your computer (or use PuTTY if you are using 
Windows), and type the following:

ssh pi@pizero.local

This should initiate a connection to your Pi board and ask for your password. Once 
you type in your password, you should now be connected to the Pi board. If that 
doesn't work at this point, try replacing the name of your Raspberry Pi with the IP 
address of the board (you can get this by typing ifconfig inside a Terminal on the 
Pi itself).

Then, from your computer, type the following:

sudo apt-get update

Then type the following command:

sudo apt-get upgrade

This will upgrade your Pi board by downloading all the latest packages from the 
official Raspberry Pi repository, so it's a great way to make sure that your board is 
connected to the Internet.

Installing Node.js
To finish this chapter, we are going to install Node.js, which is a powerful framework 
that we will use to run most of the applications that we are going to see inside this 
book. Luckily for us, installing Node.js on Raspberry Pi is really simple.

First, log into your Raspberry Pi via SSH. We are going to quickly check that Node.js 
was not installed with the Linux image. To do so, type the following:

node -v

If this returns the version of Node.js, you can stop there. If it returns an error, you 
will have to install it manually. To do so, first type the following:

curl -sL https://deb.nodesource.com/setup_4.x | sudo -E bash -



Chapter 1

[ 15 ]

After that, type the following command, which will install Node.js:

sudo apt-get install -y nodejs

Finally, install some additional tools with the following:

sudo apt-get install -y build-essential

You can now test that Node.js is correctly installed by typing the following:

node -v

Congratulations, you now have a fully configured Raspberry Pi Zero! In the next 
chapter, we are going to build your first application using the Zero board and learn 
how to measure data from sensors.

Summary
In this first chapter of this book, we saw how to configure our Raspberry Pi Zero 
board so we can use it in later chapters of this book. We saw what components were 
needed for the Pi, and how to install Raspbian so we can run software on our board. 
Finally, we installed Node.js, which we will use in the whole book to run home 
automation projects on our Pi.

In the following chapter, we are going to dive into the core topic of the book by 
learning how to measure data from a sensor.





[ 17 ]

Measure Data Using Your 
Raspberry Pi Zero Board

In the first chapter of this book, we worked on setting up your Raspberry Pi board so 
you can use it in your projects and realize all the projects you'll find in this book.

In this chapter, we are going to make our first project using the Zero board: 
measuring data using your board. We are going to learn how to connect a very 
simple temperature and humidity digital sensor to your Pi, and how to write 
software to read data from it.

From there, we'll look at some very basic applications using this sensor that can be 
really useful inside a smart home: how to log data on the Pi itself, how to access the 
measurements remotely, and finally, how to display past data on a nice plot.



Measure Data Using Your Raspberry Pi Zero Board

[ 18 ]

Hardware and software requirements
We have already discussed most of the requirements for this project in the first 
chapter of this book. Here, you will simply need an additional component: a DHT11 
sensor (https://www.adafruit.com/products/386). The following image shows 
the sensor:

You can of course use other similar sensors, for example the DHT22, which is more 
precise. To use a DHT22, you will only need to change one thing inside the code 
we'll see later.

You will also need a 4.7k Ohm resistor to make the sensor work, as well as jumper 
wires and a breadboard.

Hardware configuration
Let's now look at how to configure the hardware for this project; basically, how to 
connect the sensor to the Pi Zero board.

https://www.adafruit.com/products/386


Chapter 2

[ 19 ]

The following figure is a schematic to help you out:

As it's the first project we are actually building using the Raspberry Pi Zero, there is 
something important I wanted to point out here. To connect the board to components 
like this sensor here, we have two options. You can either use jumper wires directly 
(as shown on the schematic), or use a cobbler kit to connect all the pins of the Pi to 
the breadboard, as shown in the following image:



Measure Data Using Your Raspberry Pi Zero Board

[ 20 ]

This is up to you, and to be clear, I'll always show only the individual wires on the 
schematics, but use a cobbler kit to actually build the projects.

Here, you simply need to place the DHT11 on the breadboard, and then connect the 
resistor between the VCC and the data pins. Then, connect the VCC to the 3.3V pin of 
the Raspberry Pi, GND to GND, and finally, connect the data pin of the sensor to pin 
4 of the Raspberry Pi board.

Software configuration
Now we are going to install additional software on your Pi to make sure we can read 
data from the sensor.

Following the instructions from Chapter 1, Configuring Your Raspberry Pi Zero Board 
log into your Pi via SSH, or just use it with an external screen with mouse and 
keyboard.

1. Inside a terminal, type the following:
wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.50.tar.gz

2. Wait for the download to complete and then type the following:
tar zxvf bcm2835-1.50.tar.gz 

3. Next, type the following:
cd bcm2835-1.50

4. Now, configure the software you just downloaded with the following:
./configure

5. Build this software with the following:
make 

6. Now, verify that everything is okay with the following:
sudo make check 

7. If there are no errors, you can then install the software on your Pi with the 
following:
sudo make install

After that last step, you can now move on to the projects of this chapter!



Chapter 2

[ 21 ]

Reading data from the sensor
As the first project of this chapter, we are simply going to see how to read data from 
the sensor. As for all the projects in this book, we'll use Node.js, which is a great 
framework for building projects on your Raspberry Pi Zero.

I will now go through the main parts of this first piece of code. It starts by including 
the DHT sensor module for Node.js:

var sensorLib = require('node-dht-sensor');

Then, we create an object to read data from the sensor and initialize it when we start 
the software:

var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, 4);
    },
    read: function () {
        var readout = sensorLib.read();
        console.log('Temperature: ' + readout.temperature.toFixed(2) + 
'C, ' +
            'humidity: ' + readout.humidity.toFixed(2) + '%');
        setTimeout(function () {
            sensor.read();
        }, 2000);
    }
};

if (sensor.initialize()) {
    sensor.read();
} else {
    console.warn('Failed to initialize sensor');
}

You can now either copy the code inside a file called sensor_test.js, or just get the 
complete code from the GitHub repository for this project:

https://github.com/openhomeautomation/smart-homes-pi-zero

Next, use Terminal to navigate to the folder where the files are and type the 
following:

npm install node-dht-sensor

https://github.com/openhomeautomation/smart-homes-pi-zero


Measure Data Using Your Raspberry Pi Zero Board

[ 22 ]

This will install the module to read data from the sensor; it can take a while, so 
be patient. In case it doesn't work, try using sudo in front of the command. Next, 
actually start the software with the following:

sudo node sensor_test.js

This should print the readings of the sensor at regular intervals inside the terminal:

Congratulations, you can now read data from a digital sensor using your Pi Zero 
board! This is the first step to building sensors for your smart home.

Storing sensor data
Displaying the current measurements from the sensor is nice, but what is even better 
is to actually store that data inside a database. In this section, we are going to see 
how easy it is to do this with Node.js.

As a database, we'll simply use NeDB here, which is a really simple database for 
Node.js that is completely stored in memory, but you can also save the entire 
database in a file.



Chapter 2

[ 23 ]

The code is actually very similar to what we saw in the previous section. However, 
here, we'll first import the database module, and then insert data inside the database 
when a measurement is done:

var Datastore = require('nedb')
  , db = new Datastore({ filename: 'path/to/datafile', autoload: true 
});
sdfsd
var readout = sensorLib.read();

// Log
var data = {
    humidity: readout.humidity.toFixed(2),
    temperature: readout.temperature.toFixed(2),
    date: new Date()
};
db.insert(data, function (err, newDoc) {
    console.log(newDoc);
});

// Repeat
setTimeout(function () {
    sensor.read();
}, 2000);

You can of course find all the code inside the GitHub repository of the book. Again, 
navigate to the folder where the files are located and type the following:

npm install nedb --save

This will install the NeDB module for Node.js.

Then, start the recording with the following:

sudo node sensor_record.js



Measure Data Using Your Raspberry Pi Zero Board

[ 24 ]

You should see the measurements being recorded at regular intervals:

Now, we didn't learn how to actually retrieve those measurements, but that's 
something we will see later in this chapter. In the meantime, if you want more 
information about how to retrieve documents, you can look at the official page  
on GitHub:

https://github.com/louischatriot/nedb

Accessing the data remotely
In the previous projects of this chapter, we learned how to measure and store data on 
your Pi. However, in a smart home, the best is to be able to access data remotely, for 
example, from your smartphone or computer. We will see many similar examples in 
later chapters of this book, but in this chapter, I just wanted to give you a glimpse of 
what is possible.

The module we are going to use here is Express, a server framework that is really 
easy to use with Node.js. Express works by defining routes, which is what will be 
served to the client if a request is made on a specific URL.

First, we'll import Express and define a main route that will send back the 
temperature and humidity measurements:

var express = require('express');
var app = express();

https://github.com/louischatriot/nedb


Chapter 2

[ 25 ]

app.get('/', function (req, res) {

  var readout = sensor.read();
  answer = 'Temperature: ' + readout.temperature.toFixed(2);
  answer += ' Humidity: ' + readout.humidity.toFixed(2);
  res.send(answer);

});

Finally, we also need to start the application, and once that's done we print a 
message in the console:

app.listen(3000, function () {
  console.log('Raspberry Pi Zero app listening on port 3000!');
});

It's now time to test our little web server! Once you have grabbed the file from the 
book's GitHub repository, navigate to the folder where the files are and type the 
following:

npm install express

Then, launch the app with the following:

sudo node sensor_express.js

You should get the confirmation inside the console. Now, using your computer 
or a smartphone, navigate to the URL of your Pi, not forgetting to add port 3000: 
http://192.168.0.105:3000/.

If you don't know the IP address of your Pi, you can simply type ifconfig while 
logged in.

The page should display the last measurement made by the Pi:

Of course, this can definitely be improved with a much nicer interface to display 
the measurements. However, in this section the goal was really to show you how to 
display those measurements from a device other than the Pi.



Measure Data Using Your Raspberry Pi Zero Board

[ 26 ]

Plotting the stored data
In the final project of this chapter, we are going to learn how to plot the data that was 
measured by the Raspberry Pi Zero board. We are actually going to combine what 
we did in the other projects of this chapter and add the plotting part on top of that.

As the code is quite similar to what we have already seen, I will only highlight the 
main changes here. First, we need to define a route for the data:

app.get('/data', function (req, res) {

  db.find({}, function (err, docs) {

    res.json(docs); 

  });

});

This will make sure that, when it is queried on this route, the server will return all 
the measurements stored so far inside the database.

Then, to display the plot of all the measurements, we are going to use a JavaScript 
called HighCharts. You can find more information about HighCharts here:

http://www.highcharts.com/

We'll include it inside an HTML file that we will place inside a folder called public, 
so our app can access it. This file will basically import all the JavaScript libraries that 
we need, another script, which we'll see in a moment, and a container for the plot:

<!DOCTYPE html>
<html>

<head>
  <script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>
  <script src="https://code.highcharts.com/highcharts.js"></script>
  <script src="https://code.highcharts.com/modules/exporting.js"></
script>
  <script src="js/script.js"></script>
</head>

<body>

http://www.highcharts.com/


Chapter 2

[ 27 ]

<div id="container" style="min-width: 310px; height: 400px; margin: 0 
auto"></div>

</body>
</html>

Now, we also need to make the link between the HTML page and our application. 
This will be done in a script file called script.js. This is the content of this file:

var dates = [];
var temperature = [];
var humidity = [];

console.log(measurements);

for (i = 0; i < measurements.length; i++) {

    dates.push(measurements[i].date);
    temperature.push(parseFloat(measurements[i].temperature));
    humidity.push(parseFloat(measurements[i].humidity));

}
$('#container').highcharts({
        title: {
            text: 'Temperature & Humidity Data',
            x: -20 //center
        },
        xAxis: {
            categories: dates
        },
        yAxis: {
            title: {
                text: 'Temperature (°C)'
            },
            plotLines: [{
                value: 0,
                width: 1,
                color: '#808080'
            }]
        },
        tooltip: {
            valueSuffix: '°C'
        },



Measure Data Using Your Raspberry Pi Zero Board

[ 28 ]

        legend: {
            layout: 'vertical',
            align: 'right',
            verticalAlign: 'middle',
            borderWidth: 0
        },
        series: [{
            name: 'Temperature',
            data: temperature
        },
        {
            name: 'Humidity',
            data: humidity
        }]
    });

Basically, this file will query the most recent data from the application, format it for 
HighCharts, and then actually plot the data.

You can now grab all the files from the book's GitHub repository and start the 
application with the following:

sudo node sensor_plot.js

The first thing you can do is test the data route by going to the IP address of your Pi, 
followed by port 3000 and the data route:

As you can see, all the measurements made so far are extracted from the database 
and returned by the server.

You can again go to the main route, and you should see the same data on a nice plot:



Chapter 2

[ 29 ]

If you wait a bit more, you'll see a nice graph with all the data recorded so far by the 
application running on your Raspberry Pi board:

Of course, you can adjust some settings, for example, the delay between two 
measurements, inside the code for your own projects.

Summary
In this chapter, we saw how to perform a basic task with the Raspberry Pi Zero 
board: measuring data. We saw how to measure data from a digital sensor, and  
then store this data, access it remotely, and finally even plot the data on a graph.

You can of course already use what you learned in this project and adapt it to  
your own projects. You can, for example, have the project measure from more 
sensors at the same time, for example, from a barometric pressure sensor or  
from a light-level sensor.

In the next chapter, we are going to apply what we have learned in this chapter to 
build another project with the Pi Zero: building your own home thermostat.





[ 31 ]

Building a Smart Home 
Thermostat

In the previous chapter, we learned how to read data from a sensor and log this data 
on the Raspberry Pi Zero board. In this chapter, we are going to use that knowledge 
to build a very useful home-automation component: a smart thermostat.

We are going to see how to use the Raspberry Pi Zero and a few other components to 
regulate the temperature in a room of your home using an electrical heater. We'll see 
how to connect all the different components, and also how to create a nice interface 
that you will be able to use to control your thermostat. Let's start!

Hardware and software requirements
As always, we are going to start with a list of required hardware and software 
components for the project.

Except for the Raspberry Pi Zero, the most important component for this project 
will be the PowerSwitch Tail Kit. This component allows your Pi to control electrical 
appliances such as lamps, heaters, and other appliances that use mains electricity  
to function.

Then, we will use the same DHT11 sensor we used in the previous chapter to 
measure the temperature in the room.

Finally, you will need the usual breadboard and jumper wires.



Building a Smart Home Thermostat

[ 32 ]

This is the list of components you will need for this project, not including the 
Raspberry Pi Zero:

• PowerSwitch Tail Kit (https://www.adafruit.com/products/268)
• DHT11 sensor + 4.7k Ohm resistor (https://www.adafruit.com/

products/386)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

Of course, for the project to make sense, you will need to have an electrical heater 
that you can control. As I don't want you to cut any wires from an existing heater for 
this project, I recommend trying it first, using a portable electrical heater that you can 
find in any shop, like this one:

https://www.adafruit.com/products/268
https://www.adafruit.com/products/386
https://www.adafruit.com/products/386
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957


Chapter 3

[ 33 ]

The PowerSwitch Tail component supports up to 1800W of power, so you can choose 
your heater accordingly, up to this limit.

On the software side, you don't need anything else compared to the  
previous chapter.

Hardware configuration
Let's now see how to configure the hardware for this project; basically, how to 
connect the PowerSwitch Tail and the sensor to the Raspberry Pi Zero board.

The following is a schematic to help you out:

When done, the sensor will be connected to GPIO pin 4, and the heater (via the 
PowerSwitch Tail) to pin 29.

Here, you simply need to place the DHT11 on the breadboard, and then connect the 
resistor between the VCC and the data pins. Then, connect the VCC to the 3.3V pin of 
the Raspberry Pi, GND to GND, and finally, connect the data pin of the sensor to pin 
4 of the Raspberry Pi board.

For the PowerSwitch Tail, simply connect the Vin+ pin of the component to  
pin 29 of the Raspberry Pi, and then the remaining two pins of the PowerSwitch  
Tail to the ground.



Building a Smart Home Thermostat

[ 34 ]

Here again, I chose to represent the individual wires on the schematic for  
the purpose of clarity, but I used a cobbler cable on the project itself. Here is  
the final result:

Finally, plug the heater into the PowerSwitch Tail and connect the PowerSwitch Tail 
to the mains electricity.

Testing individual components
As the first project of this chapter, we are simply going to check that each individual 
component (the sensor and the PowerSwitch tail) are working correctly.

I will now go through the main parts of this first piece of code. It starts by including 
the DHT sensor module for Node.js:

var sensorLib = require('node-dht-sensor');



Chapter 3

[ 35 ]

Then, we create an object to read data from the sensor, and also initialize it when we 
start the software:

var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, 4);
    },
    read: function () {
        var readout = sensorLib.read();
        console.log('Temperature: ' + readout.temperature.toFixed(2) + 
'C, ' +
            'humidity: ' + readout.humidity.toFixed(2) + '%');
        setTimeout(function () {
            sensor.read();
        }, 2000);
    }
};

if (sensor.initialize()) {
    sensor.read();
} else {
    console.warn('Failed to initialize sensor');
}

You can now either copy the code inside a file called sensor_test.js, or just get the 
complete code from the GitHub repository of the project:

https://github.com/openhomeautomation/smart-homes-pi-zero

Next, use the terminal to navigate to the folder where the files are, and type  
the following:

npm install node-dht-sensor

This will install the module to read data from the sensor; it can take a while, so 
be patient. In case it doesn't work, try using sudo in front of the command. Next, 
actually start the software with the following command:

sudo node sensor_test.js

https://github.com/openhomeautomation/smart-homes-pi-zero


Building a Smart Home Thermostat

[ 36 ]

This should print the readings of the sensor at regular intervals inside the terminal:

We are now going to see how to test if the PowerSwitch Tail is working and wired 
correctly, and how to control it remotely. For that, we are going to use the aREST 
module for the Raspberry Pi, which will give us an easy way to control the outputs 
of the board.

Here is the complete code for this part:

// Start
var express = require('express');
var app = express();
var piREST = require('pi-arest')(app);

piREST.set_id('34f5eQ');
piREST.set_name('my_rpi_zero');

var server = app.listen(80, function() {
    console.log('Listening on port %d', server.address().port);
});

The code is pretty simple, and we are going to try it right now. First, you need to 
install the required modules by typing the following in a terminal (where the files of 
the project are located):

sudo npm install express pi-arest

Then, simply start the application with the following command:

sudo node heaer_test.js

You should now see the confirmation in your console.

Now, let's go ahead and try to control the heater, for example, to turn it on. You need 
to make sure that it is actually turned on if there is any mechanical switch on the 
heater itself.

Then, go to your favorite web browser, and type the following:

http://raspberrypi.local/digital/29/1

http://raspberrypi.local/digital/29/1


Chapter 3

[ 37 ]

You should see that the heater turns on instantly, and you should also have a 
confirmation inside your web browser. Then, type the following command to  
turn it off again:

http://raspberrypi.local/digital/29/0

If that works, you can now control your heater from your Raspberry Pi Zero! You 
can now move to the next section, in which we are going to code the thermostat.

Building the thermostat
We are now going to see how to build the code for the thermostat, which will run 
on your Raspberry Pi Zero board. As the code is quite long, I will only highlight the 
most important parts here, but you can of course find the complete code inside this 
book's GitHub repository.

Start by importing the required modules:

var sensorLib = require('node-dht-sensor');
var express = require('express');

Then, we create an Express app, which will allow us to easily structure our 
application:

var app = express();

Next, we define some variables that are important for our thermostat:

var targetTemperature = 25;
var threshold = 1;
var heaterPin = 29;

The threshold is here so the thermostat doesn't constantly switch between the on and 
off states when it is near the target temperature. A lower threshold means that you 
will have a temperature closer to what you want, but also that the heater will switch 
more frequently.

After that, we are going to define the routes that will structure our application.  
The first one is a route to get the thermostat's current target temperature:

app.get('/get', function (req, res) {

  answer = {
    targetTemperature: targetTemperature
  };
  res.json(answer);

});

http://raspberrypi.local/digital/29/0


Building a Smart Home Thermostat

[ 38 ]

We will also define another route to set this target temperature, which will be called 
by the interface we will code in a moment:

app.get('/set', function (req, res) {

  // Set
  targetTemperature = req.query.targetTemperature;

  // Answer
  answer = {
    targetTemperature: targetTemperature
  };
  res.json(answer);

});

Finally, we also need a route to get the current value of the temperature by 
performing a measurement on the sensor:

app.get('/temperature', function (req, res) {

  answer = {
    temperature: sensor.read().temperature.toFixed(2)
  };
  res.json(answer);

});

Now, we also need to integrate all the code that we will use to control the heater 
from the Raspberry Pi. We saw this before, when we tested the PowerSwitch Tail:

var piREST = require('pi-arest')(app);
piREST.set_id('34f5eQ');
piREST.set_name('my_rpi_zero');
sd
app.listen(3000, function () {
  console.log('Raspberry Pi Zero thermostat started!');
});

We still need to write the code for the core of the thermostat function. Indeed, 
we want the Pi Zero to regulate the temperature in your home, whether you are 
currently using the interface or not. This is done with the following piece of code:

setInterval(function () {

  // Check temperature



Chapter 3

[ 39 ]

  temperature = parseFloat(sensor.read().temperature);
  console.log('Current temperature:' + temperature);
  console.log('Target temperature: ' + parseFloat(targetTemperature));

  // Too high?
  if (temperature > parseFloat(targetTemperature) + 1) {
    console.log('Deactivating heater');
    piREST.digitalWrite(heaterPin, 0);
  }

  // Too low?
  if (temperature < parseFloat(targetTemperature) - 1) {
    console.log('Activating heater');
    piREST.digitalWrite(heaterPin, 1);
  }

}, 10 * 1000);

Basically, we check every 10 seconds and compare the current temperature to the 
target temperature defined inside the thermostat. If it's too low, for example, we 
activate the heater.

Finally, we also define the function to read data from the temperature sensor:

var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, 4);
    },
    read: function () {

        // Read
        var readout = sensorLib.read();
        return readout;
    }
};

if (sensor.initialize()) {
    sensor.read();
} else {
    console.warn('Failed to initialize sensor');
}



Building a Smart Home Thermostat

[ 40 ]

It's now time to test the thermostat! Make sure to grab all the code from this book's 
GitHub repository, navigate to the folder for this chapter, and type the following:

npm install node-dht-sensor

Then type the following command:

sudo npm install express pi-arest

You can then start the project with the following command:

sudo node thermostat_server.js

You should immediately see a message similar to the following on the console:

You can now test all the routes we defined earlier:

• For example, get the temperature with the following: http://raspberrypi.
local:3000/temperature

• You can also get the current value of the thermostat with the following: 
http://raspberrypi.local:3000/get

• Finally, you can set the target of the thermostat using the following:  
http://raspberrypi.local:3000/set?targetTemperature=20For 
example, set it to a high value: http://raspberrypi.local:3000/
set?targetTemperature=30

You should quickly see the thermostat reacting to this new target by activating  
the heater:

http://raspberrypi.local:3000/temperature
http://raspberrypi.local:3000/temperature
http://raspberrypi.local:3000/get
http://raspberrypi.local:3000/set?targetTemperature=20
http://raspberrypi.local:3000/set?targetTemperature=30
http://raspberrypi.local:3000/set?targetTemperature=30


Chapter 3

[ 41 ]

This is great, but every modern thermostat has some kind of interface where you can 
set the temperature of the thermostat. This is exactly what we are going to do in the 
final part of this chapter.

Controlling the thermostat remotely
We are now going to take the exact same project we defined earlier, but add a 
graphical interface on top of it. Inside the JavaScript file we saw previously,  
you just need to add one line, as follows:

app.use(express.static('public'));

Now we are going to code two files: one HTML file with the interface, and another 
file containing scripts that will make the link between the interface and the server. 
Let's start with the HTML file:

<head>
  <script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>
  <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.6/css/bootstrap.min.css">
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/
bootstrap.min.js"></script>
  <script src="js/script.js"></script>
  <link rel="stylesheet" href="css/style.css">
  <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

As you can see, inside the <head> tag of this file, we basically import components 
such as jQuery and Bootstrap, and also a file called script.js. It is in this file that 
we will place all the JavaScript functions later on.

Then, we define a first row for the current value of the temperature in the room:

<div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4 text-center'>
      Current temperature value:
      <span id='temperature'></span> C</div>
    <div class='col-md-4'></div>

  </div>



Building a Smart Home Thermostat

[ 42 ]

We then do the same with the target temperature:

<div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4 text-center'>
      Current thermostat value:
      <span id='thermostat'></span> C</div>
    <div class='col-md-4'></div>

  </div>

After that, we create a text input that will be used to input a new target temperature:

<div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4'>
      <input type="text" class="form-control" id="thermostatValue"></
div>
    <div class='col-md-4'></div>

  </div>

Finally, we create a button so the user can validate this new temperature:

<div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4'>
      <button id='set-thermostat' class='btn btn-block btn-primary'>
        Set Thermostat</button></div>
    <div class='col-md-4'></div>

  </div>



Chapter 3

[ 43 ]

Now, let's have a look at the file called script.js, which will make the link between 
the interface and the server. First, we refresh the target temperature and the current 
temperature inside the interface:

$.get('/get', function(data) {

    $('#thermostat').html(data.targetTemperature);

  });

  $.get('/temperature', function(data) {

    $('#temperature').html(data.temperature);

  });

Next, we set the new value of the target temperature whenever we click on  
the button:

$( "#set-thermostat" ).click(function() {

    // Get value
    var newThermostatValue = $('#thermostatValue').val();

    // Set new value
    $.get('/set?targetTemperature=' + newThermostatValue, 
function(data) {
      $('#thermostat').html(data.targetTemperature);
    });

  });

It's now finally time to test the project! Simply start it with the following code:

sudo node thermostat_interface.js

Now, go to your web browser, and type the following:

http://raspberrypi.local/interface.html

http://raspberrypi.local/interface.html


Building a Smart Home Thermostat

[ 44 ]

You should immediately see the following interface:

You can now try this interface, for example, by typing the value of a new target for 
the thermostat:

If you want to see if it is functioning correctly, simply type a value that is high 
compared to the current value of the temperature:



Chapter 3

[ 45 ]

You should immediately see that the heater is turning on and that the temperature 
starts to rise after a while:

Congratulations, you just built your own thermostat based on the Raspberry Pi Zero!



Building a Smart Home Thermostat

[ 46 ]

Summary
In this chapter, we saw how to build a simple thermostat using the Raspberry Pi 
Zero board. We were able to make a thermostat that can generate its own interface 
and we are able to set the target temperature of the thermostat via this interface.

You can of course already use what you learned in this project, and adapt it to a 
heater you have in your home. I recommend you first try it on a portable heater,  
and then to install it on an actual heater on your wall, if you are feeling confident 
with your project.

In the following chapter, we will look in more detail at how to control appliances 
from your Raspberry Pi, such as LEDs, lamps, and other appliances you could  
have in your home.



[ 47 ]

Controlling Appliances from 
the Raspberry Pi Zero

In previous chapters, we mainly focused on using sensors with our Raspberry Pi, 
to log data, display it graphically, and also to build a nice thermostat based on the 
Raspberry Pi Zero.

In this chapter, we are going to focus solely on controlling devices using the 
Raspberry Pi Zero. Indeed, in any smart home, you are going to want to control 
devices in order to automate your home.

To cover most of the devices you could have in your home, we are going to see three 
examples in this chapter. First we will learn how to control and dim a simple LED, 
which means you'll learn how to control any LED-based lighting in your home. 
Then, we'll see how to control a DC motor using the Raspberry Pi Zero, which can, 
for example, be applied to control window blinds. Finally, we'll see how to control a 
lamp and basically, any on/off appliances in your home. Let's start!

Hardware and software requirements
As always, we are going to start with a list of required hardware and software 
components for the project.

Except for the Raspberry Pi Zero, you will need some additional components for 
each of the sections in this chapter.

For the LED controller section, you will need a simple LED and a 330-Ohm resistor.

To control a DC motor, you will need a L293D motor driver IC and, of course, a 
motor to control. For this purpose, I used a simple 5V DC motor.



Controlling Appliances from the Raspberry Pi Zero

[ 48 ]

For the lamp controller section, the most important component will be the 
PowerSwitch Tail Kit. This component allows your Pi to control electrical appliances 
such as lamps, heaters, and other appliances that use mains electricity to function.

Finally, you will need the usual breadboard and jumper wires.

This is the list of components that you will need for this whole chapter, not including 
the Raspberry Pi Zero:

• LED (https://www.sparkfun.com/products/9590)
• 330-Ohm resistor (https://www.sparkfun.com/products/11507)
• L293D motor driver (https://www.sparkfun.com/products/315)
• 5V DC motor (https://www.sparkfun.com/products/11696)
• Battery pack (https://www.sparkfun.com/products/9835)
• PowerSwitch Tail Kit (https://www.adafruit.com/products/268)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

On the software side, you will need to install the pi-gpio package, which we will 
later use to dim the LED and to control the speed of the DC motor. To do so, open a 
terminal on your Pi, and type the following:

wget abyz.co.uk/rpi/pigpio/pigpio.zip

Then, unzip the archive with the following:

unzip pigpio.zip

After that, navigate to the unzipped folder with the following:

cd PIGPIO

Then, build the code using the following:

make

Finally, install the package on your computer with the following:

sudo make install

https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
https://www.sparkfun.com/products/315
https://www.sparkfun.com/products/11696
https://www.adafruit.com/products/268
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957


Chapter 4

[ 49 ]

Controlling LEDs
In this first project of the chapter, we are going to see how to control LEDs using 
your Raspberry Pi Zero. As an example, here we'll see how to control and dim a 
single LED that we will place on a breadboard. However, the same code can be 
applied to any kind of LED lighting in your home, or to LED strips.

Let's first see how to assemble this project. Place the LED on the breadboard in series 
with the 330 Ohm resistor—the longest pin of the LED in contact with the resistor. 
Then, connect the other side of the resistor to the GPIO18 pin on the Raspberry Pi 
and the other end of the LED to a GND pin of the Raspberry Pi.

You can, of course, use a cobbler cable kit to easily connect the Pi to the LED. Here, 
and for the rest of this chapter, I just used two simple jumper wires so you can really 
see the connections in the images.

This is the final result:



Controlling Appliances from the Raspberry Pi Zero

[ 50 ]

Now that the project is assembled, we are going to test it. To do so, we'll run a simple 
code that will basically continuously change the intensity of the LED, from 0 to the 
maximum brightness.

This is the complete code to test our project:

// Modules
var Gpio = require('pigpio').Gpio;
// Create led instance
var led = new Gpio(18, {mode: Gpio.OUTPUT});
var dutyCycle = 0;

// Go from 0 to maximum brightness
setInterval(function () {
  led.pwmWrite(dutyCycle);

  dutyCycle += 5;
  if (dutyCycle > 255) {
    dutyCycle = 0;
  }
}, 20);

We can already test this code. Make sure to grab the code from this book's GitHub 
repository, navigate into the folder of this project with a terminal on the Pi, and type 
the following:

sudo npm install pigpio

This will install the required Node.js module to control the LED. Then, type the 
following:

sudo node led_test.js

You should immediately see the LED gradually going from completely off to full 
brightness, meaning we can indeed dim an LED using our Raspberry Pi Zero board!

This is great, but we can do better. We are now going to see how to dim the LED 
using a graphical interface, in which you'll be able to control the intensity of the  
LED using a slider.

As for the thermostat project, we are going to use Node.js again here, along with an 
HTML interface and some JavaScript to link the interface to the Node.js server.



Chapter 4

[ 51 ]

Let's first have a look at the Node.js code. We'll again use the Express module to 
structure our app, along with the pigpio module we used earlier to dim the LED:

// Modules
var Gpio = require('pigpio').Gpio;
var express = require('express');

// Express app
var app = express();

// Use public directory
app.use(express.static('public'));

Then, we define an object that will allow us to control the state of the LED:

var led = new Gpio(18, {mode: Gpio.OUTPUT});

We can then define the routes of our app. The first one is to serve the interface when 
we access it via a web browser:

app.get('/', function (req, res) {

  res.sendfile(__dirname + '/public/interface.html');

});

Then, we also create a route to set the intensity of the LED:

app.get('/set', function (req, res) {

  // Set LED
  dutyCycle = req.query.dutyCycle;
  led.pwmWrite(dutyCycle);

  // Answer
  answer = {
    dutyCycle: dutyCycle
  };
  res.json(answer);

});



Controlling Appliances from the Raspberry Pi Zero

[ 52 ]

Finally, we start the Node.js server with the following:

app.listen(3000, function () {
  console.log('Raspberry Pi Zero LED control started!');
});

Let's now have a look at the HTML interface. It starts by including modules such as 
jQuery and Bootstrap:

<head>
  <script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>
  <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.6/css/bootstrap.min.css">
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/
bootstrap.min.js"></script>
  <script src="js/interface.js"></script>
  <link rel="stylesheet" href="css/style.css">
  <meta name="viewport" content="width=device-width, initial-scale=1">
</head>

Then, in the body of the interface, we simply define a slider element, which we will 
use to control the LED:

<body>

<div id="container">

  <h3>LED Control</h3>

  <div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4 text-center'>
     <input id="duty-cycle" type="range" value="0" min="0" max="255" 
step="1">
    </div>
    <div class='col-md-4'></div>

  </div>

</div>

</body>



Chapter 4

[ 53 ]

Finally, in the file called script.js, we link the slider element to the Node.js server 
so it automatically sets the intensity of the LED whenever we use the slider:

$( "#duty-cycle" ).mouseup(function() {

    // Get value
    var dutyCycle = $('#duty-cycle').val();

    // Set new value
    $.get('/set?dutyCycle=' + dutyCycle);

  });

It's now finally time to test our application! First, grab all the code from this book's 
GitHub repository and navigate to the folder of the project like before. Then, install 
Express with the following command:

sudo npm install express

When this is done, start the server with the following command:

sudo node led_control.js

You can now test the project by entering the following command in your browser 
(replacing the IP address with the one for your Pi):

http://192.168.0.103:3000/set?dutyCycle=20

You should immediately see the LED dimmed and also get the confirmation in  
your browser:

Then, access the interface directly by typing the following URL:

http://192.168.0.103:3000

http://192.168.0.103:3000/set?dutyCycle=20
http://192.168.0.103:3000


Controlling Appliances from the Raspberry Pi Zero

[ 54 ]

You should immediately see a very basic interface with a slider:

You can now try it: as soon as you release the mouse from the slider, you should see 
that the LED is instantly dimmed to the value you set with the slider! You can now 
connect this project to any LED-based lighting in your home (that uses DC current), 
and start controlling it from a nice interface using your Raspberry Pi Zero!

Controlling the speed of a DC motor
In any smart home, chances are you will find a DC motor somewhere that you will 
need to automate. It could, for example, be on electric window blinds, or on an 
automated garage door. In this section, we are going to see how to control the speed 
of a simple DC motor and you will then be able to apply this to any motors you 
already have in your home.

Let's first see how to connect the DC motor to your Raspberry Pi Zero board. We 
actually won't connect the motor directly to the Raspberry Pi, as this would require a 
lot of external components, such as transistors, diodes, and so on. Instead, we'll use 
the L293D chip, which is a dedicated IC to control DC motors.

First, place the L293D on the board. The following diagram shows the pinout of  
the L293D:



Chapter 4

[ 55 ]

You basically need to connect the components to the L293D as follows:

• GPIO14 of the Raspberry Pi to pin 1A
• GPIO15 of the Raspberry Pi to pin 2A
• GPIO18 of the Raspberry Pi to pin 1,2EN
• DC motor to pin 1Y and 2Y
• 5V of the Raspberry Pi to VCC1
• GND of the Raspberry Pi to GND
• Battery pack to VCC2 and GND

The following image shows the final result:



Controlling Appliances from the Raspberry Pi Zero

[ 56 ]

We are now going to see how to perform a simple test of the DC motor to see if it 
is working correctly. We are simply going to make the motor accelerate from null 
speed to its maximum speed. The following is the code to do exactly that:

// Modules
var Gpio = require('pigpio').Gpio;

// Create motor instance
var motorSpeed = new Gpio(18, {mode: Gpio.OUTPUT});
var motorDirectionOne = new Gpio(14, {mode: Gpio.OUTPUT});
var motorDirectionTwo = new Gpio(15, {mode: Gpio.OUTPUT})

// Init motor direction
motorDirectionOne.digitalWrite(0);
motorDirectionTwo.digitalWrite(1);

var dutyCycle = 0;

// Go from 0 to maximum speed
setInterval(function () {
  motorSpeed.pwmWrite(dutyCycle);

  dutyCycle += 5;
  if (dutyCycle > 255) {
    dutyCycle = 0;
  }
}, 20);

You can now save this code in a JavaScript file, and use a Terminal to navigate to the 
folder where this file is located. Then, type the following:

sudo npm install pigpio

This will install the required module to use this test file. Then, launch the test with 
the following:

sudo node motor_test.js

You should immediately see the motor going from zero to its maximum speed, and 
then start again.

Just like the LED previously, we want to be able to control the speed of the motor 
using a graphical interface. As the code for this part is really similar to the code for 
the previous section, I will only highlight the main differences here.



Chapter 4

[ 57 ]

First, we create instances of the GPIO module to control each output pin we need:

var motorSpeed = new Gpio(18, {mode: Gpio.OUTPUT});
var motorDirectionOne = new Gpio(14, {mode: Gpio.OUTPUT});
var motorDirectionTwo = new Gpio(15, {mode: Gpio.OUTPUT});

We also define a route to set the speed of the motor:

app.get('/set', function (req, res) {

  // Set motor speed
  speed = req.query.speed;
  motorSpeed.pwmWrite(speed);

  // Set motor direction
  motorDirectionOne.digitalWrite(0);
  motorDirectionTwo.digitalWrite(1);

  // Answer
  answer = {
    speed: speed
  };
  res.json(answer);

});

For now, we'll set the direction inside the code for convenience, but you can of 
course change it now.

As for the LED control, we'll use an interface that will just display a single slider to 
control the speed of the motor.

It's now time to test the project! Grab all the code from this book's GitHub repository 
and inside the folder where you extracted the code, type the following:

sudo npm install express

This will install the Express module that is required for the project. Then, you can 
start the server using the following:

sudo node motor_control.js



Controlling Appliances from the Raspberry Pi Zero

[ 58 ]

You can now navigate to the main interface of the project (of course replacing the IP 
with the one for your Pi):

http://192.168.0.103:3000

You should see an interface displaying a simple slider to control the speed of  
the motor:

You can now try it: moving the slider and releasing the mouse should immediately 
change the speed of the motor to the desired speed. You can, of course, now also add 
a switch to the interface to also change the direction of the motor using this simple 
graphical interface. This will allow us to control a motor for which you might want 
to reverse the direction of rotation, for example, to open or close a garage door.

Controlling home appliances
In the final section of this chapter, we are going to see how to control appliances in 
your home that can only be set to on or off, for example, lamps, but also heaters, 
coffee machines, and other appliances. In this section, you are going to learn how  
to control a simple desk lamp using your Raspberry Pi Zero.

Let's first see how to assemble the project. Simply connect the Vin+ pin of the 
PowerSwitch Tail Kit to the GPIO18 pin on the Raspberry Pi Zero, and the two 
remaining pins of the PowerSwitch Tail to GND.

http://192.168.0.103:3000


Chapter 4

[ 59 ]

The following image shows the final result:

Of course, after this you need to connect a lamp to the project. For that, I used a 
simple 30W desk lamp. You simply need to connect the appliance you want to 
control to the female plug of the PowerSwitch Tail, and then connect it to the mains 
electricity via the male power plug.

We are now going to see how to control the lamp using a simple interface, which will 
run on our Raspberry Pi. For that, we'll again use Node.js, along with an interface 
written in HTML.



Controlling Appliances from the Raspberry Pi Zero

[ 60 ]

Let's first have a look at the Node.js file. We include the Express module, and also 
define to which pin the PowerSwitch Tail is connected:

// Modules
var express = require('express');

// Express app
var app = express();

// Pin
var lampPin = 12;

// Use public directory
app.use(express.static('public'));

Then, we define a main route for the interface:

app.get('/', function (req, res) {

  res.sendfile(__dirname + '/public/interface.html');

});

We also define a route that we will use to turn the lamp on. Here, we are again going 
to use the aREST framework, which will allow us to easily control the Raspberry Pi. 
The following is the complete code for this route:

app.get('/on', function (req, res) {

  piREST.digitalWrite(lampPin, 1);

  // Answer
  answer = {
    status: 1
  };
  res.json(answer);

});

We also do the same for the off route:

app.get('/off', function (req, res) {

  piREST.digitalWrite(lampPin, 0);



Chapter 4

[ 61 ]

  // Answer
  answer = {
    status: 0
  };
  res.json(answer);

});

Finally, we initialize the aREST instance and start the server:

// aREST
var piREST = require('pi-arest')(app);
piREST.set_id('34f5eQ');
piREST.set_name('my_rpi_zero');

// Start server
app.listen(3000, function () {
  console.log('Raspberry Pi Zero lamp control started!');
});

Let's now have a look at the HTML interface. It simply consists of two buttons, one to 
turn the light on, and one to turn it off again:

<div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-2'>
      <button id='on' class='btn btn-block btn-primary'>On</button>
    </div>
    <div class='col-md-2'>
      <button id='off' class='btn btn-block btn-warning'>Off</button>
    </div>
    <div class='col-md-4'></div>

  </div>

Inside the script file, we also link each of the buttons to the corresponding action on 
the server:

$( "#on" ).click(function() {

    // Set lamp ON
    $.get('/on');

  });



Controlling Appliances from the Raspberry Pi Zero

[ 62 ]

  $( "#off" ).click(function() {

    // Set lamp OFF
    $.get('/off');

  });

It's now finally time to test the project! Make sure that a lamp is connected to the 
PowerSwitch Tail and that it is turned on. Also, make sure the project is connected  
to the mains electricity.

Then, grab all the code from this book's GitHub repository and place it in a folder. 
Then, navigate to the lamp_control folder, and type the following inside a Terminal:

sudo npm install express pi-arest

This will install all the required components for the project. After that, type the 
following:

sudo node lamp_control.js

This will start the server on the Pi. After that, navigate to the following URL by 
replacing the IP address with the one for your Pi:

http://192.168.0.103:3000

You should see the interface that we just created, with two push buttons:

You can now try the interface. When you press on the button, it should immediately 
set the correct state to the lamp or any appliance that you connected to the 
PowerSwitch Tail.

In case it doesn't work, first make sure that you set the correct pin 
inside the code, which corresponds to the pin where you connected 
the PowerSwitch Tail on the Raspberry Pi. Also check that the lamp is 
actually turned on in cases where there is a physical switch on the lamp.

http://192.168.0.103:3000


Chapter 4

[ 63 ]

Summary
In this chapter, we saw how to control devices from the Raspberry Pi Zero board, 
which is critical in any smart home that you want to automate. First we looked at 
how to control and dim an LED, which you can use to control LED-based lighting 
and LED strips in your home. We also looked at how to control the speed of a DC 
motor, which you can apply to control the motor of a garage door, for example. 
Finally, we saw how to control any appliances in your home, such as lamps, using a 
graphical interface running on your Pi.

You can, of course, already use what you learned in this chapter and adapt it to your 
own projects, for example, by applying everything you learned in this project to 
control several devices from the same interface running on your Pi.

In the following chapter, we are going to apply what we learned in this chapter by 
building a smart energy meter based on the Raspberry Pi Zero.





[ 65 ]

Making a Smart Plug with the 
Raspberry Pi Zero

You have probably seen those smart plugs in your local shop: they allow you to 
not only control appliances remotely, but also to measure the energy consumption 
of the device connected to the plug. These smart plugs are now available nearly 
everywhere, from well-known brands such as Belkin.

The following image shows one I bought as an experiment a while ago to see what 
components were inside:



Making a Smart Plug with the Raspberry Pi Zero

[ 66 ]

In this chapter, we are going to learn how to use the Raspberry Pi Zero to make 
a project that has the same functionalities as a smart plug. You will be able to 
control an electrical device such as a lamp via Wi-Fi, and also measure its electrical 
consumption in real time.

Because we are building this device ourselves, we will of course be able to customize 
it for our needs. For example, we'll learn how to log the data measured by the plug in 
a database so it can be used later. Let's start!

Hardware and software requirements
As always, we are going to start with a list of required hardware and software 
components for the project.

Except for the Raspberry Pi Zero, you will need some additional components for 
each of the sections in this chapter.

The most important component will be a current sensor, which we will use to know 
how much current is flowing through the device. For that, we will use the ECS-1030 
non-invasive current sensor. The following is an image of this sensor:

The advantage of this sensor is that you don't need to cut anything to measure the 
current flowing in the device. To use this sensor, and convert the current it measures 
to a voltage we can measure, you'll also need a 10-Ohm resistor.



Chapter 5

[ 67 ]

However, we can't directly connect this device to our Raspberry Pi. First, the device 
has a jack connector at the end, so we need a jack-to-breadboard adapter to connect it 
first to a breadboard and then to Pi.

Also, we can't connect it to Pi because the Raspberry Pi can only read digital signals. 
Or, the current sensor is returning an analog signal, which is proportional to the 
measured current.

To solve this second problem, we'll use a MCP3008 chip, which is an analog-digital 
converter that can be easily interfaced with the Pi.

To control a device from the Pi, the most important component will be the 
PowerSwitch Tail Kit. This component allows your Pi to control electrical appliances 
such as lamps, heaters, and other appliances that use mains electricity to function.

Finally, you will need the usual breadboard and jumper wires.

The following is the list of components you will need for this whole chapter, not 
including the Raspberry Pi Zero:

• Non-invasive current sensor (https://www.sparkfun.com/
products/11005)

• 10-Ohm resistor load
• MCP3008 ADC (https://www.adafruit.com/product/856)
• Jack to breadboard adapter (https://www.sparkfun.com/products/11570)
• PowerSwitch Tail Kit (https://www.adafruit.com/products/268)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

To actually have a device to control, I used a standard 15W desk lamp.

Hardware configuration
We are now going to assemble the hardware for this project. The first thing we have 
to do is to connect the current sensor to the PowerSwitch Tail so we can measure 
the current flowing into the device connected to the smart plug. For that, you'll need 
to expose a bare cable coming from the PowerSwitch Tail. Then, open the current 
sensor and close it firmly around this cable.

https://www.sparkfun.com/products/11005
https://www.sparkfun.com/products/11005
https://www.adafruit.com/product/856
https://www.sparkfun.com/products/11570
https://www.adafruit.com/products/268
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957


Making a Smart Plug with the Raspberry Pi Zero

[ 68 ]

The following image shows how the connection should look:

Now, we are going to connect the MCP3008 to the Raspberry Pi. To help you out, the 
following figure shows the connector of the Raspberry Pi Zero with the numbers of 
the GPIO pins:



Chapter 5

[ 69 ]

Also, you will need to know the pins of the MCP3008 chip:

Let's now connect the MCP3008 to the Raspberry Pi, using the following connections:

• VDD and VREF to the 3.3V pin of the Raspberry Pi
• DGND and AGND to the GND pin of the Raspberry Pi
• CLK to GPIO 11 of the Raspberry Pi
• DOUT to GPIO 9 of the Raspberry Pi
• DIN to GPIO 10 of the Raspberry Pi
• CS to GPIO 8 of the Raspberry Pi



Making a Smart Plug with the Raspberry Pi Zero

[ 70 ]

After that, plug the current sensor into the Jack adapter and place the adapter on the 
breadboard. Then, connect the 10-Ohm resistor in series with the SLEEVE and TIP 
pins on the adapter.

Now, connect one side of this resistor to the GND on the breadboard (for example, to 
the Raspberry Pi GND) and the other side to channel 5 of the MCP3008 chip.

Finally, connect the PowerSwitch Tail to the Pi: connect the Vin+ pin to GPIO 18 and 
the two other pins to the GND.

The following image shows the final result:

Also, connect the device you want to control, for example, a lamp, to the female plug 
of the PowerSwitch. You can now again plug your Pi into the power source and the 
PowerSwitch Tail to the mains electricity.



Chapter 5

[ 71 ]

Configuring the smart plug
We are now going to configure the Raspberry Pi so it behaves like a smart plug.  
As usual, we'll use Node.js to code the software that will control our Raspberry Pi 
Zero board.

We start by importing all the required modules for the project:

var mcpadc = require('mcp-spi-adc');
var express = require('express');
var app = express();
var piREST = require('pi-arest')(app);

Note that we are using the mcp-spi-adc module here, which will allow us to easily 
read data from the MCP3008 chip.

Next, we define the channel to which the current sensor is connected:

var channel = 5;

We also set the value of the load resistance we are using for the sensor:

var resistance = 10;

This will allow us to calculate the actual current flowing through the sensor later on.

So far, you might have noticed that we don't measure the voltage in this project. 
Indeed, even if we could add another circuit to measure the voltage, we can simply 
set it in the code:

var voltage = 230; // Europe

Note that you will need to change that to the voltage used in your country,  
for example, 110V in the US.

As for the other projects in this book, we are using the aREST framework to control 
our Pi remotely. We need to initialize the module by giving a name and ID to  
our project:

piREST.set_id('34f5eQ');
piREST.set_name('energy_meter');
piREST.set_mode('bcm');



Making a Smart Plug with the Raspberry Pi Zero

[ 72 ]

After that, we start the server on port 80:

var server = app.listen(80, function() {
    console.log('Listening on port %d', server.address().port);
});

We still need to actually measure data from the sensor. This is the code that will 
measure data from the sensor every 500 ms:

var sensor = mcpadc.open(channel, {speedHz: 20000}, function (err) {
  if (err) throw err;

  // Measurement interval
  setInterval(function () {

    // Read
    sensor.read(function (err, reading) {
      if (err) throw err;

      // Calculate current
      var measuredVoltage = reading.value * 3.3;
      var measuredCurrent = (measuredVoltage/resistance) * 2000 / 
        1.41;

      // Calculate power
      var power = voltage * measuredCurrent;

      // Assign to aREST
      piREST.variable('power', power.toFixed(2));
      piREST.variable('current', measuredCurrent.toFixed(2));

      // Log output
      console.log("Measured current: " + measuredCurrent.toFixed(2) + 
'A');
      console.log("Measured power: " + power.toFixed(2) + 'W');

    });
  }, 500);
});

Let's see what this code does. We first measure the voltage at the analog-digital 
converter, which is proportional to the current flowing through the device of our 
smart plug. We need to multiply this reading by 3.3 to get a voltage from the value 
returned by the analog-digital converter.



Chapter 5

[ 73 ]

Then, to get the current, we first need to divide the voltage by the value of the 
resistance. Then, we need to multiply it by 2000, which is the ratio between the 
current induced in the sensor and the current actually flowing through the device. 
Finally, we need to divide the result by 1.41, to get the effective value of the current.

To get the power, we just multiply the measured current by the voltage.

Finally, we also expose those two measured values to the aREST API so we can 
access them later.

It's finally time to test the project! Get all the files from this book's GitHub and put 
them inside a folder in your Pi. Make sure to modify the file called meter.js to 
change the value of the resistance, in case you are using a different value.

Then, install the required modules from a terminal with the following command:

sudo npm install express pi-arest mcp-spi-adcsdfsd

Once that's done, start the project with the following command:

sudo node meter.js

You should immediately see the measurements in the console, showing a null 
current and power, as the device is currently off:

Let's now switch the device on to see if the current and power measurements are 
working correctly. For that, first get the IP address of your Pi using the ifconfig 
command. Let's assume for the rest of this chapter that it is 192.168.0.105.

Go to your favorite web browser and type the following:

http://192.168.0.105/digital/18/1



Making a Smart Plug with the Raspberry Pi Zero

[ 74 ]

This should immediately switch the device connected to the project on, for example, 
the desk lamp I connected to the PowerSwitch Tail. You should see the current and 
power measurements in the console:

As you can see, the sensor is quite precise, as I obtained a 15.03W reading for my 
15W desk lamp. Note that the current sensor can measure up to 30A, so make sure 
you are using a device that is working with a current smaller than this limit.

Creating an interface for the smart plug
Commercial smart plugs usually come with a nice interface, which you can use from 
your phone or computer to control the plug via Wi-Fi. In this section, we are going 
to do exactly the same: build a simple interface that we will use to control the device 
connected to the smart plug, and also visualize the current and power consumption 
of the device.

As the code for this part is quite similar to the code of the previous section, I will 
only highlight the differences here.

Inside the Node.js JavaScript file, we declare the public folder in which we will store 
the interface:

app.use(express.static('public'));

Then, we need to declare to which pin we connected the output of the smart plug:

var outputPin = 18;

Using Express, we can now define some routes. We define the main route of the 
application to redirect to the interface file:

app.get('/', function (req, res) {

  res.sendfile(__dirname + '/public/interface.html');

});



Chapter 5

[ 75 ]

Then, as we saw in the previous chapter, we declare two routes to control the output 
of the project: one to switch the device on, and one to switch it off:

app.get('/on', function (req, res) {

  piREST.digitalWrite(outputPin, 1);

  // Answer
  answer = {
    status: 1
  };
  res.json(answer);

});

app.get('/off', function (req, res) {

  piREST.digitalWrite(outputPin, 0);

  // Answer
  answer = {
    status: 0
  };
  res.json(answer);

});

Let's now see the files for the interface. There will be one HTML file, which contains 
the elements of the interface, and one JavaScript file to make the link between the 
elements and the Node.js software.

Let's start with the HTML file. We need to define the two buttons that we will use to 
control the device:

<div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-2'>
      <button id='on' class='btn btn-block btn-primary'>On</button>
    </div>
    <div class='col-md-2'>
      <button id='off' class='btn btn-block btn-warning'>Off</button>
    </div>
    <div class='col-md-4'></div>

  </div>



Making a Smart Plug with the Raspberry Pi Zero

[ 76 ]

Then, we also define two indicators, called current and power, which will contain 
the values measured by the project:

  <div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4'>
      Current consumption: <span id='current'></span> A
    </div>
    <div class='col-md-4'></div>

  </div>

  <div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4'>
      Power consumption: <span id='power'></span> W
    </div>
    <div class='col-md-4'></div>

  </div>

Let's now see the content of the JavaScript file. First we make the link between the 
buttons and the Node.js server by calling the correct action when a button is pressed:

$( "#on" ).click(function() {

    // Set lamp ON
    $.get('/on');

  });

  $( "#off" ).click(function() {

    // Set lamp OFF
    $.get('/off');

  });



Chapter 5

[ 77 ]

Then, we define this loop to automatically grab the measurements from the Pi and 
update the indicators in the interface every second:

setInterval(function () {

    // Current
    $.get('/current', function(data) {
      $( "#current" ).text(data.current);
    });

    // Power
    $.get('/power', function(data) {
      $( "#power" ).text(data.power);
    });

  }, 1000);

It's now time to test the interface! If you followed the instructions from the previous 
section, you just need to go once more to the folder where you put the project files 
and type the following:

sudo node meter_interface.js

Now, using your favorite browser, go to the IP address of the Pi, for example:

http://192.168.0.105/

You should see the interface showing the current measurements taken by the board, 
which should be at zero, as you just started the software:



Making a Smart Plug with the Raspberry Pi Zero

[ 78 ]

You can now click on the On button. You should immediately see the device 
connected to the project turning on and you should also see the current readings 
made by the smart plug:

Congratulations, you now have a nice interface that you can use to control your 
smart plug remotely! Of course, you could also use this interface from a phone or 
tablet that is connected to the same Wi-Fi network as your Pi.

Logging your energy consumption over 
time
For now, we built a smart plug that has more or less the same features as a 
commercial smart plug: it can control a device, measure the power consumption of 
this device, and also comes with a nice graphical interface. In this section, we are 
going to go further, and see how we can easily add functions to our project with 
some lines of code.

As an example, we are going to see how to log the measurements made by the board 
into a database on the Pi so that those measurements can be recalled later. As the 
code for this section is really similar to the previous section, I will only highlight the 
main changes here.

Start by importing the required module for the database:

var Datastore = require('nedb')
  db = new Datastore();

After that, we define a route to get all the data currently present inside the database:

app.get('/data', function (req, res) {

  db.find({}, function (err, docs) {



Chapter 5

[ 79 ]

    res.json(docs);

  });

});

Inside the measurement loop, we create a new set of data at every iteration and store 
it in the database:

var data = {
          current: measuredCurrent.toFixed(2),
          power: power.toFixed(2),
          date: new Date()
      };
      db.insert(data, function (err, newDoc) {
          console.log(newDoc);
      });

Let's now try this new piece of software. Again, navigate to the folder where you put 
the files for this chapter and type the following command:

sudo npm install nedb

This will install the required module for the database. Then, launch the software 
with the following command:

sudo node meter_log.js

You should see the results from the measurements inside the console just as before, 
but this time with the confirmation that the document was stored in the database:

Note that I used quite a high refresh rate inside the code for demonstration purposes. 
Of course, I invite you to modify that in order to avoid filling your database with 
measurements.



Making a Smart Plug with the Raspberry Pi Zero

[ 80 ]

You can also try to read the data that was logged inside the database by going to the 
following URL:

http://192.168.0.105/data

You should immediately see the results inside the browser:

You can now use this data for your own applications. For example, it can easily be 
used to calculate the average daily or monthly energy consumption of the device.

Summary
In this chapter, we learned how to reproduce a smart plug using the Raspberry Pi 
Zero. We built a device that can control electrical devices and also measure their 
energy consumption. We built a nice interface to control this device, and also made it 
log data on the Pi itself.

You can, of course, now improve this project in many ways. You could, for example, 
plot the data measured by the project and have a real-time graph of the energy 
consumption of the device. For the more adventurous, you could also think about 
integrating all the components into a nice 3D-printed case, making it almost like a 
commercial smart plug.

In the following chapter, we are going to dive into an amazing field: the Internet of 
Things. We'll see how to use your Pi to send you all kinds of notifications about what 
is going on in your home.



[ 81 ]

Sending Notifications using 
Raspberry Pi Zero

In this chapter, we are going to start diving into a very interesting field that will 
change the way we interact with our environment: the Internet of Things (IoT).  
The IoT basically proposes to connect every device around us to the Internet,  
so we can interact with them from anywhere in the world.

Within this context, a very important application is to receive notifications from your 
devices when they detect something in your home, for example a motion in your 
home or the current temperature. This is exactly what we are going to do in this 
chapter, we are going to learn how to make your Raspberry Pi Zero board send  
you notifications via text message, email, and push notifications. Let's start!

Hardware and software requirements
As always, we are going to start with the list of required hardware and software 
components for the project.

Except Raspberry Pi Zero, you will need some additional components for each of the 
sections in this chapter.

For the first project of this chapter, we are going to use a simple PIR motion sensor to 
detect motion from your Pi.

Then, for the last two projects of the chapter, we'll use the DHT11 sensor that we 
have already used in previous chapters.

Finally, you will need the usual breadboard and jumper wires.



Sending Notifications using Raspberry Pi Zero

[ 82 ]

This is the list of components that you will need for this whole chapter, not including 
the Raspberry Pi Zero:

• PIR motion sensor (https://www.sparkfun.com/products/13285)
• DHT11 sensor + 4.7k Ohm resistor (https://www.adafruit.com/

products/386)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

On the software side, you will need to create an account on IFTTT, which we will use 
in all the projects of this chapter. For that, simply go to:

https://ifttt.com/

You should be redirected to the main page of IFTTT where you'll be able to create  
an account:

https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/386
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957
https://ifttt.com/


Chapter 6

[ 83 ]

Making a motion sensor that sends text 
messages
For the first project of this chapter, we are going to attach a motion sensor to 
the Raspberry Pi board and make the Raspberry Pi Zero send us a text message 
whenever motion is detected. For that, we are going to use IFTTT to make the link 
between our Raspberry Pi and our phone. Indeed, whenever IFTTT will receive a 
trigger from the Raspberry Pi, it will automatically send us a text message.

Lets first connect the PIR motion sensor to the Raspberry Pi. For that, simply connect 
the VCC pin of the sensor to a 3.3V pin of the Raspberry Pi, GND to GND, and the 
OUT pin of the sensor to GPIO18 of the Raspberry Pi.

This is the final result:



Sending Notifications using Raspberry Pi Zero

[ 84 ]

Let's now add our first channel to IFTTT, which will allow us later to interact with 
the Raspberry Pi and with web services. You can easily add new channels by clicking 
on the corresponding tab on the IFTTT website. First, add the Maker channel to  
your account:

This will basically give you a key that you will need when writing the code for  
this project:



Chapter 6

[ 85 ]

After that, add the SMS channel to your IFTTT account. Now, you can actually 
create your first recipe. Select the Maker channel as the trigger channel:



Sending Notifications using Raspberry Pi Zero

[ 86 ]

Then, select Receive a web request:

As the name of this request, enter motion_detected:



Chapter 6

[ 87 ]

As the action channel, which is the channel that will be executed when a trigger is 
received, choose the SMS channel:

For the action, choose Send me an SMS:



Sending Notifications using Raspberry Pi Zero

[ 88 ]

You can now enter the message you want to see in the text messages:

Finally, confirm the creation of the recipe:



Chapter 6

[ 89 ]

Now that our recipe is created and active, we can move on to actually configuring 
Raspberry Pi so it sends alerts whenever a motion is detected. As usual, we'll use 
Node.js to code this program.

It starts by including the required modules:

// Required modules
var request = require('request');
var gpio = require('rpi-gpio');

Then, we define our IFTTT data, which is composed of the Maker key and of the 
name of the event we want to trigger:

// IFTTT data
var key = "your-key";
var eventName = 'motion_detected';

Then, we define the pin on which our sensor is connected to:

// Motion sensor GPIO
var motionSensorPin = 18;

We also need to define a counter that will basically make sure that we don't 
constantly send alerts to our phone, for example if the sensor stays on for several 
seconds. For that, we define an interval period of one minute minimum between  
two alerts:

// Counter between two alerts
var interval = 60 * 1000; // 1 minute
var counter = new Date();

After that, we configure the rpi-gpio module (that we'll use to read data from the 
sensor) to the BCM configuration scheme, meaning we are using the number of the 
GPIO of the Raspberry Pi rather than the physical pins:

// Setup gpio library
gpio.setMode(gpio.MODE_BCM);

Now, every second, we check the status of the sensor (if we didn't trigger an alert 
already in the last minute):

// Check status every second
setInterval(function() {

  // Check counter so we don't trigger alarms all the time
  var currentTime = (new Date()).getTime();
  var counterTime = counter.getTime();



Sending Notifications using Raspberry Pi Zero

[ 90 ]

  if ( (currentTime - counterTime) > interval) {

    // Check sensor
    gpio.setup(motionSensorPin, gpio.DIR_IN, checkSensor);

  }

}, 1000);

If some motion is detected, we reset the counter and also send the alert to IFTTT:

// Check motion sensor
function checkSensor() {
  gpio.read(motionSensorPin, function(err, value) {

      // If motion is detected, send event to IFTTT
      if (value == true) {

        // Restart Counter
        counter = new Date();

        // Send event
        alertIFTTT();
      }
  });
}

This is the function that takes care of sending the data to IFTTT:

// Make request
function alertIFTTT() {

  // Send alert to IFTTT
  console.log("Sending alert to IFTTT");
  var url = 'https://maker.ifttt.com/trigger/' + eventName + '/with/
key/' + key;
  request(url, function (error, response, body) {
    if (!error && response.statusCode == 200) {
      console.log("Alert sent to IFTTT");
    }
  });
}



Chapter 6

[ 91 ]

It basically uses the request module to send the correct command to IFTTT, passing 
the name of the event and the key.

We can finally test this first project! Grab the code from the GitHub repository of the 
book and make sure to modify the code with your own IFTTT key. Then, navigate to 
the folder where the file is with a terminal and type the following command:

sudo npm install rpi-gpio request

Once that's done, start the code with:

sudo node sms_alerts.js

Now, you need to wait at least for the interval time (one minute by default) before 
the code is active. This will make sure that no motion will be detected when you just 
start the project for example.

After a minute, pass your hand in front of the sensor: Your Raspberry Pi should 
immediately send a command to IFTTT and after some seconds you should be able 
to receive a message on your mobile phone:

Congratulations, you can now use your Raspberry Pi Zero to send important 
notifications, on your mobile phone!

Note that for an actual use of this project in your home, you might want 
to limit the number of messages you are sending as IFTTT has a limit on 
the number of messages you can send (check the IFTTT website for the 
current limit). For example, you could use this for only very important 
alerts, like in case of an intruder coming in your home in your absence.



Sending Notifications using Raspberry Pi Zero

[ 92 ]

Sending temperature alerts through 
email
In the second project of the chapter, we are going to learn how to send automated 
email alerts based on data measured by the Raspberry Pi.

Let's first assemble the project. Place the DHT11 sensor on the breadboard and then 
place the 4.7k Ohm resistor between pin 1 and 2 of the sensor. Then, connect pin 1 
of the sensor to the 3.3V pin of the Raspberry Pi, pin 2 to GPIO18, and pin 4 to GND. 
This is the final result:



Chapter 6

[ 93 ]

Let us now see how to configure the project. Go over to IFTTT and create add the 
Email Channel to your account: 

After that, create a new recipe by choosing the Maker channel as the trigger:



Sending Notifications using Raspberry Pi Zero

[ 94 ]

For the event, enter temperature_alert and then choose Email as the  
action channel:

You will then be able to customize the text and subject of the email sent to Pi. As we 
want to send the emails whenever the temperature in your home gets too low, you 
can use a similar message:



Chapter 6

[ 95 ]

You can now finalize the creation of the recipe and close IFTTT. Let's now see how 
to configure the Raspberry Pi Zero. As the code for this project is quite similar to the 
one we saw in the previous section, I will only highlight the main differences here.

It starts by including the required components:

var request = require('request');
var sensorLib = require('node-dht-sensor');

Then, give the correct name to the event we'll use in the project:

var eventName = 'temperature_low';

We also define the pin on which the sensor is connected:

var sensorPin = 18;

As we want to send alerts based on the measured temperature, we need to define 
a threshold. As it was quite warm when I made this project, I have assigned a high 
threshold at 30 degrees Celsius, but you can, of course, modify it:

var threshold = 30;

Then, we initialize the sensor and check the current temperature every 2 seconds:

var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, sensorPin);
    },
    read: function () {

        // Read
        var readout = sensorLib.read();
        temperature = readout.temperature.toFixed(2);
        console.log('Current temperature: ' + temperature);

        // Check counter so we don't trigger IFTTT all the time
        var currentTime = (new Date()).getTime();
        var counterTime = counter.getTime();

        if ( (currentTime - counterTime) > interval) {

          if (temperature < threshold) {

            // Restart Counter
            counter = new Date();



Sending Notifications using Raspberry Pi Zero

[ 96 ]

            // Send event
            alertIFTTT();

          }

        }

        // Repeat
        setTimeout(function () {
            sensor.read();
        }, 2000);
    }
};

It's now time to test the project! Grab the GitHub repository of the book and make 
sure to modify the code to put your own IFTTT key.

Then, navigate to the folder with the file with a terminal and type the following:

sudo npm install request

Then, install the module for the DHT sensor with the following command:

npm install node-dht-sensor

Finally, start the project using the following command:

sudo node temperature_alerts.js

If like me, you set the threshold to a quite high value, you should quickly receive a 
message inside your email box:

 

You can now use your Pi to send automated notifications through email!



Chapter 6

[ 97 ]

Receiving measurement SATA through 
push notifications
In the last project of this chapter, we'll learn how to use the project we built in the 
previous section to actually not send you alerts, but just keep you updated about the 
current temperature and humidity measured by Pi.

Here however, we are going to use something new to alert you: push notifications. 
These notifications will immediately show up on your phone if you have the right 
app installed.

As the app, we'll use Pushover that is available for iOS and Android. You can install 
it from your App Store and find more information at the following URL:

https://ifttt.com/

Then, add the Pushover channel inside IFTTT:

https://ifttt.com/


Sending Notifications using Raspberry Pi Zero

[ 98 ]

Now, create a new recipe and choose the Maker channel again as the trigger:

I used data as the trigger:



Chapter 6

[ 99 ]

Then, select Pushover as the action channel and enter the following message:

Here, we'll use the variables Value1 and Value2 to display the temperature and 
humidity inside the message. We'll see in a moment how to actually send that to 
IFTTT from the Pi.



Sending Notifications using Raspberry Pi Zero

[ 100 ]

You can also select the target device for this recipe:

Lets now see how to configure this project. As it's really similar to the previous 
project, I will just highlight the main differences here.

We need to give the name to the event that we'll trigger from the Pi:

var eventName = 'data';

Then, inside the sensor object we measure data at regular intervals and pass the 
measurements to the logIFTTT()function:

var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, sensorPin);
    },
    read: function () {

        // Read
        var readout = sensorLib.read();
        temperature = readout.temperature.toFixed(2);
        humidity = readout.humidity.toFixed(2);

        console.log('Current temperature: ' + temperature);
        console.log('Current humidity: ' + humidity);



Chapter 6

[ 101 ]

        // Send event
        logIFTTT(temperature, humidity);

        // Repeat
        setTimeout(function () {
            sensor.read();
        }, interval);
    }
};

Let's now see the details of this function. Compared to the previous projects of this 
chapter, we are now going to pass the temperature and humidity parameters to the 
function and send this data to IFTTT:

function logIFTTT(temperature, humidity) {

  // Send alert to IFTTT
  console.log("Sending message to IFTTT");
  var url = 'https://maker.ifttt.com/trigger/' + eventName + '/with/
key/' + key;
  url += '?value1=' + temperature + '&value2=' + humidity;
  request(url, function (error, response, body) {
    if (!error && response.statusCode == 200) {
      console.log("Data sent to IFTTT");
    }
  });
}

Let's now test the project! First, grab all the code from the GitHub repository of the 
book and make sure to modify the code with your IFTTT maker key. Then, install the 
request module with the following command:

sudo npm install request

Once that's done, install the module for the DHT sensor:

npm install node-dht-sensor

Finally, start the project using this command:

sudo node temperature_notifications.js



Sending Notifications using Raspberry Pi Zero

[ 102 ]

After a minute, you should get the notification on your phone displaying the current 
temperature and humidity in your home:

You can now use your Pi to receive automated reports containing data about  
your home!

Summary
In this chapter, we learned all the basics about sending automated notifications from 
your Raspberry Pi. We learned, for example, how to send notifications via email, text 
messages, and push notifications. This is really important to build a smart home, as 
you want to be able to get alerts in real-time from what's going on inside your home 
and also receive regular reports about the current status of your home.

You can of course improve the projects of this chapter in many ways. It would be 
easy for example to have several Pi Zero boards in your home, each sending you 
alerts on your phone for example. You could give a name to each of the boards and 
include that name inside the alerts so you know which Pi sent the message.

In the next chapter, we are going to use everything we learned so far in the book to 
build a simple security system using the Raspberry Pi Zero board.



[ 103 ]

Use the Raspberry Pi Zero to 
Build a Security System

In this chapter, we are going to learn how to build a modular security system using 
the Raspberry Pi Zero board. The Raspberry Pi board is really cheap and has a 
very small form factor, you can use many such boards inside your home to build a 
complete security system for your home.

We are going to integrate three types of components into our system: motion sensors, 
alarms, and security camera. These modules will communicate with a central server 
application that will either run on your computer or on another Raspberry Pi. First, 
we are going to see how to configure each board individually and then configure the 
central server and a basic interface.

Hardware and software requirements
As always, we are going to start with the list of required hardware and software 
components for the project. 

In this chapter, we are going to use at least three Raspberry Pi Zero boards: for a 
motion sensor, an alarm module, and a camera module. Of course, you can perfectly 
use more of each module in your security system.

For the motion sensor module, I will use a simple PIR motion sensor.

Then, for the alarm module, I will be using a small buzzer, as well as an LED and a 
330 Ohm resistor.

For the camera module, I will use a Logitech C270 webcam. Here, any camera 
compatible with the UVC protocol would work, which is the case for most of the 
cameras sold these days.



Use the Raspberry Pi Zero to Build a Security System

[ 104 ]

Finally, you will need the usual breadboard and jumper wires.

This is the list of components that you will need for this chapter, not including the 
Raspberry Pi Zero:

• PIR motion sensor (https://www.sparkfun.com/products/13285)
• LED (https://www.sparkfun.com/products/9590)
• 330 Ohm resistor (https://www.sparkfun.com/products/11507)
• Logitech C270 USB camera (http://www.logitech.com/en-us/product/

hd-webcam-c270)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

Of course, all the additional components, for example the WiFi dongle and power 
supply, will need to be multiplied by the number of Raspberry Pi boards that you 
will use inside the project.

On the software side, you will just need to have Node.js installed on your Raspberry 
Pi Zero boards.

Building a motion sensor with the Pi Zero
The first module that we are going to assemble in this chapter is the motion sensor 
module. These modules will be deployed in key parts of your home, to detect any 
intruder in your home.

The hardware configuration for this part will actually be very simple. First, connect 
the VCC pin of the motion sensor to a 3.3V pin of the Raspberry Pi. Then, connect the 
GND pin of the sensor to one GND pin of the Pi. Finally, connect the OUT pin of the 
motion sensor to the GPIO17 pin of the Raspberry Pi. You can refer to the previous 
chapters to find out about pin mapping of the Raspberry Pi Zero board.

https://www.sparkfun.com/products/13285
https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
http://www.logitech.com/en-us/product/hd-webcam-c270
http://www.logitech.com/en-us/product/hd-webcam-c270
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957


Chapter 7

[ 105 ]

This is the final result:

Let's now see how to configure this module so we can access it remotely through 
WiFi. This application will be based on the aREST framework again, which we 
already saw in the previous chapters of the book.



Use the Raspberry Pi Zero to Build a Security System

[ 106 ]

Here is the complete code for this part:

// Modules
var express = require('express');

// Express app
var app = express();

// aREST
var piREST = require('pi-arest')(app);
piREST.set_id('34f5eQ');
piREST.set_name('motion_sensor');
piREST.set_mode('bcm');

// Start server
app.listen(3000, function () {
  console.log('Raspberry Pi Zero motion sensor started!');
});

You can now simply grab this code from the GitHub repository of the book or simply 
paste it into a file called motion_sensor.js, then using a terminal inside the same 
folder as the file type:

sudo npm install express pi-arest

Once the required modules are installed, type the following command to start the 
project:

sudo node motion_sensor.js

Finally, navigate to the IP address of your Pi on port 3000, followed by the digital 
command on pin 17:

http://192.168.0.105:3000/digital/17

This should immediately return a JSON object with the value of pin 17. You can now 
try to pass your hand in front of the sensor and repeat the operation: you should be 
able to immediately see that the value of pin 17 is equal to 1, indicating that motion 
has been detected by the sensor.

Making a simple alarm module
In the second part of this chapter, we are going to learn how to build an alarm 
module for our security system. You will usually have one of those modules in your 
home that will flash light and emit sound in case motion is detected. Of course, you 
can perfectly connect it to a real siren instead of a buzzer to have a loud sound in 
case any motion is detected.



Chapter 7

[ 107 ]

To assemble this module, first place the LED in series with the 330 Ohm resistor on 
the breadboard, with the longest pin of the LED in contact with the resistor. Also 
place the buzzer on the breadboard.

Then, connect the other side of the resistor to GPIO14 of the Pi and the other part of 
the LED to one GND pin of the Pi.

For the buzzer, connect the pin marked as + on the buzzer to GPIO15 and the other 
pin of the buzzer to one GND pin of the Pi.

This is the final result:



Use the Raspberry Pi Zero to Build a Security System

[ 108 ]

To configure this module, we will again use the aREST library, so the code will be 
very similar to the one we used in the previous section:

// Modules
var express = require('express');

// Express app
var app = express();

// aREST
var piREST = require('pi-arest')(app);
piREST.set_id('35f5fc');
piREST.set_name('alarm');
piREST.set_mode('bcm');

// Start server
app.listen(3000, function () {
  console.log('Raspberry Pi Zero alarm started!');
});

You can now simply grab this code from the GitHub repository of the book or  
simply paste it into a file called alarm.js using a terminal inside the same folder  
as the file type:

sudo npm install express pi-arest

Once the required modules are installed, type the following command to start  
the project:

sudo node alarm.js

Finally, let's just try to set the buzzer on; navigate to the IP address of your Pi on  
port 3000 followed by the digital command on pin 15:

http://192.168.0.105:3000/digital/17/1

This should immediately set the buzzer on and it should continuously emit sound. 
To switch it off again, simply type the same command followed by a 0.

Building a wireless security camera
We are now going to build the module that will act as a wireless security camera. 
You can have one or many of those modules inside your home; it will allow you to 
observe what is going on in your home from a central location.



Chapter 7

[ 109 ]

The hardware configuration for this part will be really simple, as we are using an 
USB camera. However, you will need to use an USB hub here, as we will need to 
connect the USB camera and the usual WiFi dongle on the Raspberry Pi.

This is the final result:

Let's now test the camera first, by taking a simple picture from the command line. 
You will need to install the fswebcam utility. To do so, simply type the following 
command inside a terminal:

sudo apt-get install fswebcam

Then, still from a terminal, you can take a picture with the following command:

fswebcam -r 1280×720 image.jpg



Use the Raspberry Pi Zero to Build a Security System

[ 110 ]

This will make a lot of messages appear inside the terminal, confirming that the 
picture has been taken:

You can now use an image utility to open the picture you just took. I, for example, 
used GPicView:



Chapter 7

[ 111 ]

Now that we are sure that the camera is working correctly, we can use it to stream 
video on the network. For that, we'll use software called MJPG-streamer. To install it, 
first clone the GitHub repository from a terminal:

git clone https://github.com/jacksonliam/mjpg-streamer

Then, install some required packages:

sudo apt-get install cmake libjpeg62-dev

Once that's done, navigate into the folder of the mjpg-streamer software and type:

sudo make clean all

When the compilation of the software is done, type:

export LD_LIBRARY_PATH=.

Finally, start the software with the following command:

./mjpg_streamer -i "./input_uvc.so" -o "./output_http.so -w ./www"

You should be able to see a similar output inside the terminal:



Use the Raspberry Pi Zero to Build a Security System

[ 112 ]

Then, simply navigate to port 8080 of your Raspberry Pi to access the interface of the 
streaming software, for example:

http://192.168.0.105:8080

You should be able to see the interface:



Chapter 7

[ 113 ]

You can now just click on Stream to access the live stream from the camera:



Use the Raspberry Pi Zero to Build a Security System

[ 114 ]

From there, you can monitor the live stream from the camera. In the next section, we 
are going to see how to integrate this stream (and streams from other cameras if you 
have many) into a central interface.

Note that this project would also work with the official Raspberry Pi 
camera. However, the first versions of the Raspberry Pi Zero board didn't 
have the connector for the Raspberry Pi camera, so first make sure if your 
board has this connector (which is on the side of the board). For more 
information, visit this link:
https://www.raspberrypi.org/blog/zero-grows-camera-
connector/

Creating a security system
In the last section of this chapter, we are going to learn how to integrate all the 
modules we built in this chapter into a central interface, from which you'll be able to 
monitor them.

For this project, I ran this last part on my personal computer, but you can, of course, 
use another Pi Zero board (or any Raspberry Pi board) to run this software.

Let's now see the code for this last section. It will be again composed a main Node.js 
file for the server, and one HTML and JavaScript files for the interface itself.

Let's first see the Node.js part. It starts by importing all the required modules:

// Modules
var express = require('express');
var app = express();
var request = require('request');

// Use public directory
app.use(express.static('public'));

Then, you will need to modify the code to put the IP addresses of the Raspberry 
modules you will be using in the project (except the camera modules, we'll set their 
IPs directly inside the interface):

var motionSensorPi = "192.168.0.104:3000";
var alarmPi = "192.168.0.103:3000"

https://www.raspberrypi.org/blog/zero-grows-camera-connector/
https://www.raspberrypi.org/blog/zero-grows-camera-connector/


Chapter 7

[ 115 ]

We also define the pins of the different components that are connected to our 
modules:

var buzzerPin = 15;
var ledPin = 14;
var motionSensorPin = 17;

Then, we can define the different routes of the project. It starts with a main route that 
will serve the interface:

app.get('/', function (req, res) {

  res.sendfile(__dirname + '/public/interface.html');

});

We also need to define a route to get the current state of the alarm:

app.get('/alarm', function (req, res) {

  res.json({alarm: alarm});

});

Then, we set another route to set the alarm off:

app.get('/off', function (req, res) {

  // Set alarm off
  alarm = false;

  // Set LED & buzzer off
  request("http://" + alarmPi + "/digital/" + ledPin + '/0');
  request("http://" + alarmPi + "/digital/" + buzzerPin + '/0');

  // Answer
  res.json({message: "Alarm off"});

});

We also start the server itself:

var server = app.listen(3000, function() {
    console.log('Listening on port %d', server.address().port);
});



Use the Raspberry Pi Zero to Build a Security System

[ 116 ]

Finally, we create a loop that will check the status of the motion sensor every two 
seconds and set the alarm if motion is detected:

setInterval(function() {

  // Get data from motion sensor
  request("http://" + motionSensorPi + "/digital/" +  
motionSensorPin,
    function (error, response, body) {

      if (!error && body.return_value == 1) {

        // Activate alarm
        alarm = true;

        // Set LED on
        request("http://" + alarmPi + "/digital/" + ledPin +  
'/1');

        // Set buzzer on
        request("http://" + alarmPi + "/digital/" + buzzerPin +  
'/1');

      }
  });

}, 2000);

Let's now see the interface file, starting by the HTML. It starts by importing all the 
required libraries and files for the project:

<head>
  <script src="https://code.jquery.com/jquery-2.2.4.min.js"></script>
  <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/
bootstrap/3.3.6/css/bootstrap.min.css">
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/
bootstrap.min.js"></script>
  <script src="js/script.js"></script>
  <link rel="stylesheet" href="css/style.css">
  <meta name="viewport" content="width=device-width, initial-scale=1">
</head>



Chapter 7

[ 117 ]

Then, inside a <script> tag on the same page, we'll define some JavaScript functions 
to integrate the live video stream into the page. We start by declaring the required 
variables:

var imageNr = 0; // Serial number of current image
var finished = new Array(); // References to img objects which have 
finished downloading
var paused = false;

Then, we declare a function that will create the image layer on the page that will later 
display the video server:

function createImageLayer() {
  var img = new Image();
  img.style.position = "absolute";
  img.style.zIndex = -1;
  img.onload = imageOnload;
  img.onclick = imageOnclick;
  img.src = "http://192.168.0.105:8080/?action=snapshot&n=" +  
(++imageNr);
  var webcam = document.getElementById("webcam");
  webcam.insertBefore(img, webcam.firstChild);
}

We then define a function to load the next image:

function imageOnload() {
  this.style.zIndex = imageNr; // Image finished, bring to front!
  while (1 < finished.length) {
    var del = finished.shift(); // Delete old image(s) from  
document
    del.parentNode.removeChild(del);
  }
  finished.push(this);
  if (!paused) createImageLayer();
}

We also add the possibility to stop the stream in case we click on the picture:

function imageOnclick() { // Clicking on the image will pause the 
stream
  paused = !paused;
  if (!paused) createImageLayer();
}



Use the Raspberry Pi Zero to Build a Security System

[ 118 ]

We also set the required function on the <body> tag, to load the stream when we load 
the HTML page:

<body onload="createImageLayer();">

For the interface itself, we first define an indicator for the current status of the alarm:

<div class='row voffset50'>

    <div class='col-md-4'></div>
    <div class='col-md-4 text-center'>
      Alarm is <span id='alarm-status'>OFF</span>
    </div>
    <div class='col-md-4'></div>

  </div>

In the following section, we create a button to deactivate the alarm if it has  
been triggered:

<div class='row'>

    <div class='col-md-4'></div>
    <div class='col-md-4'>
      <button id='off' class='btn btn-block btn-danger'>Deactivate 
Alarm</button>
    </div>
    <div class='col-md-4'></div>

  </div>

Finally, we create the element that will hold the live video stream:

<div class='row voffset50'>
    <div class='col-md-3'></div>
    <div class='col-md-7'>
      <div id="webcam">
        <noscript>
          <img src="http://192.168.0.105:8080/?action=snapshot" />
        </noscript>
      </div>
    </div>
  </div>



Chapter 7

[ 119 ]

Let's now have a look at the JavaScript file. We will first link the button to the correct 
action on the server:

$( "#off" ).click(function() {

    // Deactivate alarm
    $.get('/off');

  });

For the indicator of the current state of the alarm, we refresh the element of the 
interface every two seconds:

setInterval(function () {

    // Current
    $.get('/alarm', function(data) {

      if (data.alarm == true) {
        $( "#alarm-status" ).text("ON");
      }
      else {
        $( "#alarm-status" ).text("OFF");
      }

    });

  }, 2000);

It's now finally time to test the last part of the chapter! Grab all the code from the 
GitHub repository of the book and inside the folder where the code files are type:

sudo npm install express request

Then, start the application with the following command:

sudo node system_interface.js

You can now simply navigate to the IP address of the computer or Pi on which the 
application is running, followed by port 3000. For example:

http://192.168.0.100:3000



Use the Raspberry Pi Zero to Build a Security System

[ 120 ]

You should immediately see the simple interface that we just created, as well as the 
live stream from security camera:

You can now try to pass your hand again in front of the motion sensor; you should 
instantly hear the sound from the buzzer and see the confirmation on your screen 
inside the interface. Then, simply click on the button to deactivate the alarm.

If you can't see the page, check your firewall: it might be blocking the IP address of 
your Pi or the port on which the application is running (3000).

Summary
In this chapter, we learned how to build a modular security system based on 
Raspberry Pi Zero. There are of course many ways to improve this project. For 
example, you can simply add more modules to the project, like having more motion 
sensors that triggers the same alarm. You can also use some simple software like 
Ngrok to access the live video stream remotely, even if you are outside of the WiFi 
network of your home.

In the next chapter, we are going to dive into the Internet of Things again, and learn 
how to monitor and control your home from anywhere in the world!



[ 121 ]

Monitor Your Home  
from the Cloud

In this chapter, we are going to delve more into a very exciting topic related to 
building a smart home: the Internet of Things. Indeed, today most of the smart 
homes are connected to the Internet and allows the user the monitor her or his  
home, even when they are at the other end of the globe.

In this chapter, we are going to learn how to build the three projects that will allow 
you to monitor your home from a distance. First, we are simply going to add a sensor 
to our Raspberry Pi Zero and monitor the measurements from a cloud dashboard. 
After that, we are going to learn how to build our own cloud dashboard to monitor 
several sensors remotely. Finally, we'll learn how to monitor the live camera stream 
via a wireless security camera from anywhere in the world. Let's dive in!

Hardware and software requirements
As always, we are going to start with the list of required hardware and software 
components for the project. 

For the sensors, we'll use a simple DHT11 sensor, along with a 4.7k Ohm resistor. 
We'll also use a PIR motion sensor.

For the camera module, I will use a Logitech C270 webcam. Here, any camera 
compatible with the UVC protocol would work, which is the case for most of the 
cameras sold those days.



Monitor Your Home from the Cloud

[ 122 ]

Finally, you will need the usual breadboard and jumper wires.

This is the list of components that you will need for this whole chapter, not including 
the Raspberry Pi Zero:

• PIR motion sensor (https://www.sparkfun.com/products/13285)
• DHT11 sensor with 4.7k Ohm resistor (https://www.adafruit.com/

products/386)
• PIR motion sensor (https://www.adafruit.com/products/189)
• Logitech C270 USB camera (http://www.logitech.com/en-us/product/

hd-webcam-c270)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

To connect the camera to your Pi, I also recommend using a USB hub for this chapter, 
as there is only one USB port on the Pi.

On the software side, you will need to have Node.js installed on your Raspberry Pi 
Zero board.

Monitoring data from a cloud dashboard
In this first section of the chapter, we are going to connect a temperature and  
humidity sensor to our Raspberry Pi Zero board and send those measurements to 
the cloud. Later in this section, we are also going to learn how to visualize those 
measurements on a dashboard.

We first need to connect the DHT11 sensor to our Pi. First, place the sensor on the 
board, and then connect the 4.7k Ohm resistor between pin 1 and 2 of the sensor. 
Then, connect the first pin of the sensor to a 3.3V pin of the Pi, the second pin to 
GPIO4 of the Raspberry Pi, and finally the last pin of the sensor to a GND pin of  
the Pi.

https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/386
https://www.adafruit.com/products/189
http://www.logitech.com/en-us/product/hd-webcam-c270
http://www.logitech.com/en-us/product/hd-webcam-c270
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957


Chapter 8

[ 123 ]

The following image is the final result:

We are now going to see how to configure our Raspberry Pi Zero so it automatically 
sends data to the cloud. For that, we'll use Node.js to send data to a service called 
Dweet.io, which will allow us to easily store data online.

Let's first see the details of the code. First, we declare the modules that we will use 
for this section:

var sensorLib = require('node-dht-sensor');
var request = require('request');

After that, we need to give a name to our thing, which is the name we'll use to 
identify the object storing the measurements on Dweet.io:

var thingName = 'mypizero';

We will also define a main measurement loop, in which we'll make measurements 
from the sensor and send those measurements to Dweet.io:

var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, 4);
    },
    read: function () {



Monitor Your Home from the Cloud

[ 124 ]

        // Readout
        var readout = sensorLib.read();
        console.log('Temperature: ' + readout.temperature.toFixed(2) + 
'C, ' +
            'humidity: ' + readout.humidity.toFixed(2) + '%');

        // Log data
        logData(readout);

        // Repeat
        setTimeout(function () {
            sensor.read();
        }, 2000);
    }
};

After that, we need to initialize the sensor:

if (sensor.initialize()) {
    sensor.read();
} else {
    console.warn('Failed to initialize sensor');
}

Let's now see the details of the function that is used to log data on the  
Dweet.io server:

function logData(readout) {

  // Build URL
  var url = "https://dweet.io/dweet/for/" + thingName;
  url += "?temperature=" + readout.temperature.toFixed(2);
  url += "&humidity=" + readout.humidity.toFixed(2);

  // Make request
  request(url, function (error, response, body) {
    if (!error && response.statusCode == 200) {
      console.log(body) // Show response
    }
  });

}



Chapter 8

[ 125 ]

We basically form a request to Dweet.io, passing the measurements inside the 
request URL itself. 

It's finally the time to test the project! Grab all the code from the GitHub repository 
of the book and place it inside a folder on your Pi. Then, inside this folder, type the 
following command with a terminal:

npm install node-dht-sensor

This will install the required sensor library. Then, install the request module with 
the following command:

sudo npm install request

Finally, you can start the software by typing:

sudo node sensor_cloud_log.js

You should immediately see the answer from Dweet.io as the data is recorded to  
the cloud:

You can actually already visualize this data right in your web browser, by typing the 
following URL:

This is nice, but it's not great to actually visualize data as it is recorded. That's why 
we are now going to use Freeboard.io, which is a service that will allow us to create 
cloud dashboards using the Dweet.io data.



Monitor Your Home from the Cloud

[ 126 ]

You can already create an account at:

http://freeboard.io/

Inside Freeboard.io, first create a new dashboard:

Then, add a new datasource with the following parameters:

http://freeboard.io/


Chapter 8

[ 127 ]

This will basically link your dashboard to the 'thing' that is storing your  
data on Dweet.io. After that, you'll see that the connection is active inside  
the dashboard itself:



Monitor Your Home from the Cloud

[ 128 ]

Now, create a new pane inside your dashboard and also a new Gauge widget for the 
temperature, using the following parameters:

You should be able to immediately see the temperature measurements being 
displayed in the dashboard:



Chapter 8

[ 129 ]

Now, do the same for humidity, using the following parameters:

You should now have both gauges inside your dashboard, giving you an immediate 
glance at the temperature and humidity inside your home:



Monitor Your Home from the Cloud

[ 130 ]

You can now add more visualizations of the same data. For example, I added two 
additional widgets of the type sparkline for each measurement, giving me an instant 
view of the recent history of each variable:

Creating a cloud dashboard for your 
devices
In the second part of this chapter, we are going to add a motion sensor to the project 
we built in the first part and also learn how to monitor all those sensors from a single 
dashboard. I will connect all the sensors to a single Raspberry Pi Zero board, but you 
could of course have them connected to several boards that are in different parts of 
your smart home.

The project itself will be really easy to assemble. First, make sure that you followed 
all the instructions from the previous project. Then, simply connect the motion 
sensor to the project: VCC goes to the 3.3V pin of the Raspberry Pi, GND to GND, 
and the SIG pin of the sensor is connected to Raspberry Pi GPIO18.

The following image is the final result:



Chapter 8

[ 131 ]

Let's now see how to configure the project. In order to access the measurements 
from anywhere in the world, we'll use the aREST framework again, which we have 
already used in several projects of the book. However, here we'll use the cloud access 
of aREST that will allow us to access those measurements from anywhere.

Inside the code itself, we first include all the required modules:

var sensorLib = require('node-dht-sensor');
var express = require('express');
var app = express();
var piREST = require('pi-arest')(app);

We then define the ID and the name of the board:

piREST.set_id('73gutg');
piREST.set_name('pi_zero_cloud');
piREST.set_mode('bcm');



Monitor Your Home from the Cloud

[ 132 ]

Note that as the ID is unique for each Raspberry Pi board, you need to change it and 
insert your own ID here. Then, inside the main measurement loop, we expose the 
temperature and humidity measurements to the aREST framework:

piREST.variable('temperature', readout.temperature.toFixed(2));
piREST.variable('humidity', readout.humidity.toFixed(2));

We also do the same for a variable called motion that depends on the current state of 
the motion sensor:

piREST.digitalRead(18, function(data) {

          if (data == 1) {
            piREST.variable('motion', "Motion Detected");
          }
          else {
            piREST.variable('motion', "No Motion");
          }

        });

After that, we connect to the aREST cloud server:

piREST.connect();

Finally, we start the server with the following code:

var server = app.listen(80, function() {
    console.log('Listening on port %d', server.address().port);
});

It's now finally time to test the project! Inside the same folder as you put the files of 
the first project of this chapter, type:

sudo npm install express pi-arest

When the modules are installed, start the project using:

sudo node sensor_cloud_arest.js

This will immediately make the project connect to the aREST.io cloud server. You 
can actually test it by typing the following URL inside your favorite web browser, of 
course by changing the ID of your device:



Chapter 8

[ 133 ]

In order to display this data inside a dashboard, we are going to use the dashboard 
of the aREST framework that you can access from:

http://dashboard.arest.io/

From there, create a new account and then a new dashboard:

Inside this dashboard, add a new element with the following parameters, which will 
be used to display the temperature inside the dashboard:

Once it is done, you can do the same for humidity. You should now have both the 
data showing up inside your dashboard:

Finally, do a similar operation with the motion variable:

You should now have all the variables measured by your Pi displayed inside the 
same dashboard:

Congratulations, you can now monitor your home from anywhere in the world! Also 
note that you can have measurements from several Raspberry Pi boards displayed in 
the same cloud dashboard.

http://dashboard.arest.io/


Monitor Your Home from the Cloud

[ 134 ]

Accessing your security camera from 
anywhere
Inside the last section of this chapter, we are going to revisit a project we built in 
the last chapter: the wireless security camera. Here, we are going to learn how to 
visualize the live video stream coming from a camera from anywhere in the world.

Assembling this project is really simple; you simply need to plug the USB camera to 
the Raspberry Pi using the USB hub as you also need to plug the Wi-Fi dongle. This 
is the final result:

Now, we are again going to use the MJPEG-streamer software to create a live video 
stream from the camera. If you haven't installed it yet, you can check the last chapter 
of the book to learn how to install it.



Chapter 8

[ 135 ]

Then, go inside the folder where the software is installed, and type:

./mjpg_streamer -i "./input_uvc.so" -o "./output_http.so -w ./www"

This will immediately start the streaming software on your Raspberry Pi:

Now, I want you to open another terminal window or tab, as we will need to run 
another software while the streaming software is running. We are going to use 
software called Ngrok; this will allow us to access the video stream from anywhere 
in the world.

In the second terminal window, type:

wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-arm.zip

This will download Ngrok on your computer. Then, unzip the file with:

unzip ngrok-stable-linux-arm.zip

Finally, start Ngrok using the following command:

./ngrok 8080



Monitor Your Home from the Cloud

[ 136 ]

This will basically create a web URL that you can use to access your Pi on port 8080, 
which is precisely the port on which the streaming software is running. Once Ngrok 
is running, you should be able to see the URL you need inside a window:

You can now simply copy this URL and type it inside any web browser. You should 
then immediately be able to see the interface created by the streaming software:



Chapter 8

[ 137 ]

Now, simply click on Stream to see the live stream coming from the board:

Congratulations, you can now access your wireless security camera from anywhere 
in the world and monitor your home remotely!



Monitor Your Home from the Cloud

[ 138 ]

Summary
In this chapter, we learned how to use the IoT to monitor our homes remotely from 
anywhere in the world. We first learned how to log data in the cloud and visualize 
this data using two different IoT platforms. Then, at the end of the chapter,  
we learned how to visualize the live stream coming from a video camera from 
anywhere in the world.

There are of course many ways to improve the projects that we discussed in this 
chapter. You could, for example, create a web server that takes the live video  
streams from several video cameras and then use Ngrok to visualize all those  
live video streams at once. This will instantly give you a video security system,  
that you can use to monitor your home from anywhere in the world!

In the next chapter, we are going to continue diving into the Internet of Things,  
but this time to control devices inside your home.



[ 139 ]

Control Appliances from 
Anywhere

In this chapter, we are going to continue exploring the IoT field, and learn how we 
can use it for a smart home. In the previous chapter, we learned how to make our 
home send data to the cloud, using the Raspberry Pi Zero board. Here, we'll actually 
do the opposite; we are going to learn how to control appliances in your home from 
anywhere in the world.

We are going to start with a simple example, controlling a simple LED from 
anywhere in the world. Then, we'll see how to control lamps using the same 
principles. After that, we are going to use IFTTT again (as we did in Chapter 6, 
Sending Notifications using Raspberry Pi Zero) to build two exciting applications: a 
lamp that switches on when motion is detected and a cloud thermostat. Let's start!

Hardware and software requirements
As always, we are going to start with a list of required hardware and software 
components for the project.

For the devices to control, we'll use a simple LED with a 330 Ohm resistor and then 
the PowerSwitch Tail Kit that we already used in several chapters of this book.

For the sensors, which we will need at the end of the chapter, we'll use a simple 
DHT11 sensor, along with a 4.7k Ohm resistor. We'll also use a PIR motion sensor.



Control Appliances from Anywhere

[ 140 ]

Finally, you will need the usual breadboard and jumper wires.

The following is the list of components that you will need for this whole chapter, not 
including the Raspberry Pi Zero:

• LED (https://www.sparkfun.com/products/9590)
• 330 Ohm resistor (https://www.sparkfun.com/products/11507)
• PowerSwitch Tail Kit (https://www.adafruit.com/products/268)
• PIR motion sensor (https://www.sparkfun.com/products/13285)
• DHT11 sensor with 4.7k Ohm resistor (https://www.adafruit.com/

products/386)
• PIR motion sensor (https://www.adafruit.com/products/189)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

On the software side, you will just need to have Node.js installed on your Raspberry 
Pi Zero board.

Control a LED from anywhere in the 
world
For the first project of this chapter, we are simply going to learn how to control a 
simple LED from a cloud dashboard.

For this project, you will need a LED and a 330 Ohm resistor. For the connection 
of the components to the Pi, you can refer to Chapter 4, Control Appliances from 
the Raspberry Pi Zero of this book, in which you will learn how to connect those 
components. You need to connect the LED to GPIO14 of the Pi.

This is the final result:

https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
https://www.adafruit.com/products/268
https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/386
https://www.adafruit.com/products/189
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957


Chapter 9

[ 141 ]

Let's now see how to configure the board, so we can control it from the cloud. To do 
so, we'll use the aREST framework that we have already used several times in this 
book. The following is the complete code for this part:

// Required modules
var express = require('express');
var app = express();
var piREST = require('pi-arest')(app);

// Thing name
piREST.set_id('98t52d');
piREST.set_name('pi_zero_cloud');
piREST.set_mode('bcm');

// Connect to cloud.aREST.io
piREST.connect();

// Start server
var server = app.listen(80, function() {
    console.log('Listening on port %d', server.address().port);
});



Control Appliances from Anywhere

[ 142 ]

Of course, make sure that you modify the ID of the board inside the code, as it will 
identify your board on the aREST cloud server.

Then, either put this code inside a file or get the whole code from the GitHub 
repository of the book.

Then, inside a terminal, type:

sudo npm install pi-arest express

This will install the required modules for this section. Then, start the software using:

sudo node arest_control.js

You can then go to the following website and register:

http://dashboard.arest.io/

We'll basically use this site to build a cloud dashboard to control our LED. Once you 
create an account, create a new dashboard:

Inside this dashboard, create a new element by giving the ID of your Raspberry Pi 
that you set in the code earlier. I chose a 'Push' button as the type of the element  
and 14 as the pin to control.

Once you have created the element, this is what you should be able to see on  
the dashboard:

You can now test the push button of the dashboard: when you keep the button 
pressed ON, you should immediately be able to see the LED turning ON on your Pi. 
Note that this is purely done in the cloud, so you can now control your LED from 
anywhere in the world!

http://dashboard.arest.io/


Chapter 9

[ 143 ]

Creating several lamps from the cloud
In the second project of this chapter, we are going to apply what we learned earlier 
and control several lamps from the cloud using a single dashboard.

To actually assemble the project, I recommend checking Chapter 4, Control Appliances 
from the Raspberry Pi Zero where we saw how to connect the PowerSwitch Tail Kit 
to the Raspberry Pi Zero. You need to connect the PowerSwitch to GPIO14 of the 
Raspberry Pi board.

This is how one module looks like:

Now, configure each board with the exact same code as in the previous section 
and give a different ID to each board. I also recommend changing the name of the 
boards inside the code; for example, to know where you placed them in your home 
(bedroom, living room, and so on).



Control Appliances from Anywhere

[ 144 ]

Then, go back to the website where we created a cloud dashboard and create a  
new dashboard:

In there, create a new On/Off element for each lamp you want to control, on pin 14:

This is how your dashboard should look like at the end:

You can now try it: whenever you click on one of the On buttons, the lamp 
connected to this Raspberry Pi should immediately turn on.

Make a motion-activated lamp using 
IFTTT
In this section, we are now going to use what we learned in this chapter and combine 
it with what we already learned in the previous chapters about the web service 
IFTTT. We are going to use this knowledge to build a lamp that is automatically 
activated when motion is detected by a motion sensor.



Chapter 9

[ 145 ]

For this section, you will need two Raspberry Pi modules: one with a motion sensor 
and one connected to a lamp via the PowerSwitch tail. To learn how to assemble 
these modules, please refer to the previous chapters of the book.

This is the assembled Raspberry Pi Zero with a PIR motion sensor on GPIO18:



Control Appliances from Anywhere

[ 146 ]

We are first going to create the IFTTT recipes so you and the two boards can 
communicate. First, make sure that the Maker channel is activated on your  
IFTTT account:

Then, create a new recipe, with the Maker channel as the trigger:

For the event, enter motion_detected:



Chapter 9

[ 147 ]

Choose the Maker channel as the action channel:

For the action itself, choose Make a web request:



Control Appliances from Anywhere

[ 148 ]

We want to activate the lamp if motion is detected, enter the following URL as the 
action when this recipe is activated:

You can now save this recipe. Of course, we also want to switch the light off again 
when no motion is detected, so we need to create another recipe with this event:



Chapter 9

[ 149 ]

This action is the same as the previous one, but with a 0 at the end, meaning we are 
switching the light off:



Control Appliances from Anywhere

[ 150 ]

At the end, you should have both recipes active inside the dashboard:

Let's now see how to configure the boards. For the board connected to the 
PowerSwitch tail, you can use the same code that we used in the previous  
sections of this chapter.

For the motion sensor board, the code starts by including the required modules:

var request = require('request');
var gpio = require('rpi-gpio');

Then, we define the IFTTT, as well as the name of the two events we used in recipes:

var key = "key"
var eventOnName = 'motion_detected';
var eventOffName = 'no_motion';

After that, we define the pin on which the sensor is connected:

var motionSensorPin = 18;
var motionSensorState = false;

We create a main measurement loop in which we check the status of the sensor  
every second:

setInterval(function() {

  // Check sensor



Chapter 9

[ 151 ]

  gpio.setup(motionSensorPin, gpio.DIR_IN, checkSensor);

}, 1000);

If the state of the sensor changes, we send the right command to IFTTT:

function checkSensor() {
  gpio.read(motionSensorPin, function(err, value) {

      // If motion is detected
      if (value == true && motionSensorState == false) {

        // Send event
        alertIFTTT(eventOnName);

      }

      // No motion anymore
      if (value == false && motionSensorState == true) {

        // Send event
        alertIFTTT(eventOffName);

      }

      // Set status
      motionSensorState = value;
  });
}

Here is the detail of the function that sends the alert to IFTTT:

function alertIFTTT(eventName) {

  // Send alert to IFTTT
  console.log("Sending alert to IFTTT");
  var url = 'https://maker.ifttt.com/trigger/' + eventName + '/with/
key/' + key;
  request(url, function (error, response, body) {
    if (!error && response.statusCode == 200) {
      console.log("Alert sent to IFTTT");
    }
  });
}



Control Appliances from Anywhere

[ 152 ]

You can now grab all the code from the GitHub repository of the book and extract 
it in a folder on the Pi with the motion sensor. Then, inside a terminal, install the 
required modules with:

sudo npm install request rpi-gpio

Once that's done, start the software with:

sudo node motion_trigger.js

Also make sure that the aREST sketch is still running the other board. Then, simply 
pass your hand in front of the sensor; it should immediately light up the lamp that is 
connected to the other Raspberry Pi board.

Build an automated cloud thermostat
In the last section of this chapter, we are going to apply what we learned in  
the previous section, but this time to build a cloud thermostat that will work  
using IFTTT.

Apart from the Raspberry Pi Zero that will control an electrical heater via the 
PowerSwitch Tail, you will need another Raspberry Pi Zero with a DHT11 sensor 
that we have already used several times in this book. In order to assemble this 
module, I recommend checking for example the second chapter of this book.

Once you have your two modules assembled, go again to IFTTT and create a new 
recipe, using the Maker channel for the trigger and for the action channels.

For the trigger, enter the following event:

Of course, if the temperature is too low, it means that we want to activate the heater. 
We therefore need to send this command to the board that controls the heater:



Chapter 9

[ 153 ]

Once this recipe is created, create another for the temperature_high event:



Control Appliances from Anywhere

[ 154 ]

When the temperature is too high, we automatically switch off the heater:

At the end, you should have two new recipes in your dashboard:

For the board that controls the electrical heater, just use the same software as before.



Chapter 9

[ 155 ]

For the board with the DHT11 sensor, we first need to include the required modules:

var request = require('request');
var sensorLib = require('node-dht-sensor');

Then, we define the key for the Maker channel and the name of the two events:

var key = "key";
var eventNameLow = 'temperature_low';
var eventNameHigh = 'temperature_high';

We also declare on which pin the DHT11 sensor is connected to:

var sensorPin = 18;

Then, we set a target (the temperature we want to reach) and a tolerance:

var target = 25;
var tolerance = 1;

After that, we create the main measurement loop, in which we check for the right 
event to send to IFTTT:

var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, sensorPin);
    },
    read: function () {

        // Read
        var readout = sensorLib.read();
        temperature = readout.temperature.toFixed(2);
        console.log('Current temperature: ' + temperature);

          if (temperature < target - tolerance) {

            // Send event
            alertIFTTT(temperature_low);

          }

          if (temperature > target + tolerance) {

            // Send event
            alertIFTTT(temperature_high);



Control Appliances from Anywhere

[ 156 ]

          }

        // Repeat
        setTimeout(function () {
            sensor.read();
        }, 2000);
    }
};

We also end the sketch by initializing the sensor:

// Init sensor
if (sensor.initialize()) {
    sensor.read();
} else {
    console.warn('Failed to initialize sensor');
}

Here are the details of the function that we use to make a request:

// Make request
function alertIFTTT(eventName) {

  // Send alert to IFTTT
  console.log("Sending alert to IFTTT");
  var url = 'https://maker.ifttt.com/trigger/' + eventName + '/with/
key/' + key;
  request(url, function (error, response, body) {
    if (!error && response.statusCode == 200) {
      console.log("Alert sent to IFTTT");
    }
  });
}

It's now time to test the thermostat project! Simply get all the code from the GitHub 
repository of the project and then type:

sudo npm install node-dht-sensor request

Once that's done, start the software with:

sudo node temperature_trigger.js

You should now be able to see that the Raspberry Pi, with the electrical heater 
control, will automatically react based on the temperature, even if both boards  
are not in the same Wi-Fi network!



Chapter 9

[ 157 ]

Summary
In this chapter, we continued to explore the field of the Internet of Things and we 
used it to control our smart home remotely. We first saw how to control devices 
remotely, like simple LEDs and lamps. Then, we learned how to combine what  
we learned with IFTTT to create more complex projects, for example making a  
cloud thermostat.

You can of course improve what you learned in this chapter. For example, you can 
combine what you learned in this chapter and the previous chapter to create cloud 
dashboards from where you can both monitor your devices and control other  
devices remotely.

In the next chapter, we are going to use everything that we learned in this book to 
create a complete home automation system based on the Raspberry Pi Zero.





[ 159 ]

Building a Home Automation 
System with Raspberry Pi 

Zero Boards
As this is the final chapter of this book, we are going to integrate everything that 
we learned in the book to build a complete home automation system based on the 
Raspberry Pi Zero. We are first going to see how to assemble and configure several 
modules based on the Raspberry Pi Zero boards, and then learn how to create a 
server that will communicate with the boards. Note that this server will be able to 
run on your own computer, and also on a Raspberry Pi Zero board.

We will then learn how to define behaviors inside the code, for example to send 
you an alert if motion is detected. After that, we are going to learn how to create 
advanced behavior inside the server, and finally, we'll see how to access your  
home automation system from anywhere in the world. Let's start!

Hardware and software requirements
As always, we are going to start with a list of required hardware and software 
components for the project. We are going to use four modules in total:  
a sensor module, an appliance control module, a motion sensor module,  
and a camera module.

Of course, you will need one Raspberry Pi Zero board for each module you use, 
along with supporting components, such as SD cards and power supplies. If you 
plan to run the central interface on a Raspberry Pi Zero as well, you will need an 
additional Pi Zero board.



Building a Home Automation System with Raspberry Pi Zero Boards

[ 160 ]

For the sensors module, we'll use a simple DHT11 sensor, along with a  
4.7k Ohm resistor.

For the appliance control module, we'll use the PowerSwitch Tail Kit that we already 
used in several chapters of this book.

For the motion sensor module, we'll use a simple PIR motion sensor.

For the camera module, we are going to use the C270 HD camera from Logitech. 
However, you can use any USB camera here.

You will also need the usual breadboard and jumper wires.

This is the list of components that you will need for this whole chapter, not including 
the Raspberry Pi Zero:

• LED (https://www.sparkfun.com/products/9590)
• 330 Ohm resistor (https://www.sparkfun.com/products/11507)
• PowerSwitch Tail Kit (https://www.adafruit.com/products/268)
• PIR motion sensor (https://www.sparkfun.com/products/13285)
• DHT11 sensor with 4.7k Ohm resistor (https://www.adafruit.com/

products/386)
• PIR motion sensor (https://www.adafruit.com/products/189)
• Logitech C270 camera (http://www.logitech.com/en-us/product/hd-

webcam-c270)
• Breadboard (https://www.adafruit.com/products/64)
• Jumper wires (https://www.adafruit.com/products/1957)

On the software side, you just need to have Node.js installed on your Raspberry Pi 
Zero boards.

Building all the modules
In the first part of this chapter, we are going to see how to build the modules that we 
will use in our home automation system. As we have already seen how to build all 
these modules in the book, I will simply point to the correct chapters to build all  
the modules.

The first module you need to build is the sensor module, which is with the DHT11 
sensor. To learn how to build this module, please refer to Chapter 2, Measure Data 
Using Your Raspberry Pi Zero Board, of the book.

https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
https://www.adafruit.com/products/268
https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/386
https://www.adafruit.com/products/189
http://www.logitech.com/en-us/product/hd-webcam-c270
http://www.logitech.com/en-us/product/hd-webcam-c270
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957


Chapter 10

[ 161 ]

This is what you should get at the end:

For the module that will be used to control appliances in your home, such as lamps, 
please refer to Chapter 3, Building a Smart Home Thermostat, to know how to assemble  
the module.

This is what you should get at the end:



Building a Home Automation System with Raspberry Pi Zero Boards

[ 162 ]

For the motion sensor module, which is basically composed of a PIR motion sensor 
connected to the Pi, you can refer to Chapter 6, Sending Notifications using Raspberry Pi 
Zero. You will get the following outcome at the end:

Finally, for the camera module, simply connect the USB camera to the Raspberry Pi 
zero board using a USB hub. This is the result:



Chapter 10

[ 163 ]

Once you have all those modules, connect them to a source of power and make sure 
that the latest version of Raspbian is installed on them (along with Node.js), and also 
make sure they are accessible though Wi-Fi.

Configuring the modules
We are now going to configure each of the modules of our home automation system, 
so we can access them remotely later. The goal here is to configure the modules to 
respond to commands coming from our central server and to not act as independent 
units, as shown in earlier chapters.

Let's start with the sensors module; this is the complete code for this module:

// Modules
var express = require('express');
var sensorLib = require('node-dht-sensor');

// Express app
var app = express();

// aREST
var piREST = require('pi-arest')(app);
piREST.set_id('4g0d7f');
piREST.set_name('sensor_module');
piREST.set_mode('bcm');

// Start server
app.listen(3000, function () {
  console.log('Raspberry Pi Zero motion sensor started!');
});

// Sensor loop
var sensor = {
    initialize: function () {
        return sensorLib.initialize(11, 4);
    },
    read: function () {
        var readout = sensorLib.read();
        console.log('Temperature: ' + readout.temperature.toFixed(2) + 
'C, ' +
            'humidity: ' + readout.humidity.toFixed(2) + '%');
        setTimeout(function () {
            sensor.read();
        }, 2000);



Building a Home Automation System with Raspberry Pi Zero Boards

[ 164 ]

    }
};

if (sensor.initialize()) {
    sensor.read();
} else {
    console.warn('Failed to initialize sensor');
}

As you can see, we are once again using the aREST framework to get access to our 
Raspberry Pi Zero data. Here, we expose two variables to the API that contain the 
measurements done by the sensor.

You can now grab this code from the GitHub repository of the book or simply grab 
the code and paste it inside a file.

Then, using a terminal from the folder where the code files are, type the following:

npm install node-dht-sensor

Once this module is installed, install the rest of the modules with the  
following command:

sudo npm install pi-arest

Now, start the project with this command:

sudo node sensor_module.js

Note that you will need the IP addresses of all the Raspberry Pi later, so it is a good 
time to actually check the IP address of each Raspberry Pi board you are configuring. 
To get the IP address of a Pi, simply type the following command inside a terminal:

ifconfig

Let's now configure the module that will be used to control the appliances remotely. 
Here is the complete code for this part:

// Modules
var express = require('express');

// Express app
var app = express();

// Use public directory
app.use(express.static('public'));

// aREST



Chapter 10

[ 165 ]

var piREST = require('pi-arest')(app);
piREST.set_id('34f5eQ');
piREST.set_name('lamp_module');
piREST.set_mode('bcm');

// Start server
app.listen(3000, function () {
  console.log('Raspberry Pi Zero lamp module started!');
});

You basically just need to change the name of the module inside the code if you 
wish. Then, grab the code from the GitHub repository of the book and type the 
following command:

sudo npm install pi-arest express

After that, start the code with this command:

sudo node lamp_module.js

We are now going to see how to configure the module connected to the PIR motion 
sensor. For this, here is the complete code:

// Modules
var express = require('express');

// Express app
var app = express();

// aREST
var piREST = require('pi-arest')(app);
piREST.set_id('47g40f');
piREST.set_name('motion_module');
piREST.set_mode('bcm');

// Start server
app.listen(3000, function () {
  console.log('Raspberry Pi Zero motion sensor started!');
});

Again, grab the code from the GitHub repository of the book and type  
this command:

sudo npm install pi-arest express



Building a Home Automation System with Raspberry Pi Zero Boards

[ 166 ]

Then, start the software with this command:

sudo node motion_module.js

Finally, let's see how to configure the module with the USB camera. You first need to 
clone the following GitHub repository using a terminal:

git clone https://github.com/jacksonliam/mjpg-streamer

Then, install the required packages:

sudo apt-get install cmake libjpeg62-dev

Once that's done, navigate to the mjpg-streamer software folder and type this:

sudo make clean all

When the compilation of the software is done, type the following:

export LD_LIBRARY_PATH=.

Finally, start the software with the following command:

./mjpg_streamer -i "./input_uvc.so" -o "./output_http.so -w ./www"

You should be able to see a lot of text output inside the terminal, meaning that the 
streaming software is active. Make sure to not stop this software, as we'll need to 
access the stream remotely from our central server.

Integrating the modules into a single 
interface
Now that our modules are up and running, we are going to learn how to integrate 
everything into a single interface, so you will be able to run it on your computer or 
on another Raspberry Pi. You will then be able to control and monitor your smart 
home from a single interface.

We will first configure the server that will allow us to connect all the modules that 
we configured earlier. Then, we'll build an interface on top of that. 

The code for the server starts by importing the required modules:

// Modules
var express = require('express');
var request = require('request');

// Express app
var app = express();



Chapter 10

[ 167 ]

After that, this is where we'll define the IP addresses of the different modules in our 
home automation system:

// Raspberry Pi boards IP addresses
var motionSensorPi = "192.168.0.101:3000";
var sensorPi = "192.168.0.102:3000"
var lampPi = "192.168.0.103:3000"

We also need to define the pins on which the lamp and the motion sensor  
are connected:

// Pins
var lampPin = 12;
var motionSensorPin = 17;

Of course, if you connect the components to different pins, you will need to change 
that here.

Then, we can declare the folder in which we will store the files for the interface,  
as well as the main route of the application that will serve the interface:

// Use public directory
app.use(express.static('public'));

// Routes
app.get('/', function (req, res) {

  res.sendfile(__dirname + '/public/interface.html');

});

We then create a route that will send us back the state of the motion sensor,  
by calling the required command on the motion sensor module:

app.get('/motion', function (req, res) {

  request("http://" + motionSensorPi + "/digital/" + motionSensorPin,
    function (error, response, body) {

      // Answer
      answer = {
        status: body.return_value
      };
      res.json(answer);

  });

});



Building a Home Automation System with Raspberry Pi Zero Boards

[ 168 ]

We also define a route that will give us the temperature measured by the DHT11 
sensor, by calling the corresponding Raspberry Pi:

app.get('/temperature', function (req, res) {

  request("http://" + sensorPi + "/temperature",
    function (error, response, body) {

      // Answer
      answer = {
        temperature: body.temperature
      };
      res.json(answer);

  });

});

We do the same for humidity:

app.get('/humidity', function (req, res) {

  request("http://" + sensorPi + "/humidity",
    function (error, response, body) {

      // Answer
      answer = {
        humidity: body.humidity
      };
      res.json(answer);

  });

});

Finally, we define a route to turn on the module that control appliances:

app.get('/on', function (req, res) {

  request("http://" + lampPi + "/digital/" + lampPin + '/1');

  // Answer
  answer = {



Chapter 10

[ 169 ]

    status: 1
  };
  res.json(answer);

});

We also define a similar route to turn the appliance off again:

app.get('/off', function (req, res) {

  request("http://" + lampPi + "/digital/" + lampPin + '/0');

  // Answer
  answer = {
    status: 0
  };
  res.json(answer);

});

We start the server at the end of the file with:

// Start server
app.listen(3000, function () {
  console.log('Home automation system started');
});

We now have a server that we can use to control & monitor your home using all the 
modules that we deployed. However, we will now create an interface on top of this 
server that will allow us to easily monitor & control the whole system.

First, let's see build the graphical interface itself. It starts by creating a set of buttons 
to switch the appliance on or off:

<div class='row'>

    <div class='col-md-1'></div>
    <div class='col-md-2'>Lamp</div>
    <div class='col-md-3'>
      <button id='on' class='btn btn-block btn-primary'>On</button>
    </div>
    <div class='col-md-3'>
      <button id='off' class='btn btn-block btn-warning'>Off</button>
    </div>

  </div>



Building a Home Automation System with Raspberry Pi Zero Boards

[ 170 ]

After that, we create two indicators for the sensor module:

  <div class='row'>

    <div class='col-md-1'></div>
    <div class='col-md-2'>Temperature</div>
    <div class='col-md-3' id='temperature-status'></div>
    <div class='col-md-2'>Humidity</div>
    <div class='col-md-3' id='humidity-status'></div>

  </div>

We also create an indicator for the motion sensor:

  <div class='row'>

    <div class='col-md-1'></div>
    <div class='col-md-2'>Motion Sensor</div>
    <div class='col-md-3' id='motion-status'></div>

  </div>

Finally, we create a field for the stream from the camera:

  <div class='row voffset50'>
    <div class='col-md-1'></div>
    <div class='col-md-2'>Camera</div>
    <div class='col-md-7'>
      <div id="webcam">
        <noscript>
          <img src="http://192.168.0.105:8080/?action=snapshot" />
        </noscript>
      </div>
    </div>
  </div>

Let's now see the script.js file that will basically make the link between the 
interface and the server. It starts by linking the buttons to the correct routes on  
the server:

$( "#on" ).click(function() {

    // Set lamp ON
    $.get('/on');

  });



Chapter 10

[ 171 ]

  $( "#off" ).click(function() {

    // Set lamp OFF
    $.get('/off');

  });

Then, we create a loop that will regularly update data coming from the  
motion sensor:

  // Indicators
  setInterval(function () {

    // Current
    $.get('/motion', function(data) {

      if (data.status == true) {
        $( "#motion-status" ).text("No Motion");
      }
      else {
        $( "#motion-status" ).text("Motion Detected");
      }

    });

  }, 2000);

We also create another loop to update the temperature:

  setInterval(function () {

  // Temperature
    $.get('/temperature', function(data) {

      $( "#temperature-status" ).text(data.temperature);
   
    });

  }, 2000);

And finally, we do the same for humidity:

  setInterval(function () {

    // Temperature
    $.get('/humidity', function(data) {



Building a Home Automation System with Raspberry Pi Zero Boards

[ 172 ]

      $( "#humidity-status" ).text(data.humidity);
   
    });

 }, 2000);

Note that I also added some additional piece of required code inside the interface 
and as I only highlighted the most important parts here, I recommend getting the 
whole code from the GitHub repository of the book.

It's finally time to test the interface! Put all the code inside a folder on your computer 
or on another Raspberry Pi and type the following command:

sudo npm install request express

Once all the modules are installed, start the server with this command:

sudo node interface.js

Now, simply navigate to the IP address of your computer (via localhost) or to Pi on 
which you started this server. For example:

http://localhost:3000/

This is what you should see:



Chapter 10

[ 173 ]

You can now try the interface; for example, using the buttons to control an appliance 
or by passing your hand in front of the motion sensor you should immediately 
see the result inside the interface. You now have a central interface for your home 
automation system that you can use to control your smart home!

Automating your home
Now that we have our central server running and you can use it to control & monitor 
your home from a single interface, we can actually define some behaviors inside the 
server in order to create some automation within your smart home.

As an example, we are going to automatically switch on the lamp when motion is 
detected by the sensor. You can imagine the scenario in which the appliance control 
module is connected to a lamp in your hallway and that you want it to automatically 
switch on whenever a movement is detected by the motion sensor.

For that, here is the code you need to add into the server code:

setInterval(function() {

  // Check sensor
  request("http://" + motionSensorPi + "/digital/" + motionSensorPin,
    function (error, response, body) {

      // If motion was detected
      if (body.return_value == true) {

        request("http://" + lampPi + "/digital/" + lampPin + '/1');

      }
      else if {

        request("http://" + lampPi + "/digital/" + lampPin + '/0');

      }

  });

}, 1000);

Let's now see what this code does exactly. We basically check the state of the motion 
sensor every second and then control the lamp accordingly. Note that every request 
is taking the correct IP address of the Raspberry Pi board to control.



Building a Home Automation System with Raspberry Pi Zero Boards

[ 174 ]

You can now use the same approach to build more complex behaviors into your 
home, for example by linking the measurements made by the sensor module to an 
appliance or an electrical heater, which we already saw earlier in the book.

Accessing your home automation system 
from anywhere
In the last section of this chapter, we are going to learn how you can access the 
interface of your home automation system from anywhere in the world. This way, 
you will be able to monitor and even to control your home when you are not around.

For that, we are going to use a tool called Ngrok, which will allow us to access the 
server running on our Raspberry Pi or computer from anywhere in the world.

If like me you deployed the server on another Raspberry Pi (as my computer is 
switched off when I am away from home), type the following command:

wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-arm.zip

This will download Ngrok on your computer. Then, unzip the file with  
this command:

unzip ngrok-stable-linux-arm.zip

Finally, start Ngrok using the following command:

./ngrok 3000

This will basically create a web tunnel to the web server that is running on port  
3000. Inside the window that appeared on your Raspberry Pi, you should now be 
able to see the URL that you can use to access your Raspberry Pi from outside of 
your Wi-Fi network. 

You can now visit this URL and you should be able to see the exact same interface  
as before:



Chapter 10

[ 175 ]

You can use this URL to access your home automation interface from anywhere in 
the world!

Summary
In this final chapter, we used everything we learned in the book to build a complete 
home automation system based on the Raspberry Pi. We used several of those boards 
and connected each one of it to a different type of components and then interfaced all 
those boards with a common interface running on your computer or on another Pi. 

We also learned how to create more complex behaviors and use this central server to 
make the Raspberry Pi modules communicate with each other. Finally, we also saw 
how to access your home automation system from anywhere in the world.

You now have all the tools to transform your home into a smart home using the 
Raspberry Pi Zero board. I hope that this book allowed you to understand how to 
use this small, cheap but incredibly powerful board to automate your home. I now 
invite you to experiment with all the projects we saw in the book and I can't wait to 
see what you are going to do with it in your own home!





[ 177 ]

Index
A
alarm module

creating  106-108
aREST framework  105

reference link  133

C
cloud dashboard

creating  130-133
cloud thermostat

building  152-156
component

testing  34-37

D
data

monitoring, from cloud dashboard  122-129
reading, from DHT sensor  21, 22
remotely, accessing  24, 25
sensor, storing  22-24
stored, plotting  26-29

DC motor
reference link  58
speed, controlling  54-57

DHT11 sensor
reference link  18

Dweet.io  123

F
Freeboard.io

URL  125

H
HighCharts  26
home appliances

controlling  58-62
reference link  62

home automation system
accessing, from anywhere  174
components  160
graphical interface, building  169
graphical interface, testing  172
hardware requisites  159
implementing  173
modules, building  160-163
modules, configuring  163-166
modules, integrating into single interface  

166-173
software requisites  159

I
IFTTT

URL  82
used, for creating motion-activated lamp  

144-152



[ 178 ]

interface
reference link  43

Internet of Things (IoT)  81

L
lamps

creating, from cloud dashboard  143, 144
LED

componenets  140
controlling  49-54
controlling, from cloud dashboard  140-142
hardware requisities  139, 140
references  53
software requisities  139, 140

M
modular security system

components  104
creating  114-120
hardware requisities  103, 104
software requisities  103, 104

motion-activated lamp
creating, IFTTT used  144-152

motion sensor
creating, to send text messages  83-91

motion sensor module
building, Raspberry Pi Zero used  104- 106

N
Ngrok  135
Node.js

installing  14

P
power consumption

logging  78-80

R
Raspberry Pi camera

reference link  114
Raspberry Pi Zero

about  1, 2

components  3-7, 82
components, assembling  8, 9
configuring, remote access used  10-14
hardware requisites  18, 47, 48, 81, 82
software requisites  18, 47-82
used, for building motion sensor  104-106
hardware configuration  18-20
software configuration  20

Raspbian
installing  9, 10

Raspbian image
URL, for downloading  9
URL, for installation  9

remote access
used, for configuring Raspberry  

Pi Zero  10-14

S
SATA measurement

receiving, through push 
notifications  97-101

sensor_test.js  21
URL  21

smart home
components  122
hardware requisities  121, 122
software requisities  121, 122

smart plug
components  67
configuring  71-74
hardware configuration  67-70
hardware requisities  66, 67
interface, creating  74-78
software requisities  66, 67

sparkline  130
System-on-a-Chip (SoC)  2

T
temperature alerts

sending, through email  92-96
thermostat

building  37- 41
components  32



[ 179 ]

hardware configuration  33, 34
hardware requisites  31-33
remotely, controlling  41-45
software requisites  31-33

W
wireless security camera

accessing  134-137
building  108-114


	Cover
	Copyright
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Configuring Your 
Raspberry Pi Zero Board
	Introducing the Raspberry Pi Zero board
	Required components for the Zero board
	Assembling the different components
	Installing Raspbian
	Configuring the board for remote access
	Installing Node.js
	Summary

	Chapter 2: Measure Data Using Your Raspberry Pi Zero Board
	Hardware and software requirements
	Hardware configuration
	Software configuration

	Reading data from the sensor
	Storing sensor data
	Accessing the data remotely
	Plotting the stored data
	Summary

	Chapter 3: Building a Smart Home Thermostat
	Hardware and software requirements
	Hardware configuration

	Testing individual components
	Building the thermostat
	Controlling the thermostat remotely
	Summary

	Chapter 4: Controlling Appliances from
the Raspberry Pi Zero
	Hardware and software requirements
	Controling LEDs
	Controlling the speed of a DC motor
	Controlling home appliances
	Summary

	Chapter 5: Making a Smart Plug with the Raspberry Pi Zero
	Hardware and software requirements
	Hardware configuration
	Configuring the smart plug
	Creating an interface for the smart plug
	Logging your energy consumption over time
	Summary

	Chapter 6: Sending Notifications using Raspberry Pi Zero
	Hardware and software requirements
	Making a motion sensor that sends text messages
	Sending temperature alerts through email
	Receiving measurement SATA through push notifications
	Summary

	Chapter 7: Use the Raspberry Pi Zero to Build a Security System
	Hardware and software requirements
	Building a motion sensor with the Pi Zero
	Making a simple alarm module
	Building a wireless security camera
	Creating a security system
	Summary

	Chapter 8: Monitor Your Home 
from the Cloud
	Hardware and software requirements
	Monitoring data from a cloud dashboard
	Creating a cloud dashboard for your devices
	Accessing your security camera from anywhere
	Summary

	Chapter 9: Control Appliances from Anywhere
	Hardware and software requirements
	Control a LED from anywhere in the world
	Creating several lamps from the cloud
	Make a motion-activated lamp using IFTTT
	Build an automated cloud thermostat

	Chapter 10: Build a Home Automation System with Raspberry Pi Zero Boards
	Hardware and software requirements
	Building all the modules
	Configuring the modules
	Integrating the modules into a single interface
	Automating your home
	Accessing your home automation system from anywhere
	Summary

	Index



