

Creative Projects for Rust
Programmers

Build exciting projects on domains such as web apps,
WebAssembly, games, and parsing

Carlo Milanesi

BIRMINGHAM - MUMBAI

Creative Projects for Rust Programmers
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Denim Pinto
Content Development Editor: Ruvika Rao
Senior Editor: Afshaan Khan
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Francy Puthiry
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Nilesh Mohite

First published: June 2020

Production reference: 1180620

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-622-0

www.packt.com

http://www.packt.com

To my mother, Anna Mazza, and to the memory of my father, Pietro,
for their sacrifices and for exemplifying the power of determination

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Carlo Milanesi has a computer science degree from the State University of Milan, and lives
in Bergamo, Italy. He is a software engineer with decades of experience in teaching and
developing software for desktop and the web on Windows or Linux, using C, C++,
Smalltalk, Delphi, Visual Basic, C#, Java, JavaScript, and Rust.

He loves writing tests and documentation and has experience in the domains of banking,
portfolio management, construction engineering, CAD systems for milling machines,
human-machine interface systems for machine tools, and websites and web applications for
enterprises and for public administration management. He has written a book on Rust
entitled, Beginning Rust: From Novice to Professional.

About the reviewer
Daniel Durante has been both an author and a technical reviewer for Packt publishing. He
is a consultant and strategist for Fortune 100 companies and a full stack developer from the
age of 12. His code exists in infrastructures such as Hubcash, Stripe, and Walmart.

He has worked on text-based browser games that have reached over 1,000,000 active
players. He has created bin-packing software for CNC machines, embedded programming
with cortex-m and PIC circuits, high-frequency trading applications. He has also helped
and contributed to maintain one of the oldest ORMs of Node.js (SequelizeJS).

I would like to thank my parents, my brother, my mentors, and friends who have all put
up with my insanity sitting in front of a computer day in and day out. I would not be here
today if it wasn’t for their patience, guidance, and love.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Rust 2018: Productivity 6
Technical requirements 7
Understanding the different editions of Rust 7
The projects 11
Working through the examples in this book 13
Exploring some utility crates 13

Pseudo-random number generators – the rand crate 13
Logging – the log crate 14
Initializing static variables at runtime – the lazy_static crate 15
Parsing the command line – the structopt crate 17

Summary 18
Questions 18

Chapter 2: Storing and Retrieving Data 19
Technical requirements 19
Project overview 20
Reading a TOML file 21

Using toml_dynamic 21
Using toml_static 23

Reading and writing a JSON file 25
The json_dynamic project 27
The json_static project 28

Reading an XML file 29
Accessing databases 32
Accessing a SQLite database 32

Implementing the project 33
Accessing a PostgreSQL database 36

Implementation of the project 37
Storing and retrieving data from a Redis store 38

Implementing the project 39
Putting it all together 40
Summary 41
Questions 41

Chapter 3: Creating a REST Web Service 43
Technical requirements 44
The REST architecture 44

Table of Contents

[ii]

Project overview 45
Essential background theory and context 46
Building a stub of a REST web service 48

Running and testing the service 48
Getting a resource using the GET method 49
Sending a named resource to the server using the PUT method 50
Sending a new resource to the server using the POST method 51
Deleting a resource using the DELETE method 51
Sending an invalid command 52
Examining the code 53

Building a complete web service 57
Downloading a file 57
Uploading a string to a specified file 58
Uploading a string to a new file 58
Deleting a file 59
Examining the code 59

Building a stateful server 63
How to have a stateful server 64
The API of this service 65
Testing the service 66
Implementing the database 67
Handling queries 68

Returning JSON data 68
Summary 70
Questions 70
Further reading 71

Chapter 4: Creating a Full Server-Side Web App 72
Technical requirements 73
Definition of a web app 73
Understanding the behavior of a web app 74
Project overview 77
Using the Tera template engine 77
A simple list of persons 84

The templates folder 87
The other Rust handlers 90

A CRUD application 93
The JavaScript code 96
The HTML code 97
The Rust code 99

The db_access.rs changes 99
The main.rs changes 100

Handling an application with authentication 105
The implementation 107
The HTML code 108

Table of Contents

[iii]

The JavaScript code 109
The mock database code 110
The main function 111

Summary 113
Questions 114
Further reading 114

Chapter 5: Creating a Client-Side WebAssembly App Using Yew 115
Technical requirements 116
Introducing Wasm 116
Understanding the MVC architectural pattern 117

Implementing two toy web apps 117
What is the MVC pattern? 119
The model 119
The view 120
The controller 120
View implementation 122
Controller implementation 122
Understanding the MVC architecture 123

Project overview 124
Getting started 124

The incr app 124
The adder app 128
The login app 131

Organization of the project 133
The db_access.rs file 134
The main.rs file 135
The login.rs file 138

The yauth app 142
Understanding the behavior of the app 142
Organization of the project 143

The persons_list.rs file 143
Why an empty collection wouldn't be good for filtered_persons 146

The one_person.rs file 150
A web app accessing a RESTful service 152

The persons_db app 154
The yclient app 155

The imported crates 155
The source files 156
The changes to the models 156
A typical client/server request 157

Summary 162
Questions 162
Further reading 163

Chapter 6: Creating a WebAssembly Game Using Quicksilver 164

Table of Contents

[iv]

Technical requirements 165
Project overview 165
Understanding the animation loop architecture 166
Implementing the ski project 170

Understanding the code behind this 171
Implementing the silent_slalom project 176
Implementing the assets_slalom project 184

Analyzing the code 187
Summary 191
Questions 191
Further reading 191

Chapter 7: Creating a Desktop Two-Dimensional Game Using ggez 192
Technical requirements 193
Project overview 193
Understanding linear algebra 194
Implementing the gg_ski project 197

The main function 197
Patterns of input handling 199
Input handling in the gg_ski project 201
Other differences with quicksilver 202

Name of the trait 203
The type of context 203
The new method 203
The angle's unit of measurement 204
How to specify the FPS rate 204
Handling the ski steering 205
Computation of new position and speed 205
Drawing the background 206
Drawing composite shapes 206
Ending the draw method 208

Implementing the gg_silent_slalom project 208
Implementing the gg_assets_slalom project 211
Implementing the gg_whac project 212

The assets 214
The general structure of the application and events 215
Other fields of the model 217
Defining a widget 218

Summary 220
Questions 220
Further reading 221

Chapter 8: Using a Parser Combinator for Interpreting and Compiling 222
Technical requirements 223
Project overview 223

Table of Contents

[v]

Introducing Calc 224
Understanding formal languages and their parsers 228

Regular languages 228
Context-free languages 229
Context-dependent languages 230

Using Nom to build parsers 232
Learning about compiler-compilers and parser combinators 232
Learning the basics of Nom 233

Parsing an alternative of characters 234
Parsing a sequence of characters 236
Parsing a fixed string 236
Mapping parsed items to other objects 237
Creating custom parsing results 239
Parsing a variable text 241
Repeating a parser 242

The calc_parser project 243
Understanding the main.rs source file 245
Learning about the parser.rs source file 246

Understanding the types needed by the parser 246
Looking at the parser code 248

The calc_analyzer project 253
Checking the variables of the parsed program 254
Understanding the main.rs file 257
Looking at the symbol_table.rs file 257
Glancing at the analyzer.rs file 259

The calc_interpreter project 263
Learning about the main.rs file 265
Glancing at the symbol_table.rs file 266
Understanding the executor.rs file 267

The calc_compiler project 269
Glancing at the main.rs file 271
Understanding the compiler.rs file 271

Summary 274
Questions 275
Further reading 275

Chapter 9: Creating a Computer Emulator Using Nom 276
Technical requirements 277
Project overview 277
Introducing a very simple machine language 278

The most important concepts relating to machine language 279
Extending our machine language 283
Writing a very simple program 285
A more complex program – the sieve of Eratosthenes 293

Defining a byte-addressing machine language 296
Coping with the endianness issue 298

Table of Contents

[vi]

The nom_byte_machine project 299
Understanding the main.rs source file 301
Using the Nom library 303
The emulator.rs source file 307
The parsing_interpreter.rs source file 310
The translator.rs source file 312

The nom_disassembler project 314
Running the project 315
Examining the source code 316
Generating disassembly code that is useful for debugging 317
Generating disassembly code that is useful for reassembling 319

Summary 320
Questions 321

Chapter 10: Creating a Linux Kernel Module 322
Technical requirements 323
Project overview 324
Understanding kernel modules 324

Preparing the environment 325
A boilerplate module 327

Building and running the kernel module 327
The build commands 329
The source code of the boilerplate module 331

Using global variables 333
Allocating memory 334
A character device 336

Building the character device 337
The source code of the dots module 340

The global information 340
The initialization call 341
The cleanup call 343
The reading function 344

Summary 345
Questions 346
Further reading 347

Chapter 11: The Future of Rust 348
IDEs and interactive programming 349
Crate maturity 350
Asynchronous programming 351
Optimization 358

The const generics feature 359
Embedded systems 360
Summary 361

Appendix A: Assessments 362

Table of Contents

[vii]

Chapter 1 362
Chapter 2 364
Chapter 3 365
Chapter 4 366
Chapter 5 367
Chapter 6 368
Chapter 7 369
Chapter 8 370
Chapter 9 371
Chapter 10 372

Other Books You May Enjoy 374

Index 377

Preface
This book is a presentation of the most interesting and useful libraries and frameworks that
are freely available for Rust programmers to use in building interesting and useful projects,
such as frontend and backend web applications, games, interpreters, compilers, computer
emulators, and Linux-loadable modules.

Who this book is for
This book is for developers who have already learned the Rust programming language and
are eager to put it to work to build useful software, whether for businesses or for a hobby
project. The book addresses diverse needs, such as building a web application, a computer
game, an interpreter, a compiler, an emulator, or a device driver.

Some knowledge of SQL is required to understand the chapter on databases, and
knowledge of the C programming language and Linux tools is required to understand
the chapter on Linux modules.

What this book covers
Chapter 1, Rust 2018 – Productivity, describes recent innovations in the Rust language and
its ecosystem of tools and libraries. In particular, it shows you how to use some utility
libraries that are in widespread usage.

Chapter 2, Storing and Retrieving Data, describes how to read and write some of the most
popular text file formats in the Rust world: TOML, JSON, and XML. It also describes how
to access some of the most popular database engines in the Rust world, such as SQLite,
PostgreSQL, and Redis.

Chapter 3, Creating a REST Web Service, describes how to use the Actix framework to
develop a REST service that can be used as a backend for any kind of client application,
particularly web applications.

Chapter 4, Creating a Full Server-Side Web App, describes how to use the Tera template
engine to replace placeholders in a text file, and how to use the Actix framework to create a
full server-side web application.

Preface

[2]

Chapter 5, Creating a Client-Side WebAssembly App Using Yew, describes how to use the Yew
framework, which exploits the WebAssembly technology, to create the frontend of a web
application.

Chapter 6, Creating a WebAssembly Game Using Quicksilver, describes how to use the
Quicksilver framework to create graphical 2D games that can be run in a web
browser, exploiting the WebAssembly technology, or as a desktop application.

Chapter 7, Creating a Desktop Two-Dimensional Game Using ggez, describes how to use the
ggez framework to create graphical 2D games for desktop, including the coverage of
widgets.

Chapter 8, Using a Parser Combinator for Interpreting and Compiling, describes how to use the
Nom parser combinator to create parsers of formal languages and then build syntax
checkers, interpreters, and compilers.

Chapter 9, Creating a Computer Emulator Using Nom, describes how to use the Nom library
to parse binary data and interpret a machine language program, which is the first step in
building a computer emulator.

Chapter 10, Creating a Linux Kernel Module, describes how to build Linux loadable modules
using Rust, focusing on the Mint distribution; specifically, a character device driver will be
built.

Chapter 11, The Future of Rust, describes the innovations that are probably going to appear
in the next few years in the Rust ecosystem. In particular, the new asynchronous
programming technique is briefly shown.

To get the most out of this book
Software/hardware covered in
the book OS requirements

You will need version 1.31 of
Rust (from December 2018) or a
newer version installed on your
computer.

The content of this book was tested on 64-bit Linux Mint and 32-bit
Windows 10 systems. Most examples should work on any system
supporting Rust. Chapter 5, Creating a Client-Side WebAssembly App
Using Yew, and Chapter 6, Creating a WebAssembly Game Using
Quicksilver, require a web browser that supports WebAssembly, such as
Chrome or Firefox. Chapter 6, Creating a WebAssembly Game Using
Quicksilver, and Chapter 7, Creating a Desktop Two-Dimensional Game
Using ggez, require support for OpenGL. Chapter 10, Creating a Linux
Kernel Module, works only on Linux Mint.

Preface

[3]

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Creative- ​Projects- ​for- ​Rust- ​Programmers. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781789346220_​ColorImages. ​pdf.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789346220_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The pos variable is the position of the current digit in the digits array."

A block of code is set as follows:

{
 for pos in pos..5 {
 print!("{}", digits[pos] as u8 as char);
}

Any command-line input or output is written as follows:

curl -X GET http://localhost:8080/datafile.txt

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The Name portion edit box and the Filter button to its right are for filtering the table
below it, in a similar way to the list project."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[5]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Rust 2018: Productivity

The Rust Standard Library and tooling have improved a lot over the years. Since February
2018, the Rust ecosystem has become quite wide and multifaceted. Four domain working
groups have been created, each covering one of the main application areas. These areas
were already fairly mature, but this development allowed them to improve even further. In
the coming years, we will see the introduction of other domain working groups as well.

It's not an easy task to develop a high-quality and cost-effective application, even after
learning a language as a developer. To avoid reinventing the (presumably low-quality)
wheel, you as a developer should use a high-quality framework or some high-
quality libraries that cover the kind of application you are going to develop.

The purpose of this book is to guide you as a developer to choose the best open source Rust
libraries available for developing software. This book covers several typical domains, each
using different libraries. Because some non-standard libraries are useful in a number of
different domains, it would be quite limiting to present them as confined to a single
domain.

In this chapter, you will learn about the following topics:

Understanding the different editions of Rust
Understanding the most important recent improvements made to Rust
Understanding domain working groups
Understanding the kind of projects that we will cover in this book
An introduction to some useful Rust libraries

Rust 2018: Productivity Chapter 1

[7]

Technical requirements
To follow this book, you will need to have access to a computer on which a recent Rust
system is installed. Any release since version 1.31 is okay. Some optional libraries will be
listed for some specific projects later on.

Any cited source code and additional examples can (and should) be downloaded from the
repository: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for- ​Rust-
Programmers.

Understanding the different editions of Rust
On December 6, 2018, a very important version of the Rust language, its compiler, and its
standard library was released: stable version 1.31. This version has been defined as the 2018
edition, meaning it is a milestone that will be used as a reference for the years to come.

Before this, there was another version, 1.0, which was defined as the 2015 edition. This
edition was characterized by the word stability. Up until version 1.0, every version of the
compiler applied breaking changes to the language or to the standard library, forcing the
developers to apply sweeping changes to their code base. From version 1.0, efforts have
been made to ensure that any future version of the compiler can correctly compile any code
written for version 1.0 or successive versions. This is called backward compatibility.

However, many features were applied to the language and to the standard library before
the release of the 2018 edition. Many new libraries used these new features, meaning that
these libraries could not be used by older compilers. For this reason, there was a need to tag
a specific version of Rust as aimed at being used with newer libraries. This was the main
reason for the 2018 edition.

Some of the features added to the language are marked as for the 2015 edition, while others
are marked as for the 2018 edition. The features for the 2015 edition are just small
improvements, while the features for the 2018 edition are more in-depth changes.
Developers must mark their crates as for the 2018 edition in order to use the features that
are specific to the 2018 edition.

In addition, although the 2015 edition marked a stable milestone for the language and the
standard library, the command-line tools were not actually stabilized; they were still quite
immature. In the three and a half years from May 2015 to December 2018, the main official
command-line tools have matured, and the language has also been improved to allow more
efficient coding. The 2018 edition can be characterized by the word productivity.

https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Rust 2018: Productivity Chapter 1

[8]

The following table shows a timeline of the features stabilized in the language, the standard
library, and the tooling:

2015 May: 2015
edition

August: Parallel
compilation on
multi-core
CPUs

2016

April:
Microsoft C
compiler
format
supported

May: Ability to
capture panics

September:
Improved
compiler
error
messages

November:
The ?
operator

December:
The rustup
command

2017

February:
Custom
derive
attributes

March: The
cargo check
command

July: The
union
keyword

August:
Associated
constants

November:
The ?
operator with
Option

2018

February:
• The
formation of
four Domain
Working
Groups.
• The
rustfmt
program

May:
• The Rust
Programming
Language Second
Edition.
• The impl
Trait language
feature.
• main can
return a Result.
• Inclusive ranges
with ..=
• The i128 and
u128 native types.
• Improved
patterns for
match

June:
• The SIMD
library feature
• The dyn
Trait language
feature

August:
Custom
global
allocator

September:
• The cargo
fix command
• The cargo
clippy
command

October:
• Procedural
macros
• Changes to
the module
system and
the use
statement
• Raw
identifiers
• no_std
applications

December:
• The 2018
edition
• Non-lexical
lifetimes
• The
const fn
language
feature
• The new
https:/ ​/
www. ​rust-
lang. ​org/ ​
website
• try,
async, and
await are
reserved
words

Many improvements have been applied since the 2015 edition. More information can be
found in the official documentation (https:/ ​/​blog. ​rust- ​lang. ​org/ ​2018/ ​12/​06/ ​Rust- ​1.
31-​and-​rust-​2018. ​html). The most important improvements are listed as follows:

A new official tutorial book, available free online (https:/ ​/ ​doc.​rust- ​lang. ​org/
book/​), or printed on paper (The Rust Programming Language by Steve Klabnik
and Carol Nichols).
A revamped official website.

https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://blog.rust-lang.org/2018/12/06/Rust-1.31-and-rust-2018.html
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

Rust 2018: Productivity Chapter 1

[9]

The formation of four domain working groups, which are open committees to
design the future of the ecosystem in four key areas:

Networking: Designing the new asynchronous paradigm around a
concept of delayed computation, named future, as it
is already done in other languages, such as C++, C#, and JavaScript
(with promises).
Command-line applications: Designing some standard libraries to
support any non-graphical, non-embedded applications.
WebAssembly: Designing tools and libraries to build applications
to be run inside web browsers.
Embedded software: Designing tools and libraries to build
applications to be run on bare-metal systems or on strictly
constrained hardware.

We witnessed some good improvements to the language:
Non-lexical lifetimes; any bindings that are no longer used are
considered dead. For example, now this program is allowed:

fn main() {
 let mut _a = 7;
 let _ref_to_a = &_a;
 _a = 9;
}

In this code, the object bound to the variable _a is borrowed by the
variable _ref_to_a in the second statement. Prior to the introduction of
non-lexical lifetimes, such bindings would last till the end of the scope,
and so the last statement would have been illegal because it tries to
change that object through binding _a when it is still borrowed to variable
_ref_to_a. Now, because variable _ref_to_a is no longer used, its
lifetime ceases in the same line it is declared, and so, in the last statement,
variable _a is again free to change its own object.

The Impl Trait feature, which allows functions to return
unspecified types, such as closures.
The i128 and u128 native types.
Some other reserved keywords such as try, async, and await.

Rust 2018: Productivity Chapter 1

[10]

The ? operator, usable even in the main function, because now it
can return Result. The following program is an example of the
main function returning a Result:

fn main() -> Result<(), String> {
 Err("Hi".to_string())
}

It can succeed, by returning the usual empty tuple or fail by
returning the type you specify. In this case, it was String. The
following program is an example using the ? operator used in the
main function:

fn main() -> Result<(), usize> {
 let array = [12, 19, 27];
 let found = array.binary_search(&19)?;
 println!("Found {}", found);
 let found = array.binary_search(&20)?;
 println!("Found {}", found);
 Ok(())
}

This program will print Found 1 on the standard output stream,
meaning that the number 19 has been found at position 1, and it
will print Error: 2 on the standard error stream, meaning that the
number 20 hasn't been found, but that it should be inserted at
position 2.

Procedural macros, which allow a kind of meta-programming,
manipulating source code to generate Rust code at compile time.
More powerful and more ergonomic pattern matching in match
expressions.

And also some improvements to the standard tooling:
The rustup program, which allows users to easily choose the
default compiler target or to update the toolchain.
The rustfix program, which converts a 2015 edition project to a
2018 edition project.

Rust 2018: Productivity Chapter 1

[11]

The Clippy program, which checks for non-idiomatic syntax, and
suggests changes to code for better maintainability.
Faster compilation speed, in particular, if just a syntax check is
required.
The Rust Language Server (RLS) program, which is currently still
unstable, but which allows IDEs and programmable editors to spot
syntax errors, and to suggest allowed operations.

Rust is still evolving as a language, like any other programming language. The following
areas are still left to be improved:

The IDE tools, including a language interpreter (REPL) and a graphical debugger
Libraries and tools to support bare-metal and real-time software development
Application-level frameworks and libraries for the main application areas

This book will focus primarily on the third point on this list.

The projects
When we write a real-world application, the Rust language and its standard library are not
sufficient. Application frameworks are needed for particular kinds of applications, such as
GUI apps, web apps, or games.

Of course, if you use a good-quality and comprehensive library, you can reduce the number
of lines of code that you need to write. Using a library also offers the following two
advantages:

The overall design is improved, particularly if you are using a framework (since
it imposes an architecture on your app) as it will be created by knowledgeable
engineers and time-tested by a number of users.
The number of bugs will be reduced because it will have undergone more
thorough testing than that which you are likely to be able to apply.

There are actually many Rust libraries, also known as crates, but most are low-quality or
quite narrow in their range of applications. This book will look at the best quality and most
complete libraries for some typical application areas of the Rust language.

Rust 2018: Productivity Chapter 1

[12]

The application areas are as follows:

Web apps: There are various popular technologies, including the following:
The REST web service (backend only)
An event-driven web client (frontend only)
A full web app (full-stack)
A web game (frontend only)

Games: When I say games, I'm not referring to anything that is entertaining. I am
referring to a graphical application where a continuous animation is shown, as
opposed to event-driven graphical applications that do nothing until an event
occurs, such as the user pressing a key, moving the mouse, or some data arriving
from a connection. As well as games for the web browser, there are also games
for desktop and laptop computers, for video game consoles, and for mobile
devices. However, video game consoles and mobile devices are not yet that well
supported by Rust, so we will only be looking at games for desktop and laptop
computers in this book.
Language interpreters: There are two kinds of languages that can be interpreted.
Both are covered in this book:

Text: Like a programming language, a markup language, or a
machine command language
Binary: Like the machine language of a computer to be emulated,
or the intermediate bytecode of a programming language.

C-language-callable libraries: This is an important use case of Rust: to develop a
library to be invoked by another application, typically written in a higher-level
language. Rust cannot assume that other languages can invoke the Rust code, but
it can assume that they can invoke the C-language code. We will look at how to
build a library that can be invoked as if it were written in C. One particularly
challenging case is to build a module for the Linux operating system, which
notoriously has to be written in C.

Most applications read and write data to and from a file, or a communication channel, or a
database. In the next chapter, we will be looking at various different techniques that will be
useful for all the other projects.

Other application areas have not been listed here as they are either not used much in Rust,
they are still immature, or they are still in a state of flux. The libraries available for these
immature areas will be completely different in a couple of years. These areas include
software for micro-controllers, or other real-time or low-resource systems, and also
software for mobile or wearable systems.

Rust 2018: Productivity Chapter 1

[13]

Working through the examples in this book
To follow the examples in the book, you should download all the examples from the online
repository: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for- ​Rust-
Programmers. This repository contains a sub-folder for each chapter of the book and a sub-
sub-folder for any project in a chapter.

For example, to run the use_rand project in this chapter, you should go to the
Chapter01/use_rand folder and type cargo run. Notice that the most important files of
any project are cargo.toml and src/main.rs, so you should always take a look at them
first.

Exploring some utility crates
Before moving on to looking at how to use the most complex crates, let's take a look at some
basic Rust crates. These are not a part of the standard library, but they are useful in many
different kinds of projects. They should be known by all Rust developers since they are
of general applicability.

Pseudo-random number generators – the rand
crate
The ability to generate pseudo-random numbers is needed for several kinds of
applications, especially for games. The rand crate is rather complex, but its basic usage is
shown in the following example (named use_rand):

// Declare basic functions for pseudo-random number generators.
use rand::prelude::*;

fn main() {
 // Create a pseudo-Random Number Generator for the current thread
 let mut rng = thread_rng();

 // Print an integer number
 // between 0 (included) and 20 (excluded).
 println!("{}", rng.gen_range(0, 20));

 // Print a floating-point number
 // between 0 (included) and 1 (excluded).
 println!("{}", rng.gen::<f64>());

https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Rust 2018: Productivity Chapter 1

[14]

 // Generate a Boolean.
 println!("{}", if rng.gen() { "Heads" } else { "Tails" });
}

First, you create a pseudo-random number generator object. Then, you call several methods
on this object. Any generator must be mutable because any generation modifies the state of
the generator.

The gen_range method generates an integer number in a right-open range. The
gen generic method generates a number of the specified type. Sometimes, this type can be
inferred, like in the last statement, where a Boolean is expected. If the generated type is a
floating-point number, it is between 0 and 1, with 1 excluded.

Logging – the log crate
For any kind of software, in particular for servers, the ability to emit logging messages is
essential. The logging architecture has two components:

API: Defined by the log crate
Implementation: Defined by several possible crates

Here, an example using the popular env_logger crate is shown. If you want to emit
logging messages from a library, you should only add the API crate as a dependency, as it
is the responsibility of the application to define the logging implementation crate.

In the following example (named use_env_logger), we are showing an application (not a
library), and so we need both crates:

#[macro_use]
extern crate log;

fn main() {
 env_logger::init();
 error!("Error message");
 warn!("Warning message");
 info!("Information message");
 debug!("Debugging message");
}

Rust 2018: Productivity Chapter 1

[15]

In a Unix-like console, after having run cargo build, execute the following command:

RUST_LOG=debug ./target/debug/use_env_logger

It will print something like the following:

[2020-01-11T15:43:44Z ERROR logging] Error message
[2020-01-11T15:43:44Z WARN logging] Warning message
[2020-01-11T15:43:44Z INFO logging] Information message
[2020-01-11T15:43:44Z DEBUG logging] Debugging message

By typing RUST_LOG=debug at the beginning of the command, you defined the temporary
environment variable RUST_LOG, with debug as its value. The debug level is the highest,
and hence all logging statements are performed. Instead, if you execute the following
command, only the first three lines will be printed, as the info level is not detailed enough
to print debug messages:

RUST_LOG=info ./target/debug/use_env_logger

Similarly, if you execute the following command, only the first two lines will be printed, as
the warn level is not detailed enough to print either the debug or the info messages:

RUST_LOG=warn ./target/debug/use_env_logger

If you execute one or the other of the following commands, only the first line will be
printed, as the default logging level is error:

RUST_LOG=error ./target/debug/use_env_logger

./target/debug/use_env_logger

Initializing static variables at runtime – the
lazy_static crate
It's well known that Rust does not allow mutable static variables in safe code. Immutable static
variables are allowed in safe code, but they must be initialized by constant expressions,
possibly by invoking const fn functions. However, the compiler must be able to evaluate
the initialization expression of any static variable.

Rust 2018: Productivity Chapter 1

[16]

Sometimes, however, there is a need to initialize a static variable at runtime, because the
initial value depends on an input, such as a command-line argument or a configuration
option. In addition, if the initialization of a variable takes a long time, instead of initializing
it at the start of the program, it may be better to initialize it only the first time the variable is
used. This technique is called lazy initialization.

There is a small crate, named lazy_static, that contains only one macro, which has the
same name as the crate. This can be used to solve the issue mentioned previously. Its use is
shown in the following project (named use_lazy_static):

use lazy_static::lazy_static;
use std::collections::HashMap;

lazy_static! {
 static ref DICTIONARY: HashMap<u32, &'static str> = {
 let mut m = HashMap::new();
 m.insert(11, "foo");
 m.insert(12, "bar");
 println!("Initialized");
 m
 };
}

fn main() {
 println!("Started");
 println!("DICTIONARY contains {:?}", *DICTIONARY);
 println!("DICTIONARY contains {:?}", *DICTIONARY);
}

This will print the following output:

Started
Initialized
DICTIONARY contains {12: "bar", 11: "foo"}
DICTIONARY contains {12: "bar", 11: "foo"}

As you can see, the main function starts first. Then, it tries to access the DICTIONARY static
variable, and that access causes the initialization of variables. The initialized value, which is
a reference, is then dereferenced and printed.

The last statement, which is identical to the previous one, does not perform the
initialization again, as you can see by the fact that the Initialized text is not printed
again.

Rust 2018: Productivity Chapter 1

[17]

Parsing the command line – the structopt crate
The command-line arguments of any program are easily accessible through the
std::env::args() iterator. However, the code that parses these arguments is actually
rather cumbersome. To get more maintainable code, the structopt crate can be used, as
shown in the following project (named use_structopt):

use std::path::PathBuf;
use structopt::StructOpt;

#[derive(StructOpt, Debug)]
struct Opt {
 /// Activate verbose mode
 #[structopt(short = "v", long = "verbose")]
 verbose: bool,

 /// File to generate
 #[structopt(short = "r", long = "result", parse(from_os_str))]
 result_file: PathBuf,

 /// Files to process
 #[structopt(name = "FILE", parse(from_os_str))]
 files: Vec<PathBuf>,
}

fn main() {
 println!("{:#?}", Opt::from_args());
}

If you execute the cargo run input1.txt input2.txt -v --result
res.xyz command, you should get the following output:

Opt {
 verbose: true,
 result_file: "res.txt",
 files: [
 "input1.tx",
 "input2.txt"
]
}

As you can see, the filenames input1.txt and input2.txt have been loaded into the
files field of the structure. The --result res.xyz argument caused the
result_file field to be filled, and the -v argument caused the verbose field to be set to
true, instead of the default false.

Rust 2018: Productivity Chapter 1

[18]

Summary
In this chapter, we introduced the new Rust 2018 edition. We learned about the kind of
projects that are going to be described in this book. We then took a quick look at four useful
crates which you can apply in your Rust code.

In the next chapter, we will learn how to store or retrieve data to and from a file, a database,
or another application.

Questions
Is there an official printed book to learn the Rust language?1.
How long was the longest primitive Rust integer in 2015, and how long was it at2.
the end of 2018?
Which are the four domain working groups at the end of 2018?3.
What is the purpose of the Clippy utility?4.
What is the purpose of the rustfix utility?5.
Write a program that generates 10 pseudo-random f32 numbers between 1006.
and 400.
Write a program that generates 10 pseudo-random i32 numbers between 1007.
and 400 (without truncating or rounding the numbers generated by the previous
exercise).
Write a program that creates a static vector containing all squared integers8.
between 1 and 200.
Write a program that emits a warning message and an info message, and then9.
run it so that only the warning message appears.
Try to parse a command-line argument that contains a value from 1 to 20,10.
emitting an error message if the value is out of range. The short option should be
-l, and the long option should be --level.

2
Storing and Retrieving Data

A typical need of any software application is to input/output data by reading/writing data
files or data streams or by querying/manipulating a database. Regarding files and streams,
unstructured data, or even binary data, is hard to manipulate, and so they are not
recommended.

Also, proprietary data formats are not recommended because of the vendor lock-in risk,
and so only standard data formats should be used. Fortunately, there are free Rust libraries
that come to the rescue in these situations. There are Rust crates available to manipulate
some of the most popular file formats, such as TOML, JSON, and XML.

In terms of databases, there are Rust crates to manipulate data using some of the most
popular databases, such as SQLite, PostgreSQL, and Redis.

In this chapter, you will learn about the following:

How to read configuration data from a TOML file
How to read or write a JSON data file
How to read an XML data file
How to query or manipulate data in a SQLite database
How to query or manipulate data in a PostgreSQL database
How to query or manipulate data in a Redis database

Technical requirements
It is required for you to install the SQLite runtime library when you're running the SQLite
code. However, it is also useful (although not required) to install a SQLite interactive
manager. You can download the precompiled binaries of SQLite tools from https:/ ​/​www.
sqlite.​org/​download. ​html. However, version 3.11 or higher would be ideal.

https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html

Storing and Retrieving Data Chapter 2

[20]

Please note that if you're using Debian-derived Linux distribution, the libsqlite3-
dev package should be installed.

It is also required for you to install and run the PostgreSQL Database Management System
(DBMS) when you're running the PostgreSQL code. As with SQLite, it is useful but not
required to install a PostgreSQL interactive manager. You can download the precompiled
binary of PostgreSQL DBMS from https:/ ​/​www. ​postgresql. ​org/ ​download/ ​. However,
version 7.4 or higher would be acceptable.

Installing and running the Redis server is necessary when you're running the Redis code.
You can download it from https:/ ​/​redis. ​io/ ​download.

The complete source code for this chapter can be found in the Chapter02 folder of the
repository at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for- ​Rust-
Programmers. In this folder, there is a sub-folder for every project, plus a folder named
data, which contains the data that we'll use as input for the projects.

Project overview
In this chapter, we'll look at how to build a program that loads a JSON file and an XML file
into three databases: a SQLite database, a PostgreSQL database, and a Redis key-value
store. To avoid hardwiring the names and positions of the files and the database credentials
into the program, we are going to load them from a TOML configuration file.

The final project is named transformer, but we'll explain this through several preliminary
small projects:

toml_dynamic and toml_static: These read a TOML file in two different
ways.
json_dynamic and json_static: These read a JSON file in two different ways.
xml_example: This reads an XML file.
sqlite_example: This creates two tables in a SQLite database, inserts records
into them, and queries them.
postgresql_example: This creates two tables in a PostgreSQL database, inserts
records into them, and queries them.
redis_example: This adds some data to a key-value store and queries it.

https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://redis.io/download
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Storing and Retrieving Data Chapter 2

[21]

Reading a TOML file
One simple and maintainable way to store information in a filesystem is to use a text file.
This is also very efficient for data spanning no more than 100 KB. However, there are
several competing standards for storing information in text files, such as INI, CSV, JSON,
XML, YAML, and others.

The one used by Cargo is TOML. This is a really powerful format that is used by many Rust
developers to store the configuration data of their apps. It is designed to be written by
hand, using a text editor, but it can also be written by an application very easily.

The toml_dynamic and toml_static projects (using the toml crate) load data from a
TOML file. Reading a TOML file is useful when configuring a software application, and this
is what we'll do. We will use the data/config.toml file, which contains all of the
parameters for the projects of this chapter.

You can also create or modify a TOML file by using code, but we are not going to do that.
Being able to modify a TOML file can be useful in some scenarios, such as to save user
preferences.

It is important to consider that when a TOML file is changed by a program, it undergoes
dramatic restructuring:

It acquires specific formatting, which you may dislike.
It loses all of its comments.
Its items are sorted alphabetically.

So, if you want to use the TOML format both for manually edited parameters and for
program-saved data, you would be better off using two distinct files:

One edited only by humans
One edited primarily by your software, but occasionally also by humans

This chapter describes two projects in which a TOML file is read using different techniques.
These techniques are to be used in two different cases:

In a situation where we are not sure which fields are contained in the file, and so
we want to explore it. In this case, we use the toml_dynamic program.
In another situation where, in our program, we describe exactly which fields
should be contained in the file and we don't accept a different format. In this
case, we use the toml_static program.

Storing and Retrieving Data Chapter 2

[22]

Using toml_dynamic
The purpose of this section is to read the config.toml file, located in the data folder,
when we want to explore the content of that file. The first three lines of this file are as
follows:

[input]
xml_file = "../data/sales.xml"
json_file = "../data/sales.json"

After these lines, the file contains other sections. Among them is
the [postgresql] section, which contains the following line:

database = "Rust2018"

To run this project, enter the toml_dynamic folder and type in cargo run
../data/config.toml. A long output should be printed. It will begin with the following
lines:

Original: Table(
 {
 "input": Table(
 {
 "json_file": String(
 "../data/sales.json",
),
 "xml_file": String(
 "../data/sales.xml",
),
 },
),

Notice that this is just a verbose representation of the first three lines of the config.toml
file. This output proceeds with emitting a similar representation for the rest of the file. After
having printed the whole data structure representing the file that is read, the following line
is added to the output:

 [Postgresql].Database: Rust2018

This is the result of a specific query on the data structure loaded when the file is read.

Storing and Retrieving Data Chapter 2

[23]

Let's look at the code of the toml_dynamic program:

Declare a variable that will contain a description of the whole file. This variable is1.
initialized in the next three statements:

let config_const_values =

We add the pathname of the file from the first argument in the command line to2.
config_path. Then, we load the contents of this file into
the config_text string and we parse this string into a toml::Value structure.
This is a recursive structure because it can have a Value property among its
fields:

{
 let config_path = std::env::args().nth(1).unwrap();
 let config_text =
 std::fs::read_to_string(&config_path).unwrap();
 config_text.parse::<toml::Value>().unwrap()
};

This structure is then printed using the debug structured formatting (:#?), and a3.
value is retrieved from it:

println!("Original: {:#?}", config_const_values);
println!("[Postgresql].Database: {}",
 config_const_values.get("postgresql").unwrap()
 .get("database").unwrap()
 .as_str().unwrap());

Notice that to get the value of the "database" item contained the "postgresql" section, a
lot of code is required. The get function needs to look for a string, which may fail. That is
the price of uncertainty.

Using toml_static
On the other hand, if we are quite sure of the organization of our TOML file, we should use
another technique shown in the project, toml_static.

To run it, open the toml_static folder and type in cargo run ../data/config.toml.
The program will only print the following line:

[postgresql].database: Rust2018

Storing and Retrieving Data Chapter 2

[24]

This project uses two additional crates:

serde: This enables the use of the basic serialization/deserialization operations.
serde_derive: This provides a powerful additional feature known as the
custom-derive feature, which allows you to serialize/deserialize using a struct.

serde is the standard serialization/deserialization library. Serialization is the process of
converting data structures of the program into a string (or a stream). Deserialization is the
reverse process; it is the process of converting a string (or a stream) into some data
structures of the program.

To read a TOML file, we need to use deserialization.

In these two projects, we don't need to use serialization as we are not
going to write a TOML file.

In the code, first, a struct is defined for any section contained in the
data/config.toml file. That file contains the Input, Redis, Sqlite, and
Postgresql sections, and so we declare as many Rust structs as the sections of the file we
want to read; then, the Config struct is defined to represent the whole file, having these
sections as members.

For example, this is the structure for the Input section:

#[allow(unused)]
#[derive(Deserialize)]
struct Input {
 xml_file: String,
 json_file: String,
}

Notice that the preceding declaration is preceded by two attributes.

The allow(unused) attribute is used to prevent the compiler from warning us about
unused fields in the following structure. It is convenient for us to avoid these noisy
warnings. The derive(Deserialize) attribute is used to activate the automatic
deserialization initiated by serde for the following structure.

After these declarations, it is possible to write the following line of code:

toml::from_str(&config_text).unwrap()

Storing and Retrieving Data Chapter 2

[25]

This invokes the from_str function, which parses the text of the file into a struct. The type
of that struct is not specified in this expression, but its value is assigned to the variable
declared in the first line of the main function:

 let config_const_values: Config =

So, its type is Config.

Any discrepancies between the file's contents and the struct type will be considered an
error in this operation. So, if this operation is successful, any other operation on the
structure cannot fail.

While the previous program (toml_dynamic) had a kind of dynamic typing, such as that of
Python or JavaScript, this program has a kind of static typing, similar to Rust or C++.

The advantage of static typing appears in the last statement, where the same behavior as
the long statement of the previous project is obtained by simply writing
config_const_values.postgresql.database.

Reading and writing a JSON file
For storing data that is more complex than that which is stored in a configuration file, JSON
format is more appropriate. This format is quite popular, particularly among those who use
the JavaScript language.

We are going to read and parse the data/sales.json file. This file contains a single
anonymous object, which contains two arrays—"products" and "sales".

The "products" array contains two objects, each one having three fields:

 "products": [
 {
 "id": 591,
 "category": "fruit",
 "name": "orange"
 },
 {
 "id": 190,
 "category": "furniture",
 "name": "chair"
 }
],

Storing and Retrieving Data Chapter 2

[26]

The "sales" array contains three objects, each one containing five fields:

"sales": [
 {
 "id": "2020-7110",
 "product_id": 190,
 "date": 1234527890,
 "quantity": 2.0,
 "unit": "u."
 },
 {
 "id": "2020-2871",
 "product_id": 591,
 "date": 1234567590,
 "quantity": 2.14,
 "unit": "Kg"
 },
 {
 "id": "2020-2583",
 "product_id": 190,
 "date": 1234563890,
 "quantity": 4.0,
 "unit": "u."
 }
]

The information in the arrays is about some products to sell and some sale transactions
associated with those products. Notice that the second field of each sale ("product_id") is
a reference to a product, and so it should be processed after the corresponding product
object has been created.

We will see a pair of programs with the same behavior. They read the JSON file,
increment the quantity of the second sale object by 1.5, and then save the whole updated
structure into another JSON file.

Similarly to the TOML format case, there can also be a dynamic parsing technique used for
JSON files, where the existence and type of any data field is checked by the application
code, and a static parsing technique, where it uses the deserialization library to check the
existence and type of any field.

Storing and Retrieving Data Chapter 2

[27]

So, we have two projects: json_dynamic and json_static. To run each of them, open its
folder and type in cargo run ../data/sales.json ../data/sales2.json. The
program will not print anything, but it will read the first file specified in the command line
and create the second file that is specified.

The created file is similar to the read file, but with the following differences:

The fields of the file created by json_dynamic are sorted in alphabetical order,
while the fields of the file created by json_static are sorted in the same order
as in the Rust data structure.
The quantity of the second sale is incremented from 2.14 to 3.64.
The final empty line is removed in both created files.

Now, we can see the implementations of the two techniques of serialization and
deserialization.

The json_dynamic project
Let's look at the source code of the project:

This project gets the pathnames of two files from the command line—the existing1.
JSON file ("input_path") to read into a memory structure and a JSON file to
create ("output_path") by saving the loaded structure, after having modified it
a bit.
Then, the input file is loaded into the string named2.
sales_and_products_text and the
generic serde_json::from_str::<Value> function is used to parse the string
into a dynamically typed structure representing the JSON file. This structure is
stored in the sales_and_products local variable.

Imagine that we want to change the quantity sold by the second sale transaction,
incrementing it by 1.5 kilograms:

First, we must get to this value using the following expression:1.

sales_and_products["sales"][1]["quantity"]

This retrieves the "sales" sub-object of the general object. It is an array2.
containing three objects.

Storing and Retrieving Data Chapter 2

[28]

Then, this expression gets the second item (starting from zero ([1])) of this array.3.
This is an object representing a single sale transaction.
After this, it gets the "quantity" sub-object of the sale transaction object.4.
The value we have reached has a dynamic type that we think should be5.
serde_json::Value::Number, and so we make a pattern matching with this
type, specifying the if let Value::Number(n) clause.
If all is good, the matching succeeds and we get a variable named n—containing6.
a number, or something that can be converted into a Rust floating-point number
by using the as_f64 function. Lastly, we can increment the Rust number and
then create a JSON number from it using the from_f64 function. We can then
assign this object to the JSON structure using the same expression we used to get
it:

sales_and_products["sales"][1]["quantity"]
 = Value::Number(Number::from_f64(
 n.as_f64().unwrap() + 1.5).unwrap());

The last statement of the program saves the JSON structure to a file. Here,7.
the serde_json::to_string_pretty function is used. As the name suggests,
this function adds formatting whitespace (blanks and new lines) to make the
resulting JSON file more human-readable. There is also
the serde_json::to_string function, which creates a more compact version
of the same information. It is much harder for people to read, but it is somewhat
quicker to process for a computer:

std::fs::write(
 output_path,
 serde_json::to_string_pretty(&sales_and_products).unwrap(),
).unwrap();

The json_static project
If, for our program, we are sure that we know the structure of the JSON file, a statically
typed technique can and should be used instead. It is shown in the json_static project.
The situation here is similar to that of the projects processing the TOML file.

The source code of the static version first declares three structs—one for every object type
contained in the JSON file we are going to process. Each struct is preceded by the following
attribute:

#[derive(Deserialize, Serialize, Debug)]

Storing and Retrieving Data Chapter 2

[29]

Let's understand the preceding snippet:

The Deserialize trait is required to parse (that is, read) JSON
strings into this struct.
The Serialize trait is required to format (that is, write) this
struct into a JSON string.
The Debug trait is just handy for printing this struct on a debug
trace.

The JSON string is parsed using
the serde_json::from_str::<SalesAndProducts> function. Then, the code to
increment the quantity of sold oranges becomes quite simple:

sales_and_products.sales[1].quantity += 1.5

The rest of the program is unchanged.

Reading an XML file
Another very popular text format is XML. Unfortunately, there is no stable
serialization/deserialization library to manage XML format. However, this is not necessarily
a shortcoming. In actual fact, XML format is often used to store large datasets; so large, in
fact, that it would be inefficient to load them all before we start converting the data into an
internal format. In these cases, it may be more efficient to scan the file or incoming stream
and process it as long as it is read.

The xml_example project is a rather convoluted program that scans the XML file specified
on the command line and, in a procedural fashion, loads information from the file into a
Rust data structure. It is meant to read the ../data/sales.xml file. This file has a
structure corresponding to the JSON file we sought in the previous section. The following
lines show an excerpt of that file:

<?xml version="1.0" encoding="utf-8"?>
<sales-and-products>
 <product>
 <id>862</id>
 </product>
 <sale>
 <id>2020-3987</id>
 </sale>
</sales-and-products>

Storing and Retrieving Data Chapter 2

[30]

All XML files have a header in the first line and then one root element; in this case, the root
element it is named sales-and-products. This element contains two kinds of
elements—product and sale. Both kinds of elements have specific sub-elements, which
are the fields of the corresponding data. In this example, only the id fields are shown.

To run the project, open its folder and type in cargo run ../data/sales.xml. Some
lines will be printed on the console. The first four of them should be as follows:

Got product.id: 862.
Got product.category: fruit.
Got product.name: cherry.
 Exit product: Product { id: 862, category: "fruit", name: "cherry" }

These describe the contents of the specified XML file. In particular, the program found a
product with ID 862, then it detected that it is a fruit, then that it is a cherry, and then,
when the whole product had been read, the whole struct representing the product was
printed. A similar output will appear for sales.

The parsing is performed using only the xml-rs crate. This crate enables a mechanism of
parsing, shown in the following code excerpt:

let file = std::fs::File::open(pathname).unwrap();
let file = std::io::BufReader::new(file);
let parser = EventReader::new(file);
for event in parser {
 match &location_item {
 LocationItem::Other => ...
 LocationItem::InProduct => ...
 LocationItem::InSale => ...
 }
}

An object of the EventReader type scans the buffered file and it generates an
event whenever a step is performed in the parsing. The application code handles these
kinds of events according to their needs.

The word event is used by this crate, but the word transition would probably be a better
description of the data extracted by the parser.

Storing and Retrieving Data Chapter 2

[31]

A complex language is hard to parse, but for languages as simple as our data, the situation
during the parsing can be modeled by a state machine. To that purpose, three
enum variables are declared in the source code: location_item, with
the LocationItem type; location_product, with the LocationProduct type;
and location_sale, with the LocationSale type.

The first one indicates the current position of the parsing in general. We can be inside a
product (InProduct), inside a sale (InSale), or outside of both (Other). If we are inside a
product, the LocationProduct enum indicates the current position of parsing inside the
current product. This can be within any of the allowed fields or outside of all of them.
Similar states happen for sales.

The iteration encounters several kinds of events. The main ones are the following:

XmlEvent::StartElement: Signals that an XML element is beginning. It is
decorated by the name of the beginning element and the possible attributes of
that element.
XmlEvent::EndElement: Signals that an XML element is ending. It is decorated
by the name of the ending element.
XmlEvent::Characters: Signals that the textual contents of an element is
available. It is decorated by that available text.

The program declares a mutable product struct, with the Product type, and a mutable
sale struct, with the Sale type. They are initialized with default values. Whenever there
are some characters available, they are stored in the corresponding field of the current
struct.

For example, consider a situation where the value of location_item is
LocationItem::InProduct and the value of location_product is
LocationProduct::InCategory—that is, we are in a category of a product. In this
situation, there can be the name of the category or the end of the category. To get the name
of the category, the code contains this pattern of a match statement:

Ok(XmlEvent::Characters(characters)) => {
 product.category = characters.clone();
 println!("Got product.category: {}.", characters);
}

In this statement, the characters variable gets the name of the category and a clone of it is
assigned to the product.category field. Then, the name is printed to the console.

Storing and Retrieving Data Chapter 2

[32]

Accessing databases
Text files are good when they are small and when they don't need to be changed often.
Actually, the only way that a text file can be changed is if you append something to the end
of it or rewrite it completely. If you want to change the information in a large dataset
quickly, the only way to do so is to use a database manager. In this section, we are going to
learn how to manipulate a SQLite database with a simple example.

But first, let's look at three popular, broad categories of database managers:

Single-user databases: These store all of the databases in a single file, which
must be accessible by the application code. The database code is linked into the
application (it may be a static-link library or a dynamic-link library). Only one
user at a time is allowed to access it, and all users have administrative
privileges. To move the database anywhere, you simply move the file. The most
popular choices in this category are SQLite and Microsoft Access.
DBMS: This is a process that has to be started as a service. Multiple clients can
connect to it at the same time, and they can also apply changes at the same time
without any data corruption. It requires more storage space, more memory, and
much more start up time (for the server). There are several popular choices in
this category, such as Oracle, Microsoft SQL Server, IBM DB2, MySQL, and
PostgreSQL.
Key-value stores: This is a process that has to be started as a service. Multiple
clients can connect to it at the same time and apply changes at the same time. It is
essentially a large memory hash map that can be queried by other processes and
that can optionally store its data in a file and reload it when it is restarted. This
category is less popular than the other two, but it is gaining ground as the
backend of high-performance websites. One of the most popular choices is Redis.

In the following sections, we are going to show you how to access SQLite single-user
databases (in the sqlite_example project), PostgreSQL DBMSes (in
the postgreSQL_example project), and Redis key-value stores (in
the redis_example project). Then, in the transformer project, all three kinds of
databases will be used together.

Accessing a SQLite database
The source code for this section is found in the sqlite_example project. To run it, open its
folder and type in cargo run.

Storing and Retrieving Data Chapter 2

[33]

This will create the sales.db file in the current folder. This file contains a SQLite database.
Then, it will create the Products and Sales tables in this database, it will insert a row into
each of these tables, and it will perform a query on the database. The query asks for all the
sales, joining each of them with its associated product. For each extracted row, a line will be
printed onto the console, showing the timestamp of the sale, the weight of the sale, and the
name of the associated product. As there is only one sale in the database, you will see just
the following line printed:

At instant 1234567890, 7.439 Kg of pears were sold.

This project only uses the rusqlite crate. Its name is a contraction of Rust SQLite. To use
this crate, the Cargo.toml file must contain the following line:

rusqlite = "0.23"

Implementing the project
Let's look at how the code for the sqlite_example project works. The main function is
quite simple:

fn main() -> Result<()> {
 let conn = create_db()?;
 populate_db(&conn)?;
 print_db(&conn)?;
 Ok(())
}

It invokes create_db to open or create a database with its empty tables, and to open and
return a connection to this database.

Then, it invokes populate_db to insert rows into the tables of the database referred to by
that connection.

Then, it invokes print_db to execute a query on this database and prints the data extracted
by that query.

The create_db function is long but easy to understand:

fn create_db() -> Result<Connection> {
 let database_file = "sales.db";
 let conn = Connection::open(database_file)?;
 let _ = conn.execute("DROP TABLE Sales", params![]);
 let _ = conn.execute("DROP TABLE Products", params![]);
 conn.execute(

Storing and Retrieving Data Chapter 2

[34]

 "CREATE TABLE Products (
 id INTEGER PRIMARY KEY,
 category TEXT NOT NULL,
 name TEXT NOT NULL UNIQUE)",
 params![],
)?;
 conn.execute(
 "CREATE TABLE Sales (
 id TEXT PRIMARY KEY,
 product_id INTEGER NOT NULL REFERENCES Products,
 sale_date BIGINT NOT NULL,
 quantity DOUBLE PRECISION NOT NULL,
 unit TEXT NOT NULL)",
 params![],
)?;
 Ok(conn)
}

The Connection::open function simply uses a path to a SQLite database file to open a
connection. If this file does not exist, it will be created. As you can see, the created
sales.db file is very small. Typically, empty databases of DBMSes are 1,000 times larger.

To perform a data manipulation command, the execute method of the connection is
called. Its first argument is a SQL statement, possibly containing some parameters,
specified as $1, $2, $3, and so on. The second argument of the function is a reference to a
slice of values that are used to replace such parameters.

Of course, if there are no parameters, the parameter values list must be empty. The first
parameter value, which has an index of 0, replaces the $1 parameter, the second one
replaces the $2 parameter, and so on.

Notice that the arguments of a parameterized SQL statement can be of different data types
(numeric, alpha-numeric, BLOBs, and so on), but Rust collections can only contain objects
of the same data type. Therefore, the params! macro is used to perform a bit of magic. The
data type of the second argument of the execute method must be that of a collection that
can be iterated over and whose items implement the ToSql trait. The objects implementing
this trait, as its name implies, can be used as parameters of a SQL statement. The rusqlite
crate contains an implementation of this trait for many Rust basic types, such as numbers
and strings.

Storing and Retrieving Data Chapter 2

[35]

So, for example, the params!(34, "abc") expression generates a collection that can be
iterated over. The first item of this iteration can be converted into an object containing the
number 34, and that number can be used to replace a SQL parameter of a numeric
type. The second item of this iteration can be converted into an object containing
the "abc" string, and that string can be used to replace a SQL parameter of an alpha-
numeric type.

Now, let's look at the populate_db function. It contains statements to insert rows into the
database. Here is one of those statements:

conn.execute(
 "INSERT INTO Products (
 id, category, name
) VALUES ($1, $2, $3)",
 params![1, "fruit", "pears"],
)?;

As explained before, this statement will have the effect of executing the following SQL
statement:

INSERT INTO Products (
 id, category, name
) VALUES (1, 'fruit', 'pears')

At last, we see the whole print_db function, which is more complex than the others:

fn print_db(conn: &Connection) -> Result<()> {
 let mut command = conn.prepare(
 "SELECT p.name, s.unit, s.quantity, s.sale_date
 FROM Sales s
 LEFT JOIN Products p
 ON p.id = s.product_id
 ORDER BY s.sale_date",
)?;
 for sale_with_product in command.query_map(params![], |row| {
 Ok(SaleWithProduct {
 category: "".to_string(),
 name: row.get(0)?,
 quantity: row.get(2)?,
 unit: row.get(1)?,
 date: row.get(3)?,
 })
 })? {
 if let Ok(item) = sale_with_product {
 println!(
 "At instant {}, {} {} of {} were sold.",
 item.date, item.quantity, item.unit, item.name

Storing and Retrieving Data Chapter 2

[36]

);
 }
 }
 Ok(())
}

To perform a SQL query, first, the SELECT SQL statement must be prepared by
calling the prepare method of the connection, to convert it into an efficient internal format,
with the Statement data type. This object is assigned to the command variable. A prepared
statement must be mutable to allow the following replacement of parameters. In this case,
however, we don't have any parameters.

A query can generate several rows, and we want to process one at a time, so we must create
an iterator from this command. It is performed by calling the query_map method of the
command. This method receives two arguments—a slice of parameter values and a
closure—and it returns an iterator. The query_map function performs two jobs—first, it
replaces the specified parameters, and then it uses the closure to map (or transform) each
extracted row into a more handy structure. But in our case, we have no parameters to
replace, and so we just create a specific structure with the SaleWithProduct type. To
extract the fields from a row, the get method is used. It has a zero-based index on the fields
specified in the SELECT query. This structure is the object returned by the iterator for any
row extracted by the query, and it is assigned to the iteration variable
named sale_with_product.

Now that we have learned how to access a SQLite database, let's check the PostgreSQL
database management system.

Accessing a PostgreSQL database
What we did in the SQLite database is similar to what we will be doing in the PostgreSQL
database. This is because they are both based on the SQL language, but mostly because
SQLite is designed to be similar to PostgreSQL. It may be harder to convert an application
from PostgreSQL into SQLite because the former has many advanced features that are not
available in the latter.

In this section, we are going to convert the example from the previous section so that it
works with a PostgreSQL database instead of SQLite. So, we'll explain the differences.

Storing and Retrieving Data Chapter 2

[37]

The source code for this section can be found in the postgresql_example folder. To run
it, open its folder and type in cargo run. This will carry out essentially the same
operations that we saw for sqlite_example, and so after creating and populating the
database, it will print the following:

At instant 1234567890, 7.439 Kg of pears were sold.

Implementation of the project
This project only uses the crate named postgres. Its name is a popular contraction of
the postgresql name.

Creating a connection to a PostgreSQL database is very different from creating a connection
to a SQLite database. As the latter is only a file, you do so in a similar way to opening a file,
and you should write Connection::open(<pathname of the db file>). Instead, to
connect to a PostgreSQL database, you need access to a computer where a server is
running, then access to the TCP port where that server is listening, and then you need to
specify your credentials on this server (your username and password). Optionally, you can
then specify which of the databases managed by this server you want to use.

So, the general form of the call is Connection::connect(<URL>, <TlsMode>), where
the URL can be, for
example, postgres://postgres:post@localhost:5432/Rust2018. The general form
of the URL is postgres://username[:password]@host[:port][/database], where
the password, the port, and the database parts are optional. The TlsMode argument
specifies whether the connection must be encrypted.

The port is optional because it has a value of 5432 by default. Another difference is that this
crate does not use the params! macro. Instead, it allows us to specify a reference to a slice.
In this case, it is an empty slice (&[]) because we don't need to specify parameters.

The table creation and population process is similar to the way it was done
for sqlite_example. The query is different, however. This is the body of the print_db
function:

for row in &conn.query(
 "SELECT p.name, s.unit, s.quantity, s.sale_date
 FROM Sales s
 LEFT JOIN Products p
 ON p.id = s.product_id
 ORDER BY s.sale_date",
 &[],

Storing and Retrieving Data Chapter 2

[38]

)? {
 let sale_with_product = SaleWithProduct {
 category: "".to_string(),
 name: row.get(0),
 quantity: row.get(2),
 unit: row.get(1),
 date: row.get(3),
 };
 println!(
 "At instant {}, {} {} of {} were sold.",
 sale_with_product.date,
 sale_with_product.quantity,
 sale_with_product.unit,
 sale_with_product.name
);
}

With PostgreSQL, the query method of the connection class carries out parameter
substitution, similarly to the execute method, but it does not map the row to a structure.
Instead, it returns an iterator, which can be immediately used in a for statement. Then, in
the body of the loop, the row variable can be used (as it is in the example) to fill a struct.

As we now know how to access data in the SQLite and PostgreSQL databases, let's see how
to store and retrieve data from a Redis store.

Storing and retrieving data from a Redis
store
Some applications need a very fast response time for certain kinds of data; faster than what
a DBMS can offer. Usually, a DBMS dedicated to one user would be fast enough, but for
some applications (typically large-scale web applications) there are hundreds of concurrent
queries and many concurrent updates. You can use many computers, but the data must be
kept coherent among them, and keeping coherence can cause a bottleneck of performance.

A solution to this problem is to use a key-value store, which is a very simple database that
can be replicated across a network. This keeps the data in memory to maximize the speed,
but it also supports the option to save the data in a file. This avoids losing information if the
server is stopped.

Storing and Retrieving Data Chapter 2

[39]

A key-value store is similar to the HashMap collection of the Rust standard library, but it is
managed by a server process, which could possibly be running on a different computer. A
query is a message exchanged between the client and a server. Redis is one of the most used
key-value stores.

The source code for this project is found in the redis_example folder. To run it, open the
folder and type in cargo run. This will print the following:

a string, 4567, 12345, Err(Response was of incompatible type: "Response
type not string compatible." (response was nil)), false.

This simply creates a data store in the current computer and stores in it the following three
key-value pairs:

"aKey", associated with "a string"
"anotherKey", associated with 4567
45, associated with 12345

Then, it queries the store for the following keys:

"aKey", which obtains an "a string" value
"anotherKey", which obtains a 4567 value
45, which obtains a 12345 value
40, which obtains an error

Then, it queries whether the 40 key exists in the store, which obtains false.

Implementing the project
Only the redis crate is used in this project.

The code is quite short and simple. Let's look at how it works:

fn main() -> redis::RedisResult<()> {
 let client = redis::Client::open("redis://localhost/")?;
 let mut conn = client.get_connection()?;

First, a client must be obtained. The call to redis::Client::open receives a URL and just
checks whether this URL is valid. If the URL is valid, a redis::Client object is returned,
which has no open connections. Then, the get_connection method of the client tries to
connect, and if it is successful, it returns an open connection.

Storing and Retrieving Data Chapter 2

[40]

Any connection essentially has three important methods:

set: This tries to store a key-value pair.
get: This tries to retrieve the value associated with the specified key.
exists: This tries to detect whether the specified key is present in the store,
without retrieving its associated value.

Then, set is invoked three times, with different types for the key and value:

conn.set("aKey", "a string")?;
conn.set("anotherKey", 4567)?;
conn.set(45, 12345)?;

At last, get is invoked four times and exists is invoked once. The first three calls get the
stored value. The fourth call specifies a non-existent value, so a null value is returned,
which cannot be converted into String, as is required, and so an error is generated:

conn.get::<_, String>("aKey")?,
conn.get::<_, u64>("anotherKey")?,
conn.get::<_, u16>(45)?,
conn.get::<_, String>(40),
conn.exists::<_, bool>(40)?);

You can always check the error to find out whether your key is present, but a cleaner
solution is to call the exists method, which returns a Boolean value specifying whether
the key is present.

With this, we now know how Rust crates are used to access, store, and retrieve data using
the most popular databases.

Putting it all together
You should now know enough to build an example that does what we described at the
beginning of the chapter. We have learned the following:

How to read a TOML file to parameterize the program
How to load the data regarding products and sales into memory, specified in a
JSON file and in an XML file
How to store all of this data in three places: a SQLite DB file, a PostgreSQL
database, and a Redis key-value store

Storing and Retrieving Data Chapter 2

[41]

The source code of the complete example is found in the transformer project. To run it,
open its folder and type in cargo run ../data/config.toml. If everything is
successful, it will recreate and populate the SQLite database contained in
the data/sales.db file, the PostgreSQL database, which can be accessed from localhost
on port 5432 and is named Rust2018, and the Redis store, which can be accessed from
localhost. Then, it will query the SQLite and PostgreSQL databases for the number of
rows in their tables, and it will print the following:

SQLite #Products=4.
SQLite #Sales=5.
PostgreSQL #Products=4.
PostgreSQL #Sales=5.

So, we have now seen a rather broad example of data manipulation.

Summary
In this chapter, we looked at some basic techniques to access data in popular text formats
(TOML, JSON, and XML) or data managed by popular database managers (SQLite,
PostgreSQL, and Redis). Of course, many other file formats and database managers exist,
and there is still a lot to be learned about these formats and these database managers.
Nevertheless, you should now have a grasp of what they do. These techniques are useful
for many kinds of applications.

In the next chapter, we will learn how to build a web backend service using the REST
architecture. To keep that chapter self-contained, we will only use a framework to receive
and respond to web requests, and not use a database. Of course, that is quite unrealistic;
but by combining those web techniques with the ones introduced in this chapter, you can
build a real-world web service.

Questions
Why is it not a good idea to change programmatically a TOML file edited by a1.
user?
When is it better to use a dynamically typed parsing of TOML or JSON files and2.
when is it better to use statically typed parsing?
When is it required to derive a structure from the Serialize and the3.
Deserialize trait?

Storing and Retrieving Data Chapter 2

[42]

What is a pretty generation of a JSON string?4.
Why could it be better to use a stream parser, rather than a single-call parser?5.
When is SQLite a better choice and when is it better to use PostgreSQL?6.
Which is the type of the parameters passed with a SQL command to a SQLite7.
database manager?
What does the query method do on a PostgreSQL database?8.
What are the names of the functions to read and write values in a Redis key-9.
value store?
Can you try to write a program that gets an ID from the command line, queries10.
SQLite, PostgreSQL, or the Redis database for the ID, and prints some
information regarding the data found?

3
Creating a REST Web Service

Historically, a lot of technologies have been developed and used to create a client-server
system. In recent decades, though, all client-server architectures tend to be web-based—that
is, based on the HyperText Transfer Protocol (HTTP). HTTP is based on the Transfer
Control Protocol (TCP) and the Internet Protocol (IP). In particular, two web-based
architectures have become popular—the Simple Object Access Protocol (SOAP) and
Representational State Transfer (REST).

While SOAP is an actual protocol, REST is only a collection of principles. The web services
adhering to the REST principles are said to be RESTful. In this chapter, we'll see how to
build RESTful services using the popular Actix web framework.

Any web service (REST web services included) can be used by any web client—that is, any
program that can send HTTP requests over a TCP/IP network. The most typical web clients
are web pages running in a web browser, and containing JavaScript code. Any program
written in any programming language and running in any operating system implementing
the TCP/IP protocols can act as a web client.

The web servers are also known as the backend, while the web client is known as
the frontend.

The following topics will be covered in this chapter:

The REST architecture
Building a stub of a web service using the Actix web framework and
implementing the REST principles
Building a complete web service capable of uploading files, downloading files,
and deleting files on client request
Handling an inner state as a memory database or a pool of connections to
a database
Using JavaScript Object Notation (JSON) format to send data to clients

Creating a REST Web Service Chapter 3

[44]

Technical requirements
To easily understand this chapter, you should have beginner knowledge of HTTP. The
required concepts are as follows:

Uniform Resource Identifiers (URIs)
Methods (such as GET)
Headers
Body
Content type (such as plain/text)
Status code (such as Not Found=404)

Before starting the projects in this chapter, a generic HTTP client should be installed on
your computer. The tool used in the examples is the command-line tool curl, freely
available for many operating systems. The official download page is https:/ ​/​curl. ​haxx.
se/​download.​html. In particular, the page for Microsoft Windows is https:/ ​/​curl. ​haxx.
se/​windows/​.

Alternatively, you can use one of the several good, free web-browser utilities, such as
Advanced REST Client for Chrome, or RESTED and RESTer for Firefox.

The complete source code for this chapter is in the Chapter03 folder of the repository,
located at https:/​/ ​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for- ​Rust-
Programmers.

The REST architecture
The REST architecture is strongly based on the HTTP protocol but does not require any
specific kind of data format, and so it can transmit data in several formats such as plain
text, JSON, Extensible Markup Language (XML), or binary (encoded as Base64).

Many web resources describe what the REST architectural paradigm is. One such can be
found at https:/​/​en. ​wikipedia. ​org/ ​wiki/ ​Representational_ ​state_ ​transfer.

However, the concept of the REST architecture is quite simple. It is the purest extension of
the ideas behind the World Wide Web (WWW) project.

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://curl.haxx.se/windows/
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

Creating a REST Web Service Chapter 3

[45]

The WWW project was born in 1989 as a global library of hypertexts. A hypertext is a
document that contains links to other documents so that, by clicking repeatedly on the
links, you can see many documents by using only your mouse. Such documents are
scattered over the internet and are identified by a unique description, the Uniform
Resource Locator (URL). The protocol to share such documents is HTTP, and the
documents are written in HyperText Markup Language (HTML). A document can embed
images, referenced by URL addresses too.

The HTTP protocol allows you to download pages to your document viewer (the web
browser), but also to upload new documents to be shared with other people. You can also
replace existing documents with a new version, or delete existing documents.

If the concept of a document or file is replaced by that of named data, or a resource, you get the
concept of REST. Any interaction with a RESTful server is a manipulation of a piece of data,
referencing it by its name. Of course, such data can be a disk file, but it can also be a set of
records in a database that is identified by a query, or even a variable kept in memory.

A peculiar aspect of RESTful servers is the absence of server-side client sessions. As with
any hypertext server, RESTful servers do not store the fact that a client has logged in. If
there is some data associated with a session, such as the current user or the previously
visited pages, that data belongs only to the client side. As a consequence, any time the client
needs access to privileged services, or to user-specific data, the request must contain the
credentials of the user.

To improve performance, the server can store session information in a cache, but that
should be transparent. The server (except for its performance) should behave as if it doesn't
keep any session information.

Project overview
We are going to build several projects, introducing new features in every project. Let's look
at each one, as follows:

The first project will build a stub of a service that should allow any client to
upload, download, or delete files from the server. This project shows how to
create a REST application programming interface (API), but it does no useful
work.
The second project will implement the API described in the previous project. It
will build a service that actually allows any client to upload, download, or delete
files from the server filesystem.

Creating a REST Web Service Chapter 3

[46]

The third project will build a service that allows clients to add key-value records
to a memory database residing in the server process, and to recall some
predefined queries built into the server. The result of such queries will be sent
back to the client in plain text format.
The fourth project will be similar to the third one, but the results will be encoded
in JSON format.

Our source code is small, but it includes the Actix web crate, which in turn includes around
200 crates, and so the first build of any project will take around 10 minutes. Following any
changes to the application code, a build will take from 12 to 30 seconds.

The Actix web crate has been chosen as it is the most feature-full, reliable, high-
performance, and well-documented server-side web application framework for Rust.

This framework is not limited to RESTful services, as it can be used to build different kinds
of server-side web software. It is an extension of the Actix net framework, which is a
framework designed to implement different kinds of network services.

Essential background theory and context
Previously, we said that a RESTful service is based on the HTTP protocol. This is a rather
complex protocol, but its most important parts are quite simple. Here is a simplified
version of it.

The protocol is based on a pair of messages. First, the client sends a request to the server,
and after the server receives this request, it replies by sending a response to the client. Both
messages are in American Standard Code for Information Interchange (ASCII) text, and
so they are easily manipulated.

The HTTP protocol is usually based on the TCP/IP protocol, which guarantees that these
messages arrive at the addressed process.

Let's see a typical HTTP request message, as follows:

GET /users/susan/index.html HTTP/1.1
Host: www.acme.com
Accept: image/png, image/jpeg, */*
Accept-Language: en-us
User-Agent: Mozilla/5.0

This message contains six lines because there is an empty line at the end.

Creating a REST Web Service Chapter 3

[47]

The first line begins with the word GET. This word is the method that specifies which
operation is requested. Then, there is a Unix-style path of a resource, and then the version of
the protocol (here, it is 1.1).

Then, there are four lines containing rather simple attributes. These attributes are name
headers. There are many possible optional headers.

What follows the first empty line is the body. Here, the body is empty. The body is used to
send raw data—even a lot of data.

So, any request from the HTTP protocol sends a command name (the method) to a specific
server, followed by an identifier of a resource (the path). Then, there are a few attributes
(one per line), then an empty line, and, finally, the possible raw data (the body).

The most important methods are detailed as follows:

GET: This requests a resource to be downloaded from the server (typically an
HTML file or an image file, but also any data). The path specifies where the
resource should be read.
POST: This sends some data to the server that the server should consider as new.
The path specifies where to add this data. If the path identifies any existing data,
the server should return an error code. The contents of the data to post are in the
body section.
PUT: This is similar to the POST command, but it is meant to replace existing data.
DELETE: This requests the resource to be removed specified by the path. It has an
empty body.

Here is a typical HTTP response message:

HTTP/1.1 200 OK
Date: Wed, 15 Apr 2020 14:03:39 GMT
Server: Apache/2.2.14
Accept-Ranges: bytes
Content-Length: 42
Connection: close
Content-Type: text/html

<html><body><p>Some text</p></body></html>

The first line of any response message begins with the protocol version, followed by the
status code both in text format and in numeric format. Success is represented by 200 OK.

Creating a REST Web Service Chapter 3

[48]

Then, there are several headers—six, in this example—then an empty line, and then the
body, which may be empty. In this case, the body contains some HTML code.

You can find more information regarding the HTTP protocol at: https:/ ​/​en.​wikipedia.
org/​wiki/​Hypertext_ ​Transfer_ ​Protocol.

Building a stub of a REST web service
The typical example of a REST service is a web service designed for uploading and
downloading text files. As it would be too complex to understand, first we will look at a
simpler project, the file_transfer_stub project, which mimics this service without
actually doing anything on the filesystem.

You will see how an API of a RESTless web service is structured, without being
overwhelmed by the details regarding the implementation of the commands.

In the next section, this example will be completed with the needed implementation, to
obtain a working file-managing web app.

Running and testing the service
To run this service, it is enough to type the command cargo run in a console. After
building the program, it will print Listening at address 127.0.0.1:8080 ..., and
it will remain listening for incoming requests.

To test it, we need a web client. You can use a browser extension if you prefer, but in this
chapter, the curl command-line utility will be used.

The file_transfer_stub service and the file_transfer service (we'll see them in the
next section) have the same API, containing the following four commands:

Download a file with a specified name.1.
Upload a file with a specified name and specified contents.2.
Upload a file with a specified name prefix and specified contents, obtaining the3.
complete name as a response.
Delete a file with a specified name.4.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Creating a REST Web Service Chapter 3

[49]

Getting a resource using the GET method
To download a resource in the REST architecture, the GET method should be used. For
these commands, the URL should specify the name of the file to download. No additional
data should be passed, and the response should contain the contents of the file and the
status code, which can be 200, 404, or 500:

Type the following command into a console:1.

curl -X GET http://localhost:8080/datafile.txt

In that console, the following mock line should be printed, and then the prompt2.
should appear immediately:

Contents of the file.

Meanwhile, on the other console, the following line should be printed:3.

Downloading file "datafile.txt" ... Downloaded file "datafile.txt"

This command mimics the request to download the datafile.txt file from the
filesystem of the server.

The GET method is the default one for curl, and hence you can simply type the4.
following:

curl http://localhost:8080/datafile.txt

In addition, you can redirect the output to any file by typing the following:5.

curl http://localhost:8080/datafile.txt >localfile.txt

So, we have now seen how our web service can be used by curl to download a remote file,
to print it on the console, or to save it in a local file.

Creating a REST Web Service Chapter 3

[50]

Sending a named resource to the server using
the PUT method
To upload a resource in the REST architecture, either the PUT or POST methods should be
used. The PUT method is used when the client knows where the resource should be stored,
in essence, what will be its identifying key. If there is already a resource that has this key,
that resource will be replaced by the newly uploaded resource:

Type the following command into a console:1.

curl -X PUT http://localhost:8080/datafile.txt -d "File contents."

In that console, the prompt should appear immediately. Meanwhile, on the other2.
console, the following line should be printed:

Uploading file "datafile.txt" ... Uploaded file "datafile.txt"

This command mimics the request to send a file to the server, with the client
specifying the name of that resource, so that if a resource with that name already
exists, it is overwritten.

You can use curl to send the data contained in a specified local file in the3.
following way:

curl -X PUT http://localhost:8080/datafile.txt -d @localfile.txt

Here, the curl command has an additional argument, -d, which allows
us to specify the data we want to send to the server. If it is followed by
an @ symbol, the text following this symbol is used as the path of the
uploaded file.

For these commands, the URI should specify the name of the file to upload and also the
contents of the file, and the response should contain only the status code, which can be 200,
201 (Created), or 500. The difference between 200 and 201 is that in the first case, an
existing file is overwritten, and in the second case, a new file is created.

So, we have now learned how our web service can be used by curl to upload a string into a
remote file, while also specifying the name of the file.

Creating a REST Web Service Chapter 3

[51]

Sending a new resource to the server using the
POST method
In the REST architecture, the POST method is the one to use when it is the responsibility of
the service to generate an identifier key for the new resource. Thus, the request does not
have to specify it. The client can specify a pattern or prefix for the identifier, though. As the
key is automatically generated and unique, there cannot be another resource that has the
same key. The generated key should be returned to the client, though, because otherwise, it
cannot reference that resource afterward:

To upload a file with an unknown name, type the following command into1.
the console:

curl -X POST http://localhost:8080/data -d "File contents."

In that console, the text data17.txt should be printed, and then the prompt2.
should appear. This text is the simulated name of the file, received from the
server. Meanwhile, on the other console, the following line should be printed:

Uploading file "data*.txt" ... Uploaded file "data17.txt"

This command represents the request to send a file to the server, with the server specifying
a new unique name for that resource so that no other resource will be overwritten.

For this command, the URI should not specify the full name of the file to upload, but only a
prefix; of course, the request should also contain the contents of the file. The response
should contain the complete name of the newly created file and the status code. In this case,
the status code can only be 201 or 500, because the possibility of a file already existing is
ruled out.

We have now learned how our web service can be used by curl to upload a string into a
new remote file, leaving the task of inventing a new name for that file to the server. We
have also seen that the generated filename is sent back as a response.

Deleting a resource using the DELETE method
In the REST architecture, to delete a resource, the DELETE method should be used:

Type the following command into a console (don't worry—no file will be1.
deleted!):

curl -X DELETE http://localhost:8080/datafile.txt

Creating a REST Web Service Chapter 3

[52]

After typing that command, the prompt should appear immediately. Meanwhile,2.
in the server console, the following line should be printed:

Deleting file "datafile.txt" ... Deleted file "datafile.txt"

This command represents the request to delete a file from the filesystem of the server. For
such a command, the URL should specify the name of the file to delete. No additional data
needs to be passed, and the only response is the status code, which can be 200, 404, or
500. So, we have seen how our web service can be used by curl to delete a remote file.

As a summary, the possible status codes of this service are as follows:

200: OK
201: Created
404: Not Found
500: Internal Server Error

Also, the four commands of our API are as follows:

Method URI Request data format Response data format Status codes
GET /{filename} --- text/plain 200, 404, 500
PUT /{filename} text/plain --- 200, 201, 500
POST /{filename prefix} text/plain text/plain 201, 500
DELETE /{filename} --- --- 200, 404, 500

Sending an invalid command
Let's see the behavior of the server when an invalid command is received:

Type the following command into a console:1.

curl -X GET http://localhost:8080/a/b

In that console, the prompt should appear immediately. Meanwhile, in the other2.
console, the following line should be printed:

Invalid URI: "/a/b"

This command represents the request to get the /a/b resource from the server, but, as our
API does not permit this method of specifying a resource, the service rejects the request.

Creating a REST Web Service Chapter 3

[53]

Examining the code
The main function contains the following statements:

HttpServer::new(|| ...)
.bind(server_address)?
.run()

The first line creates an instance of an HTTP server. Here, the body of the closure is
omitted.

The second line binds the server to an IP endpoint, which is a pair composed of an IP
address and an IP port, and returns an error if such a binding fails.

The third line puts the current thread in listening mode on that endpoint. It blocks the
thread, waiting for incoming TCP connection requests.

The argument of the HttpServer::new call is a closure, shown here:

App::new()
 .service(
 web::resource("/{filename}")
 .route(web::delete().to(delete_file))
 .route(web::get().to(download_file))
 .route(web::put().to(upload_specified_file))
 .route(web::post().to(upload_new_file)),
)
 .default_service(web::route().to(invalid_resource))

In this closure, a new web app is created, and then one call to the service function is
applied to it. Such a function contains a call to the resource function, which returns an
object on which four calls to the route function are applied. Lastly, a call to
the default_service function is applied to the application object.

This complex statement implements a mechanism to decide which function to call based on
the path and method of the HTTP request. In web programming parlance, such a kind of
mechanism is named routing.

The request routing first performs pattern matching between the address URI and one or
several patterns. In this case, there is only one pattern, /{filename}, which describes a
URI that has an initial slash and then a word. The word is associated with the filename
name.

Creating a REST Web Service Chapter 3

[54]

The four calls to the route method proceed with the routing, based on the HTTP method
(DELETE, GET, PUT, POST). There is a specific function for every possible HTTP method,
followed by a call to the to function that has a handling function as an argument.

Such calls to route mean that the following applies:

If the request method of the current HTTP command is DELETE, then such a
request should be handled by going to the delete_file function.
If the request method of the current HTTP command is GET, then such a request
should be handled by going to the download_file function.
If the request method of the current HTTP command is PUT, then such a request
should be handled by going to the upload_specified_file function.
If the request method of the current HTTP command is POST, then such a request
should be handled by going to the upload_new_file function.

Such four handling functions, named handlers, must of course be implemented in the
current scope. In actuality, they are defined, albeit interleaved with TODO comments,
recalling what is missing to have a working application instead of a stub. Nevertheless,
such handlers contain much functionality.

Such a routing mechanism can be read in English, in this way—for example, for a DELETE
command:

Create a service to manage the web::resource named /{filename}, to route a
delete command to the delete_file handler.

After all of the patterns, there is the call to the default_service function that represents a
catch-all pattern, typically to handle invalid URIs, such as /a/b in the previous example.

The argument of the catch-all statement—that is,
web::route().to(invalid_resource), causes the routing to the invalid_resource
function. You can read it as follows:

For this web command, route it to the invalid_resource function.

Now, let's see the handlers, starting with the simplest one, as follows:

fn invalid_resource(req: HttpRequest) -> impl Responder {
 println!("Invalid URI: \"{}\"", req.uri());
 HttpResponse::NotFound()
}

Creating a REST Web Service Chapter 3

[55]

This function receives an HttpRequest object and returns something implementing the
Responder trait. It means that it processes an HTTP request, and returns something that
can be converted to an HTTP response.

This function is quite simple because it does so little. It prints the URI to the console and
returns a Not Found HTTP status code.

The other four handlers get a different argument, though. It is the following: info:
Path<(String,)>. Such an argument contains a description of the path matched before,
with the filename argument put into a single-value tuple, inside a Path object. This is
because such handlers do not need the whole HTTP request, but they need the parsed
argument of the path.

Notice that we have one handler receiving an argument of the HttpRequest type, and the
others receiving an argument of the Path<(String,)> type. This syntax is possible
because the to function, called in the main function, expects as an argument a generic
function, whose arguments can be of several different types.

All four handlers begin with the following statement:

let filename = &info.0;

Such a statement extracts a reference to the first (and only) field of the tuple containing the
parameters resulting from the pattern matching of the path. This works as long as the path
contained exactly one parameter. The /a/b path cannot be matched with the pattern,
because it has two parameters. Also, the / path cannot be matched, because it has no
parameters. Such cases end in the catch-all pattern.

Now, let's examine the delete_file function specifically. It continues with the following
lines:

print!("Deleting file \"{}\" ... ", filename);
flush_stdout();

// TODO: Delete the file.

println!("Deleted file \"{}\"", filename);
HttpResponse::Ok()

It has two informational printing statements, and it ends returning a success value. In the
middle, the actual statement to delete the file is still missing. The call to
the flush_stdout function is needed to emit the text on the console immediately.

Creating a REST Web Service Chapter 3

[56]

The download_file function is similar, but, as it has to send back the contents of the file, it
has a more complex response, as illustrated in the following code snippet:

HttpResponse::Ok().content_type("text/plain").body(contents)

The object returned by the call to Ok() is decorated, first by calling content_type and
setting text/plain as the type of the returned body, and then by calling body and setting
the contents of the file as the body of the response.

The upload_specified_file function is quite simple, as its two main jobs are missing:
getting the text to put in the file from the body of the request, and saving that text into the
file, as illustrated in the following code block:

print!("Uploading file \"{}\" ... ", filename);
flush_stdout();

// TODO: Get from the client the contents to write into the file.
let _contents = "Contents of the file.\n".to_string();

// TODO: Create the file and write the contents into it.

println!("Uploaded file \"{}\"", filename);
HttpResponse::Ok()

The upload_new_file function is similar, but it should have another step that is still
missing: to generate a unique filename for the file to save, as illustrated in the following
code block:

print!("Uploading file \"{}*.txt\" ... ", filename_prefix);
flush_stdout();

// TODO: Get from the client the contents to write into the file.
let _contents = "Contents of the file.\n".to_string();

// TODO: Generate new filename and create that file.
let file_id = 17;

let filename = format!("{}{}.txt", filename_prefix, file_id);

// TODO: Write the contents into the file.

println!("Uploaded file \"{}\"", filename);
HttpResponse::Ok().content_type("text/plain").body(filename)

So, we have examined all of the Rust code of the stub of the web service. In the next section,
we'll look at the complete implementation of this service.

Creating a REST Web Service Chapter 3

[57]

Building a complete web service
The file_transfer project completes the file_transfer_stub project, by filling in the
missing features.

The features were omitted in the previous project for the following reasons:

To have a very simple service that actually does not really access the filesystem
To have only synchronous processing
To ignore any kind of failure, and keep the code simple

Here, these restrictions have been removed. First of all, let's see what happens if you
compile and run the file_transfer project, and then test it using the same commands as
in the previous section.

Downloading a file
Let's try the following steps on how to download a file:

Type the following command into the console:1.

curl -X GET http://localhost:8080/datafile.txt

If the download is successful, the server prints the following line to the console:2.

Downloading file "datafile.txt" ... Downloaded file "datafile.txt"

In the console of the client, curl prints the contents of that file.

In the case of an error, the service prints the following:

Downloading file "datafile.txt" ... Failed to read file "datafile.txt": No
such file or directory (os error 2)

We have now seen how our web service can be used by curl to download a file. In the next
sections, we'll learn how our web service can perform other operations on remote files.

Creating a REST Web Service Chapter 3

[58]

Uploading a string to a specified file
Here is the command to upload a string into a remote file with a specified name:

curl -X PUT http://localhost:8080/datafile.txt -d "File contents."

If the upload is successful, the server prints the following to the console:

Uploading file "datafile.txt" ... Uploaded file "datafile.txt"

If the file already existed, it is overwritten. If it didn't exist, it is created.

In the case of an error, the web service prints the following line:

Uploading file "datafile.txt" ... Failed to create file "datafile.txt"

Alternatively, it prints the following line:

Uploading file "datafile.txt" ... Failed to write file "datafile.txt"

This is how our web service can be used by curl to upload a string into a remote file while
specifying the name of the file.

Uploading a string to a new file
Here is the command to upload a string into a remote file with a name chosen by the server:

curl -X POST http://localhost:8080/data -d "File contents."

If the upload is successful, the server prints to the console something similar to the
following:

Uploading file "data*.txt" ... Uploaded file "data917.txt"

This output shows that the name of the file contains a pseudo-random number— for this
example, this is 917, but you'll probably see some other number.

In the console of the client, curl prints the name of that new file, as the server has sent it
back to the client.

In the case of an error, the server prints the following line:

Uploading file "data*.txt" ... Failed to create new file with prefix
"data", after 100 attempts.

Creating a REST Web Service Chapter 3

[59]

Alternatively, it prints the following line:

Uploading file "data*.txt" ... Failed to write file "data917.txt"

This is how our web service can be used by curl to upload a string into a new remote file,
leaving the task of inventing a new name for that file to the server. The curl tool receives
this new name as a response.

Deleting a file
Here is the command to delete a remote file:

curl -X DELETE http://localhost:8080/datafile.txt

If the deletion is successful, the server prints the following line to the console:

Deleting file "datafile.txt" ... Deleted file "datafile.txt"

Otherwise, it prints this:

Deleting file "datafile.txt" ... Failed to delete file "datafile.txt": No
such file or directory (os error 2)

This is how our web service can be used by curl to delete a remote file.

Examining the code
Let's now examine the differences between this program and the one described in the
previous section. The Cargo.toml file contains two new dependencies, as illustrated in the
following code snippet:

futures = "0.1"
rand = "0.6"

The futures crate is needed for asynchronous operations, and the rand crate is needed for
randomly generating the unique names of the uploaded files.

Many new data types have been imported from the external crates, as can be seen in the
following code block:

use actix_web::Error;
use futures::{
 future::{ok, Future},
 Stream,

Creating a REST Web Service Chapter 3

[60]

};
use rand::prelude::*;
use std::fs::{File, OpenOptions};

The main function has just two changes, as follows:

.route(web::put().to_async(upload_specified_file))

.route(web::post().to_async(upload_new_file)),

Here, two calls to the to function have been replaced by calls to the to_async function.
While the to function is synchronous (that is, it keeps the current thread busy until that
function is completed), the to_async function is asynchronous (that is, it can be postponed
until the expected events have happened).

This change was required by the nature of upload requests. Such requests can send large
files (several megabytes), and the TCP/IP protocol sends such files split into small packets.
If the server, when it receives the first packet, just waits for the arrival of all the packets, it
can waste a lot of time. Even with multithreading, if many users upload files concurrently,
the system will dedicate as many threads as possible to handle such uploads, and this is
rather inefficient. A more performant solution is asynchronous processing.

The to_async function, though, cannot receive as an argument a synchronous handler. It
must receive a function that returns a value having the impl Future<Item =
HttpResponse, Error = Error> type, instead of the impl Responder type, returned
by synchronous handlers. This is actually the type returned by the two upload
handlers: upload_specified_file and upload_new_file.

The object returned is of an abstract type, but it must implement the Future trait. The
concept of a future, used also in C++ since 2011, is similar to JavaScript promises. It
represents a value that will be available in the future, and in the meantime, the current
thread can handle some other events.

Futures are implemented as asynchronous closures, meaning that these closures are put in
a queue in an internal futures list, and not run immediately. When no other task is running
in the current thread, the future at the top of the queue is removed from the queue and
executed.

If two futures are chained, the failure of the first chain causes the second future to be
destroyed. Otherwise, if the first future of the chain succeeds, the second future has the
opportunity to run.

Creating a REST Web Service Chapter 3

[61]

Going back to the two upload functions, another change for their signature is the fact that
they now get two arguments. In addition to the argument of the Path<(String,)> type,
containing the filename, there is an argument of the Payload type. Remember that the
contents can arrive piece-wise, and so such a Payload argument does not contain the text
of the file, but it is an object to get the contents of the uploaded file asynchronously.

Its use is somewhat complex.

First, for both upload handlers, there is the following code:

payload
 .map_err(Error::from)
 .fold(web::BytesMut::new(), move |mut body, chunk| {
 body.extend_from_slice(&chunk);
 Ok::<_, Error>(body)
 })
 .and_then(move |contents| {

The call to map_err is required to convert the error type.

The call to fold receives from the network one chunk of data at a time and uses it to extend
an object of the BytesMut type. Such a type implements a kind of extensible buffer.

The call to and_then chains another future to the current one. It receives a closure that will
be called when the processing of fold will be finished. Such a closure receives all the
uploaded contents as an argument. This is a way to chain two futures—any closure
invoked in this way is executed asynchronously, after the previous one is finished.

The contents of the closure simply write the received contents into a file with the specified
name. This operation is synchronous.

The last line of the closure is ok(HttpResponse::Ok().finish()). This is the way to
return from a future. Notice the lowercase ok.

The upload_new_file function is similar to the previous one, in terms of the web
programming concepts. It is more complex, just because of the following:

Instead of having a complete filename, only a prefix is provided, and the rest
must be generated as a pseudo-random number.
The resulting filename must be sent to the client.

Creating a REST Web Service Chapter 3

[62]

The algorithm to generate a unique filename is the following:

A three-digit pseudo-random number is generated, and it is concatenated to the1.
prefix.
The name obtained is used to create a file; this avoids overwriting an existing file2.
with that name.
If a collision happens, another number is generated until a new file is created, or3.
until 100 failed attempts have been tried.

Of course, this assumes that the number of uploaded files will always be significantly less
than 1,000.

Other changes have been made to consider the chance of failure.

The final part of the delete_file function now looks like this:

match std::fs::remove_file(&filename) {
 Ok(_) => {
 println!("Deleted file \"{}\"", filename);
 HttpResponse::Ok()
 }
 Err(error) => {
 println!("Failed to delete file \"{}\": {}", filename, error);
 HttpResponse::NotFound()
 }
}

This code handles the case of a failure in the deletion of the file. Notice that in the case of an
error, instead of returning the success status code HttpResponse::Ok() representing the
number 200, a HttpResponse::NotFound() failure code is returned, representing the
number 404.

The download_file function now contains a local function to read the whole contents of a
file into a string, as follows:

fn read_file_contents(filename: &str) -> std::io::Result<String> {
 use std::io::Read;
 let mut contents = String::new();
 File::open(filename)?.read_to_string(&mut contents)?;
 Ok(contents)
}

Creating a REST Web Service Chapter 3

[63]

The function ends with some code to handle the possible failure of the function, as follows:

match read_file_contents(&filename) {
 Ok(contents) => {
 println!("Downloaded file \"{}\"", filename);
 HttpResponse::Ok().content_type("text/plain").body(contents)
 }
 Err(error) => {
 println!("Failed to read file \"{}\": {}", filename, error);
 HttpResponse::NotFound().finish()
 }
}

Building a stateful server
The web app of the file_transfer_stub project was completely stateless, meaning that
every operation had the same behavior independently of the previous operations. Other
ways to explain this are that no data was kept from one command to the next, or that it
computed pure functions only.

The web app of the file_transfer project had a state, but that state was confined to the
filesystem. Such a state was the content of the data files. Nevertheless, the application itself
was still stateless. No variable survived from one request handling to another request
handling.

The REST principles are usually interpreted as prescribing that any API must be stateless.
That is a misnomer because REST services can have a state, but they must behave as if they
were stateless. To be stateless means that, except for the filesystem and the database, no
information survives in the server from one request handling to another request handling.
To behave as if stateless means that any sequence of requests should obtain the same results
even if the server is terminated and restarted between one request and a successive one.

Clearly, if the server is terminated, its state is lost. So, to behave as stateless means that the
behavior should be the same even if the state is reset. So, what is the purpose of the possible
server state? It is to store information that can be obtained again with any request, but
that would be costly to do so. This is the concept of caching.

Usually, any REST web server has an internal state. The typical information stored in this
state is a pool of connections to the database. A pool is initially empty, and when the first
handler must connect to the database, it searches the pool for an available connection. If it
finds one, it uses it. Otherwise, a new connection is created and added to the pool. A pool is
a shared state that must be passed to any request handler.

Creating a REST Web Service Chapter 3

[64]

In the projects of the previous sections, the request handlers were pure functions; they had
no possibility of sharing a common state. In the memory_db project, we'll see how we can
have a shared state in the Actix web framework that is passed to any request handler.

This web app represents access to a very simple database. Instead of performing actual
access to a database, which would require further installations in your computer, it simply
invokes some functions exported by the data_access module, defined in
the src/data_access.rs file, that keep the database in memory.

A memory database is a state that is shared by all the request handlers. In a more realistic
app, a state would contain only one or more connections to an external database.

How to have a stateful server
To have a state in an Actix service, a struct must be declared, and any data that should be
part of the state should be a field of that struct.

At the beginning of the main.rs file, there is the following code:

struct AppState {
 db: db_access::DbConnection,
}

In the state of our web app, we need only one field, but other fields can be added.

The DbConnection type declared in the db_access module represents the state of our
web app. In the main function, just before creating the server, there is the following
statement that instantiates the AppState, and then properly encapsulates it:

let db_conn = web::Data::new(Mutex::new(AppState {
 db: db_access::DbConnection::new(),
}));

The state is shared by all the requests, and the Actix web framework uses several threads to
handle the requests, and so the state must be thread-safe. The typical way of declaring a
thread-safe object in Rust is to encapsulate it in a Mutex object. This object is then
encapsulated in a Data object.

To ensure that such a state is passed to any handler, the following line must be added
before calling the service functions:

.register_data(db_conn.clone())

Creating a REST Web Service Chapter 3

[65]

Here, the db_conn object is cloned (cheaply, as it is a smart pointer), and it is registered
into the app.

The effect of this registration is that it is now possible to add another type of argument to
the request handlers (both synchronous and asynchronous), as follows:

state: web::Data<Mutex<AppState>>

Such an argument can be used in statements like this:

let db_conn = &mut state.lock().unwrap().db

Here, the state is locked to prevent concurrent access by other requests, and its db field is
accessed.

The API of this service
The rest of the code in this app is not particularly surprising. The API is clear from the
names used in the main function, as illustrated in the following code block:

.service(
 web::resource("/persons/ids")
 .route(web::get().to(get_all_persons_ids)))
.service(
 web::resource("/person/name_by_id/{id}")
 .route(web::get().to(get_person_name_by_id)),
)
.service(
 web::resource("/persons")
 .route(web::get().to(get_persons)))
.service(
 web::resource("/person/{name}")
 .route(web::post().to(insert_person)))
.default_service(
 web::route().to(invalid_resource))

Notice that the first three patterns use the GET method, and so they query the database. The
last one uses the POST method, and so it inserts new records into the database.

Notice also the following lexical conventions.

Creating a REST Web Service Chapter 3

[66]

The path of the URI for the first and third patterns begins with the plural word persons,
which means that zero, one, or several items will be managed by this request and that any
such item represents a person. Instead, the path of the URI for the second and fourth
patterns begins with the singular word person, and this means that no more than one item
will be managed by this request.

The first pattern ends with the plural word ids, and so several items regarding the id will
be handled. It has no condition, and so all the IDs are requested. The second pattern
contains the word name_by_id, followed by an id parameter, and so it is a request of the
name database column for all the records for which the id column has the value specified.

Even in the case of any doubt, the name of the handling functions or comments should
make the behavior of the service clear, without having to read the code of the handlers.
When looking at the implementation of the handlers, notice that they either return nothing
at all or simple text.

Testing the service
Let's test the service with some curl operations.

First of all, we should populate the database that is initially empty. Remember that, being
only in memory, it is empty any time you start the service.

After starting the program, type the following commands:

curl -X POST http://localhost:8080/person/John
curl -X POST http://localhost:8080/person/Jonathan
curl -X POST http://localhost:8080/person/Mary%20Jane

After the first command, a number 1 should be printed to the console. After the second
command, 2 should be printed, and after the third command, 3 should be printed. They are
the IDs of the inserted names of people.

Now, type the following command:

curl -X GET http://localhost:8080/persons/ids

It should print the following: 1, 2, 3. This is the set of all the IDs in the database.

Now, type the following command:

curl -X GET http://localhost:8080/person/name_by_id/3

Creating a REST Web Service Chapter 3

[67]

It should print the following: Mary Jane. This is the name of the unique person for which
the id is equal to 3. Notice that the input sequence %20 has been decoded into a blank.

Now, type the following command:

curl -X GET http://localhost:8080/persons?partial_name=an

It should print the following: 2: Jonathan; 3: Mary Jane. This is the set of all the
people for which the name column contains the an substring.

Implementing the database
The whole database implementation is kept in the db_access.rs source file.

The implementation of the database is quite simple. It is a DbConnection type, containing
Vec<Person>, where Person is a struct of two fields—id and name.

The methods of DbConnection are described as follows:

new: This creates a new database.
get_all_persons_ids(&self) -> impl Iterator<Item = u32> + '_:
This returns an iterator that provides all the IDs contained in the database. The
lifetime of such an iterator must be no more than that of the database itself.
get_person_name_by_id(&self, id: u32) -> Option<String>: This
returns the name of the unique person having the specified ID if there is one, or
zero if there isn't one.
get_persons_id_and_name_by_partial_name<'a>(&'a self, subname:

&'a str) -> impl Iterator<Item = (u32, String)> + 'a: This returns
an iterator that provides the ID and the name of all the people whose name
contains the specified string. The lifetime of such an iterator must be no more
than that of the database itself, and also no more than that of the specified string.
insert_person(&mut self, name: &str) -> u32: This adds a record to the
database, containing a generated ID and the specified name. This returns the
generated ID.

Creating a REST Web Service Chapter 3

[68]

Handling queries
The request handlers, contained in the main.rs file, get arguments of several types, as
follows:

web::Data<Mutex<AppState>>: As described previously, this is used to access
the shared app state.
Path<(String,)>: As described in the previous sections, this is used to access
the path of the request.
HttpRequest: As described in the previous sections, this is used to access
general request information.

But also, the request handlers get the web::Query<Filter> argument to
access the optional arguments of the request.

The get_persons handler has a query argument—it is a generic argument, whose
parameter is the Filter type. Such a type is defined as follows:

#[derive(Deserialize)]
pub struct Filter {
 partial_name: Option<String>,
}

This definition allows requests such as
http://localhost:8080/persons?partial_name=an. In this request, the path is just
/persons, while ?partial_name=an is the so-called query. In this case, it contains just
one argument whose key is partial_name, and whose value is an. It is a string and it is
optional. This is exactly what is described by the Filter struct.

In addition, such a type is deserializable, as such an object must be read by the request
through serialization.

The get_persons function accesses the query through the following expression:

&query.partial_name.clone().unwrap_or_else(|| "".to_string()),

The partial_name field is cloned to get a string. If it is nonexistent, it is taken as an empty
string.

Creating a REST Web Service Chapter 3

[69]

Returning JSON data
The previous section returned data in plain text. This is unusual in a web service and rarely
satisfactory. Usually, web services return data in JSON, XML, or another structured
format. The json_db project is identical to the memory_db project, except for its returning
data in the JSON format.

First of all, let's see what happens when the same curl commands from the previous section
are executed on it, as follows:

The insertions have the same behavior because they just printed a number.
The first query should print the following: [1,2,3]. The three numbers are in an
array, and so they are enclosed in brackets.
The second query should print the following: "Mary Jane". The name is a
string, and so it is enclosed in quotation marks.
The third query should print the following: [[2,"Jonathan"],[3,"Mary
Jane"]]. The sequence of persons is an array of two records, and each of them is
an array of two values, which are a number and a string.

Now, let's see the differences in the code of this project with respect to the previous one.

In the Cargo.toml file, one dependency has been added, as follows:

serde_json = "1.0"

This is needed to serialize the data in JSON format.

In the main.rs file, the get_all_persons_ids function (instead of returning simply a
string) has the following code:

HttpResponse::Ok()
 .content_type("application/json")
 .body(
 json!(db_conn.get_all_persons_ids().collect::<Vec<_>>())
 .to_string())

First, a response with a status code Ok is created; then, its content type is set
to application/json, to let the client know how to interpret the data it will receive; and
lastly, its body is set, using the json macro taken from the serde_json crate. This macro
takes an expression—in this case, with type, Vec<Person>—and returns a
serde_json::Value value. Now, we need a string, and so to_string() is called. Notice
that the json! macro requires its argument to implement the Serialize trait or to be
convertible into a string.

Creating a REST Web Service Chapter 3

[70]

The get_person_name_by_id, get_persons, and insert_person functions have
similar changes. The main function has no changes. The db_access.rs files are identical.

Summary
We have learned about a few features of the Actix web framework. It is a really complex
framework that covers most needs of the backend web developer, and it is still in active
development.

Particularly, in the file_transfer_stub project, we learned how to create an API of a
RESTful service. In the file_transfer project, we discussed how to implement the
operations of our web service. In the memory_db project, we went through how to manage
an inner state, in particular, one containing a database connection. In the json_db project,
we have seen how to send a response in JSON format.

In the next chapter, we will be learning how to create a full server-side web application.

Questions
According to the REST principles, what are the meanings of the GET, PUT, POST,1.
and DELETE HTTP methods?
Which command-line tool can be used to test a web service?2.
How can a request handler retrieve the value of URI parameters?3.
How can the content type of an HTTP response be specified?4.
How can a unique file name be generated?5.
Why do services that have a stateless API need to manage a state?6.
Why must the state of a service be encapsulated in a Data and a Mutex object?7.
Why may asynchronous processing be useful in a web service?8.
What is the purpose of the and_then function of futures?9.
Which crates are useful to compose an HTTP response in JSON format?10.

Creating a REST Web Service Chapter 3

[71]

Further reading
To learn more about the Actix framework, view the official documentation at https:/ ​/
actix.​rs/​docs/​, and view official examples at https:/ ​/ ​github. ​com/ ​actix/ ​examples/ ​.

https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/
https://github.com/actix/examples/

4
Creating a Full Server-Side

Web App
In the previous chapter, we saw how to build a REST web service using the Actix web
framework. A REST web service must be used by a client app in order for it to be useful to
us.

In this chapter, we'll see how to build a very small but complete web app using the Actix
web framework. We will use HTML code to be formatted in a web browser, JavaScript code
to be executed in the same web browser, and the Tera crate to perform HTML templating.
This is useful for embedding dynamic data inside HTML pages.

The following topics will be covered in this chapter:

Understanding what a classical web app is and what its HTML templates are
Using the Tera template engine with Rust and Actix web
Using Actix web to handle requests of web pages
Handling authentication and authorization in web pages

Creating a Full Server-Side Web App Chapter 4

[73]

Technical requirements
To best understand this chapter, you will need to have read the previous chapter. In
addition, basic knowledge of HTML and JavaScript is assumed.

The complete source code for this chapter can be found in the Chapter04 folder of the
repository at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Rust- ​2018- ​Projects.

Definition of a web app
Everyone knows what a web page or a website is, and everyone knows that some web
pages are quite static, while others have more dynamic behavior. The definition of a web
app, however, is more subtle and controversial.

We will start with an operational definition of a web app; that is, looking at the appearance
and behavior of web apps.

For our purposes, a web app is a website that has the following behavior:

It appears as one or more web pages in a web browser. On these pages, the user
can interact with the page by pressing keys on a keyboard, clicking with a mouse,
tapping on a touchscreen, or using another input device. For some user
interactions, these web pages send requests to a server and receive data from that
site as a response.
In the case of a static web page, the data received is always the same for the same
request; but for a web app, the data received depends on the current state of the
server, which can change with time. Upon receipt of the data, the web page
shows other HTML code, either as a new full page or as a portion of the current
page.
Classic web apps receive HTML code from the server only, so all the browser
must do is display the HTML code when it arrives. Modern apps more often
receive raw data from the server and use JavaScript code within the browser to
create the HTML code that displays the data.

Here, we are going to develop a rather classical web app, as our app receives mainly HTML
code from the server. Some JavaScript code will be used to improve the structure of the
app.

https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects

Creating a Full Server-Side Web App Chapter 4

[74]

Understanding the behavior of a web app
When a user navigates to a website by using the address bar of the browser or by clicking
on a link in a page, the browser sends an HTTP GET request, with the URI specified in the
address field or in the link element, such
as http://hostname.domainname:8080/dir/file?arg1=value1&arg2=value2.

This address is commonly named Uniform Resource Locator (URL) or Uniform Resource
Identifier (URI). The difference between these two acronyms is that a URI is something
that uniquely identifies a resource without necessarily specifying where it can be found; a
URL, however, specifies exactly where a resource can be found. In doing this, it also
identifies the resource because there can be only one resource in a single place.

So, every URL is also a URI, but an address can be a URI without being a URL. For
example, an address that specifies the pathname of a file is a URL (and also a URI) because
it specifies the path to the file. However, an address specifying a filter condition on files is a
URI, but not a URL because it does not explicitly specify which file satisfies that condition.

The first part of an address (such as http://hostname.domainname:8080), up to the
(optional) port number, is needed to route the request to the server process that should
handle it. This server must be running on the host computer and it must be waiting for
incoming requests addressed at that port; or, as it is usually said, it must be listening on
that port.

The subsequent portion of the URI (such as /dir/file) is the so-called path, which always
starts with a slash and ends at the first question mark character or at the end of the URI.
The possible subsequent part (such as ?arg1=value1&arg2=value2) is the so-called
query, which has one or more fields separated by an ampersand. Any field of the query has
a name, followed by an equals sign, followed by a value.

When a request is made, the server should reply by sending an HTTP response, which
contains the HTML page to display in the browser as its body.

After the display of the initial page, any further interaction usually happens when the user
operates on the page by using the keyboard, the mouse, or other input devices.

Creating a Full Server-Side Web App Chapter 4

[75]

Notice that the effect of any user actions on a page can be classified in the following ways:

No code: Some user actions are handled only by the browser, with no
invoked application code. For example, when hovering the mouse over a widget,
the mouse cursor shape changes; when typing in a text widget, the text inside
that widget changes; and when clicking on a checkbox, the box is selected or
deselected. Usually, this behavior is not controlled by the application code.
Frontend only: Some user actions (such as the pressing of a key) trigger the
execution of the client-side JavaScript code associated with these actions, but no
client-server communication is performed and so no server-side code is invoked
as a consequence of these user actions. Typically, any push button is associated
(using the onclick attribute of the button element) to JavaScript code that is
executed any time the user clicks that button. This code could, for example,
enable or disable other widgets or copy data from a widget to another widget of
the same page.
Backend only: Some user actions trigger client-server communication without
using any JavaScript code. There are only two examples of these actions:

Clicking on a submit input element inside an HTML form element
Clicking on an a HTML element, better known as a link

Full-stack: Some user actions trigger the execution of the client-side JavaScript
code associated with that action. This JavaScript code sends one or more requests
to the backend process and receives the responses sent as replies to these
requests. The backend process receives the requests and responds properly to
them. So, both the client-side application code and server-side application code is
run.

Now, let's examine the advantages and disadvantages of these four cases. The no code case
is the default one. If the basic behavior of the browser is good enough, there is no need to
customize it. Some behavior customization can be performed using HTML or CSS.

The frontend only and the full-stack cases require JavaScript to be supported and enabled in
the browser. This was once a problem because some people or platforms couldn't or
wouldn't support it. Nowadays, something that wishes to be called a web app, and not
simply a web page or website, cannot do so without the use of some kind of client-side
processing.

Creating a Full Server-Side Web App Chapter 4

[76]

The frontend only case does not interact with the server, and so it may be useful and is
recommended for any processes that do not need to send data outside of the current
computer or do not need to receive data from another computer. For example, a calculator
can be implemented in JavaScript with no communication with a server. However, most
web apps need this communication.

The backend only case was the original type of web communication available before
JavaScript was invented. It is quite limited, though.

The concept of a link is useful for websites that are meant to be hypertext, not apps.
Remember that HT in HTML and in HTTP stands for Hypertext. That was the original
purpose of the web, but nowadays, web apps are meant to be general-purpose applications,
not just hypertexts.

The concept of a form containing a submit button also limits the interaction to a rigid
protocol—some fields are filled in and a button is pressed to send all of the data to the
server. The server processes the request and sends back a new page that replaces the
current page. In many cases, this can be done, but it is not a very pleasant experience for the
user.

The fourth case is called full-stack because, for these apps, there are both application
frontend code and application backend code. As the frontend code needs the backend code
to work properly, it can be seen as stacked on it.

Notice that any web interaction must have some machine code running on
the frontend and some machine code running on the backend. On the
frontend, there can be the web browser, the curl utility, or some other
kind of HTTP client. On the backend, there can be a web server, such as
Internet Information Services (IIS), Apache, or NGINX, or an application
that acts as an HTTP server.
So, for any web app, there is client-server communication using the HTTP
protocol.
The term full-stack means that, in addition to system software, there is also
some application software running on the frontend (acting as an HTTP
client) and some application software running on the backend (acting as
an HTTP server).

In a typical full-stack application running on a browser, there are no links or forms, just the
typical widgets of a GUI. Usually, these widgets are fixed text, editable fields, drop-down
lists, check buttons, and push buttons. When the user presses any push button, a request is
sent to the server, possibly using the values contained in the widgets, and when the server
sends back an HTML page, that page is used to replace the current page or a portion of it.

Creating a Full Server-Side Web App Chapter 4

[77]

Project overview
The sample web app that we are going to build has the purpose of managing a list of
people contained in a database. It is an extremely simple database as it only has one table
with two columns—one for a numeric ID and one for a name. To keep the project simple,
the database is actually a vector of struct objects kept in memory; but of course, in a real-
world application, it would be stored in a Database Management System (DBMS).

The project will be built in steps, creating four projects that are progressively more
complex, that can be downloaded from the GitHub repository linked in the Technical
requirements section of this chapter:

The templ project is a collection of code snippets that shows how to use the Tera
template engine for the projects of this chapter.
The list project is a simple list of records about people that can be filtered by
name. These records are actually contained in the database code and cannot be
changed by the user.
The crud project contains the features to add, change, and delete people. They
are the so-called Create, Retrieve, Update, and Delete (CRUD) basic functions.
The auth project adds a login page and ensures that only authorized users can
read or change the database. The list of users and their privileges cannot be
changed, however.

The templ project, which does not use the Actix web framework, can be compiled in 1 to 3
minutes the first time, and in a few seconds after any changes to the code.

Any of the other projects will take around 3 to 9 minutes to compile the first time, then 8 to
20 seconds after any changes.

When you run any of the preceding projects (except the first one), all you will see is
Listening at address 127.0.0.1:8080 printed on the console. To view anything
more, you will need a web browser.

Using the Tera template engine
Before starting to develop our web app, we will examine the concept of a template
engine—in particular, the Tera crate, one of the many template engines available for Rust.

Template engines can have several applications, but they are mostly used for web
development.

Creating a Full Server-Side Web App Chapter 4

[78]

A typical problem in web development is knowing how to generate HTML code containing
some constants parts written by hand and some dynamic parts generated by application
code. In general, there are two ways to obtain this kind of effect:

You have a programming language source file that contains a lot of statements
that print strings to create the desired HTML page. These print statements mix
string literals (that is, strings enclosed in quotation marks) and variables
formatted as strings. This is what you'd do in Rust if you didn't have a template
engine.
You write an HTML file containing the desired constant HTML elements and the
desired constant text, but it also contains some statements enclosed in specific
markers. The evaluation of these statements generates the variable parts of the
HTML file. This is what you'd do in PHP, JSP, ASP, and ASP.NET.

However, there is also a compromise, which is to write both application code files and
HTML code containing statements to evaluate. You can then choose the best tool for the job.
This is the paradigm used by template engines.

Imagine you have some Rust code files and some HTML files that must cooperate with one
another. The tool to make the two worlds communicate is a template engine. The HTML
files with embedded statements are named templates and the Rust application code calls
the template engine functions to manipulate these templates.

Now, let's see the code in the templ example project. The first statement creates an instance
of the engine:

 let mut tera_engine = tera::Tera::default();

The second statement loads one simple template into the engine by calling
the add_raw_template function:

 tera_engine.add_raw_template(
 "id_template", "Identifier: {{id}}.").unwrap();

The first argument is the name that will be used to refer to this template and the second
argument is the template itself. It is a normal reference to a string slice, but it contains
the {{id}} placeholder. This symbol qualifies it as a Tera expression. In particular, this
expression contains just a Tera variable, but it could contain a more complex expression.

A constant expression is also allowed, such as {{3+5}}, even if there is no point in
using constant expressions. A template can contain several expressions or none at all.

Creating a Full Server-Side Web App Chapter 4

[79]

Notice that the add_raw_template function is fallible, so unwrap is called on its result.
This function, before adding the template received as an argument, analyzes it to see
whether it is well-formed. For example, if it read "Identifier: {{id}." (with a missing
brace), it would generate an error, and so the call to unwrap would panic.

When you have a Tera template, you can render it; that is, generate a string that replaces
the expressions with some specified strings, in a similar way to how a macro processor
does.

To evaluate an expression, the Tera engine has to first replace all of the variables used in it
with their current value. To do that, a collection of Tera variables—each one associated with
its current value—must be created. This collection is named a context. A context is created
and populated by the following two statements:

let mut numeric_id = tera::Context::new();
numeric_id.insert("id", &7362);

The first one creates a mutable context and the second one inserts a key-value
association into it. Here, the value is a reference to a number, but other types are also
allowed as values.

Of course, in a real-world example, the value would be a Rust variable, not a constant.

Now, we can render it:

println!("id_template with numeric_id: [{}]",
 tera_engine.render("id_template", &numeric_id).unwrap());

The render method gets a template named "id_template" in the tera_engine object
and applies the substitutions specified by the numeric_id context.

This can fail if the specified template is not found, if variables in the template have not been
substituted, or if an evaluation has failed for some other reason. If the result is okay,
unwrap gets the string. Therefore, it should print the following:

id_template with numeric_id: [Identifier: 7362.]

The next three Rust statements in the example are as follows:

let mut textual_id = tera::Context::new();
textual_id.insert("id", &"ABCD");
println!(
 "id_template with textual_id: [{}]",
 tera_engine.render("id_template", &textual_id).unwrap()
);

Creating a Full Server-Side Web App Chapter 4

[80]

They do the same thing, but with a literal string, showing that the same template variable
can be replaced with both a number and a string. The printed line should be as follows:

id_template with textual_id: [Identifier: ABCD.]

The next statement is as follows:

tera_engine
 .add_raw_template("person_id_template", "Person id: {{person.id}}")
 .unwrap();

It adds a new template to the engine containing the {{person.id}} expression. This Tera
dot notation has the same function as the Rust dot notation—it allows us to access a field of
a struct. Of course, it only works if the person variable is replaced by an object with an id
field.

So, a Person struct is defined in the following way:

#[derive(serde_derive::Serialize)]
struct Person {
 id: u32,
 name: String,
}

The struct has an id field but also derives the Serialize trait. This is a requirement for
any object that must be passed to a Tera template.

The statement to define the person variable in the context is as follows:

one_person.insert(
 "person",
 &Person {
 id: 534,
 name: "Mary".to_string(),
 },
);

So, the printed string will be as follows:

person_id_template with one_person: [Person id: 534]

Now, there is a more complex template:

tera_engine
 .add_raw_template(
 "possible_person_id_template",
 "{%if person%}Id: {{person.id}}\
 {%else%}No person\

Creating a Full Server-Side Web App Chapter 4

[81]

 {%endif%}",
)
 .unwrap();

The template is one-line long, but it has been split into three lines in Rust source code.

In addition to the {{person.id}} expression, there are three markers of another kind;
they are Tera statements. Tera statements differ from Tera expressions because they are
enclosed by the {% and %} signs, instead of double braces. While Tera expressions are
similar to C preprocessor macros (that is, #define), Tera statements are similar to the
conditional compilation directives of the C preprocessor (that is, #if, #else, and #endif).

The expression after the if statement is evaluated by the render function. If the expression
is not defined or its value is either false, 0, an empty string, or an empty collection, the
expression is considered false. The text part—up to the {%else%} statement—is then
discarded. Otherwise, the part after that statement, up to the {%endif%} statement, is
discarded.

This template is rendered with two different contexts—one in which the person variable is
defined and the other in which no variable is defined. The two printed lines are as follows:

possible_person_id_template with one_person: [Id: 534]
possible_person_id_template with empty context: [No person]

In the first case, the id value of the person is printed; in the second case, the No person
text is printed.

Then, another complex template is created:

tera_engine
 .add_raw_template(
 "multiple_person_id_template",
 "{%for p in persons%}\
 Id: {{p.id}};\n\
 {%endfor%}",
)
 .unwrap();

Here, the template contains two other kinds of statements—{%for p in persons%}

and {%endfor%}. They enclose a loop where the newly created p variable iterates over the
persons collection, which must belong to the context used by render.

Creating a Full Server-Side Web App Chapter 4

[82]

Then, there is the following code:

let mut three_persons = tera::Context::new();
three_persons.insert(
 "persons",
 &vec![
 Person {
 id: 534,
 name: "Mary".to_string(),
 },
 Person {
 id: 298,
 name: "Joe".to_string(),
 },
 Person {
 id: 820,
 name: "Ann".to_string(),
 },
],
);

This adds a Tera variable named persons to the three_persons Tera context. This
variable is a vector containing three people.

Because the persons variable can be iterated, it is possible to evaluate the template,
thereby obtaining the following:

multiple_person_id_template with three_persons: [Id: 534;
Id: 298;
Id: 820;
]

Notice that any Id object is in a distinct line because the template contains a new-
line character (through the \n escape sequence); otherwise, they would have been printed
in a single line.

So far, we have used templates in string literals. This becomes difficult for long templates,
though. Therefore, templates are usually loaded from separate files. This is advisable
because the Integrated Development Environment (IDE) can help the developer (if it
knows which language it is processing) and so it is better to keep HTML code in files with a
.html suffix, CSS code in files with a .css suffix, and so on.

Creating a Full Server-Side Web App Chapter 4

[83]

The next statement loads a Tera template from a file:

tera_engine
 .add_template_file("templates/templ_id.txt", Some("id_file_template"))
 .unwrap();

The first argument of the add_template_file function is the path of the template file,
relative to the root of the project. It is good practice to put all the template files in a separate
folder or in its subfolders.

The second argument allows us to specify the name of the new template. If the value of that
argument is None, the name of the new template is the first argument.

So, the statement is as follows:

println!(
 "id_file_template with numeric_id: [{}]",
 tera_engine
 .render("id_file_template", numeric_id.clone())
 .unwrap()
);

This will print the following:

id_file_template with numeric_id: [This file contains one id: 7362.]

 The following code will have similar results:

tera_engine
 .add_template_file("templates/templ_id.txt", None)
 .unwrap();

println!(
 "templates/templ_id.txt with numeric_id: [{}]",
 tera_engine
 .render("templates/templ_id.txt", numeric_id)
 .unwrap()
);

Lastly, let's talk about a convenient feature that can be used to load all of the templates with
a single statement.

Creating a Full Server-Side Web App Chapter 4

[84]

Instead of loading the templates one at a time, where they are needed, it is possible to load
all of the templates at once and store them in a global dictionary. This makes them available
to the entire module. To do so, it is convenient to use the lazy_static macro, described in
Chapter 1, Rust 2018 – Productivity!, to write outside of any function:

lazy_static::lazy_static! {
 pub static ref TERA: tera::Tera =
 tera::Tera::new("templates/**/*").unwrap();
}

This statement defines the TERA static variable as a global template engine. It will be
initialized automatically when some Rust code of your app uses it first. This initialization
will search all of the files in the specified subtree of folders and will load them, giving each
of them the name of the file itself and omitting the name of its folder.

The last feature of the Tera engine to be presented in this section is the include statement.
The last line of the templ_names.txt file is the following one:

{% include "footer.txt" %}

It will load the contents of the specified file and will expand it inline, replacing the
statement itself. It is similar to the #include directive of the C preprocessor.

A simple list of persons
Now, we can examine the list project. If you run the server in a console and you access
the localhost:8080 address from a web browser, you will see the following page in the
browser:

There is a heading, a label, a text field, a push button, and a table containing a list of three
people.

Creating a Full Server-Side Web App Chapter 4

[85]

The only thing you can do on this page is type something into the text field and then click
on the button to apply the typed text as a filter. For example, if you type l (that is, a
lowercase L), only the Hamlet and Othello lines will appear as they are the only two people
whose name contains this letter. If the filter is x, the result will be the No persons text as
none of the three people has a name containing this letter. The page will look as in the
following screenshot:

Before explaining how it all works, let's see the dependencies of this project; that is, the
external crates used by it. They are as follows:

actix-web: This is the web framework, also used in Chapter 3, Creating a REST
Web Service.
tera: This is the Tera template engine.
serde and serde_derive: These are the serialization crates used by the Tera
engine to pass whole struct objects to a template context.
lazy_static: This contains the macro to initialize the Tera engine.

Now, let's take a glimpse at the source code. For this project, the src folder contains the
following files:

main.rs: This is the whole server-side application, excluding the database.
db_access.rs: This is the mock database with some mock data.
favicon.ico: This is the icon that any website should have as it is automatically
downloaded by the browser to display it in the browser tab.

There is also a templates folder, containing the following files:

main.html: This is the Tera/HTML template of the whole web page with an
empty body.
persons.html: This is the Tera/HTML template of a partial web page,
containing only the body of our web app.
main.js: This is the JavaScript code to be included in the HTML page.

Now, let's examine the mechanics of this web app.

Creating a Full Server-Side Web App Chapter 4

[86]

When the user navigates to the http://localhost:8080/ URI, the browser sends a GET
HTTP request (that has only a slash as its path) to our process, with no query and empty
body, and it expects an HTML page to be displayed. As described in the previous chapter,
the server—using the Actix web framework—can respond to the request if its main
function contains the following code:

let server_address = "127.0.0.1:8080";
println!("Listening at address {}", server_address);
let db_conn = web::Data::new(Mutex::new(AppState {
 db: db_access::DbConnection::new(),
}));
HttpServer::new(move || {
 App::new()
 .register_data(db_conn.clone())
 .service(
 web::resource("/")
 .route(web::get().to(get_main)),
)
})
.bind(server_address)?
.run()

Here, we have a web app whose state is only a shared reference to a database connection
(that is actually a mock database). This app accepts only one kind of request—those
using the root path (/) and the GET method. These requests are routed to the get_main
function. The function should return an HTTP response containing the initial HTML page
to display.

Here is the body of the get_main function:

let context = tera::Context::new();
HttpResponse::Ok()
 .content_type("text/html")
 .body(TERA.render("main.html", context).unwrap())

This function does not use the request at all because it always returns the same result.

To return a successful response (that is, with status code 200), the HttpResponse::Ok()
function is called. To specify that the body of the response is HTML code,
the content_type("text/html") method is called on the response. To specify the
content of the body of the response, the body method is called on the response.

The argument of the body function must be a string containing the HTML code to display.
It is possible to write all of that code here, as follows:

.body("<!DOCTYPE html><html><body><p>Hello</p></body></html>")

Creating a Full Server-Side Web App Chapter 4

[87]

However, for more complex pages, it is better to keep all the HTML code in a separate file,
with the .html filename extension, and to load the contents of this file into a string to pass
as an argument to the body function. This can be done using the following expression:

.body(include_str!("main.html"))

This would work well if the main.html file was static; that is, it wouldn't need to change at
runtime. However, this solution would be too limiting for two reasons:

We want our initial page to be a dynamic page. It should show the list of people
that are in the database when the page is opened.
We want our initial page, and also all of the other possible pages, to be composed
of several parts: metadata elements, JavaScript routines, styles, a page header, a
page central part, and a page footer. All of these parts, except for the central part,
are to be shared by all of the pages to avoid repeating them in source code. So,
we need to keep these parts in separate files and then splice them together before
the HTML page is sent to the browser. In addition, we want to keep JavaScript
code in separate files with the .js file extension and style code in separate files
with the .css file extension so that our IDE recognizes their language.

A solution to these problems is to use the Tera template engine, which we will see in the
next section.

The templates folder
It is best to put all deliverable application text files in the templates folder (or in some of
its subfolders). So, this subtree should contain all the HTML, CSS, and JS files, even if, at the
moment, they may contain no Tera statements or expressions.

Instead, non-textual files (such as pictures, audio, video, and many others), user-uploaded
files, documents that are to be downloaded explicitly, and databases should be kept
elsewhere.

The loading of all template files happens at runtime, but usually only once in the process
life. The fact that the loading happens at runtime implies that the templates subtree must
be deployed and that to deploy a new or changed version of one of those files, a rebuild of
the program is not required. The fact that this loading usually happens once in the process
life implies that the template engine is quite fast at processing the templates after the first
time.

Creating a Full Server-Side Web App Chapter 4

[88]

The preceding body statement has the following argument:

TERA.render("main.html", context).unwrap()

This expression renders the template contained in the main.html file using a Tera context
contained in the context Rust variable. This kind of variable has been initialized by
the tera::Context::new() expression and so it is an empty context.

The HTML file is very small and it has two noteworthy snippets. The first one is as follows:

 <script>
 {% include "main.js" %}
 </script>

This uses the include Tera statement to incorporate the JavaScript code into the HTML
page. Having it incorporated into the server means that no further HTTP requests will be
needed to load it. The second snippet is as follows:

<body id="body" onload="getPage('/page/persons')">

This causes the invocation of the getPage JavaScript function as soon as the page is loaded.
This function is defined in the main.js file and, as its name suggests, it causes the loading
of the specified page.

So, when the user navigates to the root of the website, the server prepares an HTML page
containing all the required JavaScript code, but almost no HTML code, and sends it to the
browser. As soon as the browser has loaded the empty page, it requests another page,
which will become the body of the first page.

This may sound complicated, but you can look at it as the page being split into two
parts—the metadata, the scripts, the styles, and possibly the page header and footer are the
common parts, which do not change during the session. The central part (which here is the
body element, but may also be an inner element) is the variable part, which changes with
any click from the user.

By reloading only part of the page, the app has better performance and usability.

Let's look at the contents of the main.js file:

function getPage(uri) {
 var xhttp = new XMLHttpRequest();
 xhttp.onreadystatechange = function() {
 if (this.readyState == 4 && this.status == 200) {
 document.getElementById('body')
 .innerHTML = xhttp.responseText;
 }

Creating a Full Server-Side Web App Chapter 4

[89]

 };
 xhttp.open('GET', uri, true);
 xhttp.send();
}

This code creates an XMLHttpRequest object that, in spite of its name, does not use XML,
but it is actually used to send an HTTP request. This object is set to process the response
when it arrives by assigning an anonymous function to the onreadystatechange field.
Then, the specified URI is opened with a GET method.

When a response arrives, the code checks whether the message is complete (readystate
== 4) and valid (state == 200). In this case, the text of the response that is assumed to be
valid HTML is assigned as the content of the element that has body as its unique ID.

The last file in the templates folder is the persons.html file. It is a partial HTML
file—that is, a file containing HTML elements, but without the <html> element itself—and
so its purpose is to be included in another HTML page. This small app has only one page
and so it only has one partial HTML file.

Let's look at some interesting parts of this file. The following is an element to let the user
type in some text (a so-called edit box):

 <input id="name_portion" type="text" value="{{partial_name}}"/>

Its initial value—that is, the text that is shown to the user when the page is opened—is a
Tera variable. Rust code should assign a value to the variable.

Then, there is the Filter push button:

<button onclick="getPage('/page/persons?partial_name='
 + getElementById('name_portion').value)">Filter</button>

When the user clicks on it and the preceding edit box contains the word
Ham, the '/page/persons?partial_name=Ham' argument is passed to the
JavaScript getPage functions. So, the function sends the GET request to the backend and
replaces the body of the page with whatever is returned by the backend, so long as it is a
complete and valid response.

Then, there is the following Tera statement:

{% if persons %}
...
{% else %}
 <p>No persons.</p>
{% endif %}

Creating a Full Server-Side Web App Chapter 4

[90]

Here, the persons Tera variable is evaluated. According to the Rust program, the variable
can only be a collection. If the variable is a non-empty collection, a table is inserted into the
HTML page; if instead the variable is not defined or it is an empty collection, the No
persons. text will be shown.

Within the HTML code defining the table, there is the following:

{% for p in persons %}
 <tr>
 <td>{{p.id}}</td>
 <td>{{p.name}}</td>
 </tr>
{% endfor %}

This is an iteration over the items contained in persons (which we know is non-empty).

In each iteration, the p variable will contain the data of a specific person. This variable is
used in two expressions. The first one shows the value of the id field of the variable. The
second one shows the value of its name field.

The other Rust handlers
We have only seen the routing and handling of the root of the site—the / path. This
happens when the user opens the page.

There are four other requests that can be sent by the browser to this app:

When the root path is accessed, the page loaded by this request automatically
sends—using JavaScript code—another request to load the body of the page.
When the user presses the Filter button, the frontend should send the text
contained in the edit box to the backend, and then the backend should respond
by sending back the list of the people satisfying this filter.
The browser automatically requests the favicon.ico app icon.
Any other requests should be treated as errors.

Actually, the first and second of these requests can be handled in the same way, because the
initial state can be generated by a filter where an empty string is specified. So, three
different kinds of requests remain.

Creating a Full Server-Side Web App Chapter 4

[91]

To route these requests, the following code is inserted into the main function:

.service(
 web::resource("/page/persons")
 .route(web::get().to(get_page_persons)),
)
.service(
 web::resource("/favicon.ico")
 .route(web::get().to(get_favicon)),
)
.default_service(web::route().to(invalid_resource))

The first route redirects any GET requests to the /page/persons path to
the get_page_persons function. These requests come when the user clicks on the
Filter button, but also indirectly when the / path is requested.

The second route redirects any GET requests to the /favicon.ico path to
the get_favicon function. These requests come from the browser when it receives a
complete HTML page, not a partial page.

The call to default_resource redirects any other requests to
the invalid_resource function. These requests cannot come with proper use of the app,
but may come under specific conditions or when the user types an unexpected path into the
address bar of the browser. For example, this request occurs if you type
in http://127.0.0.1:8080/abc.

Now, let's look at the handler's functions.

The get_page_persons function has two arguments:

web::Query<Filter> is used to pass the optional filter condition.
web::Data<Mutex<AppState>> is used to pass the database connection.

The parameter of the Query type is defined as follows:

#[derive(Deserialize)]
pub struct Filter {
 partial_name: Option<String>,
}

This specifies the possible arguments of the query, which is the part of the URI following the
question mark. Here, there is only one argument and it is optional as it is typical of HTTP
queries. A possible query is ?partial_name=Jo, but also an empty string is a valid query
in this case.

Creating a Full Server-Side Web App Chapter 4

[92]

To be able to receive the Filter structure from the request, it must implement
the Deserialize trait.

The body of the get_page_persons function is as follows:

let partial_name = &query.partial_name.clone().unwrap_or_else(||
"".to_string());
let db_conn = &state.lock().unwrap().db;
let person_list = db_conn.get_persons_by_partial_name(&partial_name);
let mut context = tera::Context::new();
context.insert("partial_name", &partial_name);
context.insert("persons", &person_list.collect::<Vec<_>>());
HttpResponse::Ok()
 .content_type("text/html")
 .body(TERA.render("persons.html", context).unwrap())

The first statement gets the query from the request. If the partial_name field is defined, it
is extracted; otherwise, an empty string is generated.

The second statement extracts the connection to the database from the shared state.

The third statement uses this connection to get an iterator on the people satisfying the
criteria. See the subsection, Implementing the database in the section Building a stateful server in
the previous chapter. See the previous chapter to understand these two lines.

Then, an empty Tera context is created and two Tera variables are added to it:

partial_name is used to keep the typed characters that otherwise would
disappear when the page is reloaded in the edit box.
persons is the vector containing the people collected from the database. To
make this possible, the Person type must implement the Serialize trait.

Finally, the Tera engine can render the persons.html template using the context, because
all the variables used in the template have been defined. The result of this rendering is
passed as the body of the successful HTTP response. When the JavaScript code inside the
browser receives that HTML code, it will use it to replace the contents of the body of the
current page.

Now, let's see the body of the get_favicon function:

HttpResponse::Ok()
 .content_type("image/x-icon")
 .body(include_bytes!("favicon.ico") as &[u8])

Creating a Full Server-Side Web App Chapter 4

[93]

This is simply a successful HTTP response whose content is of the image HTTP type and
the x-icon subtype, and whose body is a slice of bytes containing the icon. This binary
object is constructed at compile time from the bytes contained in the favicon.ico file. The
content of this file is embedded in the executable program, so it is not required to deploy
this file.

Finally, let's look at the body of the invalid_resource function:

HttpResponse::NotFound()
 .content_type("text/html")
 .body("<h2>Invalid request.</h2>")

This is a failing response (as NotFound generates the 404 status code), which should
contain a complete HTML page. For simplicity, a straightforward message has been
returned.

We have now looked at a very simple web app. Many of the concepts seen in this section
will be used in the following sections, where the database will be modified by user actions.

A CRUD application
The web app shown in the previous section allowed us to view filtered data in a single
page. If you now run the project in the crud folder, you will see a much more rich and
useful web page:

The Id edit box and the Find button to its right are used to open a page that allows you to
view or edit the data of a person with a specific ID.

Creating a Full Server-Side Web App Chapter 4

[94]

The Name portion edit box and the Filter button to its right are for filtering the table below
it, in a similar way as in the list project.

Then, there are two buttons—one for deleting data and one for adding data.

Lastly, there is the filtered table of the people. In this app, the initial state of the database is
an empty list of people and so no HTML table is shown.

Let's create some people.

Click on the Add New Person push button. You will see the following window:

This is the page used to create a person and insert them into the database. The Id field is
disabled because its value will be generated automatically. To insert a person, type in a
name for them—for example, Juliet—and click on the Insert button. The main page will
appear again, but with a small table containing only Juliet, preceded by 1 as its ID.

If you repeat these steps, inserting Romeo and Julius, you'll have the results shown in the
following picture:

Creating a Full Server-Side Web App Chapter 4

[95]

The push buttons near any listed person allow us to open a page related to that person. For
example, if the button near Julius is clicked, the following page will appear:

This page is very similar to the page used to insert people, but with the following
differences:

The Id field now contains a value.
The Name field now contains an initial value.
Instead of the Insert button, now there is an Update button.

If you change the Julius value to Julius Caesar and click on Update, you will see the
updated list on the main page.

Another way to open the page relating to a single person is to type the ID of that person
into the Id field and then click on the Find button. If you click on this button when that
field is empty or when it contains a value that no person has as its ID, a red error message
appears on the page:

The final feature of this app allows us to delete records. To do that, click on the checkboxes
to the left of the lines of the people you want to delete, and then click on the Delete
Selected Persons button. The list is immediately updated.

Creating a Full Server-Side Web App Chapter 4

[96]

Notice that the database is stored in the memory of the backend process. You will see the
same list of people if you close the browser and reopen it or if you open another browser.
You can even open the page from another computer, as long as you insert the appropriate
name or IP address of the computer where the backend process is running. However, if you
terminate the backend process by pressing the Ctrl + C key combination (or in any other
way) and then re-run it, all of the browsers will display no people when the page is
reloaded.

The JavaScript code
We are now going to look at what makes this project different from the one described in the
previous section.

First of all, the main.js file is much larger because it contains three additional functions:

sendCommand: This is quite a generic routine used to send HTTP requests to a
server and to process the received response asynchronously. It accepts five
arguments:

method is the HTTP command to use, such as GET, PUT, POST,
or DELETE.
uri is the path and possible query to send to the server.
body is the possible body of the request, used to send data larger
than 2 KB.
success is a reference to a function that will be called after
receiving a successful response (status == 200).
failure is a reference to a function that will be called after
receiving any failure response (status != 200).

This function is used to access a REST service as it allows any HTTP method, but
it doesn't automatically change the current HTML page. Instead, the getPage
function can only use the GET method, but it replaces the current HTML page
with the HTML code received.
delete_selected_persons: This scans the items whose checkboxes are
selected and sends a DELETE command to the server with
the /persons?id_list= URI followed by a comma-separated list of the IDs of
the selected items. The server should delete these records and return a successful
state. If the deletion is successful, this JavaScript function reloads the main page
with no filter; otherwise, an error message is shown in a message box and the
current page is not changed. It should be called when the Delete Selected
Persons button is clicked.

Creating a Full Server-Side Web App Chapter 4

[97]

savePerson: This receives an HTTP method, which can be POST (to insert) or
PUT (to update). It sends a command to the server, using the method received as
an argument, and a URI that depends on the method. For a POST request, the
URI is /one_person?name=NAME, while for a PUT request, the URI is
/one_person?id=ID&name=NAME, wherein ID and NAME are actually the values
of the id and name fields of the record to create or update. This function should
be called with a POST argument when the Insert button is clicked and with a PUT
argument when the Update button is clicked.

Now, let's check the HTML code of the application.

The HTML code
Of course, many HTML elements have been added to the persons.html file to create the
additional widgets.

First, there is the <label class="error">{{id_error}}</label> element, used to
display error messages caused by the Find button. To correctly process this element, the
id_error Tera variable needs to be defined in the current Tera context.

Then, there is the following element:

<div>
 <label>Id:</label>
 <input id="person_id" type="number">
 <button onclick="getPage(
 '/page/edit_person/' + getElementById('person_id').value)"
 >Find</button>
</div>

When the Find button is clicked, a page is requested at
the /page/edit_person/ URI, followed by the typed ID.

Then, there are two push buttons:

<div>
 <button onclick="delete_selected_persons()">Delete Selected
Persons</button>
 <button onclick="getPage('/page/new_person')">Add New Person</button>
</div>

Creating a Full Server-Side Web App Chapter 4

[98]

The first one simply delegates all the work to the delete_selected_persons function,
while the second one gets the page at the /page/new_person URI.

Finally, two columns are added to the HTML table containing the list of people. They are
found on the left side of the table:

<td><input name="selector" id="{{p.id}}" type="checkbox"/></td>
<td><button
onclick="getPage('/page/edit_person/{{p.id}}')">Edit</button></td>

The first column is the checkbox to select the record to delete and the second one is the
Edit button. The value of the HTML id attribute of the checkbox element is
the {{p.id}} Tera expression, which will be replaced by the ID of the record of the current
line. So, this attribute can be used to prepare the request to send it to the server to delete the
selected items.

The Edit button will get the page at the /page/edit_person/ URI, followed by the ID of
the current record.

In addition, there is another HTML partial file, one_person.html. This is the page used
both to insert a new person and to view/edit an existing person. Its first part is as follows:

<h1>Person data</h1>
<div>
 <label>Id:</label>
 <input id="person_id" type="number" value="{{ person_id }}" disabled>
</div>
<div>
 <label>Name:</label>
 <input id="person_name" type="text" value="{{ person_name }}"/>
</div>

For both of the input elements, the value attribute is set to a Tera expression; for the first
one, it is the person_id Tera variable and for the second, it is the person_name Tera
variable. When inserting a person, these variables will be empty and when editing a person,
these variables will contain the current values of the database fields.

The last part of the file is as follows:

{% if inserting %}
 <button onclick="savePerson('POST')">Insert</button>
{% else %}
 <button onclick="savePerson('PUT')">Update</button>
{% endif %}
<button onclick="getPage('/page/persons')">Cancel</button>

Creating a Full Server-Side Web App Chapter 4

[99]

This page must show the Insert button when it has been opened for inserting a person, and
the Update button when it has been opened for viewing or editing a person. So,
the inserting Tera variable is used. Its value will be true when in insert mode and
false when in edit mode.

Finally, the Cancel button opens the /page/persons page, with no filtering.

That's all we need to know about the templates folder.

The Rust code
In the src folder, both the db_access.rs and the main.rs files have many changes.

The db_access.rs changes
The persons vector is initially empty because users can insert records into it.

The following functions have been added:

get_person_by_id: This searches the vector for a person with a specified ID. It
returns the person if found or None, otherwise.
delete_by_id: This searches the vector for a person with the specified ID; if
found, it is removed from the vector and true is returned. Otherwise, false is
returned.
insert_person: A Person object is received as an argument to insert into the
database. However, before inserting it into the vector, its id field is overwritten
by a unique ID value. This value is an integer larger than the largest ID present in
the vector if the vector is not empty, or 1, otherwise.
update_person: This searches the vector for a person that has the specified ID;
if found, this person is replaced by the specified person and true is returned.
Otherwise, false is returned.

Nothing web-specific is contained in these functions.

Creating a Full Server-Side Web App Chapter 4

[100]

The main.rs changes
For the main function, there are many kinds of requests to the route. The new routes are as
follows:

.service(
 web::resource("/persons")
 .route(web::delete().to(delete_persons)),
)
.service(
 web::resource("/page/new_person")
 .route(web::get().to(get_page_new_person)),
)
.service(
 web::resource("/page/edit_person/{id}")
 .route(web::get().to(get_page_edit_person)),
)
.service(
 web::resource("/one_person")
 .route(web::post().to(insert_person))
 .route(web::put().to(update_person)),
)

The first route is used to delete the selected people.

The second route is used to get the page to allow the user to insert a new person—that is,
the one_person.html page—in insert mode.

The third route is used to get the page to allow the user to view or edit a new person—that
is, the one_person.html page—in edit mode.

For the fourth resource, there are two possible routes. Actually, this resource can be
accessed using the POST method or the PUT method. The first method is used to insert a
new record into the database. The second method is used to update the specified record
using the specified data.

Now, let's see the handlers. With respect to the previous project, some of them are new,
some are old but have been changed, and some are unmodified.

Creating a Full Server-Side Web App Chapter 4

[101]

The new handlers are as follows:

delete_persons is used to delete the selected people.
get_page_new_person is used to get the page to create a new person.
get_page_edit_person is used to get the page to edit an existing person.
insert_person is used to insert a new person into the database.
update_person is used to update an existing person in the database.

The changed handlers are get_page_persons and invalid_resource. The unmodified
handlers are get_main and get_favicon.

These handlers can be grouped into three logical kinds:

The ones whose job it is to generate HTML code to replace part of a web page
The ones whose job it is to return non-HTML data
The ones that do some work and then return status information regarding the job
that has been done

The HTML-returning functions
are get_main, get_page_persons, get_page_new_person, get_page_edit_person,
and invalid_resource. get_favicon is the only data-returning function; the other three
are data-manipulating functions.

It is logically possible to have a single handler that first does some work and then returns
the HTML page to be shown. However, it is better to separate these logically different
features into two distinct functions—first, the function that manipulates data is executed,
and then the function that returns the HTML code is run. This separation can happen on
the backend or on the frontend.

In this project, it is the frontend that does the separation. First, JavaScript code sends a
request to manipulate data (for example, to insert a record in the database) and then, if the
operation was successful, some other JavaScript code requests the HTML code to show up
next in the browser.

An alternative architecture is to have the following sequence of calls:

The user performs an action on the web page.1.
That action causes a JavaScript routine to be executed.2.
That routine sends a request from the browser to the server.3.
The server routes that request to a backend handler function.4.

Creating a Full Server-Side Web App Chapter 4

[102]

The backend handler first calls a routine to manipulate data and then waits for its5.
completion.
If the backend routine is successful, the backend calls another routine to generate6.
and return the next HTML page to the browser. If the backend routine fails, the
backend generates and returns another HTML page to the browser, describing
the failure.
The JavaScript routine receives the HTML page and displays it to the user.7.

Now, let's look at the body of the get_page_edit_person function one piece at a time.

Remember that the purpose of this routine is to generate the HTML code of a web page to
edit the name of a person. The current name of the person to edit is to be found in the
database and the constant HTML code is to be found in the one_person.html template.

The first five statements define and initialize as many local variables:

let id = &path.0;
let db_conn = &state.lock().unwrap().db;
let mut context = tera::Context::new();
if let Ok(id_n) = id.parse::<u32>() {
 if let Some(person) = db_conn.get_person_by_id(id_n) {

The first statement gets the id variable from the path as a string. For this function, the
routing was /page/edit_person/{id}, and so the id variable is available to be extracted.

The second statement gets and locks the database connection.

The third statement creates an empty Tera context.

The fourth statement tries to parse the id Rust variable into an integer. If the conversion is
successful, the condition of the if statement is satisfied and so the next statement is
executed.

The fifth statement searches the database for a person identified by this ID by calling
the get_person_by_id method.

Now that the required information is available, the Tera context can be filled in:

context.insert("person_id", &id);
context.insert("person_name", &person.name);
context.insert("inserting", &false);

Creating a Full Server-Side Web App Chapter 4

[103]

Let's see what the purpose of these variables is:

The person_id Tera variable allows us to show the current (disabled) ID of the
person on the page.
The person_name Tera variable allows us to show the current (editable) name of
the person on the page.
The inserting Tera variable allows us (through a conditional Tera statement) to
set the page as an edit page, instead of as an insert page.

Then, we can call the render Tera method with this context to get the HTML page and
send the resulting page as the HTML body of the response:

return HttpResponse::Ok()
 .content_type("text/html")
 .body(TERA.render("one_person.html", context).unwrap());

Here, we have considered the cases where every statement was successful. In cases where
the typed ID is not a number or it does not exist in the database, the function carries out the
following code. This happens when the user types a wrong number in the Id field of the
main page and then clicks on Find:

context.insert("id_error", &"Person id not found");
context.insert("partial_name", &"");
let person_list = db_conn.get_persons_by_partial_name(&"");
context.insert("persons", &person_list.collect::<Vec<_>>());
HttpResponse::Ok()
 .content_type("text/html")
 .body(TERA.render("persons.html", context).unwrap())

The last line shows that the template we will use is persons.html, so we are going to the
main page. The Tera variables of that template are id_error, partial_name, and
persons. We want a specific error message in the first variable, nothing as the filter
condition, and a list of all the people. This can be obtained by filtering all the people whose
name contains an empty string.

When the user presses the Update button, the update_person function is called.

This function has the following arguments:

 state: web::Data<Mutex<AppState>>,
 query: web::Query<ToUpdate>,

Creating a Full Server-Side Web App Chapter 4

[104]

The second is a query using a type defined by the following structure:

#[derive(Deserialize)]
struct ToUpdate {
 id: Option<u32>,
 name: Option<String>,
}

So, this query allows two optional keywords: id and name. The first keyword must be an
integer number. Here are some valid queries:

?id=35&name=Jo

?id=-2

?name=Jo

No query

The following are invalid queries for that structure:

?id=x&name=Jo

?id=2.4

Here is the first part of the body of the function:

let db_conn = &mut state.lock().unwrap().db;
let mut updated_count = 0;
let id = query.id.unwrap_or(0);

The first statement gets and locks the database connection.

A count of the records to update is defined by the second statement. This routine can
update only one record, and so this count will be 0 or 1 only.

Then, the id variable is extracted from the query, if present and valid, or otherwise, 0 is
considered as a substitute.

Notice that because the type of the query variable defines which fields are defined (whether
they are optional or required and what is their type), the Actix web framework can perform
a strict parsing of the URI query. If the URI query is not valid, the handler is not invoked
and the default_service routine will be chosen. On the other side, in the handler, we can
be sure that the query is valid.

Creating a Full Server-Side Web App Chapter 4

[105]

The last part of the body of the function is as follows:

let name = query.name.clone().unwrap_or_else(|| "".to_string()).clone();
updated_count += if db_conn.update_person(Person { id, name }) {
 1
} else {
 0
};
updated_count.to_string()

First, the name variable is extracted from the query, or an empty string is considered if that
variable is not contained in the query. This name is cloned as the database operations take
ownership of their arguments and we cannot yield the ownership of a field of the query.

Then, the update_person method of the database connection is called. This method
receives a new Person object constructed with the id and name values that were just
extracted. If this method returns true, the count of the processed record is set to 1.

Finally, the count of the processed record is returned as a response.

The other routines are conceptually similar to the one described here.

Handling an application with authentication
All of the features of the previous apps were accessible to everyone that could create an
HTTP connection with our server. Usually, a web app should behave differently depending
on who is currently using it. Typically, some users are authorized to carry out some
important operations, such as adding or updating records, while other users are authorized
only to read these records. Sometimes, user-specific data must be recorded.

This opens up the vast world of authentication, authorization, and security.

Let's imagine a simplified scenario. There are two users whose profiles are wired-in to
the mock database:

joe, whose password is xjoe, can only read the database of people.
susan, whose password is xsusan, can read and write the database of
people—that is, she can do what the app in the previous section allowed.

The application starts with a login page. If the user does not insert an existing username
and its matching password, they cannot access the other pages. Even if the username and
password are valid, the widgets that the user is not authorized for are disabled.

Creating a Full Server-Side Web App Chapter 4

[106]

For these situations, some applications create a server-side user session. This may be
appropriate to use when there are a limited number of users, but it may overload the server
if there are many users. Here, we'll show a solution without server-side sessions.

If you run the auth project and access the site from a browser, you will see the following
page:

It shows that there is no current users and two fields allow us to type in a username and
password. If you type foo into the User name field and then click on Log in, the red User
"foo" not found. message will appear. If you type in susan and then click on Log in, the
message will be Invalid password for user "susan".

Instead, if you type in the correct password for that user, xsusan, the following page will
appear:

This is the same main page as the crud project, with an added line of widgets: the name of
the current user shown in blue and a button to change it. If you click on the Change
User button, you go back to the login page. Also, the page to view, edit, or insert a person
has the same widgets just under the page heading.

Creating a Full Server-Side Web App Chapter 4

[107]

If on the login page you insert joe as the username and xjoe as the password, the
following page will appear:

This has the same widgets that appeared for susan, but the Delete Selected Persons button
and the Add New Person button now are disabled.

To see how joe sees the people, first, you need to log in as susan, insert some people, and
then change the user to joe, because joe cannot insert people. If you do this and then you
click on the Edit button of a person, you will see the following page, where the Name field
is read-only and the Update button is disabled:

Let's start with understanding the nitty-gritty of the application we just did.

The implementation
This project adds some code with respect to the crud project.

The first difference is in the Cargo.toml file, where the actix-web-httpauth = "0.1"
dependency has been added. This crate handles the encoding of the username and
password in the HTTP request.

Creating a Full Server-Side Web App Chapter 4

[108]

The HTML code
The main.html page, instead of opening the /page/persons URI, opens /page/login to
show the login page, initially. So, this project adds a new TERA template for the login page.
This is the login.html partial HTML page, shown as follows:

<h1>Login to Persons</h1>
<div>
 Current user:

</div>
<hr/>
<label class="error">{{error_message}}</label>
<div>
 <label>User name:</label>
 <input id="username" type="text">
</div>
<div>
 <label>Password:</label>
 <input id="password" type="password">
</div>
<button onclick="login()">Log in</button>

Its noteworthy points are underlined: the {{error_message}} Tera variable, the call
to login() when the Log in button is clicked, and three elements whose IDs are
current_user, username, and password.

Both the persons.html and one_person.html templates have the following section just
below the heading:

<div>
 Current user:

 <button onclick="getPage('/page/login')">Change User</button>
</div>
<hr/>

This will show the current user, or ---, followed by the Change User button. Clicking on
this will load the /page/login page.

The app contains four buttons that must be disabled for unauthorized users—two in
the persons.html template and two in the one_person.html template. They now
contain the following attribute:

{% if not can_write %}disabled{% endif %}

Creating a Full Server-Side Web App Chapter 4

[109]

It assumes that the can_write Tera variable is defined as true, or any non-null value,
if—and only if—the current user has the authorization to modify the content of the
database.

There is also an edit box element in the one_person.html template that must be made
read-only for users that are not authorized to change that data; so, it contains the following
attribute:

{% if not can_write %}readonly{% endif %}

You should be aware that these checks are not an ultimate security guard. The checks of
authorization in frontend software can always be bypassed, and so the ultimate security
guards are those performed by the DBMS.

However, it is good to always carry out an early check to make that the user experience is
more intuitive and the error messages are helpful.

For example, if an attribute of an entity shouldn't be modifiable by the current user, this
constraint can be specified in a solid way using the DBMS.

However, if the user interface allows this kind of change, the user could try to change this
value and they will be disappointed when they find out that this change is not allowed.

In addition, when a forbidden change is attempted, an error message is issued by the
DBMS. The message is probably not internationalized and makes reference to DBMS
concepts such as tables, columns, rows, and the names of objects that are unfamiliar to the
user. So, this message can be obscure for the user.

The JavaScript code
The main.js file has the following additions with respect to the crud project.

The username and password global variables have been added and initialized as empty
strings.

The following statement has been added to both the sendCommand function and
the getPage function:

xhttp.setRequestHeader("Authorization",
 "Basic " + btoa(username + ":" + password));

This sets the Authorization header for the HTTP request that is about to be sent. The
format of that header is standard HTTP.

Creating a Full Server-Side Web App Chapter 4

[110]

In the getPage function, after the statement that assigns the HTML code that is received to
the current body, the following three lines are inserted:

var cur_user = document.getElementById('current_user');
if (cur_user)
 cur_user.innerHTML = username ? username : '---';

They set the content of the element whose id attribute has current_user as its value if the
current page contains such an element. This content is the value of the username global
JavaScript variable if it is defined and not empty, or ---, otherwise.

Another addition is the definition of the new login function. Its body is as follows:

username = document.getElementById('username').value;
password = document.getElementById('password').value;
getPage('/page/persons');

This gets the values of the username and password elements of the page and saves them to
the global variables with the same names, and then opens the main page. Of course, this
should only be called in the login.html page as other pages are not likely to have a
password element.

The mock database code
The mock database has one more table: users. So, the type of its elements must be defined:

#[derive(Serialize, Clone, Debug)]
pub struct User {
 pub username: String,
 pub password: String,
 pub privileges: Vec<DbPrivilege>,
}

Any user has a username, a password, and a set of privileges. A privilege has a custom
type, which is defined in the same file:

#[derive(Serialize, Clone, Copy, PartialEq, Debug)]
pub enum DbPrivilege { CanRead, CanWrite }

Here, there are only two possible privileges: to be able to read the database or to be able to
write the database. A real-world system would have more granularity.

The DbConnection struct now also contains the users field, which is a vector of Users. Its
content (the records about joe and susan) is specified inline.

Creating a Full Server-Side Web App Chapter 4

[111]

The following function has been added:

pub fn get_user_by_username(&self, username: &str) -> Option<&User> {
 if let Some(u) = self.users.iter().find(|u| u.username == username) {
 Some(u)
 }
 else { None }
}

This searches the users vector for a user with the specified username. If it is found, it is
returned; otherwise, None is returned.

The main function
The main function has just two small changes. The first change is to
call data(Config::default().realm("PersonsApp")) on the App object. This
invocation is required to get the authentication context from the HTTP requests. It specifies
the context using the realm call.

The second change is the addition of the following routing rule:

.service(
 web::resource("/page/login")
 .route(web::get().to(get_page_login)),
)

This path is used to open the login page. It is used by the main page as the entry point of
the app and by the two Change User buttons.

The get_page_login function is the only new handler. It just calls
the get_page_login_with_message function, which has a string argument, to be shown
as an error message. When this function is called by get_page_login, an empty string is
specified as an argument because no error has happened yet on this page. However, this
function is called in six other places, where various error messages are specified. The
purpose of this function is to go to the login page and display the message received as an
argument in red.

The login page is obviously accessible to every user, as the favicon resource is, but all of the
other handlers have been modified to ensure that only authorized users can access those
resources. The bodies of the handlers that manipulate data have the following structure:

match check_credentials(auth, &state, DbPrivilege::CanWrite) {
 Ok(_) => {

Creating a Full Server-Side Web App Chapter 4

[112]

 ... manipulate data ...
 HttpResponse::Ok()
 .content_type("text/plain")
 .body(result)
 },
 Err(msg) => get_page_login_with_message(&msg)
}

First, the check_credentials function checks whether the credentials specified by the
auth argument identify a user that has the CanWrite privilege. Only users allowed to
write should manipulate the data. For them, the function returns as Ok and so they can
change the database and return the result of these changes in a plaintext format.

Users that are not allowed to write are redirected to the login page, which shows the error
message returned by check_credentials.

Instead, the bodies of the handlers that get HTML pages have the following structure:

match check_credentials(auth, &state, DbPrivilege::CanRead) {
 Ok(privileges) => {
 ... get path arguments, query arguments, body ...
 ... get data from the database ...
 let mut context = tera::Context::new();
 context.insert("can_write",
 &privileges.contains(&DbPrivilege::CanWrite));
 ... insert some other variables in the context ...
 return HttpResponse::Ok()
 .content_type("text/html")
 .body(TERA.render("<template_name>.html", context).unwrap());
 },
 Err(msg) => get_page_login_with_message(&msg)
}

Here, as is typical, any user that can read the data can also access the web page. In this case,
the check_credentials function is successful and it returns the complete set of privileges
of that user. Matching these results with the Ok(privileges) pattern causes the privileges
of that user to be used to initialize the privileges Rust variable.

If the user has the CanWrite privilege, that information is passed to the can_write Tera
variable as a true value and to false, otherwise. In this way, the page can enable or
disable the HTML widgets in accordance with the user's privileges.

Finally, let's look at the check_credentials function.

Creating a Full Server-Side Web App Chapter 4

[113]

Among its arguments, there is auth: BasicAuth. Thanks
to the actix_web_httpauth crate and to the call to data in the main function, this
argument allows access to the authorization HTTP header for basic authentication. The
objects of the BasicAuth type have the user_id and password methods, which return the
optional credential specified by the HTTP client.

These methods are invoked with the following snippet:

if let Some(user) = db_conn.get_user_by_username(auth.user_id()) {
 if auth.password().is_some() && &user.password ==
auth.password().unwrap() {

This code gets the user from the database through their username and checks that the
stored password matches the password coming from the browser.

This is quite basic. A real-world system would store an encrypted password; it would
encrypt the specified password using the same one-way encryption and it would compare
the encrypted strings.

Then, the routine discriminates between the different kinds of errors:

The HTTP request does not contain credentials, or the credentials exist but the
specified user does not exist in the user's table.
The user exists, but the stored password is different from that specified in the
received credentials.
The credentials are valid, but that user hasn't got the required privileges (for
example, they only have the CanRead access but CanWrite is required).

So, we have now covered a simple authenticated web app.

Summary
In this chapter, we have seen how to use the Tera template engine to create text strings or
files (not just in HTML format) containing variable parts, conditional sections, repeated
sections, and sections included from another file.

Then, we saw how Actix web—together with HTML code, JavaScript code, CSS styles, and
the Tera template engine—can be used to create a complete web app with CRUD
capabilities, authentication (to prove who is the current user), and authorization (to forbid
some operations to the current user).

Creating a Full Server-Side Web App Chapter 4

[114]

This project showed us how to create a single application that performs both client-side
code and server-side code.

In the next chapter, we will see how to create a client-side web app using WebAssembly
technology and the Yew framework.

Questions
What are the possible strategies for creating HTML code containing variable1.
parts?
What is the syntax to embed a Tera expression into a text file?2.
What is the syntax to embed a Tera statement into a text file?3.
How are the values of variables in a Tera rendering operation specified?4.
How can the requests to a web server be classified?5.
Why may it be useful to split a web page into parts?6.
Should HTML templates and JavaScript files be deployed separately or are they7.
linked into the executable program?
Which JavaScript object can be used to send HTTP requests?8.
Where should the current username be stored when the server does not store9.
user sessions?
How are credentials extracted from an HTTP request?10.

Further reading
Additional information regarding Tera can be found at https:/ ​/​tera. ​netlify.
app/​.
Additional information regarding Actix web can be found at https:/ ​/​actix. ​rs/
docs/​.
The status of web development libraries and frameworks can be found
at https:/ ​/​www. ​arewewebyet. ​org/ ​.

https://tera.netlify.app/
https://tera.netlify.app/
https://tera.netlify.app/
https://tera.netlify.app/
https://tera.netlify.app/
https://tera.netlify.app/
https://tera.netlify.app/
https://tera.netlify.app/
https://tera.netlify.app/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://actix.rs/docs/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/

5
Creating a Client-Side

WebAssembly App Using Yew
In this chapter, you will see how Rust can be used to build the frontend of a web
application, as an alternative to using HTML, CSS, and JavaScript (typically using a
JavaScript frontend framework, such as React) or another language generating JavaScript
code (such as Elm or TypeScript).

To build a Rust app for a web browser, the Rust code must be translated to WebAssembly
code, which can be supported by all modern web browsers. The capability to translate Rust
code into WebAssembly code is now included in the stable Rust compiler.

To develop large projects, a web frontend framework is needed. In this chapter, the Yew
framework will be presented. It is a framework that supports the development of frontend
web applications, using the Model-View-Controller (MVC) architectural pattern, and
generating WebAssembly code.

The following topics will be covered in this chapter:

Understanding the MVC architectural pattern and its usage in web pages
Building WebAssembly apps using the Yew framework
How to use the Yew crate to create web pages designed with the MVC pattern
(incr and adder)
Creating a web app having several pages with a common header and footer
(login and yauth)
Creating a web app having both a frontend and a backend, in two distinct
projects (yclient and persons_db)

The frontend is developed using Yew, and the backend, which is an HTTP
RESTful service, is developed using Actix web.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[116]

Technical requirements
This chapter assumes you have already read the previous chapters, also, prior knowledge
of HTML is required.

To run the projects in this chapter, it is enough to install the generator of WebAssembly
code (Wasm, for short). Probably the simplest way to do this is by typing the following
command:

cargo install cargo-web

After 13 minutes, your Cargo tool will be enriched by several commands. A few of which
are as follows:

cargo web build (or cargo-web build): It builds Rust projects designed to
run in a web browser. It is similar to the cargo build command, but for Wasm.
cargo web start (or cargo-web start): It performs a cargo web build
command, and then starts a web server where every time it is visited by a client,
it sends a complete Wasm frontend app to the client. It is similar to the cargo
run command, but for serving Wasm apps.

The complete source code for this chapter is in the Chapter05 folder of the repository
at: https:/​/​github. ​com/ ​PacktPublishing/ ​Creative-Projects-for-Rust-Programmers.

Introducing Wasm
Wasm is a powerful new technology to deliver interactive applications. Before the advent
of the web, there were already many developers building client/server applications, where
the client apps ran on a PC (typically with Microsoft Windows) and the server apps ran on
a company-owned system (typically with NetWare, OS/2, Windows NT, or Unix). In such
systems, developers could choose their favorite language for the client app. Some people
used Visual Basic, others used FoxPro or Delphi, and many other languages were in wide
use.

However, for such systems, the deployment of updates was a kind of hell, because of
several possible issues, such as ensuring that every client PC had the proper runtime
system and that all clients got the updates at the same time. These problems were solved by
JavaScript running in web browsers, as it is a ubiquitous platform on which frontend
software could be downloaded and executed. This had some drawbacks though:
developers were forced to use HTML + CSS + JavaScript to develop frontend software, and
sometimes such software had poor performance.

https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Rust-2018-Projects
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[117]

Here comes Wasm, which is a machine-language-like programming language, like Java
bytecode or Microsoft .NET CIL code, but it is a standard accepted by all major web
browsers. Version 1.0 of its specification appeared in October 2017, and in 2019 it appears
that already more than 80% of web browsers running in the world support it. This means
that it can be more efficient and that it can be rather easily generated from several
programming languages, including Rust.

So, if Wasm is set as the target architecture of the Rust compiler, a program written in Rust
can be run on any major modern web browser.

Understanding the MVC architectural pattern
This chapter is about creating web apps. So, to make things more concrete, let's look
straight away at two toy web applications named incr and adder.

Implementing two toy web apps
To run the first toy application, let's take the following steps:

Go into the incr folder and type cargo web start.1.
After a few minutes, a message will appear on the console, ending with the2.
following line:

You can access the web server at `http://127.0.0.1:8000`.

Now, in the address box of a web browser, type: 127.0.0.1:8000 or3.
localhost:8000, and immediately you will see the following contents:

Click on the two buttons, or select the following textbox and then press the + or4.
the 0 keys on the keyboard.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[118]

If you click once on the Increment button, the contents of the
box to the right change from 0 to 1.
If you click another time, it changes to 2, and so on.
If you click on the Reset button, the value changes to 0 (zero).
If you select the textbox by clicking on it and then press the +
key, you increment the number like the Increment button does.
Instead, if you press the 0 key, the number is set to zero.

To stop the server, go to the console and press Ctrl + C.5.
To run the adder app, go into the adder folder and type cargo web start.6.
Similarly, for the other app, when the server app has started, you can refresh7.
your web browser page and you will see the following page:

Here, you can insert a number in the first box, to the right of the Addend 1 label,8.
another number in the second box, and then press the Add button. After that,
you will see the sum of those numbers in the textbox at the bottom, which has
turned from yellow to light green, as in the following screenshot:

After the addition, the Add button has become disabled. If one of the first two boxes is
empty, the sum fails and nothing happens. Also, if you change the value of any of the two
first boxes, the Add button becomes enabled, and the last textbox becomes empty and
yellow.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[119]

What is the MVC pattern?
Now that we have seen some very simple web applications, we can explain what the
MVC architectural pattern is using these apps as an example. The MVC pattern is an
architecture regarding event-driven interactive programs.

Let's see what event-driven interactive programs are. The word interactive is the opposite
of batch. A batch program is a program in which the user prepares all the input at the
beginning, and then the program runs without asking for further input. Instead, an
interactive program has the following steps:

Initialization.
Waiting for some actions from the user.
When the user acts on an input device, the program processes the related input,
and then goes to the preceding step, to wait for further input.

For example, console command interpreters are interactive programs, and all web apps
are interactive too.

The phrase event-driven means that the application, after initialization, does nothing until
the user performs something on the user interface. When the user acts on an input device,
the app processes such inputs and updates the screen only as a reaction to the user input.
Most web applications are event-driven. The main exceptions are games and virtual reality
or augmented reality environments, where animations go on even if the user does nothing.

Our examples in this chapter are all event-driven interactive programs, as after
initialization, they do something only when the user clicks with the mouse (or touches the
touchscreen) or presses any key on the keyboard. Some such clicks and key presses cause a
change on the screen. Therefore, the MVC architecture can be applied to these example
projects.

There are several dialects of this pattern. The one used by Yew derives from the one
implemented by the Elm language, and so it is named the Elm Architecture.

The model
In any MVC program, there is a data structure, named model, that contains all the dynamic
data required to represent the user interface.

For example, in the incr app, the value of the number contained in the box to the right is
required to represent the box, and it can change at runtime. Hence, that numeric value must
be in the model.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[120]

Here, the width and height of the browser window are usually not required to generate the
HTML code and so they shouldn't be a part of the model. Also, the sizes and texts of the
buttons shouldn't be a part of the model, but for another reason: they cannot change at
runtime in this app. Though, if it were an internationalized app, all the texts should be in
the model too.

In the adder app, the model should contain only the three values contained in the three
textboxes. It doesn't matter that two of them are directly inputted by the user and the third
one is calculated. The labels and the background color of the textboxes shouldn't be a part
of the model.

The view
The next portion of the MVC architecture is the view. It is a specification of how to
represent (or render) the graphical contents of the screen, depending on the value of the
model. It can be a declarative specification, such as pure HTML code, or a procedural
specification, such as some JavaScript or Rust code, or a mix of them.

For example, in the incr app, the view shows two push-buttons and one read-only textbox,
whereas, in the adder app, the view shows three labels, three textboxes, and one push-
button.

All the shown push-buttons have a constant appearance, but the views must change the
display of the numbers when the models change.

The controller
The last portion of the MVC architecture is the controller. It is always a routine or a set of
routines that are invoked by the view when the user, using an input device, interacts with
the app. When a user performs an action with an input device, all the view has to do is to
notify the controller that the user has performed that action, specifying which action (for
example, which mouse key has been pressed), and where (for example, in which position of
the screen).

In the incr app, the three possible input actions are as follows:

A click on the Increment button
A click on the Reset button
A press of a key on the keyboard when the textbox is selected

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[121]

Usually, it is also possible to press a push-button using the keyboard, but such an action
can be considered equivalent to a mouse click, and so a single input action type is notified
for each button.

In the adder app, the three possible input actions are as follows:

A change of the value in the Addend 1 textbox
A change of the value in the Addend 2 textbox
A click on the Add button

It is possible to change the value of a textbox in several ways:

By typing when no text is selected, inserting additional characters
By typing when some text is selected, and so replacing the selected text with a
character
By pasting some text from the clipboard
By dragging and dropping some text from another element of the screen
By using the mouse on the up-down spinner

We are not interested in these, because they are handled by the browser or by the
framework. All that matters for application code is that when the user performs an input
action, a textbox changes its value.

The job of the controller is just to use such input information to update the model. When
the model is completely updated, the framework notifies the view about the need to refresh
the look of the screen, taking into account the new values of the model.

In the case of the incr app, the controller, when it is notified of the pressing of the
Increment button, increments the number contained in the model; when it is notified of the
pressing of the Reset button, it sets to zero that number in the model; when it is notified of
the pressing of a key on the textbox, it checks whether the pressed key is +, or 0, or
something else, and the appropriate change is applied to the model. After such changes, the
view is notified to update the display of such a number.

In the case of the adder app, the controller, when it is notified of the change of the Addend
1 textbox, updates the model with the new value contained in the edit box. Similar behavior
happens for the Addend 2 textbox; and when the controller is notified of the pressing of the
Add button, it adds the two addends contained in the model and stores the result in the
third field of the model. After such changes, the view is notified to update the display of
such a result.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[122]

View implementation
Regarding web pages, the representation of pages is usually made up of HTML code, and
so, using the Yew framework, the view function must generate HTML code. Such
generations contain in themselves the constant portions of HTML code, but they also access
the model to get the information that can change at runtime.

In the incr app, the view composes the HTML code that defines two buttons and one read-
only numeric input element and puts in such an input element the value taken from the
model. The view includes the handling of the HTML click events on the two buttons by
forwarding them to the controller.

In the adder app, the view composes the HTML code that defines three labels, three
numeric input elements, and one button, and puts in the last input element the value taken
from the model. It includes the handling of the HTML input events in the first two textboxes
and the click event on the button, by forwarding them to the controller. Regarding the first
two textbox events, the values contained in the boxes are forwarded to the controller.

Controller implementation
Using Yew, the controller is implemented by an update routine, which processes the
messages regarding user actions coming from the view and uses such input to change the
model. After the controller has completed all the required changes to the model, the view
must be notified to apply the changes of the model to the user interface.

In some frameworks, such as in Yew, such an invocation of the view is automatic; that
mechanism has the following steps:

For any user action handled by the view, the framework calls the
update function, that is, the controller. In this call, the framework passes to the
controller the details regarding the user action; for example, which value has
been typed in a textbox.
The controller, typically, changes the state of the model.
If the controller has successfully applied some changes to the model, the
framework calls the view function, which is the view of the MVC architecture.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[123]

Understanding the MVC architecture
The general flow of control of the MVC architecture is shown in the following diagram:

The iteration of every user action is this sequence of operations:

The user sees a static representation of graphical elements on the screen.1.
The user acts on the graphical elements using an input device.2.
The view receives a user action and notifies the controller.3.
The controller updates the model.4.
The view reads the new state of the model to update the contents of the screen.5.
The user sees the new state of the screen.6.

The main concepts of the MVC architecture are as follows:

All the mutable data that is needed to correctly build the display must be in a
single data structure, named model. The model may be associated with some
code, but such code does not get direct user input, nor does it give output to the
user. It may access files, databases, or other processes, though. Because the model
does not interact directly with the user interface, the code implementing the
model shouldn't change if the application user interface is ported from text mode
to GUI/web/mobile.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[124]

The logic that draws on the display and captures user input is named the view.
The view, of course, must know about screen rendering, input devices and
events, and also about the model. Though, the view just reads the model, it never
changes it directly. When an interesting event happens, the view notifies the
controller of that event.
When the controller is notified of an interesting event by the view, it changes the
model accordingly, and when it has finished, the framework notifies the view to
refresh itself using the new state of the model.

Project overview
This chapter will present four projects that will get more and more complex. You have
already seen the first two projects in action: incr and adder. The third project, named
login, shows how to create a login page for authentication on a website.

The fourth project, named yauth, extends the login project adding the CRUD handling of
a list of persons. Its behavior is almost identical to that of the auth project in Chapter 4,
Creating a Full Server-Side Web App. Each project will require from 1 to 3 minutes to
download and compile from scratch.

Getting started
To start all the machinery, a very simple statement is enough – the body of
the main function:

 yew::start_app::<Model>();

It creates a web app based on the specified Model, starts it, and waits on the default TCP
port. Of course, the TCP port can be changed. It is a server that will serve the app to any
browser navigating to it.

The incr app
Here, we'll see the implementation of the incr project, which we already saw how to build
and use. The only dependency is on the Yew framework, and so, the TOML file contains
the following line:

yew = "0.6"

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[125]

All the source code is in the main.rs file. The model is implemented by the following
simple declaration:

struct Model {
 value: u64,
}

It just has to be a struct that will be instantiated by the framework, read by the view, and
read and written by the controller. Its name and the name of its fields are arbitrary.

Then the possible notifications from the view to the controller must be declared as an enum
type. Here is that of incr:

enum Msg {
 Increment,
 Reset,
 KeyDown(String),
}

Also, here, the names are arbitrary:

Msg is short for message, as such notifications are in a sense messages from the
view to the controller.
The Increment message notifies a click on the Increment button.The Reset
message notifies a click on the Reset button.
The KeyDown message notifies a press of any key on the keyboard; its argument
communicates which key has been pressed.

To implement the controller, the yew::Component trait must be implemented for our
model. The code for our project is as follows:

impl Component for Model {
 type Message = Msg;
 type Properties = ();
 fn create(_: Self::Properties, _: ComponentLink<Self>) -> Self {
 Self { value: 0 }
 }
 fn update(&mut self, msg: Self::Message) -> ShouldRender { ... }
}

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[126]

The required implementations are as follows:

Message: It is the enum defined before, describing all possible notifications from
the view to the controller.
Properties: It is not used in this project. When not used, it must be an empty
tuple.
create: It is invoked by the framework to let the controller initialize the model.
It can use two arguments, but here we are not interested in them, and it must
return an instance of the model with its initial value. As we want to show the
number zero at the beginning, we set value to 0.
update: It is invoked by the framework any time the user acts on the page in
some way handled by the view. The two arguments are the mutable model itself
(self) and the notification from the view (msg). This method should return a
value of type ShouldRender, but a bool value will be good. Returning
true means that the model has been changed, and so a refresh of the view is
required. Returning false means that the model has not been changed, and so a
refresh of the view would be a waste of time.

The update method contains a match on the message type. The first two message types are
quite simple:

match msg {
 Msg::Increment => {
 self.value += 1;
 true
 }
 Msg::Reset => {
 self.value = 0;
 true
 }

If the Increment message is notified, the value is incremented. If the Reset message is
notified, the value is zeroed. In both cases, the view must be refreshed.

The handling of the keypress is a bit more complex:

Msg::KeyDown(s) => match s.as_ref() {
 "+" => {
 self.value += 1;
 true
 }
 "0" => {
 self.value = 0;
 true

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[127]

 }
 _ => false,
}

The KeyDown match arm assigns the key pressed to the s variable. As we are interested
only in two possible keys, there is a nested match statement on the s variable. For the two-
handled keys (+ and 0), the model is updated, and true is returned to refresh the view. For
any other key pressed, nothing is done.

To implement the view part of MVC, the yew::Renderable trait must be implemented for
our model. The only required method is view, which gets an immutable reference to the
model, and returns an object that represents some HTML code, but that is capable of
reading the model and notifying the controller:

impl Renderable<Model> for Model {
 fn view(&self) -> Html<Self> {
 html! { ... }
 }
}

The body of such a method is constructed with the powerful yew::html macro. Here is the
body of such a macro invocation:

<div>
 <button onclick=|_| Msg::Increment,>{"Increment"}</button>
 <button onclick=|_| Msg::Reset,>{"Reset"}</button>
 <input
 readonly="true",
 value={self.value},
 onkeydown=|e| Msg::KeyDown(e.key()),
 />
</div>

It looks very similar to the actual HTML code. It is equivalent to the following HTML
pseudo-code:

<div>
 <button onclick="notify(Increment)">Increment</button>
 <button onclick="notify(Reset)">Reset</button>
 <input
 readonly="true"
 value="[value]"
 onkeydown="notify(KeyDown, [key])"),
 />
</div>

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[128]

Notice that at any HTML event, in the HTML pseudo-code, a JavaScript function is invoked
(here, named notify). Instead, in Rust, there is a closure that returns a message for the
controller. Such a message must have the arguments of the appropriate type. While the
onclick event has no arguments, the onkeydown event has one argument, captured in the
e variable, and by calling the key method on that argument, the pressed key is passed to
the controller.

Also notice in the HTML pseudo-code the [value] symbol, which at runtime will be
replaced by an actual value.

Finally, notice that the body of the macro has three features that differentiate it from HTML
code:

All the arguments of HTML elements must end with a comma.
Any Rust expression can be evaluated inside HTML code, as long as it is
enclosed in braces.
Literal strings are not allowed in this HTML code, so they must be inserted as
Rust literals (by including them in braces).

The adder app
Here, we'll see the implementation of the adder project, which we already saw how to
build and use. Only that which differentiates it from the incr project will be examined.

First of all, there is a problem with the html macro expansion recursion level. It is so deep
that it must be increased using the following directives at the beginning of the program:

#![recursion_limit = "128"]
#[macro_use]
extern crate yew;

Without them, a compilation error is generated. With more complex views, an even larger
limit is required. The model contains the following fields:

addend1: String,
addend2: String,
sum: Option<f64>,

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[129]

They represent the following, respectively:

The text inserted in the first box (addend1).
The text inserted in the second box (addend2).
The number calculated and to be displayed in the third box, if the calculation was
performed and was successful, or nothing otherwise.

The handled events (that is, the messages) are as follows:

 ChangedAddend1(String),
 ChangedAddend2(String),
 ComputeSum,

They represent the following, respectively:

Any change to the contents of the first box, with the new value contained in the
box (ChangedAddend1).
Any change to the contents of the second box, with its value (ChangedAddend2).
A click on the Add button.

The create function initializes the three fields of the model: the two addends are set to
empty strings, and the sum field is set to None. With these initial values, no number is
displayed in the Sum textbox.

The update function processes the three possible messages. For the ComputeSum message,
it does the following:

self.sum = match (self.addend1.parse::<f64>(), self.addend2.parse::<f64>())
{
 (Ok(a1), Ok(a2)) => Some(a1 + a2),
 _ => None,
};

The addend1 and addend2 fields of the model are parsed to convert them into numbers. If
both conversions are successful, the first arm matches, and so the a1 and a2 values are
added, and their sum is assigned to the sum field. If some conversion fails, None is assigned
to the sum field.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[130]

The arm regarding the first addend is as follows:

Msg::ChangedAddend1(value) => {
 self.addend1 = value;
 self.sum = None;
}

The current value of the textbox is assigned to the addend1 field of the model, and the sum
field is set to None. Similar behavior is performed for a change to the other addend.

Let's see the most interesting parts of the view method:

 let numeric = "text-align: right;";

It assigns to a Rust variable a snippet of CSS code. Then, the textbox for the first addend is
created by the following code:

<input type="number", style=numeric,
 oninput=|e| Msg::ChangedAddend1(e.value),/>

Notice that to the style attribute, the value of the numeric variable is assigned. The values
of these attributes are just Rust expressions.

The sum textbox is created by the following code:

<input type="number",

 style=numeric.to_string()
 + "background-color: "
 + if self.sum.is_some() { "lightgreen;" } else { "yellow;" },
 readonly="true", value={
 match self.sum { Some(n) => n.to_string(), None => "".to_string() }
 },
/>

The style attribute is composed by concatenating the numeric string seen before with the
background color. Such a color is light green if sum has a numeric value, or yellow if it
is None. Also, the value attribute is assigned using an expression, to assign an empty string
if sum is None.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[131]

The login app
So far, we have seen that an app contains just one model struct, one enum of messages, one
create function, one update method, and one view method. This is good for very simple
apps, but with more complex apps, this simple architecture becomes unwieldy. There is a
need to separate different portions of the app in different components, where each
component is designed with the MVC pattern and so it has its own model, controller, and
view.

Typically, but not necessarily, there is a general component that contains the portions of the
app that remain the same for all of the app:

A header with a logo, a menu, and the name of the current user
A footer containing copyright information and contact information

And then in the middle of the page, there is the inner part (also named the body, although it
is not the body HTML element). This inner part contains the real information of the app
and is one of many possible components or forms (or pages):

Let's run the login app by typing cargo web start in its folder.1.
When navigating to localhost:8000, the following page appears:2.

There are two horizontal lines. The part above the first line is meant to be a header, which
must remain for the whole app. The part underneath the second line is meant to be a footer,
which must remain for the whole app, too. The median part is the Login component,
which appears only when the user must be authenticated. This portion will be replaced by
other components when the user is authenticated.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[132]

First of all, let's see some authentication failures:

If you click on Log in straightaway, a message box appears saying: User not
found. The same happens if you type some random characters in the User
name textbox. The only allowed user names are susan and joe.
If you insert one of the two allowed user names, and then you click on Log in,
you get the message Invalid password for the specified user.
The same happens if you type some random characters in the Password textbox.
The only allowed passwords are xsusan for the user susan, and xjoe for the
user joe. If you type susan and then xsusan, just before clicking on Log in, you
will see the following:

And just after, you will see the following:

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[133]

Three things have changed:

At the right of the label—Current user—the blue text --- has been replaced by
susan.
At the right of that blue text, the Change User button has appeared.
Between the two horizontal lines, all the HTML elements have been replaced by
the large text reading Page to be implemented. Of course, this situation would
represent a case in which the user has been successfully authenticated and is
using the rest of the app.

If you were to click the Change User button, you will get the following page:

It is similar to the first page, but the name susan appears both as Current user, and as User
name.

Organization of the project
The source code of this project has been split into three files (which you will find in the
book's GitHub repository at Chapter05/login/src/db_access.rs:

db_access.rs: Contains a stub of a user directory to handle authentication
main.rs: Contains the one-line main function, and an MVC component that
handles the header and the footer of the page, and delegates the inner section to
the authentication component
login.rs: Contains the MVC component to handle the authentication, to be
used as an inner section of the main component

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[134]

The db_access.rs file
The db_access module is a subset of that of the previous chapter. It declares
a DbConnection struct that simulates a connection to a database. Actually, for simplicity, it
contains just Vec<User>, where User is an account of the app:

#[derive(PartialEq, Clone)]
pub struct DbConnection {
 users: Vec<User>,
}

The definition of the User type is this:

pub enum DbPrivilege {
 CanRead,
 CanWrite,
}

pub struct User {
 pub username: String,
 pub password: String,
 pub privileges: Vec<DbPrivilege>,
}

Any user of the app has a name, a password, and some privileges. In this simple system,
there are only two possible privileges:

CanRead, which means that the user can read all of the database
CanWrite, which means that the user can change all of the database (that is,
inserting, updating, and deleting records)

Two users are wired in:

joe with the password xjoe, capable only of reading from the database
susan with the password xsusan, capable of reading and writing the data

The only functions are as follows:

new, to create a DbConnection:

pub fn new() -> DbConnection {
 DbConnection {
 users: vec![
 User {
 username: "joe".to_string(),
 password: "xjoe".to_string(),

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[135]

 privileges: vec![DbPrivilege::CanRead],
 },
 User {
 username: "susan".to_string(),
 password: "xsusan".to_string(),
 privileges: vec![DbPrivilege::CanRead,
 DbPrivilege::CanWrite],
 },
],
 }
}

get_user_by_username, to get a reference to the user having the specified
name, or None if there is no user with that name:

pub fn get_user_by_username(&self, username: &str) -> Option<&User>
{
 if let Some(u) = self.users.iter().find(|u|
 u.username == username) {
 Some(u)
 } else {
 None
 }
}

Of course, first, we will create a DbConnection object, using the new function, and then we
will get a User from that object, using the get_user_by_username method.

The main.rs file
The main.rs file begins with the following declarations:

mod login;

enum Page {
 Login,
 PersonsList,
}

The first declaration imports the login module, which will be referenced by the main
module. Any inner section module must be imported here.

The second statement declares all the components that will be used as inner sections. Here,
we have only the authentication component (Login) and a component that is not yet
implemented (PersonsList).

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[136]

Then, there is the model of the MVC component of the main page:

struct MainModel {
 page: Page,
 current_user: Option<String>,
 can_write: bool,
 db_connection: std::rc::Rc<std::cell::RefCell<DbConnection>>,
}

As a convention, the name of any model ends with Model:

The first field of the model is the most important one. It represents which inner
section (or page) is currently active.
The other fields contain global information, that is, information useful for
displaying the header, the footer, or that must be shared with the inner
components.
The current_user field contains the name of the logged-in user, or None if no
user is logged in.
The can_write flag is a simplistic description of user privileges; here, both users
can read, but only one can also write, and so this flag is true when they are
logged in.
The db_connection field is a reference to the database stub. It must be shared
with an inner component, and so it is implemented as a reference-counted smart
pointer to RefCell, containing the actual DbConnection. Using this wrapping,
any object can be shared with other components, as long as one thread at a time
accesses them.

The possible notifications from the view to the controller are these:

enum MainMsg {
 LoggedIn(User),
 ChangeUserPressed,
}

Remember that the footer has no elements that can get input, and for the header, there is
only the Change User button that can get input, when it is visible. By pressing such a
button, the ChangeUserPressed message is sent.

So, it appears there is no way to send the LoggedIn message! Actually, the Login
component can send it to the main component.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[137]

The update function of the controller has the following body:

match msg {
 MainMsg::LoggedIn(user) => {
 self.page = Page::PersonsList;
 self.current_user = Some(user.username);
 self.can_write = user.privileges.contains(&DbPrivilege::CanWrite);
 }
 MainMsg::ChangeUserPressed => self.page = Page::Login,

When the Login component notifies the main component of successful authentication, thus
specifying the authenticated user, the main controller sets PersonsList as the page to go
to, saves the name of the newly authenticated user, and extracts the privileges from that
user.

When the Change User button is clicked, the page to go to becomes the Login page. The
view method contains just an invocation of the html macro. Such a macro must contain one
HTML element, and in this case, it is a div element.

That div element contains three HTML elements: a style element, a header element, and
a footer element. But between the header and the footer, there is some Rust code to create
the inner section of the main page.

To insert Rust code inside an html macro, there are two possibilities:

Attributes of HTML elements are just Rust code.
At any point, a pair of braces encloses Rust code.

In the first case, the evaluation of such Rust code must return a value convertible to a string
through the Display trait.

In the second case, the evaluation of the Rust code in braces must return an HTML element.
And how can you return an HTML element from Rust code? Using an html macro!

So, the Rust code that implements the view method contains an html macro invocation that
contains a block of Rust code, which contains an html macro invocation, and so on. This
recursion is performed at compile time and has a limit that can be overridden using
the recursion_limit Rust attribute.

Notice that both the header and the inner section contain a match
self.page expression.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[138]

In the header, it is used to show the Change User button only if the current page is not the
login page, for which it would be pointless.

In the inner section, the body of such a statement is the following:

Page::Login => html! {
 <LoginModel:
 current_username=&self.current_user,
 when_logged_in=|u| MainMsg::LoggedIn(u),
 db_connection=Some(self.db_connection.clone()),
 />
},
Page::PersonsList => html! {
 <h2>{ "Page to be implemented" }</h2>
},

If the current page is Login, an invocation to the html macro contains the LoginModel:
HTML element. Actually, the HTML language doesn't have such an element type. This is
the way to embed another Yew component in the current component. The LoginModel
component is declared in the login.rs source file. Its construction requires some
arguments:

current_username is the name of the current user.
when_logged_in is a callback that the component should invoke when it has
performed a successful authentication.
db_connection is a (reference-counted) copy of the database.

Regarding the callback, notice that it receives a user (u) as an argument and returns the
message LoggedIn decorated by that user. Sending this message to the controller of the
main component is the way the Login component communicates to the main component
who the user is that has just logged in.

The login.rs file
The login module begins by defining the model of the Login component:

pub struct LoginModel {
 dialog: DialogService,
 username: String,
 password: String,
 when_logged_in: Option<Callback<User>>,
 db_connection: std::rc::Rc<std::cell::RefCell<DbConnection>>,
}

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[139]

This model must be used by the main component, and so it must be public.

Its fields are as follows:

dialog is a reference to a Yew service, which is a way to ask the framework to
do something more than implementing the MVC architecture. A dialog service is
the ability to show message boxes to the user, through the JavaScript engine of
the browser.
username and password are the values of the text that the user has typed in the
two textboxes.
when_logged_in is a possible callback function, to call when a successful
authentication is completed.
db_connection is a reference to the database.

The possible notification messages are these:

pub enum LoginMsg {
 UsernameChanged(String),
 PasswordChanged(String),
 LoginPressed,
}

The first two messages mean that the respective fields have changed values, and the third
message says that the push-button has been pressed.

So far, we have seen that this component has a model and some messages, like the
components we saw before; but now we'll see that it also has something that we've never
seen:

pub struct LoginProps {
 pub current_username: Option<String>,
 pub when_logged_in: Option<Callback<User>>,
 pub db_connection:
 Option<std::rc::Rc<std::cell::RefCell<DbConnection>>>,
}

This structure represents the arguments that every parent of this component must pass to
create the component. In this project, there is only one parent of the Login component, that
is, the main component, and that component created a LoginModel: element having the
fields of LoginProps as attributes. Notice that all the fields are specializations of Option: it
is required by the Yew framework, even if you don't pass an Option as an attribute.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[140]

This LoginProps type must be used in four points:

First, it must implement the Default trait, to ensure its fields are properly
initialized when the framework needs an object of this type:

impl Default for LoginProps {
 fn default() -> Self {
 LoginProps {
 current_username: None,
 when_logged_in: None,
 db_connection: None,
 }
 }
}

Second, we already saw that the implementation of the Component trait for the
model has to define a Properties type. In this case, it must be like so:

impl Component for LoginModel {
 type Message = LoginMsg;
 type Properties = LoginProps;

That is, this type is passed into the implementation of the Component trait
for the LoginModel type.

Third, the create function must use its first argument, containing the values
passed in by the parent component. Here is that function:

fn create(props: Self::Properties, _link: ComponentLink<Self>)
-> Self {
 LoginModel {
 dialog: DialogService::new(),
 username: props.current_username.unwrap_or(String::new()),
 password: String::new(),
 when_logged_in: props.when_logged_in,
 db_connection: props.db_connection.unwrap(),
 }
}

All the fields of the model are initialized, but while the dialog and password fields
receive default values, the other fields receive a value from the props object received from
the parent component, that is, MainModel. As we are sure that the db_connection field of
props will be None, we call unwrap for it. Instead, the current_username field may be
None, and so, in that case, an empty string is used.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[141]

Then there is the update function, which is the controller of the Login component.

When the user presses the Log in button, the following code is executed:

if let Some(user) = self.db_connection.borrow()
 .get_user_by_username(&self.username)
{
 if user.password == self.password {
 if let Some(ref go_to_page) = self.when_logged_in {
 go_to_page.emit(user.clone());
 }
 } else {
 self.dialog.alert("Invalid password for the specified user.");
 }
} else {
 self.dialog.alert("User not found.");
}

The connection to the database is extracted from RefCell using the borrow method, and
then the user with the current name is looked for. If the user is found, and if their stored
password is the same as that typed by the user, the callback kept in the when_logged_in
field is extracted, and then its emit method is invoked, passing a copy of the user name as
argument. So, the routine passed by the parent, that is, the |u|
MainMsg::LoggedIn(u) closure, is executed.

In the event of a missing user or mismatching password, a message box is displayed using
the alert method of the dialog service. The controllers that we saw before had just two
functions: create and update. This one has another function, though; it is the change
method:

fn change(&mut self, props: Self::Properties) -> ShouldRender {
 self.username = props.current_username.unwrap_or(String::new());
 self.when_logged_in = props.when_logged_in;
 self.db_connection = props.db_connection.unwrap();
 true
}

This method allows the parent to re-send to this component updated arguments using the
Properties structure. The create method is invoked just one time, while the
change method is invoked any time the parent will need to update the arguments to pass
to the child component.

The view is easy to understand by reading its code and does not require explanation.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[142]

The yauth app
The login app, presented in the previous section, showed how to create a parent
component containing one of several possible child components. However, it implemented
just one child component, the Login component. So, in this section, a more complete
example will be presented, having three different possible child components,
corresponding to three different pages of a classical web application.

It is named yauth, short for Yew Auth, as its behavior is almost identical to the
auth project shown in the previous chapter, although, it is completely based on the Yew
framework, instead of being based on Actix web and Tera.

Understanding the behavior of the app
This app is built and launched like the ones in the previous sections, and its first page is
identical to the first page of the login app. Though, if you type susan as the username and
xsusan as the password, and then click on the Log in button, you'll see the following page:

This page and the other page that you will see in this app, and their behavior, are almost
identical to those of the auth app described in the previous chapter. The only differences
are as follows:

Any error message is not shown as red text embedded in the page but as a pop-
up message box.
The header and the footer are implemented by the main component, and they
look and behave as already described in the previous section of this chapter.

So, we just need to examine the implementation of this app.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[143]

Organization of the project
The source code of this project has been split into five files:

db_access.rs: It contains a stub of a connection to a database, providing access
to a user directory to handle authentication and to a list of persons; it actually
contains such data as vectors. It is virtually identical to the file with the same
name in the auth project of the previous chapter. The only relevant difference is
that the Serialize trait is not implemented, because it's not required by the
Yew framework.
main.rs: It contains the one-line main function, and an MVC component that
handles the header and the footer of the page, and delegates the inner section to
one of the other three components of the app.
login.rs: It contains the MVC component to handle the authentication. It is to
be used as an inner section of the main component. It is identical to the module
having the same name in the login project.
persons_list.rs: It contains the MVC component to handle the list of persons.
It is to be used as an inner section of the main component.
one_person.rs: It contains the MVC component to view, edit, or insert a single
person; it is to be used as an inner section of the main component.

We will only discuss the files unique to the yauth app, as follows.

The persons_list.rs file
This file contains the definition of the component to let the user manage the list of persons,
and so it defines the following struct as a model:

pub struct PersonsListModel {
 dialog: DialogService,
 id_to_find: Option<u32>,
 name_portion: String,
 filtered_persons: Vec<Person>,
 selected_ids: std::collections::HashSet<u32>,
 can_write: bool,
 go_to_one_person_page: Option<Callback<Option<Person>>>,
 db_connection: std::rc::Rc<std::cell::RefCell<DbConnection>>,
}

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[144]

Let's see what each line in the previous code says:

The dialog field contains a service to open message boxes.
The id_to_find field contains the value typed by the user in the Id textbox if
the box contains a number, or None otherwise.
The name_portion field contains the value contained in the Name portion:
textbox. In particular, if that box is empty, this field of the model contains an
empty string. The filtered_persons field contains a list of the persons
extracted from the database using the specified filter. Initially, the filter specifies
to extract all the persons whose names contain an empty string. Of course, all the
persons satisfy that filter, and so all the persons in the database are added to this
vector, though the database is empty, and so this vector is too.
The selected_ids field contains the IDs of all the listed people whose checkbox
is set, and so they are selected for further operation.
The can_write field specifies whether the current user has the privilege to
modify the data.
The go_to_one_person_page field contains the callback to call to pass to the
page to view/edit/insert a single person. Such a callback function receives one
argument, which is the person to view/edit, or None to open the page to insert a
new person.
The db_connection field contains a shared reference to the database
connection.

The possible notifications from the view to the controllers are defined by this structure:

pub enum PersonsListMsg {
 IdChanged(String),
 FindPressed,
 PartialNameChanged(String),
 FilterPressed,
 DeletePressed,
 AddPressed,
 SelectionToggled(u32),
 EditPressed(u32),
}

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[145]

Let's see what we did in the previous code:

The IdChanged message must be sent when the text in the Id: textbox is
changed. Its argument is the new text value of the field.
The FindPressed message must be sent when the Find push-button is clicked.
The PartialNameChanged message must be sent when the text in the Name
portion: textbox is changed. Its argument is the new text value of the field.
The FilterPressed message must be sent when the Filter push-button is
clicked.
The DeletePressed message must be sent when the Delete Selected
Persons push-button is clicked.
The AddPressed message must be sent when the Add New Person push-button
is clicked.
The SelectionToggled message must be sent when a checkbox in the list of
persons is toggled (that is, checked or unchecked). Its argument is the ID of the
person specified by that line of the list.
The EditPressed message must be sent when any Edit push-button in the list of
persons is clicked. Its argument is the ID of the person specified by that line of
the list.

Then, the structure of the initialization arguments for the component is defined:

pub struct PersonsListProps {
 pub can_write: bool,
 pub go_to_one_person_page: Option<Callback<Option<Person>>>,
 pub db_connection:
 Option<std::rc::Rc<std::cell::RefCell<DbConnection>>>,
}

Let's look at how this works:

Using the can_write field, the main component specifies a simple definition of
the privileges of the current user. A more complex application could have a more
complex definition of privileges.
Using the go_to_one_person_page field, the main component passes a
reference to a function, which must be called to go to the page for showing,
editing, or inserting a single person.
Using the db_connection field, the main component passes a shared reference
to the database connection.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[146]

The initialization of the PersonsListProps struct by implementing the Default trait and
of the PersonsListModel struct by implementing the Component trait is trivial, except for
the filtered_persons field. Instead of leaving it as an empty vector, it is first set as an
empty vector, and then modified by the following statement:

model.filtered_persons = model.db_connection.borrow()
 .get_persons_by_partial_name("");

Why an empty collection wouldn't be good for filtered_persons
Every time the PersonsList page is opened, both from the login page and from the
OnePerson page, the model is initialized by the create function, and all the user interface
elements of the page are initialized using that model.

So, if you type something in the PersonsList page, and then you go to another page, and
then you go back to the PersonsList page, everything you typed is cleared unless you set
it in the create function.

Probably, the fact that the Id textbox, the Name portion textbox, or the selected persons are
cleared is not very annoying, but the fact that the list of persons is cleared means that you
will get the following behavior:

You filter the persons to see some persons listed.
You click on the Edit button in the row of one person, to change the name of that
person, and so you go to the OnePerson page.
You change the name and press the Update button, and so you go back to the
PersonsList page.
You see the text No persons. instead of the list of persons.

You don't see the person that you have just modified in the OnePerson page anymore. This
is inconvenient.

To see that person listed, you need to set filtered_persons to a value containing that
person. The solution chosen has been to show all the persons existing in the database, and
this is performed by calling the get_persons_by_partial_name("") function.

Now, let's see how the update method handles the messages from the view.

When the IdChanged message is received, the following statement is executed:

self.id_to_find = id_str.parse::<u32>().ok(),

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[147]

It tries to store in the model the value of the textbox, or None if the value is not convertible
to a number.

When the FindPressed message is received, the following statement is executed:

match self.id_to_find {
 Some(id) => { self.update(PersonsListMsg::EditPressed(id)); }
 None => { self.dialog.alert("No id specified."); }
},

If the Id textbox contained a valid number, another message would be sent recursively: it is
the EditPressed message. Pressing the Find button must have the same behavior as
pressing the Edit button in the row with the same ID contained in the Id textbox, and so the
message is forwarded to the same function. If there is no ID in the text field, a message box
is displayed.

When the PartialNameChanged message is received, the new partial name is just saved in
the name_portion field of the model. When the FilterPressed message is received, the
following statement is executed:

self.filtered_persons = self
 .db_connection
 .borrow()
 .get_persons_by_partial_name(&self.name_portion);

The connection to the database is encapsulated in a RefCell object, which is
further encapsulated in an Rc object. The access inside Rc is implicit, but to access inside
RefCell, it is required to call the borrow method. Then the database is queried to get the
list of all the persons whose names contain the current name portion. This list is finally
assigned to the filtered_persons field of the model.

When the DeletePressed message is received, the following statement is executed:

if self
 .dialog
 .confirm("Do you confirm to delete the selected persons?") {
 {
 let mut db = self.db_connection.borrow_mut();
 for id in &self.selected_ids {
 db.delete_by_id(*id);
 }
 }
 self.update(PersonsListMsg::FilterPressed);
 self.dialog.alert("Deleted.");
}

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[148]

The following pop-up box is shown for confirmation:

If the user clicks on the OK button (or presses Enter), then the deletion is performed in the
following way: a mutable reference is borrowed from the shared connection to the
database, and for any ID selected through the checkboxes, the respective person is deleted
from the database.

The closing of the scope releases the borrowing. Then, a recursive call to update triggers
the FilterPressed message, whose purpose is to refresh the list of persons shown.
Finally, the following message box communicates the completion of the operation:

When the AddPressed message is received, the following code is executed:

if let Some(ref go_to_page) = self.go_to_one_person_page {
 go_to_page.emit(None);
}

Here, a reference to the go_to_one_person_page callback is taken, and then it is invoked
using the emit method. The effect of such an invocation is to go to the OnePerson page.
The argument of emit specifies which person will be edited on the page. If it is None, as in
this case, the page is opened in insertion mode.

When the SelectionToggled message is received, it specifies an ID of a person, but it
does not specify whether that person is to be selected or deselected. So, the following code
is executed:

if self.selected_ids.contains(&id) {
 self.selected_ids.remove(&id);
} else {
 self.selected_ids.insert(id);
}

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[149]

We want to invert the status of the person on which the user has clicked, that is, to select it
if it was not selected, and to unselect it if it was selected. The selected_ids field of the
model contains the set of all the selected persons. So, if the clicked ID is contained in the set
of selected IDs, it is removed from this set by calling the remove method; otherwise, it is
added to the list, by calling the insert method.

At last, when the EditPressed message is received (specifying the id of the person to
view/change), the following code is executed:

match self.db_connection.borrow().get_person_by_id(id) {
 Some(person) => {
 if let Some(ref go_to_page) = self.go_to_one_person_page {
 go_to_page.emit(Some(person.clone()));
 }
 }
 None => self.dialog.alert("No person found with the indicated id."),
}

The database is searched for a person with the specified ID. If such a person is found,
the go_to_one_person_page callback is invoked, passing a clone of the person found.
Otherwise, a message box explains the error. The change method keeps the fields of the
model updated when any property coming from the parent component would change.

Then there is the view. The messages sent by the view were described when the messages
were presented. The other interesting aspects of the view are the following ones.

The Delete Selected Persons button and the Add New Person button have the
attribute disabled=!self.can_write. This enables such commands only if the user has
the privilege to change the data.

The if !self.filtered_persons.is_empty() clause causes the table of persons to be
displayed only if there is at least one person filtered. Otherwise, the text No persons. is
displayed.

The body of the table begins and ends with the following lines:

for self.filtered_persons.iter().map(|p| {
 let id = p.id;
 let name = p.name.clone();
 html! {
 ...
 }
})

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[150]

This is the required syntax for generating sequences of HTML elements based on an
iterator.

The for keyword is immediately followed by an iterator (in this case, the
expression self.filtered_persons.iter()), followed by the expression .map(|p|,
where p is the loop variable. In this way, it is possible to insert into the map closure a call to
the html macro that generates the elements of the sequence. In this case, such elements are
the lines of the HTML table.

The last noteworthy point is the way to show which persons are selected. Every checkbox
has the attribute checked=self.selected_ids.contains(&id),. The checked attribute
expects a bool value. That expression sets as checked the checkbox relative to the persons
whose id is contained in the list of the selected IDs.

The one_person.rs file
This file contains the definition of the component to let the user view or edit the details of
one person or to fill in the details and insert a new person. Of course, to view the details of
an existing record, such details must be passed as arguments to the component; instead, to
insert a new person, no data must be passed to the component.

This component does not return its changes directly to the parent that created it. Such
changes are saved to the database, if the user requested that, and the parent can retrieve
them from the database.

Therefore the model is defined by the following struct:

pub struct OnePersonModel {
 id: Option<u32>,
 name: String,
 can_write: bool,
 is_inserting: bool,
 go_to_persons_list_page: Option<Callback<()>>,
 db_connection: std::rc::Rc<std::cell::RefCell<DbConnection>>,
}

With the preceding code, we understood the following things:

The id field contains the value contained in the Id textbox if the box contains a
number, or None otherwise.
The name field contains the value contained in the Name textbox. In particular, if
the box is empty, this field of the model contains an empty string.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[151]

The can_write field specifies whether the current privileges allow the user to
change the data or only to see it.
The is_inserting field specifies whether this component has received no data,
to insert a new person into the database, or whether it has received the data of a
person, to view or edit them.
The go_to_persons_list_page field is a callback with no arguments that must
be invoked by this component when the user closes this page to go to the page to
manage the list of persons.
The db_connection field is a shared connection to the database.

Of course, it is pointless to open a page for insertion without allowing the user to change
the values. So, the possible combinations are the following ones:

Insertion mode: The id field is None, the can_write field is true, and
the is_inserting field is true.
Editing mode: The id field is Some, the can_write field is true, and
the is_inserting field is false.
Read-only mode: The id field is Some, the can_write field is false, and
the is_inserting field is false.

The possible notifications from the view to the controller are defined by the following enum:

pub enum OnePersonMsg {
 NameChanged(String),
 SavePressed,
 CancelPressed,
}

Let's see what happened in the code:

When the user changes the contents of the Name textbox, the NameChanged
message is sent, which also specifies the current contents of that textbox.
When the user clicks on the Insert button or on the Update button, the
SavePressed message is sent. To distinguish between the two buttons,
the is_inserting field can be used.
When the user presses the Cancel button, the CancelPressed message is sent.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[152]

The value of the Id textbox can never be changed during the life of this component, and so
no message is required for it. The data received from the parent is defined by the following
structure:

pub struct OnePersonProps {
 pub id: Option<u32>,
 pub name: String,
 pub can_write: bool,
 pub go_to_persons_list_page: Option<Callback<()>>,
 pub db_connection:
 Option<std::rc::Rc<std::cell::RefCell<DbConnection>>>,
}

In the preceding code, we have the following things to check:

The id field is None in case the parent wants to open the page to let the user
insert a new person, and contains the ID of an existing person in case the page is
for viewing or editing the data of that person.
The name field is the only changeable data of any person. It is an empty string if
the page is created for inserting a new person. Otherwise, the parent passes the
current name of the person.
The can_write field specifies whether the user is allowed to change the
displayed data. This field should be true if the id field is None.
go_to_persons_list_page is the callback that will activate the PersonsList
component in the parent.
The db_connection field is the shared database connection.

In the rest of the module, there is nothing new. The only thing to stress is that the use of
conditional expressions based on the can_write and is_inserting flags of the model
allows having just one component with a mutant view.

A web app accessing a RESTful service
The previous section described a rather complex software architecture, but still running
only in the user's web browser, after having being served by the site where it is installed.
This is quite unusual, as most web apps actually communicate with some other process.
Typically, the same site that provides the frontend app also provides a backend service,
that is, a web service to let the app access shared data residing on the server.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[153]

In this section, we'll see a pair of projects that can be downloaded from the repository:

yclient: This is an app quite similar to the yauth app. Actually, it is developed
using Yew and Wasm, and it has the same look and behavior as yauth; though
its data, which is the authorized users and the persons stored in the mock
database, no longer resides in the app itself, but in another app, which is accessed
through an HTTP connection.
persons_db: This is the RESTful service that provides access to the data for the
yclient app. It is developed using the Actix web framework, as explained in the
previous chapter. Even this app does not manage a real database, only a mock,
in-memory database.

To run the system, two commands are required: one to run the frontend
provider, yclient, and one to run the web service, persons_db.

To run the frontend provider, go into the yclient folder, and type the following:

cargo web start

After downloading and compiling all the required crates, it will print the following:

You can access the web server at `http://127.0.0.1:8000`.

To run the backend, in another console window, go into the db_persons folder and type
the following:

cargo run

Or, we can use the following command:

cargo run --release

Both these commands will end by printing the following:

 Listening at address 127.0.0.1:8080

Now you can use your web browser and navigate to localhost:8000. The app that will
be opened will be quite similar to both the yauth app, shown in the previous section, and
to the auth app, shown in the previous chapter.

Let's first see how persons_db is organized.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[154]

The persons_db app
This app uses the Actix web framework, described in the previous two chapters. In
particular, this project has some features taken from the json_db project, described in
Chapter 3, Creating a REST Web Service, and some from the auth project, described in
Chapter 4, Creating a Full Server-Side Web App.

Here, we'll see only the new features that haven't been described so far. The Cargo.toml
file contains the following new line:

actix-cors = "0.1"

This crate allows the handling of the Cross-Origin Resource Sharing (CORS) checks,
usually performed by browsers. When some code running inside a browser tries to access
an external resource using a network connection, the browser, for security reasons, checks
whether the addressed host is just the one that provided the code that is performing the
request. That means that the frontend and the backend are actually the same website.

If the check fails, that is, the frontend app is trying to communicate with a different site, the
browser sends an HTTP request using the OPTION method to check whether the site agrees
to cooperate with that web app on this resource sharing. Only if the response to the OPTION
request allows the required kind of access can the original request be forwarded.

In our case, both the frontend app and the web service run on localhost; though, they use
different TCP ports: 8000 for the frontend and 8080 for the backend. So, they are
considered as different origins, and CORS handling is needed. The actix-cors crate
provides features to allow such cross-origin access for backends developed using Actix
web.

One of these features is used in the main function, as in the following code snippet:

.wrap(
 actix_cors::Cors::new()
 .allowed_methods(vec!["GET", "POST", "PUT", "DELETE"])
)

This code is a so-called middleware, meaning that it will be run for every request received
by the service, and so it is a piece of software that stays in the middle between the client
and the server.

The wrap method is the one to use to add a piece of middleware. This word means that the
following code must be around every handler, possibly filtering both requests and
responses.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[155]

Such code creates an object of type Cors and specifies for it which HTTP methods will be
accepted.

The rest of this web service should be clear to those who have learned what has already
been described about the Actix web framework. It is a RESTful web service that accepts
requests as URI paths and queries and returns responses as JSON bodies, and for which
authentication is provided in any request by the basic authentication header.

The API has a new route for the GET method and the /authenticate path, which calls
the authenticate handler, which is used to get a whole user object with the list of their
privileges.

Now let's see how yclient is organized.

The yclient app
This app starts from where the yauth app left off. The yauth apps contain its own in-
memory database, while the app described here communicates with the person_db web
service to access its database.

Here, we'll see only the new features, with respect to the yauth project.

The imported crates
The Cargo.toml file contains new lines:

failure = "0.1"
serde = "1"
serde_derive = "1"
url = "1"
base64 = "0.10"

For the preceding code, let's have a look at the following things:

The failure crate is used to encapsulate communication errors.
The serde and serde_derive crates are needed to transfer whole objects from
server to client, using deserialization. In particular, the whole object of the types
Person, User, and DbPrivilege are transferred in server responses.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[156]

The url crate is used for encoding information in a URL. In a URL path or a URL
query, you can easily put only identifiers or integer numbers, such as,
say, /person/id/478 or /persons?ids=1,3,39, but more complex data, such
as the name of a person, is not allowed as is. You cannot have a URL
as /persons?partial_name=John Doe, because it contains whitespace. In
general, you have to encode it in coding allowed in a URL, and that is provided
by the call to url::form_urlencoded::byte_serialize, which gets a slice of
bytes and returns an iterator generating chars. If you call
collect::<String>() on this iterator, you get a string that can be safely put
into a web URI.
The base64 crate is used to perform a similar encoding of binary data into
textual data, but for the header or the body of an HTTP request. In particular, it is
required to encode usernames and passwords in the basic authentication header.

The source files
The source file names are the same as the yauth project, except that the db_access.rs file
has been renamed as common.rs. Actually, in this project, there is no code required to
access the database, as access is now performed only by the service. The common module
contains definitions of a constant, two structs, an enum, and a function needed by several
components.

The changes to the models
The models of the components have the following changes.

All the db_connection fields have been removed, as the app now does not directly access
the database. That has become the responsibility of the server.

The Boolean fetching field has been added. It is set to true when a request is sent to the
server and reset to false when the response is received, or the request has failed. It is not
really necessary in this app, but it may be useful when using a slower communication (with
a remote server) or some more lengthy requests. It may be used to show to the user that a
request is pending, and also to disable other requests in the meantime.

The fetch_service field has been added to provide the communication feature. The ft
field has been added to contain a reference to the current FetchTask object during a
request, or Nothing when no request has already been sent. This field is not actually used;
this is just a trick to keep the current request alive, because otherwise after the request is
sent and the update function returns, the local variables would be dropped.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[157]

The link field has been added for forwarding to the current model the callback that will be
called when the response is received.

The console field has been added to provide a way to print to the console of the browser,
for debugging purposes. In Yew, the print! and println! macros are ineffective, as there
is no system console on which to print. But the web browser has a console, which is
accessed using the console.log() JavaScript function call. This Yew service provides
access to such a feature.

The username and password fields have been added to send authentication data with any
requests.

But let's see the changes required to the code because of the need to communicate with the
server.

A typical client/server request
For any user command that, in the yauth project, required access to the database, such
access has been removed, and the following changes have been applied, instead.

Such a user command now sends a request to a web service, and then a response from that
service must be handled. In our examples, the time between the user command and the
reception of the response from the service is quite short – just a few milliseconds, for the
following reasons:

Both client and server run in the same computer, and so the TCP/IP packets
actually don't exit the computer.
The computer has nothing else to do.
The database is actually a very short memory vector, and so its operations are
very fast.

Though, in a real system, much more time is spent processing a user command that causes
communication. If everything is good, a command takes only half a second, but sometimes
it may take several seconds. So, synchronous communication is not acceptable. Your app
cannot just wait for a response from the server, because it would appear to be stuck.

So, the FetchService object of the Yew framework provides an asynchronous
communication model.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[158]

The controller routine triggered by the user command prepares the request to be sent to the
server, and also prepares a callback routine, to handle the response from the server, and
then sends the request, and so the app is free to handle other messages.

When the response comes from the server, the response triggers a message that is handled
by the controller. The handling of the message invokes the callback prepared in advance.

So, in addition to the messages signaling a user command, other messages have been
added. Some of them report the reception of a response, that is, the successful completion
of a request; and others report a failure of the request coming from the server, that is, the
unsuccessful completion of a request. For example, in the PersonsListModel component,
implemented in the persons_list.rs file, the following user actions required
communication:

Pressing the Find button (triggering the FindPressed message)
Pressing the Filter button (triggering the FilterPressed message)
Pressing the Delete Selected Persons button (triggering
the DeletePressed message)
Pressing one of the Edit buttons (triggering the EditPressed message)

For them, the following messages have been added:

ReadyFilteredPersons(Result<Vec<Person>, Error>): This is triggered
by the FetchService instance when a list of filtered persons is received from
the service. Such a list is contained in a Vec of Person. This may happen after
processing the FilterPressed message.
ReadyDeletedPersons(Result<u32, Error>): This is triggered by the
FetchService instance when the report that a command to delete some persons
has been completed by the service. The number of deleted persons is contained
in u32. This may happen after processing the DeletePressed message.
ReadyPersonToEdit(Result<Person, Error>): This is sent
by FetchService when the requested Person object is received from the
service, and so it can be edited (or simply displayed). This may happen after
processing the FindPressed message or the EditPressed message.
Failure(String): This is sent by FetchService when any of the preceding
requests have failed as the service returns a failure response.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[159]

For example, let's see the code that handles the EditPressed message. Its first part is as
follows:

self.fetching = true;
self.console.log(&format!("EditPressed: {:?}.", id));
let callback =
 self.link
 .send_back(move |response: Response<Json<Result<Person, Error>>>| {
 let (meta, Json(data)) = response.into_parts();
 if meta.status.is_success() {
 PersonsListMsg::ReadyPersonToEdit(data)
 } else {
 PersonsListMsg::Failure(
 "No person found with the indicated id".to_string(),
)
 }
 });

Let's check the working of the code:

First, the fetching state is set to true, to take note that communication is
underway.
Then a debug message is printed to the console of the browser.
Then, a callback is prepared to handle the response. To prepare such a callback, a
move closure, that is, a closure that gets ownership of all the variables it uses, is
passed to the send_back function of the link object.

Remember that we come here when the user has pressed a button to edit a
person specified by their ID; and so we need the whole of the person data
to display it to the user.

The body of the callback is the code that we want to be executed after receiving a response
from the server. Such a response, if successful, must contain all the data regarding the
person we want to edit. So, this closure gets a Response object from the service. This type
is actually parameterized by the possible contents of the response. In this project, we
always expect a yew::format::Json payload and such a payload is a Result, which
always has failure::Error as its error type. Though, the success type varies depending
on the request type. In this particular request, we expect a Person object as a successful
result.

The body of the closure calls the into_parts method on the response to destructure the
response into the metadata and the data. The metadata is HTTP-specific information, while
the data is the JSON payload.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[160]

Using the metadata, it is possible to check whether the response was successful
(meta.status.is_success()). In such a case, the Yew
message ReadyPersonToEdit(data) is triggered; such a message will handle the
response payload. In the event of an error, a Yew message of Failure is triggered; such a
message will display the specified error message.

You could ask: "Why does the callback forward the payload to the Yew framework,
specifying another message, instead of doing anything that should be done upon receipt of
the response?"

The reason is that the callback, to be executed out of context by the framework, must be the
owner of any variable it accesses after its creation, that is, when the request is sent, up to the
time of its destruction (when the response is received). So, it cannot use the model or any
other external variable. You cannot even print on the console or open an alert box inside
such a callback. So you need to asynchronously forward the response to a message handler,
which will be able to access the model.

The remaining part of the handler of the EditPressed message is this:

let mut request = Request::get(format!("{}person/id/{}", BACKEND_SITE, id))
 .body(Nothing)
 .unwrap();

add_auth(&self.username, &self.password, &mut request);
self.ft = Some(self.fetch_service.fetch(request, callback));

First, a web request is prepared, using the get method, which uses the GET HTTP method,
and optionally specifying a body, which in this case is empty (Nothing).

Such a request is enriched with authentication information by a call of the add_auth
common function, and finally, the fetch method of the FetchService object is invoked.
This method uses the request and the callback to begin the communication with the server.
It immediately returns a handle, stored in the ft field of the model.

Then the control returns to Yew, which can process other messages, until a response comes
from the server. Such a response will be forwarded to the callback defined before.

Now, let's see the handler of the ReadyPersonToEdit(person) message, forwarded when
a person structure is received from the server as a response to the request of editing a
person by their id. Its code is as follows:

self.fetching = false;
let person = person.unwrap_or(Person {
 id: 0,
 name: "".to_string(),

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[161]

});
if let Some(ref go_to_page) = self.go_to_one_person_page {
 self.console
 .log(&format!("ReadyPersonToEdit: {:?}.", person));
 go_to_page.emit(Some(person.clone()));
}

First, the fetching state is set to false, to take note that the current communication is
ended.

Then, if the received person was None, such a value is replaced by a person having zero as
id and an empty string as a name. Of course, it is an invalid person.

Then, a reference to the go_to_one_person_page field of the model is taken. This field
can be None (in fact, only at the initialization stage), so, if it is not defined, nothing is done.
This field is a Yew callback to jump to another page.

At last, a debug message is printed, and the callback is invoked using the emit method.
This call receives a copy of the person to display on that page.

Now, let's see the handler of the Failure(msg) message, forwarded when an error is
received from the server. This handler is shared by other requests, as it has the same
behavior. Its code is as follows:

self.fetching = false;
self.console.log(&format!("Failure: {:?}.", msg));
self.dialog.alert(&msg);
return false;

Again, the fetching state is set to false since the communication is ended.

A debug message is printed, and a message box is opened to show the user the error
message. As long as such a message box is opened, the component is frozen, as no other
message can be processed.

At last, the controller returns false to signal that no view needs to be refreshed. Notice
that the default return value is true as, usually, the controller changes the model, and so
the view must be refreshed as a consequence of that.

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[162]

Summary
We have seen how a complete frontend web app can be built using Rust, by using the
cargo-web command, the Wasm code generator, and the Yew framework. Such apps are
modular and well structured, as they use the Elm Architecture, which is a variant of the
MVC architectural pattern.

We created six apps, and we saw how they worked—incr, adder, login, yauth,
persons_db, and yclient.

In particular, you learned how to build and run a Wasm project. We looked at the MVC
architectural pattern for building interactive apps. We covered how the Yew framework
supports the creation of apps implementing an MVC pattern, specifically according to the
Elm Architecture. We also saw how to structure an app in several components and how to
keep a common header and footer, while the body of the app changes from page to page.
And at the end, we learned how to use Yew to communicate with a backend app, possibly
running on a different computer, packaging data in JSON format.

In the next chapter, we will see how to build a web game using Wasm and the Quicksilver
framework.

Questions
What is WebAssembly, and what are its advantages?1.
What is the MVC pattern?2.
What are messages in the Elm Architecture?3.
What are components in the Yew framework?4.
What are properties in the Yew framework?5.
How can you build a web app with a fixed header and footer and change the6.
inner section using the Yew framework?
What are callbacks in the Yew framework?7.
How can you pass a shared object, such as a database connection, between Yew8.
components?
Why you must keep in the model a field having type FetchTask, when you9.
communicate with a server, even if you don't need to use it?
How can you open JavaScript-style alert boxes and confirm boxes using the Yew10.
framework?

Creating a Client-Side WebAssembly App Using Yew Chapter 5

[163]

Further reading
The Yew project can be downloaded from here: https:/ ​/​github. ​com/
DenisKolodin/ ​yew. The repository contains a very short tutorial and many
examples.
You can find other info about generating Wasm code from a Rust project at:
https:/​/ ​github. ​com/ ​koute/ ​cargo- ​web.
The status of web development libraries and frameworks: https:/ ​/​www.
arewewebyet. ​org/ ​

The status of game development libraries and frameworks: https:/ ​/
arewegameyet. ​com/ ​

The status of programmers' editors and IDEs: https:/ ​/​areweideyet. ​com/ ​

The status of asynchronous programming libraries: https://areweasyncyet.rs/
The status of GUI development libraries and frameworks: https:/ ​/
areweguiyet. ​com/ ​

https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/DenisKolodin/yew
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://www.arewewebyet.org/
https://arewegameyet.com/
https://arewegameyet.com/
https://arewegameyet.com/
https://arewegameyet.com/
https://arewegameyet.com/
https://arewegameyet.com/
https://arewegameyet.com/
https://areweideyet.com/
https://areweideyet.com/
https://areweideyet.com/
https://areweideyet.com/
https://areweideyet.com/
https://areweideyet.com/
https://areweideyet.com/
https://areweideyet.com/
https://areweasyncyet.rs/
https://areweguiyet.com/
https://areweguiyet.com/
https://areweguiyet.com/
https://areweguiyet.com/
https://areweguiyet.com/
https://areweguiyet.com/
https://areweguiyet.com/

6
Creating a WebAssembly

Game Using Quicksilver
In this chapter, you will see how Rust can be used to build a simple 2D game that can be
compiled to run as a desktop app or as a web app. To run it as a web app, we will use the
tools seen in the previous chapter to generate a WebAssembly (Wasm) application. As seen
in that chapter, Wasm is a powerful new technology to run applications inside a browser.
The appropriate tools translate Rust source code into a pseudo-machine language, named
Wasm, that is loaded and run at top speed by browsers.

The Quicksilver open source framework will be described and used in this chapter. It has
the powerful feature of being able to generate the following applications from a single
source code:

A standalone graphical user interface (GUI) application, to be run in a desktop
system such as Windows, macOS, or Linux
A Wasm app that runs in a JavaScript-enabled web browser

Quicksilver is oriented toward game programming, and so, as an example, we will develop
an interactive graphical game using it: a slalom ski race, in which the player must drive a
ski along a slope, entering the gates found along the ski run.

The following topics will be covered in this chapter:

Understanding the animation loop architecture
Building an animated application (ski) using the Quicksilver framework
Building a simple game using the Quicksilver framework (silent_slalom)
Adding text and sound to a game (assets_slalom)

Creating a WebAssembly Game Using Quicksilver Chapter 6

[165]

Technical requirements
You need to read the section on Wasm of the previous chapter, but no other knowledge is
required. To run the projects in this chapter, it is enough to install a Wasm code generator.

The complete source code for this chapter is in the Chapter06 folder of the repository,
found at https:/​/​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for-​Rust-
Programmers.

For macOS users, you may struggle to install coreaudio-sys. Upgrading
the patch version of coreaudio-sys to 0.2.3 resolves this issue.

Project overview
In this chapter, we will see how to develop games to be run in modern web browsers, or in
GUI windows.

For that purpose, we will first describe the typical architecture of any interactive game that
is based on the animation loop concept.

Then, the Quicksilver crate will be introduced. This is a framework that allows us to create
a graphical application based on an animation loop. It allows us to generate a Wasm
executable to be run in a web browser, or a native executable to be run in a desktop
environment.

The first project (ski) will be very simple: just a page containing one ski that can be rotated
by pressing arrow keys. This project will show the general architecture of a game, how to
draw on a page, and how to handle input.

The second project (silent_slalom) will add features to the first project, creating a
complete—albeit very simple—game. However, it will not use loadable resources such as
images, fonts, or sounds.

The third project (assets_slalom) will add features to the second project, loading a font
and some recorded sounds, and showing how to display some text on the page, and how to
play the loaded sound files.

https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Creating a WebAssembly Game Using Quicksilver Chapter 6

[166]

Understanding the animation loop
architecture
As described in the previous chapter, the typical architecture of interactive software
is event-driven architecture. In such an architecture, the software just waits for input
commands, and it responds to such commands when they arrive. Until any command
arrives, the software does nothing.

This architecture is efficient and responsive for many kinds of applications, but it is not
optimal for some other kinds of applications, such as the following:

Games with animations
Continuous-simulation software
Multimedia software
Some kind of educational software
Machine monitoring software (known as Human-Machine Interface (HMI)
software)
Systems monitoring software (known as Supervisory Control and Data
Acquisition (SCADA) software)

In such systems, the software has always something to do, as in the following examples:

In games with animations, such as sports games or combat games or racing
games, both those against other human players and those against machine-
simulated players, even if the user does nothing, the opponents move, and time
flows; so, the screen must be constantly updated to show what the opponents
have done, and what the current time is.
In continuous-simulation software, such as the graphical simulation of a car
crash, the objects continue to move, even if you don't press any key; so, the
screen must show the new positions of the objects at any time.
In multimedia software, such as software that reproduces an audio or video clip,
the data continues to flow, until you pause or stop the reproduction.
There are many kinds of educational software, but some of them are just games
with animations, continuous-simulation software, or multimedia software.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[167]

Most mechanical machines, to let a user monitor them, display on a screen a
constantly updated representation of their internal status, even when the user
does not request an update.
Many complex systems, such as industrial plants, office buildings,
and—recently—also residential buildings, display on a screen a constantly
updated representation of the status of the devices operating in the system.

Actually, such kinds of software can even be developed using an event-driven architecture.
It is enough to use a specific widget known as a timer. A timer is a software component that
triggers an event at a fixed time interval.

For example, in an electronic thermometer, there is a timer that executes a routine every
minute. Such a routine reads the temperature from a sensor and displays the read value on
the small screen.

For some kinds of applications, the use of an event-driven environment, possibly including
one or more timers, is appropriate. For example, event-driven programming is optimal for
business applications such as an accounting application. In such applications, the user
screen is split into several input widgets, such as labels, buttons, and textboxes. In such
software, no application code is run until the user clicks the mouse or presses a key. Such
input events trigger the action.

However, event-driven programming is not quite appropriate for the kind of software that
displays a scene that fills the window, with no widgets, and that always has some code
running even if the user does not act on input devices.

For such software, the so-called animation loop architecture is more appropriate. Its
simplest structure is the following one:

First, a draw routine is defined as the one responsible for checking the status of1.
the input devices and for redrawing the screen according to the status.
Then, a screen area is defined as a scene, and an update rate is defined for it.2.
When the program starts, it first opens a window (or a subwindow) for the scene,3.
and then invokes the draw routine at regular intervals, using an internal timer.
Such periodic invocations of the draw routine are usually named frames, and the4.
invocation rate is measured in Frames Per Second (FPS).

Creating a WebAssembly Game Using Quicksilver Chapter 6

[168]

The animation loop is sometimes named game-loop, as it is very often used for games. This
is quite a misnomer, however, for the following two reasons:

There are several other kinds of apps that should use an animation loop, such as
continuous-simulation software, industrial machine monitoring software, or
multimedia software. So, an animation loop is not only for games.
There are some games that do not need an animation loop. For example, a chess
game, a card game, or an adventure game, provided they are not based on
animations, can be implemented perfectly well using an event-driven
architecture. So, games are not necessarily based on animation loop.

Notice that, while in an event-driven architecture user input triggers the
action, in an animation loop architecture some action happens anyway,
but if there is some user input such actions change accordingly.

Consider a user who presses a keyboard key or a mouse button. In event-driven
programming, that input operation sends exactly one command. Instead, in animation loop
programming, the program, at any frame, checks whether any key is pressed. If the key is
pressed for a very short time, it is possible that such an operation goes unnoticed as, when
the keyboard is checked in one cycle, that key has not been pressed yet, and when the
keyboard is checked in the next cycle, that key has been already released.

This is quite unusual, though. Typical frame rates are from 20 to 60 FPS, and so the
corresponding intervals are from 50 to 16.7 milliseconds. It is very difficult to press a key
for a shorter time than that. Instead, it is quite typical that a key-press is much longer than a
frame, and so the key is seen pressed in several successive frames.

If you use such a key-press to insert text, you would want to allow the user to press a key to
insert just one letter. If you use a mouse click to press a button on the screen, you want that
screen button to be pressed just once. To avoid such multiple hits, you must disable input
for a short time the first time you get it. This is quite a nuisance, and so, for typical widget-
based GUI apps, event-driven programming is more appropriate.

Instead, animation loop programming is appropriate whenever a key-press must have an
effect proportional to the duration of the press. For example, if the arrow keys are used to
move a character on the screen, and if you keep the right arrow pressed for 1 second, that
character moves by a short distance; while if you keep pressed that key for 2 seconds, that
character moves double that distance. In general, a short press should change little, and a
long press should change much.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[169]

Regarding the output, when using event-driven programming, the effect of the operation is
usually shown by changing some property of a widget (such as changing the text contents
in a textbox, or loading a bitmap in a picture box). After that change, the widget is capable
of refreshing itself whenever it needs, using its internal state. The event that triggers
refreshing is the invalidation of the screen portion containing the widget. For example, if
another window overlaps our window, and then it moves away, the discovered portion of
our window is invalidated, and so it must be refreshed.

This kind of graphic is named retained-mode, as there is an inner data structure that retains
the information needed to refresh the screen when there is a need. Instead, when using
animation loop programming, all the images must be regenerated at every frame, and so
there is no need to wait for a specific event. This kind of graphic is named immediate-
mode, as the drawing is performed immediately by application code when it must be seen.

In the previous chapter, we saw that for event-driven applications, the Model-View-
Controller (MVC) architectural pattern allows you to give a better structure to your code.
Also, for animation loop applications, there is a kind of MVC architectural pattern.

The Model is the data structure that contains all the variables that must
persist between frames.
The Controller is a function that has input but no output. It checks the
status of input devices (which keyboard keys are pressed; which mouse
keys are pressed; where the mouse is; which are the values of possible
other input channels), reads the fields of the model, and updates them.
The View is a function that has output but no input. It reads the fields of
the model and draws on the screen according to the read values.

Here is how the Quicksilver framework implements this pattern.

The model is any data type, typically a struct, that must implement the State trait. Such a
trait contains the following three functions:

fn new() -> Result<Screen>: This is the only way to create the model. It will
return a valid model (if it can) or an error.
fn update(&mut self, window: &mut Window) -> Result<()>: This is
the controller. It is invoked periodically by the framework. The window
argument allows you to get some context information. In this framework, it is
mutable, but in the proper implementation of the MVC pattern, it shouldn't be
changed. Instead, self—that is, the model—is rightly mutable.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[170]

fn draw(&mut self, window: &mut Window) -> Result<()>: This is the
view. It is invoked periodically by the framework. The self argument allows
information to be obtained from the model. In this framework, it is mutable, but
in the proper implementation of the MVC pattern, it shouldn't be changed.
Instead, the window argument—that is, the output device—is rightly mutable.

Now, let's examine the first project in the repository using the Quicksilver framework.

Implementing the ski project
The first project we are going to see is quite simple. It just shows a geometric shape on the
screen and it allows the user to rotate it using the arrow keys:

To run it as a desktop app, go into the ski folder, and type the following1.
command:

cargo run --release

The --release argument is recommended to optimize the generated code. For
this simple example, it is pointless, but in more complex examples, the code
generated without specifying it is so inefficient that the resulting app
is noticeably slowed down.

After a few minutes of download and compilation, the following desktop2.
window will appear:

Creating a WebAssembly Game Using Quicksilver Chapter 6

[171]

It is just an 800 x 600-pixels white rectangle, with a small purple rectangle and
a small indigo triangle on top of it. They represent a monoski with its pointed
end, in a snowy ski slope.

If you press the left or right arrow keys (←/→) on your keyboard, you will see3.
the ski rotate around its tip.
Now, close this window using the appropriate command in your windowing4.
environment. Typically, you click on a cross icon in the caption bar or press the
Alt + F4 key combination.
Now, let's see another way to launch this application. Type the following5.
command:

cargo web start --release

We saw in the previous chapter that this command helps us to create a Wasm app and to
launch a command-line program that serves it through the HTTP protocol.

At the end of the compilation, a server program starts and suggests the address where you
can access the app. On your preferred browser, you can type this address:
localhost:8000. Only modern 64-bit browsers support WebGL2. If this is not true in
your case, then nothing happens; instead, if your browser supports this standard, you will
see in the browser just the same graphics that before were shown in the desktop window.

This is possible as the Quicksilver framework, used by our app, has multi-target capability.
When compiled for the Wasm target, it generates a web browser application; and when
compiled for a central processing unit (CPU) target, it generates a desktop application.

This compile-time portability is very useful for debugging purposes. Actually, it is not easy
to debug a Wasm application; but if you first debug the desktop application, a few bugs
will remain in the Wasm version.

Understanding the code behind this
Now, let's see the code used to create such a project.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[172]

Before starting the project, a note about this is required. All the projects in
this chapter show a monoski on a ski slope. There is a convention about
the coordinates of the ski and other objects: the horizontal coordinate,
usually named X, is actually named across; and the vertical coordinate,
usually named Y, is actually named along.
So, the across speed is the speed of a movement from left to right (or vice
versa, if negative), and the along speed is the speed of a movement from
bottom to top (or vice versa, if negative).

First of all, the Cargo.toml file must contain the quicksilver =
"0.3" dependency. Then, there is just a main.rs source file. It contains some constants, as
shown in the following code snippet:

const SCREEN_WIDTH: f32 = 800.;
const SCREEN_HEIGHT: f32 = 600.;
const SKI_WIDTH: f32 = 10.;
const SKI_LENGTH: f32 = 50.;
const SKI_TIP_LEN: f32 = 20.;
const STEERING_SPEED: f32 = 3.5;
const MAX_ANGLE: f32 = 75.;

Let's look at what the terms suggest in this code, as follows:

SCREEN_WIDTH and SCREEN_HEIGHT are the size in pixels of the client area in the
desktop window or the size of the canvas in the web page.
SKI_WIDTH, SKI_LENGTH, and SKI_TIP_LEN are the sizes of the ski.
STEERING_SPEED is the number of degrees by which the ski is rotated at every
step. Steps have a frequency (that is, 25 per second), and so this constant
represents an angular speed (3.5 degrees per step * 25 steps per second = 87.5
degrees per second).
MAX_ANGLE is a limit to rotational capability, both to the right and to the left, to
ensure the ski is always downhill.

Then, there is the model of our MVC architecture, as shown in the following code snippet:

struct Screen {
 ski_across_offset: f32,
 direction: f32,
}

Creating a WebAssembly Game Using Quicksilver Chapter 6

[173]

The meaning of these fields is as follows:

ski_across_offset represents the across displacement of the tip of the ski
with respect to the center of the screen. Actually, in this project, it is always zero,
as the tip of the ski never moves. It is a variable just because in future projects, it
will change.
direction is the angle in degrees of the ski with respect to the downhill
direction. It is initially zero but can vary from -75 to +75. It is the only portion of
our model that can change.

The constructor of the model is quite simple, as illustrated in the following code snippet:

Ok(Screen {
 ski_across_offset: 0.,
 direction: 0.,
})

It simply initializes to zero both fields of the model. The body of the controller (the update
function) is created with this code:

if window.keyboard()[Key::Right].is_down() {
 self.steer(1.);
}
if window.keyboard()[Key::Left].is_down() {
 self.steer(-1.);
}
Ok(())

The purpose of this routine is to steer the ski a bit to the right, if the right-arrow key is
pressed, and a bit to the left if the left-arrow key is pressed.

The window.keyboard() expression gets a reference to the keyboard associated with the
current window, and then the [Key::Right] expression gets a reference to the right-
arrow key of such a keyboard. The is_down function returns true if the specified key is in
a pressed state in this instant.

The steering is performed by the steer method, whose body consists of the following
code:

self.direction += STEERING_SPEED * side;
if self.direction > MAX_ANGLE {
 self.direction = MAX_ANGLE;
}
else if self.direction < -MAX_ANGLE {
 self.direction = -MAX_ANGLE;
}

Creating a WebAssembly Game Using Quicksilver Chapter 6

[174]

First, the value of the direction field of the model is incremented or decremented by
the STEERING_SPEED constant. Then, it is ensured that the new value does not exceed the
designed limits.

The view is more complex. It must redraw all the scene even if it has not changed at all. The
first drawing operation is always to draw the white background, as follows:

window.clear(Color::WHITE)?;

Then, the rectangle is drawn, like this:

window.draw_ex(&Rectangle::new((
 SCREEN_WIDTH / 2. + self.ski_across_offset - SKI_WIDTH / 2.,
 SCREEN_HEIGHT * 15. / 16. - SKI_LENGTH / 2.),
 (SKI_WIDTH, SKI_LENGTH)),
 Background::Col(Color::PURPLE),
 Transform::translate(Vector::new(0, - SKI_LENGTH / 2. - SKI_TIP_LEN)) *
 Transform::rotate(self.direction) *
 Transform::translate(Vector::new(0, SKI_LENGTH / 2.
 + SKI_TIP_LEN)),
 0);

The draw_ex method is used to draw shapes. Its first argument is a reference to the shape
to draw; in this case, it is Rectangle. Its second argument, in the fifth line, is the
background color of the shape; in this case, it is PURPLE. Its third argument is a
plane affine transformation matrix; in this case, it is a translation, followed by a rotation,
followed by a translation. And its fourth argument, in the last line, is a Z elevation; its
purpose is to give an overlapping order to shapes. Let's examine these arguments in more
detail.

The Rectangle::new method receives two arguments. The first argument is a tuple made
up of the x and y coordinates on the top-left vertex of the rectangle. The second argument is
a tuple made up of the width and height of the rectangle. The origin of the coordinate
system is the top left of the window, with the x coordinate that grows toward the right, and
the y coordinate that grows downward.

In those formulas, the only variable is self.ski_across_offset, which represents the
displacement of the ski to the right of the center of the window when positive, and to the
left when negative. In this project, it is always zero, and so the ski's x coordinate is always
at the center of the window. The vertical position is such that the center of the rectangle is
near the bottom of the window, at 15/16 of the height of the window.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[175]

Rectangles are always created with their sides parallel to the sides of the window. To have
a rotated angle, a geometric transformation must be applied. There are several elementary
transformations that can be combined by multiplying them. To draw a shape in a translated
position, a transformation is created using the Transform::translate method, which
receives a Vector (not a Vec!) specifying the displacements along x and y. To draw a shape
in a rotated position, a transformation is created using the Transform::rotate method,
which receives an angle in degrees specifying the angle by which to rotate the shape.

The rotation is performed around the centroid of the shape, but we want to rotate around
the tip of the ski. So, we need first to translate the rectangle so that its centroid is where the
tip of the ski was, then rotate it around its centroid, and then translate it back to the original
centroid. By multiplying the three transformations, a rotation around the tip of the ski is
obtained. In the case of a rectangle, the centroid is just the center of the rectangle.

The last argument of draw_ex is a z coordinate. This is a 2D framework, and so no z
coordinate would be required, but this coordinate allows us to specify the order of the
appearance of the shapes. Actually, if two shapes overlap, and they have the same z
coordinate, WebGL (used by Quicksilver) does not necessarily draw them in the order in
which you have drawn them. The actual order is undefined. To specify that a shape must
appear above another, it must have a larger z coordinate. It doesn't matter how much
larger.

To draw the triangular-pointed end on top of the rectangle, a similar statement is executed.
The Triangle::new method creates a Triangle shape, using three Vector variables as its
vertices. To rotate it around its tip, we need to know the centroid of the triangle. With a bit
of geometry, you can calculate that the centroid of that triangle is the point above the center
of the base of the triangle by a distance equal to one-third of the height of the triangle.

By the end of the program, there is a main function that must initialize the app. The body of
the function contains this:

run::<Screen>("Ski",
 Vector::new(SCREEN_WIDTH, SCREEN_HEIGHT), Settings {
 draw_rate: 40.,
 update_rate: 40.,
 ..Settings::default()
 }
);

This statement just runs the model, with some arguments. The first argument is the caption
of the title bar, the second one is the size of the window, and the third one is a structure
containing some optional settings.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[176]

The following two settings are specified here:

draw_rate: This is the interval in milliseconds between each successive
invocation of the draw function
update_rate: This is the interval in milliseconds between each successive
invocation of the update function

This project was quite trivial, but it showed many concepts that will be used in the other
projects of this chapter.

Implementing the silent_slalom project
The previous project just showed a ski on a ski slope. In this section, we will show a
possibly amusing game using a ski—a slalom. For simplicity, no text is displayed and no
sound effects are played in this project. Its source code is contained in the silent_slalom
folder.

After compiling and running its desktop version, a window similar to this will appear to
you:

Creating a WebAssembly Game Using Quicksilver Chapter 6

[177]

In addition to the ski, some blue dots are drawn. There are four dots in the middle of the
window, and two half dots that come out at the top border. Each pair of blue dots is the
poles of a slalom gate. The purpose of the game is to make the ski pass through each of the
gates. Now, you can see just three gates, but the course contains seven intermediate gates,
plus the finish gate. The remaining five gates will appear when the ski proceeds along the
slope.

The actual position of the poles will be different in your case because their horizontal
(across) position is generated at random. If you stop and relaunch the program, you will see
other poles' positions. The size of the gates—that is, the distance between the two poles of
any gate—is kept constant, though; and also, the distance, along the y coordinate, between
any gate and the gate following it is constant.

To start the game, press the spacebar. The blue dots will begin to move slowly downward,
giving the impression of the ski going forward. By rotating the ski, you change its direction,
and you should try to ensure that its tip passes between the poles of every gate.

The finish gate is distinguished by having green poles instead of blue. If you pass through
it, the game finishes, showing a window similar to this:

Creating a WebAssembly Game Using Quicksilver Chapter 6

[178]

You can restart the game by pressing the R key. If you fail to pass a gate correctly, the game
stops and ends. You can restart it by pressing the R key.

Of course, this project has something in common with the previous project. Let's see the
differences within it.

The first difference is the insertion into the Cargo.toml file of the rand = "0.6"
dependency. The gates are positioned at a random x position, and so the random number
generator contained in this crate is required.

Then, the following constants are defined:

const N_GATES_IN_SCREEN: usize = 3;
const GATE_POLE_RADIUS: f32 = 4.;
const GATE_WIDTH: f32 = 150.;
const SKI_MARGIN: f32 = 12.;
const ALONG_ACCELERATION: f32 = 0.06;
const DRAG_FACTOR: f32 = 0.02;
const TOTAL_N_GATES: usize = 8;

Let's have a look at these constants in detail, as follows:

N_GATES_IN_SCREEN is the number of gates that will appear in the window at
once. The along separation between successive gates is the window height
divided by this number. Therefore, this number must be positive.

GATE_POLE_RADIUS is the radius in pixels of each circle drawn to represent a
pole.

GATE_WIDTH is the distance in pixels between the centers of the poles in each
gate. This number must be positive.

SKI_MARGIN is the distance in pixels between the leftmost position that can be
reached by the tip of the ski to the left border of the window, and between the
rightmost position that can be reached by the tip of the ski to the right border of
the window.

ALONG_ACCELERATION is the acceleration, in pixels per frame for each frame, for
the movement of the ski, due to the slope, when the ski is in downhill
position—that is, vertical. For example, for an acceleration value of 0.06 and an
update rate of 40 milliseconds, or 25 frames per second, in a second the speed
would go from zero to 0.06 * 25 = 1.5 pixels per frame—that is, a speed of 1.5 * 25
= 37.5 pixels per second. The actual acceleration will be lower if the ski has an
inclination with respect to the slope.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[179]

DRAG_FACTOR represents the deceleration caused by air friction. The actual
deceleration is this factor multiplied by the module of the speed.

TOTAL_N_GATES is the number of gates, including the finish gate.

While in the previous project you could do just one thing all the time—that is, rotate the
ski—in this project, you can do different things according to the current situation. So, there
is a need to distinguish among four possible states, as follows:

enum Mode {
 Ready,
 Running,
 Finished,
 Failed,
}

The initial mode is Ready, when you are eager to start the run, at the top of the slope. After
the start command, you are in Running mode, until you complete the run correctly,
ending in Finished mode, or get out of a gate, ending in Failed mode.

Some fields have been added to the model of the application, to track some other state
information, as illustrated in the following code block:

gates: Vec<(f32, f32)>,
forward_speed: f32,
gates_along_offset: f32,
mode: Mode,
entered_gate: bool,
disappeared_gates: usize,

The meaning of these fields is described as follows:

gates is a list of the along positions of the poles. For them, the origin is the
center of the window.
forward_speed is the module of the velocity in pixels per frame.
gates_along_offset is the Y translation of all the shown gates toward the
bottom, which represents the advancement of the ski. It is a number between
zero and the along spacing between successive gates.
mode is the state described previously.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[180]

entered_gate indicates whether the tip of the ski has already entered the
lowest gate shown in the window. This flag is initialized as false; it becomes
true when the ski passes a gate correctly and becomes false again when that
gate exits the window from the bottom because now it refers to the next gate.
disappeared_gates counts the gates exited from the window. Of course, it is
initialized at zero and is incremented every time a gate exits the window.

A function added to the Screen type generates a random gate, as illustrated in the
following code block:

fn get_random_gate(gate_is_at_right: bool) -> (f32, f32) {
 let mut rng = thread_rng();
 let pole_pos = rng.gen_range(-GATE_WIDTH / 2., SCREEN_WIDTH / 2. -
 GATE_WIDTH * 1.5);
 if gate_is_at_right {
 (pole_pos, pole_pos + GATE_WIDTH)
 } else {
 (-pole_pos - GATE_WIDTH, -pole_pos)
 }
}

This function receives the gate_is_at_right flag, which indicates in which part of the
slope the generated gate will be. If such an argument is true, the new gate will be at the
right of the center of the window; otherwise, it will be at the left of the center of the
window. This function creates a random number generator and uses it to generate a
reasonable position for a pole. The other pole position is computed using the argument of
the function and the fixed gate size (GATE_WIDTH).

Another utility function is deg_to_rad, which converts angles from degrees to radians. It
is needed because Quicksilver uses degrees, but trigonometric functions use radians. The
new method creates all the gates, alternating them at right and at left, and initializes the
model. The update function does a lot more than the function with that name seen in the
previous project. Let's look at the following code snippet:

match self.mode {
 Mode::Ready => {
 if window.keyboard()[Key::Space].is_down() {
 self.mode = Mode::Running;
 }
 }

Creating a WebAssembly Game Using Quicksilver Chapter 6

[181]

According to the current mode, different operations are performed. If the mode is Ready, it
checks whether the spacebar key is pressed, and, in such a case, it sets the current mode to
Running. This means that it starts the race. If the mode is Running, the following code is
executed:

Mode::Running => {
 let angle = deg_to_rad(self.direction);
 self.forward_speed +=
 ALONG_ACCELERATION * angle.cos() - DRAG_FACTOR
 * self.forward_speed;
 let along_speed = self.forward_speed * angle.cos();
 self.ski_across_offset += self.forward_speed * angle.sin();

In this mode, a lot of things are computed. First, the ski direction is converted from degrees
to radians.

Then, the forward speed is incremented because of the slope, and it is decremented because
of the friction of the air, which is proportional to the speed itself. The net effect is that the
speed will tend to a maximum value. In addition, the more the ski direction is rotated with
respect to the slope, the slower it is. This effect is implemented using
the cos cosine trigonometric function.

Then, the forward speed is split into its components: the along speed, which causes the
downward movement of the poles, and the across speed, which increments the across ski
offset. They are computed by applying, respectively, the cos and sin trigonometric
functions to the forward speed, as shown in the following code snippet:

if self.ski_across_offset < -SCREEN_WIDTH / 2. + SKI_MARGIN {
 self.ski_across_offset = -SCREEN_WIDTH / 2. + SKI_MARGIN;
}
if self.ski_across_offset > SCREEN_WIDTH / 2. - SKI_MARGIN {
 self.ski_across_offset = SCREEN_WIDTH / 2. - SKI_MARGIN;
}

Then, it checks that the ski position is not too far to the left or to the right, and, if it is so, it is
kept within the defined margins, as illustrated in the following code snippet:

self.gates_along_offset += along_speed;
let max_gates_along_offset = SCREEN_HEIGHT / N_GATES_IN_SCREEN as f32;
if self.gates_along_offset > max_gates_along_offset {
 self.gates_along_offset -= max_gates_along_offset;
 self.disappeared_gates += 1;
}

Creating a WebAssembly Game Using Quicksilver Chapter 6

[182]

The new along speed is used to move down the gates, by incrementing
the gates_along_offset field. If its new value is larger than the distance between
successive gates, one gate is dropped out of the bottom of the window, and all the gates are
moved backward by one step and the number of disappeared gates is incremented, as
illustrated in the following code snippet:

let ski_tip_along = SCREEN_HEIGHT * 15. / 16. - SKI_LENGTH / 2. -
SKI_TIP_LEN;
let ski_tip_across = SCREEN_WIDTH / 2. + self.ski_across_offset;
let n_next_gate = self.disappeared_gates;
let next_gate = &self.gates[n_next_gate];
let left_pole_offset = SCREEN_WIDTH / 2. + next_gate.0 + GATE_POLE_RADIUS;
let right_pole_offset = SCREEN_WIDTH / 2. + next_gate.1 - GATE_POLE_RADIUS;
let next_gate_along = self.gates_along_offset + SCREEN_HEIGHT
 - SCREEN_HEIGHT / N_GATES_IN_SCREEN as f32;

Then, the two coordinates of the tip of the ski are computed: ski_tip_along is the
constant y coordinate, from the top of the window, and ski_tip_across is the variable x
coordinate, from the center of the window.

Then, the positions inside the next gate are computed: left_pole_offset is the x position
of the right side of the left pole, and right_pole_offset is the x position of the left side of
the right pole. These coordinates are computed from the left border of the window. And
then, next_gate_along is the y position of such points, as illustrated in the following code
snippet:

if ski_tip_along <= next_gate_along {
 if !self.entered_gate {
 if ski_tip_across < left_pole_offset ||
 ski_tip_across > right_pole_offset {
 self.mode = Mode::Failed;
 } else if self.disappeared_gates == TOTAL_N_GATES - 1 {
 self.mode = Mode::Finished;
 }
 self.entered_gate = true;
 }
} else {
 self.entered_gate = false;
}

Creating a WebAssembly Game Using Quicksilver Chapter 6

[183]

If the y coordinate of the tip of the ski (ski_tip_along) is less than that of the gate
(next_gate_along), then we can say that the tip of the ski has passed to the next gate.
Though, if the entered_gate field, which records such passing, is still false, we can say
that in the previous frame the ski hadn't yet passed the gate. Therefore, in such a case, we
are in the situation in which the ski has just passed a gate. So, we must check whether the
gate has been passed correctly or wrongly.

If the x coordinate of the tip is not between the two coordinates of the poles, we are outside
the gate, and so we go into the Failed mode. Otherwise, we must check whether this gate
is the last gate of the course—that is, the finish gate. If it is the case, we go into the Finish
mode; otherwise, we make a note that we have entered the gate, to avoid checking it again
at the next frame, and the race goes on.

If the y coordinate is such that we haven't reached the next gate yet, we take note that
entered_gate is still false. With this, we have completed the computations for the
Running case.

Two modes remain to be considered, as illustrated in the following code snippet:

Mode::Failed | Mode::Finished => {
 if window.keyboard()[Key::R].is_down() {
 *self = Screen::new().unwrap();
 }
}

Both in the Failed mode and in the Finished mode, the R key is checked. If it is pressed,
the model is reinitialized, going to the same state as when the game was just launched.

Lastly, the steering key is checked for any mode, just as in the previous project. Regarding
the draw function, what has been added in this project, with respect to the previous project,
is the drawing of the poles. The code can be seen in the following snippet:

for i_gate in self.disappeared_gates..self.disappeared_gates +
N_GATES_IN_SCREEN {
 if i_gate >= TOTAL_N_GATES {
 break;
 }

A loop scans the gates that appear in the window. The indices of the gates go from zero
to TOTAL_N_GATES, but we must ski the ones that have already exited from the bottom,
whose number is self.disappeared_gates. We must show at least
the N_GATES_IN_SCREEN gates and must stop at the last gate.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[184]

To show the player which is the finish gate, it has a different color, as can be seen in the
following code snippet:

let pole_color = Background::Col(if i_gate == TOTAL_N_GATES - 1 {
 Color::GREEN
} else {
 Color::BLUE
});

The last gate is green. To compute the y coordinate of the poles of a gate, the following
formula is used:

let gates_along_pos = self.gates_along_offset
 + SCREEN_HEIGHT / N_GATES_IN_SCREEN as f32
 * (self.disappeared_gates + N_GATES_IN_SCREEN - 1 - i_gate) as f32;

It adds the position of the ski between two successive gates (gates_along_offset) to the
initial position of the first three gates.

And then, two small circles are drawn for each gate. The left circle is drawn by executing
the following statement:

window.draw(
 &Circle::new(
 (SCREEN_WIDTH / 2. + gate.0, gates_along_pos),
 GATE_POLE_RADIUS,
),
 pole_color,
);

The argument of the Circle constructor is a tuple composed of the x and y coordinates of
the center and the radius. Here, the draw method of the window object is used, instead of
the draw_ex method. It is simpler, as it does not require a transformation nor a z
coordinate.

And so, we have examined all the code of this project. In the next project, we'll show how
we can add text and sound to our game.

Implementing the assets_slalom project
The previous project built was a valid slalom race, but that game had no sound or text to
explain what was happening. This project, contained in the assets_slalom folder, just
adds sound and text to the game of the previous project.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[185]

Here is a screenshot that was taken during a race:

In the top left of the window, there is the following information:

Elapsed time: This tells us how many seconds or hundreds of seconds have
elapsed since the start of the current race.
Speed: This tells us how much is the current forward speed in pixels per second.
Remaining gates: This tells us how many gates remain to pass.

Then, a help message explains which commands are available.

In addition, four sounds have been added, as follows:

A tick at any start of a race
A whoosh at any turn
A bump at any fail
A chime at any finish

Creating a WebAssembly Game Using Quicksilver Chapter 6

[186]

You have to run the game to hear them. Notice that not all web browsers are equally
capable of reproducing sounds.

Now, let's see how Quicksilver can show text and play sounds. Sounds and text are not so
simple to use because of the fact that they need files; for text, one or more font files are
needed; and for sounds, a sound file for any sound effect is needed. Such files must be
stored in a folder named static in the root of the project. If you look in the said folder,
you'll find the following files:

font.ttf: This is a font in TrueType format.
click.ogg: This is a short click sound, to be played at the start of a race.
whoosh.ogg: This is a short friction sound, to be played when the ski is turning
during a race.
bump.ogg: This is a bump sound to express disapproval, to be played when the
ski misses a gate.
two_notes.ogg: This is a pair of notes to express satisfaction, to be played when
the ski passes the finish gate.

Such a static folder and its contained files must be deployed together with the executable
program, as they are loaded at runtime by the program. They are usually also named
assets as they are just data, not executable code.

Quicksilver has chosen to load such assets in an asynchronous way, using the future concept.
To load a sound from a file, the Sound::load(«filename») expression is used. It receives
a value implementing a reference to a path, such as a string, and it returns an object
implementing the Future trait.

An asset—that is, an object that encapsulates a future that is loading a file—is created by
the Asset::new(«future value») expression. It receives a value implementing a future,
and it returns an Asset instance of the specific type. For instance,
the Asset::new(Sound::load("bump.ogg")) expression returns a value of
the Asset<Sound> type. Such a value is an asset that encapsulates a future—that is,
reading a sound from the bump.ogg file. The sounds in this project are in the .ogg format,
but Quicksilver is capable of reading several audio formats.

Once you have an asset encapsulating a future loading a file, you can access such a file in
an expression such as sound_future.execute(|sound_resource|
sound_resource.play()). Here, the sound_future variable is our asset. As it is a
future, you have to wait for it to be ready. This is done using the execute method of the
Asset type. It invokes the closure received as an argument, passing to it the encapsulated
resource, which in this case is of the Sound type.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[187]

The Sound type has the play method, which starts to reproduce the sound. As usual in
multimedia systems, such reproduction is asynchronous: you don't have to wait for the end
of the sound to proceed with the game. If you call play on a sound when the previous
sound is still reproducing, the two sounds overlap, and if you play many of them, the
resulting volume typically becomes very high. Therefore, you should keep your sounds
very short, or play them seldom.

Similarly, the Asset::new(Font::load("font.ttf")) expression returns a value of
the Asset. type. Such a value is an asset that encapsulates a future—that is, reading
a font from the font.ttf file. You can use that font with
the font_future.execute(|font_resource| image =
font_resource.render(&"Hello", &style)) expression. Here,
the font_future variable is our asset. As it is a future, you have to wait for it using
the execute method of the Asset type, which invokes the closure received as an
argument, passing to it the encapsulated resource, which in this case is of the Font type.

The Font type has the render method, which receives a string and a reference to a
FontStyle value and creates an image containing that text, printed using that font and
that font style.

Analyzing the code
And now, let's see all the code of the project that differs from the previous project. There is
a new constant, as can be seen in the following code snippet:

const MIN_TIME_DURATION: f64 = 0.1;

This is to solve the following problem. If the game has a frame rate of 50 FPS, the window is
redrawn 50 times per second, and each time using the latest values of the variables.
Regarding time, it is a number that would change so rapidly that it would be impossible to
read. Therefore, this constant sets the maximum rate of change of the displayed time.

The model has several new fields, as can be seen in the following code snippet:

elapsed_sec: f64,
elapsed_shown_sec: f64,
font_style: FontStyle,
font: Asset,
whoosh_sound: Asset<Sound>,
bump_sound: Asset<Sound>,
click_sound: Asset<Sound>,
two_notes_sound: Asset<Sound>,

Creating a WebAssembly Game Using Quicksilver Chapter 6

[188]

The meaning of these fields is described as follows:

elapsed_sec is the fractional number of seconds elapsed since the start of the
current race, using the maximum resolution available.
elapsed_shown_sec is the fractional number to show to the user as the number
of elapsed seconds since the start of the current race.
font_style contains the size and color of the text to print.
font is the future value of the font to use to print the text of the screen.
whoosh_sound is the future value of the sound to play during the turns of the
running ski.
bump_sound is the future value of the sound to play when a gate is missed.
click_sound is the future value of the sound to play when a race is started.
two_notes_sound is the future value of the sound to play when the finish gate
is crossed.

A routine to play sounds has been defined, as follows:

fn play_sound(sound: &mut Asset<Sound>, volume: f32) {
 let _ = sound.execute(|sound| {
 sound.set_volume(volume);
 let _ = sound.play();
 Ok(())
 });
}

It receives a future value of a sound and a volume. It calls execute to ensure the sound is
loaded, and then sets the specified volume and plays that sound. Notice that the execute
method returns a Result, to allow for possible errors. As in games sounds are not
essential, we want to ignore possible errors regarding sounds, and so, we always
return Ok(()).

In the steer function, when a turn operation is performed and the ski is not already at an
extreme angle, the following statement is performed:

play_sound(&mut self.whoosh_sound, self.forward_speed * 0.1);

It plays the whoosh sound and a volume that is proportional to the speed of the ski. In this
way, if you rotate the ski when you are not running, you are silent.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[189]

The new fields of the model are initialized like this:

elapsed_sec: 0.,
elapsed_shown_sec: 0.,
font_style: FontStyle::new(16.0, Color::BLACK),
font: Asset::new(Font::load("font.ttf")),
whoosh_sound: Asset::new(Sound::load("whoosh.ogg")),
bump_sound: Asset::new(Sound::load("bump.ogg")),
click_sound: Asset::new(Sound::load("click.ogg")),
two_notes_sound: Asset::new(Sound::load("two_notes.ogg")),

Notice that, as font_style, a size of 16 points and a black color are set. We already
described the other kind of expressions.

In the update function, when the race is started by pressing the spacebar, the following
statement is executed:

play_sound(&mut self.click_sound, 1.)

It plays a click sound with a normal volume. When running, the elapsed time is computed
like this:

self.elapsed_sec += window.update_rate() / 1000.;
if self.elapsed_sec - self.elapsed_shown_sec >= MIN_TIME_DURATION {
 self.elapsed_shown_sec = self.elapsed_sec;
}

The update_rate function actually returns the time between frames, in milliseconds. So, if
you divide it by 1,000, you get the seconds between each frame.

If there is a high frame rate, such as 25 frames per second or more, showing the user
different text at any frame can be confusing, as people cannot read a text that changes so
rapidly. So, the second statement in the previous code snippet shows a technique to update
the text at a lower rate. The elapsed_shown_sec field keeps the time of the last update,
and the elapsed_sec field keeps the current time.

The MIN_TIME_DURATION constant keeps the minimum duration by which a text must
remain unchanged on screen before it can be updated. So, if the time elapsed from the time
of the previous update to the current time is larger than such minimum duration, the text
can be updated. In this particular case, the text to update is just the elapsed time in seconds,
and so, if enough time has passed, the elapsed_shown_sec field is set to the current time.
The draw routine will use that value to print the elapsed time on the screen.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[190]

Two other sounds are emitted. When the mode becomes Failed, the play_sound is called
to play a bump sound. And when the mode becomes Finished, the play_sound is called
to play a chime.

Then, it's up to the draw routine to print all the text. First, the text is formatted in a new
multi-line string, as follows:

let elapsed_shown_text = format!(
 "Elapsed time: {:.2} s,\n\
 Speed: {:.2} pixel/s,\n\
 Remaining gates: {}\n\
 Use Left and Right arrow keys to change direction.\n\
 {}",
 self.elapsed_shown_sec,
 self.forward_speed * 1000f32 / window.update_rate() as f32,
 TOTAL_N_GATES - self.disappeared_gates - if self.entered_gate { 1 }
else { 0 },
 match self.mode {
 Mode::Ready => "Press Space to start.",
 Mode::Running => "",
 Mode::Finished => "Finished: Press R to reset.",
 Mode::Failed => "Failed: Press R to reset.",
 }
);

The elapsed time and the speed are printed using two decimals; the remaining gates are
computed by subtracting the disappeared gates to the total number of gates. In addition, if
the current gate has been entered, the count of remaining gates is decremented by one.
Then, some different words are printed according to the current mode.

After having prepared the multiline string, the string is printed on a new image and stored
in the image local variable, and the image is drawn on the window using the draw method,
as a textured background. The method receives as a first argument the rectangular area to
print, large as the whole bitmap, and, as a second argument, the Img variant of the
Background type, constructed using the image, as illustrated in the following code snippet:

let style = self.font_style;
self.font.execute(|font| {
 let image = font.render(&elapsed_shown_text, &style).unwrap();
 window.draw(&image.area(), Img(&image));
 Ok(())
})?;

So, we have completed our examination of this simple but interesting framework.

Creating a WebAssembly Game Using Quicksilver Chapter 6

[191]

Summary
We have seen how a complete game, running both on desktop and on the web, can be built
using Rust and the Quicksilver framework, with the web version using the cargo-web
command and the Wasm code generator. This game was structured according to the
animation loop architecture and the MVC architectural pattern. We created three
apps—ski, silent_slalom, and assets_slalom—and understood the implementation
behind them.

In the next chapter, we will be seeing another 2D game framework, the ggez framework,
oriented toward desktop applications.

Questions
What is the animation loop, and what are its advantages with respect to an event-1.
driven architecture?
When is an event-driven architecture better than an animation loop architecture?2.
Which kinds of software can use the animation loop?3.
How can you draw triangles, rectangles, and circles using Quicksilver?4.
How can you receive input from the keyboard using Quicksilver?5.
How are the controller and the view of MVC implemented using Quicksilver?6.
How can you vary the frame rate of animation using Quicksilver?7.
How can you load assets from files using Quicksilver, and where should you8.
keep such assets?
How can you play sounds using Quicksilver?9.
How can you draw text on the screen using Quicksilver?10.

Further reading
The Quicksilver project can be downloaded from here: https:/ ​/​github. ​com/ ​ryanisaacg/
quicksilver. This repository contains a link to a very short tutorial and some examples.

You can find more information about generating Wasm code from a Rust project at https:/
/​github.​com/​koute/ ​cargo- ​web.

https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/ryanisaacg/quicksilver
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web
https://github.com/koute/cargo-web

7
Creating a Desktop Two-

Dimensional Game Using ggez
In the preceding chapter, we saw how to build interactive software based on the animation-
loop architecture (typically, animated games) for desktops or for web browsers from a
single set of source codes using the quicksilver framework. A drawback of this approach
is that many input/output functions available on the desktop are not available on web
browsers, and so a framework for web browsers does not necessarily provide as many
features to desktop applications that are offered on desktop platforms, such as file storage.

In addition, when using the animation-loop architecture, it is quite awkward to get discrete
input, such as mouse clicks, typed letters, or digits. For this, an event-driven architecture is
more appropriate.

In this chapter, another application framework will be introduced—the ggez framework.
This handles both animation-loop and discrete events, but at the time of writing,
it only supports two-dimensional desktop applications.

In the previous chapter, we saw that to compute the position and orientation of various
graphical objects, some analytical geometry and trigonometry is required. For more
complex applications, these mathematical computations can become overwhelming. To
simplify the code, it is useful to encapsulate positions in point objects and translations in
vector objects, and so in this chapter, we will look at how to perform these encapsulations.
The nalgebra mathematical library helps us to do this and will be introduced in this
chapter, too.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[193]

The following topics will be covered in this chapter:

Understanding linear algebra
Implementing the gg_ski project
Implementing the gg_silent_slalom project
Implementing the gg_assets_slalom project
Implementing the gg_whac project

In particular, you will see the implementation of the same three projects we looked at in the
previous chapter (gg_ski, gg_silent_slalom, and gg_assets_slalom) to demonstrate
the animation loop, as well as a Whac-A-Mole game (gg_whac) to demonstrate the
handling of discrete events.

Technical requirements
This chapter uses references to the animation-loop architecture and the slalom game
implemented in the preceding chapter. The ggez framework requires (for correctly
rendering graphical objects) the OpenGL 3.2 API to be well supported by the operating
system. Therefore, old operating systems such as Windows XP cannot be used.

The complete source code for this chapter is found in the Chapter07 folder of the
repository at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for- ​Rust-
Programmers.

macOS users may struggle to install coreaudio-sys. Upgrading the
patch version of coreaudio-sys to 0.2.3 resolves this issue.

Project overview
In this chapter, we will first look at what linear algebra is and why it is useful to describe
and manipulate the objects drawn in any graphical game. Then, we will look at how to use
the nalgebra library to perform linear algebra operations in our programs.

https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[194]

After that, we will recreate the same projects used in the previous chapter, but using the
nalgebra library and the ggez framework instead of the quicksilver
framework. gg_ski is a rewrite of ski, gg_silent_slalom is a rewrite of
silent_slalom, and gg_assets_slalom is a rewrite of assets_slalom.

At the end of the chapter, we will look at the implementation of a completely different
game with the gg_whac project to see how to handle discrete events in an architecture that
mixes the animation loop with an event-driven architecture. This will also show how
widgets (such as buttons) can be created and added to a window.

Understanding linear algebra
Linear algebra is the sector of mathematics regarding systems of first-degree equations,
such as the following:

This system of equations has a solution to certain values (that is,). In addition
to being useful for solving systems of equations, the concepts and methods of linear algebra
are also useful for representing and manipulating geometrical entities.

In particular, any position on a plane can be represented by two coordinates, x and y, and
any position in space can be represented by three coordinates, x, y, and z. In addition, any
translation of a position on a plane can be represented by two coordinates, Δx and Δy, and
any translation of a position in space can be represented by three coordinates, Δx, Δy, and
Δz.

For example, consider two positions on a plane:

p1: Its coordinates are x = 4, y = 7.
p2: Its coordinates are x = 10, y = 16.

Consider two translations on that plane:

t1: Its coordinates are .
t2: Its coordinates are .

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[195]

You can say that if you translate the p1 position by the t1 translation, you get to the
p2 position. The computation is done by adding the corresponding coordinates: p1x + t1x =
p2x (or, in numbers, 4 + 6 = 10) and p1y + t1y = p2y (or, in numbers, 7 + 9 = 16).

If you apply two translations sequentially to the p1 position—the t1 translation and the
t2 translation—then you will obtain another position (say, p3). You will also obtain the same
result if you first sum the two translations (by summing their components memberwise)
and then applying the resulting translation to p1.

So, for the x coordinate, we have (p1x + t1x) + t2x = p1x + (t1x + t2x) and a similar equation also
holds for the y coordinate. So, translations can be added. You can add a translation to
another one by summing their respective coordinates, instead, it does not make sense to
add one position to another position.

You can simplify your geometric computations by applying the computations to
the position and translation entities themselves using the following formula:

In linear algebra, there are two concepts that can be applied to these sorts of operations:

Vectors: An algebraic vector is a tuple of numbers that can be added to another
vector, obtaining another vector, which is what is needed to represent translations.
Points: An algebraic point is a tuple of numbers that cannot be added to another
point, but that can be incremented by a vector, thereby obtaining another point,
which is what is needed to represent a position.

Therefore, linear algebraic N-dimensional vectors are fit to represent translations in an N-
dimensional geometric space, whereas linear algebraic N-dimensional points are fit to
represent positions in an N-dimensional geometric space.

The nalgebra library (pronounced en-algebra) is a collection of to many algebraic
algorithms that provide implementations for these kinds of two-dimensional point and
vector types, and so it will be used in all of the following projects.

Using this library, you can write the following program, which shows which operations are
allowed and which are forbidden, using vectors and points:

use nalgebra::{Point2, Vector2};
fn main() {
 let p1: Point2<f32> = Point2::new(4., 7.);
 let p2: Point2<f32> = Point2::new(10., 16.);
 let v: Vector2<f32> = Vector2::new(6., 9.);

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[196]

 assert!(p1.x == 4.);
 assert!(p1.y == 7.);
 assert!(v.x == 6.);
 assert!(v.y == 9.);
 assert!(p1 + v == p2);
 assert!(p2 - p1 == v);
 assert!(v + v - v == v);
 assert!(v == (2. * v) / 2.);
 //let _ = p1 + p2;
 let _ = 2. * p1;
}

The first three statements of the main function create two two-dimensional points and one
two-dimensional vector whose coordinates are f32 numbers. This sort of inner numeric
type can often be inferred, but here it is specified for clarity.

The next four statements show that both the Point2 and Vector2 types contain the x and
y fields, initialized by the arguments of the new function. So, the Point2 and Vector2
types look quite similar, and actually many libraries and many developers use just one type
to store both positions and translations.

However, these types differ for the allowed operations. The following four statements show
which operations can be carried out:

Sum a vector to a point (p1 + v), obtaining another point.
Subtract two points (p2 - p1), obtaining a vector.
Sum two vectors or subtract two vectors (v + v - v), obtaining a vector in both
cases.
Multiply a vector by a number or divide a vector by a number ((2. * v) / 2.),
obtaining a vector in both cases.

There are some operations allowed on vectors that shouldn't be allowed on points (because
they make no sense for them), which the last two statements show. You cannot add two
points (p1 + p2) and actually, this operation is commented out to prevent a compilation
error. You shouldn't multiply a point by a number (2. * p1), although, for some reason,
the nalgebra library allows this.

If you want to learn more about the nalgebra library, you can find its
documentation at https:/ ​/​www.​nalgebra. ​org/ ​.

https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/
https://www.nalgebra.org/

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[197]

Now that we have looked at a good way to handle geometric coordinates using the
nalgebra library, let's see how to use them in game applications.

Implementing the gg_ski project
The first three projects in this chapter are just a rewrite of the three projects covered in the
preceding chapter but are converted so that they use the ggez framework and the
nalgebra library instead. They are as follows:

The ski project has become gg_ski.
The silent_slalom project has become gg_silent_slalom.
The assets_slalom project has become gg_assets_slalom.

Each project's behavior is very similar to its respective project in Chapter 6, Creating a
WebAssembly Game Using Quicksilver, and so you can go back to that chapter to see the
screenshots accompanying each one. For all three projects, gg_ski, gg_silent_slalom,
and gg_assets_slalom, the Cargo.toml file has the following change. Instead of the
quicksilver dependency, there are the following dependencies:

ggez = "0.5"
nalgebra = "0.18"

The term ggez (pronounced G. G. easy) is a slang term used by multiplayer online gamers.

The ggez framework was admittedly inspired by the LÖVE game framework. The main
difference between them lies in the programming languages. LÖVE is implemented in C++
and is programmable in Lua, while ggez is both implemented and programmable in Rust.

Now, let's compare the main.rs source code of the ski project to that of the gg_ski
project.

The main function
At the end of the file, there is the main function, which prepares the context for the game
and then runs the game:

fn main() -> GameResult {
 let (context, animation_loop) = &mut ContextBuilder::new
 ("slalom", "ggez")
 .window_setup(conf::WindowSetup::default().title("Slalom"))
 .window_mode(conf::WindowMode::default().dimensions(SCREEN_WIDTH,

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[198]

 SCREEN_HEIGHT))
 .add_resource_path("static")
 .build()?;
 let game = &mut Screen::new(context)?;
 event::run(context, animation_loop, game)
}

In this function, you can see that, when you use the ggez framework, you don't just run the
model. First, you should create three objects:

A context, which, in our case, is a window. It is assigned to the context variable.
An animation loop, which animates that context. It is assigned to
the animation_loop variable.
The model, in our case, is of Screen type. It is assigned to the game variable.

After creating these objects, you can call the run function with these three objects as
arguments.

To create the context and the animation loop, a ContextBuilder object is first created by
calling the ContextBuilder::new function; then, this builder is modified by calling its
methods—window_setup, window_mode, and add_resource_path. Finally, the call to
the build method returns both a context and an animation loop.

However, notice the following things:

The call to new specifies a name for the app ("slalom") and a name for its
creator ("ggez").
The call to window_setup specifies the text in the title bar of the window
("Slalom").
The call to window_mode specifies the desired size of the window.
The call to add_resource_path specifies the name of the folder that will contain
the assets loaded at runtime ("static"), even if we are not going to use assets in
this project.

Regarding the Screen model, notice that it is created using the new method, and so we will
have to provide this method; however, we could use any other name for this sort of
creation method.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[199]

Patterns of input handling
Both quicksilver and ggez adopt an animation loop-based Model-View-Controller
(MVC) pattern. This is done by requiring the model to implement a trait that has two
required methods:

update is the controller.
draw is the view.

Both frameworks run an implicit loop that periodically (many times per second) calls the
following:

The controller to update the model, using possible input data and the preceding
values of the model
The view to update the screen, using the updated values of the model

However, there is a substantial difference in the technique used by these frameworks to get
input. quicksilver is a complete animation loop-oriented framework. The controller (or
the update function) gets input accessing the state of input devices—it can check where the
mouse is and which mouse buttons and keyboard keys are being pressed.

Instead, ggez input handling is event-driven because it captures input device transitions,
not input device states. There are several kinds of possible input device transitions:

A movement of the mouse (mouse moves)
A press of a mouse button (mouse button down)
A release of a pressed mouse button (mouse button up)
A press of keyboard key (key down)
A release of a pressed keyboard key (key up)

In ggez, for each of these possible input device transitions, the trait declares an optional
handler routine that can be implemented for the model by the application code. These
routines are called mouse_motion_event, mouse_button_down_event,
mouse_button_up_event, key_down_event, and key_up_event.

If an event happens in an animation-loop time frame, the corresponding handlers are
invoked just before the update function is invoked. In these event handlers, the application
code should store (in the model) the information gathered from the event, such as which
key has been pressed or in which position the mouse has been moved. Then, the update
function can process this input data to prepare the information needed by the view.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[200]

To better understand these techniques, consider, as an example, the following sequence of
events or timeline:

The update function is invoked 10 times per second—that is, once every tenth of
a second—so, frames per second = 10.
The user presses the A key at 0.020 seconds and releases it 50 milliseconds later
at 0.070 seconds, and then they press the B key at 0.140 seconds and release it
240 milliseconds later at 0.380 seconds.

For quicksilver, we have the following timeline:

At time Input device state Input processing in the update function
0.0 No key is pressed. Nothing.
0.1 No key is pressed. Nothing.

0.2 The B key
is pressed. The B key is processed.

0.3 The B key
is pressed. The B key is processed.

0.4 No key is pressed. Nothing.
0.5 No key is pressed. Nothing.

For ggez, we have the following timeline:

At time Input events Input processing in the update function
0.0 No input events. No key info is stored in the model.

0.1

The key_down_event function is
invoked with the A key as an argument.
It stores the A key in the model.
The key_up_event function is invoked
with the A key as an argument. It does
nothing.

The A key is read from the model. It is
processed and reset.

0.2
The key_down_event function is invoked
with the B key as an argument. It stores the B
key in the model.

The B key is read from the model. It is
processed and reset.

0.3 No input events. No key info is stored in the model.

0.4
The key_up_event function is invoked with
the B key as an argument. It does nothing. No key info is stored in the model.

0.5 No input events. No key info is stored in the model.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[201]

Notice that for quicksilver, the A key has never been pressed, while the B key has been
pressed twice. This can be good for continuous events, such as using a joystick, but not for
discrete events, such as clicking a command button or typing text into a textbox.

However, quicksilver has the advantage of capturing all simultaneous events. For
example, quicksilver can easily handle a chord, which is when several keys are
continually pressed at the same time.

Instead, for ggez, as long as only one key is pressed in a time frame, all key presses
are handled the appropriate number of times. This is expected for buttons and textboxes;
however, chords are not handled correctly. The only key combinations handled by ggez are
those involving the Shift, Ctrl, and Alt special keys.

Input handling in the gg_ski project
Among the many events that can be captured by a ggez application, the gg_ski game
captures only two events—the press of the right or left arrow keys and their release. The
handling of these events stores the relevant input information in the model so that the
update function can use it. Therefore, the model must contain some additional fields, with
respect to those contained for the quicksilver ski project.

So, we now have a model that contains some fields updated by the event functions, to be
used by the update function, and some other fields updated by the update function, to be
used by the draw function. To distinguish these input fields, it's better to encapsulate them
in a structure defined as follows:

struct InputState {
 to_turn: f32,
 started: bool,
}

The to_turn field indicates that the user has pressed an arrow key to change the direction
of the ski. If only the left key is pressed, the direction angle should be decremented, and so
the value of this field should be -1.0. If only the right key is pressed, the direction angle
should be incremented, and so the value of this field should be 1.0. If the user has not
pressed any arrow key, the direction should remain unchanged, and so the value of this
field should be 0.0.

The started field indicates that the race has started. It is not used in this project. An
instance of this structure is added to the model using the following line:

input: InputState,

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[202]

The capture of key presses is done through the following code:

fn key_down_event(
 &mut self,
 _ctx: &mut Context,
 keycode: KeyCode,
 _keymod: KeyMods,
 _repeat: bool,
) {
 match keycode {
 KeyCode::Left => { self.input.to_turn = -1.0; }
 KeyCode::Right => { self.input.to_turn = 1.0; }
 _ => (),
 }
}

The keycode argument specifies which key has been pressed. If the left or the right arrow
keys have been pressed, the to_turn field is set to -1.0 or to +1.0, respectively. Any other
keys that are pressed are ignored.

Capturing the release of the keys is done through the following code:

fn key_up_event(&mut self, _ctx: &mut Context, keycode: KeyCode, _keymod:
KeyMods) {
 match keycode {
 KeyCode::Left | KeyCode::Right => {
 self.input.to_turn = 0.0;
 }
 _ => (),
 }
}

If the left or the right arrow keys are released, the to_turn field is set to 0.0 to stop the
change of direction. The release of any other key is ignored.

Other differences with quicksilver
Between quicksilver and ggez, in addition to the described conceptual differences, there
are some minor differences, which I have covered in the following subsections.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[203]

Name of the trait
The name of the trait to be implemented by the model is State for quicksilver
and EventHandler for ggez. So, for quicksilver we had the following line:

impl State for Screen {

But in ggez, we have the following:

impl EventHandler for Screen {

The type of context
Using both quicksilver and ggez, you need to implement the update method and the
draw method. Both of these methods receive an argument for both frameworks that
describes the input/output context. This context is the object used to receive interactive
input (by the update method) and to emit graphical output (by the draw method).

However, for quicksilver the type of this context argument is Window, as in the
following function signatures:

fn update(&mut self, window: &mut Window) -> Result<()> {
...
fn draw(&mut self, window: &mut Window) -> Result<()> {

For ggez, it is Context. So, now we have the following signatures:

fn update(&mut self, ctx: &mut Context) -> GameResult {
...
fn draw(&mut self, ctx: &mut Context) -> GameResult {

The new method
The State trait of quicksilver requires the implementation of the new method, used by
the framework to create the model instance. The EventHandler trait of ggez has no such
method because the model instance is created explicitly by application code in the main
function, as we have seen.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[204]

The angle's unit of measurement
While quicksilver rotation angles must be specified in degrees, ggez rotation angles
must be specified in radians, and so angular constants and variables are specified in these
units of measurement. So, now we have the following lines:

const STEERING_SPEED: f32 = 110. / 180. * PI; // in radians/second
const MAX_ANGLE: f32 = 75. / 180. * PI; // in radians

How to specify the FPS rate
To specify the desired Frames Per Second (FPS) rate, two parameters are specified in the
main function when using quicksilver, whereas ggez uses another technique. For ggez,
the update function is always invoked 60 times per second (if possible), but the application
code can simulate a different rate by writing the following body of the update function:

const DESIRED_FPS: u32 = 25;
while timer::check_update_time(ctx, DESIRED_FPS) {
 ...
}

The purpose of this code is to ensure that the body of the while loop is executed with the
specified rate, which in this case is 25 frames per second. Let's see how this is
accomplished.

The required rate specified in our code means that the body should be executed once every
1000 / 25 = 40 milliseconds. When the update function is executed, if less than 40
milliseconds have elapsed since the preceding execution, the check_update_time
function returns false, and so the body of the while loop is not executed this time. It is
likely that even at the next update call, not enough time will have elapsed, and so the
check_update_time function will return false again. In a later execution, when at least
40 milliseconds have elapsed since the last time the body was executed, true will be
returned, and so the body will be executed.

This allows a rate that is lower than 60 FPS. However, there is another feature. If a frame,
for some reason, takes longer than the allotted time—say, 130 milliseconds—causing the
animation to stutter, then the check_update_time function returns true several times in
a row to make up for the lost time.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[205]

Of course, you cannot obtain the desired rate if every frame is so slow to take too much
time. Tough, as long as your frames are processed within the required time, this technique
ensures that the average frame rate will be the specified one.

To say that the actual average rate approximates the desired rate, it is enough that the
average time taken by a frame is less than the one allotted for a frame. Instead, if your
frames take, on average, 100 milliseconds, the actual frame rate will be 10 FPS.

Handling the ski steering
The ski steering is handled differently in the body of the update loop. In the ski project,
the steer function is only called if an arrow key is kept pressed down at that time. Instead,
in the gg_sky project, the following statement is always executed:

self.steer(self.input.to_turn);

The steer function is called at any time frame, passing the value set before by the input
handling methods. If this value is 0, the ski doesn't steer.

Computation of new position and speed
In addition, the body of the update function now contains the following statements:

let now = timer::time_since_start(ctx);
self.period_in_sec = (now - self.previous_frame_time)
 .as_millis() as f32 / 1000.;
self.previous_frame_time = now;

Their purpose is to compute the correct kinematics of the ski. In mechanics, to compute a
position variation (), you have to multiply the current speed (also called velocity, v) by
the time elapsed since the previous frame (). This results in the following equation:

To compute a speed variation (), you have to multiply the current acceleration (a) by the
time elapsed since the preceding frame (), which results in the following equation:

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[206]

So, to compute the position variation and the speed variation, we need the time elapsed
since the preceding frame. The ggez framework provides the timer::time_since_start
function, which returns the duration since the start of the application. We subtract the time
of the preceding frame from the duration to obtain the time elapsed between the two
frames. The duration is then converted into seconds. Finally, the current time is saved, to be
used in the next frame computation.

Drawing the background
The MVC view implemented by the draw method draws the white background by using
the following statement:

graphics::clear(ctx, graphics::WHITE);

Now, let's check how to draw the composite shapes.

Drawing composite shapes
To draw a composite shape, instead of individually drawing all of its components, first
create a Mesh object, which is a composite shape containing all the component shapes, and
then draw the Mesh object. To create a Mesh object, the MeshBuilder class is used with this
code:

let ski = graphics::MeshBuilder::new()
 .rectangle(
 DrawMode::fill(),
 Rect {
 x: -SKI_WIDTH / 2.,
 y: SKI_TIP_LEN,
 w: SKI_WIDTH,
 h: SKI_LENGTH,
 },
 [1., 0., 1., 1.].into(),
)
 .polygon(
 DrawMode::fill(),
 &[
 Point2::new(-SKI_WIDTH / 2., SKI_TIP_LEN),
 Point2::new(SKI_WIDTH / 2., SKI_TIP_LEN),
 Point2::new(0., 0.),
],
 [0.5, 0., 1., 1.].into(),
)?
 .build(ctx)?;

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[207]

Let's now check what this code does:

First, the new function creates a MeshBuilder object. 1.
Then, the methods instruct these mesh builders how to create the mesh2.
components. The rectangle method explains how to create a rectangle, which
will be the ski body, and the polygon method explains how to create a polygon,
which will be the ski tip. The features of the rectangle are its draw mode
(DrawMode::fill()), its position and size (x, y, w, and h), and its color (1.,
0., 1., 1.). The features of the polygon are its draw mode, the list of its
vertices, and its color. It has just three vertices, so it is a triangle.
Then, the build method creates and returns the specified mesh. Notice that the3.
method calls ending with a question mark are fallible and that the colors are
specified by the quadruple red-green-blue-alpha model, where each number is in
the range 0 to 1.

To draw a mesh, the following statement is used:

graphics::draw(
 ctx,
 &ski,
 graphics::DrawParam::new()
 .dest(Point2::new(
 SCREEN_WIDTH / 2. + self.ski_across_offset,
 SCREEN_HEIGHT * 15. / 16. - SKI_LENGTH / 2.
 - SKI_TIP_LEN,
))
 .rotation(self.direction),
)?;

This draw method is not the same as the draw method that defines the view of the MVC
architecture. This is found in the ggez::graphics module, while the containing method
(the view) is part of the ggez::event::EventHandler trait.

The first argument of the graphics::draw method—ctx—is the context on which we are
drawing. The second argument—&ski—is the mesh we are drawing. The third argument is
a collection of parameters, encapsulated in a DrawParam object. This type allows us to
specify numerous parameters, two of which are specified as follows:

The point to draw the mesh, specified using the dest method
The angle (in radians) by which the mesh must be rotated, specified using the
rotation method

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[208]

So, we have now seen how to draw on the screen. However, after calling these statements,
nothing actually appears on the screen because the statements just prepare the output off-
screen. To get the output, a finalization statement is needed, which is described in the next
section.

Ending the draw method
The view (that is, the draw method) should end with the following statements:

graphics::present(ctx)?;
timer::yield_now();

In the typical double-buffering technique used by OpenGL, all the ggez drawing
operations do not output graphics directly on the screen but in a hidden buffer. The
present function quickly swaps the shown screen buffer with the hidden drawn buffer,
with the effect of immediately displaying the scene and avoiding the flicker that could
appear otherwise. The last statement tells the operating system to stop using the CPU for
this process until the next frame must be drawn. By doing this, if the processing of a frame
is quicker than a time frame, the application avoids using 100% of the CPU cycles.

So, we have finished examining the gg_ski project. In the next section, we will examine
how the gg_silent_slalom project builds on this project to create a slalom game with no
sound or text.

Implementing the gg_silent_slalom project
In this section, we will examine the gg_silent_slalom project, which is an
implementation of the ggez framework of the gg_silent_slalom game presented in the
preceding chapter. Here, we will only examine the differences between the gg_ski project
and the silent_slalom project.

As we saw in the preceding section, ggez handles input as events. In this project, two other
key events are handled—Space and R:

KeyCode::Space => {
 self.input.started = true;
}
KeyCode::R => {
 self.input.started = false;
}

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[209]

The spacebar is used to command the start of the race, and so it sets the started flag to
true. The R key is used to reposition the ski at the beginning of the slope, and so it
sets the started flag to false.

This flag is then used in the update method, as in the following code:

match self.mode {
 Mode::Ready => {
 if self.input.started {
 self.mode = Mode::Running;
 }
 }

When in Ready mode, instead of directly checking the keyboard state, the started flag is
checked. The computation of speed and acceleration takes into account the time that has
actually elapsed since the preceding frame computation:

self.forward_speed = (self.forward_speed
 + ALONG_ACCELERATION * self.period_in_sec * self.direction.cos())
 * DRAG_FACTOR.powf(self.period_in_sec);

To compute the new forward speed, the acceleration along the slope
(ALONG_ACCELERATION) is projected on the ski direction using the cosine function
(self.direction.cos()), and then the result is multiplied by the elapsed time
(self.period_in_sec) to get the speed increment.

The incremented speed is then multiplied by a factor that is less than 1 to take friction into
account. This factor is the DRAG_FACTOR constant for a time of 1 second. To get the decrease
factor for the actual time elapsed, the exponential function must be used (powf).

To compute the new horizontal position of the ski tip, the following statement is executed:

self.ski_across_offset +=
 self.forward_speed * self.period_in_sec * self.direction.sin();

This multiplies the speed (self.forward_speed) by the time elapsed
(self.period_in_sec) to obtain the space increment. This increment is projected on the
horizontal direction using the sine function (self.direction.sin()) to get the horizontal
position variation.

A similar computation is performed to compute the movement along the slope, which
is actually the offset of the position of the gates as the ski is always drawn at the same Y
coordinate.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[210]

To draw the poles of the gates in the draw method, first, two meshes are created by using
the following statements:

let normal_pole = graphics::Mesh::new_circle(
 ctx,
 DrawMode::fill(),
 Point2::new(0., 0.),
 GATE_POLE_RADIUS,
 0.05,
 [0., 0., 1., 1.].into(),
)?;
let finish_pole = graphics::Mesh::new_circle(
 ctx,
 DrawMode::fill(),
 Point2::new(0., 0.),
 GATE_POLE_RADIUS,
 0.05,
 [0., 1., 0., 1.].into(),
)?;

Here, the meshes are created directly without using a MeshBuilder object. The
new_circle method requires the context, the fill mode, the center, the radius, a tolerance,
and the color as parameters. Tolerance is a trade-off between performance and graphic
quality. The former mesh is used to draw all the poles, except those of the finish gate, and
the latter mesh is used to draw the poles of the finish gate.

Then, these meshes are drawn to show all the poles using statements such as the following:

graphics::draw(
 ctx,
 pole,
 (Point2::new(SCREEN_WIDTH / 2. + gate.0, gates_along_pos),),
)?;

Here, the third argument (with the DrawParam type) is specified in a simple but somewhat
obscure way; it is a tuple containing just one element. This element is interpreted as the
position where the mesh will be drawn, corresponding to the dest method call seen in the
preceding section.

So, we have now also seen the peculiarities of the gg_silent_slalom project. In the next
section, we will look at the gg_assets_slalom project, which adds sound and text to our
project.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[211]

Implementing the gg_assets_slalom project
In this chapter, we will examine the gg_assets_slalom project, which is an
implementation of the ggez framework of the assets_slalom game presented in the
preceding chapter. Here, we will only examine the differences between the
gg_silent_slalom project and the assets_slalom project.

The main difference is found in how the assets are loaded. The assets of these projects are of
two kinds—fonts and sounds. To encapsulate these assets, instead of using objects with
the Asset and Asset<Sound> types, ggez uses objects with the graphics::Font
and audio::Source types, respectively. These assets are loaded into the constructor of the
model. For example, the constructor of the Screen object contains the following statements:

font: Font::new(ctx, "/font.ttf")?,
whoosh_sound: audio::Source::new(ctx, "/whoosh.ogg")?,

The first one loads a file containing a TrueType font for the ctx context and returns an
object encapsulating this font. The second one loads (for the ctx context) a file containing
an OGG sound and returns an object encapsulating this sound. Both files must be present in
the asset folder that was specified in the main function using the add_resource_path
method, and they must be in one of the supported formats.

There is an important difference in how quicksilver and ggez load their assets.
quicksilver loads them asynchronously, creating future objects whose access function
must ensure that the asset is loaded. On the other hand, ggez is synchronous; when it loads
the assets, it blocks the application until the assets are completely loaded. The objects
created are not future objects, and so they can be used immediately.

Because it uses future objects, quicksilver is more sophisticated, but this sophistication
is probably useless on a desktop application because, provided your application has no
more than a few megabytes of assets, loading them from local storage is quite fast, and
so some blocking statements at application startup are not going to be inconvenient. Of
course, to prevent slowing down animations, the assets must be loaded only at application
startup, when changing the level of a game, or when the game is ending. Once an asset is
loaded, it is immediately available.

The easiest asset to use is sound. To play a sound, the following function is defined:

fn play_sound(sound: &mut audio::Source, volume: f32) {
 sound.set_volume(volume);
 let _ = sound.play_detached();
}

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[212]

Its first argument is the sound asset and the second argument is the desired volume level.
This function simply sets the volume and then plays the sound using the play_detached
method. This method overlaps the new sound with any other sounds that are already
playing. There is also a play method, which automatically stops playing the old sounds
before starting the new one.

To play a fixed-volume sound, such as one that signals the failure to enter a gate, the
following statement is used:

play_sound(&mut self.bump_sound, 1.);

In addition, to make a sound proportional to the speed, the following statement is used:

play_sound(&mut self.whoosh_sound, self.forward_speed * 0.005);

The font is quite easy to use, too:

let text = graphics::Text::new((elapsed_shown_text, self.font, 16.0));
graphics::draw(ctx, &text, (Point2::new(4.0, 4.0), graphics::BLACK))?;

The first statement creates a text shape by calling the new function. It has a tuple with three
fields as an argument:

The string to print (elapsed_shown_text)
The scalable font object to use for this text (self.font)
The desired size of the generated text (16.0)

The second statement draws the created text shape on the ctx context. This statement
specifies a tuple that will be converted to a DrawParam value as a third parameter. The
specified sub-arguments are the destination point (Point2::new(4.0, 4.0)) and the
color to use (graphics::BLACK).

So, we have now covered the whole game. In the next section, we will look at another
game, which uses mouse clicks and other kinds of assets—images.

Implementing the gg_whac project
In this section, we will examine the gg_whac project, which is an implementation in the
ggez framework of the famous Whack-A-Mole arcade game. First of all, let's try to play it.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[213]

After running cargo run --release in the gg_whac folder, the following window will
appear, which shows a lawn:

For those of you who aren't familiar with this game, here are the rules. When you click on
the Start button, the following things happen:

The Start button disappears.1.
The countdown begins at the top left from 40 seconds to 0.2.
A nice mole pops up in a random position of the lawn.3.
The mouse cursor becomes a barred circle.4.
If you move your mouse cursor over the mole, it becomes a cross and a big mallet5.
appears; this mallet can be dragged by the mouse as long as you remain over the
mole.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[214]

Your window should look similar to the following:

If you click the main mouse button when the mouse cursor hovers over the mole, the mole
disappears and another one appears in another position. In the meantime, a counter tells
you how many moles you have managed to whack. When the countdown reaches 0, you
are presented with your score.

The assets
To understand the behavior of this application, first, let's look at the content of the assets
folder:

cry.ogg is the sound produced by the mole when it pops up out of the lawn.
click.ogg is the sound of the mallet when it hits the mole.
bump.ogg is the sound of the mallet when it hits the lawn but misses the mole.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[215]

two_notes.ogg is the jingle produced when the game ends because the
countdown has elapsed.
font.ttf is the font used for all the visible text.
mole.png is the image of the moles.
mallet.png is the image of the mallet.
lawn.jpg is the image used to fill the background.
button.png is the image used for the Start button.

We already saw, in the preceding section, how to load and use sounds and fonts. Here,
there is a new kind of asset—images. Images are declared by statements such as the
following:

lawn_image: graphics::Image,

They are loaded, at application initialization time, by statements such as the following:

lawn_image: graphics::Image::new(ctx, "/lawn.jpg")?

They are displayed by statements such as the following:

graphics::draw(ctx, &self.lawn_image, lawn_params)?;

Here, the lawn_params argument, with a type of DrawParam, can specify a position, a
scale, a rotation, and even a crop.

The general structure of the application and
events
Now, let's examine the structure of the source code. Like the preceding projects we have
seen in this chapter, this project does the following:

Defines some constants
Defines a model with the struct Screen type
Implements the EventHandler trait with its required update and
draw methods and its optional mouse_button_down_event
and mouse_button_up_event methods
Defines the main function

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[216]

The most important field of the model is mode, whose type is defined by the following
code:

enum Mode {
 Ready,
 Raising,
 Lowering,
}

The initial mode is Ready, where the countdown is stopped and the game is ready to start.
When the game is running, there are the following states:

No mole appears.
One mole rises from the ground.
One mole rises and waits to be hit.
A blow of the mallet is about to hit the mole.
The mole that has been hit lowers into the ground.

Well, actually, the first state does not exists, because as soon as the game starts, a mole pops
up, and also, as soon as you hit a mole, another mole pops up. The second and third states
are represented by Mode::Raising. Simply put, when the mole reaches its full height, it is
not raised.

The fourth and fifth states are represented by Mode::Lowering. Simply put, the mole
lowers simultaneously with the mallet.

Regarding the input operations, it should be noted that for the EventHandler trait, no key
handling methods are implemented as this game does not use the keyboard. Instead, it uses
the mouse, and so there is the following code:

fn mouse_button_down_event(&mut self, _ctx: &mut Context,
 button: MouseButton, x: f32, y: f32) {
 if button == MouseButton::Left {
 self.mouse_down_at = Some(Point2::new(x, y));
 }
}

fn mouse_button_up_event(&mut self, _ctx: &mut Context,
 button: MouseButton, x: f32, y: f32) {
 if button == MouseButton::Left {
 self.mouse_up_at = Some(Point2::new(x, y));
 }
}

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[217]

The first method is invoked when a mouse button is pressed and the second one is invoked
when a mouse button is released.

The third argument of these methods (button) is an enum indicating which button has
been pressed; MouseButton::Left actually represents the main mouse button.

The fourth and fifth arguments of these methods (x and y) are the coordinates of the
position of the mouse when its button has been pressed. Their unit of measurement is
pixels and the origin of their coordinate system is the top-left vertex of the context, which in
our case is the client area of the window.

Only the main mouse button is handled. When it is pressed, the point representing the
current mouse position is stored in the mouse_down_at field of the model, and when it is
released, it is stored in the mouse_up_at field of the model.

These fields are defined in the model in the following way:

 mouse_down_at: Option<Point2>,
 mouse_up_at: Option<Point2>,

Their value is initialized to None and is only set to a Point2 value by the preceding code; it
is reset to None as soon as these events are processed by the update method. So, each
mouse event is only processed once.

Other fields of the model
In addition to the fields that we have already described, the model has the following other
fields:

start_time: Option<Duration>,
active_mole_column: usize,
active_mole_row: usize,
active_mole_position: f32,
n_hit_moles: u32,
random_generator: ThreadRng,
start_button: Button,

The start_time field is used to show the current remaining time during the game and to
show the Game finished text when the game ends. It is initialized to None, and then any
time the Start button is pressed, the current time is stored in it.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[218]

The moles do not appear in totally random positions. The lawn is covertly organized into
three rows and five columns. A mole appears in 1 of these 15 positions, chosen at random.
The active_mole_column and active_mole_row fields contain the zero-based column
and the row of the currently displayed mole.

The active_mole_position field contains the fraction of the appearance of the current
mole. A 0 value means that the mole is totally hidden. A value of 1 means that the image of
the mole (representing a part of its body) has completely appeared. The n_hit_moles field
counts how many moles have been hit.

The random_generator field is a pseudo-random number generator used to generate the
position of the next mole to show. Finally, start_button is a field representing the
Start button. However, its type is not defined in a library. It is defined in this application, as
we are going to explain.

Defining a widget
Business applications have windows full of small, interactive graphical elements, such as
buttons and textboxes. These elements are usually named controls by Microsoft Windows
documentation and widgets (from window objects) in Unix-like environments. Defining
widgets using graphics primitives is a rather complex feat, so if you want to develop a
business application, you should probably use a library that defines a set of widgets.

Neither the Rust standard library nor the ggez framework defines widgets. However, if
you need just a few very simple widgets, you can develop them yourself, such as the button
we will develop for this project. Let's see how this is implemented.

First of all, there is a definition of the Button type that can be instantiated for any button
you want to add to your window:

struct Button {
 base_image: Rc<graphics::Image>,
 bounding_box: Rect,
 drawable_text: graphics::Text,
}

Our button is just an image resized as we want with text centered on it. This image is the
same for all the buttons, and so it should be shared throughout the program to save
memory. This is why the base_image field is a reference-counted pointer to an image.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[219]

The bounding_box field indicates the desired position and size of the button. The image
will be stretched or shrunk to fit this size. The drawable_text field is a text shape that will
be drawn over the image of the button as its caption. The Button type implements several
methods:

new to create a new button
contains to check whether a given point is inside the button
draw to display itself in the specified context

The new method has many arguments:

fn new(
 ctx: &mut Context,
 caption: &str,
 center: Point2,
 font: Font,
 base_image: Rc<graphics::Image>,
) -> Self {

The caption argument is the text to display inside the button. The center argument is the
desired position of the center of the button. The font and base_image arguments are the
font and image to use.

To create our button, the following expression is used:

start_button: Button::new(
 ctx,
 "Start",
 Point2::new(600., 40.),
 font,
 button_image.clone(),
),

It specifies "Start" as the caption, a width of 600 pixels, and a height of 40 pixels.

To draw the button, first, we check whether the main mouse button is currently pressed
using this expression:

mouse::button_pressed(ctx, MouseButton::Left)

By doing this, it is possible to make the button appear like it is being pressed to give visual
feedback of the button's operation. Then, we check whether the mouse cursor is inside the
button using this expression:

rect.contains(mouse::position(ctx))

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[220]

This turns the color of the button caption red when the mouse hovers over the button to
show the user that the button can be clicked on. So, we have now looked at the most
interesting parts of this project, which ends our look into the ggez framework.

Summary
We have seen how to build two-dimensional games for the desktop using the ggez
framework. This framework not only allows us to structure the application according to the
animation-loop architecture and the MVC architectural pattern but also to get discrete
input events. In addition, we have seen why a linear algebra library can be useful for
graphical applications.

We created and looked at four apps—gg_ski, gg_silent_slalom, gg_assets_slalom,
and gg_whac.

In particular, we learned how to build a graphical desktop app using the ggez framework,
which is structured according to the MVC architecture, and how to implement both an
animation-loop architecture and an event-driven architecture, possibly in the same
window. Additionally, we also learned to draw graphical elements on a web page
using ggez, as well as loading and using static resources using ggez. At the end of the
chapter, we encapsulated two-dimensional points and vectors in a structure and saw how
to manipulate them using the nalgebra library.

In the next chapter, we will look at a completely different technology: parsing. Parsing text
files is useful for many purposes, in particular for interpreting or compiling a source code
program. We will take a look at the nom library, which makes parsing tasks easier.

Questions
What is the difference between a vector and a point in linear algebra?1.
What are the geometrical concepts corresponding to algebraic vectors and2.
points?
Why can capturing events be useful, even in an animation loop-oriented3.
application?
Why can loading synchronous assets be a good idea in a desktop game?4.
How does ggez get input from the keyboard and mouse?5.
What are the meshes used in the ggez framework?6.

Creating a Desktop Two-Dimensional Game Using ggez Chapter 7

[221]

How can you build a ggez mesh?7.
How do you obtain a desired animation frame rate using ggez?8.
How do you draw a mesh in the desired position using ggez, with the desired9.
scale and rotation values?
How do you play sound using ggez? 10.

Further reading
The ggez project can be downloaded from https:/ ​/​github. ​com/ ​ggez/ ​ggez. This
repository contains many example projects, including a complete asteroid arcade game.

https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez
https://github.com/ggez/ggez

8
Using a Parser Combinator for

Interpreting and Compiling
Rust is a system programming language. A typical task of system programming is
processing formal languages. Formal languages are languages specified by well-defined
logical rules and used everywhere in computer technology. They can be broadly classified
into command, programming, and markup languages.

To process formal languages, the first step is to parse. Parsing means analyzing the
grammatical structure of a piece of code to check whether it respects the rules of the
grammar it is supposed to use, and then, if the grammar is respected, to generate a data
structure that describes the structure of the parsed piece of code, in a way that such code
can be further processed.

In this chapter, we will see how to process text written in a formal language, starting from
the parsing step and proceeding with several possible outcomes—simply checking the
grammar, interpreting a program, and translating a program into the Rust language.

To show such features, an extremely simple programming language will be defined, and
four tools (syntax checker, semantic checker, interpreter, and translator) will be built
around it.

In this chapter, you will learn about the following topics:

Defining a programming language using a formal grammar
Classifying programming languages into three categories
Learning two popular techniques for building parsers—compiler-compilers and
parser combinators
Using a parser combinator library for Rust named Nom
Processing a source code to check its syntax following a context-free grammar,
using the Nom library (calc_parser)

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[223]

Verifying the consistency of variable declarations and their usage in some source
code, and at the same time preparing the required structure for optimal
execution of the code (calc_analyzer)
Executing the preprocessed code, in a process named interpretation
(calc_interpreter)
Translating the preprocessed code into another programming language, in a
process named compilation (calc_compiler); as an example, translation to
Rust code will be shown

After reading this chapter, you will be able to write the grammar for a simple formal
language or understand the grammar for an existing formal language. You will also be
able to write an interpreter for any programming language by following its grammar. Also,
you will be able to write a translator for a formal language into another formal language,
following their grammar.

Technical requirements
To read this chapter, knowledge of the preceding chapters is not required. Some knowledge
of formal language theory and techniques is useful but not required, because the
required knowledge will be explained in this chapter. The Nom library will be used to
build such tools, and so it will be described in this chapter.

The complete source code for this chapter is in the Chapter08 folder of the GitHub
repository, located at https:/ ​/​github. ​com/​PacktPublishing/ ​Creative- ​Projects- ​for-
Rust-​Programmers.

Project overview
In this chapter, we will build four projects of increasing complexity, listed as follows:

The first project (calc_parser) will just be a syntax checker for the Calc
language. Actually, it is just a parser, followed by a formatted debugging print of
the parsing result.
The second project (calc_analyzer) uses the parsing result of the first project to
add the verification of the consistency of the variable declarations and of their
usage, followed by a formatted debugging print of the analysis result.

https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[224]

The third project (calc_interpreter) uses the analysis result to execute the
preprocessed code, in an interactive interpreter.
The fourth project (calc_compiler) uses the analysis result again to translate
the preprocessed code into equivalent Rust code.

Introducing Calc
To make the following explanations, we will first define a toy programming language
that we will name Calc (from the calculator). A toy programming language is a
programming language used to demonstrate or prove something, not designed to develop
real-world software. A simple program written in Calc is shown as follows:

@first
@second
> first
> second
@sum
sum := first + second
< sum
< first * second

The preceding program asks the user to type two numbers and then prints the sum and the
product of those numbers on the console. Let's examine one statement at a time, as follows:

The first two statements (@first and @second) declare two variables. Any
variable in Calc represents a 64-bit floating-point number.
The third and fourth statements (> first and > second) are input statements.
Each of these prints a question mark and waits for the user to type a number and
press Enter. Such a number, if valid, is stored in the specified variable. If no
number or an invalid number is typed before pressing Enter, the value 0 is
assigned to the variable.
The fifth statement declares the sum variable.
The sixth statement (sum := first + second) is a Pascal-style assignment. It
computes the sum of the first and second variables and assigns the result to
the sum variable.
The seventh and eight statements perform output. The seventh statement (<
sum) prints on the console the current value of the sum variable. The eighth
statement (< first * second) computes the multiplication between the
current values of the first and second variables, and then prints on the console
the result of such multiplication.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[225]

The Calc language has two other operators—- (minus) and / (divide)— to specify
subtraction and division, respectively. In addition, the following code shows that the
operations can be combined in expressions, and so these are valid assignment statements:

y := m * x + q
a := a + b - c / d

Operations are performed left to right, but multiplication and division have higher
precedence than addition and subtraction.

In addition to variables, numeric literals are also allowed. So, you can write the following
code:

a := 2.1 + 4 * 5

This statement assigns 22.1 to a, as multiplication is performed before addition. To force
different precedence, parentheses are allowed, as illustrated in the following code snippet:

a := (2.1 + 4) * 5

The preceding code snippet assigns 30.5 to a.

In the preceding code snippet, there are no characters that separate a statement from the
next one, in addition to the newline characters. Actually, the Calc language has
no symbols used to separate statements, and also, it does not need them. So, the first
program should be equivalent to this:

@first@second>first>second@sum sum:=first+second<sum<first*second

In the preceding code snippet, there is no ambiguity because the @ character marks the start
of a declaration, the > character marks the start of an input operation, the < character marks
the start of an output operation, and a variable in a location where the current statement
does not allow a variable marks the start of an assignment.

To understand this syntax, some grammatical terms must be explained, as follows:

The whole text is a program.
Any program is a sequence of statements. In the first example program, there is
exactly one statement for each line.
In some statements, there can be an arithmetic formula that can be evaluated,
such as a * 3 + 2. This formula is an expression.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[226]

Any expression can contain sums or subtractions of simpler expressions. The
simpler expressions that contain neither sums nor subtractions are named terms.
Therefore, any expression can be a term (if it contains neither sums nor
subtractions), or it can be the sum of an expression and a term, or it can be the
subtraction of an expression and a term.
Any term can contain multiplications or divisions of simpler expressions. The
simpler expressions that contain neither multiplications nor divisions are
named factors. Therefore, any term can be a factor (if it contains neither
multiplications nor divisions), or it can be the multiplication of a term and a
factor, or it can be the division of a term and a factor. There are three possible
kinds of factors, listed here:

Names of variables, named identifiers
Numerical constants, represented by sequences of digits, named
literals
Full expressions enclosed in parentheses, to force their precedence

In the Calc language, for the sake of simplicity and unlike in most programming
languages, digits and underscores are not allowed in identifiers. So, any identifier is a non-
empty sequence of letters. Or, put another way, any identifier can be a letter or an identifier
followed by a letter.

The syntax of formal languages can be specified by a notation that is known as
Backus–Naur form. Using this notation, our Calc language can be specified by the
following rules:

<program> ::= "" | <program> <statement>
<statement> ::= "@" <identifier> | ">" <identifier> | "<" <expr> |
<identifier> ":=" <expr>
<expr> ::= <term> | <expr> "+" <term> | <expr> "-" <term>
<term> ::= <factor> | <term> "*" <factor> | <term> "/" <factor>
<factor> ::= <identifier> | <literal> | "(" <expr> ")"
<identifier> := <letter> | <identifier> <letter>

The explanation for all the rules used in the preceding code snippet is described as follows:

The first rule specifies that a program is an empty string or a program followed
by a statement. This amounts to saying that a program is a list of zero or more
statements.
The second rule specifies that a statement is either a @ character followed by an
identifier, a > character followed by an identifier, a < character followed by an
expression, or an identifier followed by the := pair of characters and then by an
expression.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[227]

The third rule specifies that an expression is either a term or an expression
followed by the + character and a term, or an expression followed by the -
 character and a term. This amounts to saying that an expression is a term
followed by zero or more term items, where a term-item is a + or a - operator
followed by a term.
Similarly, the fourth rule specifies that a term is either a factor or a term followed
by the * character and a factor, or a term followed by the / character and a factor.
This amounts to saying that a term is a factor followed by zero or more factor
items, where a factor-item is a multiply or a divide operator followed by a factor.
The fifth rule specifies that a factor is either an identifier or a literal, or an
expression enclosed in parentheses. This rule is satisfied only if the parentheses
are correctly paired in code.
The sixth rule specifies that an identifier is a letter or an identifier followed by a
letter. This amounts to saying that an identifier is a sequence of one or more
letters. This syntax does not specify how case-sensitiveness is handled, but we
will assume identifiers are case-sensitive.

This syntax leaves undefined what is meant by the <letter> symbol and by
the <literal> symbol, therefore these are explained here:

The <letter> symbol means any character for which the is_alphabetic Rust
standard library function returns true.
The <literal> symbol means any floating-point number. In fact, as we are
going to use Rust code to parse it, store it, and handle it, the Calc definition of
literal is the same as the Rust definition of f64 literals. For example
-4.56e300 will be allowed, but 1_000 and 3f64 will not be allowed.

Another simplification has been done regarding white spaces. Spaces, tabs, and newline
characters are allowed in all positions of code, except inside an identifier, inside a literal,
and inside the := symbol. They are optional, but the only position where white space is
required is between the ending identifier of a statement and the beginning identifier of an
assignment because, otherwise, the two identifiers would merge into one.

In this section, we have defined the syntax of the Calc language. Such a formal definition is
called a grammar. It is a very simple grammar, but it is similar to the grammar of real-
world programming languages. Having a formal grammar for a language is useful for
building software that processes code written in such a language.

Now that we have seen our toy language, we are ready to process code written in it. The
first task is to build a syntax checker that verifies the structural validity of any program in
this language.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[228]

Understanding formal languages and their
parsers
As we've seen, a typical task of system programming is processing formal languages. Several
kinds of operations are customarily performed in such formal languages. The most typical
ones are listed here:

To check the syntax validity of a line or of a file
To format a file according to formatting rules
To execute a command written in a command language
To interpret a file written in a programming language—that is, execute it
immediately
To compile a file written in a programming language—that is, translate it into
another programming language, such as an assembly language or a machine
language
To translate a markup file into another markup language
To render a markup file in a browser

All these operations have in common the first step of the procedure—parsing. The process
of examining a string to extract its structure according to the grammar is called parsing.
There are at least three kinds of possible parsing techniques, according to the category of
the formal language we want to parse. These categories, which we are going to see in this
section, are: regular languages, context-free languages, and context-dependent languages.

Regular languages
The category of the simplest languages is that of regular languages, which can be defined
using regular expressions.

In the simplest way, a regular expression is a pattern using the following operators between
substrings:

Concatenation (or sequence): This means that a substring must follow another
substring; for example, ab means that b must follow a.
Alternation (or choice): This means that a substring can be used instead of
another substring; for example, a|b means that a or b can be used alternatively.
Kleene star (or repetition): This means that a substring can be used zero or more
times; for example, a* means that a can be used zero, one, two, or more times.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[229]

To apply such operators, parentheses can be used. So, the following is a regular expression:

a(bcd|(ef)*)g

This means that a valid string must begin with an a, followed by two possible
substrings— one is the string bcd and the other is an empty string or the string ef, or any
multiple repetitions of the string ef, and then, there must be g. The following are some
strings belonging to such regular languages:

abcdg
ag
aefg
aefefg
aefefefg
aefefefefg

An advantage of regular languages is that their parsing requires an amount of memory that
depends only on the grammar and does not depend on the text being parsed; so, typically,
they require little memory even to parse huge texts.

The regex crate is the most popular way to parse regular languages using regular
expressions. If you have regular languages to parse, then it is recommended to use such a
library. For example, detecting a valid identifier or a valid floating-point number is a
regular language parser's job.

Context-free languages
Since programming languages are not simply regular languages, regular expressions
cannot be used to parse them. A typical language feature that does not belong to regular
languages is the use of parentheses. Most programming languages allow the
((5)) string but not the ((5) string because any open parenthesis must be matched by a
closing parenthesis. Such a rule cannot be expressed by a regular expression.

A more general (and so more powerful) category of languages is that of context-free
languages. These languages are defined by grammar, as with the one seen in the preceding
section on the Calc language, including the fact that some elements must be matched (such
as parentheses, brackets, braces, and quotes).

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[230]

Differing from regular languages, context-free languages require a variable amount of
memory depending on the parsed text. Every time an open parenthesis is encountered, it
must be stored somewhere to match it with the corresponding closed parentheses.
Although such memory usage is usually quite small and it is accessed in a Last-In-First-
Out (LIFO) fashion (as it would be in a stack data structure), it is quite efficient because no
heap allocation is required.

Even context-free languages are enough for real-world usage, though, because real-world
languages need to be context-dependent, as explained in the following section.

Context-dependent languages
Unfortunately, even CFGs are not powerful enough to represent real-world programming
languages. The problem lies in the usage of identifiers.

In many programming languages, before using a variable, you must declare it. In any
location of the code, only the variables defined up to that point can be used. Such a set of
available identifiers is taken as the context in which the next statement is parsed. In many
programming languages, such a context contains not only the name of the variable but also
its type, and the fact that it surely has already received a value or it may be still
uninitialized.

To capture such constraints, context-dependent languages can be defined, though such
formalism is quite unwieldy and the resulting grammar is inefficient to parse.

Therefore, the usual way to parse a programming language text is to split parsing into
several conceptual passes, as follows:

Pass 1: Use regular expressions where you can—that is, to parse identifiers,
literals, operators, and separators. This pass generates a stream of tokens, where
each token represents one of the parsed items. So, for example, any identifier is a
different token, while white space and comments are skipped. This pass is
usually named lexical analysis or lexing.
Pass 2: Use a context-free parser where you can—that is, to apply the grammar
rules to the stream of tokens. This pass creates a tree-shaped structure
representing the program. This structure is named a syntax tree. The tokens are
stored as the leaves (that is, terminal nodes) of this tree. This tree can still contain
context-dependent errors, such as the usage of an undeclared identifier. This pass
is usually named syntax analysis.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[231]

Pass 3: Process the syntax tree to associate any variable use with the declaration
of such a variable, and possibly check its type. This pass creates a new data
structure, named symbol table, that describes all the identifiers found in the
syntax tree, and it decorates the syntax tree with references to such a symbol
table. This pass is usually named semantic analysis because it usually also
regards type checking.

When we have a decorated syntax tree and its relative symbol table, the parsing operation
is completed. Now, the developer can perform the following operations with such data
structures:

Get the syntax errors, in case the code is invalid
Get suggestions about how to improve the code
Get some metrics about the code
Interpret the code (in case the language is a programming language)
Translate the code into another language

In this chapter, the following operations will be performed:

The lexical analysis pass and the syntax analysis pass will be grouped in a single
pass that will process source code and will generate a syntax tree (in
the calc_parser project).
The semantic analysis pass will use the syntax tree generated by the parser to
create a symbol table and a decorated syntax tree (in
the calc_analyser project).
The symbol table and the decorated syntax tree will be used to execute the
program written in the Calc language (in the calc_interpreter project).
The symbol table and the decorated syntax tree will also be used to translate the
program into the Rust language (in the calc_complier project).

In this section, we have seen a useful classification of programming languages. Even if
every programming language belongs to the context-dependent category, the other
categories are still useful because interpreters and compilers use regular grammars and
CFGs as a part of their operation.

But before seeing a complete project, let's have a look at the techniques used to build a
parser, and in particular, the technique used by the Nom library.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[232]

Using Nom to build parsers
Before starting to write a parser for the Calc language, let's have a look at the most popular
parsing techniques used for building both interpreters and compilers. This is needed to
understand the Nom library, which uses one of these techniques.

Learning about compiler-compilers and parser
combinators
To obtain an extremely fast and flexible parser, you need to build it from scratch. But for
decades, an easier approach was used to build parsers by using tools named compiler-
compilers or compiler generators: programs that generate compilers. These programs get
input as a decorated specification of the syntax and generate the source code of a parser for
such a syntax. These generated source code must then be compiled, together with other
source files, to get an executable compiler.

This traditional approach is now somewhat out of fashion and another one has emerged,
named parser combinator. A parser combinator is a set of functions that allow several
parsers to be combined to obtain another parser.

We have seen that any Calc program is just a sequence of Calc statements. If we had a
parser of single Calc statements and the ability to apply such a parser in sequence, then we
could parse any Calc program.

We should know that any Calc statement is either a Calc declaration, a Calc assignment,
a Calc input operation, or a Calc output operation. If we had a parser for each of such
statements and the ability to apply any such parsers alternatively, we could parse any Calc
statement. We can go on until we get to single characters (or to tokens if we use the output
of a lexical analyzer). So, a parser of a program can be obtained by combining the parsers of
its component items.

But what is a parser written in Rust? It is a function that gets a string of source code as
input and returns a result. The result can be Err (if that string couldn't be parsed)
or Ok (containing a data structure representing the parsed item).

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[233]

So, while normal functions receive data as input and return data as output, our parser
combinators receive one or more parsers that have functions as input and return a parser as
output. Functions that receive functions as input and return a function as output are
named second-order functions because they process functions instead of data. In computer
science, the concept of second-order functions originates from functional languages, and
the concept of parser combinators also comes from such languages.

In Rust, second-order functions were not feasible before the 2018 edition, because Rust
functions could not return functions without allocating a closure. Therefore, the Nom
library (up to version 4) used macros instead of functions as combinators to maintain top
performance. When Rust introduced the impl Trait feature (included in the 2018 edition),
an efficient implementation of parser combinators using functions instead of macros
became possible. So, version 5 of Nom is entirely based on functions, keeping macros only
for backward compatibility.

In the next section, we will see the basic features of the Nom library, which we are going to
use to build both an interpreter and a compiler.

Learning the basics of Nom
The Nom crate is essentially a collection of functions. Most of them are parser
combinators—that is, they get one or more parsers as arguments and return a parser as a
return value. You can think of them as machines that get one or more parsers as input and
emit a combined parser as output.

Some of the Nom function are parsers—that is, they get a sequence of char values as an
argument and return an error if the parse fails, or a data structure representing the parsed
text, in the case of success.

Now, we'll see the most basic features of Nom, using very simple programs. In particular,
we'll see the following:

The char parser: To parse single fixed characters
The alt parser combinator: To accept alternative parsers
The tuple parser combinator: To accept a fixed sequence of parsers
The tag parser: To parse fixed strings of a character
The map parser combinator: To transform the output value of parsers
The Result::map function: To apply more complex transformations on the
output of a parser

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[234]

The preceded, terminated, and delimited parser combinators: To accept a
fixed sequence of parsers and discard some of them from the output
The take parser: To accept a defined number of characters
The many1 parser combinator: To accept a sequence of one or more repetitions of
a parser

Parsing an alternative of characters
As an example of a parser, let's see how to parse an alternative of fixed characters. We want
to parse an extremely simple language, a language that has only three words—a, b, and c.
Such a parser would succeed only if its input is the string a or the string b or the string c.

If the parsing is successful, we want a couple of things as a result—the remaining input
(that is, after the valid part has been processed) and a representation of the processed text.
As our words are made up of single characters, we want (as a representation of that) a
value of the char type, containing just the parsed character.

The following snippet is our first code using Nom:

extern crate nom;
use nom::{branch::alt, character::complete::char, IResult};

fn parse_abc(input: &str) -> IResult<&str, char> {
 alt((char('a'), char('b'), char('c')))(input)
}

fn main() {
 println!("a: {:?}", parse_abc("a"));
 println!("x: {:?}", parse_abc("x"));
 println!("bjk: {:?}", parse_abc("bjk"));
}

If you compile this program, including the dependency of the Nom crate, and you run it,
it should print the following output:

a: Ok(("", 'a'))
x: Err(Error(("x", Char)))
bjk: Ok(("jk", 'b'))

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[235]

We named our parser parse_abc. It gets a string slice as input and returns a value of
the IResult<&str, char> type. Such a return value type is a kind of Result. The Ok case
of such a Result type is a tuple of two values—a string slice containing the remaining
input, and a character—that is, the information we got by parsing the text. The Err case of
such a Result type is defined internally by the Nom crate.

As you can see in the output, the parse_abc("a") expression returns Ok(("", 'a')).
This means that when the a string is parsed, the parsing is successful; no input is left to
process, and the character extracted is 'a'.

Instead, the parse_abc("x") expression returns Err(Error(("x", Char))). This
means that when the x string is parsed, the parsing fails; the x string remains to process,
and the kind of error is Char, meaning that a Char item was expected. Notice that Char is a
type defined by Nom.

Lastly, the parse_abc("bjk") expression returns Ok(("jk", 'b')). This means that
when the string bjk is parsed, the parsing is successful; the jk input remains to be
processed, and the character extracted is 'b'.

And now, let's see how our parser is implemented. The signature of all parsers built for
Nom must have a similar signature, and their body must be a function call that has the
function argument as its argument (in this case, (input)).

The interesting part is alt((char('a'), char('b'), char('c'))). This expression
means that we want to build a parser by combining the three
parsers, char('a'), char('b'), and char('c'). The char function (not to be confused
with the Rust type having the same name) is a built-in Nom parser that recognizes the
specified character and returns a value of the char type containing that character. The alt
function (short for alternative) is a parser combinator. It has just one argument, which is a
tuple composed of several parsers. The alt parser chooses one of the specified parsers that
match the input.

It's your responsibility to guarantee that there is at most one parser accepting the input, for
any given input. Otherwise, the grammar is ambiguous. Here is an example of an
ambiguous parser—alt((char('a'), char('b'), char('a'))). The char('a') sub-
parser is repeated, but this will not be spotted by the Rust compiler.

In the next section, we will see how to parse a sequence of characters.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[236]

Parsing a sequence of characters
Now, let's see another parser, given as follows:

extern crate nom;
use nom::{character::complete::char, sequence::tuple, IResult};

fn parse_abc_sequence(input: &str)
 -> IResult<&str, (char, char, char)> {
 tuple((char('a'), char('b'), char('c')))(input)
}

fn main() {
 println!("abc: {:?}", parse_abc_sequence("abc"));
 println!("bca: {:?}", parse_abc_sequence("bca"));
 println!("abcjk: {:?}", parse_abc_sequence("abcjk"));
}

After running it, it should print the following:

abc: Ok(("", ('a', 'b', 'c')))
bca: Err(Error(("bca", Char)))
abcjk: Ok(("jk", ('a', 'b', 'c')))

This time, the letters a, b, and c must be in this exact sequence, and a tuple containing these
characters is returned by the parse_abc_sequence function. For the abc input, there is no
remaining input, and the ('a', 'b', 'c') tuple is returned. The bca input is not
accepted, as it starts with a b character instead of a. The abcjk input is accepted, as in the
first case, but this time, there is a remaining input.

The combination of parsers is tuple((char('a'), char('b'), char('c'))). This is
similar to the preceding program, but by using the tuple parser combinator, a parser is
obtained that requires that all the specified parsers are satisfied, in their order.

In the next section, we'll see how to parse a fixed string of text.

Parsing a fixed string
In the parse_abc_sequence function discussed previously, to recognize
the abc sequence, the char parser had to be specified three times, and the result was a
tuple of char values.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[237]

For longer strings (such as the keywords of a language), this is inconvenient, as they are
more easily seen as strings than as sequences of characters. The Nom library also contains a
parser for fixed strings, named tag. The preceding program can be rewritten using this
built-in parser, shown in the following code block:

extern crate nom;
use nom::{bytes::complete::tag, IResult};

fn parse_abc_string(input: &str) -> IResult<&str, &str> {
 tag("abc")(input)
}

fn main() {
 println!("abc: {:?}", parse_abc_string("abc"));
 println!("bca: {:?}", parse_abc_string("bca"));
 println!("abcjk: {:?}", parse_abc_string("abcjk"));
}

It will print the following output:

abc: Ok(("", "abc"))
bca: Err(Error(("bca", Tag)))
abcjk: Ok(("jk", "abc"))

Instead of the tuple((char('a'), char('b'), char('c'))) expression, there is now
a simple call to tag("abc"), and the parser returns a string slice, instead of a tuple of char
values.

In the next section, we'll see how to transform the value resulting from a parser to another
value, possibly of another type.

Mapping parsed items to other objects
So far, we get as a result just what we found in the input. But often, we want to transform
the parsed input before returning its result.

Say that we want to parse alternatively three letters (a, b, or c) but we want, as a result of
the parsing, the number 5 for the letter a, the number 16 for the letter b, and the number 8
for the letter c.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[238]

So, we want a parser that parses a letter, but, instead of returning that letter, it returns a
number, if the parsing is successful. We also want to map the character a to the number 5,
the character b to the number 16, and the character c to the number 8. The original result
type was char, while the mapped result type is u8. The following code block shows the
program that performs such a transformation:

extern crate nom;
use nom::{branch::alt, character::complete::char, combinator::map,
IResult};

fn parse_abc_as_numbers(input: &str)
 -> IResult<&str, u8> {
 alt((
 map(char('a'), |_| 5),
 map(char('b'), |_| 16),
 map(char('c'), |_| 8),
))(input)
}

fn main() {
 println!("a: {:?}", parse_abc_as_numbers("a"));
 println!("x: {:?}", parse_abc_as_numbers("x"));
 println!("bjk: {:?}", parse_abc_as_numbers("bjk"));
}

When it runs, it should print the following output:

a: Ok(("", 5))
x: Err(Error(("x", Char)))
bjk: Ok(("jk", 16))

For the a input, 5 is extracted. For the x input, a parse error is obtained. For
the bjk input, 16 is extracted, and the jk string remains as input to be parsed.

The implementation, for each one of the three characters, contains something such
as map(char('a'), |_| 5). The map function is another parser combinator that takes a
parser and a closure. If the parser matches, then it generates a value. The closure is invoked
on such a value, and it returns a transformed value. In this case, the argument of the closure
was not needed.

An alternative equivalent implementation of the same parser is given as follows:

fn parse_abc_as_numbers(input: &str) -> IResult<&str, u8> {
 fn transform_letter(ch: char) -> u8 {
 match ch {
 'a' => 5,

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[239]

 'b' => 16,
 'c' => 8,
 _ => 0,
 }
 }
 alt((
 map(char('a'), transform_letter),
 map(char('b'), transform_letter),
 map(char('c'), transform_letter),
))(input)
}

It defines the transform_letter inner function that applies the transformation and
passes just that function as the second argument of the map combinator.

In the next section, we'll see how to manipulate the output of a parser in a more complex
way, as we will be omitting or swapping some fields of the resulting tuple.

Creating custom parsing results
So far, the results of parsing have been determined by the parsers and combinators used in
it—if a parser uses the tuple combinator with three items, the result is a tuple of three
items. This is seldom what is desired. For example, we want to either omit some items of
the resulting tuple or add a fixed item, or to swap the items.

Assume that we want to parse the abc string, but in the result we want to omit b, keeping
only ac. For that purpose, we must postprocess the result of the parsing in the following
way:

extern crate nom;
use nom::{character::complete::char, sequence::tuple, IResult};

fn parse_abc_to_ac(input: &str) -> IResult<&str, (char, char)> {
 tuple((char('a'), char('b'), char('c')))(input)
 .map(|(rest, result)| (rest, (result.0, result.2)))
}

fn main() {
 println!("abc: {:?}", parse_abc_to_ac("abc"));
}

It will print the following output:

abc: Ok(("", ('a', 'c')))

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[240]

Of course, the result of our parser now contains just a pair—(char, char). The
postprocessing is seen in the second line of the body. It uses a map function that is not the
one seen in the preceding example; it belongs to the Result type. Such a method receives a
closure that gets the Ok variant of the result and returns a new Ok variant with the
appropriate types. If the type had been made explicit, then that code would have been as
follows:

.map(|(rest, result): (&str, (char, char, char))|
 -> (&str, (char, char)) {
 (rest, (result.0, result.2))
}

From the preceding code, the call to tuple returns a result whose Ok variant has
the (&str, (char, char, char)) type. The first element is the remaining input,
assigned to the rest variable, and the second element is the sequence of parsed char
values, assigned to the result variable.

Then, we must construct a pair with two items—that is, what we want as the remaining
input, and the pair of characters that we want as a result. As a remaining input, we specify
the same pair provided by tuple, while as a result, we specify (result.0,
result.2)—that is, the first and third parsed characters, which will be 'a' and 'c'.

Some of the following cases are quite typical:

A sequence of two parsers, needing to keep the result of the first parser and
discard the result of the second parser.
A sequence of two parsers, needing to discard the result of the first parser and
keep the result of the second parser.
A sequence of three parsers, needing to keep the result of the second parser and
discard the results of the first and third parsers. This is typical of parenthesized
expressions or quoted text.

For these previous cases, the mapping technique can be applied too, but Nom contains
some specific combinators, detailed as follows:

preceded(a, b): This keeps only the result of b.
terminated(a, b): This keeps only the result of a.
delimited(a, b, c): This keeps only the result of b.

In the next section, we'll see how to parse a specified number of characters and return the
parsed characters.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[241]

Parsing a variable text
The parsing we have done so far is of very limited usefulness, as we just checked that the
input respected a language, without the possibility of accepting arbitrary text or numbers.

Say we want to parse a text that begins with an n character followed by two other arbitrary
characters, and we want to process only the latter two characters. This can be done with the
take built-in parser, shown in the following code snippet:

extern crate nom;
use nom::{bytes::complete::take, character::complete::char,
sequence::tuple, IResult};

fn parse_variable_text(input: &str)
 -> IResult<&str, (char, &str)> {
 tuple((char('n'), take(2usize)))(input)
}

fn main() {
 println!("nghj: {:?}", parse_variable_text("nghj"));
 println!("xghj: {:?}", parse_variable_text("xghj"));
 println!("ng: {:?}", parse_variable_text("ng"));
}

It will print the following output:

nghj: Ok(("j", ('n', "gh")))
xghj: Err(Error(("xghj", Char)))
ng: Err(Error(("g", Eof)))

The first invocation is a successful one. The n character is skipped by char('n'), and two
other characters are read by take(2usize). This parser reads as many characters as
specified by its argument (that must be an unsigned number), and it returns this sequence
of bytes as a string slice. To read a single character, just call take(1usize), which will
return a string slice anyway.

The second invocation fails because the starting n is missing. The third invocation fails
because after the starting n, there are fewer than two characters, and so the Eof (short
for End-Of-File) error is generated.

In the next section, we will see how to parse a sequence of one or more patterns by
applying a given parser repeatedly.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[242]

Repeating a parser
It is quite common to need to parse a sequence of repeated expressions, each recognized by
a parser. So, that parser must be applied several times, until it fails. Such repetition is done
by a couple of combinators—namely, many0 and many1.

The former will succeed even if no occurrence of the expression is parsed—that is, it is a
zero-or-more combinator. The latter will succeed only if at least one occurrence of the
expression is parsed—that is, it is a one-or-more combinator. Let's see how to recognize a
sequence of one or more abc strings, as follows:

extern crate nom;
use nom::{bytes::complete::take, multi::many1, IResult};

fn repeated_text(input: &str) -> IResult<&str, Vec<&str>> {
 many1(take(3usize))(input)
}

fn main() {
 println!(": {:?}", repeated_text(""));
 println!("ab: {:?}", repeated_text("abc"));
 println!("abcabcabc: {:?}", repeated_text("abcabcabc"));
}

It will print the following output:

: Err(Error(("", Eof)))
abc: Ok(("", ["abc"]))
abcabcabcx: Ok(("x", ["abc", "abc", "abc"]))

The first invocation fails because the empty string does not contain any occurrences of abc.
If the many0 combinator had been used, this invocation would have succeeded.

The two other invocations succeed anyway and return a Vec of the occurrences found.

In this section, we have presented the most popular parsing techniques: compiler-compilers
and parser combinators. They are useful both to build interpreters and compilers. Then, we
introduced the Nom parser combinator library that will be used in the rest of this chapter,
and also in part of the next chapter.

Now, we have seen enough of Nom to begin to see the first project of this chapter.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[243]

The calc_parser project
This project is a parser of the Calc language. It is a program that can examine a string and
detect if it respects the syntax of the Calc language, using a context-free parser, and, in
such cases, extracts the logical structure of such a string, according to the grammar of the
language. Such a structure is often named a syntax tree as it has the shape of a tree, and it
represents the syntax of the parsed text.

A syntax tree is an internal data structure, and so usually it is not to be seen by a user, nor
to be exported. For debugging purposes, though, this program will pretty-print this data
structure to the console.

The program built by this project expects a Calc language file as a command-line
argument. In the data folder of the project, there are two example
programs—namely, sum.calc and bad_sum.calc.

The first one is sum.calc, given as follows:

@a
@b
>a
>b
<a+b

It declares the two variables a and b, then it asks the user to enter values for them, and it
prints the sum of their value.

The other program, bad_sum.calc, is identical to the former, except for the second
line—that is, @d—representing a typo because later on, the undeclared b variable is used.

To run the project on the first example Calc program, go into the calc_parser folder, and
type the following:

cargo run data/sum.calc

Such a command should print the following text on the console:

Parsed program: [
 Declaration(
 "a",
),
 Declaration(
 "b",
),
 InputOperation(

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[244]

 "a",
),
 InputOperation(
 "b",
),
 OutputOperation(
 (
 (
 Identifier(
 "a",
),
 [],
),
 [
 (
 Add,
 (
 Identifier(
 "b",
),
 [],
),
),
],
),
),
]

From the preceding code, first, there is a declaration of the "a" identifier, then of the
"b" identifier, then an input operation on a variable named "a", then one on a variable
named "b", and then there is an output operation with a lot of parentheses.

The first open parenthesis under OutputOperation represents the beginning of the
expression item that, according to the grammar presented previously, must appear in any
output operation statement. Such an expression contains two items—a term and a list of
operator-term pairs.

The first term contains two items—a factor and a list of operator-factor pairs. The factor is
the "a" identifier, and the list of operator-factor pairs is empty. Then, let's pass this to the
list of operator-term pairs. It contains just one item, in which the operator is Add, and the
term is again a factor followed by a list of operator-factor pairs. The factor is
the "b" identifier, and the list is empty.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[245]

If the cargo run data/bad_sum.calc command runs, no error is detected, as this
program only performs a syntax analysis without checking the semantic context. The
output is the same, except for the sixth line—that is, "d" instead of "b".

Now, let's examine the source code of the Rust program. The only external crate is Nom, a
library used just for the lexical and syntax analysis passes (and therefore used by all the
projects of this chapter, because all of them need parsing).

There are two source files—main.rs and parser.rs. Let's look at the main.rs source file
first.

Understanding the main.rs source file
The main.rs source file contains just the main function and the process_file function.
The main function just checks if the command line contains an argument and passes it to
the process_file function, together with the path of the executable Rust program.

The process_file function checks that the command-line argument ends with
.calc—that is, the only expected file type, then it reads the contents of that file into
the source_code string and parses that string by
calling parser::parse_program(&source_code), contained in the parser.rs source
file.

Such a file is, of course, a parser for the whole program, and so it returns a Result value.
The Ok variant of such a return value is a pair composed of the remaining code and the
syntax tree. The syntax tree is then pretty-printed by the statement given as follows:

println!("Parsed program: {:#?}", parsed_program);

When the small sum.calc file, having only five lines and 17 characters, is processed, this
single println! statement emits the long output shown before, having 35 lines and 604
bytes. Of course, the output is longer for longer programs.

Next, let's look at the parser.rs source file.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[246]

Learning about the parser.rs source file
The parser.rs source file contains a parser function for each syntax element of the
grammar of the language. These functions are detailed as follows:

Function Description
parse_program This parses a whole Calc program.
parse_declaration This parses a Calc declaration statement, such as @total.
parse_input_statement This parses a Calc input statement, such as >addend.
parse_output_statement This parses a Calc output statement, such as <total.

parse_assignment
This parses a Calc assignment statement, such as total := addend *
2.

parse_expr
This parses a Calc expression, such as addend * 2 + val / (incr +
1).

parse_term This parses a Calc term, such as val / (incr + 1).
parse_factor This parses a Calc factor, such as incr, or 4.56e12, or (incr + 1).
parse_subexpr This parses a Calc parenthesized expression, such as (incr + 1).
parse_identifier This parses a Calc identifier, such as addend.
skip_spaces This parses a sequence of zero or more white spaces.

With respect to the grammar previously declared, some explanation is due—the
parse_subexpr parser has the task to parse the (<expr>) sequence, discarding the
parentheses and parsing the <expr> initial expression using parse_expr.
The skip_spaces function is a parser whose task is to parse zero or more white spaces
(spaces, tabs, newline characters), with the purpose of ignoring them.

All the other preceding functions, in the case of success, return a data structure
representing the parsed code.

There is no parser for literal numbers, as the built-in double parser will be used to parse
floating-point numbers.

Understanding the types needed by the parser
In this file, in addition to the parsers, several types are defined to represent the structure of
the parsed program. The most important type is defined as follows:

type ParsedProgram<'a> = Vec<ParsedStatement<'a>>;

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[247]

The preceding code snippet just says that a parsed program is a vector of parsed
statements.

Notice the lifetime specification. To keep the best performance, memory allocation is
minimized. Of course, vectors are allocated, but the parsed string is not allocated; they are
string slices referencing the input string. Therefore, the syntax tree is dependent on the
input string, and its lifetime must be shorter than that of the input string.

The preceding declaration uses the ParsedStatement type, which is declared in the
following way:

enum ParsedStatement<'a> {
 Declaration(&'a str),
 InputOperation(&'a str),
 OutputOperation(ParsedExpr<'a>),
 Assignment(&'a str, ParsedExpr<'a>),
}

The preceding code snippet says that a parsed statement can be one of the following:

A declaration encapsulating the name of the variable that is being declared
An input statement encapsulating the name of the variable that is going to
receive an input value
An output operation encapsulating a parsed expression whose value is going to
be printed
An assignment encapsulating the name of the variable that is going to receive a
calculated value and a parsed expression, whose value is going to be assigned to
the variable

This declaration uses the ParsedExpr type, which is declared as follows:

type ParsedExpr<'a> = (ParsedTerm<'a>, Vec<(ExprOperator,
ParsedTerm<'a>)>);

From the preceding code snippet, a parsed expression is a pair composed of a parsed term
and zero or more pairs, with each pair composed of an expression operator and a parsed
term.

An expression operator is defined as enum ExprOperator { Add, Subtract }, while a
parsed term is defined as follows:

type ParsedTerm<'a> = (ParsedFactor<'a>, Vec<(TermOperator,
ParsedFactor<'a>)>);

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[248]

We can see that a parsed term is a pair composed of a parsed factor and zero or more pairs,
with each pair composed of a term operator and a parsed factor. A term operator is defined
as enum TermOperator { Multiply, Divide }, while a parsed factor is defined as
follows:

enum ParsedFactor<'a> {
 Literal(f64),
 Identifier(&'a str),
 SubExpression(Box<ParsedExpr<'a>>),
}

This declaration says that a parsed factor can be a literal encapsulating a number, or an
identifier encapsulating the name of that variable, or a subexpression encapsulating a
parsed expression.

Notice the use of Box. This is required because any parsed expression contains a parsed
term that contains a parsed factor of an enum capable of containing a parsed expression.
And so, we have an endless recursion of containment. If we use a Box, we allocate memory
out of the main structure.

So, we have seen all the definitions of the types that will be used by the parser code. Now,
let's see the code, in a top-down fashion.

Looking at the parser code
We can now see the code used to parse a whole program. The following code snippet
shows the entry point of the parser:

pub fn parse_program(input: &str) -> IResult<&str, ParsedProgram> {
 many0(preceded(
 skip_spaces,
 alt((
 parse_declaration,
 parse_input_statement,
 parse_output_statement,
 parse_assignment,
)),
))(input)
}

Notice that its result type is ParsedProgram, which is a vector of parsed statements.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[249]

The body uses the many0 parser combinator to accept zero or more statements (an empty
program is considered valid). Actually, to parse a statement, the preceded combinator is
used, to combine two parsers and discard the output of the first one. Its first argument is
the skip_spaces parser, and so it simply skips possible spaces between statements. The
second argument is the alt combinator, to accept alternatively one of the four possible
statements.

The many0 combinator generates a vector of objects, with such objects generated by the
argument of the combinator. Such arguments generate parsed statements, and so we have
the needed vector of parsed statements.

So, to summarize, this function accepts zero or more statements, possibly separated by
white spaces. The accepted statements can be declarations, input statements, output
statements, or assignments. The value returned by the function in the case of success is a
vector whose elements are representations of the parsed statements.

The parser of Calc declarations is given as follows:

fn parse_declaration(input: &str) -> IResult<&str, ParsedStatement> {
 tuple((char('@'), skip_spaces, parse_identifier))(input)
 .map(|(input, output)| (input,
ParsedStatement::Declaration(output.2)))
}

From the preceding code snippet, a declaration must be a sequence of the @ character,
optional spaces, and an identifier; so, the tuple combinator is used to chain such parsers.
However, we are not interested in that initial character nor in those white spaces. We want
just the text of the identifier, encapsulated in ParsedStatement.

Therefore, after applying the tuple, the result is mapped to a Declaration object whose
argument is the third item generated by the tuple.

The following code snippet shows the parser of a Calc input statement:

fn parse_input_statement(input: &str) -> IResult<&str, ParsedStatement> {
 tuple((char('>'), skip_spaces, parse_identifier))(input)
 .map(|(input, output)| (input,
ParsedStatement::InputOperation(output.2)))
}

The parser of a Calc input statement is quite similar to the preceding parser. It just looks
for the > character and returns an InputOperation variant that encapsulates the string
returned by parse_identifier.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[250]

The following code snippet shows the parser of a Calc output statement:

fn parse_output_statement(input: &str) -> IResult<&str, ParsedStatement> {
 tuple((char('<'), skip_spaces, parse_expr))(input)
 .map(|(input, output)| (input,
ParsedStatement::OutputOperation(output.2)))
}

Also, the parser from the preceding code is similar to the two preceding parsers. It just
looks for the < character, parses an expression instead of an identifier, and returns an
OutputOperation that encapsulates the parsed expression returned by parse_expr.

The last kind of Calc statement is an assignment. Its parser is shown in the following code
snippet:

fn parse_assignment(input: &str) -> IResult<&str, ParsedStatement> {
 tuple((
 parse_identifier,
 skip_spaces,
 tag(":="),
 skip_spaces,
 parse_expr,
))(input)
 .map(|(input, output)| (input, ParsedStatement::Assignment(output.0,
output.4)))
}

This is somewhat different from the preceding statement's parsers. It chains five
parsers—for an identifier, some possible spaces, the := string, some possible spaces, and an
expression. The result is an Assignment variant that encapsulates the first and the last
parsed items of the tuple—that is, the identifier string and the parsed expression.

We have encountered the use of the expression parser, which is defined as follows:

fn parse_expr(input: &str) -> IResult<&str, ParsedExpr> {
 tuple((
 parse_term,
 many0(tuple((
 preceded(
 skip_spaces,
 alt((
 map(char('+'), |_| ExprOperator::Add),
 map(char('-'), |_| ExprOperator::Subtract),
)),
),
 parse_term,
))),

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[251]

))(input)
}

From the preceding code, to parse an expression, a term must first be parsed
(parse_term), and then zero or more (many0) pairs (tuple) of an operator and a term
(parse_term). The operator can be preceded by white spaces (skip_spaces) that must be
discarded (preceded), and it can be alternatively (alt) a plus character (char('+') or a
minus character (char('-'). But we want to replace (map) such characters with
the ExprOperator values. The resulting object already has the expected type, and so no
other map transformation is needed.

The parser of a term is similar to the parser of an expression. Here it is:

fn parse_term(input: &str) -> IResult<&str, ParsedTerm> {
 tuple((
 parse_factor,
 many0(tuple((
 preceded(
 skip_spaces,
 alt((
 map(char('*'), |_| TermOperator::Multiply),
 map(char('/'), |_| TermOperator::Divide),
)),
),
 parse_factor,
))),
))(input)
}

The only differences between parse_expr and parse_term are the following ones:

Where parse_expr calls parse_term, parse_term calls parse_factor.
Where parse_expr maps the '+' character to the ExprOperator::Add value,
and the '-' character to the ExprOperator::Subtract value, parse_term
maps the '*' character to the TermOperator::Multiply value,
and the '/' character to the TermOperator::Divide value.
Where parse_expr has a ParsedExpr type in the return value type,
parse_term has a ParsedTerm type.

The parser of a factor again follows the relative grammar rule, and the definition of its
return type, ParsedFactor, as illustrated in the following code snippet:

fn parse_factor(input: &str) -> IResult<&str, ParsedFactor> {
 preceded(
 skip_spaces,

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[252]

 alt((
 map(parse_identifier, ParsedFactor::Identifier),
 map(double, ParsedFactor::Literal),
 map(parse_subexpr, |expr|
 ParsedFactor::SubExpression(Box::new(expr))
),
)),
)(input)
}

This parser discards possible initial spaces and then parses alternatively an identifier, a
number, or a subexpression. The parser of the number is double, a Nom built-in function
that parses numbers according to the syntax of Rust f64 literals.

All the returned types of these parses are wrong, so, the map combinator is used to generate
their return value. For identifiers, it is enough to cite the Identifier variant that will be
constructed automatically using as an argument the value returned by
the parse_identifier function. An equivalent and more verbose code would
be map(parse_identifier, |id| ParsedFactor::Identifier(id)).

Similarly, literals are converted from the f64 type to the ParsedFactor::Literal(f64)
type, and subexpressions are boxed and encapsulated in a SubExpression variant.

The parse of the subexpression must just match and discard spaces and parentheses, shown
in the following code snippet:

fn parse_subexpr(input: &str) -> IResult<&str, ParsedExpr> {
 delimited(
 preceded(skip_spaces, char('(')),
 parse_expr,
 preceded(skip_spaces, char(')')),
)(input)

The inner parse_expr parser is the only one that passes its output to the result. To parse
an identifier, a built-in parser is used, shown as follows:

fn parse_identifier(input: &str) -> IResult<&str, &str> {
 alpha1(input)
}

The alpha1 parser returns a string of one or more letters. Digits and other characters are
not allowed. Usually, this would not be named parser, but lexical analyzer, or lexer, or
scanner, or tokenizer, but Nom makes no distinction.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[253]

And lastly, the small parser (or lexer) to process spaces is shown as follows:

fn skip_spaces(input: &str) -> IResult<&str, &str> {
 let chars = " \t\r\n";
 take_while(move |ch| chars.contains(ch))(input)
}

It uses a combinator we have not yet seen—take_while. It receives as argument a closure
returning a Boolean (that is, predicate). Such a closure is invoked on any input character. If
the closure returns true, the parser goes on or otherwise stops. So, it returns the maximum
sequence of input characters for which the predicate value is true.

In our case, the predicate checks whether the character is contained in a slice of four
characters.

So, we have seen all our parsers for the Calc language. Of course, real-world parsers are
much more complex, but the concepts are the same.

In this section, we have seen how the Nom library can be used to parse a program written
in the Calc language, using a CFG. This is preliminary to applying a context-sensitive
grammar (CSG), and then an interpreter or a compiler.

Notice that this program parser considers any sequence of characters to be a valid
identifier, without checking whether a variable is defined before being used, or whether a
variable is not defined several times. For such checks, further processing must be
performed. This will be seen in the next project.

The calc_analyzer project
The preceding project followed a CFG to construct a parser. This is very nice, but there is a
big problem: the Calc language is not context-free. In fact, there are two problems, as
follows:

Any use of a variable in input statements, output statements, and assignments
must be preceded by a declaration of that variable.
Any variable must not be declared more than once.

Such requirements cannot be expressed in a context-free language.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[254]

In addition, Calc has just one data type—that is, floating-point numbers—but consider if it
also had a string type. You can add subtract two numbers, but you cannot subtract two
strings. If a variable named a is declared of type number and a variable named b is declared
of type string, you cannot assign a to b, or vice versa.

In general, the operations allowed on a variable depend on the type used to declare that
variable. And also, this constraint cannot be expressed in a CFG.

Instead of defining a formal context-dependent grammar (CDG) that would be hard to
specify and to parse, the usual path is to define such rules, called semantic rules, in an
informal way, and then to postprocess the syntax tree to check the validity of such rules.

Here, we will call the module that performs such semantic checks analyzer (using a
semantic checker that verifies some constraints on variables, such as the fact that they must
be defined before being used, and the fact that variables cannot be defined more than once),
and calc_analyzer is the project that adds the module to the parser.

In the next section, we will see the architecture of the analyzer module.

Checking the variables of the parsed program
The analyzer starts where the parser finished—with a syntax tree containing strings of
identifiers, values of literals, and operators. So, it no longer needs the source code. To
accomplish its task, it visits such a tree and, every time it encounters a variable declaration,
it must ensure that it has not been declared already, while every time it encounters a
variable use, it must ensure it has already been declared.

To perform such tasks without wandering around the syntax tree, another data structure is
needed. Such a data structure is a collection of the variables already declared so far, while
the syntax tree is visited. When a variable declaration is encountered, the analyzer looks in
such a collection for a preceding declaration of the same variable; if it is found, it is a
double-declaration error; otherwise, an entry is added to the collection.

Also, when a variable use is encountered, the analyzer looks in such a collection for a
preceding declaration of the same variable, though this time, if it is not found, it is a
missing-declaration error. For our simple language, such a collection contains only
variables, but in more complex languages it will contain any kind of identifiers—constants,
functions, namespaces, and so on. An alternative name for the identifier is a symbol; so,
usually, this collection is named symbol table.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[255]

To perform variable checking of a Calc program, our symbol table just needs to store the
names of the variables, although we want our analyzer to perform some other tasks, which
will be useful if we want to build an interpreter. An interpreter, when it is running a
program, must store the values of the identifiers somewhere, not only their name, and as we
already have a collection of variables storing the name of each variable, we can reserve
space in the entry of a variable for the value of each variable. This will be useful when we
build an interpreter for Calc.

But that is more than what we can do in the analyzer, in preparation of an interpreter. The
interpreter must scan a kind of syntax tree to execute the statements, and when it
encounters a variable it must look for its value. The syntax tree generated by the parser
contains the identifiers of the variables, not their values, so the interpreter, every time it
finds a variable, should search the symbol table for that string.

But we want a fast interpreter, and string lookup is not so fast as using a pointer or an
index into an array. So, to prepare for fast interpretation, while the analyzer visits the
syntax tree, it replaces every identifier with an index of its position in the symbol table.
Well, a string cannot be replaced by a number in Rust, so one possible technique would be
to reserve an index field in the syntax tree, and fill that index when the variable is found in
the symbol table.

Here, another technique has been chosen. The analyzer, while visiting the syntax tree,
constructs a parallel analyzed tree, very similar in structure, but having indexes into the
symbol table instead of identifiers. Such a tree, together with the symbol table that reserves
space for the values of the variables, will be optimal for interpreting the program.

So, first of all, let's see what is done by this project. Open the calc_analyzer folder and
type the following: cargo run data/sum.calc.

The following output should appear on the console:

Symbol table: SymbolTable {
 entries: [
 (
 "a",
 0.0,
),
 (
 "b",
 0.0,
),
],
}
Analyzed program: [
 Declaration(

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[256]

 0,
),
 Declaration(
 1,
),
 InputOperation(
 0,
),
 InputOperation(
 1,
),
 OutputOperation(
 (
 (
 Identifier(
 0,
),
 [],
),
 [
 (
 Add,
 (
 Identifier(
 1,
),
 [],
),
),
],
),
),
]

The preceding code program, as with the one before that, does not have an output for the
user. It parses the source code into a syntax tree, and then analyzes that syntax tree,
constructing a symbol table and an analyzed program. The output is just the pretty-print of
such data structures.

The first structure dumped is the symbol table. It has two entries—the a variable, with 0.0
as its initial value, and the b variable, with 0.0 as its initial value.

Then, there is the analyzed program that is very similar to the parsed program printed by
the previous project. The only differences are that all the occurrences of "a" are replaced by
0, and all the occurrences of "b" are replaced by 1. These numbers are the positions of such
variables inside the symbol table.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[257]

The project extends the preceding project. The parser.rs source file is identical, and two
other files are added—symbol_table.rs and analyzer.rs. But let's start with
the main.rs file first.

Understanding the main.rs file
This file performs all that is done by the preceding project, except the final pretty-print,
which is replaced by the following lines:

 let analyzed_program;
 let mut variables = symbol_table::SymbolTable::new();
 match analyzer::analyze_program(&mut variables, &parsed_program) {
 Ok(analyzed_tree) => {
 analyzed_program = analyzed_tree;
 }
 Err(err) => {
 eprintln!("Invalid code in '{}': {}", source_path, err);
 return;
 }
 }

 println!("Symbol table: {:#?}", variables);
 println!("Analyzed program: {:#?}", analyzed_program);

From the preceding code snippet, the two data structures constructed by the analyzer are
first declared—analyzed_program is the syntax tree with the indexes to the variables, and
variables is the symbol table.

All the analysis is performed by the analyze_program function. If it succeeds, it will
return the analyzed program, and, in the end, the two structures are printed.

Now, let's examine the symbol table (symbol_table.rs) implementation.

Looking at the symbol_table.rs file
In the symbol_table.rs file, there is an implementation of the SymbolTable type, which
is a collection of the identifiers found in the source code. Each entry of a symbol table
describes a variable. Such an entry must contain at least the name of the variable. In a typed
language, it must also contain a representation of the data type of that variable,
though Calc doesn't need that, as it has only one data type.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[258]

If the language supports scoping in blocks, functions, classes, or larger structures
(compilation units, modules, namespaces, or packages), there must be several symbol tables
or a symbol table that specifies such scoping, though Calc doesn't need that, as it has only
one scope.

A symbol table is useful primarily for checking identifiers and for translating code into
another language, although it can also be used for interpreting code. When an interpreter is
evaluating an expression, it needs to get the current value of the variables used in such an
expression. A symbol table can be used to store the current value of any variable and
provide such values to the interpreter. So, if you want to support an interpreter, your
symbol table should also reserve space for the current values of the defined variables.

In the next project, we will create an interpreter, and so, to support it, here, we add to any
entry of our symbol table a field where the current value of the variable is stored. The type
of each entry of our symbol table will be (String, f64), where the first field is the name
of the variable, and the second one is the current value of the variable. This value field will
be accessed when interpreting a program.

How can our code access the entries of a symbol table? When analyzing the program, we
must search for a string, and so a hash table would offer top performance. However, when
interpreting the code, we can replace identifiers with indexes, and so using indexes into a
vector would offer top performance. Here, for simplicity, a vector has been chosen, which
anyway is good enough if there aren't many variables. So, our definition is given as follows:

struct SymbolTable {
 entries: Vec<(String, f64)>,
}

For the SymbolTable type, three methods are implemented, as shown in the following
code snippet:

fn new() -> SymbolTable
fn insert_symbol(&mut self, identifier: &str) -> Result<usize, String>
fn find_symbol(&self, identifier: &str) -> Result<usize, String>

The new method simply creates an empty symbol table.

The insert_symbol method tries to insert the specified identifier into a symbol table. If
there is no identifier with such a name, an entry is added for that name, with zero as the
default value, and the Ok result is the index of the new entry. Otherwise, the Error:
Identifier '{}' declared several times. message is returned in the Err result.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[259]

The find_symbol method tries to find the specified identifier in the symbol table. If it is
found, the Ok result is the index of the found entry. Otherwise, the Error: Identifier
'{}' used before having been declared. error message is returned in the Err
result.

Now, let's see the analyzer source file.

Glancing at the analyzer.rs file
As discussed before, the analysis phase reads the hierarchical structure created by the
parsing phase and constructs another hierarchical structure, having
the AnalyzedProgram type. So, this module must declare such a type and all the types it
needs, paralleling the ParsedProgram type, as follows:

type AnalyzedProgram = Vec<AnalyzedStatement>;

Any analyzed program is a sequence of analyzed statements, as illustrated in the following
code snippet:

enum AnalyzedStatement {
 Declaration(usize),
 InputOperation(usize),
 OutputOperation(AnalyzedExpr),
 Assignment(usize, AnalyzedExpr),
}

Any analyzed statement is any one of the following:

A declaration referring a variable by index
An input operation referring a variable by index
An output operation containing an analyzed expression
An assignment referring a variable by index and containing an analyzed
expression

Any analyzed expression is a pair of an analyzed term and a sequence of zero or more pairs
of an expression operator and an analyzed term, as illustrated in the following code
snippet:

type AnalyzedExpr = (AnalyzedTerm, Vec<(ExprOperator, AnalyzedTerm)>);

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[260]

Any analyzed term is a pair of an analyzed factor and a sequence of zero or more pairs of a
term operator and an analyzed factor, as illustrated in the following code snippet:

type AnalyzedTerm = (AnalyzedFactor, Vec<(TermOperator, AnalyzedFactor)>);

Any analyzed factor is a literal containing a 64-bit floating-point number, or an
identifier referring a variable by index, or a subexpression containing a reference to a heap-
allocated analyzed expression, as illustrated in the following code snippet:

pub enum AnalyzedFactor {
Literal(f64),
Identifier(usize),
SubExpression(Box<AnalyzedExpr>),
}

The entry point of the analyzer is shown in the following code snippet:

fn analyze_program(variables: &mut SymbolTable, parsed_program:
&ParsedProgram)
 -> Result<AnalyzedProgram, String> {
 let mut analyzed_program = AnalyzedProgram::new();
 for statement in parsed_program {
 analyzed_program.push(analyze_statement(variables, statement)?);
 }
 Ok(analyzed_program)
}

The analyze_program function, as with all the functions of this module, gets a mutable
reference to the symbol table, as they all must, directly or indirectly read and write
symbols. In addition, it gets a reference to a parsed program. If the function is successful, it
updates the symbol table and it returns an analyzed program; otherwise, it may leave
partially updated the symbol table and return an error message.

The body simply creates an empty analyzed program and processes all the parsed
statements, by calling analyze_statement. Any parsed statement is analyzed, and the
resulting analyzed statement is added to the analyzed program. For any failing analysis of
a statement, the generated error is returned immediately as an error of this function.

So, we need to know how to analyze statements, which is shown as follows:

fn analyze_statement(
 variables: &mut SymbolTable,
 parsed_statement: &ParsedStatement,
) -> Result<AnalyzedStatement, String> {
 match parsed_statement {
 ParsedStatement::Assignment(identifier, expr) => {
 let handle = variables.find_symbol(identifier)?;

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[261]

 let analyzed_expr = analyze_expr(variables, expr)?;
 Ok(AnalyzedStatement::Assignment(handle, analyzed_expr))
 }
 ParsedStatement::Declaration(identifier) => {
 let handle = variables.insert_symbol(identifier)?;
 Ok(AnalyzedStatement::Declaration(handle))
 }
 ParsedStatement::InputOperation(identifier) => {
 let handle = variables.find_symbol(identifier)?;
 Ok(AnalyzedStatement::InputOperation(handle))
 }
 ParsedStatement::OutputOperation(expr) => {
 let analyzed_expr = analyze_expr(variables, expr)?;
 Ok(AnalyzedStatement::OutputOperation(analyzed_expr))
 }
 }
}

The analyze_statement function matches the received parsed statements against the four
kinds of statements, extracting the member of the respective variants.

The identifier contained in declarations should never have been defined, and so it should
be absent from the symbol table. Therefore, when processing this kind of statement, this
identifier is inserted in the symbol table using the let handle =
variables.insert_symbol(identifier)? Rust statement. If the insertion fails, the
error is propagated out of this function. If the insertion succeeds, the position of the symbol
is stored in a local variable.

The identifier contained in assignments and in the input operations should have already
been defined, and so it should be contained in the symbol table. Therefore, when
processing this kind of statement, the identifiers are looked up in the symbol table using the
let handle = variables.find_symbol(identifier)? Rust statement.

The expressions contained in assignments and in output operations are analyzed by the
let analyzed_expr = analyze_expr(variables, expr)? Rust statement. If the
analysis fails, the error is propagated out of this function. If the analysis succeeds, the
resulting analyzed expression is stored in a local variable.

For any of the four Calc statement kinds, if no errors have been encountered, the function
returns a success result containing the respective analyzed statement variant.

So, we need to know how to analyze expressions, shown as follows:

fn analyze_expr(
 variables: &mut SymbolTable,
 parsed_expr: &ParsedExpr,

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[262]

) -> Result<AnalyzedExpr, String> {
 let first_term = analyze_term(variables, &parsed_expr.0)?;
 let mut other_terms = Vec::<(ExprOperator, AnalyzedTerm)>::new();
 for term in &parsed_expr.1 {
 other_terms.push((term.0, analyze_term(variables, &term.1)?));
 }
 Ok((first_term, other_terms))
}

The received parsed expression is a pair—&parsed_expr.0 is a parsed term and
&parsed_expr.1 is a vector of pairs of an expression operator and an analyzed term. We
want to construct an analyzed expression that has the same structure.

So, first, the first term is analyzed. Then, an empty list of pairs of an expression operator
and an analyzed term is created; this is the analyzed vector. Then, for each item of the
parsed vector, an item is constructed and added to the analyzed vector. Lastly, the pair of
the first analyzed term and the vector of the other analyzed terms are returned.

So, we need to know how to analyze terms, through the following code:

fn analyze_term(
 variables: &mut SymbolTable,
 parsed_term: &ParsedTerm,
) -> Result<AnalyzedTerm, String> {
 let first_factor = analyze_factor(variables, &parsed_term.0)?;
 let mut other_factors = Vec::<(TermOperator, AnalyzedFactor)>::new();
 for factor in &parsed_term.1 {
 other_factors.push((factor.0, analyze_factor(variables,
 &factor.1)?));
 }
 Ok((first_factor, other_factors))
}

The preceding routine is quite similar to the one before that. The first parsed factor is
analyzed to get the first analyzed factor, and the other parsed factors are analyzed to get the
other analyzed factors.

So, we need to know how to analyze factors. This is shown as follows:

fn analyze_factor(
 variables: &mut SymbolTable,
 parsed_factor: &ParsedFactor,
) -> Result<AnalyzedFactor, String> {
 match parsed_factor {
 ParsedFactor::Literal(value) =>
 Ok(AnalyzedFactor::Literal(*value)),
 ParsedFactor::Identifier(name) => {

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[263]

 Ok(AnalyzedFactor::Identifier(variables.find_symbol(name)?))
 }
 ParsedFactor::SubExpression(expr) =>
 Ok(AnalyzedFactor::SubExpression(
 Box::<AnalyzedExpr>::new(analyze_expr(variables, expr)?),
)),
 }
}

The logic of the analyze_factor function is this:

If the parsed factor to analyze is a literal, an analyzed literal is returned,
containing the same value.
If it is an identifier, an analyzed identifier is returned, containing the index into
the symbol table where the parsed identifier is found. If it is not found, an error
is returned.
If the parsed factor to analyze is a subexpression, a subexpression is returned,
containing a boxed analyzed expression, obtained by analyzing the parsed
expression, if successful. If it fails, an error is returned.

So, we have completed the examination of the analyzer module.

In this section, we have seen how the result of the parser created in the previous section can
be analyzed, applying a CSG, which is needed to build an interpreter or a compiler. The
next project will show us how to use and execute an analyzed program.

The calc_interpreter project
At last, we have reached the project in which we can actually run our Calc programs.

To run it, enter the calc_interpreter folder, and type cargo run. After compilation, the
following text will appear on the console:

* Calc interactive interpreter *
>

The first line is an introduction message, and the second one is a prompt. Now, we type the
following as an example:

@a >a @b b := a + 2 <b

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[264]

After you press Enter, this Calc program is executed. The a variable is declared, and when
the input statement is executed, a question mark will appear on the console. Type 5 and
press Enter.

The program goes on by declaring the b variable, assigning to it the value of the a +
2 expression, and then printing 7 as the value of b. Then, the program finishes, and the
prompt reappears.

So, on the screen, there will be the following:

* Calc interactive interpreter *
> @a >a @b b := a + 2 <b
? 5
7
>

The interpreter, in addition, has some specific commands to be able to run Calc programs.
If instead of a command, you type v (for variables) and then Enter, you will see the
following:

> v
Variables:
 a: 5
 b: 7
>

This command has dumped the contents of the symbol table, showing all the variables
declared so far, with their current value. Now, you can type other Calc commands, using
such variables with their current values.

Another interpreter command is c (for clear variables), which empties the symbol table.
The last one is q (for quit), which terminates the interpreter.

And how are Calc commands executed? If you have an analyzed program tree, and the
associated symbol table containing space for the value of the variables, it is quite easy. It is
enough to apply semantics (that is, a behavior) to any analyzed element, and the program
will run by itself.

Also, this project extends the previous project. The parser.rs and analyzer.rs source
files are identical; some lines are added to the symbol_table.rs file, and one other file is
added—executor.rs. But let's start with the main.rs file.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[265]

Learning about the main.rs file
This file contains two functions in addition to the main functions—run_interpreter and
input_command.

The main function just calls run_interpreter, as that is the purpose of an
interpreter. This function has the following structure:

fn run_interpreter() {
 eprintln!("* Calc interactive interpreter *");
 let mut variables = symbol_table::SymbolTable::new();
 loop {
 let command = input_command();
 if command.len() == 0 {
 break;
 }
 <<process interpreter commands>>
 <<parse, analyze, and execute the commands>>
 }
}

After printing an introduction message and creating a symbol table, the function enters an
endless loop.

The first statement of the loop is a call to the input_command function, which reads a
command from the console (or from a file or a pipe, if the standard input is redirected).
Then, if EOF has been reached, the loop is exited, and so is the whole program.

Otherwise, the interpreter-specific commands are handled, and if in the input text there is
no such command, it is handled like a Calc program by parsing it and then analyzing the
parsed program, and then executing the analyzed program.

The following code block shows how interpreter commands are implemented:

match command.trim() {
 "q" => break,
 "c" => {
 variables = symbol_table::SymbolTable::new();
 eprintln!("Cleared variables.");
 }
 "v" => {
 eprintln!("Variables:");
 for v in variables.iter() {
 eprintln!(" {}: {}", v.0, v.1);
 }
 }

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[266]

A q (quit) command simply breaks out from the loop. A c (clear) command replaces the
symbol table with a new one. A v (variables) command iterates the symbol table entries,
and prints the name and the current value of each of them.

If the input text is not one of such one-letter commands, it is treated by the following code:

 trimmed_command => match parser::parse_program(&trimmed_command) {
 Ok((rest, parsed_program)) => {
 if rest.len() > 0 {
 eprintln!("Unparsed input: `{}`.", rest)
 } else {
 match analyzer::analyze_program(&mut variables,
 &parsed_program) {
 Ok(analyzed_program) => {
 executor::execute_program(&mut variables,
 &analyzed_program)
 }
 Err(err) => eprintln!("Error: {}", err),
 }
 }
 }
 Err(err) => eprintln!("Error: {:?}", err),
 },

The parser::parse_program function, if successful, creates a parsed program object. In
the case of an error or in the case that some input remains to be parsed, an error message is
printed and the command is discarded.

Otherwise, analyzer::analyze_program uses such a parsed program to create, if
successful, an analyzed program object. In the case of error, an error message is printed and
the command is discarded.

Lastly, the analyzed program is executed by the call to executor::execute_program.
Now, let's see what has changed in the symbol_table.rs file.

Glancing at the symbol_table.rs file
Three functions having the following signatures have been added to the implementation of
the SymbolTable type:

pub fn get_value(&self, handle: usize) -> f64
pub fn set_value(&mut self, handle: usize, value: f64)
pub fn iter(&self) -> std::slice::Iter<(String, f64)>

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[267]

The get_value function gets the value of a variable, given its index. The set_value
function sets the value of a variable, given its index and the value to assign. The
iter function returns a read-only iterator on the variables stored in the symbol table. For
each variable, a pair of the name and the value is returned.

And next, we see the module that implements the core of the interpreter.

Understanding the executor.rs file
This module does not declare types as it uses only the ones declared in the other modules.
The entry point is the function capable of executing whole programs, shown as follows:

pub fn execute_program(variables: &mut SymbolTable, program:
&AnalyzedProgram) {
 for statement in program {
 execute_statement(variables, statement);
 }
}

It receives a mutable reference to a symbol table and a reference to an analyzed program,
and simply calls the execute_statement function on any statement of that program.

The following code block shows the last function (this is more complex):

fn execute_statement(variables: &mut SymbolTable, statement:
&AnalyzedStatement) {
 match statement {
 AnalyzedStatement::Assignment(handle, expr) => {
 variables.set_value(*handle, evaluate_expr(variables, expr));
 }
 AnalyzedStatement::Declaration(handle) => {}
 AnalyzedStatement::InputOperation(handle) => {
 let mut text = String::new();
 eprint!("? ");
 std::io::stdin()
 .read_line(&mut text)
 .expect("Cannot read line.");
 let value = text.trim().parse::<f64>().unwrap_or(0.);
 variables.set_value(*handle, value);
 }
 AnalyzedStatement::OutputOperation(expr) => {
 println!("{}", evaluate_expr(variables, expr));
 }
 }
}

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[268]

According to the kind of statement being used, it performs different actions. For
assignments, it calls the evaluate_expr function to get the value of the associated
expression and uses set_value to assign that value to the associated variable.

For declarations, nothing needs to be done, because the insertion of the variable into the
symbol table and its initialization has already been done by the analyzer.

For input operations, a question mark is printed as a prompt, and a line is read and parsed
to an f64 number. If the conversion fails, zero is used. The value is then stored into the
symbol table as a new value of the variable.

For output operations, the expression is evaluated and the resulting value is printed. The
following code shows how to evaluate Calc expressions:

fn evaluate_expr(variables: &SymbolTable, expr: &AnalyzedExpr) -> f64 {
 let mut result = evaluate_term(variables, &expr.0);
 for term in &expr.1 {
 match term.0 {
 ExprOperator::Add => result += evaluate_term(variables,
 &term.1),
 ExprOperator::Subtract => result -= evaluate_term(variables,
 &term.1),
 }
 }
 result
}

First, the first term is evaluated by calling the evaluate_term function, and its value is
stored as a provisional result.

Then, for every other term, the term is evaluated and the obtained value is added or
subtracted to the provisional result, according to the kind of expression operator being
used.

The following code block shows how to evaluate Calc terms:

fn evaluate_term(variables: &SymbolTable, term: &AnalyzedTerm) -> f64 {
 let mut result = evaluate_factor(variables, &term.0);
 for factor in &term.1 {
 match factor.0 {
 TermOperator::Multiply => result *= evaluate_factor(
 variables, &factor.1),
 TermOperator::Divide => result /= evaluate_factor(
 variables, &factor.1),
 }
 }

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[269]

 result
}

The preceding code block shows a function that is similar to the one before it. It uses
the evaluate_factor function to evaluate all the factors of the current term, as illustrated
in the following code snippet:

fn evaluate_factor(variables: &SymbolTable, factor: &AnalyzedFactor) -> f64
{
 match factor {
 AnalyzedFactor::Literal(value) => *value,
 AnalyzedFactor::Identifier(handle) => variables.get_value(*handle),
 AnalyzedFactor::SubExpression(expr) => evaluate_expr(variables,
expr),
 }
}

To evaluate a factor, the kind of factor is taken into account. The value of literal is just the
contained value. The value of identifier is obtained for the symbol table, by calling
get_value.

The value of SubExpression is obtained by evaluating the expression contained in it. So,
we have seen all that is needed to execute a Calc program interactively.

In this section, we have seen how the result of the context-sensitive analysis of a Calc
program can be used to interpret that program. Such an interpretation can be interactive,
through a read-eval-print loop (REPL) or by processing a file written in the Calc language.

In the next project, we will see how to translate a Calc program into a Rust program.

The calc_compiler project
Having an analyzed program (and its matching symbol table), it is easy also to create a
program that translates it into another language. To avoid introducing a new language, the
Rust language has been used here as a target language, but translating to other high-level
languages would be no more difficult.

To run it, go into the calc_compiler folder and type cargo run data/sum.calc. After
compiling the project, the program will print the following:

Compiled data/sum.calc to data/sum.rs

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[270]

If you go into the data subfolder, you will find the new sum.rs file, containing the
following code:

use std::io::Write;

#[allow(dead_code)]
fn input() -> f64 {
 let mut text = String::new();
 eprint!("? ");
 std::io::stderr().flush().unwrap();
 std::io::stdin()
 .read_line(&mut text)
 .expect("Cannot read line.");
 text.trim().parse::<f64>().unwrap_or(0.)
}

fn main() {
 let mut _a = 0.0;
 let mut _b = 0.0;
 _a = input();
 _b = input();
 println!("{}", _a + _b);
}

If you like, you can compile it using the rustc sum.rs command, and then you can run
the executable generated.

This file is always the same for any Calc program compiled, up to the line containing fn
main() {. The input routine is the Calc runtime library.

The remaining part of the Rust-generated code corresponds to the Calc statements. Notice
that all variables are mutable and initialized to 0.0, and so their type is f64. The name of
the variables begins with an underscore to prevent conflicts with Rust keywords.

Actually, this project also contains the interpreter seen in the preceding project. If you run
the project with no command-line argument, an interactive interpreter starts.

Let's see the source code next. Also, this project extends the preceding project.
The parser.rs, analyzer.rs, and executor.rs source files are identical; some lines are
added to the symbol_table.rs file, and one other file is added—compiler.rs.

To the symbol_table.rs file, only one small function has been added. Its signature is
shown as follows:

pub fn get_name(&self, handle: usize) -> String

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[271]

It allows the name of an identifier to be obtained, given its index.

But let's start with the main.rs file.

Glancing at the main.rs file
The main function begins by examining the command-line arguments. If there are no
arguments, the run_interpreter function is called, identical to that used in
the calc_interpreter project.

Instead, if there is one argument, the process_file function is called on it. This is similar
to that used in the calc_analyzer project. There are only two differences. One is the
insertion of the statement, shown in the following code snippet:

let target_path = source_path[0..source_path.len() -
CALC_SUFFIX.len()].to_string() + ".rs";

This generates the path of the resulting Rust file. The other is the replacement of the two
ending statements, which print the result of the analysis, with the following code:

match std::fs::write(
 &target_path,
 compiler::translate_to_rust_program(&variables, &analyzed_program),
) {
 Ok(_) => eprintln!("Compiled {} to {}.", source_path, target_path),
 Err(err) => eprintln!("Failed to write to file {}: ({})", target_path,
err),
}

This performs the translation into Rust code, obtaining a multiline string, and writes that
string into the target file.

So, we need to examine the compiler module, defined in the compiler.rs source file.

Understanding the compiler.rs file
This module does not define types, as it uses those defined in the other modules. As with
the parser, the analyzer, and the interpreter, it has a function for every language construct,
and it performs the translation by visiting the analyzed program tree.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[272]

The entry point begins with the following code:

pub fn translate_to_rust_program(
 variables: &SymbolTable,
 analyzed_program: &AnalyzedProgram,
) -> String {
 let mut rust_program = String::new();
 rust_program += "use std::io::Write;\n";
 ...

This function, as with all the others in this module, gets immutable references to the symbol
table and to the analyzed program. It returns a String containing Rust code. An empty
string is first created, and then the required lines are appended to it.

The final part of this function is shown in the following code block:

 ...
 for statement in analyzed_program {
 rust_program += " ";
 rust_program += &translate_to_rust_statement(&variables,
 statement);
 rust_program += ";\n";
 }
 rust_program += "}\n";
 rust_program
}

For any Calc statement, the translate_to_rust_statement function is called, and the
Rust code returned by it is appended to the string.

The body of the function that translates a Calc statement into Rust code is shown as
follows:

match analyzed_statement {
 AnalyzedStatement::Assignment(handle, expr) => format!(
 "_{} = {}",
 variables.get_name(*handle),
 translate_to_rust_expr(&variables, expr)
),
 AnalyzedStatement::Declaration(handle) => {
 format!("let mut _{} = 0.0", variables.get_name(*handle))
 }
 AnalyzedStatement::InputOperation(handle) => {
 format!("_{} = input()", variables.get_name(*handle))
 }
 AnalyzedStatement::OutputOperation(expr) => format!(
 "println!(\"{}\", {})",
 "{}",

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[273]

 translate_to_rust_expr(&variables, expr)
),
}

To translate an assignment, the name of the variable is obtained from the symbol table
by calling the get_name function, and the code corresponding to the expression is obtained
by calling the translate_to_rust_expr function. The same is done for the other
statements.

To translate an expression, the following function is used:

fn translate_to_rust_expr(variables: &SymbolTable, analyzed_expr:
&AnalyzedExpr) -> String {
 let mut result = translate_to_rust_term(variables, &analyzed_expr.0);
 for term in &analyzed_expr.1 {
 match term.0 {
 ExprOperator::Add => {
 result += " + ";
 result += &translate_to_rust_term(variables, &term.1);
 }
 ExprOperator::Subtract => {
 result += " - ";
 result += &translate_to_rust_term(variables, &term.1);
 }
 }
 }
 result
}

The terms are translated by calling the translate_to_rust_term function. The additions
and subtractions are translated using the " + " and " - " Rust string literals.

The translation of a term is quite similar to that of an expression, but using the term
operators and calls to the translate_to_rust_factor function instead.

The body of this function is defined as follows:

match analyzed_factor {
 AnalyzedFactor::Literal(value) => value.to_string() + "f64",
 AnalyzedFactor::Identifier(handle) => "_".to_string()
 + &variables.get_name(*handle),
 AnalyzedFactor::SubExpression(expr) => {
 "(".to_string() + &translate_to_rust_expr(variables, expr) + ")"
 }
}

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[274]

For translating a literal, it is converted to a string and "f64" is appended to force its type.
For translating an identifier, its name is taken from the symbol table. For translating a
subexpression, the inner expression is translated, and the result is enclosed in parentheses.

In this section, we have seen how to build a program in Rust that reads a Calc program
and writes an equivalent Rust program. Such a resulting program can then be compiled
using the rustc command.

Summary
In this chapter, we have seen some amount of theory of programming languages and the
algorithms used to process them.

In particular, we have seen that the syntax of programming languages can be expressed
using a formal grammar. There is a useful classification of formal grammars—regular
languages, context-free languages, and context-dependent languages.

Programming languages belong to the third category, but usually, they are first parsed as a
regular language by a lexer. The result is parsed as a context-free language by a parser and
is then analyzed to keep into account the context-dependent features.

We have seen the most popular techniques to process texts written in a formal language,
such as a programming language or a markup language—the compiler-compiler and the
parser combinator. In particular, we saw how to use the Nom crate, which is a parser
combinator library.

We saw many built-in parsers and parser combinators of Nom, and how to use them to
create our own parsers, writing many Rust programs that used Nom to parse simple
patterns. We defined the grammar of an extremely simple programming language, which
we named Calc, and we built some tiny programs using it. We built a context-free parser
for Calc that dumped on the console the data structure resulting from such a parsing
(calc_parser).

We built a context-dependent analyzer for Calc that dumped on the console the data
structure resulting from such an analysis (calc_analyzer). We built an interpreter for
Calc, using the parser and analyzer described in the preceding projects
(calc_interpreter). We built a compiler for Calc that could be used to translate a Calc
program to an equivalent Rust program (calc_compiler).

In the next chapter, we will be seeing another use of Nom and of parsing techniques,
for processing binary data.

Using a Parser Combinator for Interpreting and Compiling Chapter 8

[275]

Questions
What are regular languages, context-free languages, and context-dependent1.
languages?
What is the Backus-Naur form to specify the grammar of a language?2.
What is a compiler-compiler?3.
What is a parser combinator?4.
Why did Nom have to use only macros before the 2018 edition of Rust?5.
What do the tuple, alt, and map functions of the Nom library do?6.
What are the possible phases of an interpreter of a programming language,7.
without passing through an intermediate language?
What are the possible phases of a compiler?8.
What is the purpose of a symbol table, when analyzing the use of variables?9.
What is the purpose of a symbol table, when interpreting a program?10.

Further reading
The Nom project can be downloaded from https:/ ​/ ​github. ​com/ ​Geal/ ​nom. This repository
also contains some examples.

There are many textbooks about formal languages and about the software that manipulates
them. In particular, you may search Wikipedia for the following terms: compiler-
compiler, parser combinator, Backus-Naur form, syntax-directed translation.

https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom
https://github.com/Geal/nom

9
Creating a Computer Emulator

Using Nom
In the last chapter, we saw how to parse text files—in particular, how to program source
files in a simple programming language. Text files aren't the only thing you could need to
parse—several kinds of system software need to parse binary files (such as binary
executables, multimedia files, and inter-process communication messages).

In this chapter, we will look at how to cope with the need for parsing binary files and how
the nom library can be used to ease this task. First, we will look at how to parse and
interpret a very simple machine language without using an external library, and then how
the nom library can be used to ease this task.

To do this, we will cover the following topics:

Introducing a very simple machine language using only 16-bit words
Writing a couple of programs in this language
Writing a parser and an interpreter for this language and running it on the
previously presented programs
Defining a byte-addressing machine language derived from the previous one
Explaining the addressing issue (endianness) that emerges when a byte-
addressing machine language must handle words containing several bytes
Presenting a version in the new machine language of the previously presented
machine language program
Writing a parser and an interpreter for this language using the nom library and
running it on the machine language program
Writing a translator for the C language that converts the machine language
program into an equivalent C language program
Writing a couple of disassemblers—programs that convert machine language
programs into assembly language—and applying them to our machine language
program

Creating a Computer Emulator Using Nom Chapter 9

[277]

By the end of this chapter, you will have learned the main concepts of CPU architectures,
interpretation, and translating machine language.

Technical requirements
For the parts of this chapter referring to the nom library, knowledge of the preceding
chapter is required.

The complete source code for this chapter is found in the Chapter09 folder of the
repository at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for- ​Rust-
Programmers.

Project overview
In this chapter, first, the general concepts regarding machine languages will be presented.
Then, a very simple machine language will be presented. Of course, this will be quite
unrealistic to use as no real hardware exists to run it. It will simply be used to demonstrate
how to process it.

Then, a very simple algorithm will be written in the machine language—a formatter of
integer numbers. A Rust program to interpret this program will be written without using
an external library (word_machine_convert).

Then, a more complex program will be written in this machine language—the famous
algorithms invented by Eratosthenes to find prime numbers (named the sieve of
Eratosthenes). The previous Rust program will be used to interpret this machine language
program (word_machine_sieve).

Afterward, a somewhat more realistic machine language will be defined that is capable of
addressing single bytes instead of words. The issues raised by this machine language will
be explained. A new version of the sieve of Eratosthenes will be written in this updated
machine language and an interpreter will be written in Rust to run it. In addition, this Rust
program will translate the machine language program into C language. This interpreter and
compiler will use the nom library, already introduced in the previous chapter, to generate
an intermediate version of the program. This intermediate data structure will be both
interpreted and compiled to the C language (nom_byte_machine).

https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Creating a Computer Emulator Using Nom Chapter 9

[278]

Finally, a disassembler will be built for this machine language (nom_disassembler). It
will again use the nom library and it will show two kinds of disassembling—one meant to
aid debugging and the other meant to generate source code for an assembler; that is, a
program that translates symbolic code to machine language.

Introducing a very simple machine language
Real machine languages and real computers are way too complex to be covered in a single
chapter; therefore, we will use a toy machine language that is easier to process and
understand. In fact, two machine languages will be used:

The first language that we will use is the simpler one. For simplicity, it
addresses 16-bit words, instead of memory bytes.
The second language presented can address single bytes, as most modern
computers do.

Therefore, any program of the first language that we will use is just a sequence of 16-
bit words, and any program written in it can only manipulate 16-bit words.

Both machine languages use just one memory segment containing both machine code and
data. Here, there is no real distinction between code and data; instructions can read or write
both code and data and data can wrongly be executed as if it were instructions. Usually,
code, and some data as well (the so-called constants), is not meant to change, but here,
there is no guarantee.

In most computer architecture, the memory used by any process is
composed of several portions, named segments. The most common
memory segments are machine code (often named text), static data, heaps,
and stacks. Some segments can be read-only, while others may be
writable. Some segments may have a fixed size and others may be resized.
Some segments can be shared with other processes.

Let's look at some reasons why we might need to process machine language software:

Running a binary program for a computer when that computer is not available
(because it is too costly to buy or because it has not yet been built)
Debugging or analyzing a binary program when its source code is not available
and the computer that must run it is so resource-constrained that no debugger
can run on it
Disassembling machine code—that is, translating it into assembly code

Creating a Computer Emulator Using Nom Chapter 9

[279]

Translating a binary program into another machine language to run it natively in
a much faster way than by interpreting it
Translating a binary program into a high-level programming language to change
it easily and then to recompile it into any machine language

Writing a program directly in machine code is very error-prone, so no one does it. Anyone
that needs to write some machine language first writes that code in a symbolic language,
named assembly language, and then translates it into machine language. This translation
can be done manually or by using a specific program, named an assembler. Here, we don't
have an assembler for our programs, so we will translate the assembly code manually.
However, before describing our machine languages, let's look at some concepts relating to
machine language.

The most important concepts relating to machine
language
In any programming language, you need a way to specify variables and statements. In
addition, to document your code, you need a way to insert comments into the
program. The following code is a very simple program in assembly language, containing
the declaration of some variables, some instructions, and some comments:

// data
n
 word 17
m
 word 9
sum
 word 0
// code
 load n
 add m
 store sum
 terminate 0

The double backslashes (//) begin the comments. The first comment declares (for humans)
where the data section starts. The second comment declares where the code section starts.

Notice that, apart from comments, some lines are indented and others
aren't. Actual declarations and instructions must be indented. Lines
written in the first column are labels that mark positions in the program.

Creating a Computer Emulator Using Nom Chapter 9

[280]

In the preceding code, there is some data, as shown in the first line. Every data item is a
word, and so it is declared using the word keyword. At position n, there is a word whose
initial value is 17. At position m, there is another word whose initial value is 9 and
at position sum, there is a word whose initial value is 0.

Then, there are four instructions, each on a different line. Each instruction has two parts:

Operation Code (opcode): This is a command for the processor.
Operand: This is the argument for an opcode command—that is, the data on
which the command operates.

All machine language is designed for specific computer architecture. The computer meant
to run this program has just two 16-bit CPU registers:

One to keep the data word to manipulate, named the accumulator
One to keep the address of the next instruction to execute, named the instruction
pointer (or program counter)

The first instruction of the program is load n. This instruction is equivalent to
the accumulator = n; Rust statement. It copies the current value of the word that is at
the address labeled with n in the accumulator.

The second instruction is add m. This is equivalent to the accumulator += m; Rust
statement. It adds the value of the word that is at the address labeled with m to the value
currently contained in the accumulator and it stores the result into the accumulator.

The third instruction is store sum. This is equivalent to the sum = accumulator; Rust
statement. It copies the current value of the accumulator into the word that is at the address
labeled with sum.

The last instruction is terminate 0. This terminates the execution of the program
(returning control to the operating system, if there is one) and it returns a value of 0 to
the process that launched this program (if there is one).

So, if we follow the effect of the instructions on the data, we find that this program starts
with the three data words containing 17, 9, and 0 and ends with them containing 17, 9, and
26.

However, to run this program, we need to translate it into machine language.

Creating a Computer Emulator Using Nom Chapter 9

[281]

Here, a distinction between the words program and process is needed. A machine
language program is the machine code that exists before running it. t is either stored in a
storage device or ROM. Instead, a process is found in the RAM area in which the program
is loaded and run. This distinction is particularly important in multiprocessing systems,
where you may have several processes running on the same program, but it is also
important in systems running one process at a time.

Let's assume that our machine requires any program to have the following structure:

 Length of the process
 First instruction

 Second instruction
 Third instruction

 ...
 Last instruction

 First word of data
 Second word of data
 Third word of data

 ...

This table shows that the first word of the program is meant to be the length of the whole
process in words. The words after it are meant to be instructions in machine language. The
words that follow the last instruction of the program are meant to be data.

In the preceding program, we have four instructions, and each of them uses one word for
the opcode and one for the operand. Therefore, eight words are occupied by four
instructions. If we add together the initial word containing the length of the process and the
three words occupied by the three variables (one word per variable), we get 1 + 8 + 3 = 12
words. This is the size of the memory space used by this program, measured in words. If
we set this number as the initial word of the program, it means that we need exactly that
memory in our process.

If we lay out the instructions and data, we get the following array of words for our process:

Position Contents
0 The length of the process
1 The opcode of the load instruction
2 The n operand
3 The opcode of the add instruction
4 The m operand
5 The opcode of the store instruction

Creating a Computer Emulator Using Nom Chapter 9

[282]

6 The sum operand
7 The opcode of the terminate instruction
8 The 0 operand
9 Data 17
10 Data 9
11 Data 0

The position of any word is its distance from the beginning of the program measured in
words. Any position is named the address of the word, as this number allows us to access
the word in the process.

Machine language does not use labels; it only uses addresses. So, to translate the assembly
code into machine language, we must replace the use of labels with memory addresses. The
address of the first word is, by definition, 0. The address of the first instruction is 1. Any
instruction is two-words long, and so the address of the second instruction is 1 + 2 = 3. The
address after the last instruction—that is, the address of the first data word, labeled by
n—is 9. The address of the second data word, labeled m, is 10. The address of the last data
word, labeled sum, is 11.

After adding the initial length, moving the instructions before the data, and replacing the
labels, our program becomes the following:

12
load 9
add 10
store 11
terminate 0
word 17
word 9
word 0

Then, we must replace every symbolic code with its corresponding machine language
opcode, which is a unique number.

Let's assume the following correspondence between the opcode and symbolic instruction
code:

0 = terminate
1 = load
2 = store
3 = add

Creating a Computer Emulator Using Nom Chapter 9

[283]

The word keyword does not actually generate instructions. So, our program becomes the
following:

12
1: 9
3: 10
2: 11
0: 0
17
9
0

Of course, these numbers will be stored as a vector of binary numbers. So, in Rust, it will be
the following:

let mut program: Vec<u16> = vec![12, 1, 9, 3, 10, 2, 11, 0, 0, 17, 9, 0];

So, we have been able to manually translate an assembly language program into a machine
language program. However, we used a very small machine language containing only four
kinds of instructions—that is, only four different opcodes. To carry out useful work, some
more kinds of instructions are needed.

Extending our machine language
The machine language that we saw in the preceding section is only capable of making
additions and it has no input/output capabilities. Such a limited language is not very
interesting. So, to have a language that can be used to build meaningful programs, let's add
some kinds of instruction to our machine language.

Our assembly language (and its corresponding machine language) is defined by the
following table:

Opcode Assembly syntax Description

0 terminate operand This terminates the program, returning the operand to the
caller.

1 set operand This copies the operand to the accumulator.
2 load address This copies the value at this address to the accumulator.
3 store address This copies the value of the accumulator to this address.

4 indirect_load address This copies the value whose address is specified at this
address to the accumulator.

5 indirect_store address This copies the value of the accumulator to the
address specified at this address.

Creating a Computer Emulator Using Nom Chapter 9

[284]

6 input length

This asks the user for console input until the Enter key is
pressed. Then, at most, the length characters of the input
line are copied into consecutive memory words. This
sequence of memory words begins at the address contained
in the accumulator. Each memory word contains exactly
one character. If the user types less than length characters,
the remaining words are set to binary zero (0). So, in any
case, length memory words are set by this instruction.

7 output length

This emits to the console the length ASCII characters
whose codes are in consecutive memory words. This
sequence of memory words to output begins at the address
contained in the accumulator. Only 7-bit ASCII characters
are correctly supported.

8 add address

This adds the value at this address to the value of the
accumulator and keeps the result in the accumulator. It
uses 16-bit integer arithmetic with a wraparound—that is,
in the case of integer overflow, the value modulo of 65,536
is obtained.

9 subtract address
This subtracts the value at this address from the value of
the accumulator, using wrap-around arithmetic, and keeps
the result in the accumulator.

10 multiply address
This multiplies the value of the accumulator by the value at
this address, using wrap-around arithmetic, and keeps the
result in the accumulator.

11 divide address
This divides the value of the accumulator by the value at
this address using integer arithmetic (truncation) and keeps
the result in the accumulator (quotient).

12 remainder address
This divides the value of the accumulator by the value at
this address using integer arithmetic (truncation) and keeps
the integer remainder in the accumulator.

13 jump address
This proceeds to the execution of the instruction present at
address.

14 jump_if_zero address
This proceeds to the execution of the instruction present at
address, but only if the value of the accumulator is equal
to 0. Otherwise, it proceeds to the next instruction.

15 jump_if_nonzero address
This proceeds to the execution of the instruction present at
address if the value of the accumulator is not 0.

16 jump_if_positive address
This proceeds to the execution of the instruction present
at address if the value of the accumulator is a positive
number.

17 jump_if_negative address
This proceeds to the execution of the instruction present
at address if the value of the accumulator is a negative
number.

Creating a Computer Emulator Using Nom Chapter 9

[285]

18
jump_if_nonpositive
address

This proceeds to the execution of the instruction present
at address, but only if the value of the accumulator is
non-positive—that is, if it is a negative number or it is equal
to 0.

19
jump_if_nonnegative
address

This proceeds to the execution of the instruction present
at address if the value of the accumulator is non-
negative—that is, if it is a positive number or it is equal to
0.

 – word value
This reserves a word for data. Its initial content is specified
by value.

 – array length
This reserves an array of length words. All these words
are initialized to 0.

Notice that the set instruction type (opcode 1) is quite simple; it assigns the operand to the
accumulator. Almost all the other assignment and arithmetic instruction types have one
level of indirectness—their operand is the memory address of the data that must be
operated on. However, the two instructions—indirect_load (opcode 4) and
indirect_store (opcode 5)—have two levels of indirectness. Their operand is the
memory address of a word—that is, the memory address of the data that must be operated
on.

Now that we have a powerful enough machine language, we can write a meaningful
program using it.

Writing a very simple program
To show you how to use this language, let's write some code with it. We will create a
program that, when given a positive integer number in a memory word (in binary format),
prints it in decimal notation.

Let's assume that the number to print is hardcoded as 6710. When we write the algorithm
in Rust, it is as shown in the following code snippet:

fn main() {
 let mut n: u16 = 6710;
 let mut digits: [u16; 5] = [0; 5];
 let mut pos: usize;
 let number_base: u16 = 10;
 let ascii_zero: u16 = 48;
 pos = 5;
 loop {
 pos -= 1;
 digits[pos] = ascii_zero + n % number_base;

Creating a Computer Emulator Using Nom Chapter 9

[286]

 n /= number_base;
 if n == 0 { break; }
 }
 for pos in pos..5 {
 print!("{}", digits[pos] as u8 as char);
 }
}

In the preceding code, the n variable is the unsigned 16-bit number to convert and print.
The digits variable is a buffer that will contain the ASCII values of the generated digits.
As a 16-bit number can have, at most, five decimal digits, an array of five digits is
enough. The pos variable is the position of the current digit in the digits array.

The number_base variable is 10 as we are using decimal notation. The ascii_zero
variable contains the ASCII code for the zeroth character (which is 48).

The first loop computes any ASCII decimal digit by computing the remainder of n divided
by 10 using the % operator, and by adding it to ascii_zero. Then, n is divided by the
number_base variable to remove the least significant decimal digit from it. The second
loop prints the five generated digits to the console.

The problem with this program is that it needs to use array indexing. Actually, pos is an
index to the digits array. Machine language uses addresses, not indices; so, to mimic
machine language, we must replace the type of pos with that of raw pointers, whose
dereference operation is unsafe in Rust. Instead of counting up to five, we set an end
pointer. When pos reaches this pointer, it will have finished the array.

So, let's translate our Rust program into a format that is more similar to what can be
translated into machine language using raw pointers:

fn main() {
 let mut n: u16 = 6710;
 let mut digits: [u16; 5] = [0; 5];
 let mut pos: *mut u16;
 let number_base: u16 = 10;
 let ascii_zero: u16 = 48;
 let end = unsafe {
 (&mut digits[0] as *mut u16).offset(digits.len() as isize)
 };
 pos = end;
 loop {
 pos = unsafe { pos.offset(-1) };
 unsafe { *pos = ascii_zero + n % number_base };
 n /= number_base;
 if n == 0 { break; }

Creating a Computer Emulator Using Nom Chapter 9

[287]

 }
 while pos != end {
 print!("{}", unsafe { *pos } as u8 as char);
 pos = unsafe { pos.offset(1) };
 }
}

In the preceding program, the unsafe offset method of raw pointers is used. When given
a raw pointer, it generates another raw pointer by advancing by the specified number of
positions in memory.

To have a program that is even more similar to a machine language program, we should
split all the Rust statements into elementary statements that correspond to machine
instructions.

However, there is another problem—our accumulator register will sometimes contain
numbers and other times addresses. Using Rust, this is inconvenient because numbers and
addresses have different types in Rust. Therefore, here, we will use two
variables—acc (which represents the accumulator when it is used to store a number) and
ptr_acc (which represents the accumulator when it is used to store an address—that is, a
memory pointer).

Here is the obtained program, which is quite similar to a machine language program:

fn main() {
 let mut ptr_acc: *mut u16; // pointer accumulator
 let mut acc: u16; // accumulator
 let mut n: u16 = 6710;
 let mut digits: [u16; 5] = [0; 5];
 let mut pos: *mut u16;
 let number_base: u16 = 10;
 let ascii_zero: u16 = 48;
 let one: u16 = 1;
 ptr_acc = unsafe {
 (&mut digits[0] as *mut u16).offset(digits.len() as isize)
 };
 pos = ptr_acc;
 loop {
 ptr_acc = pos;
 ptr_acc = unsafe { ptr_acc.offset(-(one as isize)) };
 pos = ptr_acc;
 acc = n;
 acc %= number_base;
 acc += ascii_zero;
 unsafe { *pos = acc };
 acc = n;

Creating a Computer Emulator Using Nom Chapter 9

[288]

 acc /= number_base;
 n = acc;
 if n == 0 { break; }
 }
 for &digit in &digits {
 print!("{}",
 if digit == 0 { ' ' }
 else { digit as u8 as char}
);
 }
}

Notice that now, the statements after the empty line, except for the final for loop, are quite
simple. They are only assignments, possibly combined with one operation, such as %=, +=,
or /=. In addition, there is one if statement used to break the loop when the n variable is 0.

This can be easily translated into our assembly language, as shown:

n
 word 6710
digits
 array 5
pos
 word 0
number_base
 word 10
ascii_zero
 word 48
one
 word 1

 set pos
 store pos
before_generating_digits
 load pos
 subtract one
 store pos
 load n
 remainder number_base
 add ascii_zero
 store_indirect pos
 load n
 divide number_base
 store n
 jump_if_nonzero before_generating_digits
 set digits
 output 5
 terminate 0

Creating a Computer Emulator Using Nom Chapter 9

[289]

This assembly language program can be manually translated into machine language.

As there are 5 data words, 1 data array of five words, 16 instructions occupying two words
each, and the initial word, we have a total of 5 + 1 * 5 + 16 * 2 + 1 = 43 words. This number
will be the value of the first word of our program.

Then, considering the required layout (the process length, followed by the
instruction, followed by the data), we can compute the addresses of the jump destinations
and the addresses of the data, obtaining the following code:

0: 43
1: set 39 // pos
3: store 39 // pos
5: before_generating_digits
5: load 39 // pos
7: subtract 42 // one
9: store 39 // pos
11: load 33 // n
13: remainder 40 // number_base
15: add 41 // ascii_zero
17: store_indirect 39 // pos
19: load 33 // n
21: divide 40 // number_base
23: store 33 // n
25: jump_if_nonzero 5 // before_generating_digits
27: set 34 // digits
29: output 5
31: terminate 0
33: n: 6710
34: digits: 0, 0, 0, 0, 0
39: pos: 0
40: number_base: 10
41: ascii_zero: 48
42: one: 1

In the preceding code, notice that the symbolic names of the addresses are commented out.

Then, by replacing the symbolic codes with the opcodes and by removing the comments
and line addresses, we get the machine language program as a comma-separated list of
decimal numbers:

43,
1, 39,
3, 39,
2, 39,
9, 42,
3, 39,

Creating a Computer Emulator Using Nom Chapter 9

[290]

2, 33,
12, 40,
8, 41,
5, 39,
2, 33,
11, 40,
3, 33,
15, 5,
1, 34,
7, 5,
0, 0,
6710,
0, 0, 0, 0, 0,
0,
10,
48,
1

For example, we start with the following line:

1: set 39 // pos

The preceding line becomes the following:

1, 39,

Because the 1: line address has been removed, the set symbolic code has been replaced by
its opcode (1), the // pos comment has been removed, and two commas have been added
to separate the numbers.

Now, we can build a Rust program that interprets this program. You can find it in
the word_machine_convert project.

If you execute the cargo run command on this project, the program is compiled in a short
time because it has no dependencies. The execution will simply print 6710 with a leading
space. The name of this project means to convert a number using a machine language that
uses word addressing.

The main function of this Rust program just passes the preceding list of numbers to the
execute function.

This function begins with the following code:

fn execute(program: &[u16]) -> u16 {
 let mut acc: u16 = 0;
 let mut process = vec![0u16; program[0] as usize];
 process[..program.len()].copy_from_slice(program);

Creating a Computer Emulator Using Nom Chapter 9

[291]

 let mut ip = 1;
 loop {
 let opcode = process[ip];
 let operand = process[ip + 1];
 //println!("ip: {} opcode: {} operand: {} acc: {}",
 //ip, opcode, operand, acc);
 ip += 2;

The previously mentioned function (execute) emulates an extremely simple machine
language processor that addresses memory as a slice of 16-bit words. This function, if it
returns, returns the operand of the terminate instruction that it may execute.

The acc variable represents the accumulator register. The process variable represents the
actual runtime content of memory. Its size, in words, is the number specified by the first
word of the program. It makes no sense to have a process shorter than the program that it
runs because some data would be lost.

However, it makes sense to have a process larger than the programs that it runs because in
doing so, it allocates memory that will be used by code with no need to declare it in the
program. In this way, you can have a program with a few words using a memory space of
up to 65,536 words, which is 128 Kibibytes (KiB).

The first part of the process variable is initialized with the contents of program, received
as an argument of the execute function.

The ip variable is the instruction pointer, which is initialized to 1—that is, it points to the
second word, where there is a first instruction to execute.

Then, there is the processing loop. Every instruction has exactly one opcode and one
operand, and so they are loaded into the respective variables. Then, there is a debugging
statement that is commented out; this can be useful if your program does not do what you
hoped.

After executing any instruction, the instruction that follows it will usually be executed, and
so the instruction pointer is incremented right away by two words to skip the current
instruction. The exceptions are the jump instructions and terminate instructions. The
jump instructions, if their condition is satisfied, will change the instruction
pointer again and the terminate instruction will jump out of the processing loop, and out
of the execute function, too.

Creating a Computer Emulator Using Nom Chapter 9

[292]

The rest of the function is a large match statement, which is needed to process the current
instruction. Here are its first few lines:

match opcode {
 0 => // terminate
 { return operand }
 1 => // set
 { acc = operand }
 2 => // load
 { acc = process[operand as usize] }

The behavior of each arm of this kind of a match statement is quite simple as it is meant to
be executed by hardware. For example, if the current instruction is terminate, the function
returns the operand; if it is set, the operand is assigned to the accumulator; if it is load, the
memory word whose address is the operand is assigned to the accumulator; and so on.

Here is a pair of arithmetic instructions:

9 => // subtract
 { acc = acc.wrapping_sub(process[operand as usize]) }
10 => // multiply
 { acc = acc.wrapping_mul(process[operand as usize]) }

In all modern computers, integer numbers are stored in two complementary formats and
they perform their operations accordingly. This has several advantages:

A single arithmetic operation can work if the operands are both interpreted as
signed numbers or unsigned numbers (but not one signed number and the other
unsigned).
If an addition or subtraction causes an integer to overflow and then another
operation causes the result to go back into the allowed range, the result is still
valid.

In high-level languages, such as Rust, arithmetic overflow is usually not allowed by default.
In Rust, the arithmetic of overflow of basic operators causes panic when it shows a message
such as attempt to add with overflow. To allow two complementary arithmetics, the
Rust standard library provides the corresponding wrapping method for any operator,
which is the one usually implemented in machine language. To use it, instead of writing a
+ b, you write a.wrapping_add(b); instead of writing a - b, you
write a.wrapping_sub(b), and so on for the other operators.

Creating a Computer Emulator Using Nom Chapter 9

[293]

The jump instructions are a bit different from other instructions, as shown:

15 => // jump_if_nonzero
 { if acc != 0 { ip = operand as usize } }
16 => // jump_if_positive
 { if (acc as i16) > 0 { ip = operand as usize } }

In the preceding code, the jump_if_nonzero instruction checks the value of the
accumulator and sets the instruction pointer to the specified value only if this value is not 0.

The jump_if_positive instruction checks whether the value of the accumulator is
positive, interpreting it as a signed number. Without the as i16 clause, the check
would always succeed as the acc variable is unsigned.

Notice that in Rust, an unsigned number can be converted into a signed
one, even if the result is negative; for example, the
expression 40_000_u16 as i16 == -25_536_i16 is true.

The input and output instructions are unusually complex, and they even interact with the
operating system. Of course, they are not real-world machine language instructions. They
were added to this pseudo-machine language just to be able to write a complete program
with reasonable effort. In practice, in a real-world machine language, I/O is performed
using a convoluted sequence of instructions or by calling an operating system service.

So, we have seen how to interpret a machine language program. It was quite a trivial
program, however; so, in the next section, we'll look at a more interesting and complex
machine language program.

A more complex program – the sieve
of Eratosthenes
Now, let's consider a more realistic but challenging problem—implementing an
algorithm to print all the prime numbers that are less than a number, N, where N is typed
in by the user at runtime. This is called the sieve of Eratosthenes algorithm.

Here is the Rust version of this program:

fn main() {
 let limit;
 loop {
 let mut text = String::new();
 std::io::stdin()

Creating a Computer Emulator Using Nom Chapter 9

[294]

 .read_line(&mut text)
 .expect("Cannot read line.");
 if let Ok(value) = text.trim().parse::<i16>() {
 if value >= 2 {
 limit = value as u16;
 break;
 }
 }
 println!("Invalid number (2..32767). Re-enter:")
 }

 let mut primes = vec![0u8; limit as usize];
 for i in 2..limit {
 if primes[i as usize] == 0 {
 let mut j = i + i;
 while j < limit {
 primes[j as usize] = 1;
 j += i;
 }
 }
 }

 for i in 2..limit {
 if primes[i as usize] == 0 {
 print!("{} ", i);
 }
 }
}

In the preceding code, the first 14 lines of the main function ask the user to type in a
number until the typed number is between 2 and 32767.

The next group of statements allocates a vector of bytes to store the numbers that have been
detected as non-primes. Initially, it contains all zeros, meaning that every number in the
required range could be a prime. Then, all the numbers of the range are scanned in
increasing order, and for each of them, if it is still considered a prime number, all of its
multiples are marked as non-primes.

The last group of statements again scans all the numbers and prints only those that are still
marked as prime numbers.

The difficulty of this program is that it needs to allocate memory to be used by a vector.
Our machine language does not allow memory allocation. We can pre-allocate an array
with the maximum desired size, say, 400 words.

Creating a Computer Emulator Using Nom Chapter 9

[295]

To pre-allocate such an array, it is enough to specify that the process size is equal to the
program size plus 400 words. In doing this, when the process begins its execution, it will
allocate the required space and it will initialize it to be a sequence of zeros.

As you can imagine, the corresponding assembly and machine language program is quite
complex. It can be found in the word_machine_sieve project.

If you run it and then type in a number that isn't larger than 400, all the prime numbers that
are smaller than the typed number will be printed to the console. The interpreter is identical
to the one used in the preceding projects, but there is another machine language program in
the main function.

This machine language program is much larger than that of the preceding project, and it is
explained by comments. The assembly language is equivalent in any instruction or data
item in a comment. Here is the initial part, containing four instructions:

600, // 0:
// Let the user input the digits of the limit number.
1, 190, // 1: set digits
6, 5, // 3: input 5
// Initialize digit pointer.
1, 190, // 5: set digits
3, 195, // 7: store pos

The process size, 600, is 400 words, which is larger than the program size by 200 words.

There are some explanatory comments interleaved, such as those in the second and fifth
lines.

The third line is a set instruction (opcode 1), with operand 190. The comment explains that
this instruction begins at address 1 and corresponds with the set digits assembly
instruction.

As you can imagine, it is almost impossible to write a machine language
program directly without passing through its assembly language version, and it is an error-
prone chore to manually translate an assembly language into machine language.
Fortunately, it is rather easy to write an assembler program that does this for you. You can
do this by using the compiling techniques explained in the preceding chapter.

In the next section, we will look at a more realistic machine language and how to use the
nom parsing library to ease its interpretation.

Creating a Computer Emulator Using Nom Chapter 9

[296]

Defining a byte-addressing machine
language
In the preceding section, we saw a different kind of machine language. However, this kind
of machine language is quite unrealistic for several reasons:

It addresses memory word by word. This was common in the early days of
computer technology, until around 1970. Then, it became more and more
common to have processors that address single bytes of memory. Today,
probably every processor in production can address single bytes of memory.
It has instructions of the same length. There has probably never been a machine
language where all the instructions are of the same length. A very simple
instruction, such as a No-Operation (NOP), can stay in a single byte, while there
are processors that have instructions spanning many bytes.
Any kind of operation operates on a 16-bit word for real-world processors, for
any kind of operation—for example, addition. There can be an instruction that
operates on single bytes, adding an 8-bit byte to another byte, another instruction
that does the same thing but on 16-bit words, adding a word to another word,
another instruction for 32-bit double-words, and even instructions that operate
on larger bit sequences.
It has just one processor register—the accumulator. Real-world processors have
much more processor registers.
It has few operations available. Real-world machine languages have more
possible operations, such as logical operations, function calls and function return
instructions, stack manipulation operations, and increment and decrement
operators.

Here, we will change our machine language to introduce the following missing features:

Byte addressing
Variable-length instructions
Instructions to load or store a single byte, in addition to those to load or store
words

So, we apply the following changes to our byte-addressing machine language:

Every address represents the position of a memory byte, not the position of a
memory word.
Every opcode occupies only one byte, instead of the word as was the case in the
preceding language.

Creating a Computer Emulator Using Nom Chapter 9

[297]

While most instruction types still have a one-word operand, three instruction
types have a 1-byte operand. They are terminate operand, input length,
and output length.
Four instruction types are added to the language to manipulate a single byte.

To understand this new machine language, it is important to realize that every 16-bit word
contains 2 bytes, one containing the eight least significant bits of the number and the other
containing the eight most significant bits of the number. The first byte is named the low
byte and the other is named the high byte. When a byte inside a word is manipulated, it is
important to know whether it is the low byte or the high byte of that word.

The new instruction types are defined in the following table:

Opcode Assembly syntax Description

20 load_byte address
This copies the value of the byte at that address to the
low byte of the accumulator. The high byte of the
accumulator is set to 0.

21 store_byte address
This copies the low byte of the value of the
accumulator to that address. The high byte of the
accumulator is not used.

22
indirect_load_byte
address

This copies the byte value whose address is specified at
that address to the low byte of the accumulator. The high
byte of the accumulator is set to 0.

23
indirect_store_byte
address

This copies the low byte of the value of the
accumulator to the address specified at that address. The
high byte of the accumulator is not used.

These four instructions are needed because the load, store, indirect_load, and
indirect_store instruction types still transfer whole words, while we also need to read
or write a single byte of memory without reading or writing the byte next to the specified
address.

As a result of these changes, in the previous machine language, every instruction occupied
four bytes. However, in this new language, the three instruction types—terminate,
input, and output—occupy only 2 bytes and all the other instruction types occupy 3
bytes.

Notice that all the other instruction types remain unchanged and the size of the
accumulator and the instruction pointer is still 16 bits.

Having byte-addressing capability, together with words spanning several bytes, raises an
issue, however. This is the so-called endianness issue, described in the next section.

Creating a Computer Emulator Using Nom Chapter 9

[298]

Coping with the endianness issue
Consider a word in the accumulator with a value of 256. The low byte of this word is 0 and
the high byte is 1. This word will be stored at the 1000 memory address. Because this
address now refers to a single byte, not to a two-byte word, the store instruction
must also access another memory byte to store a word. For every computer system, the
other byte that is needed is one with the following consecutive address, and so it is at
address 1001.

So, our accumulator will be stored in the 2 bytes with addresses 1000 and 1001. However,
the low byte of number 256, whose value is 0, could be stored at address 1000 or at
address 1001.

In the first case, when the low byte is stored at address 1000, the high byte, whose value is
1, will be stored at address 1001. Here is the memory layout of this case:

Address Memory content
1000 00000000
1001 00000001

In the second case, when the low byte is stored at address 1001, the high byte will be stored
at address 1000. Here is the memory layout of this case:

Address Memory contents
1000 00000001
1001 00000000

This is just a matter of convention.

Unfortunately, some important computer vendors chose one convention and some other
important computer vendors chose the other. Some computer hardware can even be
programmed to change convention at runtime, and so it is up to the operating system to
choose the convention.

The convention where the low byte has a lower memory address is named little-endian,
which is shown in the first of the previous two tables. The other convention, where the high
byte has a lower memory address, is named big-endian, and it is shown in the second of
the preceding two tables. The issue itself is named the endianness issue.

For our machine language, we chose little-endian.

Creating a Computer Emulator Using Nom Chapter 9

[299]

Now that we have defined the new byte-addressing machine language and we have chosen
to adopt the little-endian convention for it, we can write an interpreter for this machine
language.

The nom_byte_machine project
Now that we have a new machine language, we can write some programs using it and try
to build an interpreter for these programs. In addition, it is possible to use the nom library,
already seen in Chapter 8, Using a Parser Combinator for Interpreting and Compiling, to ease
the building of this sort of interpreter.

However, before we start coding, let's consider the possible techniques to execute a
machine language program. In fact, there are at least three possible ways to execute a
machine language program without having real hardware:

Technique 1: Interpreting it just as the hardware would interpret it. This is the
technique used in the previous sections to interpret the sieve of
Eratosthenes program in the word_machine_sieve project.
Technique 2: First, parsing it all and transforming it into a high-level data
structure, then interpreting this data structure.
Technique 3: Translating it into another programming language, and then using
an interpreter or a compiler for this programming language.

Technique 1 is the only one of the three that can obtain the correct result for any possible
program. The other two techniques only work if the program is well formed, following
these rules:

It begins with a little-endian word containing the size of the process in bytes.1.
After the initial word, there is a sequence of valid machine language instructions,2.
with no interleaved spaces or data.
The Terminate instruction occurs once—and only once—as the last instruction3.
so that it marks the end of the sequence of instructions. After this, there is only
data left.
No statement writes on the instructions; only the data can be changed. So, the4.
program is not self-modifying; or, said in another way, the program instructions
are the same as the process instructions.

The nom_byte_machine project implements all three techniques and applies them to a
well-formed machine language program. This program is a version of the sieve algorithm
seen in the preceding section, implemented for the byte-addressing machine language.

Creating a Computer Emulator Using Nom Chapter 9

[300]

First of all, let's try to build and run the project by typing cargo run in the project
folder. The build will take some time because it uses the nom library. The execution starts by
creating the prog.c file, containing a C language version of the machine language
program, and printing the following on the console:

Compiled to prog.c.

Then, the program interprets the program using the first technique described earlier. This
causes it to wait until the user types in a number. You should type in a number between 0
and 400 and press Enter.

Some prime numbers will be printed using Technique 1, and then the program interprets the
same program using Technique 2, and, therefore, it waits again until the user types in a
number. You should type in a number again and press Enter.

For example, if you entered 100 the first time and the second time you entered 40, then the
console should display this:

Compiled to prog.c.
100
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
53
 59 61 67 71 73 79 83 89 97
Return code: 0
40
 2 3 5 7 11 13 17 19 23 29 31 37
Return code: 0

After executing it, the prog.c file will exist in the project folder. Using a Unix-like
environment, you can compile it with the following command:

cc prog.c -o prog.exe

This will create the prog.exe file. Then, you can run it with the following command:

./prog.exe

Of course, this program has the same behavior as the previously interpreted program. It
first asks for a number, and if, for example, you type in 25, the output is this:

25
 2 3 5 7 11 13 17 19 23

Creating a Computer Emulator Using Nom Chapter 9

[301]

As this project is somewhat complex, its source code has been split into several source files.
They are as follows:

main.rs: This contains the machine language program and the calls to the
functions contained in the other source files.
instructions.rs: This contains the definitions of the machine language
instructions and the nom parsers to recognize them.
emulator.rs: This is a low-level interpreter of the machine code. Every
instruction is first parsed and then executed.
parsing_interpreter.rs: This first parses all the instructions of the machine
code, constructing a data structure, and then executes this data structure.
translator.rs: This translates all the instruction of the machine code into C
language code and adds some C language lines to create a valid C program.

Let's look at each of the files in the following sections.

Understanding the main.rs source file
The main.rs file contains the main function, which begins with the following lines:

let prog = vec![
 187, 2, // 0: 699
 // Let the user input the digits of the limit number.
 1, 28, 1, // 2, 0: set digits
 6, 5, // 5, 0: input 5
 // Initialize digit pointer.
 1, 28, 1, // 7, 0: set digits
 3, 33, 1, // 10, 0: store pos

This machine language program is similar to the one used in
the word_machine_sieve project. While in those programs the numbers represented
words (u16), now they represent bytes (u8).

First, read the comments, except for the descriptive comments that are on their own in
a line. These comments contain the address of the current instruction or data, followed by a
colon, followed by an assembly statement.

The first line represents what starts at address 0. In this case, this is number 699, which is
the required length of the process. As we said in the previous section, we adopted the little-
endian convention to store words, and so this number is stored as the pair of bytes, 187, 2,
which means 2 x 256 + 187.

Creating a Computer Emulator Using Nom Chapter 9

[302]

The second line is a descriptive comment. The third line represents what starts at address 2,
which in little-endian notation is 2, 0. The content is the set instruction, with the address
of the digits label as its operand. The opcode of the set instruction is 1 and
the digits label is at address 284, which in little-endian notation is 28, 1. So, we have, 1,
28, 1 on this line.

The fourth line represents what starts at address 5, which is an instruction that in assembly
is input 5 and in machine code is 6, 5. The rest of the program is similar.

The last part of the program is the data section. Here is a snippet of it:

0, 0, 0, 0, 0, // 28, 1: digits: array 5
0, 0, // 33, 1: pos: word 0
10, 0, // 35, 1: number_base: word 10

The first line represents an array of 5 bytes, all of them initialized to 0. Its label is
digits and its address is 284, which is represented by the 28, 1 pair.

The second line represents a word initialized to 0 whose label is pos and address is the 33,
1 pair, which is 5 bytes after the digits address.

The third line represents a word initialized to 10 (represented by the 10, 0 pair) whose
label is number_base and whose address is the 35, 1 pair, which is two bytes after the
pos address.

The main function ends with the following lines:

let _ = translator::translate_program_to_c(&prog, "prog.c");

let return_code = emulator::execute_program(&prog).unwrap();
println!("\nReturn code: {}", return_code);

let mut parsed_program =
parsing_interpreter::parse_program(&prog).unwrap();
let return_code = parsing_interpreter::execute_parsed_program(&mut
parsed_program);
println!("\nReturn code: {}", return_code);

From the preceding code, the first statement invokes a function that translates the prog
machine language program into a C language file with the specified name.

The second statement interprets the program using the first technique instruction by
instruction.

Creating a Computer Emulator Using Nom Chapter 9

[303]

The last block of statements first invokes the parse_program statement, which translates
the program into a data structure and stores it in the parsed_program variable, and then
the execute_parsed_program function is invoked to execute this data structure.

The rest of the Rust program implements these functions and we are going to use the nom
library for this purpose.

Using the Nom library
The code that will implement what is described in this section can be found in the
instructions.rs source file.

In the preceding chapters, we saw how to use the nom library to parse text, which is string
slices. Well, nom is not limited to text, however; it can also be used to parse binary data,
which is byte slices. In fact, it was created just for that, and the capability to parse strings
was added later.

Here, we are going to use the binary parsing capability of nom to process our machine
language.

Parsing a binary file is no more difficult than parsing a text file. The only difference
between them is that when parsing a text file, the parsed text is a reference to a string slice,
with an &str type, while when parsing a binary file, the parsed text is a reference to a slice
of bytes, with an &[u8] type.

For example, this is the signature of a parser that recognizes an add instruction:

fn parse_add(input: &[u8]) -> IResult<&[u8], Instruction> {

The parse_add function takes a reference to a slice of bytes as input and, of course, its
remaining sequence is still a reference to a slice of bytes. We want its return value
to fully describe the parsed instruction, and so the custom Instruction type is used.

This type can be defined in the following way:

#[derive(Debug, Clone, Copy)]
enum Instruction {
 Terminate(u8),
 Set(u16),
 Load(u16),
 Store(u16),
 IndirectLoad(u16),
 IndirectStore(u16),

Creating a Computer Emulator Using Nom Chapter 9

[304]

 Input(u8),
 Output(u8),
 Add(u16),
 Subtract(u16),
 Multiply(u16),
 Divide(u16),
 Remainder(u16),
 Jump(u16),
 JumpIfZero(u16),
 JumpIfNonZero(u16),
 JumpIfPositive(u16),
 JumpIfNegative(u16),
 JumpIfNonPositive(u16),
 JumpIfNonNegative(u16),
 LoadByte(u16),
 StoreByte(u16),
 IndirectLoadByte(u16),
 IndirectStoreByte(u16),
 Byte(u8),
}

From the preceding code snippet, every instruction type is a variant of the Instruction
enum, and these variants have a parameter to store the value of the operator.
The Terminate, Input, and Output variants have a u8 parameter, while the other
instruction types have a u16 parameter. Notice that the last variant is not an instruction; it
is Byte(u8), which represents a data byte contained in the process.

Using a Rust enum, it is quite easy to encapsulate the operands of the instructions in a
variant, even if there are more than one, as is typical of real-world machine languages. The
operands are always rather small objects, and so it is efficient to derive the Copy trait for the
Instruction enum.

The body of the parse_add function is as follows:

preceded(tag("\x08"), map(le_u16, Instruction::Add))(input)

The preceded parser combinator, already seen in preceding chapters, gets two parsers,
applies them in sequence, discards the result of the first one, and returns the result of the
second one.

Its first parser is tag("\x08"). In the preceding chapters, we already saw the tag function
used as a parser that can recognize a literal string slice. In fact, it can also recognize a literal
sequence of bytes, specified as a literal string. To specify a byte using a number instead of
an ASCII character, a hexadecimal escape sequence is appropriate. So, this parser
recognizes a byte as having a value of 8, which is the opcode of the add instruction.

Creating a Computer Emulator Using Nom Chapter 9

[305]

The second parser processed by preceded must recognize a little-endian 2-byte
operand. So, the le_u16 parser is used for this. Its name means little-endian u16. There is
also a corresponding be_u16 to recognize a word using the big-endian byte order.

The le_u16 parser just returns a u16 value. However, we want an Instruction::Add
object to encapsulate this value. So, the map function is used to create an Add object
containing the parsed word.

So, the body of the parse_add function first checks whether there are 8 bytes, then discards
them; then, it reads a pair of bytes to build a 16-bit number according to the little-endian
byte order, then returns an Add object containing this word.

For all the instructions with a word operand, a similar parser can be created. However, for
the instructions with a byte operand, a different operand parser must be used. When
parsing a single byte, there is no endianness issue; however, for terminological consistency,
the le_u8 parser will be used, even if the be_u8 parser could have been used just as well as
it is identical to it.

So, here the parser is used to recognize a terminate instruction, with opcode 0:

fn parse_terminate(input: &[u8]) -> IResult<&[u8], Instruction> {
 preceded(tag("\x00"), map(le_u8, Instruction::Terminate))(input)
}

We invoke parse_add when we want to recognize an add instruction and
parse_terminate when we want to recognize a terminate instruction; however, when
we want to recognize any possible instruction, we must combine all the parsers for all the
instructions as alternatives using the alt parser combinator, already seen in the preceding
chapters.

This parser combinator has a limitation, however—it cannot combine more than 20 parsers.
Actually, we have 24 instruction types, and so 24 parsers to combine. This issue
can easily be overcome by nesting the use of alt. Here is the resulting function:

fn parse_instruction(input: &[u8]) -> IResult<&[u8], Instruction> {
 alt((
 alt((
 parse_terminate,
 parse_set,
 parse_load,
 parse_store,
 parse_indirect_load,
 parse_indirect_store,
 parse_input,
 parse_output,

Creating a Computer Emulator Using Nom Chapter 9

[306]

 parse_add,
 parse_subtract,
 parse_multiply,
 parse_divide,
 parse_remainder,
 parse_jump,
 parse_jump_if_zero,
 parse_jump_if_nonzero,
 parse_jump_if_positive,
 parse_jump_if_negative,
 parse_jump_if_nonpositive,
 parse_jump_if_nonnegative,
)),
 alt((
 parse_load_byte,
 parse_store_byte,
 parse_indirect_load_byte,
 parse_indirect_store_byte,
)),
))(input)
}

From the preceding code, the parse_instruction function uses alt to combine just two
parsers; the first one uses alt to combine the parsers for 20 instructions and the other one
uses alt to combine the parsers for the remaining 4 instructions. When a byte slice is
passed to this function, it returns the only instruction that can be parsed from it or an error
if no instruction is recognized.

The Instruction enum implements the len method, which is useful to find out the length
of the instruction. It is given as follows:

impl Instruction {
 pub fn len(self) -> usize {
 use Instruction::*;
 match self {
 Byte(_) => 1,
 Terminate(_) | Input(_) | Output(_) => 2,
 _ => 3,
 }
 }
}

In the preceding code, Byte occupies 1 byte, the Terminate, Input, and Output
instructions occupy 2 bytes, and the other instructions occupy 3 bytes.

Creating a Computer Emulator Using Nom Chapter 9

[307]

The get_process_size function is useful for reading the length of the process from the
first two bytes of the program. Notice that all the parsers (of this module) are private,
except for parse_instruction, so that we can parse machine code instructions.

Now that we have a parser for the instructions, we can build a low-level interpreter (that is,
an emulator) using it.

The emulator.rs source file
This emulator is implemented in the emulator.rs source file. The entry point of the
interpreter is the following function:

pub fn execute_program(program: &[u8]) -> Result<u8, ()> {
 let process_size_parsed: u16 = match get_process_size(program) {
 Ok(ok) => ok,
 Err(_) => return Err(()),
 };
 let mut process = vec![0u8; process_size_parsed as usize];
 process[0..program.len()].copy_from_slice(&program);
 let mut registers = RegisterSet { ip: 2, acc: 0 };
 loop {
 let instruction = match parse_instruction(&process[registers.ip as
usize..]) {
 Ok(instruction) => instruction.1,
 Err(_) => return Err(()),
 };
 if let Some(return_code) = execute_instruction(&mut process, &mut
registers, instruction) {
 return Ok(return_code);
 }
 }
}

The preceding function receives a program as an argument and executes it by parsing and
executing one instruction at a time. If any parse error occurs because of a malformed
instruction, the function returns that parse error. If no parse error occurs, the program goes
on until a Terminate instruction is encountered. Then, the program returns the operand of
the Terminate instruction.

The first statement gets the required size of the process. Then, a process variable is created
as a vector of bytes, with the specified length. The content of the program is copied into the
first part of the process, then the rest of the process is initialized to zeros.

Creating a Computer Emulator Using Nom Chapter 9

[308]

Then, at the eighth line of the preceding code, the registers variable is declared with
a RegisterSet type, declared as follows:

pub struct RegisterSet {
 ip: u16,
 acc: u16,
}

In this simple machine architecture, there is no big gain in encapsulating the instruction
pointer and the accumulator in a struct, but with more complex processors with many
registers, it would be convenient.

At last, there is the interpretation loop. It consists of two steps:

The call to parse_instruction parses the process from the current position of1.
the instruction pointer and returns Instruction.
The call to execute_instruction executes the instruction generated by the2.
preceding step, taking into account the whole process and the register set.

The execute_instruction function is just a large match statement that begins with the
following:

match instruction {
 Terminate(operand) => {
 r.ip += 2;
 return Some(operand);
 }
 Set(operand) => {
 r.acc = operand;
 r.ip += 3;
 }
 Load(address) => {
 r.acc = get_le_word(process, address);
 r.ip += 3;
 }
 Store(address) => {
 set_le_word(process, address, r.acc);
 r.ip += 3;
 }

For each instruction type, the appropriate action is taken. Notice the following:

The Terminate instruction causes the function to return Some, while for any
other instruction, None is returned. This allows the caller to terminate the
execution loop.
The Set instruction sets the accumulator (r.acc) to the operand value.

Creating a Computer Emulator Using Nom Chapter 9

[309]

The Load instruction uses the get_le_word function to read a little-endian word
from the address position of process and assigns it to the accumulator.
The Store instruction uses the set_le_word function to assign a little-endian
word taken from the accumulator to the address position of process.
All the instructions increment the instruction pointer (r.ip) by the length of the
instruction itself.

Let's see the auxiliary functions used every time an instruction needs to read or to write a
word in memory, respectively:

fn get_le_word(slice: &[u8], address: u16) -> u16 {
 u16::from(slice[address as usize]) + (u16::from(slice[address as usize
+ 1]) << 8)
}

fn set_le_word(slice: &mut [u8], address: u16, value: u16) {
 slice[address as usize] = value as u8;
 slice[address as usize + 1] = (value >> 8) as u8;
}

In the preceding code, the get_le_word function gets a byte at address and another byte
at the next position. The second one is the most significant in little-endian notation, and so
its value is shifted to the left by 8 bits before adding it to the other byte.

set_le_word saves a byte, along with the address position, and another one at the next
position. The first one is obtained by converting the word into a u8 type, and the second
one is obtained by shifting the word to the right by 8 bits.

Of course, the jump instructions are different. For example, look at the following code
snippet:

 JumpIfPositive(address) => {
 if (r.acc as i16) > 0 {
 r.ip = address;
 } else {
 r.ip += 3;
 }
 }

Consider the JumpIfPositive instruction's operand as a signed number. If this value is
positive, the instruction pointer is set to the operand. Otherwise, the usual increment is
performed.

Creating a Computer Emulator Using Nom Chapter 9

[310]

As another example, let's see how to indirectly load a byte:

 IndirectLoadByte(address) => {
 r.acc = get_byte(process, get_le_word(process, address));
 r.ip += 3;
 }

Using the get_le_word function, the 16-bit value at the address position is read from
process. This value is an address of a byte, and so the get_byte function is used to read
this byte to assign it to the accumulator.

So, in this section, we have seen the first execution technique—the one that parses and
executes one instruction at a time.

The parsing_interpreter.rs source file
Now, we can look at the other execution technique—the one that first parses the whole
program and then executes the result of the parsing.

The parsing_interpreter module has two entry points:

parse_program 1.
execute_parsed_program2.

The first one calls get_process_size once to get the process size from the first two bytes,
then it parses the program instructions using the following loop:

let mut parsed_program = vec![Instruction::Byte(0); process_size_parsed];
let mut ip = 2;
loop {
 match parse_instruction(&program[ip..]) {
 Ok(instruction) => {
 parsed_program[ip] = instruction.1;
 ip += instruction.1.len();
 if let Instruction::Terminate(_) = instruction.1 {
 break;
 }
 }
 Err(_) => return Err(()),
 };
}

Creating a Computer Emulator Using Nom Chapter 9

[311]

In the following code, the data structure that we are going to build is the parsed_program
variable. That variable is a vector of instructions or byte data. It is initialized by single data
bytes with zero value, but then some of these bytes are replaced with instructions.

Starting at position 2, the program is repeatedly parsed using the parse_instruction
function. This function returns an instruction that is stored in the vector at the position
corresponding to its position in the program. When the Terminate instruction is parsed,
the loop ends.

The parse_instruction function is the same as the one we saw in the instructions
module.

After this loop, we need to set the data values into the vector. This is done by using the
following loop:

for ip in ip..program.len() {
 parsed_program[ip] = Instruction::Byte(program[ip]);
}

This replaces any byte of the vector with another byte whose value is taken from the
program. The execute_parsed_program function has the following body:

let mut registers = ParsedRegisterSet { ip: 2, acc: 0 };
loop {
 if let Some(return_code) = execute_parsed_instruction(parsed_program,
&mut registers) {
 return return_code;
 };
}

The preceding code defines a register set and then
calls execute_parsed_instruction repeatedly until it returns Some. This function is
very similar to the execute_instruction functions of the emulator module.

The main differences are in the use of the get_parsed_le_word, set_parsed_le_word,
get_parsed_byte, and set_parsed_byte functions, instead of get_le_word,
set_le_word, get_byte, and set_byte.

These functions, instead of getting or setting the u8 values in a slice of u8 objects, get or set
the Instruction::Byte values in a slice of the Instruction objects. This slice is the
parsed program.

We will now move on to the last technique.

Creating a Computer Emulator Using Nom Chapter 9

[312]

The translator.rs source file
Now, we can look at the last execution technique—the one that translates the program into
a C language program so that it can be compiled with any C compiler.

The translator.rs module has just one entry point:

pub fn translate_program_to_c(program: &[u8], target_path: &str) ->
Result<()> {

This function gets the machine language program to translate the program and the path of
the file to create and return a result that indicates its success or failure.

Its body creates a text file and writes into it using statements such as this one:

 writeln!(file, "#include <stdio.h>")?;

It writes a string into the file stream. Notice that the writeln macro, in a similar way to
the println macro, supports string interpolation through pairs of braces:

writeln!(file, " addr_{}: acc = {};", *ip, operand)?;

Therefore, any real brace must be doubled:

writeln!(file, "unsigned char memory[] = {{")?;

The translation algorithm is quite simple. First, the declaration of a global byte array is
emitted:

unsigned char memory[];

Then, we have the definitions of two utility functions. Their signatures are as follows:

unsigned short bytes_to_u16_le(unsigned int address)
void u16_to_bytes_le(unsigned int address, unsigned short operand)

The first one reads the two bytes in the memory array at two positions—address and
address + 1—and, interpreting them as a little-endian 16-bit number, returns the
number. The second one generates the two bytes that comprise the operand value and
writes them in memory as a little-endian 16-bit number at the address and address +
1 positions.

Then, the main C function is emitted. It begins by declaring the acc variable, which will be
used as an accumulator register.

Creating a Computer Emulator Using Nom Chapter 9

[313]

It may be surprising that there is no need for a variable containing the instruction pointer.
This means that during the execution of the C program, the current C language statement
corresponds to the current machine language instruction.

The machine language jumps are implemented using the infamous goto statement. To be
able to jump to any instruction, the instructions that are the destination of a jump must be
preceded by a C language unique label. For simplicity, when translating any instruction, a
different label is generated, even if most of them will never be used by a goto statement.

As an example, let's consider the store pos assembly language instruction, corresponding
to the 3, 33, 1 machine language instruction, where 3 is the opcode of the store
instruction and 33, 1 represents 289 in little-endian notation. Assume that this instruction
starts at position 10 of the program. For this instruction, the following C language
statement will be generated:

addr_10: u16_to_bytes_le(289, acc);

First, there is the label as a target of a possible jump instruction. Labels are created,
concatenating the position of the instruction to the addr_ constant. Then, there is a function
call that copies the value of the acc variable to the bytes at positions 289 and 230 of
the memory array in little-endian notation.

To create these statements, a loop is performed that parses an instruction at a time using
the parse_instruction function, and then generates the corresponding C language
statement using the translate_instruction_to_c function.

This function contains a large match statement, with a branch for every instruction type.
For example, the branch that translates the Store instructions is as follows:

Store(address) => {
 writeln!(file, " addr_{}: u16_to_bytes_le({}, acc);", *ip, address)?;
 *ip += 3;
}

After the Terminate statement has been processed by the loop, the main C function is
closed and the memory array, which was only just declared, is now defined and initialized
using the entire content of the machine language program.

In fact, the machine language instructions could be omitted from this array as they are not
used by the C language code, but this way is simpler.

So, we have seen how to generate an equivalent C language program from a machine
language program, assuming it is well formed. This technique could be used to generate
programs in other programming languages, as long as there is a goto statement.

Creating a Computer Emulator Using Nom Chapter 9

[314]

Now that we have seen several ways to execute machine language programs, we can look
at another use of a machine language parser.

The nom_disassembler project
We have seen that usually, machine language programs are written in assembly language
and are then translated into machine language. So, if we want to understand or debug
a machine language program written by our company, we should look at the assembly
language program used to generate it.

However, if this program wasn't written by our company and we don't have its assembly
language source code available, it is useful to have a tool that tries its best to translate
machine language programs into the corresponding assembly language programs. This
tool, named a disassembler, cannot create an excellent assembly language program for the
following reasons:

No meaningful comments can be inserted into the code.
Data variables have no symbolic name to make sense of them. They are just bytes
of memory positions where some data is placed, and so they are referenced by
their address.
The destinations of jumps have no symbolic names to make sense of them. They
are just memory positions where some instruction begins, and so they are
referenced by their address.

Regarding 16-bit words, sometimes it is useful to see them as single numbers and
sometimes as pairs of bytes. If you are disassembling a program to apply some changes to it
and then submit the changed assembly program to an assembler (to obtain a changed
machine language program), it is better to only generate a single number for every 16-bit
number (in little-endian notation, for our kind of processor).

Instead, if you are disassembling a program just to understand it deeply, it is better to
generate both a single number notation and a pair of its bytes for every 16-bit number.

Typical disassemblers use hexadecimal notation. A 16-bit number is represented by
four hexadecimal digits, where two digits represent one byte and the other two digits
represent the other byte.

Creating a Computer Emulator Using Nom Chapter 9

[315]

Instead, to continue with decimal notation, the nom_disassembler project generates two
outputs from the same machine language program:

A FOR DEBUG output, where every 16-bit number is shown both as a single
number and as a pair of bytes
A FOR ASSEMBLING output, where every 16-bit number is shown only as a single
number

We will now learn how to run the project in the next subsection.

Running the project
If you type in cargo run for this project, you'll see a long output that begins with the
following:

FOR DEBUG
Program size: 299
Process size: 699
 2: Set(284: 28, 1)
 5: Input(5)
 7: Set(284: 28, 1)
 10: Store(289: 33, 1)
 13: IndirectLoadByte(289: 33, 1)

After a few lines, you'll find the following:

 297: Byte(2)
 298: Byte(0)

FOR ASSEMBLING
process size 699
 2: set 284
 5: input 5
 7: set 284
 10: store 289
 13: indirect load byte 289

At the end, you'll find the following:

 297: data byte 2
 298: data byte 0

Creating a Computer Emulator Using Nom Chapter 9

[316]

The first part of the output is the FOR DEBUG disassembly. After showing the size of the
program and the process, the disassembled instructions begin. The first one is a Set
instruction, whose 16-bit operand is number 284, which is composed of the 28 and
1 bytes in little-endian order. The second instruction is Input, which has an 8-bit operand.

Any instruction is preceded by the address of the first byte of the instruction. So, Set is
preceded by 2 (it is the third byte of the program), and Input is preceded by 5 (it is the
sixth byte of the program).

The program ends with a sequence of bytes. As machine language has no concept of word
data, the data is just a sequence of bytes.

The second part of the output is the FOR ASSEMBLING disassembly. This differs from the
first kind of disassembling technique by the following aspects:

There is no program size. Any assembler program can compute the size of the
corresponding machine language program. There is no need to specify it in the
source for the assembler.
Instructions' symbolic names only contain lowercase letters and they can be
composed of several words, separated by spaces. In this way, they are easier to
read and to write. Instead, the FOR DEBUG output uses just the names of the
variants of the instruction enum.
The operands are a single number.

We will now take a look at the source code to help us understand it further.

Examining the source code
Now, let's see how this project obtained this output by examining the source code, which is
all in the main.rs file. This function, after defining the prog variable as in the preceding
project, contains just these statements:

 println!("FOR DEBUG");
 let _ = disassembly_program_for_debug(&prog);
 println!();
 println!("FOR ASSEMBLING");
 let _ = disassembly_program(&prog);

The disassembly_program_for_debug function produces the first kind of output and
the disassembly_program function produces the second kind of output. Let's see what
these functions do.

Creating a Computer Emulator Using Nom Chapter 9

[317]

Generating disassembly code that is useful for
debugging
The interesting part of the disassembly_program_for_debug function is the following
code snippet:

loop {
 let instruction = parse_instruction(rest)?;
 println!("{:5}: {:?}", offset, instruction.1);
 offset += instruction.1.len();
 rest = instruction.0;
 if let Terminate(_) = instruction.1 {
 break;
 }
}
for byte in rest {
 let instr = Byte(*byte);
 println!("{:5}: {:?}", offset, instr);
 offset += instr.len();
}

In the preceding code, there is first a loop that parses each instruction using the
parse_instruction function, and then there is a loop that scans each data byte. For every
parsed instruction, the obtained instruction is printed by println and its size is added to
the current position inside the program, named offset.

This loop ends when the Terminate instruction is found. For the data bytes, a Byte variant
is built and it is printed in a similar way. This raises the question of how an object of
the Instruction type can be printed.

To be printed using the {:?} placeholder of println, the Debug trait must be
implemented. However, if you print an Instruction object such as those defined in the
preceding chapters, we don't get the output we want. For example, if you execute the
print!("{:?}", Instruction::Set(284)) statement, you will get the following
output:

 Set(284)

But instead, we want the following output:

 Set(284: 28, 1)

Creating a Computer Emulator Using Nom Chapter 9

[318]

To obtain the desired formatting, a new type must be defined in the following way:

#[derive(Copy, Clone)]
struct Word(u16);

The Word type encapsulates all the u16 arguments of the variants of Instruction in the
following way:

#[derive(Debug, Copy, Clone)]
enum Instruction {
 Terminate(u8),
 Set(Word),
 Load(Word),
 ...

Of course, this causes any construction of an Instruction object to construct a Word object
inside of it, and every trait implemented by Instruction must be implemented also by
Word. The Copy and Clone traits are implemented using default derivations.

Instead, the Debug trait is implemented in the following way:

impl std::fmt::Debug for Word {
 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 write!(f, "{}: {}, {}", self.0, self.0 as u8, self.0 >> 8)
 }
}

The body of the fmt function writes three numbers—the whole argument (self.0), its low
byte (self.0 as u8), and its high byte (self.0 >> 8). In this way, we get the desired
formatting.

Instruction objects are created by the instruction parsers. So, these parsers must be
changed, with respect to the project, nom_byte_machine. In that project, we saw that some
parsers accept 16-bit numbers, such as this one:

fn parse_set(input: &[u8]) -> IResult<&[u8], Instruction> {
 preceded(tag("\x01"), map(le_u16, Instruction::Set))(input)
}

For all of these parsers, the use of the le_u16 parser must be replaced with the use of
the le_word parser, obtaining the following:

fn parse_set(input: &[u8]) -> IResult<&[u8], Instruction> {
 preceded(tag("\x01"), map(le_word, Instruction::Set))(input)
}

Creating a Computer Emulator Using Nom Chapter 9

[319]

This parser is defined as follows:

fn le_word(input: &[u8]) -> IResult<&[u8], Word> {
 le_u16(input).map(|(input, output)| (input, Word(output)))
}

It still calls the le_u16 parser, but then it gets the generated (input, output) pair and
encapsulates the output item in a Word object, obtaining an (input, Word(output))
pair.

We have seen how to convert a machine language program into a kind of assembly code.
That disassembled code is useful for debugging purposes, but it is not easy to change and
reassemble it to generate a new machine language program. In the next section, we will
look at another kind of disassembly code that is useful for assembling it again.

Generating disassembly code that is useful for
reassembling
Regarding the other kind of output, FOR ASSEMBLING, we must examine
the disassembly_program function, which is quite similar to the corresponding part of
the disassembly_program_for_debug function. The only differences are the following:

The program size is not emitted.
The format strings of the two println statements are "{:5}: {}", instead
of "{:5}: {:?}".

For this kind of format placeholder, the Display trait must be implemented by the
Instruction type:

impl std::fmt::Display for Instruction {
 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 use Instruction::*;
 match self {
 Terminate(byte) => write!(f, "terminate {}", byte),
 Set(word) => write!(f, "set {}", word),
 Load(word) => write!(f, "load {}", word),
 ...
 Byte(byte) => write!(f, "data byte {}", byte),
 }
 }
}

Creating a Computer Emulator Using Nom Chapter 9

[320]

For any variant, the write macro is used to emit the symbolic name of the instruction,
followed by the formatted value of the byte or word. This formatting also requires the
implementation of the Display trait for the arguments. Bytes are of the u8 type, which
already implements the Display trait. Instead, for words, the following declaration is
required:

impl std::fmt::Display for Word {
 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 write!(f, "{}", self.0)
 }
}

This simply produces the numeric value encapsulated in a Word object. So, we have seen
how to transform a machine language program into two possible formats of disassembled
text.

We have also seen another kind of disassembling. As an exercise, you should write an
assembler for this machine language, run it on the code generated by this disassembler, and
check that the resulting machine code is identical to the original one.

Summary
In this chapter, we first defined an extremely simple toy machine language, and then a
slightly more complex one to experiment with techniques of machine language
manipulation.

The first machine language defined assumes that memory is just a sequence of 16-bit words
and that any instruction is composed of two parts of one word each—an opcode and an
operand. The second machine language assumes that memory is a sequence of bytes and
some instructions can manipulate single bytes, while other instructions can manipulate
whole words.

This introduced the endianness issue, which concerns how to interpret two consecutive
bytes as a word. As an example, the sieve of Eratosthenes algorithm was first written in
Rust and then translated into both machine languages.

For the first machine language, an interpreter was written without using any external
library. It was used to first interpret a small number conversion program
(word_machine_convert) and then the more complex sieve algorithm
(word_machine_sieve).

Creating a Computer Emulator Using Nom Chapter 9

[321]

For the second machine language, three procedures were written in a single project
(nom_byte_machine). All of these procedures used the nom parsing library. The first
procedure was an instruction-by-instruction interpreter. The second procedure first parsed
the whole program and then interpreted the parsed program. The third procedure
translated the program into C language.

For the second machine language, two kinds of disassemblers were built using the nom
library (nom_disassembler)—one disassembler emitted output useful for debugging and
the other emitted output useful for reassembling it after editing.

So, after reading this chapter, you should now understand what a machine language is,
what its corresponding assembly language is, how to translate assembly language into
machine language and vice versa, how to translate machine language into C language, how
to interpret machine language, and how to use the nom parsing library to carry out these
tasks.

In the next chapter, we will learn how to create a Linux kernel module.

Questions
How can a machine language emulator be useful?1.
What is the accumulator of a processor?2.
What is the instruction pointer of a processor?3.
Why is it very difficult to write directly in machine language and, therefore,4.
better to use an assembler?
How can a Rust enum represent a machine language instruction?5.
What is little-endian notation and what is big-endian notation?6.
What is the difference between a nom parser that accepts text and one that accepts7.
binary data?
Which rules must be respected by a machine language program to be able to8.
parse it all or to be able to translate it into another programming language?
Why might different kinds of output, or a hexadecimal output format, be9.
preferred for a disassembler?
How can a single number be printed in different ways?10.

10
Creating a Linux Kernel Module

Any decent operating system can be extended by loadable modules. This is required to
support hardware that is not specifically supported by the organization that created the
operating system, and so these loadable modules are often named device drivers.

However, this extensibility of operating systems can also be exploited for other
purposes. For example, a specific filesystem or network protocol can be supported by the
kernel itself through loadable modules without changing and recompiling the actual kernel.

In this chapter, we will look at how to build a kernel-loadable module, specifically for the
Linux operating system and the x86_64 CPU architecture. The concepts and commands that
are described here are also applicable to other CPU architectures.

The following topics will be covered in this chapter:

Preparing the environment
Creating a boilerplate module
Using the global variable
Allocating memory
Creating a driver for a character device

By the end of this chapter, you will have learned some general concepts regarding
operating system-extension modules and, in particular, how to create, manage, and debug
Linux kernel modules.

Creating a Linux Kernel Module Chapter 10

[323]

Technical requirements
To understand this chapter, some concepts of the Linux operating system should be known.
In particular, you need to know the following:

How to use the Linux command interpreter (that is, the shell)
How to understand C language source code
How to use the GCC compiler or the Clang compiler

If you don't have this knowledge, you can refer to the following web resources:

There are many tutorials that teach you how to use the Linux command
interpreter. One that is suitable for beginners of the Ubuntu Linux distribution
can be found at https:/ ​/​ubuntu. ​com/​tutorials/ ​command- ​line- ​for-
beginners#1- ​overview. A more advanced and complete free book can be found
at https:/ ​/​wiki. ​lib. ​sun. ​ac. ​za/​images/ ​c/​ca/ ​TLCL- ​13.​07. ​pdf.
There are many tutorials that teach you about the C programming language. One
of them is https:/ ​/​www. ​tutorialspoint. ​com/ ​cprogramming/ ​index. ​htm.
A reference for the Clang compiler can be found at https:/ ​/​clang. ​llvm. ​org/
docs/​ClangCommandLineReference. ​html.

The code examples in this chapter have only been developed and tested on a specific
version of Linux—a Linux Mint distribution with the 4.15.0-72-generic kernel version—and
so they are only guaranteed to work with this version. The Mint distribution is derived
from the Debian distribution and so it shares most of Debian's commands. The desktop
environment is irrelevant.

To run the examples in this chapter, you should have access as a superuser (root) to a
system running the preceding distribution based on a CPU with the x86_64 architecture.

To build a kernel module, a lot of boilerplate code needs to be written. This work has
already been done for you in an open source project available on GitHub
at https://github.com/lizhuohua/linux-kernel-module-rust. Parts of this GitHub
project have been copied into a framework to write Linux kernel modules, which will be
used in this chapter. This can be found in the linux-fw folder of the repository associated
with this chapter.

Also, for simplicity, no cross-compilation will be done—that is, the kernel module will be
built in the same operating system in which it will be used. This is a bit unusual as often,
loadable modules are developed for operating systems or architectures that are not suitable
for software development; in some cases, the target system is too constrained to run a
convenient development environment, such as a micro-controller.

https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://ubuntu.com/tutorials/command-line-for-beginners#1-overview
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://wiki.lib.sun.ac.za/images/c/ca/TLCL-13.07.pdf
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://www.tutorialspoint.com/cprogramming/index.htm
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://github.com/lizhuohua/linux-kernel-module-rust
https://github.com/lizhuohua/linux-kernel-module-rust

Creating a Linux Kernel Module Chapter 10

[324]

In other cases, the opposite applies—the target system is too costly to be used by a single
developer, such as a supercomputer.

The complete source code for this chapter can be found in the Chapter10 folder of the
repository at https:/ ​/​github. ​com/ ​PacktPublishing/ ​Creative- ​Projects- ​for- ​Rust-
Programmers.

Project overview
In this chapter, we'll look at four projects that will show you how to build increasingly
complex Linux kernel modules:

boilerplate: An extremely simple kernel module that shows the minimal
requirements to build your own module
state: A module that keeps some global static variables—that is, a static state
allocating: A module that allocates heap memory—that is, a dynamic state
dots: A module that implements a read-only character device that can be
associated with a filesystem pathname, and then it can be read as a file

Understanding kernel modules
Kernel modules must satisfy certain requirements imposed by the operating system, and so
it is quite unreasonable to try to write a kernel module in an application-oriented
programming language, such as Java or JavaScript. Usually, kernel modules
are only written in assembly language or in C, and sometimes in C++. However, Rust is
designed to be a system programming language, and so it is actually possible to write
kernel-loadable modules in Rust.

While Rust is usually a portable programming language—the same source code can be
recompiled for different CPU architectures and for different operating systems—this is not
the case for kernel modules. A specific kernel module must be designed and implemented
for a specific operating system. In addition, a specific machine architecture must usually be
targeted, although the core logic can be architecture-independent. So, the examples in this
chapter will only target the Linux operating system and the x86_64 CPU architecture.

https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers
https://github.com/PacktPublishing/Creative-Projects-for-Rust-Programmers

Creating a Linux Kernel Module Chapter 10

[325]

Preparing the environment
Some of the installation work must be performed with superuser privileges. So, you should
prefix the sudo command before any command that installs a system-wide package or that
changes something in the kernel. Alternatively, you should routinely work as a superuser.
Needless to say, this is dangerous as you can jeopardize the whole system with a wrong
command. To work as a superuser, type the following command into a terminal:

su root

Then, type in your superuser password.

The Linux operating system expects its modules to only be written in C. If you want to
write a kernel module in Rust, a glue software must be used to interface your Rust code to
the C language of Linux.

So, a C compiler must be used to build this glue software. Here the clang compiler will be
used. This is part of the Low-Level Virtual Machine (LLVM) project.

The Rust compiler also uses libraries of the LLVM project to generate
machine code.

You can install the clang compiler in your Linux system by typing the following
commands:

sudo apt update
sudo apt install llvm clang

Notice that the apt command is typical of Debian-derived distributions and is not available
on many Linux distributions, nor on other operating systems.

Then, you need to ensure that the C language headers of your current operating system are
installed. You can discover what the version of your current operating system is by typing
the uname -r command. This will print something similar to 4.15.0-72-generic. You
can install the headers for the specific version of the kernel by using a command similar to
the following:

sudo apt install linux-headers-4.15.0-72-generic

You can combine the two commands by typing the following command:

sudo apt install linux-headers-"$(uname -r)"

Creating a Linux Kernel Module Chapter 10

[326]

This will generate the correct command for your system.

At the time of writing, Linux kernel modules can only be created using the nightly
version of the Rust compiler. To install the latest version of this compiler, type the
following:

rustup toolchain install nightly

Also, the source code of the Rust compiler and the tool to format Rust source code are
needed. You can ensure they are installed by typing the following command:

rustup component add --toolchain=nightly rust-src rustfmt

To ensure that the nightly toolchain of Rust for the x86_64 architecture and Linux will be
used by default, run this command:

rustup default nightly-x86_64-unknown-linux-gnu

This can be shortened to rustup default nightly if there are no other target platforms
installed on your system.

We know that the cargo utility has several subcommands, such as new, build, and run.
For this project, an additional cargo subcommand will be needed—the xbuild
subcommand. This name stands for cross-build, which means to compile for another
platform. Actually, it is used to generate machine code for a platform different from the one
running the compiler. In this case, it means that while the compiler we are running is a
standard executable that is running in user space, the code we are generating will run in
kernel space, and so it will need a different standard library. You can install that
subcommand by typing this line:

cargo install cargo-xbuild

Then, after you have downloaded the source code associated with this chapter from
GitHub, you are ready to run the examples.

Notice that in the downloaded source code, there is a folder for every
project, plus a folder named linux-fw. This contains the framework to
develop Linux kernel modules, and the examples assume that it is located
in this position.

Creating a Linux Kernel Module Chapter 10

[327]

A boilerplate module
The first project is the minimal, loadable kernel module, and so it is called boilerplate. It
will just print a message when the module is loaded and another message when it is
unloaded.

In the boilerplate folder, there are the following source files:

Cargo.toml: The build directives for the Rust project
src/lib.rs: The Rust source code
Makefile: The build directives to generate and compile the C language glue
code and to link the generated object code into a kernel module
bd: A shell script to build a debug configuration of the kernel module
br: A shell script to build a released configuration of the kernel module

Let's start with building the kernel module.

Building and running the kernel module
To build the kernel module for debugging purposes, open the boilerplate folder and
type in this command:

./bd

Of course, this file must have executable permissions. However, it should already have
them when it is installed from the GitHub repository.

The first time you run this script, it will build the framework itself, and so it will take quite
a while. After that, it will build the boilerplate project in a couple of minutes.

After the completion of the build command, several files should appear in the current
folder. Among them is one named boilerplate.ko, where ko (short for kernel object) is
the kernel module we want to install. Its size is huge because it contains a lot of debugging
information.

A Linux command that gives information about a Linux module file is modinfo. You can
use it by typing the following command:

modinfo boilerplate.ko

Creating a Linux Kernel Module Chapter 10

[328]

This should print some information about the specified file. To load the module into the
kernel, type the following command:

sudo insmod boilerplate.ko

The insmod (insert module) command loads a Linux module from the specified file and
adds it to the running kernel. Of course, this is a privileged operation that can jeopardize
the safety and security of the whole computer system, and so only a superuser can run it.
This explains the need to use the sudo command. If the command is successful; nothing is
printed to the terminal.

The lsmod (list module) command prints a list of all the currently loaded modules. To
select the one you are interested in, you can filter the output using the grep utility. So, you
can type the following command:

lsmod | grep -w boilerplate

If boilerplate is loaded, you will get a line similar to the following:

This line contains the name of the module, the memory used by it in bytes, and the number
of current uses of these modules.

To unload the loaded module, you can type the following command:

sudo rmmod boilerplate

The rmmod (remove module) command unloads the specified module from the running
Linux kernel. If the module is not currently loaded, this command prints an error message
and does nothing.

Now, let's look at the behavior of this module. Linux has a memory-only log area called
the kernel buffer. Kernel modules can append lines of text to this buffer. When the
boilerplate module is loaded, it appends the boilerplate: Loaded text to the kernel
buffer. When the boilerplate module is unloaded, it appends the boilerplate:
Unloaded text. Only the kernel and its modules can write to it, but everyone can read it
using the dmesg (short for display messages) utility.

Creating a Linux Kernel Module Chapter 10

[329]

If you type dmesg into the terminal, the whole content of the kernel buffer will be printed to
the terminal. Typically, there are thousands of messages in the kernel buffer, written by
several modules since the last reboot of the system, but the last two lines should be those
appended by the boilerplate module. To view just the last 10 lines while keeping their
colors, type the following:

dmesg --color=always | tail

The last two lines should look something like the following:

The first part of any line, enclosed in brackets, is a timestamp written by the kernel. This is
the time in seconds and microseconds since the start of the kernel. The rest of the line is
written by the module code.

Now, we can see how the bd script built this kernel module.

The build commands
The bd script has the following content:

#!/bin/sh
cur_dir=$(pwd)
cd ../linux-fw
cargo build
cd $cur_dir
RUST_TARGET_PATH=$(pwd)/../linux-fw cargo xbuild --target x86_64-linux-
kernel-module && make

Let's see what happened in the code:

The first line declares that this is a shell script, and so the Bourne shell program
will be used to run it.
The second line saves the path of the current folder in a temporary variable.
The third, fourth, and fifth lines enter the framework folder, build the framework
for a debug configuration, and return back to the original folder.

Creating a Linux Kernel Module Chapter 10

[330]

The last line builds the module itself. Notice that it ends with && make. This
means that after having successfully run the command in the first part of the line,
the command in the second part (the make command) must be run. Instead, if the
command in the first part fails, the second command will not be run. The line
begins with the RUST_TARGET_PATH=$(pwd)/../linux-fw clause. It creates an
environment variable named RUST_TARGET_PATH, which is only valid for the
rest of the command line. It contains the absolute pathname of the framework
folder. Then, the cargo tool is invoked, with an xbuild --target x86_64-
linux-kernel-module argument. This is an xbuild subcommand to compile
for a different platform than the current one, and the rest of the command
specifies that the target is x86_64-linux-kernel-module. This target is specific
to the framework we are using. To explain how this target is used, it is necessary
to examine the Cargo.toml file, which consists of the following code:

[package]
name = "boilerplate"
version = "0.1.0"
authors = []
edition = "2018"

[lib]
crate-type = ["staticlib"]

[dependencies]
linux-kernel-module = { path = "../linux-fw" }

[profile.release]
panic = "abort"
lto = true

[profile.dev]
panic = "abort"

The package section is the usual one. The crate-type item of the lib section specifies
that the target of the compilation is a static-link library.

The linux-kernel-module module of the dependencies section specifies the relative
path of the folder containing the framework. If you prefer to install the framework folder in
another position relative to this project or with another name, you should change this path,
as well as the RUST_TARGET_PATH environment variable.

Thanks to this directive, it is possible to use the target specified in the cargo command line.

Creating a Linux Kernel Module Chapter 10

[331]

The remaining sections specify that in case of panic, an immediate abort should be done
(with no output) and that in the release configuration, Link-Time Optimization (LTO)
should be activated.

After completing this cargo command, the target/x86_64-linux-kernel-
module/debug/libboilerplate.a static-link library should have been created. As with
any other Linux static-link library, its name starts with lib and ends with .a.

The last part of the command line runs the make utility, which is a build tool used mainly
when developing in C. Just as the cargo tool uses the Cargo.toml file to know what to do,
the make tool uses the Makefile file for the same purposes.

Here, we don't examine Makefile, but we just say that it reads the static library generated
by cargo and encapsulates it with some C language glue code to generate the
boilerplate.ko file, which is the kernel module.

In addition to the bd file, there is a br file, which is similar but runs both cargo and make
with a release option, and so it generates an optimized kernel module. You can run it by
typing the following:

./br

The generated module will overwrite the boilerplate.ko file, which was created by bd.
You can see that the new file is much smaller on disk and, using the lsmod utility, you can
see that it is also much smaller in memory.

The source code of the boilerplate module
Now, let's examine the Rust source code of this project. It is contained in the src/lib.rs
file. The first line is as follows:

#![no_std]

This is a directive to avoid loading the Rust standard library in this project. Actually, many
routines of the standard library assume to be run as application code—in user-space, not
inside a kernel—and so they cannot be used in this project. Of course, after this directive,
many Rust functions that we are accustomed to using are no longer automatically available.

In particular, no heap memory allocator is included by default and so, by default, vectors
and strings that need heap memory allocation are not allowed. If you try to use Vec or the
String type, you will get a use of undeclared type or module error message.

Creating a Linux Kernel Module Chapter 10

[332]

The next lines are as follows:

use linux_kernel_module::c_types;
use linux_kernel_module::println;

These lines import some names into the current source file. These names are defined in the
framework.

The first line imports the declarations of some data types corresponding to the C
language data types. They are needed to interface with the kernel, which expects that
modules are written in C. After this declaration, you can use, for example, the
c_types::c_int expression, which corresponds to the C language int data type.

The second line imports a macro named println, just like that of the standard library,
which is no longer available. Actually, it can be used in the same way, but instead of
printing on the terminal, it appends a line to the kernel buffer, prefixed by a timestamp.

Then, there are two entry points of the module—the init_module function, which is
invoked by the kernel when the module is loaded, and the cleanup_module function,
which is invoked by the kernel when the module is unloaded. They are defined by the
following code:

#[no_mangle]
pub extern "C" fn init_module() -> c_types::c_int {
 println!("boilerplate: Loaded");
 0
}

#[no_mangle]
pub extern "C" fn cleanup_module() {
 println!("boilerplate: Unloaded");
}

Their no_mangle attribute is a directive to the linker to keep this exact function name so
that the kernel can find this function by its name. Its extern "C" clause specifies that the
function-calling convention must be the one normally used by C.

These functions get no arguments, but the first one returns a value that indicates the
outcome of the initialization. A 0 result represents success and a 1 result represents failure.
It is specified by Linux that the type of this value is the C language int variable and the
c_types::c_int type of the framework represents just that binary type.

Both functions print the messages that we saw in the previous section to the kernel buffer.
Also, both functions are optional, but if the init_module function is absent, a warning is
emitted by the linker.

Creating a Linux Kernel Module Chapter 10

[333]

The last two lines of the file are as follows:

#[link_section = ".modinfo"]
pub static MODINFO: [u8; 12] = *b"license=GPL\0";

They define a string resource for the linker to insert into the resulting executable. The name
of that string resource is .modinfo and its value is licence=GPL. That value must be a
null-terminated ASCII string because that is the string type normally used in C. This section
is not required, but if it is absent, a warning is emitted by the linker.

Using global variables
The module boilerplate of the preceding project just printed some static text. However, it is
quite typical for a module to have some variables that must be accessed during the lifetime
of the module. Usually, Rust does not use mutable global variables because they are not
safe and just defines them in the main function and passes them as arguments to
the functions called by main. However, kernel modules do not have a main function. They
have entry points called by the kernel and so, to keep shared mutable variables, some
unsafe code must be used.

The State project shows you how to define and use shared mutable variables. To run it,
enter the state folder and type ./bd. Then, type the following four commands:

sudo insmod state.ko
lsmod | grep -w state
sudo rmmod state
dmesg --color=always | tail

Let's see what we did there:

The first command will load the module into the kernel with no output to the
console.
The second command will show that the module is loaded by fetching all the
loaded modules and filtering the one called state.
The third command will unload the module from the kernel with no output to
the console.
The last command will show the two lines added by this module to the kernel
buffer. They will look like this:

[123456.789012] state: Loaded
[123463.987654] state: Unloaded 1001

Creating a Linux Kernel Module Chapter 10

[334]

Apart from the timestamps, they differ from the boilerplate example due to the name of
the module and the addition of the number 1001 to the second line.

Let's see the source code of this project, showing the differences compared with the
boilerplate source code. The lib.rs file contains the following additional lines:

struct GlobalData { n: u16 }

static mut GLOBAL: GlobalData = GlobalData { n: 1000 };

The first line defines a data structure type, named GlobalData, containing only a 16-bit
unsigned number. The second line defines and initializes a static mutable variable of this
type, named GLOBAL .

Then, the init_module function contains the following additional statement:

unsafe { GLOBAL.n += 1; }

This increments the global variable. As it was initialized to 1000, after the module is
loaded, the value of this variable is 1001.

Finally, the statement in the cleanup_module function is replaced by the following:

println!("state: Unloaded {}", unsafe { GLOBAL.n });

This formats and prints the value of the global variable. Notice that both reading and
writing a global variable is an unsafe operation as it provides access to a mutable static object.

The bd and br files are identical to those in the boilerplate project. The Cargo.toml and
Makefile files differ from those in the boilerplate project due to the replacement of the
boilerplate string with the state string.

Allocating memory
The preceding project defined a global variable, but it did not carry out memory allocation.
Even in kernel modules, it is possible to allocate memory, as shown in the
allocating project.

Creating a Linux Kernel Module Chapter 10

[335]

To run this project, open the allocating folder and type in ./bd. Then, type the following
four commands:

sudo insmod allocating.ko
lsmod | grep -w allocating
sudo rmmod allocating
dmesg --color=always | tail

These commands have a behavior quite similar to the corresponding commands for the
preceding project, but the last one will print a line that, after the timestamp, will contain the
following text:

allocating: Unloaded 1001 abcd 500000

Let's examine the source code of this project and see its differences compared with the
boilerplate source code. The lib.rs file contains the following additional lines:

extern crate alloc;
use crate::alloc::string::String;
use crate::alloc::vec::Vec;

The first line explicitly declares that a memory allocator is needed. Otherwise, as the
standard library is not used, no memory allocator will be linked to the executable module.

The second and third lines are required to include the String and Vec types in the source
code, respectively. Otherwise, they will not be available to the source code. Then, there are
the following global declarations:

struct GlobalData {
 n: u16,
 msg: String,
 values: Vec<i32>,
}

static mut GLOBAL: GlobalData = GlobalData {
 n: 1000,
 msg: String::new(),
 values: Vec::new(),
};

Now, the data structure contains three fields. Two of them, msg and values, use heap
memory when they are not empty, and the GLOBAL variable initializes all of them. Here, no
memory allocation is allowed, and so these dynamic fields must be empty.

Creating a Linux Kernel Module Chapter 10

[336]

In the init_module function, as in other entry points, allocations are allowed, and so the
following code is valid:

unsafe {
 GLOBAL.n += 1;
 GLOBAL.msg += "abcd";
 GLOBAL.values.push(500_000);
}

This changes all the fields of the global variable, allocating memory for both the
msg string and the values vector. Finally, the global variable is accessed to print its values
by using the following statement in the cleanup_module function:

unsafe {
 println!("allocating: Unloaded {} {} {}",
 GLOBAL.n,
 GLOBAL.msg,
 GLOBAL.values[0]
);
}

The rest of the code is unchanged.

A character device
Unix-like systems are famous for their feature that maps I/O devices to the filesystem. In
addition to the predefined I/O devices, it is possible to define your own devices as kernel
modules. A kernel device can be attached to real hardware or it can be virtual. In this
project, we will build a virtual device.

In Unix-like systems, there are two kinds of I/O devices: block devices and character
devices. The former handle packets of bytes in a single operation (that is, they are
buffered), while the latter can handle only one byte at a time, with no buffering.

In general, a device can be read, written, or both. Our device will be a read-only device. So,
we are going to build a filesystem-mapped, virtual, read-only character device.

Creating a Linux Kernel Module Chapter 10

[337]

Building the character device
Here, we are going to build a character device driver (or character device for short). A
character device is a device driver that can handle only one byte at a time with no
buffering. The behavior of our device will be quite simple— for every byte read from it, it
will return a dot character, but for every 10 characters, an asterisk will be returned instead
of a dot.

To build it, open the dots folder and type in ./bd. Several files will be created in the
current folder, including the dots.ko file, which is our kernel module.

To install it and check whether it is loading, type the following:

sudo insmod dots.ko
lsmod | grep -w dots

Now, the kernel module is loaded as a character device, but it is not yet mapped to a special
file. However, you can find it among the loaded devices by using the following command:

grep -w dots /proc/devices

The /proc/devices virtual file contains a list of all the loaded device modules. Among
them, in the Character devices section, there should be a line like this:

236 dots

This means that there is a loaded character device driver named dots whose internal
identifier is 236. This internal identifier is also named a major number because it is the first
number of a pair of numbers that actually identifies the device. The other number, known
as a minor number, is not used but can be set to 0.

The major number may vary from system to system and from loading to loading because it
is assigned by the kernel when the module is loaded. Anyway, it is a small, positive integer
number.

Now, we must associate these device drivers with a special file, which is an entry point in
the filesystem, that can be used as a file, but is actually a handle to a device driver. This
operation is performed by the following command, in which you should replace 236 with
the major number you found in the /proc/devices file:

sudo mknod /dev/dots1 c 236 0

Creating a Linux Kernel Module Chapter 10

[338]

The mknod Linux command creates a special device file. The preceding command creates a
special file named dots1 in the dev folder.

This is a privileged command for two reasons:

Only a superuser can create special files.
Only a superuser can create a file in the dev folder.

The c character means that the created device will be a character device. The following two
numbers—236 and 0—are the major and minor numbers of the new virtual device.

Notice that the name of the special file (dots1) can be different from the name of the device
(dots) because the association between the special file and the device driver is performed
through the major number.

After creating the special file, you can read some bytes from it. The head command reads
the first lines or bytes of a text file. So, type the following:

head -c42 /dev/dots1

This will print the following text to the console:

.........*.........*.........*.........*..

This command reads the first 42 bytes from the specified file.

When asked for the first byte, the module returns a dot. When asked for the second byte,
the module returns another dot, and so on for the first nine bytes. However, when asked for
the 10th byte, the module returns an asterisk. Then, this behavior is repeated—after nine
dots, an asterisk is returned over and over again. In fact, only 42 characters are returned
because the head command requested 42 characters from our device.

In other words, if the character generated by the module has an ordinal number that is a
multiple of 10, then it is an asterisk; otherwise, it is a dot.

You can create other special files based on the dots module. For example, type the
following:

sudo mknod /dev/dots2 c 236 0

Then, type the following command:

head -c12 /dev/dots2

Creating a Linux Kernel Module Chapter 10

[339]

This will print the following text to the console:

.......*....

Notice that 12 characters are printed, as requested by the head command, but this time, the
asterisk is at the 8th character, instead of the 10th. This happens because both the dots1 and
dots2 special files are associated with the same kernel module, with an identifier (236, 0)
and the name dots. This module remembers it has already generated 42 characters, and so
after it has generated seven dots, it has to generate its 50th character, which must be an
asterisk as it is a multiple of 10.

You can try to type the whole file, but these operations will never end spontaneously
because the module will continue to generate characters, as if it were an infinite file. Try to
type the following command, and then stop it by pressing Ctrl + C:

cat /dev/dots1

A fast stream of characters will be printed until you stop it.

You can remove the special files by typing the following command:

sudo rm /dev/dots1 /dev/dots2

You can unload the module by typing the following:

sudo rmmod dots

If you unload the module without removing the special files, they will be invalid. If you
then try to use one of them, such as by typing head -c4 /dev/dots1, you will get the
following error message:

head: cannot open '/dev/dots1' for reading: No such device or address

Now, let's see what has been appended to the kernel buffer by typing the following:

dmesg --color=always | tail

You will see that the last two lines that are printed will be similar to the following:

[123456.789012] dots: Loaded with major device number 236
[123463.987654] dots: Unloaded 54

The first line, printed at module loading, also shows the major number of the module. The
last line, printed at module unloading, also shows the total number of bytes generated by
the module (42 + 12 = 54, if you didn't run the cat command). Now, let's see the
implementation of this module.

Creating a Linux Kernel Module Chapter 10

[340]

The source code of the dots module
The only relevant differences that you will find from the other projects are in the
src/lib.rs file.

First, the src/lib.rs file declares the use of the Box generic type, which is not included by
default, similar to String and Vec in the preceding project. Then, it declares some other
bindings to the kernel:

use linux_kernel_module::bindings::{
 __register_chrdev, __unregister_chrdev, _copy_to_user, file,
file_operations, loff_t,
};

Their meanings are as follows:

__register_chrdev: The function to register a character device in the kernel.
__unregister_chrdev: The function to unregister a character device from the
kernel.
_copy_to_user: The function to copy a sequence of bytes from kernel space to
user space.
file: The data type representing a file. This is not really used in this project.
file_operations: The data type containing the implemented operation on
files. Only the read operation is implemented by this module. Consider this to be
the perspective of the user code. When the user code reads, the kernel module
writes.
loff_t: The data type representing a long memory offset, as used by the kernel.
This is not really used in this project.

The global information
The global information is kept in the following data type:

struct CharDeviceGlobalData {
 major: c_types::c_uint,
 name: &'static str,
 fops: Option<Box<file_operations>>,
 count: u64,
}

Creating a Linux Kernel Module Chapter 10

[341]

Let's understand the preceding code:

The first field (major) is the major number of the device.
The second field (name) is the name of the module.
The third field (fops, short for file operations) is the set of references to the
functions that implement the required file operations. This set of references will
be allocated to the heap, and so it is encapsulated in a Box object. Any Box object
must encapsulate a valid value since its creation, but the set of references to file
operations referenced by the fops field can only be created when the kernel
initializes the module; so, this field is encapsulated in an Option object, which
will be initialized as None by Rust and will receive a Box object when the kernel
initializes the module.
The last field (count) is the counter of generated bytes.

As anticipated, the following is the declaration and initialization of the global object:

static mut GLOBAL: CharDeviceGlobalData = CharDeviceGlobalData {
 major: 0,
 name: "dots\0",
 fops: None,
 count: 0,
};

The module contains only three functions: init_module, cleanup_module,
and read_dot. The first two functions are the ones invoked by the kernel when the module
is loaded and unloaded, respectively. The third function is called by the kernel every time
some user code tries to read a byte from this module.

While the init_module and cleanup_module functions are linked using their name (so
they must have exactly these names) and must be preceded by the #[no_mangle] directive
to avoid that their name is changed by Rust, the read_dot function will be passed to the
kernel through its address, and not its name. Therefore, it can have any name you like,
and the #[no_mangle] directive is not required for it.

The initialization call
Let's see the first part of the body of the init_module function:

let mut fops = Box::new(file_operations::default());
fops.read = Some(read_dot);
let major = unsafe {
 __register_chrdev(

Creating a Linux Kernel Module Chapter 10

[342]

 0,
 0,
 256,
 GLOBAL.name.as_bytes().as_ptr() as *const i8,
 &*fops,
)
};

In the first statement, a file_operations structure, containing the references to the file
operations, is created with default values and put into a Box object.

The default value of any file operation is None, meaning that nothing is performed when
this kind of operation is required. We will use just the read file operation and we will need
this operation to call the read_dot function. Therefore, in the second statement, this
function is assigned to the read field of the newly created structure.

The third statement calls the __register_chrdev kernel function, which registers a
character device. This function is officially documented on a web page, available at https:/
/​www.​kernel.​org/ ​doc/ ​html/ ​latest/ ​core- ​api/​kernel- ​api. ​html? ​highlight= ​_​_​register_
chrdev#c.​_​_​register_ ​chrdev. The five arguments of this function have the following
purposes:

The first argument is the required major number of the device. However, if it is 0,
as in our case, a major number will be generated by the kernel and returned by
the function.
The second argument is the value to start from in order to generate the minor
number. We will start from 0.
The third argument is the number of minor numbers that we request to allocate.
We will allocate 256 minor numbers, from 0 to 255.
The fourth argument is the name of the range of devices we are registering. The
kernel expects a null-terminated ASCII string. Therefore, the name field has been
declared with an ending binary of 0, and here, a rather complex expression just
changes the data type of this name. The as_bytes() call converts the string slice
into a byte slice. The as_ptr() call gets the address of the first byte of this slice.
The as *const i8 clause converts this Rust pointer into a raw pointer to bytes.
The fifth argument is the address of the file operation structure. Only its read
field will be used by the kernel when a read operation is performed.

https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__register_chrdev#c.__register_chrdev

Creating a Linux Kernel Module Chapter 10

[343]

Now, let's see the rest of the body of the init_module function:

if major < 0 {
 return 1;
}
unsafe {
 GLOBAL.major = major as c_types::c_uint;
}
println!("dots: Loaded with major device number {}", major);
unsafe {
 GLOBAL.fops = Some(fops);
}
0

The major number returned by the call to __register_chrdev should be a non-negative
number generated by the kernel. It is only a negative number in the case of an error. As we
want to fail the loading of the module in case of a registration fail, we return 1—in this case,
meaning there has been a failure in the loading of the module.

In case of success, the major number is stored in the major field of our global structure.
Then, a success message is added to the kernel buffer, containing the generated major
number.

Finally, the fops file operation structure is stored in the global structure.

Notice that after the registration call, the kernel keeps the address of the fops structure,
and so this address should never be changed while the function is registered. This holds,
however, because this structure is allocated by the Box::new call and the assignment of
fops moves just the Box object, which is the pointer to the heap object, not the heap object
itself. This explains why a Box object has been used.

The cleanup call
Now, let's look at the body of the cleanup_module function:

unsafe {
 println!("dots: Unloaded {}", GLOBAL.count);
 __unregister_chrdev(
 GLOBAL.major,
 0,
 256,
 GLOBAL.name.as_bytes().as_ptr() as *const i8,
)
}

Creating a Linux Kernel Module Chapter 10

[344]

The first statement prints the unloading message to the kernel buffer, including the total
count of bytes read from this module since its loading.

The second statement calls the __unregister_chrdev kernel function, which unregisters
a previously registered character device. This function is officially documented on a web
page, available at https:/ ​/​www. ​kernel. ​org/​doc/ ​html/ ​latest/ ​core- ​api/​kernel- ​api.
html?​highlight=​_ ​_​unregister_ ​chrdev#c. ​_​_​unregister_ ​chrdev.

Its arguments are quite similar to the first four arguments of the function used to register
the device. They must be identical to the corresponding registered values. However, while,
in the registering function, we specified 0 as the major number, here we must specify the
actual major number.

The reading function
Finally, let's see the definition of the function that will be invoked by the kernel every time
some user code tries to read a byte from this module:

extern "C" fn read_dot(
 _arg1: *mut file,
 arg2: *mut c_types::c_char,
 _arg3: usize,
 _arg4: *mut loff_t,
) -> isize {
 unsafe {
 GLOBAL.count += 1;
 _copy_to_user(
 arg2 as *mut c_types::c_void,
 if GLOBAL.count % 10 == 0 { "*" } else { "." }.as_ptr() as
*const c_types::c_void,
 1,
);
 1
 }
}

Also, this function must be decorated by the extern "C" clause to ensure that its calling
convection is the same as the one used by the kernel, which is the one used by the system's
C language compiler.

https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev
https://www.kernel.org/doc/html/latest/core-api/kernel-api.html?highlight=__unregister_chrdev#c.__unregister_chrdev

Creating a Linux Kernel Module Chapter 10

[345]

This function has four arguments, but we will only use the second one. This argument is a
pointer to a structure in user-space where the generated character must be written. The
body of the function contains only three statements.

The first statement increments the total count of bytes read by the user code (which is
written by the kernel module).

The second statement is a call to the _copy_to_user kernel function. This is the function to
use when you want to copy one or more bytes from a memory area controlled by kernel
code to a memory area controlled by the user code because a simple assignment is not
allowed for this operation. This function is officially documented at https:/ ​/​www. ​kernel.
org/​doc/​htmldocs/ ​kernel- ​api/ ​API- ​- ​-​copy- ​to- ​user. ​html

Its first argument is the destination address, which is the memory position where we want
to write our byte. In our case, this is simply the second argument of the read_dot function,
converted into the proper data type.

The second argument is the source address, which is the memory position where we put
the byte we want to return to the user. In our case, we want to return an asterisk after every
nine dots. So, we check whether the total number of read characters is a multiple of 10. For
this case, we use a static string slice containing only an asterisk: otherwise, we have a string
slice containing a dot. The call to as_ptr() gets the address of the first byte of the string
slice and the as *const c_types::c_void clause converts it into the expected data type
that corresponds to the const void * C language data type.

The third argument is the number of bytes to copy. Of course, in our case, this is 1.

That's all that is needed to emit dots and asterisks.

Summary
In this chapter, we looked at the tools and techniques that can be used to create loadable
modules for the kernel of the Linux operating system using Rust, instead of the typical C
programming language.

In particular, we saw the sequence of commands that can be used in a Mint distribution on
an x86_64 architecture to configure the appropriate environment to build and test loadable
kernel modules. We also looked at the modinfo, lsmod, insmod, rmmod, dmesg,
and mknod command-line tools.

https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html
https://www.kernel.org/doc/htmldocs/kernel-api/API---copy-to-user.html

Creating a Linux Kernel Module Chapter 10

[346]

We saw that to create a kernel module, it is useful to have a framework of code that
implements a target framework for the Rust compiler. The Rust source code is compiled to
a Linux static library using this target. Then, this library is linked with some C language
glue code into a loadable kernel module.

We created four projects of increasing complexity—boilerplate, state, allocating,
and dots. In particular, the dots project created a module that can be mapped to a special
file using the mknod command; after this mapping, when this special file is read, a stream of
dots and asterisks is generated.

In the next and final chapter, we'll consider the advancements of the Rust ecosystem
over the next few years—the language, the standard library, the standard tooling, and the
freely available libraries and tools. A description of the newly supported asynchronous
programming is also included.

Questions
What is a Linux loadable kernel module?1.
What is the programming language expected to be used by the Linux kernel for2.
its modules?
What is the kernel buffer and what is the first part of every line in it?3.
What is the purpose of the modinfo, lsmod, insmod, and rmmod Linux4.
commands?
Why, by default, are the String, Vec, and Box data types not available to Rust5.
code for building kernel modules?
What is the purpose of the #[no_mangle] Rust directive?6.
What is the purpose of the extern "C" Rust clause?7.
What is the purpose of the init_module and cleanup_module functions?8.
What is the purpose of the __register_chrdev9.
and __unregister_chrdev functions?
Which function should be used to copy a sequence of bytes from kernel space10.
memory to user-space memory?

Creating a Linux Kernel Module Chapter 10

[347]

Further reading
The framework used for the projects in this chapter is a modification of the open
source repository that can be found at https://github.com/lizhuohua/linux-kernel-
module-rust. This repository contains further examples and documentation pertaining to
this topic.

The documentation for the Linux kernel can be found at https:/ ​/ ​www.​kernel. ​org/ ​doc/
html/​latest/​.

https://github.com/lizhuohua/linux-kernel-module-rust
https://github.com/lizhuohua/linux-kernel-module-rust
https://github.com/lizhuohua/linux-kernel-module-rust
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/

11
The Future of Rust

The buzzword of the 2015 edition of Rust was stability because version 1.0 promised to be
compatible with the versions that followed.

The buzzword of the 2018 edition of Rust was productivity because version 1.31 offered a
mature ecosystem of tools that allowed command-line developers for desktop operating
systems (Linux, Windows, macOS) to be more productive.

There is an intent to have a new Rust edition in the coming years, but for this edition,
neither its release date, nor its features, nor its buzzword is defined yet.

However, after the release of the 2018 edition, several needs of Rust developers are being
targeted by Rust ecosystem developers around the world. It is probable that the new
buzzword will come out of one of these development lines.

The most interesting lines of development are as follows:

Integrated Development Environments (IDEs) and interactive programming
Crate maturity
Asynchronous programming
Optimization
Embedded systems

By the end of this chapter, we will see the most probable developments of the Rust
ecosystem: the language, the tooling, and the available libraries. You will learn what to
expect in the next few years.

The Future of Rust Chapter 11

[349]

Two of the most exciting new features of the Rust language are the asynchronous
programming paradigm and the const generics language feature. At the end of 2019, the
former was already added to the language, while the latter was still under development.
This will be explained in this chapter using code examples, and so you will get a working
knowledge about them.

IDEs and interactive programming
A lot of developers prefer to work inside a graphical application that contains or
orchestrates all the development tools, instead of using terminal command lines. Such
graphical applications are usually named Development Environments—or DEs for short.

At present, the most popular IDEs are probably the following ones:

Eclipse: This is used mainly for development in the Java language.
Visual Studio: This is used mainly for development in the C# and Visual Basic
languages.
Visual Studio Code: This is used mainly for development in the JavaScript
language.

In the 20th century, it was typical to create an IDE from scratch for a single programming
language. That was a major task, though. Therefore, in the last decades, it has become more
typical to create customizable IDEs, and then to add extensions (or plugins) to support
specific programming languages. For most programming languages, there is at least one
mature extension for a popular IDE. However, in 2018, Rust had very limited IDE support,
meaning that there were some extensions to use Rust in a pair of IDEs but they offered few
features, bad performance, and were also rather buggy.

In addition, many programmers prefer an interactive development style. When creating a
new feature of a software system, they do not like to write a lot of software and then
compile and test all of it. Instead, they prefer to write a single line or a bunch of few lines
and test such snippets of code right away. After testing that snippet of code successfully,
they integrate it into the rest of the system. This is typical of developers using interpreted
languages such as JavaScript or Python.

The tools that are able to run snippets of code are language interpreters or fast in-memory
compilers. Such interpreters read a command from the user, evaluate it, print the result,
and go back to the first step. Therefore, they are usually named read-eval-print loop,
or REPL for short. For all interpreted programming languages, and for some compiled
languages, there are mature REPLs. In 2018, the Rust ecosystem was missing a mature
REPL.

The Future of Rust Chapter 11

[350]

Here, the IDE issue and the REPL issue are presented together because they share the
following common problem. The main feature of modern IDEs is to analyze source code as
it is edited, with the following goals:

To highlight the code containing invalid syntax, and to display a compilation
error message in a popup window that appears near the invalid code
To suggest the completion of identifiers, to be chosen among the already
declared identifiers
To show the synopsis documentation of an identifier selected in the editor
To jump in the editor from the definition of an identifier to its uses, or vice versa
In a debugging session, to evaluate an expression inside the current context, or to
change the memory contents owned by a variable

Such operations require very fast parsing of Rust code, and this is also what is required by a
Rust REPL. An attempt to address such issues is a project named the Rust Language Server
(https:/​/​github.​com/ ​rust- ​lang/ ​rls) that is developed by the Rust language team.
Another attempt is the project named Rust Analyzer (https:/ ​/​github. ​com/ ​rust-
analyzer/​rust-​analyzer) that is developed by the Ferrous Systems company, supported
by several partners. Hopefully, before the next Rust edition, there will be a fast and
powerful Rust language analyzer to support smart programmers' editors, source-level
debuggers, and REPL tools, just as many other programming languages have.

Crate maturity
A crate becomes mature when it reaches version 1.0. That milestone means that the
following versions 1.x will be compatible with it. Instead, for versions 0.x, there is no such
guarantee, and any version can have an application programming interface (API) that's
quite different from the previous one.

Having a mature version is important for several reasons, listed as follows:

When you upgrade your dependency to a newer version of a crate (to use new
features of that library), you are guaranteed that your existing code won't get
broken—that is, it will continue to behave in a previous way, or in a better way.
Without such a guarantee, you typically need to review all your code using that
crate and fix all the incompatibilities.
Your investment in know-how is preserved. You need to neither retrain yourself
nor your coworkers and not even update your documentation.

https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-lang/rls
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer

The Future of Rust Chapter 11

[351]

Typically, software quality is improved. If a version of an API remains
unchanged for a long time, and many people use it in different corner cases,
untested bugs and real-world performance issues can emerge and be fixed.
Instead, a quickly changing version is usually bug-ridden and inefficient in many
application cases.

Of course, there is an advantage to iterating through several improvement steps of the API,
and APIs created in a few weeks are usually badly designed. Although there are still many
crates that have been in a 0.x version for several years, the time is coming to stabilize them.

This is a reinterpretation of the buzzword stability. In 2015, it meant the stability of the
language and of the standard library. Now, the rest of the mature ecosystem must stabilize to
be accepted in real-world projects.

Asynchronous programming
A major innovation was introduced in stable Rust in November 2019—with release 1.39—it
is the async-await syntax, to support asynchronous programming.

Asynchronous programming is a programming paradigm that is very useful in many
application areas, mainly in multiuser servers, so that many programming
languages—such as JavaScript, C#, Go, and Erlang—support it in the language. Other
languages, such as C++ and Java, support asynchronous programming through the
standard library.

Around 2016, it was very hard to do asynchronous programming in Rust because neither
the language nor the available crates supported it in an easy and stable way. Then, some
crates supporting asynchronous programming were developed, such as futures, mio, and
tokio, though they were not much easier to use, and remained at a version before 1,
meaning instability of their API.

After having seen the difficulty of creating convenient support for asynchronous
programming using only libraries, it appeared clear that a language extension was needed.

The new syntax, similar to that of C#, includes the new async and await language
keywords. The stabilization of this syntax means that the previous asynchronous crates
should now be considered obsolete until they migrate to use the new syntax.

The new syntax—announced on the https:/ ​/​blog. ​rust- ​lang. ​org/ ​2019/ ​11/ ​07/​Async-
await-​stable.​html web page—is described on the https:/ ​/​rust- ​lang. ​github. ​io/ ​async-
book/​ web page.

https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://blog.rust-lang.org/2019/11/07/Async-await-stable.html
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/
https://rust-lang.github.io/async-book/

The Future of Rust Chapter 11

[352]

For those who never felt the need for asynchronous programming, here is a quick example
of it. Create a new Cargo project, with the following dependencies:

async-std = "1.5"
futures = "0.3"

Prepare in the root folder of that project a file named file.txt that contains only
five Hello characters. Using a Unix-like command-line, you can do this using the following
command:

echo -n "Hello" >file.txt

Put the following content into the src/main.rs file:

use async_std::fs::File;
use async_std::prelude::*;
use futures::executor::block_on;
use futures::try_join;

fn main() {
 block_on(parallel_read_file()).unwrap();
}

async fn parallel_read_file() -> std::io::Result<()> {
 print_file(1).await?;
 println!();
 print_file(2).await?;
 println!();
 print_file(3).await?;
 println!();
 try_join!(print_file(1), print_file(2), print_file(3))?;
 println!();
 Ok(())
}

async fn print_file(instance: u32) -> std::io::Result<()> {
 let mut file = File::open("file.txt").await?;
 let mut byte = [0u8];
 while file.read(&mut byte).await? > 0 {
 print!("{}:{} ", instance, byte[0] as char);
 }
 Ok(())
}

The Future of Rust Chapter 11

[353]

If you run this project, the output is not quite deterministic. The possible output is the
following one:

1:H 1:e 1:l 1:l 1:o
2:H 2:e 2:l 2:l 2:o
3:H 3:e 3:l 3:l 3:o
1:H 2:H 3:H 1:e 2:e 3:e 1:l 1:l 3:l 1:o 2:l 3:l 2:l 3:o 2:o

The first three lines are deterministic. Instead, the last line can be shuffled a bit.

In a first reading, pretend it is synchronous code, ignoring the words
async, await, block_on, and join!. With this simplification, the flow is easy to follow.

The main function calls the parallel_read_file function. The first six lines of
the parallel_read_file function call the print_file function three times, with the
arguments 1, 2, and 3, in different lines, each followed by a call to println!. The seventh
line of the parallel_read_file function again calls the print_file function three
times, with the same three arguments.

The print_file function uses the File::open function call to open a file, and then uses
the file.read function call to read a byte at a time from that file. Any byte read is printed,
preceded by the argument of the function (instance).

So, we obtain the information that the first call to print_file prints 1:H 1:e 1:l 1:l
1:o. They are the five characters read from the file, preceded by the number 1, received as
an argument.

The fourth line prints the same contents of the first three lines, mixing the characters. First,
the three H characters are printed, then the three e characters, then the three l characters,
and then something weird happens: an o is printed before all the l characters have been
printed.

What is happening is that the first three lines are printed by three sequential invocations of
the print_file function, while the last line is printed by three parallel invocations of the
same function. In any parallel invocation, all the letters printed by one invocation are in the
correct order, but the other invocations may interleave their output.

If you think that this is similar to multithreading, you are not far from the truth. There is an
important difference, though. Using threads, the operating system may interrupt the
threads and pass control to another thread at any time, with the effect that the output may
be broken at undesirable points.

The Future of Rust Chapter 11

[354]

To avoid such interruptions, critical regions or other synchronization mechanisms must be
used. Instead, with asynchronous programming, functions are never interrupted except
when a specific asynchronous operation is performed. Typically, such operations are an
invocation of external services, such as accessing the filesystem, which could cause a wait.
Instead of waiting, another asynchronous operation is activated.

Now, let's see the code from the beginning, implementing asynchronous operations. It uses
the async_std crate. It is an asynchronous version of the standard library. The standard
library is still available, but its functions are synchronous. The code can be seen in the
following snippet:

use async_std::fs::File;
use async_std::prelude::*;

To have an asynchronous behavior, the functions of this crate must be used. In particular,
we will use the functions of the File data type. In addition, some features of the not-yet-
stabilized futures crate are used. The code can be seen in the following snippet:

use futures::executor::block_on;
use futures::try_join;

Then, there is the main function, whose body contains only the following line:

 block_on(parallel_read_file()).unwrap();

Here, the parallel_read_file function is called first.

This is an asynchronous function. When you call an asynchronous function using the
normal function-call syntax, as in the parallel_read_file() expression, the body of that
function is not actually executed, as a normal and synchronous function would be. Instead,
such a call just returns an object, called a future. A future is similar to a closure, as it
encapsulates a function and the arguments used to invoke such a function. The function
encapsulated in the returned future is the body of the function we were calling.

To actually run the function encapsulated in the future, a particular kind of function is
needed, called an executor. The block_on function is an executor. When an executor
is invoked, passing a future to it, the body of the function encapsulated in that future is run,
and the value returned by such a function is then returned by the executor itself.

The Future of Rust Chapter 11

[355]

So, when the block_on function is called, the body of parallel_read_file is run, and
when it terminates, block_on also terminates, returning the same value returned
by parallel_read_file. As this last function has a Result value type, it should be
unwrapped.

Then, a function is defined whose signature is as follows:

async fn parallel_read_file() -> std::io::Result<()>

The async keyword marks that function as asynchronous. It is also fallible, and so a
Result value is returned.

Asynchronous functions can be invoked only by other asynchronous functions or by
executors, such as block_on and try_join. The main function is not asynchronous, and
so there, we needed an executor.

The first line of the body of the function is added in the following code snippet. It is an
invocation of the print_file function, passing the value 1 to it. As
the print_file function is asynchronous too, to invoke it from inside an asynchronous
function, the .await clause must be used. Such a function is fallible, and so a ? operator is
added, like this:

 print_file(1).await?;

When an asynchronous function is invoked using .await, the execution of the body of that
function starts right away, but as soon as it yields control because it executes a blocking
function, such as an operating system call, another ready asynchronous function may
proceed. However, the flow of control does not proceed beyond the .await clause until the
body of the called function is complete.

The second line of the body of the function is an invocation of a synchronous function, and
so .await is neither needed nor allowed, as can be seen in the following code snippet:

 println!();

We can be sure that it is run after the previous statement because that statement ended with
a .await clause.

This pattern is repeated three times, and then the seventh line consists of a set of three
invocations in parallel with the same asynchronous function, as illustrated in the following
code snippet:

 try_join!(print_file(1), print_file(2), print_file(3))?;

The Future of Rust Chapter 11

[356]

Even the try_join! macro is an executor. It runs all the three futures generated by the
three calls to print_file. Only one thread is used by asynchronous programming, and so,
in fact, one of the three futures is run first. If it never has to wait, it ends before the other
futures have the opportunity to start.

Instead, as this function will have to wait, at any wait the context is switched to another
running future, starting from the statement that had put it on wait. So, the executions of the
three futures are interleaved.

Now, let's see the definition of such an invoked function. Its signature is shown in the
following code snippet:

async fn print_file(instance: u32) -> std::io::Result<()> {

It is an asynchronous function, receiving an integer argument and returning an empty
Result value.

The first line of its body opens a file using the File data type of the asynchronous standard
library, as illustrated in the following code snippet:

 let mut file = File::open("file.txt").await?;

As such, the open function is asynchronous too, and it must be followed by .await, as
illustrated in the following code snippet:

 let mut byte = [0u8];
 while file.read(&mut byte).await? > 0 {
 print!("{}:{} ", instance, byte[0] as char);
 }

The asynchronous read function is used to read bytes to fill the byte buffer. This buffer
has length 1, and so just one byte at a time is read. The read function is fallible, and if it is
successful, it returns the numbers of bytes read. This means that it returns 1 if a byte is read
and 0 if the file is ended. If the call reads a byte, the loop continues.

The body of the loop is a synchronous output statement. It prints the identifier of the
current instance of the file stream, and the byte just read.

So, the sequence of steps is as follows.

The Future of Rust Chapter 11

[357]

First, the print_file(1) future is started. When it executes the File::open call that is
blocking, this future is put on hold, and a ready-to-run future is looked for. There are two
ready futures: print_file(2) and print_file(3). The first one is chosen, and it is
started. Also, it reaches the File::open call, and so it is put on hold, and the third future is
started. When it reaches the File::open call, it is put on hold and a ready future is looked
for. If there is no ready-to-run future, the thread itself waits for the first ready future.

The first future to complete the File::open call is the first one, which resumes its
execution just after that call and starts to read a byte from the file. Even this one is a
blocking operation, and so this future is put on hold, and control is moved to the second
future, which starts to read one byte.

There is always a queue of ready futures. When a future has to wait for an operation, it
yields control to the executor, which passes control to the first future in the queue of ready
futures. When the blocking operation is complete, the waiting future is appended to the
queue of ready futures and can be yielded control if no other future is running.

When all the bytes of a file have been read, the print_file function ends. When all the
three calls to print_file are ended, the try_join! executor ends, and
the parallel_read_file function can proceed. When it reaches its end, the block_on
executor ends and, with it, the whole program.

As blocking operations take a variable amount of time, the sequence of steps is non-
deterministic. Indeed, the last line of output of the example program seen before can be
slightly different in different runs, swapping some portions of it.

As we have seen, asynchronous programming is similar to multithreaded programming
but it is more efficient, saving both context-switch time and memory usage. It is
appropriate primarily for input/output (I/O)-bound tasks as only one thread is used, and
the flow of control is interrupted only when an I/O operation is performed. Instead,
multithreading can allocate a different thread on any core, and so it is more appropriate for
central processing unit (CPU)-bound operations.

After the addition of the async/await syntax extension, what is still needed is the
development and stabilization of crates using and supporting such syntax.

The Future of Rust Chapter 11

[358]

Optimization
Usually, system programmers are quite interested in efficiency. In this regard, Rust shines
as one of the most efficient languages, though there are still some issues with performance,
as follows:

A full build—in particular, an optimized release build—is quite slow, even more
so if link-time optimization is enabled. For large projects, this can be quite a
nuisance. At present, the Rust compiler is just a frontend that generates Low-
Level Virtual Machine (LLVM) intermediate representation (IR) code and
passes such code to the LLVM machine code generator. However, the Rust
compiler generates a disproportionate amount of LLVM IR code, and so the
LLVM backend must take a long time to optimize it. An improved Rust compiler
would pass to LLVM a much more compact sequence of instructions. A
refactoring of the compiler is in progress, and this could lead to a faster compiler.
Since version 1.37, the Rust compiler supports profile-guided optimization
(PGO), which can enhance performance for the typical processor workflows.
However, such a feature is rather cumbersome to use. A graphical frontend or an
IDE integration would make it easier to use.
A development underway is an addition to the language of the const generics
feature, described in the next section.
In LLVM IR, any function argument of a pointer type can be tagged with the
noalias attribute, meaning that the memory reference by this pointer will not be
changed inside this function, except through this pointer. Using this information,
LLVM can generate faster machine code. This attribute is similar to
the restrict keyword in the C language. Yet in Rust, for every mutable
reference (&mut), the noalias property is guaranteed by language ownership
rules. Therefore, faster programs could be obtained that always generate LLVM
IR code with the noalias attribute for every mutable reference. This has been
done in versions 1.0 through 1.7 and in versions 1.28 and 1.29, although, because
of bugs in the LLVM backend compiler, the resulting code was bugged.
Therefore, until a correct LLVM implementation is released, the noalias
optimization hint will not be used.

The Future of Rust Chapter 11

[359]

The const generics feature
At present, generic data types are parameterized only by types or lifetimes. It is useful to be
able to also parameterize a generic data type by a constant expression. In a way, this feature
is already available, but only for one kind of generic type: the arrays. You can have
the [u32; 7] type that is an array parameterized by the u32 type and by the 7 constant,
though you cannot define your own generic type parameterized by a constant.

This feature, already available in C++ language, is in development in the nightly build. It
would allow variables to be replaced with constants in generic code, and this would surely
improve performance. Here is an example program that uses as dependencies
the num crate:

#![feature(const_generics)]
#![allow(incomplete_features)]

use num::Float;

struct Array2<T: Float, const WIDTH: usize, const HEIGHT: usize> {
 data: [[T; WIDTH]; HEIGHT],
}

impl<T: Float, const WIDTH: usize, const HEIGHT: usize>
Array2<T, WIDTH, HEIGHT> {
 fn new() -> Self {
 Self { data: [[T::zero(); WIDTH]; HEIGHT] }
 }
 fn width(&self) -> usize { WIDTH }
 fn height(&self) -> usize { HEIGHT }
}

fn main() {
 let matrix = Array2::<f64, 4, 3>::new();
 print!("{} {}", matrix.width(), matrix.height());
}

This program, to be compiled only using a nightly version of the compiler, creates a data
type implementing a bidimensional array of floating-point numbers. Notice that the
parameterization is as follows: T: Float, const WIDTH: usize, const HEIGHT:
usize. The first parameter is the type of array items. The second and third parameters are
the sizes of the array.

Having constant values instead of variables allows important code optimizations.

The Future of Rust Chapter 11

[360]

Embedded systems
Rust has been developed since when Mozilla started to sponsor it in 2009, with a specific
goal: to create a web browser. Even after 2018, the core team of developers works for
Mozilla Foundation, whose main business is to build client-side web applications. Such
software is multiplatform, but oriented exclusively toward the following requirements:

Random-access memory (RAM): At least 1 GB
Supported CPUs: Initially only x86 and x86_64; later, also ARM and ARM64.
Supported operating systems: Linux, Windows, macOS

These requirements excluded most microcontrollers as the Mozilla Foundation was not
interested in such platforms, though the features of Rust appear to be a good match with
the requirements of many embedded systems with more constrained requirements.
Therefore, thanks to a worldwide group of volunteers, in 2018, the Embedded Working
Group was created to develop the ecosystem needed to use Rust on embedded
systems—that is, on bare-metal or on stripped-down operating systems, and with severe
resource limitations.

Progress in this application area has been rather slow and directed mainly at a
few architectures, but the future is promising, at least for 32-bit or 64-bit architectures,
because any architecture supported by the LLVM backend is easily targetable by the Rust
compiler.

Some specific improvements to the language, which ease the use of Rust for embedded
systems, are listed as follows:

The standard-library Pin generic class avoids moving objects in memory. This is
needed when some external device is accessing a memory location.
The cfg and cfg_attr attributes, which allow conditional compilation, have
been extended. This feature is needed because trying to compile code for a wrong
platform can create unacceptable code bloat, or even cause compilation errors.
The allocator API has been made more customizable.
The applicability of const fn has been extended. This construct allows a code
base that is maintainable as normal algorithmic code, but as efficient as a wired
constant.

The Future of Rust Chapter 11

[361]

Summary
In this chapter, we have seen the most probable development lines of the Rust ecosystem in
the next few years—support for IDEs and for interactive programming; the maturity of the
most popular crates; widespread support of the new asynchronous programming paradigm
and its keywords (async and await); further optimization of both the compiler and the
generated machine code; and widespread support of embedded systems programming.

We have learned how to write asynchronous code and a possible way to define and use
const generics (still unstable at the time of writing).

We have seen that there are quite a lot of application areas where Rust could really shine.
Of course, if you are going to use it only for fun, the sky is the limit, but for real-world
applications, the ecosystem of libraries and tools can really decide the viability of a
programming system. Now, at last, the critical mass of high-quality libraries and tools is
about to be reached.

Assessments

Chapter 1
Yes, it is The Rust Programming Language by Steve Klabnik and Carol Nichols.1.
In 2015, it was long 64 bits (or 8 bytes). At the end of 2018, it was long 128 bits (or2.
16 bytes).
They are networking, command-line applications, WebAssembly, and embedded3.
software.
It checks for non-idiomatic syntax and suggests changes to code for better4.
maintainability.
It converts a 2015 edition project to a 2018 edition project.5.
Add this dependency to the Cargo.toml file: 6.

rand = "0.6"

Then, add this code to the main.rs file:

use rand::prelude::*;
fn main() {
 let mut rng = thread_rng();
 let mut numbers = vec![];
 for _ in 0..10 {
 numbers.push(rng.gen_range(100_f32, 400_f32));
 }
 println!("{:?} ", numbers)
}

With the dependency used in the previous question, add this code to the7.
main.rs file:

use rand::prelude::*;
fn main() {
 let mut rng = thread_rng();
 let mut numbers = vec![];
 for _ in 0..10 {
 numbers.push(rng.gen_range(100_i32, 401_i32));
 }
 println!("{:?} ", numbers)
}

Assessments

[363]

Add this dependency to the Cargo.toml file: 8.

lazy_static = "1.2"

Then, insert this code into the main.rs file:

use lazy_static::lazy_static;
lazy_static! {
 static ref SQUARES_FROM_1_TO_200: Vec<u32> = {
 let mut v = vec![];
 for i in 1.. {
 let ii = i * i;
 if ii > 200 { break; }
 v.push(ii);
 }
 v
 };
}
fn main() {
 println!("{:?}", *SQUARES_FROM_1_TO_200);
}

First, add this dependency to the Cargo.toml file: 9.

log = "0.4"
env_logger = "0.6"

Then, insert this code into the main.rs file and execute RUST_LOG=warn cargo
run:

#[macro_use]
extern crate log;
fn main() {
 env_logger::init();
 warn!("Warning message");
 info!("Information message");
}

Add this dependency to the Cargo.toml file: 10.

structopt = "0.2"

Then, add this code to the main.rs file:

use structopt::StructOpt;
#[derive(StructOpt, Debug)]
struct Opt {
 #[structopt(short = "l", long = "level")]

Assessments

[364]

 level: u32,
}

fn main() {
 let options = Opt::from_args();
 if options.level < 1 || options.level > 20 {
 println!("Invalid level (1 to 20 is expected): {}",
options.level);
 } else {
 println!("Level is {}", options.level);
 }
}

Chapter 2
Because changes applied by software lose all the comments inserted by the user1.
and sort the items in alphabetical order.
Dynamically typed parsing is better when you are not sure which fields will be2.
present in the file and you want to allow some missing fields. Statically typed
parsing is better when you want to discard files that do not respect the expected
format.
A derive from Serialize is needed when you want to send (write) a data3.
structure out of your software. A derive from Deserialize is needed when you
want to receive (read) a data structure.
This is a format in which fields are indented to show the structure of the data4.
visually.
Because it minimizes the use of memory by loading data into memory a little at a5.
time.
SQLite is better when you want to save disk space, memory space, start up time,6.
and sometimes also throughput. PostgreSQL is better when you have complex
security needs, or when your data must be accessible for several users at a time.
This is a reference to a slice of references to objects that can be converted to7.
ToSql.
This replaces the parameters in a SQL SELECT statement and then creates and8.
returns an iterator on the rows selected by that statement.
The get function reads a value; the set function writes a value.9.
Let's use a local instance of Redis, already containing the association aKey => a10.
string. Add this dependency to the Cargo.toml file:

redis = "0.16"

Assessments

[365]

Then, add this code to the main.rs file:

use redis::Commands;

fn main() -> redis::RedisResult<()> {
 let id = std::env::args().nth(1).unwrap();

 let client = redis::Client::open("redis://localhost/")?;
 let mut conn = client.get_connection()?;

 if let Ok(value) = conn.get::<_, String>(&id) {
 println!("Value of '{}' is '{}'.", id, value);
 } else {
 println!("Id '{}' not found.", id);
 }
 Ok(())
}

Chapter 3
GET requests a resource to be downloaded; PUT sends some data to replace1.
existing data; POST sends some data that the server should consider as new;
DELETE requests the removal of a resource.
The Curl utility.2.
The handler declares an argument, such as info: Path<(String,)>, and then3.
the value of the &info.0 expression is a reference to the first URI parameter.
By using the content_type method of the HttpResponse type – for4.
example, HttpResponse::Ok().content_type("application/json").
Using a pseudo-random number generator, you generate a large integer number,5.
format it as a string, and append that string to a prefix. Then, you try to create a
new file having that name. If such creation fails because another file exists with
that name, you try to generate another filename, until you find an unused
combination.
To cache information that can be obtained again using any request, but for which6.
it would be costly to do so.
Because the state is shared by all requests, and Actix web uses several threads to7.
handle the requests, and so the state must be thread-safe. The typical way of
declaring a thread-safe object in Rust is to encapsulate it in a Mutex object.

Assessments

[366]

Because the server may have to wait for the arrival of data from a database, the8.
filesystem, or another process. During such a wait, it can serve other requests.
Multithreading is another possible solution, but that yields an inferior
performance.
It chains another future to the current one. The second closure will be executed9.
asynchronously after the first one has finished.
serde, to serialize anything; serde_derive, to automatically implement10.
serialization for some data types; and serde_json to automatically implement
serialization for JSON data.

Chapter 4
The possible strategies for creating HTML code containing variable parts are as1.
follows:

Code only: You have a programming language source file that contains a lot
of statements that print strings to create the desired HTML page.
HTML with tags: You write an HTML file containing the desired constant
HTML elements and the desired constant text, but it also contains some
statements enclosed in specific markers.
HTML templates: You write HTML templates containing tags
and application code that fills those tags.

Double braces are used – for example, {{id}}.2.
The {% and %} markers are used, as shown here:3.

{%if person%}Id: {{person.id}}\
{%else%}No person\
{%endif%}

First, an object of the tera::Context type is created, and then, the4.
necessary name-value associations are added to such an object, using its insert
method. Finally, that context is passed as an argument to the render method of
the Tera engine.
At an architectural level, a request can be thought of as a data manipulation5.
command, or as a request to get a document to display in the browser.
Traditionally, the two kinds of requests were merged in a data manipulation
command whose response is the new content of the current page.

Assessments

[367]

Because some parts (the metadata, the scripts, the styles, and possibly the page6.
header and footer) do not change during the session or change rarely. Other
parts (usually the central part, or a smaller part) change with any click from the
user. By reloading only the part that changes, the app has better performance and
usability.
The loading of all template files happens at runtime, and so the template's7.
subtree must be deployed.
The built-in JavaScript XMLHttpRequest class can be instantiated, and such8.
instances have methods to send HTTP requests.
It should be stored in a global JavaScript variable inside the current web page in9.
the web browser.
A handler can have an argument of the BasicAuth type that encapsulates the10.
authorization header of the HTTP request. Such an object has the user_id and
password methods.

Chapter 5
It is a standard machine language-like programming language, accepted by all1.
major web browsers. It can be more efficient than JavaScript, but is more portable
than other machine language-like programming languages.
It is an architectural pattern for interactive software. It uses the concepts of model,2.
meaning the data structure that contains the state of the application; view,
meaning the code that uses the current value of the model to display the contents
of a window or a portion of a window; and controller, meaning the code that is
activated by user actions on the window, updating the value of the model and
activating the view refresh.
The specific version of the MVC implementation used by Yew and the Elm3.
language is based on a collection of programmer-defined possible events, named
messages. When the view detects such a possible event, the controller is notified
by a message that's associated with the kind of event.
The Yew components are the instances of an MVC pattern. Every triple model-4.
view-controller is a component.
The Yew properties are the data that any parent component passes to its child5.
component when it creates them. They are needed to share data in a hierarchy of
components.

Assessments

[368]

You create two Yew components – one that handles the inner section and one6.
that handles the header and footer – and that one contains the other component
as its child.
Callbacks are callable objects that a component passes as properties to one of its7.
child components to let it access features of the parent component.
You pass it as a property, encapsulating it into an object of8.
the std::rc::Rc<std::cell::RefCell> type.
Because if you keep it only in a local variable, it is destroyed when the function in9.
which it is created ends. To ensure it survives until the arrival of the response
from the server, this object must be kept in a structure that lives longer.
In your model, you declare an object of the DialogService type, and you use its10.
alert and confirm methods.
It is left to the reader. I've created an example in the book's GitHub repo.11.

Chapter 6
It is an architecture of interactive software, used mainly in games. At periodic1.
intervals, the framework checks the status of input devices, modifies the model
accordingly, and then invokes the draw routine. Its advantage is that it better
corresponds to a situation in which input devices have continuous input, such as
a key being pressed for some time, or screen output changing continuously, even
if the user does nothing.
When input events are discrete, such as a mouse click on a button or text typed2.
into a box, and when output happens only because of a user action.
Continuous simulation software, industrial machine monitoring software, or3.
multimedia software.
To draw a shape, you call the draw_ex method of the current window. The first4.
argument of that method describes the shape to draw; it may be an instance of
the Triangle, Rectangle, or Circle type.
In the update function, you can check the state of any key of the keyboard. For5.
example, the window.keyboard()[Key::Right].is_down() expression
returns true if the right-arrow key is pressed.
The model must implement the State trait. In that trait, the update method is6.
the controller, and the draw method is the view.

Assessments

[369]

Quicksilver has two rates, one for the update method and one for the draw7.
method. They have default values, but if you want to change them, set
the update_rate and draw_rate fields of the Settings structure passed to the
run function that starts the application.
You start to load a font by calling the Font::load(filename) function, you8.
start to load a sound by calling the Sound::load(filename) function, and so
on. Such calls return a future waiting for the actual asset to load. Then, you call
the Asset::new function, specifying the future as its argument. The first time it
is used, it will wait for the complete loading of the asset. The assets must be in a
folder named static at the root of the project.
After having loaded a recorded sound asset in a variable, you may call the9.
play_sound function, and pass that asset as an argument.
After having loaded a font asset in a variable, in the draw method, you may call10.
the execute method of that asset, which waits for the complete loading of the
font, and then you call the render method of the loaded asset to draw the text in
an image. Then, you can draw that image on the window by calling the draw
method of the window.

Chapter 7
A vector is an entity that can be added to another vector and can be multiplied by1.
a number. It is senseless to add two points or to multiply a point by a number.
In geometry, a vector is a translation or displacement; a point is a position.2.
Because some events are discrete. For example, when I click on a button, I am not3.
interested in how many milliseconds the mouse is pressed; I just want to get one
click event. If I type a word, I want to get just one character input for every key
pressed.
Because assets are usually loaded only at application startup, or when a level is4.
entered or exited.
The optional key_down_event, key_up_event, mouse_button_down_event,5.
and mouse_button_up_event methods can be defined for the
EventHandler trait. Such methods register in the model that they have been
called (that is, that the corresponding events have happened in the time frame).
Then, the update method checks and resets such settings in the model.
It is a set of shapes to draw. To draw a shape, first, you build a new Mesh6.
instance, then you add shapes to it (rectangles, triangles, and so on), and then
you can draw that mesh on the screen.

Assessments

[370]

The general way is to create a MeshBuilder instance by using7.
MeshBuilder::new(); add shapes to that builder, with its methods
(rectangle, polygon, and so on); and then call the build method, which
returns a Mesh instance. But there are shorter ways, such as
the Mesh::new_circle function, which returns a Mesh instance containing a
single circle.
The update method is always called at top speed, but it checks the internal timer8.
repeatedly to execute its body only the desired number of times.
The draw function uses as arguments the context to receive the drawing, the9.
mesh to draw, and a DrawParam structure. This structure can contain the
geometric transformation to apply to the mesh while drawing it.
The audio::Source objects have several methods, including the play10.
and play_detached methods. The first one automatically stops the previous
sound before playing the specified one; the second one overlaps its sound with
existing ones.

Chapter 8
Regular languages are ones that can be defined by a regular expression, which is1.
a combination of three operators: concatenation, alternation, and repetition.
Context-free languages are ones that can contain regular operators, plus
matching symbols (such as parentheses). Context-dependent languages are those
in which the validity of any expression may depend on any other expression
defined previously.
It is a set of rules in which the program is a symbol, and every symbol is defined2.
as the concatenation or alternation of symbols or characters.
It is a program that gets as input a formal definition of a programming language3.
and generates as output a compiler, which is a program that parses (or even
compiles to machine language) programs written in the language specified by
that formal definition.
It is a function that takes as input one or more parsers and returns a parser that4.
combines the input parsers in some way.
Because, before the 2018 edition of Rust, the Rust language did not allow5.
functions that returned functions without encapsulating them in an allocated
object. The feature that allows a function to be returned with no allocation is
named impl Trait.

Assessments

[371]

The tuple parser combinator gets a fixed sequence of parsers and returns a6.
parser that applies them in sequence. The alt parser combinator gets a fixed
sequence of parsers and returns a parser that applies them alternatively. The map
parser combinator gets a parser and a closure and returns a parser that applies
that parser and then uses the closure to transform its output.
Lexical analysis, syntax analysis, semantic analysis, and interpretation.7.
Lexical analysis, syntax analysis, semantic analysis, generation of intermediate8.
code, optimization of intermediate code, generation of relocatable machine code,
and linking.
When an identifier is defined, the symbol table is needed to check that such a9.
name has not been defined yet in the current scope, if the language does not
allow the shadowing of an identifier. When an identifier is used, the symbol table
is needed to check that such a name has already been defined and that it has a
type compatible with the usage.
When an identifier is defined, the symbol table is needed to store the initial value10.
of the identifier. When an identifier is used, the symbol table is needed to get or
set the value associated with such an identifier.

Chapter 9
Possible uses:1.

To run a binary program for a computer when that computer is not
available
To debug or analyze a binary program when its source code is not available
To disassemble machine code
To translate a binary program into another machine language
To translate a binary program into a high-level programming language

It is the main data register. It is the default source and destination of any2.
instruction.
It is the main address register. It contains the address of the next instruction that3.
will be fetched and executed.
One reason is that the use of numbers is more error-prone than the use of names.4.
The other is that when an instruction or a variable is added or removed, the
addresses of all the following instructions or variables change, and so a lot of
addresses in code must be incremented or decremented.

Assessments

[372]

Defining a variant for every instruction type. The name of the variant is the5.
symbolic name of the instruction, and its parameters are the types of the
operands of the instruction.
Little-endian notation is where the low byte of a word has a lower memory6.
address, and big-endian notation is where the high byte has a lower memory
address.
For a parser that accepts text, the input is a reference to a string slice, with an7.
&str type, while for a parser that accepts binary data, the input is a reference to a
slice of bytes, with an &[u8] type.
The rules to be respected are as follows:8.

It begins with a little-endian word containing the size of the process in
bytes.
After the initial word, there is a sequence of valid machine language
instructions, with no interleaved spaces or data.
The Terminate instruction occurs once—and only once—as the last
instruction so that it marks the end of the sequence of instructions. After
this, there is only data left.
No statement writes on the instructions; only the data can be changed. So,
the program is not self-modifying; put differently, the program instructions
are the same as the process instructions.

Because a 16-bit number can be usefully regarded sometimes as a pair of bytes9.
and sometimes as a single number. Hexadecimal format satisfies both
requirements because every pair of hexadecimal digits is a byte, and the whole
four-digit sequence is a 16-bit number.
By encapsulating it in a new type and then implementing the Debug trait for the10.
type.

Chapter 10
It is an extension of the Linux operating system kernel that can be added or1.
removed at runtime.
The C programming language, with GCC extensions.2.
It is a memory-only log area to which every kernel module can write. When a3.
kernel module writes to it, a bracket-enclosed timestamp is added at the
beginning of every line; this is the number of seconds and microseconds since the
start of the kernel.

Assessments

[373]

ModInfo prints some information about a Linux module file; LsMod prints the4.
list of all the currently loaded modules; InsMod loads a Linux module from the
specified file and adds it to the running kernel; and RmMod unloads the specified
module from the running Linux kernel.
Because the #![no_std] directive prevents the use of the standard heap5.
allocator and of all the standard types that use it. This directive is required as any
kernel module needs a custom allocator.
It is a directive to the linker to keep the exact name of the following function so6.
that the kernel can find that function by name.
It specifies that the function-calling convention must be the one normally used by7.
the C language.
They are two entry points of the module: the init_module function is invoked8.
by the kernel when the module is loaded, and the cleanup_module function is
invoked by the kernel when the module is unloaded.
__register_chrdev is used to register a character device in the kernel;9.
__unregister_chrdev is used to deregister it.
The _copy_to_user function.10.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Rust Programming Cookbook
Claus Matzinger

ISBN: 978-1-78953-066-7

Understand how Rust provides unique solutions to solve system programming
language problems
Grasp the core concepts of Rust to develop fast and safe applications
Explore the possibility of integrating Rust units into existing applications for
improved efficiency
Discover how to achieve better parallelism and security with Rust
Write Python extensions in Rust
Compile external assembly files and use the Foreign Function Interface (FFI)
Build web applications and services using Rust for high performance

https://www.packtpub.com/programming/rust-programming-cookbook

Other Books You May Enjoy

[375]

Hands-On Microservices with Rust
Denis Kolodin

ISBN: 978-1-78934-275-8

Get acquainted with leveraging Rust web programming
Get to grips with various Rust crates, such as hyper, Tokio, and Actix
Explore RESTful microservices with Rust
Understand how to pack Rust code to a container using Docker
Familiarize yourself with Reactive microservices
Deploy your microservices to modern cloud platforms such as AWS

https://www.packtpub.com/web-development/hands-microservices-rust

Other Books You May Enjoy

[376]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
adder app
 implementing 128, 129, 130
American Standard Code for Information

Interchange (ASCII) 46
analyzer.rs file
 glancing 259, 260, 261, 262, 263
animation loop architecture 166, 167, 168, 169,

170

application programming interface (API) 45, 350
assembly language 279
assets_slalom project
 implementing 184, 185, 186, 187
asynchronous programming 351, 352, 353, 354,

355, 356, 357

B
Backus–Naur 226
backward compatibility 7
batch program 119
block devices 336
boilerplate 327
boilerplate module
 about 327
 source code 331, 332, 333
byte-addressing machine language
 about 296, 297
 coping, with endianness issue 298

C
Calc 224, 225, 226, 227
calc_analyzer project
 about 253, 254
 analyzer.rs file, glancing 259, 260, 261, 262,

263

 main.rs file 257

 symbol_table.rs file 257, 258, 259
 variables, checking of parsed program 254, 255,

256, 257
calc_compiler project
 about 269, 270, 271
 compiler.rs file 271, 273, 274
 main.rs file, glancing 271
calc_interpreter project
 about 263, 264
 executor.rs file 267, 268, 269
 glancing, at symbol_table.rs file 266
 main.rs file 265, 266
calc_parser project
 about 243, 244, 245
 main.rs source file, about 245
 parser code 248, 249, 250, 251, 252, 253
 parser, types 246, 247, 248
 parser.rs source file, about 246
central processing unit (CPU) 171, 357
character device
 about 336
 building 337, 338, 339
closures 9
command line
 parsing 17
command-line applications 9
compiler-compilers 232, 233
const generics feature 358, 359
constants 278
context-dependent grammar (CDG) 254
context-dependent languages 230, 231
context-free grammar 222
context-free languages 229, 230
context-sensitive grammar (CSG) 253
Controller 169
crate
 maturity 350, 351

[378]

Create, Retrieve, Update, and Delete (CRUD) 77
Cross-Origin Resource Sharing (CORS) 154
CRUD application
 about 93, 94, 95, 96
 HTML code 97, 98, 99
 JavaScript code 96, 97
 Rust code 99
custom-derive feature 24

D
data
 retrieving, from Redis store 38, 39
 storing, from Redis store 38, 39
Database Management System (DBMS) 77
deserialization 24
development environments (DEs) 349
device drivers 322
display messages 328
dots module, source code
 about 340
 cleanup call 343, 344
 global information 340, 341
 initialization call 341, 343
 reading function 344, 345

E
edit box 89
Elm Architecture 119
embedded software 9
embedded systems 360
emulator.rs source file 307, 308, 309, 310
End-Of-File 241
endianness issue
 about 297
 coping with 298
event-driven architecture 166
executor.rs file 267, 268, 269
Extensible Markup Language (XML) 44

F
fast in-memory compilers 349
file operations 341
formal languages
 about 228
 context-dependent languages 230, 231

 context-free languages 229, 230
 parsers 228
 regular languages 228, 229
Frames Per Second (FPS) 167, 204
future 354

G
gg_assets_slalom project
 implementing 211, 212
gg_silent_slalom project
 implementing 208, 209, 210
gg_ski project
 implementing 197
 input handling 201, 202
 input handling, patterns 199, 200, 201
 main function 197, 198
gg_whac project
 assets 214, 215
 general structure, of application 215
 general structure, of events 216, 217
 implementing 212, 213, 214
 model fields 217, 218
 widget, defining 218, 219, 220
ggez, versus quicksilver
 background, drawing 206
 composite shapes, drawing 206, 207
 computation, of new position and speed 205
 draw method, drawing 208
 FPS rate 204
 name of trait 203
 new method 203
 ski steering, handling 205
 type of context 203
 unit of measurement, for angle 204
grammar 227
graphical user interface (GUI) 164

H
handlers 54
headers 47
HTML code 97, 98, 99
HTTP protocol
 reference link 48
Human-Machine Interface (HMI) 166
hypertext 45, 76

[379]

HyperText Markup Language (HTML) 45

I
immediate-mode 169
incr app
 implementing 124, 125, 126, 127, 128
input/output (I/O) 357
Integrated Development Environment (IDE)
 about 82, 349, 350
 eclipse 349
 Visual Studio 349
 Visual Studio Code 349
interactive programming 349, 350
intermediate representation (IR) 358
Internet Information Services (IIS) 76

J
JavaScript code 96, 97
JSON data
 returning 69
JSON file
 reading 25, 26, 27
 writing 25, 26, 27
json_dynamic project 27, 28
json_static project 28, 29

K
kernel object 327
Kibibyte (KiB) 291

L
language interpreters 349
Last-In-First-Out (LIFO) 230
lazy initialization 16
lazy_static crate 15, 16
lexical analysis 230
linear algebra 194, 195, 196
link 75
Link-Time Optimization (LTO) 331
Linux kernel modules
 about 324
 build commands 329, 330, 331
 building 327, 328, 329
 environment, preparing 325, 326

 global variables, using 333, 334
 memory, allocating 334, 335, 336
 overview 324
 running 327, 328, 329
log crate 14, 15
login app
 about 131, 132, 133
 db_access.rs file 134, 135
 login.rs file 138, 139, 140, 141
 main.rs file 135, 136, 137, 138
 project organization 133
Low-Level Virtual Machine (LLVM) 325, 358
LÖVE game framework 197

M
machine language
 about 278, 279
 complex program 293, 294, 295
 extending 283, 285
 important concepts, relating to 279, 280, 281,

282, 283
 simple program, writing 285, 286, 288, 289,

290, 291, 293
 structure 281
main.rs source file 245
major number 337
middleware 154
minor number 337
Model 169
Model-View-Controller (MVC) architectural pattern
 about 117, 119, 169, 199
 concepts 123, 124
 controller 120, 121
 controller implementation 122
 flow 123
 model 119, 120
 view 120
 view implementation 122

N
nalgebra library
 reference link 196
networking 9
No-Operation (NOP) 296
Nom library

[380]

 using 303, 304, 305, 306, 307
Nom, features
 alternative of characters, parsing 234, 235
 custom parsing results, creating 239, 240
 fixed string, parsing 236, 237
 parsed items, mapping to other objects 237,

238, 239
 parser, repeating 242
 sequence of characters, parsing 236
 variable text, parsing 241
Nom
 basics 233
 features 233
 used, to building parsers 232
nom_byte_machine project
 about 299, 300, 301
 emulator.rs source file 307, 308, 309, 310
 main.rs source file 301, 302, 303
 nom library, using 305, 306, 307
 Nom library, using 303, 304
 parsing_interpreter.rs source file 310, 311
 translator.rs source file 312, 313, 314
nom_disassembler project
 about 314, 315
 disassembly code, generating that is useful for

debugging 317, 318, 319
 disassembly code, generating that is useful for

reassembling 319, 320
 running 315, 316
 source code, examining 316

O
optimization 358

P
parser combinators 232, 233
parser.rs source file 246
parsers
 building, with Nom 232
parsing 222, 228
parsing_interpreter.rs source file 310, 311
path 74
persons_db app 154, 155
points 195
PostgreSQL database

 accessing 36, 37
 project, implementing 37, 38
profile-guided optimization (PGO) 358
pseudo-random number generators 13, 14

Q
query 74

R
rand crate 13, 14
read-eval-print loop (REPL) 269, 349
Redis store
 data, retrieving from 38, 39
 data, storing from 38, 39
 project, implementing 39, 40
regular languages 228, 229
REST architecture 44, 45
REST web service
 background context 46, 47
 background theory 46, 47
 building 57
 code, examining 53, 54, 55, 56, 59, 60, 61, 62
 file, deleting 59
 file, downloading 57
 invalid command, sending 52
 named resource, sending to server with PUT

method 50
 new resource, sending to server with POST

method 51
 project, overview 45, 46
 resource, deleting with DELETE method 51
 resource, obtaining with GET method 49
 running 48
 string, uploaded to new file 58
 string, uploaded to specified file 58
 stub, building 48
 testing 48
RESTful service
 web app, accessing 152
retained-mode 169
routing 53
Rust Analyzer
 reference link 350
Rust applications
 about 11, 12

[381]

 C-language-callable libraries 12
 language interpreters 12
 Web apps 12
Rust code
 about 99
 db_access.rs changes 99
 main.rs changes 100, 101, 102, 103, 104, 105
Rust crates
 exploring 13
 lazy_static crate 15, 16
 log crate 14, 15
 rand crate 13, 14
 structopt crate 17
Rust handlers 90, 91, 92, 93
Rust Language Server (RLS)
 about 11
 URL 350
Rust
 editions 7, 8, 9, 10, 11

S
second-order functions 233
segments 278
semantic analysis 231
serialization 24
sieve of Eratosthenes 277, 293
silent_slalom project
 implementing 176, 177, 178, 179, 180, 181,

182, 183, 184
ski project
 implementing 170, 171
SQLite database
 accessing 32, 33
 categories 32
 project, implementing 33, 34, 35, 36
stateful server
 about 64, 65
 API service 65, 66
 building 63, 64
 database, implementing 67
 queries, handling 68
 service, testing 66, 67
static variables
 initializing, at runtime 15, 16
structopt crate 17

stub
 building, of REST web service 48
Supervisory Control and Data Acquisition (SCADA)

166

symbol table 231
symbol_table.rs file
 glancing 266
syntax tree 243

T
Tera expression 78
Tera template engine
 using 77, 78, 79, 80, 81, 82, 83, 84
TOML file
 reading 21
 toml_dynamic, using 22, 23
 toml_static, using 23, 24, 25
toy web apps
 implementing 117, 118
translator.rs source file 312, 313, 314

U
Uniform Resource Identifier (URI) 74
Uniform Resource Locator (URL) 45, 74

V
vectors 195
View 169

W
web app, handling with authentication
 about 105, 106, 107
 HTML code 108, 109
 implementation 107
 JavaScript code 109, 110
web app
 about 73
 behavior 74, 75, 76
 list project 84, 85, 86, 87
 overview 77
 RESTful service, accessing 152, 153
 Rust handlers 90, 91, 92, 93
 templates folder 87, 88, 90
 Tera template engine, using 77, 78, 79, 80, 81,

82, 83, 84
WebAssembly (Wasm) application 9, 116, 117,

164

WebAssembly (Wasm) application, creating with
Quicksilver

 animation loop architecture 166, 167, 168, 169,
170

 assets_slalom project, implementing 184, 185,
186, 187

 code 171, 173, 174, 175, 176
 code, analyzing 187, 188, 189, 190
 overview 165
 silent_slalom project, implementing 176, 177,

178, 179, 180, 181, 182, 183, 184
 ski project, implementing 170, 171
World Wide Web (WWW) 44

X

XML file
 reading 29, 30, 31

Y
yauth app
 about 142
 behavior 142
 one_person.rs file 150, 151, 152
 persons_list.rs file 143, 144, 145, 146, 147,

148, 149, 150
 project organization 143
yclient app
 about 155
 changes, to models 156, 157
 client/server request 157, 158, 159, 160, 161
 imported crates 155, 156
 source files 156

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Rust 2018: Productivity
	Technical requirements
	Understanding the different editions of Rust
	The projects
	Working through the examples in this book
	Exploring some utility crates
	Pseudo-random number generators – the rand crate
	Logging – the log crate
	Initializing static variables at runtime – the lazy_static crate
	Parsing the command line – the structopt crate

	Summary
	Questions

	Chapter 2: Storing and Retrieving Data
	Technical requirements
	Project overview
	Reading a TOML file
	Using toml_dynamic
	Using toml_static

	Reading and writing a JSON file
	The json_dynamic project
	The json_static project

	Reading an XML file
	Accessing databases
	Accessing a SQLite database
	Implementing the project

	Accessing a PostgreSQL database
	Implementation of the project

	Storing and retrieving data from a Redis store
	Implementing the project

	Putting it all together
	Summary
	Questions

	Chapter 3: Creating a REST Web Service
	Technical requirements
	The REST architecture
	Project overview
	Essential background theory and context
	Building a stub of a REST web service
	Running and testing the service
	Getting a resource using the GET method
	Sending a named resource to the server using the PUT method
	Sending a new resource to the server using the POST method
	Deleting a resource using the DELETE method
	Sending an invalid command
	Examining the code

	Building a complete web service
	Downloading a file
	Uploading a string to a specified file
	Uploading a string to a new file
	Deleting a file
	Examining the code

	Building a stateful server
	How to have a stateful server
	The API of this service
	Testing the service
	Implementing the database
	Handling queries

	Returning JSON data
	Summary
	Questions
	Further reading

	Chapter 4: Creating a Full Server-Side Web App
	Technical requirements
	Definition of a web app
	Understanding the behavior of a web app
	Project overview
	Using the Tera template engine
	A simple list of persons
	The templates folder
	The other Rust handlers

	A CRUD application
	The JavaScript code
	The HTML code
	The Rust code
	The db_access.rs changes
	The main.rs changes

	Handling an application with authentication
	The implementation
	The HTML code
	The JavaScript code
	The mock database code
	The main function

	Summary
	Questions
	Further reading

	Chapter 5: Creating a Client-Side WebAssembly App Using Yew
	Technical requirements
	Introducing Wasm
	Understanding the MVC architectural pattern
	Implementing two toy web apps
	What is the MVC pattern?
	The model
	The view
	The controller
	View implementation
	Controller implementation
	Understanding the MVC architecture

	Project overview
	Getting started

	The incr app
	The adder app
	The login app
	Organization of the project
	The db_access.rs file
	The main.rs file
	The login.rs file

	The yauth app
	Understanding the behavior of the app
	Organization of the project
	The persons_list.rs file
	Why an empty collection wouldn't be good for filtered_persons

	The one_person.rs file

	A web app accessing a RESTful service
	The persons_db app
	The yclient app
	The imported crates
	The source files
	The changes to the models
	A typical client/server request

	Summary
	Questions
	Further reading

	Chapter 6: Creating a WebAssembly Game Using Quicksilver
	Technical requirements
	Project overview
	Understanding the animation loop architecture
	Implementing the ski project
	Understanding the code behind this

	Implementing the silent_slalom project
	Implementing the assets_slalom project
	Analyzing the code

	Summary
	Questions
	Further reading

	Chapter 7: Creating a Desktop Two-Dimensional Game Using ggez
	Technical requirements
	Project overview
	Understanding linear algebra
	Implementing the gg_ski project
	The main function
	Patterns of input handling
	Input handling in the gg_ski project
	Other differences with quicksilver
	Name of the trait
	The type of context
	The new method
	The angle's unit of measurement
	How to specify the FPS rate
	Handling the ski steering
	Computation of new position and speed
	Drawing the background
	Drawing composite shapes
	Ending the draw method

	Implementing the gg_silent_slalom project
	Implementing the gg_assets_slalom project
	Implementing the gg_whac project
	The assets
	The general structure of the application and events
	Other fields of the model
	Defining a widget

	Summary
	Questions
	Further reading

	Chapter 8: Using a Parser Combinator for Interpreting and Compiling
	Technical requirements
	Project overview
	Introducing Calc
	Understanding formal languages and their parsers
	Regular languages
	Context-free languages
	Context-dependent languages

	Using Nom to build parsers
	Learning about compiler-compilers and parser combinators
	Learning the basics of Nom
	Parsing an alternative of characters
	Parsing a sequence of characters
	Parsing a fixed string
	Mapping parsed items to other objects
	Creating custom parsing results
	Parsing a variable text
	Repeating a parser

	The calc_parser project
	Understanding the main.rs source file
	Learning about the parser.rs source file
	Understanding the types needed by the parser
	Looking at the parser code

	The calc_analyzer project
	Checking the variables of the parsed program
	Understanding the main.rs file
	Looking at the symbol_table.rs file
	Glancing at the analyzer.rs file

	The calc_interpreter project
	Learning about the main.rs file
	Glancing at the symbol_table.rs file
	Understanding the executor.rs file

	The calc_compiler project
	Glancing at the main.rs file
	Understanding the compiler.rs file

	Summary
	Questions
	Further reading

	Chapter 9: Creating a Computer Emulator Using Nom
	Technical requirements
	Project overview
	Introducing a very simple machine language
	The most important concepts relating to machine language
	Extending our machine language
	Writing a very simple program
	A more complex program – the sieve of Eratosthenes

	Defining a byte-addressing machine language
	Coping with the endianness issue

	The nom_byte_machine project
	Understanding the main.rs source file
	Using the Nom library
	The emulator.rs source file
	The parsing_interpreter.rs source file
	The translator.rs source file

	The nom_disassembler project
	Running the project
	Examining the source code
	Generating disassembly code that is useful for debugging
	Generating disassembly code that is useful for reassembling

	Summary
	Questions

	Chapter 10: Creating a Linux Kernel Module
	Technical requirements
	Project overview
	Understanding kernel modules
	Preparing the environment

	A boilerplate module
	Building and running the kernel module
	The build commands
	The source code of the boilerplate module

	Using global variables
	Allocating memory
	A character device
	Building the character device
	The source code of the dots module
	The global information
	The initialization call
	The cleanup call
	The reading function

	Summary
	Questions
	Further reading

	Chapter 11: The Future of Rust
	IDEs and interactive programming
	Crate maturity
	Asynchronous programming
	Optimization
	The const generics feature

	Embedded systems
	Summary

	Assessments
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	Other Books You May Enjoy
	Index

