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Foreword

As a researcher in a number of different domains over my career, all of which have
benefited from the development in the areas of distributed computing, it is clear
that we will continue on this journey of discovery and development of new tools
and services for some time to come. We moved away from historic paradigms,
such as the mainframe, with the rise of the personal computer and from then onto
the increasingly powerful workstation, generic high-performance computing, grid
computing, and now “the cloud.” One disadvantage of these changes though is that
proponents of these new architectures often sell the newest paradigm as being better
in nearly all ways than those that have proceeded it and therefore it should replace
the systems following the older paradigms, moving users onto newer, bigger, better
shinier systems. This is plainly not the case once hype has been ignored and as such
the content of this book should be considered as aiming to educate the reader in
terms of making sure that the right tool is always used for the right job.

I was struck when reading the book by the diversity of target audience within the
research field, making sure that communities of practice, where the use of cloud
will become ever more valuable are covered, with relevant examples is a great
feature. I would though also make sure that one further cohort reads this book,
the project PI or senior professor for whom this book should be required reading.
Alongside more traditional responsibilities they are also now the ones who are under
legal obligations to comply with requirements on open data and reproducibility,
something that the migration of services and data storage to the cloud is extremely
suitable for. They should also ensure that they understand the benefits and almost
more importantly the challenges that a cloud-first strategy can bring.

When working with Juan and Diego prior to the development of this book,
we spent a significant amount of time working through different models of the
utilization of Infrastructure as a Service cloud computing for the environmental
sciences, in particular climate science. Therefore, a large number of points made
by this book have been developed through practical experience of the authors,
not through desk-based research. Along with this with my background in the
development of pan European Federated Cloud services for research, I can clearly
see how lessons learnt, sometimes in very hard ways, in how researchers should be
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vi Foreword

thinking about using the cloud could have been found quicker and more easily if
such a text as this existed, or that we could have shared with members of the user
community. As such I also see this book being of great use for those that will in time
become users not only of large-scale public clouds to support their research but also
in the usage of the European Open Science Cloud as it becomes a more and more
useful tool to European Research.

I would finally highlight how the authors already say that in the fast-moving
and dynamic world of cloud computing that things get out of date very quickly.
Examples of this of course abound, though a key highlight is where the different
deployment models of cloud computing mean that it is not always the same cloud
that two different researchers talk about when they describe their method of use of
“cloud.” Therefore, making sure that everyone understands the underlying model
of cloud computing as is done early within the book is essential. So to conclude I
would say that readers should, once they think they understand how they can use
cloud computing within their research, stop, read, and then think about how they
want to move forward with the cloud, making sure that they follow sound scientific
and IT principles in how they deploy services within the cloud, testing all the time
and recognize that cloud is not a magic bullet, but in the longer term it can make
things much, much easier if their deployments are well designed.

Associate Professor and Associate Prof David Wallom
Director – Innovation Oxford Research
Centre University of Oxford
Oxford, UK



Preface

We have written this book for scientists, engineers, or anyone who wants to
approach cloud computing, simply to know more about it or if they are considering
or evaluating it as an alternative or complementary solution for their computing
needs. Additionally, this book can be useful for IT professionals, such as Solutions
Architects, who want to learn about the current and future needs of the scientific
community and how they can be satisfied using cloud technologies, enabling them
to offer more suitable proposals to their customers. Therefore, this text can provide
a bridge between user and provider perspectives.

Moreover, this book attempts to provide a broad view of the current status of
cloud computing and to serve as an introductory text for graduate, postgraduate,
and Ph.D. students across every discipline, providing insight into potential uses and
how it can help to develop projects and future work.

Ourense, Spain Juan A. Añel
Ourense, Spain Diego P. Montes
Ourense, Spain Javier Rodeiro Iglesias
November 2019
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Chapter 1
Why This Book?

Since the advent of computers, scientific research has intensively used and has
continuously pushed their development. Computers are used for research in very
different ways, with high-performance computing (HPC) and data storage two of
the most demanding uses. Such uses have always required massive on-site hardware;
however, with the advances in the cloud computing paradigm over the past decade,
and more recently serverless computing, this requirement no longer exists. Indeed
a top500.org report [1] shows that for the period 2016–2017, the HPC market grew
by approximately 1.6%; meanwhile, for the same period, use of cloud HPC services
increased from 7 to 44%. The rationale for this difference appears to be that HPC
as a Service (HPCaaS) is being used to complement resources from on-site HPC
infrastructures when such resources are not sufficient to satisfy demand. In fact, this
is one of the most appealing features driving the expansion of cloud computing in
research: to satisfy the demand for computing resources for punctual projects.

© Springer Nature Switzerland AG 2020
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2 1 Why This Book?

Cloud computing has been a mainstream technology for over 10 years and is
widely used and very well known in IT departments. The applications, solutions,
and implementations of cloud computing are being widely explored. However, it is
not so common that users are fully aware of its potential, uses, internals, or market
conditions. That is, people have become familiar with the main characteristics of a
computer, laptop, workstation, etc., and have basic knowledge on what they can do
with such technology and how to choose one to purchase according to memory or
processors; however, this is not yet the case for cloud computing. Many people
have not adapted to this new paradigm, driving a knowledge gap between the
currently prevalent technology and the technology familiar to users. Regardless, a
large percentage of the population is using cloud computing for daily work or for
leisure via an application on a smartphone. This is also true among those working in
scientific disciplines, conducting research, or acting as lab leaders, research center
directors, or decision makers. These people could obtain many advantages by at
least partially adopting cloud computing, as will be demonstrated later in this book
through case studies on its application. This applies to almost every discipline
of science. It is also the case for decision makers who might have to consider
transitioning IT infrastructure to cloud computing and want to know more about
the implications. A report from 2016 by The Economist Intelligence Unit discussed
how lack of knowledge and trust are barriers for the adoption of cloud computing
[2]. Although these numbers have probably improved, a recent survey by Eurostat
found that only 28% of businesses in Europe use cloud computing and that broader
adoption is expected in the future [3].

A more recent concept is serverless computing, which is in some ways an
evolution of cloud computing, that attempts to increase the level of abstraction for
users so that they need to be less concerned about the computational infrastructure
they use.

From the perspective of research funding bodies, both the public and private have
studied and applied cloud computing solutions for the infrastructure and projects
that they fund. This can be achieved in various ways, for example, by deploying
cloud infrastructure using publicly owned HPC centers or granting vouchers to
use cloud computing resources from commercial providers instead of granting
computing time in public HPC facilities.

Another idea behind the broader use and adoption of cloud computing is that it
presents great possibilities to democratize the development of scientific research,
as in-house HPC facilities no longer must be built and maintained. This advantage
is especially important for funding bodies, researchers, and laboratories that do not
have access to such facilities and those that have obtained funding for a specific
time-boxed project and do not want or need to invest the money to buy and maintain
hardware that will not be used in the future or will become deprecated. This
development has great potential as it eliminates barriers to research in the most
disadvantaged countries and regions of the planet, that is, those in which the R&D
infrastructure is underdeveloped.

A very important issue is the fact that cloud computing has the potential to
be combined with other technologies such as big data and machine learning to
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enhance scientific productivity and research advancement. Integration with these
technologies takes advantage of the potential combination of features such as data
storage or running models in cloud systems. Such integration enables direct access
to complete solutions already implemented by the vendor and adapted entirely to
the cloud computing environment, thereby removing part of the technical burden
and potential problems when adapting or configuring services. This process makes
it straightforward to perform data mining analysis on research data stored in the
cloud, creating a great potential to obtain new and unexpected results and advances.
When these techniques are combined effectively, the approach is called “cloud data
mining” [4].

Another benefit of the combination of all these technologies is that it provides a
way to achieve a “zero download” scenario, solving one of the existing problems
in making research data available: an excessive number and size of download
requests that drives the need for massive local storage resources. For some scientists,
laboratories, and fields of research, this approach represents an almost complete
cultural change, from downloading data to compute results locally to performing
computations on data in the cloud and downloading only the final results.

Finally, from the perspective of the job market, job offers in the field of lead or
director of scientific computing reflect the existing movement to cloud computing,
with specific requests that applicants in these roles have knowledge to manage
private and public cloud infrastructure. At this point, it is necessary for those
working in fields of science and research to obtain a quick and complete view of
the ecosystem of cloud computing, the challenges and opportunities that it offers
to enhance scientific research, the efficiency in expenditure and environmental
footprint.

Therefore, this book is intended to address these issues, to fill the gaps here
described, and to provide elements to better assess what benefits can be achieved
by migrating to cloud computing. If you are a research manager heading a research
center, a scientist using computing resources with superficial or no knowledge on
cloud computing and serverless technologies, a member of the IT department of a
laboratory or a seller of IT technologies, we hope that this book provides a brief and
useful tool.
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Chapter 2
Why the Cloud?

2.1 Introduction

The reasons for using cloud computing resources differ among users. In some
ways, the use of cloud computing depends on whether the intended use is for
high-performance computing (HPCaaS), data storage or simply to host responsive
web services (Infrastructure as a Service (IaaS)) or to perform less demanding
tasks such as organizing research activity (email, code, laboratory task organization
systems, etc.). In all these cases, cloud computing can provide advantages such as
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the possibility of needing smaller and less powerful computers and lower costs in
terms of premises for daily laboratory work. Using a service provided by a vendor
also has advantages in that you or the IT staff can focus on working on advancing
research projects (coding, improving computational efficiency of your daily work,
etc.) instead of spending the time on solving hardware maintenance problems.

Vendors promote the use of cloud computing for research, claiming advantages
such as quick access to resources (that is, cloud computing provides access in
minutes to something that could take weeks: to order new hardware, receive it,
install software and run your experiments), lower costs (as you pay only for what
you actually use instead of having your computers idle), and flexibility in the
resources that you contract through adaptation of your project to the amount of
money that you have available. An example of the last point is running your
experiments only when the cost of doing so is below a threshold that you have
previously established or, when you are in a rush because of a hard deadline, having
the possibility of running unlimited experiments simultaneously and choosing
computers with greater performance. An additional point is computer security,
which is usually claimed by cloud computing vendors to be of the highest level and
for most laboratories is probably better than what they can achieve with in-house
staff, as having IT staff specialized in security is not standard.

One more point that supports the adoption of cloud computing in research is
enhancing scientific collaboration, that is, facilitating collaborative research and
innovation. If you have tools, models, or data that a colleague in other part of the
world wants to use, you do not need to send anything and wait for long data transfers,
etc. A good use of cloud computing services would enable you to simply share a
copy, and the other colleague would cover any cost associated with their work.

That is, you can stop caring about payments for physical support for the data
(drives, etc.), delivery fees or border controls and taxes.

Another issue is the potential time saving that cloud computing offers to the final
user who does not need to be concerned about software updates, compatibility, or
security patches. All this information is transparent to you, with the advantage, for
example, of having available at any moment several versions of the same software
so you can use the one that best fits to your needs for each case.

2.2 Requirements and Needs

This chapter is oriented to a non-technological user and tries to show typical
examples or common strategies that such a user can find via an Internet search on
cloud computing. We will assume the main elements necessary for working on the
cloud, such as having a good Internet connection with the necessary bandwidth and
having a personal computer with sufficient power to run all the services that may be
required from the cloud. These two elements are mandatory by definition to access
services and products on remote servers or infrastructure.
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For these examples, Sasha is a person that we could meet anywhere in the
morning while walking in the spring sun. Sasha could have various occupations, and
we are going to attempt to illustrate how cloud computing can help Sasha to achieve
the goals of these occupations. The specific scenarios considered are as follows:

• Sasha has a small business or is self-employed and works from home.
• Sasha has a business with employers and has many costumers or providers who

need to perform multiples operations a day.
• Sasha manages a research laboratory and works with other researchers.
• Sasha has an idea for a service that could bill to costumers.
• Sasha needs mobility.

2.2.1 Sasha in Their House or with a Self-employed Business

Let us assume that you are Sasha, a professional who works from home. In your
daily work, you develop computer applications for others, write source code and
technical records for clients, manage many documents and draft versions, and have
frequent conversations with providers and clients.

Sasha could build a system for work at home: a fiber Internet connection, a server,
a storage service through NAS, a Git server to maintain projects and draft versions,
a tool for videoconferencing, programming backup, etc. However, Sasha only has
time for their job and cannot manage and support the system. Additionally, Sasha
currently does not have the money to purchase all the technology necessary to fulfill
the needs described. Moreover, Sasha is not an IT professional and simply wants to
focus on doing the job (Tables 2.1, 2.2, 2.3, and 2.4).

If Sasha does not want to pay money to obtain all this infrastructure, they could
try to obtain free tools on the cloud. Clearly, Sasha is a professional and would like
to have all the technological possibilities for work, but the free options are unlikely
to provide all these abilities.

Let us consider the alternatives for each of the technologies that Sasha needs.1

2.2.2 Sasha as Entrepreneur

Sasha has a business with employees, a business where it is necessary to interact
with customers and suppliers. In this business, Sasha needs to issue invoices, make
budgets, and exchange information with customers and suppliers at the shipping and
transportation levels. Additionally, Sasha needs information about accounting and
logistics to track shipping to customers.

1The technologies discussed are only a part of all the existing options, and the estimated costs
shown are from October 2019 and can change depending on the country of the client.
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Table 2.1 Comparison of costs for several cloud storage options

Cloud storage

Tool Free Cost Paid Cost

Google drive cloud storage [1] 15 GB 0 100 GB 1.99 $/month

IDrive [2] 5 GB 0 2 TB 69.5 $/year

Mega cloud storage [3] 50 GB 0 200 GB 12e/month

One drive cloud [4] 5 GB 0 100 GB 1.99 $/month

Box cloud storage [5] 10 GB 0 100 GB 9e/month

ICloud cloud storage [6] 5 GB 0 50 GB 0.99 $/month

Table 2.2 Comparison of costs for several Cloud software repository and version control options

Cloud software repository

Tool Cost Description

GitHub Free [7] 0 $ user/month Unlimited public and private repositories. Basic
functionalities

GitHub Pro [7] 7 $ user/month Unlimited public and private repositories. Pro
tools for developers with advanced requirements

GitHub Team [7] 9 $ user/month Unlimited public and private repositories.
Advanced collaboration and management tools for
teams

GitLab Free [8] 0 $ user/month Unlimited public and private repositories. Helping
developers build, deploy, and run their applications

Gitlab Bronze [8] 4 $ user/month Unlimited public and private repositories.
Enabling teams to speed DevOps delivery with
automation, prioritization, and workflow

Gitlab Silver [8] 19
$ user/month

Unlimited public and private repositories.
Enabling IT to scale DevOps delivery with
progressive deployment, advanced configuration,
and consistent standards

Gitlab Gold [8] 99
$ user/month

Unlimited public and private repositories.
Enabling businesses to transform IT by optimizing
and accelerating delivery while managing
priorities, security, risk, and compliance

Bitbucket Free [9] 0 $ user/month Unlimited public and private repositories. Free for
up to 5 users

Bitbucket Standard [9] 3 $ user/month Unlimited public and private repositories. For
growing teams who need more

Bitbucket Premium [9] 6 $ user/month Unlimited public and private repositories. For
large teams with advanced features

Sasha needs information systems that enable storage and management of all the
information related to the transactions with customers and suppliers. These systems
must be able to offer customers a secure, reliable, and usable platform to make their
purchases and to track the status of their shipments. Moreover, the systems must
provide Sasha with up-to-date information on how each sale is made and about the
habits and preferences of customers in order to offer new products. For suppliers,
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Table 2.3 Comparison of costs for several cloud video conferencing options

Cloud video conferencing

Tool Free Cost Paid Cost

Skype [10] Personal $0 Business Included in Office 360

Skype [10] Personal $0 Business $159.75 (Included in Office 360)

GoToMeeting [11] – – Personal $20.94/month

Zoom [12] Basis $0 Enterprise $20.92/month (host)

Webex [13] Libre $0 Starter $14.16/month

Table 2.4 Comparison of costs for several cloud backup options

Cloud backup

Tool Cost Description

Backblaze [14] 6 $/month/computer Unlimited data

Carbonite (one computer) [15] 6 $/month Unlimited data

Carbonite (multiple computers) [15] 24 $/month Unlimited data

Carbonite (computers + servers) [15] 50 $/month Unlimited data

CrashPlan [16] 10 $/month/computer Unlimited data

Livedrive Backup (one computer) [17] 6.61 $/month Unlimited data

Livedrive Pro Suite (five computer) [17] 18.73 $/month Unlimited data

IDrive Basic [18] Free 5 GB

IDrive Personal [18] 69.50 $/year 2 TB

IDrive Business [18] 99.50 $/year 250 TB

the information system must be able to follow the status of orders, manage product
inventory, and provide the necessary accounting in terms of economic capacity to
make the corresponding payments.

Sasha has several possibilities to obtain these services. On the one hand, it is
possible to develop an infrastructure on their premises to install the information
systems. However, Sasha does not want to purchase, configure, or manage their
own servers. Another option is to hire servers in the cloud and install the services
on them. However, as in the previous case, Sasha does not want to configure or
manage the services. The last option is to hire the information service directly
(as an ERP or e-commerce builder). Sasha selects this final option. Therefore, the
only requirement is to enter the information into the system and provide access to
customers and suppliers so that they can work directly in their information system.
With this option, all Sasha’s business information is in the Cloud, where it could
benefit from further advantages (if hired) such as backups or redundant systems that
guarantee the availability of the service permanently or technical service to solve
problems 24 h a day.

Sasha can decide between several possibilities when hiring an e-commerce
builder depending on the number of functionalities and size. Of course, the cost
will increase with the scope. The implementation of the information system for the
company still needs to be able to enter the market with a suitable image, a set of
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Table 2.5 Comparison of costs to build a website

Estimated cost of building a website [19]

Factors Hiring a web designer Using a website builder

Setup $160 $0

Design and
building

$5000 $0

Content creation $50 $0

Training to use it $60 $0

Maintenance $500 $60

Total $6760 $60

Table 2.6 Example of e-commerce website pricing [20]

Small Mid-size Enterprise

Design $5000 $10,000 $35,000

Programming $2000 $15,000 $75,000

Integrations $500 $8000 $20,000

Data import $0 $5000 $10,000

Hosting (Annual) $500 $6000 $10,000

SEO (Annual) $12,000 $36,000 $60,000

Average e-commerce website cost (Annual) $20,000 $80,000 $210,000

elements, including a corporate design, programming to satisfy specific functions
of the business, integration of functionalities and data import, and to hire a hosting
service that includes a domain and implementation of SEO techniques for better
positioning in Internet search engines.

Tables 2.5 and 2.6 show cost estimates for deploying the discussed infrastructure.

2.2.3 Sasha in Their Laboratory

Let us assume now that Sasha is a researcher in a research center that has a budget to
cover the needs of the laboratories. We assume that the research that Sasha conducts
produces considerable amounts of information that must be processed to extract
knowledge. Sasha therefore needs computers on which to process information
and data storage to have the information available at any time. We assume, as
in the previous two cases, that Sasha’s laboratory has an Internet connection and
sufficient bandwidth to access services outside the laboratory. Sasha’s field of
knowledge is not computer science and Sasha cannot, and does not want, to create
the infrastructure to conduct research on the data. The problem of data storage is
considered in detail in the first case discussed in this section; the need for processing
is now considered.

Sasha could hire a virtual server, dedicated or not, to perform data analysis: this
solution can be implemented at several levels. At the lowest level, Sasha can hire
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a virtual server without any pre-configuration, but this solution requires Sasha to
configure almost everything on the virtual server (this scenario is called IaaS). On
a higher level, Sasha can hire a virtual server that has a partially pre-configured
system, which requires Sasha to manage and configure only a portion of the system
(Platform as a Service (PaaS)). The best option for Sasha is a virtual server with a
fully configured system that is readily hired (SaaS).2 In this situation, Sasha simply
has to prepare and execute the data analysis process.

This hired virtual server has several features that can vary the cost:

• The number of cores: Determines the number of simultaneous processes that
can be executed on the server.

• The type and storage capacity: Higher storage access speed and greater storage
capacity increase the cost of the server.

• Dedicated RAM memory of the server: If the virtual server has more RAM
memory, less time is required to access the disk to retrieve information and
processing is faster.

• Virtual server bandwidth: Higher bandwidth means less transfer time between
Sasha’s laboratory and the virtual server in the cloud (the transfer time is also
limited by the bandwidth Sasha has in the laboratory).

• The type of support: Support provided 24/7 is more expensive than less
complete support.

• A digital certificate (TLS): Having a digital (TLS) certificate that guarantees the
protection of the information between the virtual server and all the computers that
communicate with it increases the cost.

As indicated above, when selecting a virtual server, Sasha can choose between
a managed or self-managed server. A self-managed virtual server is one that must
be installed and configured by the user (remember, Sasha does not want to do it).
A self-managed virtual server is one that incorporates utilities that make its use
easier for non-technical users. A self-managed server can provide tools such as the
following:

• automatic fast software installation
• server management and security updates
• email, database, and domain settings through a control panel
• free private SSL certificate and automatic backups

Table 2.7 provides some examples and comparisons of costs for existing
solutions in the market.

2IaaS, PaaS, and SaaS are types of cloud computing services that are discussed in detail in
Sect. 3.2.3.
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2.2.4 Sasha Has an Idea

Sasha has an idea to improve the bureaucratic processes in their laboratory and to
increase the impact of their research output. Sasha wants to automate handwritten
orders for contracts with funders and orders of materials. To do this, Sasha has
developed a service called MyBillProcess. With this service, a registered user can
take a photo of a handwritten order and send it electronically to the service from
anywhere on the planet. The novelty of the MyBillProcess service is that the service
scans the image of the order and recognizes the details of the client, stakeholder, or
provider and the products and units of each product to be ordered. A user registered
with the MyBillProcess service has access to the laboratory catalogue including
services, research outputs, examples, and success stories, with all the necessary
information, including stocks of materials and needs. The MyBillProcess service
uses the recognized order data to create a digital order with the data of the products
that the registered user has in the system and sends this digital order to the office,
including finances or the storehouse to be processed, or to the appropriate person or
division in the laboratory. The MyBillProcess service uses the scanned data and data
from others to build profiles and potential offers or newsletters for stakeholders that
could be sent by email to increase the engagement with stakeholders and to promote
the research output of the laboratory.

As in previous examples, Sasha could build the infrastructure to support the idea
in a physical space, but Sasha does not have the knowledge and does not want to
buy or configure all the required infrastructure. Sasha’s new idea is good but requires
implementing the service and making it available on a virtual server (as in previous
sections). The implementation entails hiring trained and experienced personnel to
develop and test the system. In addition, this staff could build or hire accessory
services to integrate to implement Sasha’s idea. An example of this integration
is Mailchimp [22], an online service that can manage follow-ups of newsletters
and mailing campaigns sent to stakeholders through a personal or corporate brand
email address. Among its features, Mailchimp enables the importation of contacts
with whom you want to communicate by email, segmentation of contact lists and
insertion of forms into emails. Mailchimp can also be integrated with more than 200
services in different business categories (Table 2.8).

As illustrated by the Mailchimp example, the costs vary depending on the
requirements for the use of a service. The use of this email delivery service, like
any other service that MyBillProcess uses, establishes a cost (usually monthly) that

Table 2.8 Comparison of
costs for several Mailchimp
options

Prices of Mailchimp [22]

Cost Users

Free $0/month 1–2000

Essentials $9.99–$259/month 500–50,000

Standard $14.99–$499/month 500–100,000

Premium $299–$1099/month 10,000–200,000
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Sasha will have to include in the cost of her service (usually monthly as well).
The success of Sasha’s idea will be assessed in terms of innovation, the savings
generated by the increased productivity by avoiding bureaucratic burden in the lab,
and the funding obtained through MyBillProcess.

2.2.5 Sasha Needs Mobility

Sasha is never at home but travels all year while working. Sasha cannot store all
the information required for work on a laptop or mobile device and needs to be
able to access relevant business information such as contacts, projects, contracts,
and data everyday and continuously. Sasha also needs to be able to communicate
with partners and customers. Sasha has hired an international Internet provider
that has roaming agreements with the countries where Sasha works. By means
of the service provider, Sasha is connected to the Internet at all times and can
access all the necessary information to work. The cloud provides constant access
to the required information and enables information exchange with collaborators
and customers. The Sasha in any of the previous scenarios could also never be in
the office; therefore, choosing cloud computing to manage daily work is the most
reasonable option.

2.3 Everyone Is Sasha

In all the previous scenarios, a large portion of the solutions proposed in each
case are interchangeable. The only characteristic that changes is the size of the
cloud service required. All the factors involved in the decision to use the cloud
can be summarized into two considerations: practicality and price. The practicality
and suitability of cloud computing is beyond doubt for many kinds of daily work,
and in some cases, it could be considered a waste to not opt for the cloud instead
of maintaining comparable in-house systems. The use of cloud computing greatly
reduces costs in many cases, especially for small and temporary uses, compared to
the maintenance of in-house infrastructure that entails continuous and fixed costs.
In an organization where revenues are not continuous and regularly guaranteed,
installation and fixed maintenance costs are difficult to support.

Of course, Sasha always has both options. It is possible to build the hardware
and software infrastructure necessary for the business, which entails a large initial
economic outlay in most cases. Not only must the cost of hardware be considered
but also the cost of the software and the personnel necessary to install it, configure
it and keep it operational. The other option is to hire the same services in the cloud.
In this way, the initial costs will not be as high and the investment may change
depending on the needs of the evolving business.



References 15

Finally, cloud computing enables Sasha to establish economic control of the
services that are contracted depending on the demand for those services and to work
in a practical way to achieve the desired objectives.
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Chapter 3
From the Beginning to the Future

3.1 What Is Cloud Computing?

As noted in the past, the paradigm of cloud computing and all the ideas, variations
and acronyms that it involves, constitute a single approach, a change in the location
of computing resources [1]. Computing resources are no longer on your desk, your
office or computing room, they are in a completely different location, possibly on
the opposite side of the world and maybe onboard satellites in the future.

This transition has occurred during the past 10 years because of changes in
the manner of understanding computing, initially focused on providing elastic and
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responsive services for websites with high traffic, and because of the need to
have desktops synchronized so that a person can work anywhere and everywhere.
These needs have evolved to many other realms and are now becoming mainstream.
These characteristics shape the different options and approaches to cloud comput-
ing, which we will now discuss.

3.2 Types of Cloud

First, although Sasha has a very specific profile and the solution that provides
the best fit has been explored as a case study in the previous chapters, no cloud
computing solution is necessarily better than another. Multiple comparisons can be
performed; however, the combination of provider and cloud model that best fits a
specific purpose is unique. Chapter 4 will discuss the different considerations to take
into account when selecting a cloud computing provider. Many variants in the realm
of cloud and serverless computing have emerged as a result of how the needs of users
and clients have grown. Therefore, a selected cloud solution will be a combination
of solutions. These solutions are described next and are usually combined based on
whether the application is commercial in character, the need for individual or shared
use, and the security or level of infrastructure to be used (only hardware, hardware
and software, etc.)

3.2.1 Commercial and Non-commercial

The co-existence of commercial and non-commercial options in the world of
computers has existed since computers transitioned outside of laboratories to offices
of corporations and homes. By the 1970s–1980s, such separation was also linked
to a new paradigm, proprietary vs. free software. This distinction continues today,
and cloud computing reflects a similar environment, where commercial or non-
commercial cloud services can be obtained based on proprietary or free software.
For those not familiar with the cloud environment, this scenario can be confusing,
as sometimes jargon or names of technologies are used in a ubiquitous manner. In
the next subsections, we explain the various types of cloud services and provide
examples to contribute to a better understanding about what each one stands for,
offers, and does.

3.2.1.1 Commercial Cloud

Almost every large company in the field of information technology is currently
selling services related to cloud or serverless computing. Next, we discuss some of
the basic options on the market and use them as an example of existing commercial



3.2 Types of Cloud 19

providers. Some of these solutions or companies are better than their competitors in
terms of price or suitability, depending on the business of the client.

• AWS: the cloud computing solution provided by Amazon. AWS was launched in
2006 and can be considered to be the first cloud computing platform, at least in
the way that we currently understand the cloud. AWS is usually considered the
leader in terms of market share and is especially popular with those demanding
high elasticity, that is, the capacity to use and adjust a large quantity of
resources according to peak demand periods. A good example of typical users
are companies or services that could experience unexpected peaks in demand or
internet traffic because their contents suddenly go viral.

AWS is also popular because of its so-called spot instances, that is, the
possibility to use cloud computing resources almost for free when a given CPU
is not busy. In such cases, AWS offers its use at a price near zero, and a given
user can choose to run a task only if the price is below such a threshold. In this
way, both parts receive a benefit: the user can perform a computational task at a
very low price and AWS has a lower percentage of idle CPUs.

• GCP: the cloud platform provided by Google. Among the big names, GCP was
the second platform to be launched in 2008. GCP is popular for scientific uses,
such as the Large Hadron Collider (mentioned later in this chapter). To date,
Google has not been entirely successful in making its cloud platform popular,
and GCP is usually regarded as third in market share.

• Azure: the cloud computing service offered by Microsoft. Azure was launched
in 2010 and has experienced considerable growth in recent years. Microsoft has
acted as a market chaser to get positioned in the cloud and serverless computing
business and appears to be doing well.

Azure is oriented primarily to users that are already using other Microsoft
products and simply want to deploy them in a cloud environment.

• Rackspace: born as a simple web hosting provider at the end of the 1990s and has
evolved as a cloud computing company with a decent market share. Rackspace
has contributed to some well-known technologies in the field of cloud computing
and has been successful in capitalizing its experience in the sector.

• IBM: one of the main providers of technological services. IBM has been
attempting to play a more important role in cloud computing in recent years.
However, the market share and the development of its cloud business have
not kept pace and reached a necessary level of competence. IBM finished the
acquisition of the free software company Red Hat in the middle of 2019. Red Hat
has a strong background of providing cloud services, and its integration should
improve the position of IBM as one of the main players in cloud computing.

3.2.1.2 Non-commercial Cloud

As the popularity of cloud computing has grown in recent years, in some cases,
users have viewed the cloud as a potential solution for daily work. However, some
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users prefer to not rely on a commercial provider, which has led to an alternative,
the non-commercial cloud. Non-commercial cloud computing usually corresponds
to the deployment of a cloud computing environment in a data center owned by
the user. This scenario is related to a topic discussed in the next section, the “Private
Cloud” model. Beyond this component of owned hardware, a non-commercial cloud
also has a software component. Indeed, non-commercial cloud software can be the
basis of a commercial cloud computing environment. Several options exist, and
sometimes the differences between them, in terms of both philosophy and technical
capabilities, are minimal. To identify the most convenient choice to deploy and to
determine whether to use a cloud computing or serverless environment requires a
high level of technical insight and is outside of the scope of this book. However,
knowledge of the major names and basic ideas can be useful to understand what is
available in the field.

One of the names to highlight is OpenNebula, which was initiated as a project
in 2005 and first released in 2008. OpenNebula has since been very popular as a
community-driven effort available under a free software license. However, although
OpenNebula continues to grow in several aspects, its use is minor if we consider
the whole market. Another major name is OpenStack, launched initially in 2010
by Rackspace and NASA, which differs from OpenNebula with respect to several
technical characteristics. However, the most striking is philosophical. OpenStack is
a free software solution used to deploy cloud computing environments, but it is not
developed by a community of users but by a consortium of commercial providers
or vendors that use it as a solution for the services they offer. Most of the vendors
use or offer OpenStack among their solutions for cloud and serverless computing.
Governmental research centers commonly use OpenNebula or OpenStack as the
solution to deploy in-house cloud computing infrastructure.

Another long-standing idea is the possibility of mixing cloud computing with
volunteer computing, which can be achieved in several ways. The most straight-
forward approach is to build a cloud computing service using computers from
volunteers at their homes as the infrastructure [2]. One example is Cloud@Home,
which is related to what is called “citizen science”.

3.2.2 Cloud Models

Several ways of using and providing cloud computing services exist, most often
related to security issues or privacy. The most commonly used cloud computing
model is the Public Cloud, a model in which the servers in a data center can be
shared by several users according to needs.1 This approach is a flexible way to
obtain access to resources, and the infrastructure is typically managed by the IT
staff of the data center owner.

1This is independent of whether the data center is owned by a vendor or a private or public body.
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In other cases, a given client or user might require additional security or privacy,
making it undesirable to share the same servers or data center with other users.
Such cases, where a single user occupies a full cloud computing service, represent a
Private Cloud, a model where the infrastructure can be managed directly by the IT
department of the client or by the vendor, according to needs. Moreover, a private
cloud can be implemented by sharing a data center among several clients but with
additional levels of security for each client, including firewalls, exclusive use of
some servers, etc.

Experience shows that the best solution is sometimes a mix of both models; that
is, Sasha could find a public cloud to be suitable for some tasks but require a private
cloud for others. Therefore, the ideal solution is a Hybrid Cloud, a mix of a public
and a private cloud.

These three models work around a single but important concept: property.
Clearly, cloud computing can be used simply by a tenant, that is, using a data center
provided by a vendor, in which case the user is not concerned with purchasing and
maintaining hardware. The other option is to continue managing and maintaining
your own data center. Each choice has its advantages and disadvantages for each
user scenario. Notably, private cloud environments are typically sufficient for most
users, including governments. An example is one of the biggest contracts in the
defense sector granted in October 2019 by the US Department of Defense (DOD)
to Azure that is worth up to 10 billion dollars.2

3.2.3 Types of Service

Cloud providers can offer different services from the perspective of the service
abstraction, as shown on the diagram of hierarchy presented in Fig. 3.1. Higher
abstractions (going up on the diagram) mean less operational load and more out-of-
the-box features but also more constraints and more vendor dependency (lock-in).
Given that every new layer goes on top and it is built upon the previous layer,
abstractions, technologies services, and solutions based on the highest level of
abstractions are usually newer. Going into detail across the layers of the diagram
we find the following:

2At the moment of writing this book, AWS has reported that it will challenge the decision of the
DOD of granting the contract to Azure.
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Fig. 3.1 Diagram of the hierarchy of cloud services

• Infrastructure as a Service (IaaS): The lowest layer of the hierarchy closest
to the hardware. At this level, providers offer access to virtualized hardware. An
example is AWS EC2 instances, which offer full access to the hardware of a
virtualized instance.

• Platform as a Service (PaaS): The next level in the hierarchy offers another step
toward abstraction and, usually, provides a full platform for users while hiding
low-level details, such as the hardware. An example is Google Dataproc, which
offers fully managed Hadoop and Spark clusters, where the users do not need
to manage or configure the underlying infrastructure (including the network,
instances and storage), and is presented as a single platform with very well-
defined workflows.

• Software as a Service (SaaS): The line between PaaS and Saas is blurry and
varies depending on the author (level of abstraction), but we can clearly state
that services such as Dropbox or Gmail are SaaS. Such services and applications
are fully hosted and managed by a third party (that does not necessarily need
to be a cloud provider) and allow users to modify only predefined parameters
(disk space, bandwidth, etc.) but not to access the underlying hardware resources
or even be aware of them. Consider Dropbox, where users can manage objects
(folders and files) and see how much free space they have available, but the level
of knowledge of the infrastructure ends there for the user (for example, Sasha
does not know and will not have to worry about what storage technology is used).

• Function as a Service (FaaS): More often known as Serverless computing, this
level of abstraction is more directed to people who want to do development.
In this scenario, the hardware resources are highly abstracted, so users can
focus on writing software instead of managing the infrastructure (which is
taken care of by the provider). FaaS is especially interesting for micro- and
nanoservices [3], which are relevant for mobile device applications and the
Internet of Things (IoT). Examples of FaaS include AWS Lambda and Google
Cloud Functions. Serverless computing is described in more detail in Chap. 7 of
this book: Serverless experiments in the Cloud.



3.3 Features of the Cloud 23

3.3 Features of the Cloud

The are many reasons to use cloud and serverless computing technologies in
research. Some are very well known and are discussed by vendors on their webpages
for marketing purposes. These reasons are briefly discussed in the following.

3.3.1 Elasticity and Scalability

The scalability of cloud computing is very useful for research purposes in two
typical scenarios. The first is related to users. Sasha might produce a dataset that
is too large or that must be shared many times, making it infeasible or undesirable
to manage in their own data center. In such cases, making the dataset available in a
cloud system, possibly mirrored in several data centers around the world, might be
the best choice, as such a system could handle the task without concerns about the
number of users or bandwidth required for data transfer.

The other typical case is when Sasha needs to perform a computation in a limited
amount of time and the local HPC resources are not sufficient. For such cases, Sasha
can use cloud computing services to achieve the elasticity necessary to escalate
the task and complete the computation on time. Typical scenarios for this scenario
include the need to perform, in a very short time span, an unforeseen task because
part of your research has suddenly become relevant for media or policy issues or
because your client, founder or stakeholder requires it. In such cases, Sasha can use
HPCaaS in the cloud to complement their local supercomputer or to avoid the queue
to gain access.

3.3.2 Self-service Provisioning

Cloud self-service gives a user the freedom to request any available resources (such
as instances or storage) from the catalogue of the provider. The providers sell
various transparent automations that provide abstraction. It must be noted that in the
cloud, Sasha does not provision a server (an instance) but must select a predefined
image of a server that meets or is close to the requirements (for example, an image
with Apache and PHP for a web server). In a more (computational) traditional
environment, the available resources are predefined and sometimes shared (for
example, when there is a queue to access CPU time), and self-service is not an
option or requires the intervention of an operator.

As the freedom of choice increases, users must have a better understanding of the
options and applicable technologies; therefore, most providers have created specific
trainings and certifications (some for free), which is a business by itself.
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3.3.3 Application Programming Interfaces

An application programming interface (API) is a (very) high-level abstraction that
provides a standard way to communicate with software or infrastructure. In a very
naive way, we can say that an API is software that provides a standardized interface
through which other software can make calls to perform a desired action.

We will go deeper and provide examples for APIs in Chap. 6 of this book, but
for now, we will say that APIs are first-class citizens on the cloud and represent the
best practice on how to communicate between components. For example, creating
a new directory (internally an object) in cloud storage is performed by calling
the correspondent API of the service (e.g., S3 on AWS) and providing required
attributes, such as the name of the directory.

Another example is the command line tooling that providers make available to
their users, which tend to be wrappers that communicate with APIs and abstract
common actions, for example, creating a new instance.

3.3.4 Performance Monitoring and Measuring

The cloud provides observability, which means that Sasha can access metrics and
logs that provide the ability to make empirical observations using historical data of
the available systems and services (and also to design models for applications such
as resource usage forecasting). Examples of these metrics are CPU usage and free
disk space at the instance or cluster level and more important characteristics such as
error rate on the number of requests that a web server receives.

Each provider has a unique way of presenting this information using their own
solutions (such as AWS CloudWatch or GCP Stackdriver), but free software projects
are also available (such as Graphite [4] and Grafana [5]) and can be adapted to run
on most clouds.

3.4 Cloud Native Concepts

All the concepts described in this section are required (or facilitate) to understand
some parts of this book, and we encourage the reader to research and learn more
about them. An in-depth discussion of the implementation of these concepts is not
within the scope of this book; therefore, we introduce these concepts from a high-
level perspective.
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3.4.1 Cloud Native

Cloud native is a broad concept. As the reader can probably understand at this point,
the delimitations are somewhat blurry in the cloud computing world and usually
spark vivid arguments. Being cloud native means that an application or service takes
advantage of, and to some extent requires, the environment that cloud computing
provides. Moreover, the service or application very likely will not make sense, or
even run, outside the cloud environment as most of the features (APIs, runtimes,
etc.) will not be available or will not behave the same way.

To promote this concept and facilitate the creation of an ecosystem, the Cloud
Native Computing Foundation (CNCF, which is part of the Linux Foundation)
(https://www.cncf.io/) was created in 2015. Here, we use their definition of cloud
native, as follows:

Cloud native technologies empower organizations to build and run scalable applications
in modern, dynamic environments such as public, private, and hybrid clouds. Containers,
service meshes, microservices, immutable infrastructure, and declarative APIs exemplify
this approach.

These techniques enable loosely coupled systems that are resilient, manageable, and
observable. Combined with robust automation, they allow engineers to make high-impact
changes frequently and predictably with minimal toil.

The Cloud Native Computing Foundation seeks to drive adoption of this paradigm
by fostering and sustaining an ecosystem of open source, vendor-neutral projects. We
democratize state-of-the-art patterns to make these innovations accessible for everyone.

3.4.2 Containers

Formally, a container is a virtual runtime environment that runs on top of a single
operating system (OS) kernel and emulates an OS rather than the underlying
hardware [6]. The most commonly used and well-known (PaaS) software that runs
containers (via OS-level virtualization) is Docker [7]. Containers are considered to
be core artifacts that power the concept of cloud native promoted by the CNCF.

From the perspective of scientific research, containers have been proposed as a
potential solution to a long-standing and challenging problem: the computational
reproducibility of scientific results. Computational tools are widely used in every

https://www.cncf.io/
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field of research, and the reproducibility of results has become an increasingly
important problem [8–10]. Cloud computing adds a layer of complexity, but a good
description and use of containers could be a great tool to solve this problem [11–13],
as all the software used is clearly described and available.

3.4.3 Microservices

Microservices are defined as decoupled, small (usually representing a single piece of
business functionality), and independent services. For other authors and in different
contexts, microservices can have a radically different definition, in the same way as
for other cloud computing concepts.

Microservices are the method of writing software recommended by the CNCF,
and we will consider a simple microservice (serverless computing) example in
Chap. 7 of this book.

3.4.4 Kubernetes

Kubernetes is a free software container orchestration system created by Google that
provides a set of abstractions to deploy, scale and run code. The most common use
of Kubernetes is as a PaaS (for example, over GCP, AWS, or Azure), and it is widely
used by the technology industry.

Kubernetes is developed and maintained by the CNCF and is the recommended
method for orchestrating microservices over containers to fulfill an immutable
approach to the infrastructure.

3.5 Environmental Issues

One of the issues with running large supercomputers or data centers is the
environmental footprint, that is, the power consumption to run the infrastructure,
including cooling. This factor must also be considered for cloud computing and is of
special interest to organizations that want to reduce the environmental impact. Logic
says that a larger centralized data center should be easier and cheaper to maintain
than multiple separated computing infrastructures. Indeed this is true. Moreover
companies providing cloud computing services are aware of the environmental
problems associated with their business and make great efforts to limit them, for
example, by attempting to be carbon neutral. The environmental impact can be an
appealing argument when considering a transition to cloud computing; however, this
is not a universal truth. For example, if you intend to migrate the software that you
usually run on your PC (laptop, workstation, etc.) to the cloud, the savings are clear,
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as you can use a computer that consumes less power. However, if you are using cloud
computing to process large amounts of data that involves continuous transfers, the
environmental footprint of these processes plus the regular consumption of the data
center might be worse [14]. However, when measuring these side effects, several
factors must be considered: avoidance of in-house premises (local data center), all
the associated energy costs (sometimes measured using popular metrics such as
power usage effectiveness (PUE)), etc.

Some available data can shed light on this problem. A study by Microsoft on
the uses of Azure found that the power savings, compared to in-house computing,
when using SaaS are on average larger (greater than 90% in some cases) than those
related to IaaS (52–79%) [15]. Also more than half of the energy used by AWS in
2018 was of renewable origin according to the data provided by the company itself
and its carbon footprint compared to that of the average business data center is 88%
lower according to 2019 data.

Last, it should be noted that data centers are much more efficient in terms of
power consumption than they were years ago, and this situation is expected to
continue to improve. Energy efficiency in the dedicated data centers provided by
some vendors is continuously monitored, whereas for some in-house data centers,
energy efficiency is considered only when they are designed or renewed. Therefore,
when considering the environmental benefits of cloud computing, both the specific
situation at the time of adoption and the evolution over time must be taken into
account.

3.6 Success Stories of Cloud and Serverless Computing
in Science

In recent years, cloud and serverless computing has reached a high level of maturity
with success stories of its application in scientific research. Case studies can be used
to illustrate potential applications; here, we briefly describe some representative
examples. Furthermore, the web pages of the main providers list success stories,
including some of the ones presented here. Clearly, this list is not comprehensive,
and no doubt many more examples will have appeared between the time we are
writing this book and you are reading it.

3.6.1 Archeology

The Stanford Archeology Center uses cloud computing to create accurate records of
excavated items in a coherent way and to share them with the research community.
Additionally, the Center has recently proposed a cloud computing solution to
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improve the archeological research of grand sites that includes the ability to combine
IaaS, PaaS, and SaaS solutions [16].

3.6.2 Computer Sciences

A project on machine learning and data analysis from the University of California
Berkeley is attempting to improve the efficiency of power consumption for batteries.
Cloud computing has also been used to improve the chip design process, increasing
its performance by 15%. Another example is a research group at the National
University of Taiwan that has used cloud services as an expansion to its local cluster.

3.6.3 Energy

Cloud computing is already being combined with data mining and AI technology to
forecast energy prices and to achieve a better match between electricity demand and
generation. Moreover, there are tools that combine climate and energy data retrieved
from cloud services, such as the EU Copernicus, to provide useful statistics [17].

3.6.4 Geosciences

In this field, cloud computing has been applied to data visualization, data storage
and HPCaaS (including weather forecast systems and climate modelling). Examples
exist for the subfields of oceans, atmospheric sciences, and climate modelling [18–
20]. The FMI, NOAA, NCAR, and Met Office use cloud computing to handle data
in a scalable manner, for example, when they face peak connection demand, data
retrieval during extreme weather events, and massive quantities of outputs from
climate model simulations. Moreover, applications of BOINC on cloud services
exist [21]. The NREL in the USA uses cloud computing in several projects to
collaboratively build and share relevant energy databases.

The possibility of using neural nets to reproduce weather forecasts has been
tested in serverless environments. Such cases require the adaptation of neural nets
to run in a serverless environment (see Chap. 7).

3.6.5 Library Science

The preservation of documentation and its on-line availability to support other kinds
of research are of utmost importance. This is especially relevant in the case of old
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documents, where the use of digitized copies increases accessibility in a way that
would not be possible because the original documents in some cases are in a very
poor state of conservation. This kind of resources comprises high-resolution images
and associated metadata. Libraries, such as the Catalan National Library, use cloud
services to provide responsive access to consultation of these sources of information.

3.6.6 Mathematics

A good example of the application of cloud computing in collaborative research
(and teaching) is CoCalc [22] (formerly known as SageMathCloud), a free web-
based system that enables collaborative mathematical computations. CoCalc was
developed using cloud computing credit schemes for research, such as those
mentioned in Chap. 4. Thus, CoCalc is a really good example. According to
Wikipedia, in 2017, CoCalc had approximately 300,000 active users.

From a broader perspective, the development of mathematical applications in
cloud environments has been promoted by public bodies, for example, the MSO4SC
project funded by the EU included HPC.

3.6.7 Medical Sciences

Numerous examples exist of the adoption of cloud and serverless computing for
research in medical sciences. The FDA is currently using cloud computing to
improve the processing of the massive quantities of manual reports on drug effects
that they receive each year. Additionally, the CDC uses this technology to obtain
and share information on disease evolution. In a rarer case of HPCaaS, the Walter
and Eliza Hall Institute of Medical Research uses cloud computing to analyze
high-resolution microscopy data. Furthermore, the Michael J. Fox Foundation has
developed a research program where patients transmit data continuously from
wearable devices to the cloud. These data can be analyzed together with data from
other patients, representing a huge advancement over annotations from monthly
medical exams and therefore benefiting the study of symptoms and drug research.
Another example is the Ottawa Hospital Research Institute, which uses cloud
computing resources as part of a program aimed to better understand why people
are reluctant to vaccinate. Another example is research by the University of Western
Cape that provides a web platform to study resistance to HIV drugs. Parallel
workflows are also important and are used by the Smithsonian Institution to annotate
genomes. Stanford University is using cloud computing to improve workflows
in neuroimaging research. Furthermore, this technology is helping to improve
computer security and compliance with strict regulations for medical information.
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Several examples of serverless computing also exist. Examples of the use of AWS
Lambda include Station X’s GenePool, which can be used to analyze genetic data,
and Benchling, a company that develops and sells software for gene editing.

3.6.8 Physics

Probably one of the brightest examples of applications of cloud computing tech-
nologies in physics is to manage the massive quantity of data resulting from the
experiments with the Large Hadron Collider at CERN, an application that continues
to adapt new technologies. An example of previous works is the use of GCP to
analyze data from the so-called Atlas experiment. Another example is OpenFoam,
a common free software in the field of computational fluid dynamics that can be
directly run on AWS.

3.6.9 Social Sciences

An example in this field is the Queensland University of Technology Digital
Observatory, which uses cloud computing technology to collect social media data
around Australia and store the data for easy access by researchers. This use is highly
beneficial from the perspective of analytics and visualization.

3.6.10 Space Research

ESA, NASA’s JPL, and the University of Alaska use cloud computing to process
and make available massive amounts of satellite images. In the case of the JPL,
these images have been used for guidance systems of robots and to provide scalable
video streaming of the “Mars Curiosity” mission. Moreover, serverless computing
has been used to process astronomic images [23].
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Chapter 4
Show Me the Money

4.1 Money for Research Using Cloud Computing

In recent years, with the aim of promoting the use of cloud computing, several
vendors have established programs to grant money or credit to researchers intending
to test the viability of this option for their work. This approach has been, and
continues to be, a win-win approach, as the scientific community benefits by gaining
access to massive amounts of resources for HPC or data mining and vendors learn
about the problems and needs of future potential clients, addressing them in advance
and therefore developing a more robust and complete product. This approach also
acts as a great marketing campaign, as the vendors are investing in projects for social
benefit.

Some of these programs are or have been executed for a limited amount of time;
others have been in progress for a longer time or are continuously open. Some
examples are “Azure for Research” and “AWS Research Credits,” and in some cases,
there are calls for a specific topic, such as the Microsoft Climate Data Initiative or
the Amazon Sustainability Data Initiative. In other cases, it is possible to contact
vendors to ask about the possibility of obtaining a grant to use their resources; some
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vendors are open to collaboration. No doubt other options deserve to be explored,
and most times, answers are only a search away on the web pages of providers.

Cloud computing can also serve as a model to optimize and account for
research funding. In all science disciplines, it can be difficult to gain access to the
infrastructure and instrumentation necessary to perform research. When applying
for funding to perform various tasks, researchers must often request money to
purchase the required infrastructure and instrumentation, and in some cases, funding
bodies can be reluctant to provide the needed funds because the purchased material
lasts longer than the research project itself. This problem is usually solved by
obtaining funding from a different source, for example, core funding from research
centers or shared-use critical infrastructure. However, in the case of computing
infrastructure for punctual use (a single research project), as stated previously,
access and use can be funded using ad hoc money included in a research grant,
without having to maintain infrastructure purchased for a single purpose or having
to justify spending money on something that lasts longer than the specific research
being conducted.

4.2 Sharing Costs

We have previously discussed the case in which Sasha’s laboratory is involved in
research that requires massive HPCaaS and produces massive amounts of data that
must be stored and how the laboratory probably must fight to obtain the required
storage space and a proper Internet connection to share their data and results
with their colleagues. This problem could arise if the research results obtained
by Sasha become extremely popular or if the outcome of their research is a
dataset that is widely used by the research community. Moreover, in such cases,
cloud computing services could be a great way to manage the distribution of the
results. If Sasha’s colleagues simply want to download their data or produce results
running their software, a cloud solution would simply require the laboratory to
provide other researcher with authorization to perform these tasks via the cloud
computing service. As an additional advantage, all the associated data transfer or
HPCaaS expenses would be paid by the collaborators or stakeholders, not by Sasha’s
laboratory.

This characteristic represents a huge advance with respect to traditional schemes,
where Sasha’s laboratory might require their colleagues to sign a contract and
pay for the service, to apply for a grant jointly or even be compensated with
co-authorship for the outcomes of joint research. In summary, Sasha’s lab would
bear the expenses of producing the science but not the expense of sharing it: at a
minimum, they can split the costs.
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4.3 Selling Research

Cloud and serverless computing represent a major opportunity for businesses, a case
that is partially developed in the previous section and results from the possibility of
using cloud resources to provide access to a given research output. Consider Sasha
after successfully developing a framework or software product for application and
use. Many colleagues are likely to want to use Sasha’s tool. One way to do so is by
visiting Sasha’s laboratory and collaborating. In some cases, such a tool might need
to be adapted to the needs of the new user. One possibility in this case is to deploy
the tool in the cloud and sell users access to the tool and customization services
according to their needs. For example, this could be achieved through a spin-off
company.

Another case is where Sasha’s laboratory produces an amount of data that is
too massive to process by their team alone and with potential uses that the team
are not going to take advantage of. In this case, a good way to monetize the
previous research work would be to make the data available in a cloud computing
environment and let others download the data or perform cloud data mining by
running algorithms over the dataset and charging a fee. This approach is followed
by some of the private companies performing the R&D work presented in Sect. 3.6.

For Sasha, these approaches are a great way to enhance the use and impact of
research and simultaneously reduce the burden that other research teams face when
obtaining results using a system, methodology, or data from Sasha’s laboratory.
Moreover, this application presents some advantages for users with respect to the
possibility to control the money spent on their research through a pay-as-you-go
system.

4.4 What Happens If I Do Not Pay?

Sasha might fear the possibility of losing access to their research data if they do
not pay the bills for the cloud computing services. First, this scenario applies only
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to commercial cloud providers that bill for the use of their resources. Beyond this
situation, such fear is in some ways unjustified. However, simply maintaining data
on the cloud has become almost free; the costs are mostly associated with data
transfer and could be considered to be acceptable. Moreover, if Sasha needs to obtain
access to the data but cannot afford it, Sasha could likely contact the provider and
ask for the fee to be waived. Since the data are being requested for research purposes,
it is highly probable that Sasha would be able to gain access, as we have already
mentioned that specific grant programs exist for such cases, especially if there is no
for-profit goal in the research work.

4.5 What Happens If My Provider Does Not Deliver

A different issue occurs when a commercial cloud computing provider fails to
deliver and the user does not receive the service they have paid for. As with any other
service, commercial providers are obligated to provide guarantees of service and are
liable for failure to provide service. Commercial providers usually maintain high
levels of transparency about technical problems and difficulties and grant credits to
pay for unexpected issues. Moreover, in some cases, problems are solved rapidly
and may not even be noticed by the user.

However, this is not the only potential issue. Indeed, the levels of reliability of
cloud computing providers are extremely high. For example, during its main annual
event on cloud computing in 2019 (Google Cloud Next), Google claimed to have
the highest reliability among cloud computing vendors, showing that its service
had been down for only approximately 200 min in 2018. The closest competitor
was AWS, with a downtime of approximately 300 min. There was some discussion
about how accurate these numbers are and who the most reliable vendor is, but the
main point is that in an entire year, the cumulative downtime of commercial cloud
computing vendors is in the range of 3–5 h. Clearly, this minimal downtime can
still be an issue for critical systems, but the chances of a longer downtime in a full
year when operating your own system are probably greater. For example, in the next
section, we demonstrate how to assess a migration to cloud services based on real
experience. The reliability of service is not considered, as in our view, this is not a
necessary criterion for most users of cloud services.

4.6 Assessing Migration

In addition to simple tests and proofs of concept, you might need to evaluate
if moving to a cloud computing infrastructure makes sense. In the following
subsections, we discuss some considerations and aspects of how to assess a potential
migration.
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4.6.1 Selecting a Cloud Computing Provider

Selecting the cloud provider (or providers) is probably the most important deci-
sion [1], as it will not only define the possibilities (and limitations) but will also
play a major role in next steps and in creating new opportunities for future work.
Therefore, this step should be conducted carefully by fully considering all options.

This section does not propose new methodology for provider selection or even
define which approach to choose; indeed, most vendors have their own documents
on how to evaluate and perform migration to a cloud computing environment. We
simply provide an understanding of the basic concepts so that the user can make the
best selection for the problem they are trying to solve.

Although the assessment presented here is entirely agnostic, each vendor has a
unique strategy and a target or niche of customers. Thus, the solutions designed and
provided by each vendor are usually tailored to a given set of purposes. Therefore,
the cloud provider that best fits your needs is likely to be one that is already used by
researchers in your field.

4.6.2 Problem Definition

The first step is to identify the problem to be solved and its high-level components.
The more specific we can be in defining the requirements, the easier it will be to
find the best solution (and provider). For instance, in the example considered in this
section, Sasha is attempting to run a climate simulation to calculate data such as
cloudiness (how cloudy a day is) on certain parts of the Earth.

4.6.3 Gather Requirements

Different methodologies and approaches [2, 3] can be used for this selection, but the
next step is to gather all the requirements to understand the use case and attempt to
satisfy as many of the following dimensions as possible [4]:
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• Suitability: The available services and systems are sufficient to cover the needs
of our problem. These requirements include the system performance and the
speed of the network connection between data centers of the provider to obtain
mirrored copies of the data.

• Usability: Ease-of-use interfaces, APIs, etc. are adapted to the level of knowl-
edge of the staff that will be managing the project.

• Elasticity: The provider is sufficiently flexible to provide different (or even
better) options for our resource needs.

• Costs: The costs of the services from the provider are aligned with our expecta-
tions: whether waivers or discounts are available should also be considered.

• Security and Compliance: There is always certain level of security needed,
which requires effort and planning. Sasha is aware that a lack of security can lead
to major losses, and not only economic. The same applies to compliance, which
includes adapting to regulations, running code in a more benevolent jurisdiction if
needed, and ensuring that services comply with the law. If not planned correctly,
these two dimensions can have serious consequences or directly lead to failure.

Sasha should assign a value from 0 to 1 to each dimension in terms of its
importance, with 0 being the lowest value and 1 the highest.

Following the example from the previous section, after discussing the situation
with the team, Sasha obtains a list of detailed requirements:

• The simulation has been running on a single on-site server, but the researchers
would like to be able to perform multiple runs in parallel in the future. The full
specifications of the server are available.

• The application is CPU demanding but does not need much memory.
• Input data are from a public API available over the Internet.
• Resulting data are small and should be made available to the team members via

shared storage.
• The results are sensitive, so a specific level of security is required. Sasha’s

laboratory operates under compliance rules (and audits) from the government.
• The project is in the early stages so the budget is limited, but Sasha could receive

more funding if the results are satisfactory.

Given these requirements and further discussion, Sasha’s team has set the weights
for each of the aspects to consider as shown in Table 4.1.

Table 4.1 Example of weights assigned to each feature to assess a migration to cloud computing

Suitability Usability Elasticity Costs Security and compliance

0.8 0.3 0.8 0.5 1
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Table 4.2 Comparison of providers to assess a migration to cloud computing based on the
weights assigned to each feature

Dimension Weight Provider 1 Provider 2 Provider 3

Suitability 0.8 7 5 6

Usability 0.3 9 8 3

Elasticity 0.8 5 5 8

Costs 0.5 4 7 6

Security and compliance 1 7 8 2

Total 32 33 25

Weighted total 21.3 21.9 17.1

4.6.4 Obtain the Data

After all the problem boundaries are defined, the data for the providers are assessed
in our preferred format, for example, a table. Given our requirements, a weight is
assigned to each dimension, and the providers are rated according to their ability
to satisfy the requirements. For example, for the problem defined in the previous
sections, we assign a value from 1 to 10 to the dimensions and adjust the value
based on the previously defined weights. Table 4.2 shows an example of how to
assess provider that best fits according to what Sasha needs.

4.6.5 Review and Decide

Once the data are obtained (as shown in Table 4.2), an initial evaluation is per-
formed, and options that are obviously unsatisfactory (i.e., many of the requirements
are not satisfied) can be discarded.

For our example, we must decide between Provider 1 and Provider 2. A new
iteration can be performed by re-adjusting the weights based on the findings. If
more than one provider ensures similar levels of service, we might have to look for
more information about each service or feature to obtain more accurate scores. The
following additional steps might be helpful to Sasha:

• Communicate with the sales channel for all the evaluated providers, as the stan-
dard pricing usually does not reflect various discounts or conditions available.

• Try to obtain demo time or credits to empirically assess whether the provider can
meet the requirements.

• Discuss again the problem to be solved and see if new information and findings
have altered some of the requirements.

• Iterate the process many times until the number of options is reduced (e.g., to
only two plausible providers).
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4.7 Conclusions

To conclude, always exists a variable in cloud computing: usage of a cloud
computing service has an associated cost, and depending on your use case and field
of work (the costs for educational purposes and business purposes may differ) you
may have access to waivers. Overall, a well-designed cloud solution could save (or
make) you money, but as detailed in this chapter, many aspects other than money
must be considered.

Furthermore, when selecting a cloud computing provider, it must be taken into
account that organizations increasingly use both “multicloud” and “hybrid cloud”
approaches when working with cloud computing services. Multicloud means that an
organization does not rely on a single vendor or provider for any of several different
reasons, like taking advantage the different approaches that each vendor has to cloud
computing (software, design, etc.). Another reason is to avoid the typical vendor
lock-in. In the hybrid cloud approach, an organization works with both private
and public cloud solutions but not necessarily different providers. Therefore, this
solution might be considered if fidelity to a given vendor is the best option.
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Chapter 5
Tools in the Cloud

5.1 Sasha Wants Better Tooling for Their Organization

As the leader of a research organization, Sasha wants to improve their tooling and
service standardization while following the best practices and patterns for their
work. One requirement is that the tools be made available over the network, so SaaS
solutions are a good option (moreover, SaaS solutions do not require a dedicated IT
team for support).

5.2 General Productivity

Without considering a specific area of application, a large variety of generalist
software can be used for projects of various kinds (including scientific or technical
work). In this section, we detail common categories and various examples.
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5.2.1 Office

Office suites are among the most frequently used applications, with especially strong
usage among scientists: paper writing (and sharing), spreadsheets for budgets, data,
etc. The most common SaaS office suites are the following:

• Google Docs/G Suite: Google Docs is the office cloud suite created by Google
that includes a word processor, a spreadsheet, and a presentation application.
A free version is available to general customers, and a paid monthly subscription
(G Suite) that provides extended features and storage is available for profes-
sionals and companies (https://www.google.com/docs/about/). G Suite has many
users around the world. The multinational pharmaceutical company Roche is a
good example of a private organization conducting research.

• Office 365: This is the cloud version of the prominent Microsoft suite that
provides an online adaptation of Word, Excel, and PowerPoint. This solution
requires a paid yearly subscription (https://www.office.com/).

• Zoho Office: The Zoho Office suite is a web-based solution that contains (among
other software) word processing, spreadsheet, presentation, database, and project
management software. A free (limited to teams of 25 users) version is available,
in addition to a monthly per user paid version with increased available space and
features (https://www.zoho.com/docs/).

5.2.2 Communication

Chat and general purpose communication software have been around for a while, but
in recent years, collaborative communication tools and platforms have been gaining
popularity and considerable traction from the community. The most commonly used
platforms are the following:

• Slack: Slack is a collaboration-oriented tool rather than a pure communication
platform with many well-known features (some of them directly adapted from
IRC), as well as integrations with extended platforms or products such as Jira
and GitHub. Slack also supports audio and video. The free version is suitable for
small teams, and there is also a paid per user per month version (https://slack.
com/).

• Google Hangouts: The communication platform from Google that is integrated
with all their tools and platforms (such as G Suite) includes audio and video
communications (https://hangouts.google.com/).

• Zoom: A video conference and call platform that provides chat rooms and
capability to share content (https://www.zoom.com/).

• IRC: The Internet relay chat, which has been around since 1988, is a well-
known protocol for communications. Many free clients are available for various
platforms. IRC remains a valid solution because many cloud providers provide
access (sometimes for free) to their IRC servers.

https://www.google.com/docs/about/
https://www.office.com/
https://www.zoho.com/docs/
https://slack.com/
https://slack.com/
https://hangouts.google.com/
https://www.zoom.com/
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5.3 Scientific and Engineering

Cloud-hosted software for science and engineering has been a game changer in
industry with the development of new models of business, such as paying for
only the required features or resources, thereby improving cost optimization. This
approach also allows users to access platforms or systems that they could not
previously access. Some of the related software is discussed below.

5.3.1 Document and Paper Edition and Sharing (LaTeX)

In science, publishing results has, for centuries, been the main way to share knowl-
edge and boost advancement. Several collaborative document edition approaches
using cloud computing services have improved this task, mainly in cases where a
scientific work is developed by several people or multiple teams. Indeed, this book
has been written using these tools. Some examples are as follows:

• Overleaf: Overleaf provides a LaTeX collaborative writing and publishing
platform. A limited free version is available for small and medium projects (but
cannot have private or protected content), in addition to a yearly subscription
option (https://www.overleaf.com). Among its features, Overleaf enables direct
submission of a paper to the journal of your choice.

• LaTeX Base: Affordable LaTeX collaborative edition system that satisfies the
requirements of most solo authors or small teams (https://latexbase.com).

5.3.2 Project and Issue Management

One of the many tasks of a scientist or engineer is to track their work and share
their results with their peers in real time. Project and issue management SaaS are
powerful tools to perform this task. The most popular platforms are as follows:

• Jira Cloud: Jira (and Atlassian) are probably the most well-known project and
issue management software. The platforms enable users to perform tasks from
addressing very simple issues to highly complex project management (including
Agile dashboards and integrations). Another system provided by Atlassian is
also worth noting. Trello (https://trello.com) offers a lean system (based on
cards and very Agile oriented) for managing small projects or works and has
a very good free version that provides complete integration with other Atlassian
products such as Bitbucket. A monthly license (per user) is required (https://
www.atlassian.com/software/jira).

https://www.overleaf.com
https://latexbase.com
https://trello.com
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
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• Basecamp: Basecamp is a suite of integrated tools (issue management, commu-
nications, etc.) for project management that requires a monthly fee, but waivers
(and free versions) are offered for educational purposes (https://basecamp.com/).

• Asana: This platform, used by major IT players, is focused on timelines and
tracking. The free version is suitable for small teams, and a monthly per user fee
is required for access to the advanced features (https://asana.com).

5.3.3 Version Control

Version control processes aim to keep track of different versions of one or more
artifacts (software, documentation, etc.) and are commonly used in the software
development process and for documentation. The most common platforms are the
following:

• Git: Most commonly used by the open-source community, Git is distributed and
was originally created by Linus Torvalds for development of the Linux kernel.
Git is offered as SaaS by many providers, including the following:

– GitHub: GitHub offers free public repositories and is the central hub for the
free software community (https://github.com/).

– GitLab: A growing alternative to GitHub that has been gaining popularity in
recent years by offering private repositories and advanced features for testing
and building. Additionally, GitLab was raised as an attractive alternative
to GitHub after the latter was purchased by Microsoft in 2018, which has
produced some problems from the perspective of scientific reproducibility [1]
(https://gitlab.com/).

– Bitbucket: The implementation from Atlassian that interacts well with the Jira
ecosystem (https://bitbucket.org).

• Mercurial: Introduced at the same time as Git, Mercurial is a monolithic
approach that is less complex than Git and is used by many major projects (like
Mozilla and Nginx) (https://www.mercurial-scm.org/).

• SVN: Apache Subversion (SVN), one of the oldest version control systems (it has
been around since 2000), offers a more centralized approach than Git (https://
subversion.apache.org/).

Although it is not the purpose (or even within the scope) of this book to discuss
Git, knowledge of its basic functioning and workflow is highly recommended and
is, generally speaking, an expected skill [2].

https://basecamp.com/
https://asana.com
https://github.com/
https://gitlab.com/
https://bitbucket.org
https://www.mercurial-scm.org/
https://subversion.apache.org/
https://subversion.apache.org/
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5.3.4 Other Relevant SaaS

As mentioned at the beginning of the chapter, it is impossible to cover all the
products offered as SaaS. New applications come out every day, some of which are
quite surprising. For example, AWS is working with universities to provide chatbots
for students to ask questions related to the university using a smartphone, a tablet or
Alexa device [3, 4]. An overview of other relevant SaaS for scientific and technical
environments includes the following:

5.3.4.1 Integrated Development Environment

Some of the most relevant integrated development environments are as follow:

• Codeanywhere: A cross-platform IDE in the cloud that enables collaboration on
the development of software projects using a web browser on any kind of device
(https://codeanywhere.com/).

• AWS Cloud9: Similar to Codeanywhere but developed by AWS (https://aws.
amazon.com/cloud9/).

• Ideone: Cloud tool to compile and debug source code in several programming
languages (https://ideone.com/).

5.3.4.2 Diagram Design

Tools are also available to draw and make diagrams in a collaborative way in
the cloud simply using a web browser. For the interested reader, we note three
available tools: draw.io (https://www.draw.io/), yEd Live (https://www.yworks.com/
yed-live/), and Lucidchart (https://www.lucidchart.com/).

5.4 Sasha Decision

After considering the existing tools and cloud environments and discussion with the
team, given the budget and needs, Sasha must select a tool. A potential complete
solution could be the following:

• Document Edition and Sharing: G Suite for general documents (and discus-
sions) and Overleaf for LaTeX (and collaborative paper edition).

• For Communication: Slack because it appears to be the current standard, it is
free and it has many useful plugins.

• Task Management: Trello because it is free and small: the team does not need a
more complex product.

https://codeanywhere.com/
https://aws.amazon.com/cloud9/
https://aws.amazon.com/cloud9/
https://ideone.com/
https://www.draw.io/
https://www.yworks.com/yed-live/
https://www.yworks.com/yed-live/
https://www.lucidchart.com/
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• Version Control: GitLab, which offers Git with private repositories (so the team
can keep the code private until it is ready to release) and many free tools for
testing and building.

• The use of other tools is still under discussion because the team must agree on
which standards (and formats) to use and share.
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Chapter 6
Experiments in the Cloud

6.1 Sasha Is Ready to Start a New Experiment

Now that Sasha has a clear overview of what to expect from cloud technologies and,
most importantly, how to obtain a budget and understand how to use it, Sasha is
ready to begin a new experiment or project in the cloud. Since its genesis, one of
the goals of the cloud has been to run software in a massively distributed manner,
thereby providing ubiquitous and transparent access to any needed resource [1].
Running and writing software are, probably (along with interpreting results), the
most common tasks of a scientist or engineer on a regular day. One of the main
problems software developers face on the cloud is the series of frustrations resulting
from not understanding (or even worse, trying to fight) the massively distributed
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nature of the Cloud, where the “out-of-the-box” resources are not always the same
as those expected in a traditional HPC environment (e.g., low-latency network by
default).

6.2 Running Code on the Cloud

Getting code to run in the cloud might appear, initially, to be trivial, but this is not
necessarily true, especially if the software (and the infrastructure needed to run it)
is highly complex. This same feature applies to scientific code.

6.2.1 Understanding Software Development on the Cloud

Before the cloud paradigm, most developers wrote and ran software via two classic
approaches:

• Using “local” resources: ad hoc set of resources (e.g., workstations) that were
easy and fast to access but highly static. If more hardware was needed, it had to
be purchased, and sometimes available resources were not used at all (e.g., disk
space or memory).

• Using an HPC infrastructure (or provider): developers or scientists from
participating/affiliated organizations are granted access to a shared pool of
resources (e.g., computing nodes) and can request access to higher (usually single
tenancy) resources for specific tasks (e.g., running an experiment). Access to any
resource is, usually, obtained via a resource manager/scheduler [2] and depends
on the level of access granted. The available resources and scaling depend on the
capacity of the provider.

Notably, these solutions are not free, and their costs are often abstracted or hidden
from the users (direct funding or budget assignations) [3].

Cloud computing offers a radically different proposal in which resources are
highly dynamic and you can use exactly what you need (thereby reducing idle
resources). Clearly, there is no such thing as a “silver bullet,” so despite all the
conditions that we have already discussed in previous chapters, before jumping into
cloud computing, Sasha should consider some questions before understanding how
to run or write code for the cloud:

• Is Sasha’s software suitable for the cloud? This question might appear to be
trivial, but in reality, it is a hard blocker: your software (as it is) could not be easily
run on the cloud. No one other than yourself (or whoever wrote the software) can
really answer this question. The answer to this question is very likely to be “yes,”
but you should consider characteristics such as the hardcoded infrastructure and
investment in resources in case parts of the code must be rewritten [4].
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• How many resources does Sasha really need? This question is very important:
Sasha should know beforehand which resources are needed (of course, a certain
level of uncertainty is always acceptable). Basic questions to answer are the
following:

– How many CPUs and how much memory are needed (and how many per
node)?

– How much storage is needed? Does it need to be persistent (e.g., one bucket)?
– How long is the application going to run?

Addressing these questions in advance could save Sasha considerable trouble,
such as hitting API limits or even worse, wasting funds on unnecessary resources.
Moreover, Sasha should know the limits of their cloud provider, even though
the cloud resources are usually more extensive than those of the current HPC
infrastructure. This information could be obtained by contacting the provider.

• What are acceptable thresholds for Sasha’s software or experiments? In
other words, what are Sasha’s expectations? Code or experiments can be run
at a very low cost if there are no hard time constrains (e.g., you do not mind that
it takes longer to run your code).

• What is Sasha’s budget? Finally, all the previous points and questions are really
aligned to answer this very question: How many resources are available? The
more accurately the previous questions can be answered, the better the answer to
this final question will be (please review Chap. 4 for further reference).

6.2.2 Application Programming Interfaces (APIs)

6.2.2.1 What Is an API?

APIs, very high-level abstractions that provide a standard way to communicate with
software or infrastructure, are common in computer sciences. APIs provide a system
access point or library function with a well-defined syntax that is accessible from
application programs or user code to provide well-defined functionality. APIs play
a major role in cloud systems and can have various forms (e.g., the POSIX API).
The basic workflow of an API is shown in Fig. 6.1.

Modern cloud systems commonly use and provide representational state transfer
(REST) via create, read, update, delete (CRUD) operations and/or GraphQL
APIs [5] encapsulated on HTTP. Some interesting examples of this approach are
as follows:

• One RESTful API is the NASA (Open) Earth API [6] that allows exploration of
available datasets (including images).

• Several RESTful APIs from Google (e.g., search) are publicly available [7].
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Fig. 6.1 Basic workflow of an API

6.2.3 Cloud Environment and Runtimes

The cloud itself as an entity, when talking about the degree of access or control, can
be experienced as a spectrum: from raw access to hardware (via low-level APIs), to
high-level APIs and complex SDKs. The spectrum is continuous: the Cloud is not
a monolith but a living ecosystem composed of moving components that, usually,
interact and communicate with each other. Therefore, even though the components
are independent, they tend to create interdependencies via communication (usually
via APIs). All the available components (services or systems), their exposed
interfaces and variables constitute the cloud environment, which is the medium in
which this ecosystem is immersed.

Understanding the Cloud environment is key to being successful in running or
developing software for the cloud. However, there is no single cloud environment:
every provider has its own environment, and it is recommended to research (and
read the official documentation) available on every cloud environment.

6.2.3.1 Why Are APIs so Important in the Cloud?

As explained previously, being in the cloud means being immersed in its environ-
ment, which exposes its resources via APIs and a set of allowed operations. Other
aspects to take into account are as follows:

• Many features are only available via API and must be implemented programmat-
ically.

• APIs offer the opportunity to create repeatable or automatable patterns; the UI or
any other methods are sub-optimal (and could be subject to change over time).
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The main public cloud providers have extensive well-defined documentation of
their APIs (including examples for different programming languages):

• Azure REST API [8]
• AWS Guides and API [9]
• Google Cloud API [10]

6.2.3.2 Example: Using a Cloud API

As an example of how to use a Cloud API, we will consider how AWS EC2 makes
the information of an instance available within itself via metadata in JSON format;
that is, an instance can obtain information about itself by querying a local service
that provides metadata. For example, the following command can be run to obtain a
list of available items in the metadata:

$ curl http://169.254.169.254/latest/meta-data/

Given that list, the following command can be used to obtain the public IP(v4)
address of the instance:

$ curl http://169.254.169.254/latest/meta-data/public-ipv4/193.146.46.94

Clearly, this process is one of the lowest levels of access. In this case, the interface
can be accessed directly to make a GET request with curl. This approach is needed
only in certain cases; if possible, it is recommended to use the SDK usually made
available by cloud providers (or third parties). Higher levels of abstraction are
possible when using the SDK (e.g., communicating with different APIs for different
services), and writing code becomes easier. SDKs are available for the major public
cloud providers:

• AWS SDK [11]
• GCP SDK [12]
• Azure SDK [13]

An added complexity is the concept of Region that exists for different cloud
providers. A region is the geographical location where the infrastructure is phys-
ically located and the resources are run. The region is not only a physical concept
but also indicate that the available resources, even their features, could be different.
For instance, on GCP, the available CPU types in the region asia-east1 are different
than those available in europe-north1.1

When the issue of regions is added to the former example, the list of running
instances for a project on GCP in Python requires the following steps:

1Note that names and regions change, so these names may not correspond to the Google Cloud
Regions that are currently available when you are reading this book.
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• Install the Google Cloud SDK as described on its web page (this step must be
performed only once).

• Install the client library for Python (this step must be performed only once).

$ pip install −−upgrade google−api−python−client

• Once the dependencies are met, this simple class will return the list of running
instances:

"""
This code list the instances on a given project and zone.

"""
import os
from pathlib import Path
import googleapiclient . discovery

# Credentials can be generated at your:
# https://console .cloud .google.com/iam−admin/serviceaccounts

# Put your JSON credentials file on your $HOME/.google/credentials. json
os . environ [

"GOOGLE_APPLICATION_CREDENTIALS"] = "%s/.google/credentials
.json" % Path.home()

class GCPCompute(object):
"""

This class contains the logic to return a list containing
the instances for a zone ( for a project ) .

"""

def __init__ ( self , project : str , zone: str ) :
self .compute = googleapiclient . discovery . build ( ’compute’, ’v1’)
self . project = project
self .zone = zone

def list_instances ( self ) −> list :
"""

Return a list of items ( instances ) .
"""
result = self .compute. instances () . list (

project =self . project , zone=self .zone) . execute ()
return result . get ( ’ items’ , [])

if __name__ == "__main__":
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PROJECT = "my−experiment"
ZONE = "europe−west1−c"

GCPCOMPUTE = GCPCompute(project=PROJECT, zone=ZONE)
INSTANCES = GCPCOMPUTE.list_instances()

print (">> Project : %s " % PROJECT)

# Just print instances names ( if any):
if not INSTANCES:

print (" \ nInstances (name) for zone %s:" % ZONE)
for instance in INSTANCES:

print ("−> %s" % instance[’name’])
else :

print (" \nNo instances found for zone %s" % ZONE)

• The output of running this code is as follows:

$ python list_instances .py

>> Project : my−experiment

Instances (name) for zone europe−west1−c
−> Instance_1
−> Instance_2
−> Instance_3

6.2.4 Code in the Cloud: Considerations

At this point, in terms of both running and writing software in the Cloud, Sasha
must decide whether to start from scratch (and fully embrace the Cloud paradigm)
or to refactor the code to run in the cloud, which implies the following:

• Starting a cloud native project: Architect the systems and implement them
from scratch to take advantage of all the resources (such as APIs) while
mitigating the pitfalls (e.g., poor performance in specific situations) of the cloud
environment.

• Making software and systems cloud enabled [4]: Migrate as much of the
software as possible to take advantage of the cloud or, in a more limited case,
wrap the software so that it can at least run within the cloud (e.g., within a regular
instance).
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Next, Sasha must understand some other aspects before starting the implementa-
tion (for either of the two approaches) that will make Sasha aware of the limitations,
trade-offs, and impacts of their work.

6.2.4.1 General Aspects

• Most of the hardware is (highly) abstracted: Sometimes the information the
system provides does not reflect the reality (e.g., AWS EC2 Computer Units).
This characteristic can make it difficult to fine-tune the results (e.g., specific
compiler flags).

• Some systems share resources: The CPU or I/O (IOPS) can share resources,
which can result in some unexpected results, such as CPU bursts or underper-
forming disks.

• Always use APIs by default (and avoid using the UI): Some resources are only
available in this manner.

• Take advantage of “out-of-the-box” systems and components: technologies
such as containers (e.g., Docker or Kubernetes) and PaaS (e.g., Hadoop as a
Service) can save considerable time in setting up the infrastructure.

6.2.4.2 Network

• Latency: Network latency is one aspect that greatly impacts code, especially
scientific code that takes advantage of technologies such as MPI and low-
latency networks (e.g., InfiniBand). By default, most cloud providers offer
a network intended for general purposes (even though some providers claim
ultra-low latency) that could dramatically degrade the performance of scientific
applications. Therefore, the general recommendation is to consider the available
optimizations per provider (some offer HPC-optimized environments, separated
from the regular deals) and conduct an initial assessment (e.g., perform an initial
run to determine the impact on the application) or re-imagine the software in
such a way that vertical scalability gains weight versus horizontal scalability and
low-latency communications.

• Limited troubleshooting: In the cloud environment, troubleshooting issues with
the network are limited given the nature of the networks and their abstraction.

• Proximity and hardware allocation/affinity: By default, the allocation of
resources such as instances is limited, usually by region. This limitation can be
challenging for applications that require low latency and high affinity and should
be discussed with the provider, as they can offer on-demand and customized
solutions to this problem (e.g., separated environments).

• Private networks: Some networks that need to be reachable from Sasha’s
systems or services might not be directly reachable by the cloud provider. For
example, a private research facility might provide access to specific data (that
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could be required for our experiments) over only their own private networks.
A VPN is a potential solution but is not always available for all providers or
locations.

6.2.4.3 Storage

• Unlimited storage: One of the main advantages of the cloud is the high level of
abstraction from resources and their presentation, which makes storage virtually
unlimited (limited only by the budget). This unlimited storage can be viewed as
an advantage versus on-site infrastructure, where more storage requires a more or
less complex set of operations (such as racking or configuring the new hardware).

• Different levels of storage: In addition to the previous point, abstraction can also
provide access to different levels of storage, that is, from fast and expensive (for
frequent access) to slow and inexpensive (for backups or infrequent access).

6.3 Starting an Experiment in the Cloud

At this stage Sasha, has sufficient knowledge and information to setup an experiment
in the cloud. We reiterate various points for review:

• Project management: Although not mandatory, it is highly recommended, and
good practice, to use a project management tool. Moreover, Sasha should follow
a well-defined working methodology [14], which will increase the probability of
success.

• Version control: Sasha should maintain and share code and documentation under
a version control system (such as Git).

• Select the cloud provider and technologies to use (and try to calculate
dependencies and costs).

6.3.1 Example: Month Classifying Experiment

Sasha’s new project is simple software that classifies a given month in terms
of cloudiness. Sasha plans to use available funds for research on AWS. In the
initial naive approach, the source of the data will be NASA’s Earth data API [6].
Specifically, the cloud provider and technologies that Sasha will need are as
follows:

• Cloud provider: For this case, let us assume that it is AWS.
• Technologies:
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Bucket: nasa-experiment

EC2 Instance

NASA Earth data
(API)

1: Get Classificator code

4: Upload Results

3: Compute Data

2: Get Month Data

Fig. 6.2 High-level architecture and workflow for the cloudiness month classifier experiment

– Programming language and libraries: Python 3 and NumPy.
– Tooling: AWS Command Line Interface.
– Third party APIs: NASA’s Earth data API.
– Cloud technologies/services: AWS EC2 (compute) and S3 (storage)

The software will be named classificator.py: a very high-level architecture and
workflow is shown in Fig. 6.2.

• Pre-requirements:

– This step assumes that a proper virtual private cloud (VPC) and a subnet are
correctly created within AWS (more information on how to set up a VPC and
subnet can be found in the official documentation [15]). For this example, the
created subnet has the id subnet-1a2b3c4e.

– A valid/created key pair is required to access the instance via SSH if needed
(a key pair can be created on the AWS console (UI) EC2 Manager→Key
Pairs→Create Key Pair). For this example, the key pair will be nasa-
experiment

– An S3 bucket is created (this can be done on the AWS console (UI) under
S3→Create Bucket), and the classificator.py code is located in the bucket with
public access (so it can be downloaded from the instance).
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This script will bring up a t2.micro instance on Ireland running Amazon Linux
(ami-047bb4163c506cd98) on the subnet subnet-1a2b3c4e that is accessible via
SSH using the key nasa-experiment.2

The first part of the code creates a basic infrastructure on AWS composed of a
single instance from the offered free tier. This is a simple shell script that uses the
AWS CLI.3

#!/ bin /bash
# AMI id is for Amazon Linux
aws ec2 run−instances −−region eu−west−1 −−image−id ami−047

bb4163c506cd98 −−count 1 −−instance−type t2.micro −−key−name nasa
−experiment −−subnet−id subnet−1a2b3c4e −−instance−initiated−
shutdown−behavior terminate −−user−data file://${PWD}/scripts/boot.sh

The content of the boot script “boot.sh” that installs the dependencies and runs
the simulation code is as follows4:

#!/ bin /bash
yum update −y
amazon−linux−extras install python3
pip install numpy boto

# Get the classifier code from the shared URL (the same bucket on this
case)

curl https://s3−eu−west−1.amazonaws.com/nasa−experiment/classifier.py −o
/tmp/ classifier .py

chmod +x /tmp/ classifier .py
/tmp/ classifier .py

# Computation and upload finished : the instance will terminate itself
shutdown −h now

The main steps in the simulation are as follows:

• Obtain the cloud score for a month (day by day) from the NASA API.
• Given that data, calculate the average cloud score for the month and the most

typical day of that month.
• Upload the result to an AWS S3 object.
• Return a success message to the user.

2Note that this code is greatly simplified (for illustrative purposes) and is subject to optimization
(such as multiprocess requests using arguments instead of constants).
3The installation steps can be found at https://docs.aws.amazon.com/cli/latest/userguide/installing.
html.
4Note, as previously mentioned, that the code of the classifier must be publicly available from the
URL that the script curls.

https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
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Finally, the code of classificator.py is as follows:

import json
import numpy
import os
import requests
import tempfile
import boto
import boto.s3
from calendar import monthrange
from datetime import datetime
from boto.s3 .key import Key

# Constants: Keys and secrets
NASA_API_KEY = "NASA_API_KEY"
AWS_ACCESS_KEY_ID = ’XXX’
AWS_SECRET_ACCESS_KEY = ’YYY’
S3_BUCKET = ’MY_EXPERIMENT_BUCKET’

# Constants: Date YYYY−MM
DATE = "2016−07"

# Constants: Longitude and Latitude
LON = "−7.8987052"
LAT = "42.3384207"

class S3(object) :

def __init__ ( self ) :
self ._conn = boto .connect_s3(AWS_ACCESS_KEY_ID,

AWS_SECRET_ACCESS_KEY)
self ._bucket = self ._conn. create_bucket (

S3_BUCKET, location=boto.s3.connection.Location.DEFAULT)

def upload( self , source_file , target_file ) :
k = Key(self ._bucket)
k.key = target_file
k. set_contents_from_filename ( source_file )

class Month(object):

def __init__ ( self , longitude , latitude , date , api_key) :
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self . _longitude = longitude
self . _latitude = latitude
self . _date = date
self ._api_key = api_key

self . _baseurl = "https://api .nasa .gov/ planetary / earth /imagery/"
self ._req = requests

# Data from month
self ._monthdata = {}

def _getData( self ) :
year , month = self . _date . split ( ’−’)
mrange = monthrange(int(year) , int (month))

print ("> Receiving data from API ... ")

for day in range(1, mrange[1] + 1) :
day_date = "{}−{}".format(self . _date , day)
day_url = "{base}?lon={lon}&lat={lat}

&date={date}&cloud_score=True
&api_key={api_key}".format(base=self. _baseurl ,
lon=self . _longitude , lat =self . _latitude ,
date=day_date, api_key=self ._api_key)

# An optimization could be to make less requests to the API (
closest day from the API)

# Another optimization is to use multiprocessing pool for
parallel

# requests
day_data = self ._req . get (day_url )
day_data_json = day_data. json ()
response_date = datetime . strptime (

day_data_json[ ’date ’ ], ’%Y−%m−%dT%H:%M:%S’)
response_simple_date = "{}−{}−{}".format(

response_date . year , response_date .month, response_date .
day)

# Add data to dict only if not there already
if response_simple_date not in self ._monthdata:

self ._monthdata[response_simple_date] = day_data_json

def _getAverageDay(self ) :
self ._getAverageCloudScore()
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closest_average_day = ’ ’
average_distance = 1

for day in self ._monthdata:
day_avg_distance = numpy.absolute(

self ._monthdata[day][’cloud_score ’ ] − self .
_average_cloud_score)

if (day_avg_distance < average_distance ) :
# Mark this day as the closes to the average value
average_distance = day_avg_distance
closest_average_day = day

self . _closest_average_day = closest_average_day
self ._writeTempFile()

def _getAverageCloudScore(self ) :
cloud_scores = []
for day in self ._monthdata:

cloud_scores .append( self ._monthdata[day][’cloud_score ’ ])

self . _average_cloud_score = numpy.mean(cloud_scores)

def _writeTempFile( self ) :
new_file , filename = tempfile .mkstemp()
print ("> Writing local temp file : %s" % filename)
os . write ( new_file , json .dumps(

self ._monthdata[ self . _closest_average_day ]) )
os . close ( new_file )

def _writeOutput( self ) :
print (" ")
print ("> Month Average Cloud Score for %s: %s" % (DATE, self.

_average_cloud_score) )
print ("> Average Day Date (YYYY−MM−DD): %s (avg.: %s)" %

( self . _closest_average_day , self ._monthdata[ self .
_closest_average_day ][ ’cloud_score ’ ]) )

def process ( self ) :
self ._getData ()
self ._getAverageDay()
self . _writeOutput ()
self ._uploadS3()
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if __name__ == "__main__":

month = Month(LON, LAT, DATE, NASA_API_KEY)

# Process data for month
month.process ()
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Chapter 7
Serverless Experiments in the Cloud

7.1 Sasha Revisits the Experiment

After spending time running a small experiment on the cloud over EC2, i.e., the
classic approach, Sasha realized that the setup was complex. Serverless computing
provides a promising new solution for this problem. Several examples of the
application of serverless computing in the field of scientific research exist, as shown
in Sect. 3.6, and Sasha decides to explore whether it could simplify the code, the
setup, and the way the team runs simulations. Let us see what serverless computing
means and how it can make cloud computing easier to implement.
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7.2 Thinking Serverless

Function as a Service (FaaS), or serverless (computing) [1] is a relatively new
model within the cloud paradigm in which software runs in a highly abstracted and
constrained environment and the developer has a low level of control in exchange
for an automated and hands-off infrastructure. Serverless computing platforms vary
in terms of the level of abstraction from those that allow developers to have some
control, such as Google’s App Engine, where machine type can be selected and third
party packages can be installed, to FaaS such as AWS Lambda, where the runtime
environment is entirely defined by AWS and the developer has to adjust their code
to the restricted environment.

Designing (or re-designing) a solution for FaaS [2] requires re-thinking some
aspects such as how to trigger the function and how to stream data; therefore, server-
less computing is not for every one and every problem but is highly advantageous
for certain types of implementations. If Sasha really needs control of their resources
(e.g., disk IOPS) or their project has specific or customized requirements (e.g.,
custom libraries), serverless computing would not be the best solution. However, if
Sasha’s software is sufficiently generic (e.g., using a major language with standard
numerical modules), solutions within the serverless spectrum might be optimal.

7.2.1 Pros and Cons

Pros
• Simplified workflow: This benefit not only defines but also justifies the use of

serverless computing over any other cloud service. The cloud provider offers the
required expertise to run the infrastructure, so the developer is hands-off and can
focus their efforts on designing and implementing software.

• Better control over costs: Serverless computing (usually) follows a pay-as-you-
go scheme, where the provider charges only for the exact used resources at a
finer-grain level than that of any other cloud service.

Cons
• Challenging for large HPC problems [3, 4]: Allocating a large number of

resources still requires planning with the cloud provider; otherwise, Sasha might
experience a situation where, for example, the CPU power required by their
application is not available.

• Higher level of abstraction corresponds to a lower level of control: A good
example is that Sasha’s software could suffer underperformance if the wrong
resources are used. Remember that Sasha does not control many of the resources:
the Cloud provider allocates them (and the resources might not be a good fit for
their problem).
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• Specific code: In some cases, Sasha’s application could require customized
code that is available only on certain providers, that is, non-standard code and
some level of vendor lock-in. Moreover, Sasha should evaluate if resources are
available to refactor their code to run within a serverless environment.

7.3 Example: Month Classifier, Serverless Version

After revisiting the month classifier experiment (described in the previous chapter)
and reviewing the current state of the art and trends in cloud computing, Sasha thinks
that their month classifier is a good candidate for a serverless implementation for the
following reasons:

• The researchers will not need to consider the requirements and dependencies
such as EC2 instances or VPC.

• The code is standard (Python 3) and relatively simple.
• The additional costs related to the infrastructure will be reduced using on-demand

computing.

In this case, Sasha has received some funding for GCP, so the FaaS solution is
selected: Google Cloud Functions [5]. The specific details are as follows:

• Cloud provider: In this case, let us assume that it is GCP.
• Technologies:

– Programming language and libraries: Python 3 and NumPy.
– Third-party APIs: NASA’s Earth data API.
– Cloud technologies/services: Google Cloud Functions and Google Cloud

Storage (GCS).

A very high-level architecture and workflow is shown in Fig. 7.1.
• Pre-requirements:

– Valid credentials (service account) that have permission to manage both cloud
functions and cloud storage are required. The easiest way to obtain credentials
is to use the Google Cloud SDK [6] and authenticate the current session with
the following command to provide a link to open and validate the session:

$ gcloud auth login

– A GCS bucket must be created, which can be done by running the following
command:

$ gcloud mb gs :// MY_EXPERIMENT_BUCKET

Note that this code is a simple approach and is not intended for production;
additionally, this is a sync call (long-running sync HTTP requests are usually not
a good idea) used as an example starting point. This code is a variation of the
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Fig. 7.1 High-level serverless computing architecture and workflow for the cloudiness month
classifier experiment

that presented in Sect. 6.3.1 but adapted to Google Cloud Functions. The main
differences are the following:

• The requirements are resolved on the server side, and Google takes care of the
resolution (out of a requirements.txt file).

• The output and logs are gathered by the cloud platform and presented on a UI
(Google Cloud Logs/Stackdriver in this case).

• All the authentication and storage that was AWS-specific has been replaced by
the GCS counterpart.

Despite these differences, the main logic of the simulation remains the same:

• The code is triggered, in this case, by the HTTP endpoint created by Google
Cloud Functions for this experiment.

• Obtain the cloud score for a month (day by day) from the NASA API.
• Given that data, calculate the average cloud score for the month and the most

typical day of that month (closest to the average).
• Upload the result to a Google Cloud Storage object.
• Return a success message to the user.

Two files are required to run this program: the requirements file (require-
ments.txt, used to resolve dependencies) and the simulation code itself (main.py).

The content of the file requirements.txt is as follows:

numpy
google−cloud−storage

The content of the file main.py is as follows:

import json
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import numpy
import os
import requests
from calendar import monthrange
from datetime import datetime
from google.cloud import storage

# Constants: Keys and secrets
NASA_API_KEY = "NASA_API_KEY"
AWS_ACCESS_KEY_ID = ’XXX’
AWS_SECRET_ACCESS_KEY = ’YYY’
GCS_BUCKET = ’MY EXPERIMENT BUCKET’

# Constants: Date YYYY−MM
DATE = "2016−07"

# Constants: Longitude and Latitude
LON = "−7.8987052"
LAT = "42.3384207"

class Month(object):

def __init__ ( self , longitude , latitude , date , api_key) :
self . _longitude = longitude
self . _latitude = latitude
self . _date = date
self ._api_key = api_key

self . _baseurl = "https://api .nasa .gov/ planetary / earth /imagery/"
self ._req = requests

# Data from month
self ._monthdata = {}

def _getData( self ) :
year , month = self . _date . split ( ’−’)
mrange = monthrange(int(year) , int (month))

print ("> Receiving data from API ... ")

for day in range(1, mrange[1] + 1) :
day_date = "{}−{}".format(self . _date , day)
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day_url = "{base}?lon={lon}&lat={lat}&date={date}&
cloud_score=True&api_key={api_key}"

.format(base=self . _baseurl , lon=self . _longitude ,
lat =self . _latitude ,

date=day_date, api_key=self ._api_key)

# An optimization could be to make less requests to the API (
closest day from the API)

# Another optimization is to use multiprocessing pool for
parallel

# requests
day_data = self ._req . get (day_url )
day_data_json = day_data. json ()
response_date = datetime . strptime (

day_data_json[ ’date ’ ], ’%Y−%m−%dT%H:%M:%S’)
response_simple_date = "{}−{}−{}".format(

response_date . year , response_date .month, response_date .
day)

# Add data to dict only if not there already
if response_simple_date not in self ._monthdata:

self ._monthdata[response_simple_date] = day_data_json

def _getAverageDay(self ) :
self ._getAverageCloudScore()
closest_average_day = ’ ’
average_distance = 1

for day in self ._monthdata:
day_avg_distance = numpy.absolute(

self ._monthdata[day][’cloud_score ’ ] − self .
_average_cloud_score)

if (day_avg_distance < average_distance ) :
# Mark this day as the closes to the average value
average_distance = day_avg_distance
closest_average_day = day

self . _closest_average_day = closest_average_day

def _getAverageCloudScore(self ) :
cloud_scores = []
for day in self ._monthdata:

cloud_scores .append( self ._monthdata[day][’cloud_score ’ ])
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self . _average_cloud_score = numpy.mean(cloud_scores)

def _writeResultFile ( self , filename , file_content ) :
# Write Result file to GCS Bucket
client = storage . Client ()
bucket = client . get_bucket (GCS_BUCKET)
blob = bucket .blob( filename )
blob . upload_from_string ( str ( file_content ) )

def _writeOutput( self ) :
# This will be shown on the Function logs output
print (" ")
print ("> Month Average Cloud Score for %s: %s" % (DATE, self.

_average_cloud_score) )
print ("> Average Day Date (YYYY−MM−DD): %s (avg.: %s)" % (

self._closest_average_day, self._monthdata[self.
_closest_average_day ][ ’cloud_score ’ ]) )

def process ( self ) :
self ._getData ()
self ._getAverageDay()
self . _writeOutput ()
# Write month average to storage
self . _writeResultFile ("%s_%s" % (DATE, "month_average"), self.

_average_cloud_score)
# Write typical data for a day a (this is, average day) to storage
self . _writeResultFile ("%s_%s" % (DATE, "day_average"), self .

_closest_average_day )

def classifier ( request ) :

month = Month(LON, LAT, DATE, NASA_API_KEY)

# Process data for month
month.process ()

return f"Computation completed! Results available on the GCS Bucket."

Once the code is ready, it can be deployed to a cloud function with the following
simple command:

$ gcloud functions deploy start_simulation −−runtime python37 −−trigger
−http
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This command will return information about our function, such as the endpoint
(httpsTrigger url), which will be used to trigger the cloud function. For our example,
the function is as follows: https://us-central1-OUR-EXPERIMENT.cloudfunctions.
net/simulation. Then, the command to start the simulation is as follows:

$ curl "https://us−central1−OUR−EXPERIMENT.cloudfunctions.net/
simulation"

Once the simulation is complete, it can be removed with the gcloud command:

$ gcloud functions delete simulation

7.4 Example: Serverless Sensor Data Collector

After the success running the month classifier over Google Cloud Functions, Sasha’s
team have been considering taking advantage of their new knowledge to solve
another problem they have faced for a while: NASA API’s data is great but is not
exactly what they need. Sasha’s team is more interested in the cloud coverage for
a specific region and have been deploying highly sensitive sensors that can send
real-time data. Thus, the researcher needs an easy way to collect these data.

Given that the team now knows how to run serverless code, Sasha suggests a
simple function that, given a sensor that sends data, writes the result to a file (for
now, they will probably start with using a key/value store, such as Datastore) so that
they can read the results directly from their GCS bucket. The workflow for this task
is shown in Fig. 7.2.

Fig. 7.2 High-level serverless architecture and workflow for a sensor data collector

https://us-central1-OUR-EXPERIMENT.cloudfunctions.net/simulation
https://us-central1-OUR-EXPERIMENT.cloudfunctions.net/simulation
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The implementation is as follows1:
The content of the file requirements.txt is the following:

google−cloud−storage

The content of the file main.py is the following:

import time
import json
from google.cloud import storage

# Constants
GCS_BUCKET = ’MY_EXPERIMENT_BUCKET’

def writeSensorData( sensor_id , sensor_value ) :
# Write Result file to GCS Bucket
timestamp = int (time. time () )
filename = "sensor_%s_%s"%(sensor_id, timestamp )
client = storage . Client ()
bucket = client . get_bucket (GCS_BUCKET)
blob = bucket .blob( filename )
blob . upload_from_string ( str ( sensor_value ) )

def sensor ( request ) :
# sensor_id and sensor_value are required arguments
request_json = request . get_json ()
if request . args and ’ sensor_id ’ in request . args and ’ sensor_value ’ in

request . args :
args = request . args . to_dict ()
writeSensorData( args [ ’ sensor_id ’ ], args [ ’ sensor_value ’ ])
return f ’OK’

return f ’Missing Arguments!’

The code is deployed via the following command:

$ gcloud functions deploy sensor −−runtime python37 −−trigger−http

Now, the sensors simply need to call a URL to start reporting their data to the
serverless microservice:

curl "https:///us−central1−OUR−EXPERIMENT.cloudfunctions.net/sensor?
sensor_id=<SENSOR_ID>&sensor_value=<SENSOR_VALUE>"

1Note that there is no security or authentication in this implementation; it is simply a proof of
concept: anyone with the URL can make a GET request and insert data in the GCS bucket.



72 7 Serverless Experiments in the Cloud

References

1. Baldini I et al (2017) Serverless computing: current trends and open problems. Research
advances in cloud computing. Springer, Singapore, pp 1–20. https://doi.org/10.1007/978-981-
10-5026-8_1

2. Hong S (2018) Go Serverless: securing cloud via serverless design patterns. In: 10th USENIX
workshop on hot topics in cloud computing (HotCloud 18), Boston

3. Kleppmann M (2017) Designing data-intensive applications, Chapter 8. O’Reilly, Sebastopol
4. Montes D et al (2017) Views on the potential of Cloud computing and IaaS/HPCaaS for

meteorology and climatology. In: EMS Annual Meeting Abstracts (EMS2017), Vienna, vol 14,
p 639

5. Google (2019) Google cloud functions. https://cloud.google.com/functions/docs/concepts/
python-runtime. Accessed 10 May 2019

6. Google (2019) Cloud SDK. https://cloud.google.com/sdk/. Accessed 10 May 2019

https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://cloud.google.com/functions/docs/concepts/python-runtime
https://cloud.google.com/functions/docs/concepts/python-runtime
https://cloud.google.com/sdk/


Chapter 8
Ethical and Legal Considerations
of Cloud Computing

For the purpose of this book, addressing ethical and legal issues is more
challenging than initially thought. First, Sasha must realize that both scientific
research and IT act within their own realms. When conducting research, depending
on the project, Sasha might need their work to be approved by a commission
of ethics. Moreover, Sasha must follow the scientific method to ensure scientific
reproducibility and make the work useful to others.
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Ethics in information technology is not very different from ethics in other fields.
Given that Sasha probably does not develop most of their software and hardware,
Sasha must consider what software they are using and how it has been designed.
This factor was noted decades ago by Richard M. Stallman when he initiated the
Free Software movement, and it is also part of the activity developed by bodies such
as the Free Software Foundation and the Electronic Frontier Foundation.

After the popularization of the Internet, data protection added a new dimension.
In some ways, the use of cloud computing involves the same legal issues as working
with many other processes and services on the Internet. For example, Sasha should
know whether the SaaS being used is under a license of the style of the Affero GPL
(AGPL) [1] (specifically designed for the cloud), which would provide a guarantee
that the software run in the cloud is free, by granting access to its code.

Companies selling cloud computing services must be the first to provide
maximum transparency and compliance with the highest standards. Users of these
services include National Agencies, for example, the military, which require the
strongest possible security levels. Fortunately, companies providing these services
must comply with strong ISO quality standards that ensure high levels of responsi-
bility.

Almost 10 years ago, there was an initiative to develop a “Cloud Computing
Manifesto” in a collaborative manner based on free tools and with the participation
of industry. The manifesto was a step beyond the “Cloud Computing Bill of Rights”;
however, the main players eventually decided not to sign the manifesto, and the
idea died in 2012. Drafts of the manifesto were highly technical, focusing on the
development of the business model of cloud computing; however, they also included
the notion of interoperability among “Clouds.” Recent work [2] classifies the
ethical issues in cloud computing according to four categories: privacy and security,
compliance, performance ethics and environmental impacts (already discussed in
Sect. 3.5). The first category is the typical worry about data privacy, the second
concerns the correct level of standards. Performance ethics refer to the delivery of
the service that has been contracted. In summary, these three concerns are related
to general “business ethics” and are applicable independent of whether the cloud is
being used or not. The implications and problems that cloud computing poses in this
field are acknowledged by the existence of recent projects such as SafeCloud [3],
which is funded by the European Union.

At this point, Sasha could be using cloud computing resources for research at
any level of implementation or any combination presented in the previous chapters.
One of the main concerns raised in cloud computing is related to data. Giving others
custody of your data always raises legal and ethical issues that must be taken into
account. Ethical issues related to potential data mining of your stored data might
not be your main concern if you are storing personal photos or emails but could be
worrying if you store medical records from patients in clinical trials. For example,
to address this latter problem, AWS implements measures to protect medical data
and comply with laws such as the U.S.A. HIPAA Act [4]. However, in some cases,
data storage can raise complicated issues, for example, using data handed over by
a third party such as a private company. In such cases, the number of copies of the
data and the storage location could have been settled by a previous contract that



References 75

could eventually come into conflict with the contract that you signed with a given
cloud computing provider. A good example is the problem raised after Google has
got access to medical records of Americans [5].

Furthermore, in scientific research, all the details related to the software being
used must be known, including versions and license (which should be free [6]),
because these details are mandatory to ensure scientific reproducibility of your
results and should be made available in publications. Indeed, there is a need for
increasing scientific computational reproducibility; therefore, it is necessary to
ensure that cloud computing is in compliance. This consideration is also useful
to avoid lock-in situations. For example, you may eventually want to move
your operations and data from one cloud provider to another. From a technical
perspective, this process will be much easier given more information about your
current infrastructure.

In summary, when using cloud computing, Sasha should be aware of the lack
of full control on what is shared. For example, a given cloud provider could be
forced by governmental bodies to share Sasha’s data because of legal concerns.
Plenty of examples of this scenario exist, for example, the U.K.-U.S. Cloud Act
signed in October 2019 [7]. This scenario applies to only a minor portion of cases
of scientific research, and some kind of illegal activity would need to be spotted.
However, the main point is that by using cloud computing, Sasha cedes power to
make the final decision of whether to share data (although additional possibilities,
such as the use of encrypted cloud storage, exist). Moreover, Sasha should be aware
that data stored in the cloud are likely not protected or under the same laws and
regulations as those in their country or usual legal domain, as the infrastructure
providing the cloud service is located in several countries and the company may
be based in another country. Therefore, the data may exist under potentially very
different legal conditions. The exact legal conditions partially depend on the contract
a user signs with a cloud provider—which can vary substantially—and how the
cloud provider applies the contract [8]. In other cases, local regulations such as those
of the European Union could be incompatible with regulations of other regions. You
should be aware that you might have to specifically choose that your research is
conducted and your data are stored on data centers geographically located in the
same region as your institution or funding body. This is not only because of the
laws that apply to data but the right of the members of Sasha’s team to access them
and the resources, sometimes only available for certain people that have got security
clearance or has the right passport.
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Chapter 9
You Are Outdated, We Are Already
Updating This Book

I’m sorry, are your from the past? (Roy, The IT Crowd)

That innovation is happening all the time and that the pace of innovation has not
been equal over time is clear. Throughout the past century, the pace of innovation
has increased dramatically. In fields such as computer science, innovation is a
major factor. Cloud computing has become a dominant technology in recent years,
driving innovation and business profits. As cloud computing develops and adapts in
response to people’s desires and needs to manage data and devices in ways that go
beyond purely technological advances, substantial room for improvement exists in
the next few years.
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Clearly, the strategies of some providers of cloud computing services will include
offering more complete solutions and enhancing the regular services used for in-
house computing systems in the cloud. For example, Google has recently announced
that it is making several blockchain technologies available in its Cloud services.
Additionally, the bid for the integration of AI as a side service to offer jointly with
cloud computing for different purposes (e.g., data mining) is now clear. This kind
of service has great potential, as in some cases, you only need to allow access to
data already stored in the cloud without any additional work on your part to obtain
further analysis, insights or recommendations that might eventually lead you to new
ideas, results or improvement of management or other practices.

As the use of cloud services continues to grow, the business of consultancy
to adapt existing working environments (laboratories, companies, etc.) to cloud
computing and to assess and perform migrations is expected to grow dramatically
in the future.

Another emerging field is quantum computing, a technology that is clearly not
suitable for desktop users. It is almost inconceivable that a quantum computer could
be operated outside a laboratory under very specific conditions to maintain the
lowest temperatures known. Therefore, quantum computing is likely to be operated
as a cloud computing service (IBM already offers something similar through
their “IBM Q Experience” (https://www.ibm.com/quantum-computing/technology/
experience/)), where the only thing that changes is the hardware used to provide
service. Therefore, in the future, any attempt to advance quantum computing will
follow the cloud computing paradigm. Although this kind of statement in computer
sciences can become obsolete in only a few years, we can state that no one expects
to sell a physical quantum computer in the near future.

The broader adoption of cloud computing services is expected to drive investment
in better Internet connections around the world. Some forecasts state that by the end
of the next decade, we will not be talking about connectivity and the use of the
cloud, but that it will be the only technology and everything will be interconnected,
including technologies such as the IoT. Moreover, a growing research line related to
networks in cloud computing is the use of such technology to improve cybersecurity,
for example, to increase resilience to DDoS attacks.

As a scientist, Sasha usually applies for and has to manage funding. Sasha could
be thinking about the next computer that must be purchased for the next research
project. If Sasha is not thinking about a quasi-portable device such as a laptop or a
small box, then they are stuck in the past. Other than privacy and constant access to
the most relevant data needed for a few days or everyday, there is no point in storing
data on a large machine. If the word “workstation” is familiar to you and is how you
usually work, check Wikipedia, which speaks about this kind of computer mostly in
past tense.

You might be worried about what happens if you travel to a place with no Internet
connection and cannot access your data. This situation is not going to disappear
entirely, but in some regions of the world, this scenario is comparable to worrying
about not having a power connection. Furthermore, there are places where your
chances of having Internet access are greater than those of finding a power switch.

https://www.ibm.com/quantum-computing/technology/experience/
https://www.ibm.com/quantum-computing/technology/experience/


Glossary

Agile Agile (Software development) A term that comprises different method-
ologies, practices, and frameworks based on cross-functional self-organized
teams that aim to deliver products and services in a continuously improving,
incremental and fast manner. Examples of Agile approaches are Scrum, Kanban,
and DevOps.

Alexa A device developed and sold by Amazon that works as a personal assistant
through connection to the cloud.

Apache Short form of Apache HTTP Server. One of the most popular web server
software.

APIs Application programming interfaces (APIs) are (very) high-level abstractions
that provide a standard way of communicating with software or infrastructure.

AWS Short form of Amazon Web Services, Amazon’s cloud computing platform.
AWS Lambda AWS FaaS implementation.
Azure Microsoft’s cloud computing platform.
Big Data Computer science field that processes and analyses big sets of data for

different purposes, such as extraction of meaningful information or forecasting.
Blockchain Series of technologies that power the aggregation (append) of a set of

records connected via cryptographic methods. Common uses for blockchain are
electronic wallets and smart contracts.

BOINC Free-software middleware for grid computing, implemented by the Uni-
versity of California (Berkeley) and widely used for volunteer computing.

Bucket Highest level in the hierarchy of cloud storage systems (such as S3 or GCS)
that acts as a container for the objects of the file system.

Chatbot Software that performs conversations.
Citizen science Science performed by citizens, usually contributing to basic parts

of the research process and in collaboration or under the supervision of profes-
sional scientists.
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Cloud enabled Software or system that initially was not created to run on the cloud
but that, with some modifications, can run in such environment. Usually, cloud-
enabled software can take advantage of all the features that cloud computing
offers.

Cloud native Software or system that was designed to run to take advantage of all
the features that the cloud computing environment offers. Usually, cloud-native
software cannot run outside the cloud or will lose many of its features outside of
this environment.

CNCF Cloud Native Computing Foundation, part of the Linux Foundation. Cre-
ated to promote the concept of cloud native and facilitate the creation and growth
of an ecosystem.

Container Virtual runtime environment that runs on top of a single operating
system (OS) kernel and emulates an operating system rather than the underlying
hardware.

Cores Independent processing units that can be grouped into several integrated
circuits.

Cpanel Online Linux-based web hosting control panel.
Data mining Processes and methodologies aimed towards discovering and extract-

ing patterns from data.
DDoS Distributed denial of service. Attack that causes a denial of service (DOS)

over a system or service.
Docker Most used PaaS to run containers.
EC2 AWS implementation to run contextualized virtual machines (instances) in

the cloud.
ERP Integrated suite for business management.
FaaS A way of using cloud computing associated to serverless that requires

only the implementation of functions without consideration of the underlying
infrastructure.

Free Software Free software refers to software that complies with the definition of
the free-software foundation (https://www.gnu.org/philosophy/free-sw.en.html)
and implies freedom to run the software, to access the code and modify it, to
redistribute it, and to redistribute modified versions of the program.

GCP Short form of Google Cloud Platform, Google’s cloud computing platform.
Git A distributed version of control system widely used in software development.
GNU Operative system that is free software (free as in “freedom”). GNU is a

recursive acronym for “GNU’s not UNIX.” The most extensive versions run with
the Linux kernel, though other versions are available.

Google App Engine Also known as GAE. Highly abstracted and sandboxed PaaS
implementation from GCP.

Google Cloud Functions GCP FaaS implementation.
GraphQL Facebook open-source data query and manipulation language for APIs.

Alternative to REST.
Hadoop Apache’s big data platform based on the massive distributed MapReduce

programming model.
InfiniBand Networking communications standard used in HPC.

https://www.gnu.org/philosophy/free-sw.en.html
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Instance Virtual machine with context (CPU definition, memory size, disk image,
etc.) running in a cloud computing environment. In the context of this book, the
terms virtual machine and instance are interchangeable.

IOPS Performance measurement that indicates input/output operations per second.
IRC A text chat protocol created by the end of the 1980s that became extremely

popular during the 1990s.
JSON JavaScript object notation is an open-standard file format that uses human-

readable text to transmit data objects.
Kernel Computer program, the core part of the operating system of a computer.
Kubernetes Free-software (container) orchestration system created by Google.
LaTeX A document preparation system that is commonly used in scientific

environments.
Linux Extremely popular kernel for operating systems.
Machine learning Cross-discipline field (with strong base in computer sciences

and statistics) that aims to extract and infer patterns in pools of (a priori) non-
structured data.

Microservice Architecture composed of decoupled, small, and independent ser-
vices.

MPI Standard for parallelization of tasks, usually in HPC environments.
NAS Storage attached and shared over the network.
NumPy Numerical library (and extensions) to Python.
Observability Attribute of systems and services that are observable (historical data

or forecasting) through metrics and logs.
PHP High-level programming language, very popular for web development.
POSIX A series of standards with the goal of maintaining compatibility across

different operating systems.
Private Cloud Cloud model where the infrastructure can be managed directly by

the IT department of the client or by the vendor, according to needs.
Private network Network that is private to an organization or infrastructure (that

is, not publicly accessible).
Public Cloud Cloud model where the servers in a data center can be shared by

several users according to needs. Resources are shared and publicly available.
PUE Power usage effectiveness is a method (ratio) to calculate how efficient a data

center is in terms of energy consumption.
Python High-level programming language, very popular in many environments but

especially in science, data science, and systems development.
Region A cloud region is the way that cloud providers represent the geographical

location of their data centers. Regions are divided in zones.
Research Credits Waivers and credit given by cloud computing providers to

researchers.
REST Representational state transfer architecture. Used to develop (RESTful)

APIs.
S3 AWS cloud storage implementation.
SDK Related software developer tools packaged together.
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SEO Techniques used to make websites rank higher on search engines like Google,
Bing, and Yahoo Search.

Serverless See FaaS.
Spark Apache Spark is a cluster computing framework built after Hadoop. Its main

architecture is based on resilient distributed dataset (RDD), an in-memory data
structure that allows fast computation.

SSD Solid state disk, usually flash memory that is used to achieve low latency and
high performance.

SSL See TLS.
TLS Transport layer security (that deprecates SSL) is a series of cryptographic

protocols that aim to provide secure communications over a network.
Virtual machine See instance.
Virtualization In the context of this book, this term means creating or running an

instance or container that runs as a real operating system.
VPC A virtual private cloud is a cloud environment that is isolated from others (its

network is not connected to a public network) and is usually only reachable via
a VPN.

VPN A virtual private network is a concept that indicates that a private network
is extended over a public network, that is, two or more private networks (not
reachable over public networks) can see each other and use public networks as
their communication channel (usually encrypted and secure).

VPS A virtual private server is a virtual machine sold by a provider. VPSs live
in a lower level of abstraction than cloud instances and are sold as pre-installed
(as-it-is) systems (providers do not allow self-service for VPS).

Zero download The scenario in which data are maintained in external servers (the
cloud) and computational tasks are performed there instead of maintaining big
datasets in-house or local systems to perform computations on them.
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