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PREFACE

Since the second edition of the book published in 2011, there were a lot of advances
in the data-mining field. The term Big Data is introduced and widely accepted to
describe the amount and the rate at which massive and diverse data has been collected,
analyzed, and used. New field of data science is established to describe all multidis-
ciplinary aspects of advanced tools and methodologies, enabling to extract useful
and actionable insight from Big Data. The third edition of the book summarizes these
new developments in fast-changing data-mining field, as well as presents state-of-the-
art data-mining principles required for systematic approach in both an academic
environment and advanced applications deployment.

While the core of materials in the third edition of the textbook remains the same,
most important changes and additions in this edition highlight the dynamics of the
field and include:

• new topics such as Big Data, data science, and deep learning,

• new methodologies including reinforcement learning, cloud computing, and
MapReduce framework,

• new highlights given on unbalanced data, fairness of data-mining models, and
subjectivity in a clustering validation,

• additional advanced algorithms such as convolutional neural networks (CNN),
semisupervised support vector machines (S3VM), Q learning, random forest,
and SMOTE algorithm for unbalanced data modeling, and

• additional examples and exercises that have been added to each chapter, as
well as bibliography, references for further reading, and appendices that have
been updated.

I would like to thank current and former students in our Data Mining Lab at the
Computer Engineering and Computer Science Department, University of Louisville,
for their contributions in preparation of this third edition. Tegjyot Singh Sethi and
Elaheh Arabmakki helped with comments and suggestions based on their TA experi-
ences using the previous editions of the textbook for our data-mining classes. Lingyu
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Lyu and Mehmet Akif Gulum helped me with proofreading of the new edition and
numerous corrections and updates in appendices of the book. Special thanks to
Hanqing Hu who helped me in a preparation of the final version of the text and all
additional figures and tables in the third edition. The new edition of the book is a
result of previous editions’ use as a textbook in active teaching by a large number
of my colleagues. They helped me with their experiences and recommendations,
and I would like to thank them for their support and encouragements during the
preparation of the third edition.

I expect that with this new edition of the book, the reader will increase under-
standing of modern data-mining technologies and their applications and will identify
the recent challenges in the field. The book should serve as the guide in the data-
mining field for advanced undergraduate or graduate students, young researchers,
and practitioners. While each chapter roughly follows a standard educational
template, earlier chapters in the book take more emphasis to introduce fundamental
concepts, while later chapters build upon these foundations and gradually introduce
the most important techniques and methodologies for data mining. The book provides
the fundamental building blocks that will enable the reader to become part of data
science community and participate in building killer data-mining applications of
tomorrow.

MEHMED KANTARDZIC

Louisville
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PREFACE TO THE
SECOND EDITION

In the 7 years that have passed since the publication of the first edition of this book,
data-mining field has made a good progress both in developing new methodologies
and in extending the spectrum of new applications. These changes in data mining
motivated me to update my data-mining book with a second edition. Although the
core of material in this edition remains the same, the new version of the book attempts
to summarize recent developments in our fast-changing field, presenting the state of
the art in data mining, both in academic research and in deployment in commercial
applications. Most notable amount of changes from the first edition is the addition of:

• new topics such as ensemble learning, graph mining, temporal, spatial, distrib-
uted, and privacy preserving data mining,

• new algorithms such as CART, DBSCAN, BIRCH, PageRank, AdaBoost,
support vector machines (SVM), Kohonen self-organizing maps (SOM),
and latent semantic indexing (LSI),

• more details on practical aspects and business understanding of a data-mining
process, discussing important problems of validation, deployment, data under-
standing, causality, security and privacy, and

• some quantitative measures and methods for comparison of data-mining mod-
els such as ROC curve, lift chart, ROI chart, McNemar’s test, and K-fold cross-
validation paired t-test.

Keeping in mind the educational side of the book, many new exercises have been
added. The bibliography and appendices have been updated to include work that has
been appeared in the last few years, as well as to reflect the change of emphasis when
new topic gained importance.

I would like to give thanks to all my colleagues all over the world who used the
first edition of the book for their classes and sent me support, encouragement, and
suggestions to put together this revised version. My sincere thanks to all my collea-
gues and students in the Data Mining Lab and Computer Science Department for their
reviews of this edition and numerous helpful suggestions. Special thanks to the grad-
uate students Brent Wenerstrom, Chamila Walgampaya, andWael Emara for patience
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in proofreading through this new edition and useful discussions about the content of
new chapters, numerous corrections, and additions. Dr. Joung Woo Ryu helped me
enormously in a preparation of the final version of the text and all additional figures
and tables, and I would like to express my deepest gratitude.

I believe this book can serve as a valuable guide to the field for undergraduate,
graduate students, researchers, and practitioners. I hope that the wide range of topics
covered will allow readers to appreciate the extent of the impact of data mining on
modern business, science, even the entire society.

MEHMED KANTARDZIC

Louisville
July 2010
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PREFACE TO THE
FIRST EDITION

The modern technologies of computers, networks, and sensors have made data col-
lection and organization an almost effortless task. However, the captured data needs
to be converted into information and knowledge from recorded data to become useful.
Traditionally, the task of extracting useful information from recorded data has been
performed by analysts; however, the increasing volume of data in modern businesses
and sciences calls for computer-based methods for this task. As data sets have grown
in size and complexity, so there had been an inevitable shift away from direct hands-
on data analysis toward indirect, automatic data analysis in which the analyst works
via more complex and sophisticated tools. The entire process of applying computer-
based methodology, including new techniques for knowledge discovery from data, is
often called data mining.

The importance of data mining arises from the fact that the modern world is a
data-driven world. We are surrounded by data, numerical and otherwise, which must
be analyzed and processed to convert it into information that informs, instructs,
answers, or otherwise aids understanding and decision-making. In the age of Internet,
intranets, data warehouses, and data marts, the fundamental paradigms of classical
data analysis are ripe for changes. Very large collections of data—millions or even
hundreds of millions of individual records—are now being stored into centralized data
warehouses, allowing analysts to make use of powerful data-miningmethods to exam-
ine data more comprehensively. The quantity of such data is huge and growing, the
number of sources is effectively unlimited, and the range of areas covered is vast:
industrial, commercial, financial, and scientific activities are all generating such data.

The new discipline of data mining has developed especially to extract valuable
information from such huge data sets. In recent years there has been an explosive
growth of methods for discovering new knowledge from raw data. This is not surpris-
ing given the proliferation of low-cost computers (for implementing such methods in
software), low-cost sensors, communications, and database technology (for collecting
and storing data) and highly computer-literate application experts who can pose
“interesting” and “useful” application problems.

Data-mining technology is currently a hot favorite in the hands of decision-
makers as it can provide valuable hidden business and scientific “intelligence” from
large amount of historical data. It should be remembered, however, that fundamentally
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data mining is not a new technology. The concept of extracting information and
knowledge discovery from recorded data is a well-established concept in scientific
and medical studies. What is new is the convergence of several disciplines and cor-
responding technologies that have created a unique opportunity for data mining in
scientific and corporate world.

The origin of this book was a wish to have a single introductory source in which
we could direct students, rather than having to direct them to multiple sources. How-
ever, it soon becomes apparent that wide interest existed and the potential readers
other than our students would appreciate a compilation of some of the most important
methods, tools, and algorithms in data mining. Such readers include people from a
wide variety of backgrounds and positions, who find themselves confronted by the
need to make sense of large amount of raw data. This book can be used by a wide
range of readers, from students wishing to learn about basic processes and techniques
in data mining to analysts and programmers who will be engaged directly in interdis-
ciplinary teams for selected data-mining applications. This book reviews state-of-the-
art techniques for analyzing enormous quantities of raw data in a high-dimensional
data spaces to extract new information useful in decision-making process. Most of
the definitions, classifications, and explanations of the techniques, covered in this
book, are not new, and they are already presented in references at the end of the book.
One of the author’s main goals was to concentrate on systematic and balanced
approach to all phases of a data-mining process and present them with enough illus-
trative examples. We expect that carefully prepared examples should give the reader
additional arguments and guidelines in a selection and structuring of techniques and
tools for its own data-mining applications. Better understanding of implementational
details for most of the introduced techniques challenges the reader to build its own
tools or to improve applied methods and techniques.

Teaching in data mining has to have emphasis on the concepts, and properties of
the applied methods, rather than on the mechanical details of how to apply different
data-mining tools. Despite all of their attractive bells and whistles, the computer-based
tools alone will never provide the entire solution. There will always be the need for the
practitioner to make important decisions regarding how the whole process will be
designed and how and what tools will be employed. Obtaining a deeper understanding
of the methods and models, how they behave and why they behave the way they do, is
a prerequisite for efficient and successful application of data-mining technology. The
premise of this book is that there are just a handful of important principles and issues
in the field of data mining. Any researcher or practitioner in this field needs to be
aware of these issues in order to successfully apply a particular methodology, under-
stand a method’s limitations, or develop new techniques. This book is an attempt to
present and discuss such issues and principles and then describe representative and
popular methods originating from statistics, machine learning, computer graphics,
databases, information retrieval, neural networks, fuzzy logic, and evolutionary
computation.

In this book, we describe how best to prepare environments for performing data
mining and discuss approaches that have proven to be critical in revealing important
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patterns, trends, and models in large data sets. It is our expectation that once a reader
has completed this text, he/she will be able to initiate and perform basic activities in all
phases of a data-mining process successfully and effectively. Although it is easy to
focus on the technologies, as you read through the book, have in mind that technology
alone does not provide the entire solution. One of our goals in writing this book was to
minimize the hype associated with data mining. Rather than making false promises
that overstep the bounds of what can reasonably be expected from data mining, we
have tried to make a more objective approach. We describe with enough information
the processes and algorithms that are necessary to produce reliable and useful results
in data-mining applications. We do not advocate the use of any particular product or
technique over another; the designer of data-mining process has to have enough back-
ground for selection of appropriate methodologies and software tools.

MEHMED KANTARDZIC

Louisville
August 2002
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1

DATA-MINING CONCEPTS

Chapter Objectives

• Understand the need for analyses of large, complex, information-rich data sets.

• Identify the goals and primary tasks of the data-mining process.

• Describe the roots of data-mining technology.

• Recognize the iterative character of a data-mining process and specify its
basic steps.

• Explain the influence of data quality on a data-mining process.

• Establish the relation between data warehousing and data mining.

• Discuss concepts of big data and data science.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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1.1 INTRODUCTION

Modern science and engineering are based on using first-principle models to
describe physical, biological, and social systems. Such an approach starts with a
basic scientific model, such as Newton’s laws of motion or Maxwell’s equations
in electromagnetism, and then builds upon them various applications in mechanical
engineering or electrical engineering. In this approach, experimental data are used to
verify the underlying first-principle models and to estimate some of the parameters
that are difficult or sometimes impossible to measure directly. However, in many
domains the underlying first principles are unknown, or the systems under study
are too complex to be mathematically formalized. With the growing use of compu-
ters, there is a great amount of data being generated by such systems. In the absence
of first-principle models, such readily available data can be used to derive models by
estimating useful relationships between a system’s variables (i.e., unknown input–
output dependencies). Thus there is currently a paradigm shift from classical
modeling and analyses based on first principles to developing models and the
corresponding analyses directly from data.

We have grown accustomed gradually to the fact that there are tremendous
volumes of data filling our computers, networks, and lives. Government agencies,
scientific institutions, and businesses have all dedicated enormous resources to
collecting and storing data. In reality, only a small amount of these data will ever
be used because, in many cases, the volumes are simply too large to manage or the
data structures themselves are too complicated to be analyzed effectively. How could
this happen? The primary reason is that the original effort to create a data set is often
focused on issues such as storage efficiency; it does not include a plan for how the data
will eventually be used and analyzed.

The need to understand large, complex, information-rich data sets is common to
virtually all fields of business, science, and engineering. In the business world,
corporate and customer data are becoming recognized as a strategic asset. The ability
to extract useful knowledge hidden in these data and to act on that knowledge is
becoming increasingly important in today’s competitive world. The entire
process of applying a computer-based methodology, including new techniques, for
discovering knowledge from data is called data mining.

Data mining is an iterative process within which progress is defined by discov-
ery, through either automatic or manual methods. Data mining is most useful in an
exploratory analysis scenario in which there are no predetermined notions about
what will constitute an “interesting” outcome. Data mining is the search for new,
valuable, and nontrivial information in large volumes of data. It is a cooperative
effort of humans and computers. Best results are achieved by balancing the knowl-
edge of human experts in describing problems and goals with the search capabilities
of computers.

In practice, the two primary goals of data mining tend to be prediction and
description. Prediction involves using some variables or fields in the data set to pre-
dict unknown or future values of other variables of interest. Description, on the other
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hand, focuses on finding patterns describing the data that can be interpreted by
humans. Therefore, it is possible to put data-mining activities into one of two
categories:

1. Predictive data mining, which produces the model of the system described by
the given data set, or

2. Descriptive data mining, which produces new, nontrivial information based
on the available data set.

On the predictive end of the spectrum, the goal of data mining is to produce a
model, expressed as an executable code, which can be used to perform classification,
prediction, estimation, or other similar tasks. On the other, descriptive end of the spec-
trum, the goal is to gain an understanding of the analyzed system by uncovering pat-
terns and relationships in large data sets. The relative importance of prediction and
description for particular data-mining applications can vary considerably. The goals
of prediction and description are achieved by using data-mining techniques, explained
later in this book, for the following primary data-mining tasks:

1. Classification—Discovery of a predictive learning function that classifies a
data item into one of several predefined classes.

2. Regression—Discovery of a predictive learning function, which maps a data
item to a real-value prediction variable.

3. Clustering—A common descriptive task in which one seeks to identify a finite
set of categories or clusters to describe the data.

4. Summarization—An additional descriptive task that involves methods for
finding a compact description for a set (or subset) of data.

5. Dependency modeling—Finding a local model that describes significant
dependencies between variables or between the values of a feature in a data
set or in a part of a data set.

6. Change and deviation detection—Discovering the most significant changes in
the data set.

The more formal approach, with graphical interpretation of data-mining tasks for
complex and large data sets and illustrative examples, is given in Chapter 4. Current
introductory classifications and definitions are given here only to give the reader a
feeling of the wide spectrum of problems and tasks that may be solved using
data-mining technology.

The success of a data-mining engagement depends largely on the amount of
energy, knowledge, and creativity that the designer puts into it. In essence, data min-
ing is like solving a puzzle. The individual pieces of the puzzle are not complex struc-
tures in and of themselves. Taken as a collective whole, however, they can constitute
very elaborate systems. As you try to unravel these systems, you will probably get
frustrated, start forcing parts together, and generally become annoyed at the entire
process; but once you know how to work with the pieces, you realize that it was

3INTRODUCTION



not really that hard in the first place. The same analogy can be applied to data mining.
In the beginning, the designers of the data-mining process probably do not knowmuch
about the data sources; if they did, they would most likely not be interested in
performing data mining. Individually, the data seem simple, complete, and explain-
able. But collectively, they take on a whole new appearance that is intimidating and
difficult to comprehend, like the puzzle. Therefore, being an analyst and designer in a
data-mining process requires, besides thorough professional knowledge, creative
thinking and a willingness to see problems in a different light.

Data mining is one of the fastest growing fields in the computer industry. Once a
small interest area within computer science and statistics, it has quickly expanded into
a field of its own. One of the greatest strengths of data mining is reflected in its wide
range of methodologies and techniques that can be applied to a host of problem sets.
Since data mining is a natural activity to be performed on large data sets, one of the
largest target markets is the entire data-warehousing, data-mart, and decision-support
community, encompassing professionals from such industries as retail, manufactur-
ing, telecommunications, healthcare, insurance, and transportation. In the business
community, data mining can be used to discover new purchasing trends, plan invest-
ment strategies, and detect unauthorized expenditures in the accounting system. It can
improve marketing campaigns, and the outcomes can be used to provide customers
with more focused support and attention. Data-mining techniques can be applied to
problems of business process reengineering, in which the goal is to understand
interactions and relationships among business practices and organizations.

Many law enforcement and special investigative units, whose mission is to iden-
tify fraudulent activities and discover crime trends, have also used data mining suc-
cessfully. For example, these methodologies can aid analysts in the identification of
critical behavior patterns, the communication interactions of narcotics organizations,
the monetary transactions of money laundering and insider trading operations, the
movements of serial killers, and the targeting of smugglers at border crossings.
Data-mining techniques have also been employed by people in the intelligence com-
munity who maintain many large data sources as a part of the activities relating to
matters of national security. Appendix B of the book gives a brief overview of typical
commercial applications of data-mining technology today. Despite a considerable
level of over-hype and strategic misuse, data mining has not only persevered but also
matured and adapted for practical use in the business world.

1.2 DATA-MINING ROOTS

Looking at how different authors describe data mining, it is clear that we are far from a
universal agreement on the definition of data mining or even what constitutes data
mining. Is data mining a form of statistics enriched with learning theory, or is it a rev-
olutionary new concept? In our view, most data-mining problems and corresponding
solutions have roots in classical data analysis. Data mining has its origins in various
disciplines, of which the two most important are statistics and machine learning.
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Statistics has its roots in mathematics, and therefore, there has been an emphasis on
mathematical rigor, a desire to establish that something is sensible on theoretical
grounds before testing it in practice. In contrast, the machine-learning community
has its origins very much in computer practice. This has led to a practical orientation,
a willingness to test something out to see how well it performs, without waiting for a
formal proof of effectiveness.

If the place given to mathematics and formalizations is one of the major differ-
ences between statistical and machine-learning approaches to data mining, another is
in the relative emphasis they give to models and algorithms. Modern statistics is
almost entirely driven by the notion of a model. This is a postulated structure, or
an approximation to a structure, which could have led to the data. In place of the
statistical emphasis on models, machine learning tends to emphasize algorithms. This
is hardly surprising; the very word “learning” contains the notion of a process, an
implicit algorithm.

Basic modeling principles in data mining also have roots in control theory, which
is primarily applied to engineering systems and industrial processes. The problem of
determining a mathematical model for an unknown system (also referred to as the
target system) by observing its input–output data pairs is generally referred to as sys-
tem identification. The purposes of system identification are multiple, and, from a
standpoint of data mining, the most important are to predict a system’s behavior
and to explain the interaction and relationships between the variables of a system.

System identification generally involves two top-down steps:

1. Structure identification—In this step, we need to apply a priori knowledge
about the target system to determine a class of models within which the search
for the most suitable model is to be conducted. Usually this class of models is
denoted by a parameterized function y = f(u,t), where y is the model’s output,
u is an input vector, and t is a parameter vector. The determination of the
function f is problem dependent, and the function is based on the designer’s
experience, intuition, and the laws of nature governing the target system.

2. Parameter identification—In the second step, when the structure of the model
is known, all we need to do is apply optimization techniques to determine
parameter vector t such that the resulting model y∗ = f(u,t∗) can describe
the system appropriately.

In general, system identification is not a one-pass process: both structure and
parameter identification need to be done repeatedly until a satisfactory model is found.
This iterative process is represented graphically in Figure 1.1. Typical steps in every
iteration are as follows:

1. Specify and parameterize a class of formalized (mathematical) models,
y∗ = f(u,t), representing the system to be identified.

2. Perform parameter identification to choose the parameters that best fit the
available data set (the difference y − y∗ is minimal).
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3. Conduct validation tests to see if the model identified responds correctly to an
unseen data set (often referred as test, validating, or checking data set).

4. Terminate the process once the results of the validation test are satisfactory.

If we do not have any a priori knowledge about the target system, then structure
identification becomes difficult, and we have to select the structure by trial and error.
While we know a great deal about the structures of most engineering systems and
industrial processes, in a vast majority of target systems where we apply data-mining
techniques, these structures are totally unknown, or they are so complex that it is
impossible to obtain an adequate mathematical model. Therefore, new techniques
were developed for parameter identification, and they are today a part of the spectra
of data-mining techniques.

Finally, we can distinguish between how the terms “model” and “pattern” are
interpreted in data mining. A model is a “large-scale” structure, perhaps summarizing
relationships over many (sometimes all) cases, whereas a pattern is a local structure,
satisfied by few cases or in a small region of a data space. It is also worth noting here
that the word “pattern,” as it is used in pattern recognition, has a rather different
meaning for data mining. In pattern recognition it refers to the vector of measurements
characterizing a particular object, which is a point in a multidimensional data space. In
data mining, a pattern is simply a local model. In this book we refer to n-dimensional
vectors of data as samples.

1.3 DATA-MINING PROCESS

Without trying to cover all possible approaches and all different views about data
mining as a discipline, let us start with one possible, sufficiently broad definition
of data mining:

Data Mining is a process of discovering various models, summaries, and derived
values from a given collection of data.

The word “process” is very important here. Even in some professional environ-
ments, there is a belief that data mining simply consists of picking and applying a

u Target system to be identified y

+

Mathematical model y* = f (u,t*) y*     

Identification techniques
y–y*

∑

Figure 1.1. Block diagram for parameter identification.
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computer-based tool to match the presented problem and automatically obtaining a
solution. This is a misconception based on an artificial idealization of the world. There
are several reasons why this is incorrect. One reason is that data mining is not simply a
collection of isolated tools, each completely different from the other and waiting to be
matched to the problem. A second reason lies in the notion of matching a problem to a
technique. Only very rarely is a research question stated sufficiently precisely that a
single and simple application of the method will suffice. In fact, what happens in prac-
tice is that data mining becomes an iterative process. One studies the data, examines it
using some analytic technique, decides to look at it another way, perhaps modifies it,
and then goes back to the beginning and applies another data-analysis tool, reaching
either better or different results. This can go round and round many times; each
technique is used to probe slightly different aspects of data—to ask a slightly different
question of the data. What is essentially being described here is a voyage of discovery
that makes modern data mining exciting. Still, data mining is not a random application
of statistical, machine learning, and other methods and tools. It is not a random walk
through the space of analytic techniques but a carefully planned and considered
process of deciding what will be most useful, promising, and revealing.

It is important to realize that the problem of discovering or estimating dependen-
cies from data or discovering totally new data is only one part of the general
experimental procedure used by scientists, engineers, and others who apply standard
steps to draw conclusions from the data. The general experimental procedure adapted
to data-mining problems involves the following steps:

1. State the problem and formulate the hypothesis
Most data-based modeling studies are performed in a particular application
domain. Hence, domain-specific knowledge and experience are usually
necessary in order to come up with a meaningful problem statement.
Unfortunately, many application studies tend to focus on the data-mining
technique at the expense of a clear problem statement. In this step, a modeler
usually specifies a set of variables for the unknown dependency and, if
possible, a general form of this dependency as an initial hypothesis. There
may be several hypotheses formulated for a single problem at this stage.
The first step requires the combined expertise of an application domain and
a data-mining model. In practice, it usually means a close interaction between
the data-mining expert and the application expert. In successful data-mining
applications, this cooperation does not stop in the initial phase; it continues
during the entire data-mining process.

2. Collect the data
This step is concernedwith how the data are generated and collected. In general,
there are two distinct possibilities. The first is when the data-generation process
is under the control of an expert (modeler): this approach is known as a designed
experiment. The second possibility is when the expert cannot influence the data-
generation process: this is known as the observational approach. An observa-
tional setting, namely, random data generation, is assumed in most data-mining
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applications. Typically, the sampling distribution is completely unknown after
data are collected, or it is partially and implicitly given in the data-collection
procedure. It is very important, however, to understand how data collection
affects its theoretical distribution, since such a priori knowledge can be very
useful for modeling and, later, for the final interpretation of results. Also, it
is important to make sure that the data used for estimating a model and the data
used later for testing and applying a model come from the same, unknown, sam-
pling distribution. If this is not the case, the estimated model cannot be success-
fully used in a final application of the results.

3. Preprocessing the data
In the observational setting, data are usually “collected” from the existing
databases, data warehouses, and data marts. Data preprocessing usually
includes at least two common tasks:

(a) Outlier detection (and removal)

Outliers are unusual data values that are not consistent with most observa-
tions. Commonly, outliers result from measurement errors and coding and
recording errors and, sometimes, are natural, abnormal values. Such non-
representative samples can seriously affect the model produced later.
There are two strategies for dealing with outliers:

(i) Detect and eventually remove outliers as a part of the preproces-
sing phase.

(ii) Develop robust modeling methods that are insensitive to outliers.

(b) Scaling, encoding, and selecting features

Data preprocessing includes several steps such as variable scaling and dif-
ferent types of encoding. For example, one feature with the range [0, 1] and
the other with the range [–100, 1000] will not have the same weight in the
applied technique; they will also influence the final data-mining results dif-
ferently. Therefore, it is recommended to scale them and bring both features
to the same weight for further analysis. Also, application-specific encoding
methods usually achieve dimensionality reduction by providing a smaller
number of informative features for subsequent data modeling.
These two classes of preprocessing tasks are only illustrative examples of a

large spectrum of preprocessing activities in a data-mining process.
Data-preprocessing steps should not be considered completely independent

from other data-mining phases. In every iteration of the data-mining process, all
activities, together, could define new and improved data sets for subsequent
iterations. Generally, a good preprocessing method provides an optimal repre-
sentation for a data-mining technique by incorporating a priori knowledge in the
form of application-specific scaling and encoding. More about these techniques
and the preprocessing phase in general will be given in Chapters 2 and 3, where
we have functionally divided preprocessing and its corresponding techniques
into two subphases: data preparation and data-dimensionality reduction.
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4. Estimate the model
The selection and implementation of the appropriate data-mining technique is
the main task in this phase. This process is not straightforward; usually, in
practice, the implementation is based on several models, and selecting the best
one is an additional task. The basic principles of learning and discovery from
data are given in Chapter 4 of this book. Later, Chapters 5 through 13 explain
and analyze specific techniques that are applied to perform a successful learn-
ing process from data and to develop an appropriate model.

5. Interpret the model and draw conclusions
In most cases, data-mining models should help in decision-making. Hence,
such models need to be interpretable in order to be useful because humans
are not likely to base their decisions on complex “black-box” models. Note
that the goals of accuracy of the model and accuracy of its interpretation are
somewhat contradictory. Usually, simple models are more interpretable, but
they are also less accurate. Modern data-mining methods are expected to
yield highly accurate results using high-dimensional models. The problem
of interpreting these models, also very important, is considered a separate
task, with specific techniques to validate the results. A user does not
want hundreds of pages of numerical results. He does not understand them;
he cannot summarize, interpret, and use them for successful decision-
making.

Even though the focus of this book is on steps 3 and 4 in the data-mining proc-
ess, we have to understand that they are just two steps in a more complex process.
All phases, separately, and the entire data-mining process, as a whole, are highly
iterative, as has been shown in Figure 1.2. A good understanding of the whole proc-
ess is important for any successful application. No matter how powerful the data-
mining method used in step 4 is, the resulting model will not be valid if the data
are not collected and preprocessed correctly or if the problem formulation is not
meaningful.

In 1999, several large companies including automaker Daimler-Benz, insurance
provider OHRA, hardware and software manufacturer NCR Corp., and statistical
software maker SPSS, Inc. formalize and standardize an approach to data-mining
process. The result of their work was CRISP-DM, the CRoss-Industry Standard
Process for Data Mining presented on Figure 1.3. The process was designed to
be independent of any specific tool. The CRISP-DM methodology provides a struc-
tured approach in planning a data-mining project. Numerous data-mining applica-
tions showed its practicality and flexibility and its usefulness when using analytics
to solve complex business issues. This model is an idealized sequence of events. In
practice, many of the tasks can be performed in a different order, and it will often be
necessary to backtrack to previous activities and repeat certain actions. The model
does not try to capture all possible routes through the data-mining process. The
reader may recognize the connection and similarities between steps of data mining
presented on Figures 1.2 and 1.3.
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1.4 FROM DATA COLLECTION TO DATA PREPROCESSING

As we enter into the age of digital information, the problem of data overload looms
ominously ahead. Our ability to analyze and understand massive data sets is far
behind our ability to gather and store the data. Recent advances in computing, com-
munications, and digital storage technologies, together with the development of high-
throughput data-acquisition technologies, have made it possible to gather and store
incredible volumes of data. Large databases of digital information are ubiquitous.

State the problem

Collect the data

Preprocess the data

Estimate the model (mine the data)

Interpret the model and draw conclusions 

Figure 1.2. The data-mining process.

1. Business

understanding

6. Deployment

5. Evaluation

2. Data

understanding

3. Data

preparation

4. Modeling

Data

Figure 1.3. CRISP-DM conceptual model.
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Data from the neighborhood store’s checkout register, your bank’s credit card author-
ization device, records in your doctor’s office, patterns in your telephone calls, and
many more applications generate streams of digital records archived in huge business
databases. Complex distributed computer systems, communication networks, and
power systems, for example, are equipped with sensors and measurement devices that
gather and store a variety of data for use in monitoring, controlling, and improving
their operations. Scientists are at the higher end of today’s data-collection machinery,
using data from different sources—from remote sensing platforms to microscope
probing of cell details. Scientific instruments can easily generate terabytes of data
in a short period of time and store them in the computer. One example is the hundreds
of terabytes of DNA, protein-sequence, and gene expression data that biological sci-
ence researchers have gathered at steadily increasing rates. The information age, with
the expansion of the Internet, has caused an exponential growth in information sources
and also in information storage units. An illustrative example is given in Figure 1.4,
where we can see a dramatic increase of Internet hosts in recent years, where these
numbers are directly proportional to the amount of data stored on the Internet.

It is estimated that the digital universe consumed approximately 281 exabytes in
2007, and it was already 10 times that size by 2011. (One exabyte is ~1018 bytes or
1,000,000 terabytes.) Inexpensive digital and video cameras have made available
huge archives of images and videos. The prevalence of radio frequency ID (RFID)
tags or transponders due to their low cost and small size has resulted in the deployment
of millions of sensors that transmit data regularly. E-mails, blogs, transaction data, and
billions of Web pages create terabytes of new data every day.

There is a rapidly widening gap between data-collection and data-organization
capabilities and the ability to analyze the data. Current hardware and database
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Figure 1.4. Growth of Internet hosts.
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technology allows efficient, inexpensive, and reliable data storage and access. How-
ever, whether the context is business, medicine, science, or government, the data sets
themselves, in their raw form, are of little direct value. What is of value is the knowl-
edge that can be inferred from the data and put to use. For example, the marketing
database of a consumer goods company may yield knowledge of the correlation
between sales of certain items and certain demographic groups. This knowledge
can be used to introduce new, targeted marketing campaigns with a predictable finan-
cial return, as opposed to unfocused campaigns.

The root of the problem is that the data size and dimensionality are too large for
manual analysis and interpretation or even for some semiautomatic computer-based
analyses. A scientist or a business manager can work effectively with a few hundred or
thousand records. Effectively mining millions of data points, each described with tens
or hundreds of characteristics, is another matter. Imagine the analysis of terabytes of
sky image data with thousands of photographic high-resolution images (23,040 ×
23,040 pixels per image) or human genome databases with billions of components.
In theory, “big data” can lead to much stronger conclusions, but in practice many dif-
ficulties arise. The business community is well aware of today’s information overload,
and one analysis shows that:

1. 61% of managers believe that information overload is present in their own
workplace,

2. 80% believe the situation will get worse,

3. more than 50% of the managers ignore data in current decision-making pro-
cesses because of the information overload,

4. 84% of managers store this information for the future; it is not used for current
analysis, and

5. 60% believe that the cost of gathering information outweighs its value.

What are the solutions? Work harder. Yes, but how long can you keep up,
because the limits are very close. Employ an assistant. Maybe, if you can afford it.
Ignore the data. But then you are not competitive in the market. The only real solution
will be to replace classical data-analysis and interpretation methodologies (both man-
ual and computer based) with a new data-mining technology.

In theory, most data-mining methods should be happy with large data sets. Large
data sets have the potential to yield more valuable information. If data mining is a
search through a space of possibilities, then large data sets suggest many more pos-
sibilities to enumerate and evaluate. The potential for increased enumeration and
search is counterbalanced by practical limitations. Besides the computational com-
plexity of the data-mining algorithms that work with large data sets, a more exhaustive
search may also increase the risk of finding some low-probability solutions that eval-
uate well for the given data set, but may not meet future expectations.

In today’s multimedia-based environment that has a huge Internet infrastructure,
different types of data are generated and digitally stored. To prepare adequate
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data-mining methods, we have to analyze the basic types and characteristics of data
sets. The first step in this analysis is systematization of data with respect to their com-
puter representation and use. Data that is usually the source for a data-mining process
can be classified into structured data, semi-structured data, and unstructured data

Most business databases contain structured data consisting of well-defined fields
with numeric or alphanumeric values, while scientific databases may contain all three
classes. Examples of semi-structured data are electronic images of business docu-
ments, medical reports, executive summaries, and repair manuals. The majority of
Web documents also fall in this category. An example of unstructured data is a video
recorded by a surveillance camera in a department store. Such visual and, in general,
multimedia recordings of events or processes of interest are currently gaining
widespread popularity because of reduced hardware costs. This form of data generally
requires extensive processing to extract and structure the information contained in it.

Structured data is often referred to as traditional data, while the semi-structured
and unstructured data are lumped together as nontraditional data (also called multime-
dia data). Most of the current data-mining methods and commercial tools are applied
to traditional data. However, the development of data-mining tools for nontraditional
data, as well as interfaces for its transformation into structured formats, is progressing
at a rapid rate.

The standard model of structured data for data mining is a collection of cases.
Potential measurements called features are specified, and these features are uniformly
measured over many cases. Usually the representation of structured data for data-
mining problems is in a tabular form or in the form of a single relation (term used
in relational databases), where columns are features of objects stored in a table and
rows are values of these features for specific entities. A simplified graphical represen-
tation of a data set and its characteristics is given in Figure 1.5. In the data-mining
literature, we usually use the terms samples or cases for rows. Many different types
of features (attributes or variables)—i.e. fields—in structured data records are com-
mon in data mining. Not all of the data-mining methods are equally good at dealing
with different types of features.

There are several ways of characterizing features. One way of looking at a
feature—or in a formalization process, the more often used term, variable—is to
see whether it is an independent variable or a dependent variable, that is, whether
or not it is a variable whose values depend upon values of other variables represented
in a data set. This is a model-based approach to classifying variables. All dependent
variables are accepted as outputs from the system for which we are establishing a
model, and independent variables are inputs to the system, as represented in
Figure 1.6.

There are some additional variables that influence system behavior, but the cor-
responding values are not available in a data set during a modeling process. The rea-
sons are different: from high complexity and the cost of measurements for these
features to a modeler’s not understanding the importance of some factors and their
influences on the model. These are usually called unobserved variables, and they
are the main cause of ambiguities and estimations in a model.
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Today’ computers and corresponding software tools support processing of data sets
with millions of samples and hundreds of features. Large data sets, including those with
mixed data types, are a typical initial environment for application of data-mining tech-
niques. When a large amount of data is stored in a computer, one cannot rush into data-
mining techniques, because the important problem of data quality has first to be
resolved. Also, it is obvious that a manual quality analysis is not possible at that stage.
Therefore, it is necessary to prepare a data-quality analysis in the earliest phases of the
data-mining process; usually it is a task to be undertaken in the data-preprocessing
phase. The quality of data could limit the ability of end users to make informed deci-
sions. It has a profound effect on the image of the system and determines the corre-
sponding model that is implicitly described. Using the available data-mining
techniques, it will be difficult to undertake major qualitative changes in an organization
based on poor-quality data; also, to make new sound discoveries from poor-quality sci-
entific data will be almost impossible. There are a number of indicators of data quality
that have to be taken care of in the preprocessing phase of a data-mining process:

1. The data should be accurate. The analyst has to check that the name is spelled
correctly, the code is in a given range, the value is complete, and so on.

2. The data should be stored according to data type. The analyst must ensure that
the numerical value is not presented in character form, that integers are not in
the form of real numbers, and so on.

3. The data should have integrity. Updates should not be lost because of conflicts
among different users; robust backup and recovery procedures should be
implemented if they are not already part of the Data BaseManagement System
(DBMS).

Features

Values for a given sample and a given feature 

Samples

Figure 1.5. Tabular representation of a data set.

X
System Y

Z

Figure 1.6. A real system, besides input (independent) variables X and (dependent)

outputs Y, often has unobserved inputs Z.
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4. The data should be consistent. The form and the content should be the same
after integration of large data sets from different sources.

5. The data should not be redundant. In practice, redundant data should be mini-
mized, and reasoned duplication should be controlled, or duplicated records
should be eliminated.

6. The data should be timely. The time component of data should be recognized
explicitly from the data or implicitly from the manner of its organization.

7. The data should be well understood. Naming standards are a necessary but not
the only condition for data to be well understood. The user should know that
the data corresponds to an established domain.

8. The data set should be complete. Missing data, which occurs in reality, should
be minimized. Missing data could reduce the quality of a global model. On the
other hand, some data-mining techniques are robust enough to support ana-
lyses of data sets with missing values.

How to work with and solve some of these problems of data quality is explained
in greater detail in Chapters 2 and 3 where basic data-mining preprocessing methodol-
ogies are introduced. These processes are performed very often using data-
warehousing technology, briefly explained in Section 1.5.

1.5 DATA WAREHOUSES FOR DATA MINING

Although the existence of a data warehouse is not a prerequisite for data mining, in
practice, the task of data mining, especially for some large companies, is made a lot
easier by having access to a data warehouse. A primary goal of a data warehouse is to
increase the “intelligence” of a decision process and the knowledge of the people
involved in this process. For example, the ability of product marketing executives
to look at multiple dimensions of a product’s sales performance—by region, by type
of sales, and by customer demographics—may enable better promotional efforts,
increased production, or new decisions in product inventory and distribution. It should
be noted that average companies work with averages. The superstars differentiate
themselves by paying attention to the details. They may need to slice and dice the data
in different ways to obtain a deeper understanding of their organization and to make
possible improvements. To undertake these processes, users have to know what data
exists, where it is located, and how to access it.

A data warehouse means different things to different people. Some definitions are
limited to data; others refer to people, processes, software, tools, and data. One of the
global definitions is the following:

The data warehouse is a collection of integrated, subject-oriented databases
designed to support the decision-support functions (DSF), where each unit of data
is relevant to some moment in time.

Based on this definition, a data warehouse can be viewed as an organization’s
repository of data, set up to support strategic decision-making. The function of the
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data warehouse is to store the historical data of an organization in an integrated
manner that reflects the various facets of the organization and business. The data
in a warehouse are never updated but used only to respond to queries from end users
who are generally decision-makers. Typically, data warehouses are huge, storing
billions of records. In many instances, an organization may have several local or
departmental data warehouses often called data marts. A data mart is a data warehouse
that has been designed to meet the needs of a specific group of users. It may be large or
small, depending on the subject area.

At this early time in the evolution of data warehouses, it is not surprising to find
many projects floundering because of the basic misunderstanding of what a data ware-
house is. What is surprising is the size and scale of these projects. Many companies err
by not defining exactly what a data warehouse is, the business problems it will solve,
and the uses to which it will be put. Two aspects of a data warehouse are most impor-
tant for a better understanding of its design process: the first is the specific types (clas-
sification) of data stored in a data warehouse, and the second is the set of
transformations used to prepare the data in the final form such that it is useful for deci-
sion-making. A data warehouse includes the following categories of data, where the
classification is accommodated to the time-dependent data sources:

1. Old detail data,

2. Current (new) detail data,

3. Lightly summarized data,

4. Highly summarized data, and

5. Metadata (the data directory or guide).

To prepare these five types of elementary or derived data in a data warehouse, the
fundamental types of data transformation are standardized. There are four main types
of transformations, and each has its own characteristics:

1. Simple transformations—These transformations are the building blocks of all
other more complex transformations. This category includes manipulation of
data that is focused on one field at a time, without taking into account its
values in related fields. Examples include changing the data type of a field
or replacing an encoded field value with a decoded value.

2. Cleansing and scrubbing—These transformations ensure consistent format-
ting and usage of a field or of related groups of fields. This can include a
proper formatting of address information, for example. This class of transfor-
mations also includes checks for valid values in a particular field, usually
checking the range or choosing from an enumerated list.

3. Integration—This is a process of taking operational data from one or more
sources and mapping it, field by field, onto a new data structure in the data
warehouse. The common identifier problem is one of the most difficult inte-
gration issues in building a data warehouse. Essentially, this situation occurs
when there are multiple system sources for the same entities and there is no
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clear way to identify those entities as the same. This is a challenging problem,
and in many cases it cannot be solved in an automated fashion. It frequently
requires sophisticated algorithms to pair up probable matches. Another com-
plex data-integration scenario occurs when there are multiple sources for the
same data element. In reality, it is common that some of these values are con-
tradictory, and resolving a conflict is not a straightforward process. Just as dif-
ficult as having conflicting values is having no value for a data element in a
warehouse. All these problems and corresponding automatic or semiautomatic
solutions are always domain dependent.

4. Aggregation and summarization—These are methods of condensing
instances of data found in the operational environment into fewer instances
in the warehouse environment. Although the terms aggregation and summa-
rization are often used interchangeably in the literature, we believe that they do
have slightly different meanings in the data-warehouse context. Summariza-
tion is a simple addition of values along one or more data dimensions, e.g.
adding up daily sales to produce monthly sales. Aggregation refers to the addi-
tion of different business elements into a common total; it is highly domain
dependent. For example, aggregation is adding daily product sales and
monthly consulting sales to get the combined monthly total.

These transformations are the main reason why we prefer a warehouse as a source
of data for a data-mining process. If the data warehouse is available, the preprocessing
phase in data mining is significantly reduced, sometimes even eliminated. Do not for-
get that this preparation of data is the most time-consuming phase. Although the
implementation of a data warehouse is a complex task, described in many textbooks
in great detail, in this text we are giving only the basic characteristics. A three-stage
data-warehousing development process is summarized through the following
basic steps:

1. Modeling—In simple terms, to take the time to understand business processes,
the information requirements of these processes, and the decisions that are cur-
rently made within processes.

2. Building—To establish requirements for tools that suit the types of decision
support necessary for the targeted business process; to create a data model that
helps further define information requirements; and to decompose problems
into data specifications and the actual data store, which will, in its final form,
represent either a data mart or a more comprehensive data warehouse.

3. Deploying—to implement, relatively early in the overall process, the nature of
the data to be warehoused and the various business intelligence tools to be
employed; and to begin by training users. The deploy stage explicitly contains
a time during which users explore both the repository (to understand data that
are and should be available) and early versions of the actual data warehouse.
This can lead to an evolution of the data warehouse, which involves adding
more data, extending historical periods, or returning to the build stage to
expand the scope of the data warehouse through a data model.
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Datamining represents oneof themajor applications for datawarehousing, since the
sole function of a data warehouse is to provide information to end users for decision sup-
port. Unlike other query tools and application systems, the data-mining process provides
an end userwith the capacity to extract hidden, nontrivial information. Such information,
although more difficult to extract, can provide bigger business and scientific advantages
and yield higher returns on “data-warehousing and data-mining” investments.

How is data mining different from other typical applications of a data warehouse,
such as structured query languages (SQL) and online analytical processing tools
(OLAP), which are also applied to data warehouses? SQL is a standard relational data-
base language that is good for queries that impose some kind of constraints on data in
the database in order to extract an answer. In contrast, data-mining methods are good
for queries that are exploratory in nature, trying to extract hidden, not so obvious
information. SQL is useful when we know exactly what we are looking for and we
can describe it formally. We will use data-mining methods when we know only
vaguely what we are looking for. Therefore these two classes of data-warehousing
applications are complementary.

OLAP tools and methods have become very popular in recent years as they let
users analyze data in a warehouse by providing multiple views of the data, supported
by advanced graphical representations. In these views, different dimensions of data
correspond to different business characteristics. OLAP tools make it very easy to look
at dimensional data from any angle or to slice and dice it. OLAP is part of the spectrum
of decision-support tools. Traditional query and report tools describe what is in a data-
base. OLAP goes further; it is used to answer why certain things are true. The user
forms a hypothesis about a relationship and verifies it with a series of queries against
the data. For example, an analyst might want to determine the factors that lead to loan
defaults. He or she might initially hypothesize that people with low incomes are bad
credit risks and analyze the database with OLAP to verify (or disprove) this assump-
tion. In other words, the OLAP analyst generates a series of hypothetical patterns and
relationships and uses queries against the database to verify them or disprove them.
OLAP analysis is essentially a deductive process.

Although OLAP tools, like data-mining tools, provide answers that are derived
from data, the similarity between them ends here. The derivation of answers from data
in OLAP is analogous to calculations in a spreadsheet; because they use simple and
given-in-advance calculations, OLAP tools do not learn from data, nor do they create
new knowledge. They are usually special-purpose visualization tools that can help end
users draw their own conclusions and decisions, based on graphically condensed data.
OLAP tools are very useful for the data-mining process; they can be a part of it but
they are not a substitute.

1.6 FROM BIG DATA TO DATA SCIENCE

We are living in a data tsunami era where enormous amount of data have been con-
tinually generated, each day at increasing scales. This exponential growth of poten-
tially valuable data, compounded by the Internet, social media, cloud computing,
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variety of sensors and new types of mobile devices, is often referred to as big data.
Recent studies estimate an increase of annually created data from around 1.2 zetta-
bytes in 2010 to 40 zettabytes in 2020. If this is a new concept for the reader, it means
the following: 1 zettabyte = 103 exabytes = 106 petabytes. Big data may be primary
generated through five main types of data sources:

• Operational data comes from traditional transactional systems, where the
assumption is that it includes monitoring streaming data often coming from
large amount of sensors.

• Dark data is large amount of data that you already own, but do not use in cur-
rent decision processes; it may include emails, contracts, and variety of written
reports.

• Commercial data is available on the market and may be purchased from some
companies, specialized social media, or even governmental organizations.

• Social data coming from Twitter, Facebook, and other general social media
and examples of the rapid growth of data are given in Table 1.1.

• Public data such as economic, sociodemographic, or weather data (Fig. 1.7).

Big data could be a new infrastructure for advancements of medical research,
global security, logistics and transportation solutions, and identification of terrorism
activities and also dealing with socio-economic and environmental issues.

Fundamentally, Big data means not only a large volume of data but also other
features that differentiate it from the concepts of “massive data” and “very large data.”
The term Big data has gained huge popularity in recent years, but it is still poorly
defined. One of the most commonly cited definitions specify big data through the
four following dimensions: “volume,” “variety,” “velocity,” and “veracity” (so-called
4V model):

1. Volume refers to the magnitude of data. Real-world big data applications are
reported in multiple terabytes and petabytes, and tomorrow they will be in exa-
bytes. What may be deemed and impress as big data today may not meet the

TABLE 1.1 . Big Data on the Web

Company Big Data

YouTube Users upload 100 hours of new videos per minute
Facebook More than 1.4 billion users communicating in 70+ languages
Twitter 175 million tweets per day
Google 2 million search queries/minute processing 35 petabytes daily
Apple 47,000 applications are downloaded per minute
Instagram Users share 40 million photos per day
LinkedIn 2.1 million groups have been created
Foursquare 571 new Web sites are launched each minute
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threshold in the future. Storage capacities are increasing, and new tools are
developing, allowing bigger data sets to be captured and analyzed.

2. Variety refers to the structural heterogeneity in a data set, including the use and
benefits of various types of structured, semi-structured, and unstructured data.
Text, images, audio, and video are examples of unstructured data, which are
dominant data types with more than 90% representation in today’s digital
world. These different forms and quality of data clearly indicate that hetero-
geneity is a natural property of big data and it is a challenge to comprehend
and successfully manage such data. For instance, during the Fukushima
nuclear disaster, when the public started broadcasting about radioactive mate-
rials, a wide variety of inconsistent data, using diverse and uncalibrated
devices, for similar or neighboring locations was reported—all this add to
the problem of increasing variety of data.

3. Velocity refers to the rate at which data are generated and the speed at which it
should be analyzed and acted upon. Digital devices such as smartphones and
variety of available and relatively cheap sensors have led to an unprecedented
rate of data creation in real time. It requires new IT infrastructures and new
methodologies supporting growing need for real-time analytics. Floods of dig-
ital personalized data about customers, such as their geospatial location and
buying behavior and patterns, can be used in real time for many companies
to monitor and improve their business models.

4. Veracity highlights the unreliability inherent in some sources of today’s digital
data. The need to deal with this imprecise and uncertain data is important facet
of big data, which is requiring adjustment of tools and applied analytics
methodologies. The fact that one in three business leaders does not trust
the information that they use to make decisions is a strong indicator that a good
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big data application needs to address veracity. Customer sentiments, analyzed
through the Internet, are an example where the data is uncertain in nature,
since they entail human judgment. Yet, they contain valuable information that
could help businesses.

There are many businesses and scientific opportunities related to big data, but at
the same time new threats are there too. Big data market is poised to grow to more than
$50 billion in 2017, but at the same time more than 55% of big data projects failed!
Heterogeneity, ubiquity, and dynamic nature of the different resources and devices for
data generation, and the enormous scale of data itself, make determining, retrieving,
processing, integrating, and inferring the real-world data a challenging task. For the
beginning we can briefly enumerate main problems with implementations and threats
to these new big data solutions:

(a) Data breaches and reduced security,

(b) Intrusion of user’s privacy,

(c) Unfair use of data,

(d) Escalating cost of data movement,

(e) Scalability of computations, and

(f) Data quality.

Because of these serious challenges, novel approaches and techniques are
required to address these big data problems.

Although it seems that big data makes it possible to find more useful, actionable
information, the truth is that more data do not necessarily mean better analyses and
more informative conclusions. Therefore, designing and deploying a big data mining
system is not a trivial or straightforward task. The remaining chapters of this book will
try to give some initial answers to these big data challenges.

In this introductory section we would like to introduce one more concept that is
highly related to big data. It is the new field of data science. Decision-makers of all
kinds, from company executives and government agencies to researchers and scientists,
would like to base their decisions and actions on the available data. In response to these
multidisciplinary requests, a new discipline of big data science is forming. Data scien-
tists are professionals who are trying to gain knowledge or awareness of something not
known before about data. They need business knowledge; they need to know how to
deploy new technology; they have to understand statistical, machine learning, and vis-
ualization techniques; and they need to know how to interpret and present the results.

The name of data science seems to connect most strongly with areas such as data-
bases and computer science in general, and more specific it is based on machine learn-
ing and statistics. But many different kinds of skill are necessary for the profile, and
many other disciplines are involved: skillful in communication with data users; under-
standing the big picture of a complex system described by data; analyzing business
aspects of big data application; knowing how to transform, visualize, interpret, and
summarize big data; maintaining the quality of data; and taking care about security,
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privacy, and legal aspect of data. Of course there are very small number of experts
who are good in all these skills, and therefore, we have always to make emphasis
on the importance of multidisciplinary teamwork in big data environments. Maybe
the following definition of a data scientists, which insists and highlights professional
persistence, gives better insight: A data scientist is the adult version of a kid who can’t
stop asking “Why?”. Data science is supporting discoveries in many human
endeavors, including healthcare, manufacturing, education, cybersecurity, financial
modeling, social science, policing, and marketing. It has been used to produce signif-
icant results in areas from particle physics such as Higgs Boson, and identifying and
resolving sleep disorders using Fitbit data, to recommender systems for literature, the-
ater, and shopping. As a result of these initial successes and potential, data science is
rapidly becoming an applied sub-discipline of many academic areas.

Very often there is confusion between concepts of data science, big data analytics,
and data mining. Based on previous interpretations of a data science discipline, data
mining highlight only a segment of data scientist’s tasks, but they represent very impor-
tant core activities in gaining new knowledge from big data. Although major innova-
tions in data-mining techniques for big data have not yet matured, we anticipate the
emergence of such novel analytics in the near future. Recently, several additional terms
including advanced data analytics are introduced and more often used, but with some
level of approximation, we can accept them as equivalent concepts with data mining.

The sudden rise of big data has left many unprepared including corporate leaders,
municipal planners, and academics. The fast evolution of big data technologies and
the ready acceptance of the concept by public and private sectors left little time for
the discipline to mature, leaving open questions of security, privacy, and legal aspects
of big data. The security and privacy issues that accompany the work of big data min-
ing are challenging research topics. They contain important questions how to safely
store the data, how to make sure the data communication is protected, and how to pre-
vent someone from finding out our private information. Because big data means more
sensitive data is put together, it is more attractive to potential hackers: in 2012
LinkedIn was accused of leaking 6.5 million user account passwords, while later
Yahoo faced network attacks, resulting in 450,000 user ID leaks. The privacy concern
typically will make most people uncomfortable, especially if systems cannot
guarantee that their personal information will not be accessed by the other people
and organizations. The anonymous, temporary identification and encryption are the
representative technologies for privacy of big data mining, but the critical factor is
how to use, what to use, when to use, and why to use the collected big data.

1.7 BUSINESS ASPECTS OF DATA MINING: WHY
A DATA-MINING PROJECT FAILS?

Data mining in various forms is becoming a major component of business operations.
Almost every business process today involves some form of data mining. Customer
relationship management, supply chain optimization, demand forecasting, assortment
optimization, business intelligence, and knowledge management are just some
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examples of business functions that have been impacted by data-mining techniques.
Even though data mining has been successful in becoming a major component of var-
ious business and scientific processes as well as in transferring innovations from aca-
demic research into the business world, the gap between the problems that the data
mining research community works on and real-world problems is still significant.
Most business people (marketing managers, sales representatives, quality assurance
managers, security officers, and so forth) who work in industry are only interested
in data mining insofar as it helps them do their job better. They are uninterested in
technical details and do not want to be concerned with integration issues; a successful
data-mining application has to be integrated seamlessly into an application. Bringing
an algorithm that is successful in the laboratory to an effective data-mining application
with real-world data in industry or scientific community can be a very long process.
Issues like cost effectiveness, manageability, maintainability, software integration,
ergonomics, and business process re-engineering come into play as significant com-
ponents of a potential data-mining success.

Data mining in a business environment can be defined as the effort to generate
actionable models through automated analysis of a company’s data. In order to be
useful, data mining must have a financial justification. It must contribute to the
central goals of the company by, for example, reducing costs, increasing profits,
improving customer satisfaction, or improving the quality of service. The key is
to find actionable information or information that can be utilized in a concrete
way to improve profitability of a company. For example, credit card marketing
promotions typically generate a response rate of about 1%. The praxis shows that
this rate is improved significantly through data-mining analyses. In telecommuni-
cations industry a big problem is the concept of churn, when customers switch car-
riers. When dropped calls, mobility patterns, and variety of demographic data are
recorded, and data-mining techniques are applied, churn is reduced by an esti-
mated 61%.

Data mining does not replace skilled business analysts or scientist, but rather
gives them powerful new tools and support of an interdisciplinary team to improve
the job they are doing. Today, companies collect huge amounts of data about their
customers, partners, products, and employees as well as their operational and finan-
cial systems. They hire professionals (either locally or outsourced) to create data-
mining models that analyze collected data to help business analysts create reports
and identify trends, so that they can optimize their channel operations, improve serv-
ice quality, and track customer profiles, ultimately reducing costs and increasing
revenue. Still, there is a semantic gap between the data miner who talks about regres-
sions, accuracy, and ROC curves and business analysts who talk about customer
retention strategies, addressable markets, profitable advertising, etc. Therefore, in
all phases of a data-mining process, it is a core requirement for understanding, coor-
dination, and successful cooperation between all team members. The best results in
data mining are achieved when data-mining experts combine experience with organ-
izational domain experts. While neither group needs to be fully proficient in the
other’s field, it is certainly beneficial to have a basic background across areas
of focus.
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Introducing a data-mining application into an organization is not essentially very
different from any other software application project, and the following conditions
have to be satisfied:

• There must be a well-defined problem.

• The data must be available.

• The data must be relevant, adequate, and clean.

• The problem should not be solvable by means of ordinary query or OLAP
tools only.

• The results must be actionable.

A number of data-mining projects have failed in the past years because one or
more of these criteria were not met.

The initial phase of a data-mining process is essential from a business perspec-
tive. It focuses on understanding the project objectives and business requirements and
then converting this knowledge into a data-mining problem definition, and a prelim-
inary plan designed to achieve the objectives. The first objective of the data miner is to
understand thoroughly, from a business perspective, what the client really wants to
accomplish. Often the client has many competing objectives and constraints that must
be properly balanced. The data miner’s goal is to uncover important factors, at the
beginning, that can influence the outcome of the project. A possible consequence
of neglecting this step is to expend a great deal of effort producing the right answers
to the wrong questions. Data-mining projects do not fail because of poor or inaccurate
tools or models. The most common pitfalls in data mining involve a lack of training,
overlooking the importance of a thorough pre-project assessment, not employing the
guidance of a data-mining expert, and not developing a strategic project definition
adapted to what is essentially a discovery process. A lack of competent assessment,
environmental preparation, and resulting strategy is precisely why the vast majority of
data-mining projects fail.

The model of a data-mining process should help to plan, work through, and
reduce the cost of any given project by detailing procedures to be performed in each
of the phases. The model of the process should provide a complete description of all
phases from problem specification to deployment of the results. Initially the team has
to answer the key question: What is the ultimate purpose of mining this data, and more
specifically what are the business goals? The key to success in data mining is coming
up with a precise formulation of the problem the team is trying to solve. A focused
statement usually results in the best payoff. The knowledge of organization’s needs
or scientific research objectives will guide the team in formulating the goal of a
data-mining process. The prerequisite to knowledge discovery is understanding the
data and the business. Without this deep understanding, no algorithm, regardless of
sophistication, is going to provide results in which a final user should have
confidence. Without this background a data miner will not be able to identify the pro-
blems he/she is trying to solve or even correctly interpret the results. To make the best
use of data mining, we must make a clear statement of project objectives. An effective

24 DATA-MINING CONCEPTS



statement of the problem will include a way of measuring the results of a knowledge
discovery project. It may also include details about a cost justification. Preparatory
steps in a data-mining process may also include analysis and specification of a type
of data-mining task and selection of an appropriate methodology and corresponding
algorithms and tools. When selecting a data-mining product, we have to be aware that
they generally have different implementations of a particular algorithm even when
they identify it with the same name. Implementations differences can affect opera-
tional characteristics such as memory usage and data storage, as well as performance
characteristics such as speed and accuracy.

The data understanding phase starts early in the project, and it includes important
and time-consuming activities that could make enormous influence on the final suc-
cess of the project. “Get familiar with the data” is the phrase that requires serious anal-
ysis of data including source of data, owner, organization responsible for maintaining
data, cost (if purchased), storage organization, size in records and attributes, size in
bytes, security requirements, restrictions on use, and privacy requirements. Also,
the data miner should identify data-quality problems and discover first insights into
the data such as data types, definitions of attributes, units of measure, list or range of
values, collection information, time and space characteristics, missing and invalid
data, etc. Finally, we should detect interesting subsets of data in these preliminary ana-
lyses to form hypotheses for hidden information. The important characteristic of a
data-mining process is the relative time spent to complete each of the steps in the
process, and the data is counterintuitive as it is presented in Figure 1.8. Some authors
estimate that about 20% of the effort is spent on business objective determination,
about 60% on data preparation and understanding, and only about 10% for data
mining and analysis.

Technical literature reports only on successful data-mining applications. To
increase our understanding of data-mining techniques and their limitations, it is cru-
cial to analyze not only successful but also unsuccessful applications. Failures or dead
ends also provide valuable input for data-mining research and applications. We have
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to underscore the intensive conflicts that have arisen between practitioners of “digital
discovery” and classical experience-driven human analysts objecting to these
intrusions into their hallowed turf. One good case study is that of US economist Orley
Ashenfelter, who used data-mining techniques to analyze the quality of French
Bordeaux wines. Specifically he sought to relate auction prices to specific local annual
weather conditions, in particular rainfall and summer temperatures. His findings were
that hot and dry years produced the wines most valued by buyers. Ashenfelter’s work
and analytical methodology resulted in a deluge of hostile invective from established
wine tasting experts and writers. There was a fear of losing a lucrative monopoly and
the reality that a better informed market is more difficult to manipulate on pricing.
Another interesting study is that of US baseball analyst William James, who applied
analytical methods to predict which of the players would be most successful in the
game, challenging the traditional approach. James’s statistically driven approach to
correlating early performance to mature performance in players resulted very quickly
in a barrage of criticism and rejection of the approach.

There have been numerous claims that data-mining techniques have been used
successfully in counterterrorism intelligence analysis, but little has surfaced to support
these claims. The idea is that by analyzing the characteristics and profiles of known
terrorists, it should be feasible to predict who in a sample of population might also be a
terrorist. This is actually a good example of potential pitfalls in the application of such
analytical techniques to practical problems, as this type of profiling generates hypoth-
eses, for which there may be good substantiation. The risk is that overly zealous law
enforcement personnel, again highly motivated for good reasons, overreact when the
individual despite the profile is not a terrorist. There is enough evidence in the media,
albeit sensationalized, to suggest this is a real risk. Only careful investigation can
prove whether the possibility is a probability. The degree to which a data-mining proc-
ess supports business goals or scientific objectives of data explorations is much more
important than the algorithms and data-mining tools it uses.

1.8 ORGANIZATION OF THIS BOOK

After introducing the basic concepts of data mining in Chapter 1, the rest of the book
follows the basic phases of a data-mining process. Chapters 2 and 3 explained com-
mon characteristics of raw, large, data sets, and the typical techniques of data prepro-
cessing. The text emphasizes the importance and influence of these initial phases on
the final success and quality of data-mining results. Chapter 2 provides basic techni-
ques for transforming raw data, including data sets with missing values and with time-
dependent attributes. Outlier analysis is a set of important techniques for preproces-
sing of messy data and is also explained in this chapter. Chapter 3 deals with reduction
of large data sets and introduces efficient methods for reduction of features, values,
and cases.When the data set is preprocessed and prepared for mining, a wide spectrum
of data-mining techniques is available, and the selection of a technique or techniques
depends on the type of application and the data characteristics. In Chapter 4, before
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introducing particular data-mining methods, we present the general theoretical back-
ground and formalizations applicable for all mining techniques. The essentials of the
theory can be summarized with the question: How can one learn from data? The
emphasis in Chapter 4 is on statistical learning theory and the different types of learn-
ing methods and learning tasks that may be derived from the theory. Also, problems of
evaluation and deployment of developed models is discussed in this chapter.

Chapters 5–11 give an overview of common classes of data-mining techniques.
Predictive methods are described in Chapters 5–8, while descriptive data mining is
given in Chapters 9–11. Selected statistical inference methods are presented in
Chapter 5, including Bayesian classifier, predictive and logistic regression, ANOVA
analysis, and log-linear models. Chapter 6 summarizes the basic characteristics of the
C4.5 algorithm as a representative of logic-based techniques for classification pro-
blems. Basic characteristics of the CART approach are also introduced and compared
with C4.5 methodology. Chapter 7 discusses the basic components of artificial neural
networks and introduces two classes: multilayer perceptrons and competitive net-
works as illustrative representatives of a neural-network technology. Also, introduc-
tion to very popular deep networks is given. Practical applications of a data-mining
technology showed that the use of several models in predictive data mining increases
the quality of results. This approach is called ensemble learning and basic principles
are given in Chapter 8.

Chapter 9 explains the complexity of clustering problems and introduces agglom-
erative, partitional, and incremental clustering techniques. Different aspects of local
modeling in large data sets are addressed in Chapter 10, and common techniques of
association rule mining are presented. Web mining and text mining are becoming one
of central topics for many researchers, and results of these activities are new algo-
rithms summarized in Chapter 11. There are a number of new topics and recent trends
in data mining that are emphasized in last seven years. Some of these topics such as
graph mining and temporal, spatial, and distributed data mining are covered in
Chapter 12. Important legal restrictions and guidelines and security and privacy
aspects of data-mining applications are also introduced in this chapter. Cloud comput-
ing is an important technological support for the avalanche of big data, while rein-
forcement learning is opening the modeling approaches in big streaming data.
Both topics are also introduced in Chapter 12. Most of the techniques explained in
Chapters 13 and 14, about genetic algorithms and fuzzy systems, are maybe not
directly applicable in mining large data sets. Recent advances in the field show that
these technologies, derived from soft computing, are becoming more important in bet-
ter representing and computing with data, especially as they are combined with other
techniques. Finally, Chapter 15 recognizes the importance of data-mining visualiza-
tion techniques, especially those for representation of large-dimensional samples, and
Chapter 16 gives comprehensive bibliography.

It is our hope that we have succeeded in producing an informative and readable
text supplemented with relevant examples and illustrations. All chapters in the book
have a set of review problems and reading lists. The author is preparing a solution
manual for instructors, who might use the book for undergraduate or graduate classes.

27ORGANIZATION OF THIS BOOK



For an in-depth understanding of the various topics covered in this book, we recom-
mend to the reader a selected list of references, given at the end of each chapter.
Although most of these references are from various journals, magazines, and confer-
ence and workshop proceedings, it is obvious that, as data mining is becoming more
mature field, there are many more books available, covering different aspects of data
mining and knowledge discovery. Finally, the book has two appendices with useful
background information for practical applications of data-mining technology. In
Appendix A we provide an overview of most influential journals, conferences, for-
ums, and blogs, as well as a list of commercial and publicly available data-mining
tools, while Appendix B presents a number of commercially successful data-mining
applications.

The reader should have some knowledge of the basic concepts and terminology
associated with data structures and databases. In addition, some background in ele-
mentary statistics and machine learning may also be useful, but it is not necessarily
required, as the concepts and techniques discussed within the book can be utilized
without deeper knowledge of the underlying theory.

1.9 REVIEW QUESTIONS AND PROBLEMS

1. Explain why it is not possible to analyze some large data sets using classical mod-
eling techniques.

2. Do you recognize in your business or academic environment some problems in
which the solution can be obtained through classification, regression, or devia-
tion? Give examples and explain.

3. Explain the differences between statistical and machine-learning approaches to
the analysis of large data sets.

4. Why are preprocessing and dimensionality reduction important phases in suc-
cessful data-mining applications?

5. Give examples of data where the time component may be recognized explicitly
and other data where the time component is given implicitly in a data
organization.

6. Why is it important that the data miner understand data well?

7. Give examples of structured, semi-structured, and unstructured data from every-
day situations.

8. Can a set with 50,000 samples be called a large data set? Explain your answer.

9. Enumerate the tasks that a data warehouse may solve as a part of the data-mining
process.
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10. Many authors include OLAP tools as a standard data-mining tool. Give the argu-
ments for and against this classification.

11. Churn is a concept originating in the telephone industry. How can the same
concept apply to banking or to human resources?

12. Describe the concept of actionable information.

13. Go to the Internet and find a data-mining application. Report the decision
problem involved, the type of input available, and the value contributed to the
organization that used.

14. Determine whether or not each of the following activities is a data-mining task.
Discuss your answer.

(a) Dividing the customers of a company according to their age and sex.
(b) Classifying the customers of a company according to the level of their debt.
(c) Analyzing the total sale of a company in the next month based on current

month sale.
(d) Classifying a student database based on a department, sorted based on a student iden-

tification number.
(e) Determining the influence of the number of new University of Louisville students on

the stock market value.
(f) Estimating the future stock price of a company using historical records.
(g) Monitoring the heart rate of a patient with abnormalities.
(h) Monitoring seismic waves for earthquake activities.
(i) Extracting frequencies of a sound wave.
(j) Predicting the outcome of tossing a pair of dice.

15. Determine which is the best approach (out of three: a–c) for problems 1–7.

(a) Supervised learning
(b) Unsupervised clustering
(c) SQL-based data query

1. What is the average weekly salary of all female employees under 40 years of age?
2. Develop a profile for credit card customers likely to carry an average monthly

balance of more than $1000.00.
3. Determine the characteristics of a successful used car salesperson.
4. What attribute similarities group customers holding one or several insurance

policies?
5. Do meaningful attribute relationships exist in a database containing information

about credit card customers?
6. Do single men play more golf than married men?
7. Determine whether a credit card transaction is valid or fraudulent.

16. Perform a Google search on “mining text data” and “text data mining.”

(a) Do you get the same top 10 search results?
(b) What does this tell you about the content component of the ranking heuristic used by

search engines?
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17. The big data concept is usually defined with four main dimensions—as 4V. If you
would like to extend this definition to 5V, what would be this fifth dimension?
Give detailed explanations why you would introduce this new dimension. If you
do not believe in 5V, check on the Web and you will find extensions up to 8V!

18. If you are preparing to apply for the job of data scientist in one company, what
would be your strengths and what are your weaknesses based on your current
education and experiences (be honest, it is not official interview for the position)?
Do you think you are ready for this job?

1.10 REFERENCES FOR FURTHER STUDY

1. Hand, D., H. Mannila, P. Smith, Principles of Data Mining, MIT Press,
Cambridge, MA, 2001.

The book consists of three sections. The first, foundations, provides a tutorial over-
view of the principles underlying data-mining algorithms and their applications.
The second section, data-mining algorithms, shows how algorithms are con-
structed to solve specific problems in a principled manner. The third
section shows how all of the preceding analyses fit together when applied to
real-world data-mining problems.

2. Han, J., M. Kamber, J. Pel, Data Mining: Concepts and Techniques, 3rd edition,
Morgan Kaufman, San Francisco, 2011.

This book gives a sound understanding of data-mining principles. The primary ori-
entation of the book is for database practitioners and professionals, with emphasis
on OLAP and data warehousing. In-depth analysis of association rules and cluster-
ing algorithms is an additional strength of the book. All algorithms are presented in
easily understood pseudocode, and they are suitable for use in real-world, large-
scale data-mining projects, including advanced applications such as Web mining
and text mining.

3. Leskovac J., A. Rajaraman, J. Ullman, Mining of Massive Datasets, 2nd edition,
Cambridge University Press, 2014.

At the highest level of description, this book is about data mining. However, it
focuses on data mining of very large amounts of data, that is, data so large it does
not fit in main memory. Because of the emphasis on size, many of our examples are
about the Web or data derived from the Web. Further, the book takes an algorith-
mic point of view: data mining is about applying algorithms to data, rather than
using data to “train” a machine-learning engine of some sort.

4. Olson D., S. Yong, Introduction to Business Data Mining, McGraw-Hill, Engle-
wood Cliffs, 2007.

Introduction to Business Data Mining was developed to introduce students, as
opposed to professional practitioners or engineering students, to the fundamental
concepts of data mining. Most importantly, this text shows readers how to gather
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and analyze large sets of data to gain useful business understanding. The author
team has had extensive experience with the quantitative analysis of business as
well as with data-mining analysis. They have both taught this material and used
their own graduate students to prepare the text’s data-mining reports. Using
real-world vignettes and their extensive knowledge of this new subject, David
Olson and Yong Shi have created a text that demonstrates data-mining processes
and techniques needed for business applications.

5. Pouyanfar S., et al, Multimedia Big Data Analytics: A Survey, ACM Computing
Surveys, Vol. 51, No. 1, April 2018.

With the proliferation of online services and mobile technologies, the world has
stepped into a multimedia big data era. A vast amount of research work has been
done in the multimedia area, targeting different aspects of big data analytics, such
as the capture, storage, indexing, mining, and retrieval of multimedia big data.
However, very few research work provides a complete survey of the whole pine
line of the multimedia big data analytics, including the management and analysis of
the large amount of data, the challenges and opportunities, and the promising
research directions. To serve this purpose, we present this survey, which conducts
a comprehensive overview of the state-of-the-art research work on multimedia big
data analytics. It also aims to bridge the gap between multimedia challenges and
big data solutions by providing the current big data frameworks, their applications
in multimedia analyses, the strengths and limitations of the existing methods, and
the potential future directions in multimedia big data analytics.

6. Paul Zikopoulos, Chris Eaton, Understanding Big Data: Analytics for Enterprise
Class Hadoop and Streaming Data, McGraw Hill Professional, 2011.

Big data represents a new era in data exploration and utilization, and IBM is
uniquely positioned to help clients navigate this transformation. This book reveals
how IBM is leveraging open-source big data technology, infused with IBM tech-
nologies, to deliver a robust, secure, highly available, enterprise-class big data plat-
form. The three defining characteristics of big data—volume, variety, and
velocity—are discussed. You will get a primer on Hadoop and how IBM is hard-
ening it for the enterprise and learn when to leverage IBM InfoSphere BigInsights
(big data at rest) and IBM InfoSphere Streams (big data in motion) technologies.
Industry use cases are also included in this practical guide: (1) learn how IBM hard-
ens Hadoop for enterprise-class scalability and reliability, (2) gain insight into
IBM’s unique in-motion and at-rest big data analytics platform, and (3) learn tips
and tricks for big data use cases and solutions.
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PREPARING THE DATA

Chapter Objectives

• Analyze basic representations and characteristics of raw and large data sets.

• Apply different normalization techniques on numerical attributes.

• Recognize different techniques for data preparation, including attribute
transformation.

• Compare different methods for elimination of missing values.

• Construct a method for uniform representation of time-dependent data.

• Compare different techniques for outlier detection.

• Implement some data preprocessing techniques.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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2.1 REPRESENTATION OF RAW DATA

Data samples introduced as rows in Figure 1.5 are basic components in a data-mining
process. Every sample is described with several features and there are different types
of values for every feature. We will start with the two most common types: numeric
and categorical. Numeric values include real-value variables or integer variables such
as age, speed, or length. A feature with numeric values has two important properties:
its values have an order relation (2 < 5 and 5 < 7) and a distance relation
(d(2.3, 4.2) = 1.9).

In contrast, categorical (often called symbolic) variables have neither of these two
relations. The two values of a categorical variable can be either equal or not equal:
they only support an equality relation (Blue = Blue or Red Black). Examples of
variables of this type are eye color, sex, or country of citizenship. A categorical var-
iable with two values can be converted, in principle, to a numeric binary variable with
two values: 0 or 1. A categorical variable withN values can be converted intoN binary
numeric variables, namely, one binary variable for each categorical value. These
coded categorical variables are known as “dummy variables” in statistics. For exam-
ple, if the variable eye color has four values, namely, black, blue, green, and brown,
they can be coded with four binary digits.

Feature Value Code

Black 1000
Blue 0100
Green 0010
Brown 0001

Another way of classifying a variable, based on its values, is to look at it as a
continuous variable or a discrete variable.

Continuous variables are also known as quantitative or metric variables. They are
measured using either an interval scale or a ratio scale. Both scales allow the underlying
variable to be defined or measured theoretically with infinite precision. The difference
between these two scales lies in how the zero point is defined in the scale. The zero point
in the interval scale is placed arbitrarily, and thus it does not indicate the complete
absence of whatever is being measured. The best example of the interval scale is the
temperature scale, where 0 F does not mean a total absence of temperature. Because
of the arbitrary placement of the zero point, the ratio relation does not hold true for vari-
ables measured using interval scales. For example, 80 F does not imply twice as much
heat as 40 F. In contrast, a ratio scale has an absolute zero point, and, consequently, the
ratio relation holds true for variables measured using this scale. Quantities such as
height, length, and salary use this type of scale. Continuous variables are represented
in large data sets with values that are numbers—real or integers.

Discrete variables are also called qualitative variables. Such variables are meas-
ured, or its values defined, using one of two kinds of non-metric scales—nominal or
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ordinal. A nominal scale is an orderless scale, which uses different symbols, charac-
ters, and numbers to represent the different states (values) of the variable being meas-
ured. An example of a nominal variable is utility, where customer-type values are
residential, commercial, and industrial. These values can be coded alphabetically
as A, B, and C or numerically as 1, 2, or 3, but they do not have metric characteristics
as the other numeric data have. Another example of a nominal attribute is the zip-code
field available in many data sets. In both examples, the numbers used to designate
different attribute values have no particular order and no necessary relation to one
another.

An ordinal scale consists of ordered discrete gradations, e.g., rankings. An ordinal
variable is a categorical variable for which an order relation is defined but not a distance
relation. Some examples of an ordinal attribute are the rank of a student in a class and the
gold, silver, and bronze medal positions in a sports competition. The ordered scale need
not be necessarily linear; e.g. the difference between the students ranked 4th and 5th
need not be identical to the difference between the students ranked 15th and 16th.
All that can be established from an ordered scale for ordinal attributes with greater-than,
equal-to, or less-than relations. Typically, ordinal variables encode a numeric variable
onto a small set of overlapping intervals corresponding to the values of an ordinal var-
iable. These ordinal variables are closely related to the linguistic or fuzzy variables com-
monly used in spoken English, e.g., AGE (with values young, middle-aged, and old)
and INCOME (with values low, middle-class, upper-middle-class, and rich). More
examples are given in Figure 2.1, while the formalization and use of fuzzy values in
a data-mining process have been given in Chapter 14.

A special class of discrete variables is periodic variables. A periodic variable is a
feature for which the distance relation exists but there is no order relation. Examples
are days of the week, days of the month, or year. Monday and Tuesday, as the values
of a feature, are closer than Monday and Thursday, but Monday can come before or
after Friday.

Finally, one additional dimension of classification of data is based on its behavior
with respect to time. Some data do not change with time and we consider them static

Type Description

Zip code, ID, gender

The values provide the

ordering of objects

Unit of measurement, but

the origin is arbitrary

Unit of measurement and

the origin is not arbitrary

Opinion, grades

Celsius or Fahrenheit, calendar

dates

Temperature in Kelvin, length, 

counts, age, income

Just label or different name

to distinguish one object

form another

Examples

= or not =

< or >

+ or –

+, –, *, /

Operations

Nominal

Ordinal

Interval

Ratio

Figure 2.1. Variable types with examples.
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data. On the other hand, there are attribute values that change with time and we call
this type of data dynamic or temporal data. The majority of the data-mining methods
are more suitable for static data, and special consideration and some preprocessing are
often required to mine dynamic data.

Most data-mining problems arise because there are large amounts of samples with
different types of features. Besides, these samples are very often high dimensional,
which means they have extremely large number of measurable features. This additional
dimension of large data sets causes the problem known in data-mining terminology as
“the curse of dimensionality.” The “curse of dimensionality” is produced because of the
geometry of high-dimensional spaces, and these kinds of data spaces are typical for
data-mining problems. The properties of high-dimensional spaces often appear counter-
intuitive because our experience with the physical world is in a low-dimensional space,
such as a spacewith two or three dimensions. Conceptually, objects in high-dimensional
spaces have a larger surface area for a given volume than objects in low-dimensional
spaces. For example, a high-dimensional hypercube, if it could be visualized, would
look like a porcupine, as in Figure 2.2. As the dimensionality grows larger, the edges
grow longer relative to the size of the central part of the hypercube. Four important prop-
erties of high-dimensional data are often the guidelines in the interpretation of input data
and data-mining results:

1. The size of a data set yielding the same density of data points in an
n-dimensional space increases exponentially with dimensions. For example,
if a one-dimensional (1D) sample containing n data points has a satisfactory
level of density, then to achieve the same density of points in k dimensions, we
need nk data points. If integers 1–100 are values of 1D samples, where the
domain of the dimension is [0, 100], then to obtain the same density of sam-
ples in a five-dimensional space, we will need 1005 = 1010 different samples.
This is true even for the largest real-world data sets; because of their large
dimensionality, the density of samples is still relatively low and, very often,
unsatisfactory for data-mining purposes.

2. A larger radius is needed to enclose a fraction of the data points in a high-
dimensional space. For a given fraction of samples, it is possible to determine
the edge length e of the hypercube using the formula

Figure 2.2. High-dimensional data looks conceptually like a porcupine.
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e p = p1 d

where p is the prespecified fraction of samples and d is the number of dimen-
sions. For example, if one wishes to enclose 10% of the samples (p = 0.1), the
corresponding edge for a two-dimensional (2D) space will be e2(0.1) = 0.32,
for a three-dimensional space e3(0.1) = 0.46, and for a 10-dimensional space
e10(0.1) = 0.80. Graphical interpretation of these edges is given in Figure 2.3.

This shows that a very large neighborhood is required to capture even a
small portion of the data in a high-dimensional space.

3. Almost every point is closer to an edge than to another sample point in a high-
dimensional space. For a sample of size n, the expected distance D between
data points in a d-dimensional space is

D d,n = ½
1
n

1 d

For example, for a 2D space with 10,000 points, the expected distance is
D(2,10,000) = 0.005 and for a 10-dimensional space with the same number
of sample pointsD(10,10,000) = 0.4. Keep in mind that the maximum distance
from any point to the edge occurs at the center of the distribution and it is 0.5
for normalized values of all dimensions.

4. Almost every point is an outlier. As the dimension of the input space increases,
the distance between the prediction point and the center of the classified points
increases. For example, when d = 10, the expected value of the prediction
point is 3.1 standard deviations away from the center of the data belonging
to one class. When d = 20, the distance is 4.4 standard deviations. From this
standpoint, the prediction of every new point looks like an outlier of the ini-
tially classified data. This is illustrated conceptually in Figure 2.2, where pre-
dicted points are mostly in the edges of the porcupine, far from the central part.

These rules of the “curse of dimensionality”most often have serious consequences
when dealing with a finite number of samples in a high-dimensional space. From prop-
erties (1) and (2), we see the difficulty in making local estimates for high-dimensional
samples; we need more and more samples to establish the required data density for

0.10

0.32

0.46

Figure 2.3. Regions enclose 10%of the samples for one-, two-, and three-dimensional space.
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performing planned mining activities. Properties (3) and (4) indicate the difficulty of
predicting a response at a given point, since any new point will on average be closer
to an edge than to the training examples in the central part.

One interesting experiment, performed recently by a group of students, shows the
importance of understanding curse of dimensionality concepts for data-mining tasks.
They generated randomly 500 points for different n-dimensional spaces. The number
of dimensions was between 2 and 50. Then, they measured, in each space, all dis-
tances between any pair of points and calculated the parameter P:

Pn =
MAX−DISTn –MIN−DISTn

MIN−DISTn

where n is the number of dimensions and MAX-DIST and MIN-DIST are maximum
and minimum distances in the given space, respectively. The results are presented in
Figure 2.4. What is interesting from the graph is that with high number of dimensions,
parameter Pn is reaching the value of 0. That means maximum andminimum distances
becoming so close in these spaces; in other words, there are no differences in distances
between any two points in these large-dimensional spaces. It is an experimental con-
firmation that traditional definitions of density and distance between points, which are
critical for many data-mining tasks, change its meaning! When dimensionality of a
data set increases, data becomes increasingly sparse with mostly outliers in the space
that it occupies. Therefore we have to revisit and reevaluate traditional concepts from
statistics: distance, similarity, data distribution, mean, standard deviation, etc.

2.2 CHARACTERISTICS OF RAW DATA

All raw data sets initially prepared for data mining are often large; many are related to
human beings and have the potential for being messy. A priori, one should expect to
find missing values, distortions, misrecording, inadequate sampling, and so on in
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Figure 2.4. With large number of dimensions, the concept of a distance changes itsmeaning.
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these initial data sets. Raw data that do not appear to show any of these problems
should immediately arouse suspicion. The only real reason for the high quality of data
could be that the presented data have been cleaned up and preprocessed before the
analyst sees them, as in data of a correctly designed and prepared data warehouse.

Let us see what the sources and implications of messy data are. First, data may
be missing for a huge variety of reasons. Sometimes there are mistakes in measure-
ments or recordings, but in many cases, the value is unavailable. To cope with this in
a data-mining process, one must not only be able to model with the data that are
presented, but even with their values missing. We will see later that some data-
mining techniques are more or less sensitive to missing values. If the method is
robust enough, then the missing values are not a problem. Otherwise, it is necessary
to solve the problem of missing values before the application of a selected data-
mining technique. The second cause of messy data is misrecorded data, and that
is typical in large volumes of data. We have to have mechanisms to discover some
of these “unusual” values—in some cases, even to work with them to eliminate their
influence on the final results. Further, data may not be from the population they are
supposed to be from. Outliers are typical examples here, and they require careful
analysis before the analyst can decide whether they should be dropped from the
data-mining process as anomalous or included as unusual examples from the pop-
ulation under study.

It is very important to examine the data thoroughly before undertaking any fur-
ther steps in formal analysis. Traditionally, data-mining analysts had to familiarize
themselves with their data before beginning to model them or use them with some
data-mining algorithms. However, with the large size of modern data sets, this is less
feasible or even entirely impossible in many cases. Here we must rely on computer
programs to check the data for us.

Distorted data, incorrect choice of steps in methodology, misapplication of data-
mining tools, too idealized a model, and a model that goes beyond the various sources
of uncertainty and ambiguity in the data all represent possibilities for taking the wrong
direction in a data-mining process. Therefore, data mining is not just a matter of sim-
ply applying a directory of tools to a given problem, but rather a process of critical
assessments, exploration, testing, and evaluation. The data should be well defined,
consistent, and nonvolatile in nature. The quantity of data should be large enough
to support data analysis, querying, reporting, and comparisons of historical data over
a long period of time.

Many experts in data mining will agree that one of the most critical steps in a data-
mining process is the preparation and transformation of the initial data set. This task
often receives little attention in the research literature, mostly because it is considered
too application specific. But in most data-mining applications, some parts of a data-
preparation process or, sometimes, even the entire process can be described independ-
ently of an application and a data-mining method. For some companies with
extremely large and often distributed data sets, most of the data-preparation tasks
can be performed during the design of the data warehouse, but many specialized trans-
formations may be initialized only when a data-mining analysis is requested.
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Raw data are not always (in our opinion very seldom!) the best data set prepared
for data mining. Many transformations may be needed to produce features more useful
for selected data-mining methods such as prediction or classification. Counting in dif-
ferent ways, using different sampling sizes, taking important ratios, varying data- win-
dow sizes for time-dependent data, and including changes in moving averages (MA)
may contribute to better data-mining results. Do not expect that the machine will find
the best set of transformations without human assistance and do not expect that trans-
formations used in one data-mining application are the best for another.

The preparation of data is sometimes dismissed as a minor topic in the data-
mining literature and used just formally as a phase in a data-mining process. In the
real world of data-mining applications, the situation is reversed. More effort is
expended preparing data than applying data-mining methods. There are two central
tasks for the preparation of data:

1. To organize data into a standard form that is ready for processing by data-mining
and other computer-based tools (a standard form is a relational table), and

2. To prepare data sets that lead to the best data-mining performances.

2.3 TRANSFORMATION OF RAW DATA

We will review a few general types of transformations of data that are not problem
dependent and that may improve data-mining results. Selection of techniques and
use in particular applications depend on types of data, amounts of data, and general
characteristics of the data-mining task.

2.3.1 Normalizations

Some data-mining methods, typically those that are based on distance computation
between points in an n-dimensional space, may need normalized data for best results.
The measured values can be scaled to a specific range, e.g., [−1, 1] or [0, 1]. If the
values are not normalized, the distance measures will overweight those features that
have, on an average, larger values. There are many ways of normalizing data. Here are
three simple and effective normalization techniques:

(a) Decimal scaling
Decimal scaling moves the decimal point but still preserves most of the orig-
inal digit value. The typical scale maintains the values in a range of −1 to 1.
The following equation describes decimal scaling, where v(i) is the value of
the feature v for case i and v (i) is the scaled value

v i =
v i

10k

for the smallest k such that max ( v (i) ) < 1.
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First, the maximum v (i) is found in the data set, and then, the decimal
point is moved until the new, scaled maximum absolute value is less than 1.
The divisor is then applied to all other v(i). For example, if the largest value in
the set is 455 and the smallest value is –834, then the maximum absolute
value of the feature becomes 0.834, and the divisor for all v(i) is 1000 (k = 3).

(b) Min–max normalization
Suppose that the data for a feature v are in a range between 150 and 250.
Then, the previous method of normalization will give all normalized data
between 0.15 and 0.25; but it will accumulate the values on a small subin-
terval of the entire range. To obtain better distribution of values on a whole
normalized interval, e.g., [0, 1], we can use the min–max formula

v i =
v i –min v i

max v i –min v i

where the minimum and the maximum values for the feature v are computed
on a set automatically or they are estimated by an expert in a given domain.
Similar transformation may be used for the normalized interval [−1, 1]. The
automatic computation of min and max values requires one additional
search through the entire data set, but, computationally, the procedure is
very simple. On the other hand, expert estimations of min and max values
may cause unintentional accumulation of normalized values.

(c) Standard deviation normalization
Normalization by standard deviation often works well with distance mea-
sures, but transforms the data into a form unrecognizable from the original
data. For a feature v, the mean value mean(v) and the standard deviation
sd(v) are computed for the entire data set. Then, for a case i, the feature value
is transformed using the equation

v∗ i =
v i –mean v

sd v

For example, if the initial set of values of the attribute is v = {1, 2, 3}, then mean
(v) = 2, sd(v) = 1, and the new set of normalized values is v∗ = { −1, 0, 1 }.

Why not treat normalization as an implicit part of a data-mining method? The
simple answer is that normalizations are useful for several diverse methods of data
mining. Also very important is that the normalization is not a one-time or a one-phase
event. If a method requires normalized data, available data should be initially trans-
formed and prepared for the selected data-mining technique, but an identical normal-
ization must be applied in all other phases of data mining, and with all new and future
data. Therefore, the normalization parameters must be saved along with a solution.

2.3.2 Data Smoothing

A numeric feature, y, may range over many distinct values, sometimes as many as the
number of training cases. For many data-mining techniques, minor differences between
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these values are not significant and may degrade the performance of the method and the
final results. They may be considered as random variations of the same underlying
value. Hence, it can be advantageous sometimes to smooth the values of the variable.

Many simple smoothers can be specified that average similar measured values. For
example, if the values are real numbers with several decimal places, rounding the values
to the given precision could be a simple smoothing algorithm for a large number of sam-
ples, where each sample has its own real value. If the set of values for the given featureF
is {0.93, 1.01, 1.001, 3.02, 2.99, 5.03, 5.01, 4.98}, then it is obvious that smoothed
values will be Fsmoothed = {1.0, 1.0, 1.0, 3.0, 3.0, 5.0, 5.0, 5.0}. This simple transforma-
tion is performed without losing any quality in a data set, and, at the same time, it
reduces the number of different real values for the feature to only three.

Some of these smoothing algorithms are more complex, and they are explained in
Section 3.2. Reducing the number of distinct values for a feature means reducing the
dimensionality of the data space at the same time. Reduced values are particularly use-
ful for logic-based methods of data mining, as will be explained in Chapter 6. Smooth-
ers in this case can be used to discretize continuous features into a set of features with
binary true–false values.

2.3.3 Differences and Ratios

Even small changes to features can produce significant improvement in data-mining
performances. The effects of relatively minor transformations of input or output fea-
tures are particularly important in the specification of the data-mining goals. Two
types of simple transformations, differences and ratios, could make improvements
in goal specification, especially if they are applied to the output features.

These transformations sometimes produce better results than the simple initial
goal of predicting a number. In one application, e.g., the objective is to move the con-
trols for a manufacturing process to an optimal setting. But instead of optimizing the
absolute magnitude specification for the output s(t + 1), it will be more effective to set
the goal of a relative move from current value to a final optimal s(t + 1) − s(t). The
range of values for the relative moves is generally much smaller than the range of
values for the absolute control setting. Therefore, for many data-mining methods, a
smaller number of alternatives will improve the efficiency of the algorithm and will
very often give better results.

Ratios are the second simple transformation of a target or output features. Using s
(t + 1)/s(t) as the output of a data-mining process instead of absolute value s(t + 1)
means that the level of increase or decrease in the values of a feature may also improve
the performances of the entire mining process.

Differences and ratio transformations are not only useful for output features but
also for inputs. They can be used as changes in time for one feature or as a composition
of different input features. For example, in many medical data sets, there are two fea-
tures of a patient, height and weight, that are taken as input parameters for different diag-
nostic analyses.Many applications show that better diagnostic results are obtainedwhen
an initial transformation is performed using a new feature called the body mass index
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(BMI), which is the weighted ratio betweenweight and height. This composite feature is
better than the initial parameters to describe some of the characteristics of the patient,
such as whether or not the patient is overweight.

Logical transformations can also be used to compose new features. For example,
sometimes it is useful to generate a new feature that will determine the logical value of
the relation A > B between existing features A and B. But there are no universally best
data-transformation methods. The lesson to be learned is that a major role remains for
human insight while defining the problem. Attention should be paid to composing
features, because relatively simple transformations can sometimes be far more effec-
tive for the final performance than switching to some other techniques of data mining.

2.4 MISSING DATA

For many real-world applications of data mining, even when there are huge amounts
of data, the subset of cases with complete data may be relatively small. Available sam-
ples and also future cases may have values missing. Some of the data-mining methods
accept missing values and satisfactorily process data to reach a final conclusion. Other
methods require that all values be available. An obvious question is whether these
missing values can be filled in during data preparation, prior to the application of
the data-mining methods. The simplest solution for this problem is the reduction of
the data set and the elimination of all samples with missing values. That is possible
when large data sets are available, and missing values occur only in a small percentage
of samples. If we do not drop the samples with missing values, then we have to find
values for them. What are the practical solutions?

First, a data miner, together with the domain expert, canmanually examine samples
that have no values and enter a reasonable, probable, or expected value based on a
domain experience. The method is straightforward for small numbers of missing values
and relatively small data sets. But if there is no obvious or plausible value for each case,
the miner is introducing noise into the data set by manually generating a value.

The second approach gives an even simpler solution for elimination of missing
values. It is based on a formal, often automatic replacement of missing values with
some constants, such as the following:

1. Replace all missing values with a single global constant (a selection of a global
constant is highly application dependent).

2. Replace a missing value with its feature mean.

3. Replace a missing value with its feature mean for the given class (this
approach is possible only for classification problems where samples are clas-
sified in advance).

These simple solutions are tempting. Their main flaw is that the substituted value
is not the correct value. By replacing the missing value with a constant or changing the
values for a few different features, the data are biased. The replaced value (values) will
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homogenize the cases with missing values into a uniform subset directed toward the
class with most missing values (an artificial class!). If missing values are replaced with
a single global constant for all features, an unknown value may be implicitly made into
a positive factor that is not objectively justified.

One possible interpretation of missing values is that they are “don’t care” values.
In other words, we suppose that these values do not have any influence on the final
data-mining results. In that case, a sample with the missing value may be extended to
the set of artificial samples, where, for each new sample, the missing value is replaced
with one of the possible feature values of a given domain. Although this interpretation
may look more natural, the problem with this approach is the combinatorial explosion
of artificial samples. For example, if one three-dimensional sample X is given as
X = {1, ?, 3}, where the second feature’s value is missing, the process will generate
five artificial samples for the feature domain [0, 1, 2, 3, 4]:

X1 = 1,0,3 , X2 = 1,1,3 , X3 = 1,2,3 , X4 = 1,3,3 , and X5 = 1,4,3

Finally, the data miner can generate a predictive model to predict each of the miss-
ing values. For example, if three features A, B, and C are given for each sample, then,
based on samples that have all three values as a training set, the data miner can generate
a model of correlation between features. Different techniques such as regression, Bayes-
ian formalism, clustering, or decision-tree induction may be used depending on data
types (all these techniques are explained later in this book in Chapters 5, 6, and 7). Once
you have a trained model, you can present a new sample that has a value missing and
generate a “predictive” value. For example, if values for features A and B are given, the
model generates the value for the feature C. If a missing value is highly correlated with
the other known features, this process will generate the best value for that feature. Of
course, if you can always predict a missing value with certainty, this means that the
feature is redundant in a data set and not necessary in further data-mining analyses.
In real-world applications, you should expect an imperfect correlation between the fea-
ture with the missing value and other features. Therefore, all automatic methods fill in
values that may not be correct. Such automatic methods are among the most popular in
the data-mining community. In comparison to the other methods, they use the most
information from the present data to predict missing values.

In general, it is speculative and often misleading to replace missing values using a
simple, artificial schema of data preparation. It is best to generate multiple solutions of
data mining with and without features that have missing values and then analyze and
interpret them.

2.5 TIME-DEPENDENT DATA

Practical data-mining applications will range from those having strong time-
dependent relationships to those with loose or no time relationships. Real-world pro-
blems with time dependencies require special preparation and transformation of data,
which are, in many cases, critical for successful data mining. We will start with the
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simplest case—a single feature measured over time. This feature has a series of values
over fixed time units. For example, a temperature reading could be measured every
hour, or the sales of a product could be recorded every day. This is the classical uni-
variate time-series problem, where it is expected that the value of the variable X at a
given time be related to previous values. Because the time series is measured at fixed
units of time, the series of values can be expressed as

X = t 1 , t 2 , t 3 ,…, t n

where t(n) is the most recent value.
For many time-series problems, the goal is to forecast t(n + 1) from previous

values of the feature, where these values are directly related to the predicted value.
One of the most important steps in preprocessing of raw time-dependent data is
the specification of a window or a time lag. This is the number of previous values that
influence the prediction. Every window represents one sample of data for further anal-
ysis. For example, if the time series consists of the eleven measurements

X = t 0 , t 1 , t 2 , t 3 , t 4 , t 5 , t 6 , t 7 , t 8 , t 9 , t 10

and if the window for analysis of the time series is five, then it is possible to reorganize
the input data into a tabular form with six samples, which is more convenient (standar-
dized) for the application of data-mining techniques. Transformed data are given in
Table 2.1.

The best time lag must be determined by the usual evaluation techniques for a
varying complexity measure using independent test data. Instead of preparing the data
once and turning them over to the data-mining programs for prediction, additional
iterations of data preparation have to be performed. While the typical goal is to predict
the next value in time, in some applications, the goal can be modified to predict values
in the future, several time units in advance. More formally, given the time-dependent
values t(n − i),…, t(n), it is necessary to predict the value t(n + j). In the previous
example, taking j = 3, the new samples are given in Table 2.2.

TABLE 2.1 . Transformation of Time Series to Standard
Tabular Form (Window = 5)

Sample Window Next Value

M1 M2 M3 M4 M5

1 t(0) t(1) t(2) t(3) t(4) t(5)
2 t(1) t(2) t(3) t(4) t(5) t(6)
3 t(2) t(3) t(4) t(5) t(6) t(7)
4 t(3) t(4) t(5) t(6) t(7) t(8)
5 t(4) t(5) t(6) t(7) t(8) t(9)
6 t(5) t(6) t(7) t(8) t(9) t(10)
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In general, the further out in the future, the more difficult and less reliable is the
forecast. The goal for a time series can easily be changed from predicting the next
value in the time series to classification into one of predefined categories. From a
data-preparation perspective, there are no significant changes. For example, instead
of predicted output value t(i + 1), the new classified output will be binary: T for
t(i + 1) ≥ threshold value and F for t(i + 1) < threshold value.

The time units can be relatively small, enlarging the number of artificial features
in a tabular representation of time series for the same time period. The resulting prob-
lem of high dimensionality is the price paid for precision in the standard representation
of the time-series data.

In practice, many older values of a feature may be historical relics that are no
more relevant and should not be used for analysis. Therefore, for many business
and social applications, new trends can make old data less reliable and less useful.
This leads to a greater emphasis on recent data, possibly discarding the oldest portions
of the time series. Now we are talking not only of a fixed window for the presentation
of a time series but also of a fixed size for the data set. Only the n most recent cases are
used for analysis, and, even then, they may not be given equal weight. These decisions
must be given careful attention and are somewhat dependent on knowledge of the
application and past experience. For example, using 20-year-old data about cancer
patients will not give the correct picture about the chances of survival today.

Besides standard tabular representation of time series, sometimes it is necessary
to additionally preprocess raw data and summarize their characteristics before
application of data-mining techniques. Many times it is better to predict the difference
t(n + 1) − t(n) instead of the absolute value t(n + 1) as the output. Also, using a ratio,
t(n + 1)/t(n), which indicates the percentage of changes, can sometimes give better
prediction results. These transformations of the predicted values of the output are
particularly useful for logic-based data-mining methods such as decision trees or
rules. When differences or ratios are used to specify the goal, features measuring
differences or ratios for input features may also be advantageous.

Time-dependent cases are specified in terms of a goal and a time lag or a window
of size m. One way of summarizing features in the data set is to average them, produ-
cingMA. A single average summarizes the most recentm feature values for each case,
and for each increment in time, its value is

TABLE 2.2 . Time-Series Samples in Standard Tabular Form
(Window = 5) with Postponed Predictions (j = 3)

Sample Window Next Value

M1 M2 M3 M4 M5

1 t(0) t(1) t(2) t(3) t(4) t(7)
2 t(1) t(2) t(3) t(4) t(5) t(8)
3 t(2) t(3) t(4) t(5) t(6) t(9)
4 t(3) t(4) t(5) t(6) t(7) t(10)
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MA i,m =
1
m

i
t j

j= i−m+ 1

Knowledge of the application can aid in specifying reasonable sizes for m. Error
estimation should validate these choices. Moving averages weight all time points
equally in the average. Typical examples are MA in the stock market such as 200-
day MA for DOW or NASDAQ. The objective is to smooth neighboring time points
by an MA to reduce the random variation and noise components:

MA i,m = t i =mean i + error

Another type of average is an exponential moving average (EMA) that gives
more weight to the most recent time periods. It is described recursively as

EMA i,m = p × t i + 1 – p ×EMA i – 1,m – 1

EMA i,1 = t i

where p is a value between 0 and 1. For example, if p = 0.5, the most recent value t(i) is
equally weighted with the computation for all previous values in the window, where
the computation begins with averaging the first two values in the series. The compu-
tation starts with the following two equations:

EMA i,2 = 0 5 t i + 0 5 t i – 1

EMA i,3 = 0 5 t i + 0 5 0 5 t i – 1 + 0 5 t i – 2

As usual, application knowledge or empirical validation determines the value of
p. The EMA has performed very well for many business-related applications, usually
producing results superior to the MA.

A moving average summarizes the recent past, but spotting a change in the trend
of the data may additionally improve forecasting performances. Characteristics of a
trend can be measured by composing features that compare recent measurements
to those of the more distant past. Three simple comparative features are:

1. t(i) −MA(i, m), the difference between the current value and an MA,

2. MA(i,m) −MA(i − k,m), the difference between twoMA, usually of the same
window size, and

3. t(i)/MA(i, m), the ratio between the current value and an MA, which may be
preferable for some applications.

In general, the main components of the summarizing features for a time series are:

1. current values,

2. smoothed values using MA, and

3. derived trends, differences, and ratios.
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The immediate extension of a univariate time series is to a multivariate one. Instead
of having a single measured value at time i, t(i), multiple measurements t[a(i), b(j)] are
taken at the same time. There are no extra steps in data preparation for the multivariate
time series. Each series can be transformed into features, and the values of the features at
each distinct time A(i) are merged into a sample i. The resultant transformations yield a
standard tabular form of data such as the table given in Figure 2.5.

While some data-mining problems are characterized by a single time series,
hybrid applications are more frequent in real-world problems, having both time series
and features that are not dependent on time. In these cases, standard procedures for
time-dependent transformation and summarization of attributes are performed. High
dimensions of data generated during these transformations can be reduced through the
next phase of a data-mining process: data reduction.

Some data sets do not include a time component explicitly, but the entire analysis
is performed in the time domain (typically based on several dates that are attributes of
described entities). One very important class of data belonging to this type is survival
data. Survival data are data concerning how long it takes for a particular event to hap-
pen. In manymedical applications the event is the death of a patient, and, therefore, we
analyze the patient’s survival time. In industrial applications, the event is often the
failure of a component in a machine. Thus, the output in these sorts of problems is
the survival time. The inputs are the patient’s records in medical applications and char-
acteristics of the machine component in industrial applications. There are two main
characteristics of survival data that make them different from the data in other
data-mining problems. The first characteristic is called censoring. In many studies,
the event has not happened by the end of the study period. So, for some patients in
a medical trial, we might know that the patient was still alive after 5 years, but we
do not know when the patient died. This sort of observation would be called a cen-
sored observation. If the output is censored, we do not know the value of the output,
but we do have some information about it. The second characteristic of survival data is
that the input values are time dependent. Since collecting data entails waiting until the
event happens, it is possible for the inputs to change its value during the waiting
period. If a patient stops smoking or starts with a new drug during the study, it is

Time a b Sample a(n–2) a(n–1) b(n–2) b(n–1) b(n)a(n)

1

(a) (b)

5 117 1 5

8

8

84

4

4 117

113

113

116

116

116

118 119 120

119118

118

9

9

9

10 12

2 8 113 2

3 4 116 3

4 9 118 4

5 10 119

6 12 120

Figure 2.5. Tabulation of time-dependent features a and b. (a) Initial time-dependent data.

(b) Samples prepared for data mining with time window = 3.
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important to know what data to include into the study and how to represent these
changes in time. Data-mining analysis for these types of problems concentrates on
the survivor function or the hazard function. The survivor function is the probability
of the survival time being greater than the time t. The hazard function indicates how
likely a failure (of the industrial component) is at time t, given that a failure has not
occurred before time t.

2.6 OUTLIER ANALYSIS

Very often, in large data sets, there exist samples that do not comply with the general
behavior of the data model. Such samples, which are significantly different or incon-
sistent with the remaining set of data, are called outliers. Outliers can be caused by
measurement error or they may be the result of inherent data variability. If the display
of a person’s age in the database is −1, the value is obviously not correct, and the error
could have been caused by a default setting of the field “unrecorded age” in the com-
puter program. On the other hand, if, in the database, the number of children for one
person is 25, this datum is unusual and has to be checked. The value could be a typo-
graphical error, or it could be correct and represent real variability for the given
attribute.

Many data-mining algorithms try to minimize the influence of outliers on the final
model or to eliminate them in the preprocessing phases. Outlier detection methodol-
ogies have been used to detect and, where appropriate, remove anomalous observa-
tions from data. Outliers arise due to mechanical faults, changes in system behavior,
fraudulent behavior, human error, or instrument error or simply through natural devia-
tions in populations. Their detection can identify system faults and fraud before they
escalate with potentially catastrophic consequences. The literature describes the field
with various names including outlier detection, novelty detection, anomaly detection,
noise detection, deviation detection, or exception mining. Efficient detection of such
outliers reduces the risk of making poor decisions based on erroneous data and aids in
identifying, preventing, and repairing the effects of malicious or faulty behavior.
Additionally, many data-mining techniques may not work well in the presence of out-
liers. Outliers may introduce skewed distributions or complexity into models of the
data, which may make it difficult, if not impossible, to fit an accurate model to the
data in a computationally feasible manner.

The data-mining analyst has to be very careful in the automatic elimination of
outliers because, if the data are correct, that could result in the loss of important hidden
information. Some data-mining applications are focused on outlier detection, and it is
the essential result of a data analysis. The process consists of two main steps: (1)
build a profile of the “normal” behavior and (2) use the “normal” profile to detect out-
liers. Profile can be patterns or summary statistics for the overall population.
The assumption is that there are considerably more “normal” observations than
“abnormal”—outliers/anomalies in the data. For example, while detecting fraudulent
credit card transactions in a bank, the outliers are typical examples that may indicate
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fraudulent activity, and the entire data-mining process is concentrated on their
detection. But in many of the other data-mining applications, especially if they are
supported with large data sets, outliers are not very useful, and they are more the result
of errors in data collection than a characteristic of a data set.

Outlier detection and potential removal from a data set can be described as a proc-
ess of the selection of k out of n samples that are considerably dissimilar, exceptional,
or inconsistent with respect to the remaining data (k n). The problem of defining
outliers is nontrivial, especially in multidimensional samples. Main types of outlier
detection schemes are:

• graphical or visualization techniques,

• statistical-based techniques,

• distance-based techniques, and

• model-based techniques.

Examples of visualization methods include boxplot (1D), scatter plot (2D), and
spin plot (3D), and they will be explained in the following chapters. Data-visualization
methods that are useful in outlier detection for data with one to three dimensions are
much weaker in multidimensional data because of a lack of adequate visualization
methodologies for n-dimensional spaces. An illustrative example of a visualization
of 2D samples and visual detection of outliers is given in Figures 2.6 and 2.7. The
main limitations of the approach are time-consuming process and subjective nature
of outlier detection.

Statistical-based outlier detection methods can be divided between univariate
methods, proposed in earlier works in this field, andmultivariate methods that usually
form most of the current body of research. Statistical methods either assume a known
underlying distribution of the observations or, at least, are based on statistical esti-
mates of unknown distribution parameters. These methods flag as outliers those obser-
vations that deviate from the model assumptions. The approach is often unsuitable for
high-dimensional data sets and for arbitrary data sets without prior knowledge of the
underlying data distribution.
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Figure 2.6. Outliers for univariate data based on mean value and standard deviation.
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Most of the earliest univariate methods for outlier detection rely on the assump-
tion of an underlying known distribution of the data, which is assumed to be identi-
cally and independently distributed. Moreover, many discordance tests for detecting
univariate outliers further assume that the distribution parameters and the type of
expected outliers are also known. Although traditionally the normal distribution
has been used as the target distribution, this definition can be easily extended to
any unimodal symmetric distribution with positive density function. Traditionally,
the sample mean and the sample variance give good estimation for data location
and data shape if it is not contaminated by outliers. When the database is contami-
nated, those parameters may deviate and significantly affect the outlier detection per-
formance. Needless to say, in real-world data-mining applications, these assumptions
are often violated.

The simplest approach to outlier detection for 1D samples is based on traditional
unimodal statistics. Assuming that the distribution of values is given, it is necessary to
find basic statistical parameters such as mean value and variance. Based on these
values and the expected (or predicted) number of outliers, it is possible to establish
the threshold value as a function of variance. All samples out of the threshold value
are candidates for outliers as it is represented in Figure 2.6. The main problem with
this simple methodology is an a priori assumption about data distribution. In most
real-world examples, the data distribution may not be known.

For example, if the given data set represents the feature Age with twenty different
values

Age= 3,56,23,39,156,52,41,22,9,28,139,31,55,20, −67,37,11,55,45,37

then the corresponding statistical parameters are

Mean = 39 9

Standard deviation = 45 65

y

x

Figure 2.7. Two-dimensional data set with one outlying sample.
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If we select the threshold value for normal distribution of data as

Threshold =Mean ± 2 × Standard deviation

then all data that are out of range [−54.1, 131.2] will be potential outliers. Additional
knowledge of the characteristics of the feature (Age is always greater than zero) may
further reduce the range to [0, 131.2]. In our example there are three values that are
outliers based on the given criteria: 156, 139, and −67.With a high probability, we can
conclude that all three of them are typo errors (data entered with additional digits or an
additional “−” sign).

An additional single-dimensional method is Grubbs’ method (extreme Studen-
tized deviate), which calculates a Z value as the difference between the mean value
for the attribute and the analyzed value divided by the standard deviation for the attrib-
ute. The Z value is compared with a 1 or 5% significance level showing an outlier if the
Z parameter is above the threshold value.

In many cases multivariable observations cannot be detected as outliers when
each variable is considered independently. Outlier detection is possible only when
multivariate analysis is performed and the interactions among different variables
are compared within the class of data. Illustrative example is given in Figure 2.7 where
analysis of each dimension separately will not give any outlier, while analysis of 2D
samples (x, y) gives one outlier detectable even through visual inspection.

Statistical methods for multivariate outlier detection often indicate those samples
that are located relatively far from the center of the data distribution. Several distance
measures can be implemented for such a task. The Mahalanobis distance measure
includes the inter-attribute dependencies so the system can compare attribute combina-
tions. Therefore, it is a well-known approach that depends on estimated parameters of
the multivariate distribution. Given n observations xi from a p-dimensional data set
(often n p), denote the sample mean vector by xn and the sample covariance matrix
by Vn, where

Vn =
1

n−1

n

i= 1

xi−xn xi−xn
T

The Mahalanobis distance for each multivariate data point i (i = 1,…,n) is
denoted by Mi and given by

Mi =
n

i= 1

xi−xn
TV−1

n xi−xn

1 2

Accordingly, those n-dimensional samples with a largeMahalanobis distance are
indicated as outliers. Many statistical methods require data-specific parameters
representing a priori data knowledge. Such information is often not available or is
expensive to compute. Also, most real-world data sets simply do not follow one
specific distribution model.

52 PREPARING THE DATA



Distance-based techniques for outlier detection are simple to implement and
make no prior assumptions about the data distribution model. However, they suffer
exponential computational growth as they are founded on the calculation of the dis-
tances between all samples. The computational complexity is dependent on both the
dimensionality of the data setm and the number of samples n and usually is expressed
as O(n2m). Hence, it is not an adequate approach to use with very large data sets.
Moreover, this definition can lead to problems when the data set has both dense
and sparse regions. For example, as the dimensionality increases, the data points
are spread through a larger volume and become less dense. This makes the convex
hull harder to discern and is known as the “curse of dimensionality.”

Distance-based outlier detection method, presented in this section, eliminates
some of the limitations imposed by the statistical approach. The most important dif-
ference is that this method is applicable to multidimensional samples while most of
statistical descriptors analyze only a single dimension, or several dimensions, but sep-
arately. The basic computational complexity of this method is the evaluation of dis-
tance measures between all samples in an n-dimensional data set. Then, a sample si in
a data set S is an outlier if at least a fraction p of the samples in S lies at a distance
greater than d. In other words, distance-based outliers are those samples that do
not have enough neighbors, where neighbors are defined through the multidimen-
sional distance between samples. Obviously, the criterion for outlier detection is based
on two parameters, p and d, which may be given in advance using knowledge about
the data or which may be changed during the iterations (trial-and-error approach) to
select the most representative outliers.

To illustrate the approach we can analyze a set of 2D samples S, where the
requirements for outliers are the values of thresholds, p ≥ 4 and d ≥ :

S= s1,s2,s3,s4,s5,s6,s7 = 2,4 , 3,2 , 1,1 , 4,3 , 1,6 , 5,3 , 4,2

The table of Euclidean distances, d = [(x1 − x2)2 + (y1 − y2)2]½, for the set S is
given in Table 2.3, and, based on this table, we can calculate a value for the parameter
pwith the given threshold distance (d = 3) for each sample. The results are represented
in Table 2.4.

TABLE 2.3 . Table of Distances for Data Set S

s1 s2 s3 s4 s5 s6 s7

s1 2.236 3.162 2.236 2.236 3.162 2.828
s2 2.236 1.414 4.472 2.236 1.000
s3 3.605 5.000 4.472 3.162
s4 4.242 1.000 1.000
s5 5.000 5.000
s6 1.414
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Using the results of the applied procedure and given threshold values, it is pos-
sible to select samples s3 and s5 as outliers (because their values for p is above the
threshold value: p = 4). The same results could be obtained by visual inspection of
a data set, represented in Figure 2.8. Of course, the given data set is very small,
and a 2D graphical representation is possible and useful. For n-dimensional, real-
world data analyses, the visualization process is much more difficult, and analytical
approaches in outlier detection are often more practical and reliable.

There is a possibility for reducing complexity of the algorithm by partitioning the
data into n-dimensional cells. If any cell and its directly adjacent neighbors contain
more than k points, then the points in the cell are deemed to lie in a dense area of
the distribution, so the points contained are unlikely to be outliers. If the number
of points is less than k, then all points in the cell are potential outliers. Hence, only
a small number of cells need to be processed, and only a relatively small number
of distances need to be calculated for outlier detection.

Model-based techniques are the third class of outlier detection methods. These
techniques simulate the way in which humans can distinguish unusual samples from
a set of other similar samples. These methods define the basic characteristics of the

TABLE 2.4 . Number of Samples p with the
Distance Greater Than d from a Given Sample

Sample p

s1 2
s2 1
s3 5
s4 2
s5 5
s6 3
s7 2

x2

7

6 s5

5

4 s1

3 s4 s6

2 s2 s7

1 s3

1 2 3 4 5 6 7 x1

Figure 2.8. Visualization of two-dimensional data set for outlier detection.
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sample set, and all samples that deviate from these characteristics are outliers. The
sequential-exception technique is one possible approach that is based on a dissimilar-
ity function. For a given set of n samples, a possible dissimilarity function is the total
variance of the sample set. Now, the task is to define the smallest subset of samples
whose removal results in the greatest reduction of the dissimilarity function for the
residual set. The general task of finding outliers using this method can be very com-
plex (combinational explosion of different selections of the set of potential outliers—
the so-called exception set), and it can be theoretically defined as an NP-hard problem
(nondeterministic polynomial time, i.e., intractable). If we settle for a less-than-
optimal answer, the algorithm’s complexity can be reduced to the linear level using
a sequential approach. Using the greedy method, the algorithm reduces the size
sequentially, sample by sample (or subset by subset), by selecting at each step the
one that causes the greatest decrease in the total variance.

Many data-mining algorithms are robust and as such tolerant to outliers but were
specifically optimized for clustering or classification in large data sets. It includes
clustering algorithms such as BIRCH and DBSCAN, kNN classification algorithms,
and different neural networks. These methodologies are explained with more details
later in the book, but the reader has to be aware about applicability of these techniques
as powerful tools for outlier detection. For example, in data set represented in
Figure 2.9, clustering-based methods consider a cluster of small sizes, including
the size of one sample, as clustered outliers. Note that since their main objective is
clustering, these methods are not always optimized for outlier detection. In most cases,
the outlier detection criteria are implicit and cannot easily be inferred from the clus-
tering procedures.

Most of outlier detection techniques have only focused on continuous real-valued
data attributes, and there has been little focus on categorical data. Most approaches
require cardinal or at the least ordinal data to allow vector distances to be calculated
and have no mechanism for processing categorical data with no implicit ordering.

Potential outliers

Figure 2.9. Determining outliers through clustering.
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2.7 REVIEW QUESTIONS AND PROBLEMS

1. Generate the tree structure of data types explained in Section 2.1.

2. If one attribute in the data set is student grade with values A, B, C, D, and F, what
type is these attribute values? Give a recommendation for preprocessing of the
given attribute.

3. Explain why “the curse of dimensionality” principles are especially important in
understanding large data sets.

4. Every attribute in a six-dimensional sample is described with one out of three
numeric values {0, 0.5, 1}. If there exist samples for all possible combinations
of attribute values, what will be the number of samples in a data set, and what will
be the expected distance between points in a six-dimensional space?

5. Derive the formula for min–max normalization of data on [−1, 1] interval.

6. Given one-dimensional data set X = {−5.0, 23.0, 17.6, 7.23, 1.11}, normalize the
data set using:

(a) Decimal scaling on interval [−1, 1].
(b) Min–max normalization on interval [0, 1].
(c) Min–max normalization on interval [−1, 1].
(d) Standard deviation normalization.
(e) Compare the results of previous normalizations and discuss the advantages and disad-

vantages of different techniques.

7. Perform data smoothing using a simple rounding technique for a data set:

Y = {1.17, 2.59, 3.38, 4.23, 2.67, 1.73, 2.53, 3.28, 3.44}

Present the new data set when the rounding is performed to the precision of:

(a) 0.1
(b) 1

8. Given a set of four-dimensional samples with missing values,

X1 = 0,1,1,2

X2 = 2,1, − ,1

X3 = 1, − , − ,0

X4 = − ,2,1, −

if the domains for all attributes are [0, 1, 2], what will be the number of “artificial”
samples if missing values are interpreted as “don’t care values” and they are
replaced with all possible values for a given domain.
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9. A 24-hour time-dependent data set X is collected as a training data set to predict
values 3 hours in advance. If the data set X is

X = 7,8,9,10,9,8,7,9,11,13,15,17,16,15,14,13,12,11,10,9,7,5,3,1 ,

(a) What will be a standard tabular representation of data set X if:
(i) the window width is 6 and a prediction variable is based on the difference

between the current value and the value after 3 hours? What is the number of
samples?

(ii) the window width is 12 and the prediction variable is based on ratio. What is the
number of samples?

(b) Plot discrete X values together with computed 6- and 12-hour moving averages
(MA).

(c) Plot time-dependent variable X and its 4-h exponential moving average (EMA).

10. The number of children for different patients in a database is given with a vector

C = 3,1,0,2,7,3,6,4, −2,0,0,10,15,6

(a) Find the outliers in the set C using standard statistical parameters mean and variance.
(b) If the threshold value is changed from ±3 standard deviations to ±2 standard devia-

tions, what additional outliers are found?

11. For a given data set X of three-dimensional samples,

X = 1,2,0 , 3,1,4 , 2,1,5 , 0,1,6 , 2,4,3 , 4,4,2 ,

5,2,1 , 7,7,7 , 0,0,0 , 3,3,3

(a) Find the outliers using the distance-based technique if:
(i) the thresholddistance is 4 and threshold fractionp for non-neighbor samples is 3, and
(ii) the threshold distance is 6 and threshold fraction p for non-neighbor samples is 2.

(b) Describe the procedure and interpret the results of outlier detection based on mean
values and variances for each dimension separately.

12. Discuss the applications in which you would prefer to use exponential moving
averages (EMA) instead of moving averages (MA).

13. If your data set contains missing values, discuss the basic analyses and corre-
sponding decisions you will take in the preprocessing phase of the data- mining
process.

14. Develop a software tool for the detection of outliers if the data for preprocessing
are given in the form of a flat file with n-dimensional samples.

15. The set of seven two-dimensional samples is given in the following table. Check if
we do have outliers in the data set. Explain and discuss your answer!
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Sample # X Y

1 1 3
2 7 1
3 2 4
4 6 3
5 4 2
6 2 2
7 7 2

16. Given the data set of 10 three-dimensional samples: {(1,2,0), (3,1,4), (2,1,5),
(0,1,6), (2,4,3), (4,4,2), (5,2,1), (7,7,7), (0,0,0), (3,3,3)}. Is the sample
S4 = (0,1,6) outlier if the threshold values for the distance d = 6 and for the num-
ber of samples in the neighborhood p > 2 (Note: Use distance-based outlier detec-
tion technique)?

17. What is the difference between nominal and ordinal data? Give examples.

18. Using the method of distance-based outlier detection, find the outliers in the set

X = 0,0 , 1,1 , 3,2 , 6,3 , 5,4 , 2,4

if the criteria are that at least the fraction p ≥ 3 of the samples in X lies at a distance
d greater than 4.

19. (a) Derive the formula for min–max normalization of data for the range [−1, 1].
(b) What will be normalized values (using this formula) for the data set X?

X = −5,11,26,57,61,75

20. Every attribute in six-dimensional samples is described with one out of three
numerical values: {0, 0.5, 1}. If there exist samples for all possible combinations
of attribute values,

(a) What will be the number of samples in a data set, and
(b) What will be the expected distance between points in six-dimensional space?

21. Classify the following attributes as binary, discrete, or continuous. Also classify
them as qualitative (nominal or ordinal) or quantitative (interval or ratio). Some
cases may have more than one interpretation, so briefly indicate your reasoning.
(Example: Age in Years. Answer is: discrete, quantitative, ratio).

(a) Time in terms of AM or PM.
(b) Brightness as measured by a light meter.
(c) Brightness as measured by people’s judgment.
(d) Angles as measured in degrees between 0 and 360.
(e) Bronze, Silver, and Gold medals at Olympics.
(f) Height above sea level.
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(g) Number of patients in a hospital.
(h) ISBN numbers for books.
(i) Ability to pass light in terms of the following values: opaque, translucent, transparent.
(j) Military rank.
(k) Distance from the center of campus.
(l) Density of a substance in grams per cubic centimeter.
(m) Coats check number when you attend the event.

22. What are the major challenges of mining a huge amount of data (such as billions
of tuples) in comparison with mining a small amount of data (such as a few hun-
dred tuple data set)?

23. Use the two methods to normalize the following set of data: 200, 300, 400,
600, 1000.

(a) min–max normalization by setting min = 0 and max = 1.
(b) Standard deviation normalization (often used as z-score).

2.8 REFERENCES FOR FURTHER STUDY
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view of the principles underlying data-mining algorithms and their applications.
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structed to solve specific problems in a principled manner. The third
section shows how all of the preceding analysis fits together when applied to
real-world data-mining problems.
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The original outlier detection methods were arbitrary, but now, principled and sys-
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based on distance measures, clustering, and spatial methods.
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4. Zaki M. J., W. Meira, Data Mining And Analysis: Fundamental Concepts and
Algorithms, Cambridge University Press, New York, 2014.

The fundamental algorithms in data mining and analysis form the basis for the
emerging field of data science, which includes automated methods to analyze
patterns and models for all kinds of data, with applications ranging from
scientific discovery to business intelligence and analytics. This textbook for sen-
ior undergraduate and graduate data mining courses provides a broad yet in-depth
overview of data mining, integrating related concepts from machine learning and
statistics. The main parts of the book include exploratory data analysis, frequent
pattern mining, clustering, and classification. The book lays the basic founda-
tions of these tasks, and it also covers cutting-edge topics like kernel methods,
high-dimensional data analysis, and complex graphs and networks. It integrates
concepts from related disciplines like machine learning and statistics and is also
ideal for a course on data analysis. Most of the prerequisite material is covered in
the text, especially on linear algebra and probability and statistics.

5. Agraval C., Outliers Analysis, 2nd edition, Springer, New York, 2016.

The problem of outlier detection finds applications in numerous domains, where it
is desirable to determine interesting and unusual events in the underlying generat-
ing process. The core of all outlier detection methods is the creation of a probabi-
listic, statistical, or algorithmic model that characterizes the normal data. The
deviations from this model are used to identify the outliers. A good domain-
specific knowledge of the underlying data is often crucial designing simple and
accurate models that do not overfit the underlying data. The problem of outlier
detection becomes especially challenging when significant relationships exist
among the different data points. This is the case for time-series and network data
in which the patterns in the relationships among the data points (whether temporal
or structural) play the key role in defining the outliers. Outlier analysis has tremen-
dous scope for further research, especially in the area of structural and temporal
analysis.

60 PREPARING THE DATA



3

DATA REDUCTION

Chapter Objectives

• Identify the differences in dimensionality reduction based on features, cases,
and reduction of value techniques.

• Explain the advantages of data reduction in the preprocessing phase of a data-
mining process.

• Understand the basic principles of feature selection and feature composition
tasks using corresponding statistical methods.

• Apply and compare entropy-based technique and principal component analysis
for feature ranking.

• Understand the basic principles and implement ChiMerge and Bin-based tech-
niques for reduction of discrete values.

• Distinguish approaches in cases where reduction is based on incremental and
average samples.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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For small or moderate data sets, the preprocessing steps mentioned in the previous
chapter in preparation for data mining are usually enough. For really large data sets,
there is an increased likelihood that an intermediate, additional step—data
reduction—should be performed prior to applying the data-mining techniques. While
large data sets have the potential for better mining results, there is no guarantee that
they will yield better knowledge than small data sets. Given multidimensional data, a
central question is whether it can be determined, prior to searching for all data-mining
solutions in all dimensions, that the method has exhausted its potential for mining and
discovery in a reduced data set. More commonly, a general solution may be deduced
from a subset of available features or cases, and it will remain the same even when the
search space is enlarged.

The main theme for simplifying the data in this step is dimension reduction, and
the main question is whether some of these prepared and preprocessed data can be
discarded without sacrificing the quality of results. There is one additional question
about techniques for data reduction: Can the prepared data be reviewed and a subset
found in a reasonable amount of time and space? If the complexity of algorithms for
data reduction increases exponentially, then there is little to gain in reducing dimen-
sions in big data. In this chapter, we will present basic and relatively efficient tech-
niques for dimension reduction applicable to different data-mining problems.

3.1 DIMENSIONS OF LARGE DATA SETS

The choice of data representation and selection, reduction, or transformation of fea-
tures is probably the most important issue that determines the quality of a data-mining
solution. Besides influencing the nature of a data-mining algorithm, it can determine
whether the problem is solvable at all or how powerful the resulting model of data
mining is. A large number of features can make available samples of data relatively
insufficient for mining. In practice, the number of features can be as many as several
hundreds. If we have only a few hundred samples for analysis, dimensionality reduc-
tion is required in order for any reliable model to bemined or to be of any practical use.
On the other hand, data overload, because of high dimensionality, can make some
data-mining algorithms non-applicable, and the only solution is again a reduction
of data dimensions. For example, a typical classification task is to separate healthy
patients from cancer patients, based on their gene expression “profile.” Usually fewer
than 100 samples (patients’ records) are available altogether for training and testing.
But the number of features in the raw data ranges from 6,000 to 60,000. Some initial
filtering usually brings the number of features to a few thousand; still it is a huge num-
ber and additional reduction is necessary. The three main dimensions of preprocessed
data sets, usually represented in the form of flat files, are columns (features), rows
(cases or samples), and values of the features.

Therefore, the three basic operations in a data-reduction process are delete a col-
umn, delete a row, and reduce the number of values in a column (smooth a feature).
These operations attempt to preserve the character of the original data by deleting data
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that are nonessential. There are other operations that reduce dimensions, but the new
data are unrecognizable when compared with the original data set, and these opera-
tions are mentioned here just briefly because they are highly application dependent.
One approach is the replacement of a set of initial features with a new composite fea-
ture. For example, if samples in a data set have two features, person’s height and
person’s weight, it is possible for some applications in the medical domain to replace
these two features with only one body mass index, which is proportional to the
quotient of the initial two features. Final reduction of data does not reduce the quality
of results; in some applications, the results of data mining are even improved.

Performing standard data-reduction operations (deleting rows, columns, or
values) as a preparation for data mining, we need to know what we gain and/or lose
with these activities. The overall comparison involves the following parameters for
analysis:

1. Computing time—Simpler data, a result of the data-reduction process, can
hopefully lead to a reduction in the time taken for data mining. In most cases,
we cannot afford to spend too much time on the data-preprocessing phases,
including a reduction of data dimensions, although the more time we spend
in preparation the better the outcome.

2. Predictive/descriptive accuracy—This is the dominant measure for most data-
miningmodels since it measures howwell the data is summarized and general-
ized into the model.We generally expect that by using only relevant features, a
data-mining algorithm can not only learn faster but also with higher accuracy.
Irrelevant data may mislead a learning process and a final model, while redun-
dant data may complicate the task of learning and cause unexpected data-
mining results.

3. Representation of the data-mining model—The simplicity of representation,
obtained usually with data reduction, often implies that a model can be better
understood. The simplicity of the induced model and other results depends on
its representation. Therefore, if the simplicity of representation improves, a
relatively small decrease in accuracy may be tolerable. The need for a bal-
anced view between accuracy and simplicity is necessary, and dimensionality
reduction is one of the mechanisms for obtaining this balance.

It would be ideal if we could achieve reduced time, improved accuracy, and sim-
plified representation at the same time, using dimensionality reduction. More often,
however, we gain in some and lose in others and balance between them according to
the application at hand. It is well known that no single data-reduction method can be
best suited for all applications. A decision about method selection is based on avail-
able knowledge about an application (relevant data, noise data, metadata, correlated
features) and required time constraints for the final solution.

Algorithms that perform all basic operations for data reduction are not simple,
especially when they are applied to large data sets. Therefore, it is useful to enumerate
the desired properties of these algorithms before giving their detailed descriptions.

63DIMENSIONS OF LARGE DATA SETS



Recommended characteristics of data-reduction algorithms that may be guidelines for
designers of these techniques are as follows:

1. Measurable quality—The quality of approximated results using a reduced
data set can be determined precisely.

2. Recognizable quality—The quality of approximated results can be easily
determined at run time of the data-reduction algorithm, before application
of any data-mining procedure.

3. Monotonicity—The algorithms are usually iterative, and the quality of results
is a nondecreasing function of time and input data quality.

4. Consistency—The quality of results is correlated with computation time and
input data quality.

5. Diminishing returns—The improvement in the solution is large in the early
stages (iterations) of the computation, and it diminishes over time.

6. Interruptability—The algorithm can be stopped at any time and provide some
answers.

7. Preemptability—The algorithm can be suspended and resumed with minimal
overhead.

3.2 FEATURES REDUCTION

Most of the real-world data-mining applications are characterized by high-
dimensional data, where not all of the features are important. For example, high-
dimensional data (i.e., data sets with hundreds or even thousands of features) can con-
tain a lot of irrelevant, noisy information that may greatly degrade the performance of
data-mining process. Even state-of-art data-mining algorithms cannot overcome the
presence of large number of weakly relevant and redundant features. This is usually
attributed to the “curse of dimensionality” or to the fact that irrelevant features
decrease the signal-to-noise ratio. In addition, many algorithms become computation-
ally intractable when the dimensionality is high.

Data such as images, text, andmultimedia are high dimensional in nature, and this
dimensionality of data poses a challenge to data-mining tasks. Researchers have found
that reducing the dimensionality of data results in a faster computation while main-
taining reasonable accuracy. In the presence of many irrelevant features, mining algo-
rithms tend to overfit the model. Therefore, many features can be removed without
performance deterioration in the mining process.

When we are talking about data quality and improved performances of reduced
data sets, we can see that this issue is not only about noisy or contaminated data (pro-
blems mainly solved in the preprocessing phase) but also about irrelevant, correlated,
and redundant data. Recall that data with corresponding features are not usually col-
lected solely for data-mining purposes. Therefore, dealing with relevant features alone
can be far more effective and efficient. Basically, we want to choose features that are
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relevant to our data-mining application in order to achieve maximum performance
with the minimum measurement and processing effort. A feature-reduction process
should result in:

1. less data so that the data-mining algorithm can learn faster,

2. higher accuracy of a data-mining process so that the model can generalize bet-
ter from data,

3. simple results of a data-mining process so that they are easier to understand
and use, and

4. fewer features so that in the next round of data collection, a saving can be
made by removing redundant or irrelevant features.

Let us start our detailed analysis of possible column-reduction techniques, where
features are eliminated from the data set based on a given criterion. To address the
curse of dimensionality, dimensionality reduction techniques are proposed as a
data-preprocessing step. This process identifies a suitable low-dimensional represen-
tation of original data. Reducing the dimensionality improves the computational effi-
ciency and accuracy of the data analysis. Also, it improves comprehensibility of a
data-mining model. Proposed techniques are classified as supervised and unsuper-
vised techniques based on the type of a learning process. Supervised algorithms need
a training set with the output class label information to learn the lower-dimensional
representation according to some criteria. Unsupervised approaches project the orig-
inal data to a new lower-dimensional space without utilizing the label (class) informa-
tion. Dimensionality reduction techniques function either by transforming the existing
features to a new reduced set of features or by selecting a subset of the existing
features. Therefore, two standard tasks are associated with producing a reduced set
of features, and they are classified as follows:

1. Feature selection—Based on the knowledge of the application domain and the
goals of the mining effort, the human analyst may select a subset of the fea-
tures found in the initial data set. The process of feature selection can be man-
ual or supported by some automated procedures.

Roughly speaking, feature selection methods are applied in one of the three
conceptual frameworks: the filter model, the wrapper model, and embedded
methods. These three basic families differ in how the learning algorithm is
incorporated in evaluating and selecting features. In the filter model the selec-
tion of features is done as a preprocessing activity, without trying to optimize
the performance of any specific data-mining technique directly. This is usually
achieved through an (ad hoc) evaluation function using a search method in
order to select a subset of features that maximizes this function. Performing
an exhaustive search is usually intractable due to the large number of initial
features. Therefore, different methods may apply a variety of search heuristics.
Wrapper methods select features by “wrapping” the search around the selected
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learning algorithm and evaluate feature subsets based on the learning perfor-
mance of the data-mining technique for each candidate feature subset. The
main drawback of this approach is its computational complexity. Main char-
acteristics of both approaches are given in Figure 3.1. Finally, embedded
methods incorporate feature search and the learning algorithm into a single
optimization problem formulation. When the number of samples and dimen-
sions becomes very large, the filter approach is usually a choice due to its
computational efficiency and neutral bias toward any learning methodology.
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Figure 3.1. Feature selection approaches.
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2. Feature extraction/transformation—There are transformations of data that
can have a surprisingly strong impact on the results of data-mining methods.
In this sense, the composition and/or transformation of features is a greater
determining factor in the quality of data-mining results. In most instances, fea-
ture composition is dependent on knowledge of the application, and an inter-
disciplinary approach to feature composition tasks produces significant
improvements in the preparation of data. Still, some general-purpose techni-
ques, such as principal component analysis (PCA), are often used and with a
high success.

Feature selection is typically preferred over extraction/transformation when
one wishes to keep the original meaning of the features and wishes to deter-
mine which of those features are important. Moreover, once features are
selected, only these features need to be calculated or collected, whereas, in
transformation-based methods all input features are still needed to obtain
the reduced dimension.

3.2.1 Feature Selection

In data mining, feature selection, also known as variable selection, feature reduction,
attribute selection, or variable subset selection, is a set of techniques, which selects a
subset of relevant features for building robust learning models by removing most irrel-
evant and redundant features from the data. The objective of feature selection is three-
fold: improving the performance of a data mining model, providing faster and more
cost-effective learning process, and providing a better understanding of the underlying
process that generates the data. Feature selection algorithms typically fall into two
categories: feature ranking and subset selection. Feature ranking ranks all features
by a specified metric and eliminates all features that do not achieve an adequate score.
Subset selection, on the other hand, searches the set of all features for the optimal sub-
set where features in the selected subset are not ranked. We have to be aware that dif-
ferent feature selection methods may give different reduced features sets.

In the feature ranking algorithm, one can expect a ranked list of features that are
ordered according to a specific evaluation measure. A measure can be based on accu-
racy of available data, consistency, information content, distances between samples,
and, finally, statistical dependencies between features. These algorithms do not tell
you what the minimum set of features for further analysis is; they indicate only the
relevance of a feature compared with others. Minimum subset algorithms, on the other
hand, return a minimum feature subset, and no differences are made among features in
the subset—all have the same ranking. The features in the subset are relevant for the
mining process; the others are irrelevant. In both types of algorithms, it is important to
establish a feature-evaluation scheme: the way in which the features are evaluated and
then ranked or added to the selected subset.

Feature selection in general can be viewed as a search problem, with each state in
the search space specifying a subset of the possible features. If, for example, a data set
has three features {A1, A2, A3}, and in the process of selecting features, the presence of
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a feature is coded with 1 and its absence with 0, then there should be a total of 23

reduced feature subsets coded with {0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1},
{1, 1, 0}, {1, 0, 1}, {0, 1, 1}, and {1, 1, 1}. The problem of feature selection is relatively
trivial if the search space is small, since we can analyze all subsets in any order and a
search will get completed in a short time. However, the search space is usually not
small. It is 2N where the number of dimensions N in typical data-mining applications
is large (N > 20). This makes the starting point and the search strategy very important.
An exhaustive search of all subsets of features very often is replaced with some heu-
ristic search procedures. Using knowledge of the problem, these procedures find near-
optimal subsets of features that further improve the quality of the data-mining process.

The objective of feature selection is to find a subset of features with data-mining
performances comparable with the full set of features. Given a set of features m, the
number of subsets to be evaluated as candidates for column reduction is finite but still
very large for iterative analysis through all cases. For practical reasons, an optimal
search is not feasible, and simplifications are made to produce reasonable, acceptable,
and timely results. If the reduction task is to create a subset, one possibility—the so-
called bottom-up approach—starts with an empty set and fills it in by choosing the
most relevant features from the initial set of features. This process is based on some
heuristic criteria for a feature evaluation. The top-down approach, on the other hand,
begins with a full set of original features and then removes one by one those that are
shown as irrelevant based on the selected heuristic evaluation measure. Additional
approximations to the optimal approach are as follows:

1. To examine only promising subsets of features where promising subsets are
usually obtained heuristically. This provides enough room for exploration of
competing alternatives.

2. To substitute computationally simple distance measures for the error mea-
sures. This approximation will reduce the computation time yet give satisfac-
tory results for comparison of subset alternatives.

3. To select features based only on subsets of large amounts of data. The subse-
quent steps of data mining will be applied on the whole set.

The application of feature selection and reduction of data dimensionality may be
used in all phases of the data-mining process for successful knowledge discovery. It
has to be started in the preprocessing phase, but, on many occasions, feature selection
and reduction is a part of the data-mining algorithm, even it is applied in postproces-
sing for better evaluation and consolidation of obtained results.

Let us return to the promising subsets of features. One possible technique for fea-
ture selection is based on comparison of means and variances. To summarize the key
characteristics of the distribution of values for a given feature, it is necessary to com-
pute the mean value and the corresponding variance. The main weakness in this
approach is that the distribution for the feature is not known. If it is assumed to be
a normal curve, the statistics can work out very well, but this may in fact be a poor
assumption. Without knowing the shape of the distribution curve, the means and
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variances are viewed as heuristics for feature selection, not exact, mathematical mod-
eling tools.

In general, if one feature describes different classes of entities, samples of two
different classes can be examined. The means of feature values are normalized by
its variances and then compared. If the means are far apart, interest in a feature
increases; it has potential, in terms of its use in distinguishing between two classes.
If the means are indistinguishable, interest wanes in that feature. It is a heuristic, non-
optimal approach to feature selection, but it is consistent with practical experience in
many data-mining applications in the triage of features. Next, equations formalize the
test, where A and B are sets of feature values measured for two different classes and n1
and n2 are the corresponding number of samples:

SE A−B =
var A
n1

+
var B
n2

TEST
mean A –mean B

SE A−B
> threshold-value

The mean of a feature is compared between two classes without taking into con-
sideration relationship to other features. In this approach to feature selection, we
assumed a priori that the given feature is independent of the others. A comparison
of means is a natural fit to classification problems. For the purpose of feature selection,
a regression problem can be considered as a pseudo-classification problem. For k
classes, k pairwise comparisons can be made, comparing each class to its complement.
A feature is retained if it is significant for any of the pairwise comparisons.

We can analyze this approach in feature selection through one example. A simple
data set is given in Table 3.1 with two input features X and Y and an additional output
feature C that classifies samples into two classes A and B. It is necessary to decide
whether the features X and Y are candidates for reduction or not. Suppose that the
threshold value of the applied test is 0.5.

First, we need to compute a mean value and a variance for both classes and both
features X and Y. The analyzed subsets of the feature’s values are

TABLE 3.1 . Data Set with Three Features

X Y C

0.3 0.7 A
0.2 0.9 B
0.6 0.6 A
0.5 0.5 A
0.7 0.7 B
0.4 0.9 B
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XA = 0 3,0 6,0 5 , XB = 0 2,0 7,0 4 , YA = 0 7,0 6,0 5 , and YB = 0 9,0 7,0 9

and the results of applied tests are

SE XA−XB =
var XA

n1
+
var XB

n2
=

0 0233
3

+
0 06333

3
= 0 1699

SE YA−YB =
var YA

n1
+
var YB

n2
=

0 01
3

+
0 0133

3
= 0 0875

mean XA –mean XB

SE XA−XB
=

0 4667 – 0 4333
0 1699

= 0 1961 < 0 5

mean YA –mean YB
SE YA−YB

=
0 6 – 0 8333

0 0875
= 2 6667 > 0 5

This analysis shows that X is a candidate for reduction because its mean values are
close and, therefore, the final test is below the threshold value. On the other hand, the
test for feature Y is significantly above the threshold value; this feature is not a can-
didate for reduction because it has the potential to be a distinguishing feature between
two classes.

Similar idea for features ranking is given in the algorithm, which is based on cor-
relation criteria. Let us consider first the prediction of a continuous outcome y. The
Pearson correlation coefficient is defined as

i =
cov Xi,Y

var Xi var Y

where cov designates the covariance and var the variance. The estimate of R(i) for the
given data set with samples’ inputs xk,j and outputs yk, is defined by

R i =
Σm
k = 1 xk, i−xi yk −y

Σm
k = 1 xk, i−xi

2 Σm
k = 1 yk −y

2

where the bar notation stands for an average over the index k (set of all samples).
Using R(i)2 as a variable ranking criterion enforces a ranking according to goodness
of linear fit of individual variables. Correlation criteria such as R(i)2 can only detect
linear dependencies between input features and target or output feature (variable). One
common criticism of variable ranking is that it leads to the selection of a redundant
subset. The same performance could possibly be achieved with a smaller subset of
complementary variables. Still, one may wonder whether deleting presumably redun-
dant variables can result in a performance gain.
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Practical experiments show that noise reduction and consequently better model
estimation may be obtained by adding features that are presumably redundant. There-
fore, we have to be very careful in the preprocessing analysis. Yes, perfectly correlated
variables are truly redundant in the sense that no additional information is gained by
adding them. But even variables with relatively high correlation (or anticorrelation) do
not guarantee absence of variables’ complementarity. We can find cases where a fea-
ture looks like completely useless by itself, and it is ranked very low, but it can provide
significant information to the model and performance improvement when taken with
others. These features by itself may have little correlation with the output, target con-
cept, but when it is combined with some other features; they can be strongly correlated
with the target feature. Unintentional removal of these features can result in poor min-
ing performance.

The previous simple methods test features separately. Several features may be
useful when considered separately, but they may be redundant in their predictive abil-
ity. If the features are examined collectively, instead of independently, additional
information can be obtained about their characteristics and mutual relations. Assum-
ing normal distributions of values, it is possible to describe an efficient technique for
selecting subsets of features. Two descriptors characterize a multivariate normal
distribution:

1. M—A vector of the m feature means.

2. C—An m ×m covariance matrix of the means, where Ci,i are simply the var-
iance of feature i and Ci,j terms are correlations between each pair of features:

Ci, j =
1
n

n

k = 1

v k, i −m i ∗ v k, j −m j

where v(k,i) and v(k,j) are the values of features indexed with i and j; m(i) and m(j) are
feature means; and n is the number of dimensions

These two descriptors, M and C, provide a basis for detecting redundancies in a
set of features. If two classes exist in a data set, then the heuristic measure, DM, for
filtering features that separate the two classes is defined as

DM= M1 –M2 C1 +C2
– 1 M1 –M2

T

where M1 and C1 are descriptors of samples for the first class and M2 and C2 for the
second class. Given the target of k best features, all subsets of k from m features must
be evaluated to find the subset with the largest DM. With large data sets that have
features, this can be a huge search space, and alternative heuristic methods should
be considered. One of these methods selects and ranks features based on an entropy
measure. Detailed explanations are given in Section 3.4. The other heuristic approach,
explained in the following text, is based on a combined correlation and covariance
analyses and ranking of all features.
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Existing efficient feature selection algorithms usually rank features under
assumption of feature independence. Under this framework, features are ranked as
relevant mainly based on their individually high correlations with the output feature.
Because of the irreducible nature of feature interactions, these algorithms cannot
select interacting features. In principle, it can be shown that a feature is relevant
due to two reasons: (1) it is strongly correlated with the target feature; or (2) it forms
a features’ subset and the subset is strongly correlated with the target. A heuristic
approach is developed to analyze features of type (2) in the selection process.

In the first part of a selection process, the features are ranked in descending order
based on their correlation values with output using previously defined technique. We
may assume that a set of features S can be divided into subset S1 including relevant
features and subset S2 containing irrelevant ones. Heuristically, critical for removal
are features in S2 first, while features in S1 are more likely to remain in the final
set of selected features.

In the second part, features are evaluated one by one starting from the end of the
S2 ranked feature list. The monotonic property suggests that the backward elimination
search strategy fits best in feature selection. That is, one can start with the full feature
set and successively eliminating features one at a time from the bottom of the ranked
list if their interaction does not contribute to better correlation with output. The cri-
terion could be, for example, based on covariance matrix. If a feature, together with
previously selected features, shows influence on the output with less than threshold
value (it could be expressed through some covariance matrix factor!), the feature is
removed, and otherwise it is selected. Backward elimination allows every feature
to be evaluated with the features it may interact with. The algorithm repeats until
all features in the S2 list are checked.

3.2.2 Feature Extraction

The art of data mining starts with the design of appropriate data representations. Better
performance is often achieved using features derived from the original input. Building
a feature representation is an opportunity to incorporate domain knowledge into the
data and can be very application specific. Transforming the input set into a new,
reduced set of features is called feature extraction. If the features extracted are care-
fully chosen, it is expected that the new features set will extract the relevant informa-
tion from the input data in order to perform the desired data mining task using this
reduced representation.

Feature transformation techniques aim to reduce the dimensionality of data to a
small number of dimensions, which are linear or nonlinear combinations of the orig-
inal dimensions. Therefore, we distinguish two major types of dimension reduction
methods: linear and nonlinear. Linear techniques result in k new derived features
instead of initial p (k p). Components of the new feature are a linear combination
of the original features:

si =wi,1x1+ +wi,pxp for i= 1,…,k;
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or in a matrix form

s=W x

whereWk × p is the linear transformationweightmatrix.Such linear techniquesaresimpler
and easier to implement than more recent methods considering nonlinear transforms.

In general, the process reduces feature dimensions by combining features instead
of by deleting them. It results in a new set of fewer features with totally new values.
One well-known approach is merging features by principal components. The features
are examined collectively, merged, and transformed into a new set of features that, it is
hoped, will retain the original information content in a reduced form. The basic trans-
formation is linear. Given p features, they can be transformed into a single new feature
F by the simple application of weights:

F =
p

j= 1

w j f j

Most likely, a single set of weights w(j) will not be adequate transformation for
complex multidimensional data set, and up to p transformations are generated. Each
vector of p features combined by weights w is called a principal component, and it
defines a new transformed feature. The first vector of m weights is expected to be
the strongest, and the remaining vectors are ranked according to their expected use-
fulness in reconstructing the original data. Eliminating the bottom-ranked transforma-
tion will reduce dimensions. The complexity of computation increases significantly
with the number of features. The main weakness of the method is that it makes an
advance assumption to a linear model that maximizes the variance of features.
Formalization of principal components analysis (PCA) and the basic steps of the
corresponding algorithm for selecting features are given in Section 3.5.

Examples of additional methodologies in feature extraction include factor anal-
ysis (FA), independent component analysis (ICA), and multidimensional scaling
(MDS). Probably the last one is the most popular, and it represents the basis for some
new, recently developed techniques. Given n samples in a p-dimensional space and an
n × n matrix of distance measures among the samples, multidimensional scaling
(MDS) produces a k-dimensional (k p) representation of the items such that the dis-
tances among the points in the new space reflect the distances in the original data.
A variety of distance measures may be used in the technique, and the main character-
istic for all these measures is the more similar two samples are, the smaller their dis-
tance is. Popular distance measures include the Euclidean distance (L2 norm), the
Manhattan distance (L1, absolute norm), and the maximum norm, and more detail
about these measures and their applications is given in Chapter 9. MDS has been typ-
ically used to transform the data into two or three dimensions, visualizing the result to
uncover hidden structure in the data. A rule of thumb to determine the maximum num-
ber of k is to ensure that there are at least twice as many pairs of samples than the
number of parameters to be estimated, resulting in p ≥ k + 1. Results of the MDS tech-
nique are indeterminate with respect to translation, rotation, and reflection of data.

73FEATURES REDUCTION



PCA and multidimensional scaling (MDS) are both simple methods for linear
dimensionality reduction, where an alternative to MDS is FastMap, a computationally
efficient algorithm. The other variant, Isomap, has also emerged as a powerful
technique for nonlinear dimensionality reduction, and it is primary graph-based
method.

Isomap is based on computing the low-dimensional representation of a high-
dimensional data set that most faithfully preserves the pairwise distances between
input samples as measured along geodesic distance (details about geodesic are given
in Chapter 12, the section about graph mining). The algorithm can be understood as a
variant of MDS in which estimates of geodesic distances are substituted for standard
Euclidean distances.

The algorithm has three steps. The first step is to compute the k-nearest neighbors
of each input sample and to construct a graph whose vertices represent input samples
and whose (undirected) edges connect k-nearest neighbors. The edges are then
assigned weights based on the Euclidean distance between nearest neighbors. The sec-
ond step is to compute the pairwise distances between all nodes (i, j) along shortest
paths through the graph. This can be done using well-knownDijkstra’s algorithm with
complexity O(n2 log n + n2k). Finally, in the third step, the pairwise distances are fed
as input to MDS to determine new reduced set of features.

With the size of data getting bigger and bigger, all feature selection (and reduc-
tion) methods also face a problem of oversized data because of a computer’s limited
resources. But do we really need so much data for selecting features as an initial proc-
ess in data mining? Or can we settle for less data? We know that some portion of a
huge data set can represent it reasonably well. The point is which portion and how
large should it be. Instead of looking for the right portion, we can randomly select
a part, P, of a data set, use that portion to find the subset of features that satisfy
the evaluation criteria, and test this subset on a different part of the data. The results
of this test will show whether the task has been successfully accomplished. If an
inconsistency is found, we shall have to repeat the process with a slightly enlarged
portion of the initial data set. What should be the initial size of the data subset P? Intu-
itively, we know that its size should not be too small or too large. A simple way to get
out of this dilemma is to choose a percentage of data, say, 10%. The right percentage
can be determined experimentally.

What are the results of a feature-reduction process, and why do we need this proc-
ess for every specific application? The purposes vary, depending upon the problem on
hand, but, generally, we want:

1. to improve performances of the model-generation process and the resulting
model itself (typical criteria are speed of learning, predictive accuracy, and
simplicity of the model);

2. to reduce dimensionality of the model without reduction of its quality through:

(a) Elimination of irrelevant features,

(b) Detection and elimination of redundant data and features,
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(c) Identification of highly correlated features, and

(d) Extraction of independent features that determine the model; and

3. to help the user visualize alternative results, which have fewer dimensions, to
improve decision-making.

3.3 RELIEF ALGORITHM

Relief is a feature weight-based algorithm for feature selection inspired by so-called
instance-based learning. It relies on relevance evaluation of each feature given in a
training data set. The main idea of Relief is to compute a ranking score for every
feature indicating how well this feature separates neighboring samples. The authors
of the Relief algorithm, Kira and Rendell, proved that the ranking score is large for
relevant features and small for irrelevant ones.

The core of the Relief algorithm is to estimate the quality of features according to
how well their values distinguish between samples close to each other. Given training
data S, the algorithm randomly selects subset of sample size m, where m is a user-
defined parameter. Relief analyzes each feature based on a selected subset of samples.
For each randomly selected sample X from a training data set, Relief searches for its
two nearest neighbors: one from the same class, called nearest hitH, and the other one
from a different class, called nearest missM. An example for two-dimensional data is
given in Figure 3.2.

Nearest miss

x1

Nearest hitDhit

x2

Dhit

Dmiss

Dmiss

Figure 3.2. Determining nearest hit H and nearest miss M samples.
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The Relief algorithm updates the quality scoreW(Ai) for all features Ai depending
on differences on their values for samples X, M, and H:

Wnew Ai =Wold Ai +
−diff X Ai ,H Ai

2 + diff X Ai ,M Ai
2

m

The process is repeated m times for randomly selected samples from the training
data set, and the scoresW(Ai) are accumulated for each sample. Finally, using thresh-
old of relevancy τ, the algorithm detects those features that are statistically relevant to
the target classification, and these are the features withW(Ai) ≥ τ. We assume the scale
of every feature is either nominal (including Boolean) or numerical (integer or real).
The main steps of the Relief algorithm may be formalized as follows:

Initialize: W(Aj) = 0; i = 1,.., p (p is the number of features)
For i=1 to m

Begin
Randomly select sample X from training data set S.
Find nearest hit H and nearest miss M samples.

For j=1 to p

W Aj =W Aj + −diff X Aj ,H Aj
2
+diff X Aj ,M Aj

2
m

End

End
Output: Subset of feature where W(Aj) ≥ τ

For example, if the available training set is given in Table 3.2 with three features
(the last one of them is classification decision) and four samples, the scoring valuesW
for the features F1 and F2 may be calculated using Relief:

W F1 = 0
+ −1 + 4 + −1 + 9 + −1 + 9 + −1 + 4

4
= 5 5

W F2 = 0
+ −1 + 4 + −1 + 1 + −1 + 4 + −1 + 1

4
= 1 5

TABLE 3.2 . Training Data Set for Applying Relief Algorithm

Sample F1 F2 Class

1 3 4 C1

2 2 5 C1

3 6 7 C2

4 5 6 C2
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In this example the number of samples is low, and therefore we use all samples
(m = n) to estimate the features’ scores. Based on the previous results, feature F1 is
much more relevant in classification than the feature F2. If we assign the threshold
value of τ = 5, it is possible to eliminate feature F2 and build the classification model
only based on the feature F1.

Relief is a simple algorithm that relies entirely on a statistical methodology. The
algorithm employs few heuristics, and therefore it is efficient—its computational
complexity is O(mpn). With m, number of randomly selected training samples, being
a user-defined constant, the time complexity becomes O(pn), which makes it very
scalable to data sets with both a huge number of samples n and a very high dimen-
sionality p. When n is very large, it is assumed that m n. It is one of the few algo-
rithms that can evaluate features for real-world problems with large feature space and
large number of samples. Relief is also noise tolerant and is unaffected by feature inter-
action, and this is especially important for hard data-mining applications. However,
Relief does not help with removing redundant features. As long as features are deemed
relevant to the class concept, they will all be selected even though many of them are
highly correlated to each other.

One of the Relief problems is to pick a proper value of τ. Theoretically, using so-
called Cebysev’s inequality, τ may be estimated:

τ
1
αm

While the above formula determines τ in terms of α (data-mining model accu-
racy) and m (the training data set size), experiments show that the score levels display
clear contrast between relevant and irrelevant features so τ can easily be determined by
inspection.

Reliefwas extended to deal with multiclass problems, noise, redundant, and miss-
ing data. Recently, additional feature selection methods based on feature weighting
are proposed including ReliefF, Simba, and I-Relief, and they are improvements of
the basic Relief algorithm.

3.4 ENTROPY MEASURE FOR RANKING FEATURES

Amethod for unsupervised feature selection or ranking based on entropy measure is a
relatively simple technique; but with a large number of features its complexity
increases significantly. The basic assumption is that all samples are given as vectors
of a feature’s values without any classification of output samples. The approach is
based on the observation that removing an irrelevant feature, a redundant feature,
or both from a set may not change the basic characteristics of the data set. The idea
is to remove as many features as possible but yet maintain the level of distinction
between the samples in the data set as if no features had been removed. The algorithm
is based on a similarity measure S that is in inverse proportion to the distance D
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between two n-dimensional samples. The distance measure D is small for close sam-
ples (close to zero) and large for distinct pairs (close to one). When the features are
numeric, the similarity measure S of two samples can be defined as

Sij = e
−αDij

where Dij is the distance between samples xi and xj and α is a parameter mathemat-
ically expressed as

α=
− ln 0 5

D

D is the average distance among samples in the data set. Hence, α is determined
by the data. But, in a successfully implemented practical application, it was used a
constant value of α = 0.5. Normalized Euclidean distance measure is used to calculate
the distance Dij between two samples xi and xj:

Dij =
n

k = 1

xik−xjk
maxk −mink

2 1 2

where n is the number of dimensions and maxk and mink are maximum and minimum
values used for normalization of the kth dimension.

All features are not numeric. The similarity for nominal variables is measured
directly using Hamming distance:

Sij =
n
k = 1 xik = xjk

n

where xik = xjk is 1 if xik = xjk and 0 otherwise. The total number of variables is equal
to n. For mixed data, we can discretize numeric values and transform numeric features
into nominal features before we apply this similarity measure. Figure 3.3a is an

Sample   

(a) (b) 

F1 F2 F3 R 1 R2 R3 R4 R 5

R 1 R 1 0/3   0/3    2/3   0/3

R 2 2 3

R 3 3 3

R 4

2 R 2/3   1/3   0/

2 R 0/3   1/

1 R 4 0/3

R 5

A X 1

B Y
C Y
B X
C Z 3

Figure 3.3. A tabular representation of similarity measures S. (a) Data set with three

categorical features. (b) A table of similarity measures Sij between samples.
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example of a simple data set with three categorical features; corresponding similarities
are given in Figure 3.3b.

The distribution of all similarities (distances) for a given data set is a characteristic
of the organization and order of data in an n-dimensional space. This organization may
be more or less ordered. Changes in the level of order in a data set are the main criteria
for inclusion or exclusion of a feature from the features set; these changes may be
measured by entropy.

From information theory, we know that entropy is a global measure and that it is
less for ordered configurations and higher for disordered configurations. The pro-
posed technique compares the entropy measure for a given data set before and after
removal of a feature. If the twomeasures are close, then the reduced set of features will
satisfactorily approximate the original set. For a data set of N samples, the entropy
measure is

E = −
N−1

i= 1

N

j= i+ 1

Sij × logSij + 1−Sij × log 1−Sij

where Sij is the similarity between samples xi and xj. This measure is computed in each
of the iterations as a basis for deciding the ranking of features. We rank features by
gradually removing the least important feature in maintaining the order in the config-
urations of data. The steps of the algorithm are based on sequential backward ranking,
and they have been successfully tested on several real-world applications:

1. Start with the initial full set of features F.

2. For each feature f F, remove one feature f from F and obtain a subset Ff. Find
the difference between entropy for F and entropy for all Ff. In our example in
Figure 3.3, we have to compare the differences (EF – EF – F1), (EF – EF – F2),
and (EF – EF – F3).

3. Let fk be a feature such that the difference between entropy for F and entropy
for Ffk is minimum.

4. Update the set of features F = F – {fk}, where “–” is a difference operation on
sets. In our example, if the difference (EF – EF – F1) is minimum, then the
reduced set of features is {F2, F3}. F1 becomes the bottom of the ranked list.

5. Repeat steps 2–4 until there is only one feature in F.

A ranking process may be stopped in any iteration and may be transformed into a
process of selecting features, using the additional criterion mentioned in step 4. This
criterion is that the difference between entropy for F and entropy for Ff should be less
than the approved threshold value to reduce feature fk from set F. A computational
complexity is the basic disadvantage of this algorithm, and its parallel implementation
could overcome the problems of working with large data sets and large number of
features sequentially.
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3.5 PRINCIPAL COMPONENT ANALYSIS

The most popular statistical method for dimensionality reduction of a large data set is
the Karhunen–Loeve (K–L) method, also called principal component analysis (PCA).
In various fields, it is also known as the singular value decomposition (SVD), the
Hotelling transform, and the empirical orthogonal function (EOF) method. PCA is
a method of transforming the initial data set represented by vector samples into a
new set of vector samples with derived dimensions. The goal of this transformation
is to concentrate the information about the differences between samples into a small
number of dimensions. Practical applications confirmed that PCA is the best linear
dimension reduction technique in the mean-squared error sense. Being based on
the covariance matrix of the features, it is a second-order method. In essence, PCA
seeks to reduce the dimension of the data by finding a few orthogonal linear combina-
tions of the original features with the largest variance. Since the variance depends on
the scale of the variables, it is customary to first standardize each variable to have
mean zero and standard deviation one. After the standardization, the original variables
with possibly different units of measurement are all in comparable units.

More formally, the basic idea can be described as follows: a set of n-dimensional
vector samples X = {x1, x2, x3,…,xm} should be transformed into another set Y = {y1,
y2,…,ym} of the same dimensionality, but Y have the property that most of their infor-
mation content is stored in the first few dimensions. This will allow us to reduce the
data set to a smaller number of dimensions with low information loss.

The transformation is based on the assumption that high information corresponds
to high variance. So, if we want to reduce a set of input dimensions X to a single
dimension Y, we should transform X into Y as a matrix computation:

Y =A X

choosing A such that Y has the largest variance possible for a given data set. The single
dimension Y obtained in this transformation is called the first principal component.
The first principal component is an axis in the direction of maximum variance. It mini-
mizes the distance of the sum of squares between data points and their projections on
the component axis, as it is shown in Figure 3.4 where a two-dimensional space is
transformed into a one-dimensional space in which the data set has the highest
variance.

In practice, it is not possible to determine matrix A directly, and therefore we
compute the covariance matrix S as a first step in feature transformation. Matrix S
is defined as

Sn × n =
1

n−1

n

j= 1

xj – x
T
xj – x

where x = 1 n n
j = 1xj.
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The eigenvalues of the covariancematrix S for the given data should be calculated
in the next step. Finally, the m eigenvectors corresponding to the m largest eigenva-
lues of S define a linear transformation from the n-dimensional space to an m-
dimensional space in which the features are uncorrelated. To specify the principal
components, we need the following additional explanations about the notation in
matrix S:

1. The eigenvalues of Sn × n are λ1, λ2,…,λn, where λ1 ≥ λ2 ≥ ≥ λn ≥ 0.

2. The eigenvectors e1, e2,… en correspond to eigenvalues λ1, λ2,…,λn, and they
are called the principal axes.

Principal axes are new, transformed axes of n-dimensional space, where the new
variables are uncorrelated and variance for the ith component is equal to the ith eigen-
value. Because λi’s are sorted, most of the information about the data set is concen-
trated in a few first principal components. The fundamental question is: how many of
the principal components are needed to get a good representation of the data? In other
words, what is the effective dimensionality of the data set? The easiest way to answer
the question is to analyze the proportion of variance. Dividing the sum of the first m
eigenvalues by the sum of all the variances (all eigenvalues), we will get the measure
for the quality of representation based on the first m principal components. The result
is expressed as a percentage, and if the projection accounts for over 90% of the total
variance, it is considered to be good. More formally, we can express this ratio in the
following way. The criterion for features selection is based on the ratio of the sum of
the m largest eigenvalues of S to the trace of S. That is a fraction of the variance
retained in the m-dimensional space. If the eigenvalues are labeled so that λ1 ≥
λ2 ≥ ≥λn, then the ratio can be written as

R=
m
i= 1λi
n
i= 1λi

x2

x1

Figure 3.4. The first principal component is an axis in the direction of maximum variance.
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When the ratio R is sufficiently large (greater than the threshold value), all ana-
lyses of the subset of m features represent a good initial estimate of the n-dimensional
space. This method is computationally inexpensive, but it requires characterizing data
with the covariance matrix S.

We will use one example from the literature to show the advantages of PCA. The
initial data set is the well-known set of Iris data, available on the Internet for data-
mining experimentation. This data set has four features, so every sample is a four-
dimensional vector. The correlation matrix, calculated from the Iris data after normal-
ization of all values, is given in Table 3.3.

Based on the correlation matrix, it is a straightforward calculation of eigenvalues
(in practice, usually, one of the standard statistical packages is used), and these final
results for the Iris data are given in Table 3.4.

By setting a threshold value for R∗ = 0.95, we choose the first two features as the
subset of features for further data-mining analysis, because

R=
2 91082 + 0 92122

2 91082 + 0 92122 + 0 14735 + 0 02061
= 0 958 > 0 95

For the Iris data, the first two principal components should be adequate descrip-
tion of the characteristics of the data set. The third and fourth components have small
eigenvalues, and therefore, they contain very little variation; their influence on the
information content of the data set is thus minimal. Additional analysis shows that,
based on the reduced set of features in the Iris data, the model has the same quality
using different data-mining techniques (sometimes the results were even better than
with the original features).

TABLE 3.3 . The Correlation Matrix for Iris Data

Feature 1 Feature 2 Feature 3 Feature 4

Feature 1 1.0000 −0.1094 0.8718 0.8180
Feature 2 −0.1094 1.0000 −0.4205 −0.3565
Feature 3 0.8718 −0.4205 1.0000 0.9628
Feature 4 0.8180 −0.3565 0.9628 1.0000

TABLE 3.4 . The Eigenvalues for Iris Data

Feature Eigenvalue

Feature 1 2.91082
Feature 2 0.92122
Feature 3 0.14735
Feature 4 0.02061
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The interpretation of the principal components can be difficult at times. Although
they are uncorrelated features constructed as linear combinations of the original fea-
tures, and they have some desirable properties, they do not necessarily correspond to
meaningful physical quantities. In some cases, such loss of interpretability is not sat-
isfactory to the domain scientists, and they prefer others, usually feature selection
techniques.

3.6 VALUE REDUCTION

A reduction in the number of discrete values for a given feature is based on the second
set of techniques in the data-reduction phase; these are the feature-discretization tech-
niques. The task of feature-discretization techniques is to discretize the values of con-
tinuous features into a small number of intervals, where each interval is mapped to a
discrete symbol. The benefits of these techniques are simplified data description and
easy-to-understand data and final data-mining results. Also, more data-mining tech-
niques are applicable with discrete feature values. An “old-fashioned” discretization is
made manually, based on our a priori knowledge about the feature. For example, using
common sense or consensus, a person’s age, given at the beginning of a data-mining
process as a continuous value (between 0 and 150 years), may be classified into cat-
egorical segments: child, adolescent, adult, middle age, and elderly. Cutoff points are
subjectively defined (Fig. 3.5). Twomain questions exist about this reduction process:

1. What are the cutoff points?

2. How does one select representatives of intervals?

Without any knowledge about a feature, a discretization is much more difficult
and, in many cases, arbitrary. A reduction in feature values usually is not harmful for
real-world data-mining applications, and it leads to a major decrease in computational
complexity. Therefore, we will introduce, in the next two sections, several automated
discretization techniques.

Within a column of a data set (set of feature values), the number of distinct values
can be counted. If this number can be reduced, many data-mining methods, especially
the logic-based methods explained in Chapter 6, will increase the quality of a data

Cut points

Middle age Elderly

150

AdultAdolescentChild

Age 

0

Figure 3.5. Discretization of the age feature.
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analysis. Reducing the number of values by smoothing feature values does not require
a complex algorithm because each feature is smoothed independently of other features
and the process is performed only once, without iterations.

Suppose that a feature has a range of numeric values and that these values can be
ordered from the smallest to the largest using standard greater than and less than opera-
tors. This leads naturally to the concept of placing the values in bins—partitioning into
groups with close values. Typically, these bins have a close number of elements. All
values in a bin will be merged into a single concept represented by a single value—
usually either the mean or median of the bin’s values. The mean or the mode is effective
for a moderate or large number of bins. When the number of bins is small, the closest
boundaries of each bin can be candidates for representatives in a given bin.

For example, if a set of values for a given feature f is {3, 2, 1, 5, 4, 3, 1, 7, 5, 3},
then, after sorting, these values will be organized into an ordered set:

1,1,2,3,3,3,4,5,5,7

Now, it is possible to split the total set of values into three bins with a close num-
ber of elements in each bin:

1,1,2, 3,3,3, 4,5,5,7

BIN1 BIN2 BIN3

In the next step, different representatives can be selected for each bin. If the
smoothing is performed based on bin modes, the new set of values for each bin will
be

1,1,1, 3,3,3, 5,5,5,5

BIN1 BIN2 BIN3

If the smoothing is performed based on mean values, then the new distribution for
reduced set of values will be

1 33,1 33,1 33, 3,3,3, 5 25,5 25,5 25,5 25

BIN1 BIN2 BIN3

and finally, if all the values in a bin are replaced by the closest of the boundary values,
the new set will be

1,1,2, 3,3,3, 4,4,4,7

BIN1 BIN2 BIN3

One of the main problems of this method is to find the best cutoffs for bins. In
theory, a decision about cutoffs cannot be made independently of other features. Still,
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heuristic decisions for every feature independently give good results in many data-
mining applications. The value-reduction problem can be stated as an optimization
problem in the selection of k bins. Given the number of bins k, distribute the values
in the bins to minimize the average distance of a value from its bin mean or median.
The distance is usually measured as the squared distance for a bin mean and as the
absolute distance for a bin median. This algorithm can be computationally very com-
plex, and a modified heuristic procedure is used to produce a near-optimal solution.
The procedure consists of the following steps:

1. Sort all values for a given feature.

2. Assign approximately equal numbers of sorted adjacent values (vi) to each bin,
where the number of bins is given in advance.

3. Move a border element vi from one bin to the next (or previous) when that
reduces the global distance error (ER) (the sum of all distances from each
vi to the mean or mode of its assigned bin).

A simple example of the dynamic bin procedure for feature discretization is given
next. The set of values for a feature f is {5, 1, 8, 2, 2, 9, 2, 1, 8, 6}. Split them into three
bins (k = 3), where the bins will be represented by their modes. The computations in
the first iteration of the algorithm are:

1. Sorted set of values for feature f is {1, 1, 2, 2, 2, 5, 6, 8, 8, 9}.

2. Initial bins (k = 3) are

1,1,2, 2,2,5, 6,8,8,9

BIN1 BIN2 BIN3

3. (i) Modes for the three selected bins are {1, 2, 8}. After initial distribution, the
total error, using absolute distance for modes, is

ER= 0 + 0 + 1 + 0 + 0 + 3 + 2 + 0 + 0 + 1 = 7

4. (iv) After moving two elements from BIN2 into BIN1 and one element from
BIN3 to BIN2 in the next three iterations and obtaining smaller and smaller
ER, the new and final distribution of elements will be

f = 1,1,2,2,2, 5,6, 8,8,9
Final bins BIN1 BIN2 BIN3

The corresponding modes are {2, 5, 8}, and the total minimized error ER is 4.
Any additional move of elements between bins will cause an increase in the ER value.
The final distribution, with medians as representatives, will be the solution for a given
value-reduction problem.

Another, very simple method of smoothing feature values is number approxima-
tion by rounding. Rounding is a natural operation for humans; it is also natural for a
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computer, and it involves very few operations. First, numbers with decimals are con-
verted to integers prior to rounding. After rounding, the number is divided by the same
constant. Formally, these steps are described with the following computations applied
to the feature value X:

1. Integer division Y = int (X/10k)

2. Rounding If (mod (X, 10k) ≥ (10k/2)) then Y = Y + 1

3. Integer multiplication X = Y × 10k

where k is the number of rightmost decimal places to round. For example, the number
1453 is rounded to 1450 if k = 1, rounded to 1500 if k = 2, and rounded to 1000 if k = 3.

Given a number of values for a feature as an input parameter of the procedure, this
simple rounding algorithm can be applied in iterations to reduce these values in large
data sets. First, the feature’s values are sorted so that the number of distinct values
after rounding can be counted. Starting at k = 1, rounding is performed for all values,
and the number of distinct values counted. Parameter k is increased in the next iter-
ation until the number of values in the sorted list is reduced to less than the allowable
maximum, typically in real-world applications between 50 and 100.

3.7 FEATURE DISCRETIZATION: ChiMERGE TECHNIQUE

ChiMerge is one automated discretization algorithm that analyzes the quality of mul-
tiple intervals for a given feature by using χ2 statistics. The algorithm determines simi-
larities between distributions of data in two adjacent intervals based on output
classification of samples. If the conclusion of the χ2 test is that the output class is inde-
pendent of the feature’s intervals, then the intervals should be merged; otherwise, it
indicates that the difference between intervals is statistically significant and no merger
will be performed.

ChiMerge algorithm consists of three basic steps for discretization:

1. Sort the data for the given feature in ascending order.

2. Define initial intervals so that every value of the feature is in a separate
interval.

3. Repeat until no χ2 of any two adjacent intervals is less than threshold value.

After each merger, χ2 tests for the remaining intervals are calculated, and two
adjacent features with the χ2 values are found. If the calculated χ2 is less than
the lowest threshold, merge these intervals. If no merge is possible, and the
number of intervals is greater than the user-defined maximum, increase the
threshold value.

The χ2 test or contingency table test is used in the methodology for determining
the independence of two adjacent intervals. When the data are summarized in a con-
tingency table (its form is represented in Table 3.5), the χ2 test is given by the formula
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χ2 =
2

i= 1

k

j= 1

Aij−Eij
2

Eij

where k is the number of classes; Aij is the number of instances in the ith interval, jth
class; Eij is the expected frequency of Aij, which is computed as (Ri ×Cj)/N; Ri is the
number of instances in the ith interval = Aij, j = 1,…,k; Cj is the number of instances
in the jth class = Aij, i = 1,2; and N is the total number of instances = Ri, i = 1,2

If either Ri or Cj in the contingency table is 0, Eij is set to a small value, for exam-
ple, Eij = 0.1. The reason for this modification is to avoid very small values in the
denominator of the test. The degree of freedom parameter of the χ2 test is for one less
than the number of classes.When more than one feature has to be discretized, a thresh-
old for the maximum number of intervals and a confidence interval for the χ2 test
should be defined separately for each feature. If the number of intervals exceeds
the maximum, the algorithm ChiMerge may continue with a new, reduced value
for confidence.

For a classification problem with two classes (k = 2), where the merging of two
intervals is analyzed, the contingency table for 2 × 2 has the form given in Table 3.5.
A11 represents the number of samples in the first interval belonging to the first class;
A12 is the number of samples in the first interval belonging to the second class; A21 is
the number of samples in the second interval belonging to the first class; and finally
A22 is the number of samples in the second interval belonging to the second class.

We will analyze the ChiMerge algorithm using one relatively simple example,
where the database consists of 12 two-dimensional samples with only one continuous
feature (F) and an output classification feature (K). The two values, 1 and 2, for the
feature K represent the two classes to which the samples belong. The initial data set,
already sorted with respect to the continuous numeric feature F, is given in Table 3.6.

We can start the algorithm of a discretization by selecting the smallest χ2 value for
intervals on our sorted scale for F. We define a middle value in the given data as a
splitting interval point. For the given example, interval points for feature F are 0,
2, 5, 7.5, 8.5, 10, 17, 30, 38, 42, 45.5, and 52.5. Based on this distribution of intervals,
we analyze all adjacent intervals trying to find a minimum for the χ2 test. In our exam-
ple, χ2 was the minimum for intervals [7.5, 8.5] and [8.5, 10]. Both intervals contain
only one sample, and they belong to class K = 1. The initial contingency table is given
in Table 3.7.

TABLE 3.5 . A Contingency Table for 2 × 2 Categorical Data

Class 1 Class 2

Interval-1 A11 A12 R1

Interval-2 A21 A22 R2

C1 C2 N
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Based on the values given in the table, we can calculate the expected values

E11 =
2
2
= 1

E12 =
0
2
≈0 1

E21 =
2
2
= 1and

E22 =
0
2
≈0 1

and the corresponding χ2 test

χ2 =
1 – 1 2

1
+

0 – 0 1 2

0 1
+

1 – 1 2

1
+

0 – 0 1 2

0 1
= 0 2

For the degree of freedom d = 1, and χ2 = 0.2 < 2.706 (the threshold value from
the tables for chi-square distribution for α = 0.1), we can conclude that there are no

TABLE 3.6 . Data on the Sorted Continuous Feature
F with Corresponding Classes K

Sample: F K

1 1 1
2 3 2
3 7 1
4 8 1
5 9 1
6 11 2
7 23 2
8 37 1
9 39 2
10 45 1
11 46 1
12 59 1

TABLE 3.7 . Contingency Table for Intervals [7.5, 8.5] and [8.5, 10]

K = 1 K = 2

Interval [7.5, 8.5] A11 = 1 A12 = 0 R1=1
Interval [8.5, 10] A21 = 1 A22 = 0 R2 = 1

C1 = 2 C2 = 0 N = 2
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significant differences in relative class frequencies and that the selected intervals can
be merged. The merging process will be applied in one iteration only for two adjacent
intervals with a minimum χ2 and, at the same time, with χ2 < threshold value. The
iterative process will continue with the next two adjacent intervals that have the min-
imum χ2. We will just show one additional step, somewhere in the middle of the mer-
ging process, where the newly merged intervals [0, 7.5] and [7.5, 10] are analyzed.
The contingency table is given as Table 3.8, and expected values are

E11 =
12
5

= 2 4

E12 =
3
5
= 0 6

E21 =
8
5
= 1 6

E22 =
2
5
= 0 4

while the χ2 test is

χ2 =
2 – 2 4 2

2 4
+

1 – 0 6 2

0 6
+

2 – 1 6 2

1 6
+

0 – 0 4 2

0 4
= 0 834

Selected intervals should be merged into one because, for the degree of freedom
d = 1, χ2 = 0.834 < 2.706 (for α = 0.1). In this example, with the given threshold value
for χ2, the algorithm will define a final discretization with three intervals: [0, 10], [10,
42], and [42, 60], where 60 is supposed to be the maximum value for the feature F. We
can assign to these intervals coded values 1, 2, and 3 or descriptive linguistic values
low, medium, and high.

Additional merging is not possible because the χ2 test will show significant dif-
ferences between intervals. For example, if we attempt to merge the intervals [0, 10]
and [10, 42]—contingency table given in Table 3.9, the test results are E11 = 2.78,
E12 = 2.22, E21 = 2.22, E22 = 1.78, and χ2 = 2.72 > 2.706; the conclusion is that
significant differences between two intervals exist, and merging is not
recommended.

TABLE 3.8 . Contingency Table for Intervals [0, 7.5] and [7.5, 10]

K = 1 K=2

Interval [0, 7.5] A11 = 2 A12 = 1 R1 = 3
Interval [7.5, 10] A21 = 2 A22 = 0 R2 = 2

C1 = 4 C2 = 1 N = 5
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3.8 CASE REDUCTION

Data mining can be characterized as a secondary data analysis in the sense that data
miners are not involved directly with the data-collection process. That fact may some-
times explain the poor quality of raw data. Seeking the unexpected or the unforeseen,
the data-mining process is not concerned with optimal ways to collect data and to
select the initial set of samples; they are already given, usually in large numbers, with
a high or low quality, and with or without prior knowledge of the problem at hand.

The largest and the most critical dimension in the initial data set is the number of
cases or samples or, in other words, the number of rows in the tabular representation of
data. Case reduction is the most complex task in data reduction. Already, in the pre-
processing phase, we have elements of case reduction through the elimination of out-
liers and, sometimes, samples with missing values. But the main reduction process is
still ahead. If the number of samples in the prepared data set can be managed by the
selected data-mining techniques, then there is no technical or theoretical reason for
case reduction. In real-world data-mining applications, however, with millions of
samples available, that is not the case.

Let us specify two ways in which the sampling process arises in data analysis.
First, sometimes the data set itself is merely a sample from a larger, unknown popu-
lation, and sampling is a part of the data-collection process. Data mining is not inter-
ested in this type of sampling. Second, and more characteristic of data mining, the
initial data set represents an extremely large population, and the analysis of the data
is based only on a subset of samples. After the subset of data is obtained, it is used to
provide some information about entire data set. It is often called estimator and its qual-
ity depends on the elements in the selected subset. A sampling process always causes a
sampling error. Sampling error is inherent and unavoidable for every approach and
every strategy. This error, in general, will decrease when the size of subset increases,
and it will theoretically become nonexistent in the case of a complete data set. Com-
pared to data mining with the entire data set, practical sampling possesses one or more
of the following advantages: reduced cost, greater speed, greater scope, and some-
times even higher accuracy. As yet there is no known method of sampling that ensures
with certainty that the estimates of the subset will be equal to the characteristics of the
entire data set. Relying on sampling nearly always involves the risk of reaching incor-
rect conclusions. Sampling theory and the correct selection of a sampling technique
can assist in reducing that risk, but not eliminating it.

TABLE 3.9 . Contingency Table for Intervals [0, 10] and [10, 42]

K = 1 K = 2

Interval [0, 10.0] A11 = 4 A12 = 1 R1 = 5
Interval [10.0, 42.0] A21 = 1 A22 = 3 R2 = 4

C1 = 5 C2 = 4 N = 9
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There are various strategies for drawing a representative subset of samples
from a data set. The size of a suitable subset is determined by taking into account
the cost of computation, memory requirements, accuracy of the estimator, and
other characteristics of the algorithm and data. Generally, a subset size can be
determined so that the estimates for the entire data set do not differ by more than
a stated margin error in more than δ of the samples. By setting up a probability
inequality P(|e – e0| ≥ ε) ≤ δ, we solve it for the subset of sample size n and for a
given value ε (confidence limit) and δ (where 1 – δ is the confidence level). The
parameter e stands for an estimate from the subset, and it is generally a function of
the subset size n, while e0 stands for the true value obtained from entire data set.
However, e0 is usually unknown too. In this case, a practical way to determine the
required size of the data subset can be done as follows: In the first step we select a
small preliminary subset of samples of size m. Observations made based on this
subset of data will be used to estimate e0. After replacing e0 in the inequality, it is
solved for n. If n ≥m, additional n–m samples are selected in the final subset for
analysis. If n ≤m no more samples are selected, and the preliminary subset of data
is used as the final.

One possible classification of sampling methods in data mining is based on the
scope of application of these methods, and the main classes are:

1. general-purpose sampling methods and

2. sampling methods for specific domains.

In this text we will introduce only some of the techniques that belong to the first
class because they do not require specific knowledge about the application domain
and may be used for a variety of data-mining applications.

Systematic sampling is the simplest sampling technique. For example, if we want
to select 50% of a data set, we could take every other sample in a database. This
approach is adequate for many applications, and it is a part of many data-mining tools.
However, it can also lead to unpredicted problems when there are some regularities in
the database. Therefore, the data miner has to be very careful in applying this sampling
technique.

Random sampling is a method by which every sample from an initial data set
has the same chance of being selected in the subset. The method has two variants:
random sampling without replacement and random sampling with replacement.
Random sampling without replacement is a popular technique in which n distinct
samples are selected from N initial samples in the data set without repetition
(a sample may not occur twice). The advantages of the approach are simplicity
of the algorithm and nonexistence of any bias in a selection. In random sampling
with replacement, the samples are selected from a data set such that all samples
are given an equal chance of being selected, no matter how often they already have
been drawn, i.e. any of the samples may be selected more than once. Random sam-
pling is not a one-time activity in a data-mining process. It is an iterative process,
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resulting in several randomly selected subsets of samples. The two basic forms of a
random sampling process are as follows:

1. Incremental sampling—Mining incrementally larger random subsets of sam-
ples that have many real-world applications helps spot trends in error and com-
plexity. Experience has shown that the performance of the solution may level
off rapidly after some percentage of the available samples has been examined.
A principal approach to case reduction is to perform a data-mining process on
increasingly larger random subsets, to observe the trends in performances, and
to stop when no progress is made. The subsets should take big increments in
data sets, so that the expectation of improving performance with more data is
reasonable. A typical pattern of incremental subsets might be 10, 20, 33, 50,
67, and 100%. These percentages are reasonable but can be adjusted based on
knowledge of the application and the number of samples in the data set. The
smallest subset should be substantial: typically, no fewer than 1000 samples.

2. Average sampling—When the solutions found from many random subsets of
samples of cases are averaged or voted, the combined solution can do as well
or even better than the single solution found on the full collection of data. The
price of this approach is the repetitive process of data mining on smaller sets of
samples and, additionally, a heuristic definition of criteria to compare the sev-
eral solutions of different subsets of data. Typically, the process of voting
between solutions is applied for classification problems (if three solutions
are class1 and one solution is class2, then the final voted solution is class1)
and averaging for regression problems (if one solution is 6, the second is
6.5, and the third 6.7, then the final averaged solution is 6.4). When the
new sample is to be presented and analyzed by this methodology, an answer
should be given by each solution, and a final result will be obtained by com-
paring and integrating these solutions with the proposed heuristics.

Two additional techniques, stratified sampling and inverse sampling, may be con-
venient for some data-mining applications. Stratified sampling is a technique in which
the entire data set is split into nonoverlapping subsets or strata, and sampling is per-
formed for each different strata independently of another. The combination of all the
small subsets from different strata forms the final, total subset of data samples for anal-
ysis. This technique is used when the strata are relatively homogeneous and the variance
of the overall estimate is smaller than that arising from a simple random sample. Inverse
sampling is usedwhen a feature in a data set occurs with rare frequency, and even a large
subset of samples may not give enough information to estimate a feature value. In that
case, sampling is dynamic; it starts with the small subset, and it continues until some
conditions about the required number of feature values are satisfied.

For some specialized types of problems, alternative techniques can be helpful in
reducing the number of cases. For example, for time-dependent data, the number of
samples is determined by the frequency of sampling. The sampling period is specified
based on knowledge of the application. If the sampling period is too short, most sam-
ples are repetitive and few changes occur from case to case. For some applications,
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increasing the sampling period causes no harm and can even be beneficial in obtaining
a good data-mining solution. Therefore, for time-series data the windows for sampling
and measuring features should be optimized, and that requires additional preparation
and experimentation with available data.

3.9 REVIEW QUESTIONS AND PROBLEMS

1. Explain what we gain and what we lose with dimensionality reduction in large data
sets in the preprocessing phase of data mining.

2. Use one typical application of data mining in a retail industry to explain monoto-
nicity and interruptability of data-reduction algorithms.

3. Given the data set X with three input features and one output feature representing
the classification of samples:

X: I1 I2 I3 O

2.5 1.6 5.9 0
7.2 4.3 2.1 1
3.4 5.8 1.6 1
5.6 3.6 6.8 0
4.8 7.2 3.1 1
8.1 4.9 8.3 0
6.3 4.8 2.4 1

(a) Rank the features using a comparison of means and variances.
(b) Rank the features using Relief algorithm. Use all samples for the algorithm (m = 7).

4. Given four-dimensional samples where the first two dimensions are numeric and
last two are categorical:

X1 X2 X3 X4

2.7 3.4 1 A
3.1 6.2 2 A
4.5 2.8 1 B
5.3 5.8 2 B
6.6 3.1 1 A
5.0 4.1 2 B

(a) Apply a method for unsupervised feature selection based on entropy measure to reduce
one dimension from the given data set.

(b) Apply Relief algorithm under the assumption that X4 is output (classification) feature.
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5. (a) Perform bin-based value reduction with the best cutoffs for the following:
(i) The feature I3 in problem #3 using mean values as representatives for two bins.
(ii) The feature X2 in problem #4 using the closest boundaries for two bin

representatives
(b) Discuss the possibility of applying approximation by rounding to reduce the values of

numeric attributes in problems #3 and #4.

6. Apply the ChiMerge technique to reduce the number of values for numeric attri-
butes in problem #3.

(a) Reduce the number of numeric values for feature I1 and find the final, reduced number
of intervals.

(b) Reduce the number of numeric values for feature I2 and find the final, reduced number
of intervals.

(c) Reduce the number of numeric values for feature I3 and find the final, reduced number
of intervals.

(d) Discuss the results and benefits of dimensionality reduction obtained in (a), (b),
and (c).

7. Explain the differences between averaged and voted combined solutions when
random samples are used to reduce dimensionality of a large data set.

8. How can the incremental sample approach and the average sample approach be
combined to reduce cases in large data sets?

9. Develop a software tool for feature ranking based on means and variances. Input
data set is represented in the form of flat file with several features.

10. Develop a software tool for ranking features using entropy measure. The input
data set is represented in the form of a flat file with several features.

11. Implement the ChiMerge algorithm for automated discretization of selected
features in a flat input file.

12. Given the data set: F = {4, 2, 1, 6, 4, 3, 1, 7, 2, 2}. Apply two iterations of bin
method for value reduction with best cutoffs. Initial number of bins is 3. What are
the final medians of bins, and what is the total minimized error?

13. Assume you have 100 values that are all different, and use equal width discret-
ization with 10 bins.

(a) What is the largest number of records that could appear in one bin?
(b) What is the smallest number of records that could appear in one bin?
(c) If you use equal height discretization with 10 bins, what is largest number of records

that can appear in one bin?
(d) If you use equal height discretization with 10 bins, what is smallest number of records

that can appear in one bin?
(e) Now assume that the maximum value frequency is 20. What is the largest number of

records that could appear in one bin with equal width discretization (10 bins)?
(f) What about with equal height discretization (10 bins)?
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14. The text shows a set of eight letters: OXYMORON.

(a) What is the entropy in bits of the text?
(b) What is maximum entropy for the text with eight letters?
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cessing, techniques for data streams have a long road ahead of them, despite online
learning is growing in importance thanks to the development of Internet and tech-
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4

LEARNING FROM DATA

Chapter Objectives

• Analyze the general model of inductive learning in observational
environments.

• Explain how the learning machine selects an approximating function from the
set of functions it supports.

• Introduce the concepts of risk functional for regression and classification
problems.

• Identify the basic concepts in statistical learning theory (SLT) and discuss the
differences between inductive principles, empirical risk minimization (ERM),
and structural risk minimization (SRM).

• Discuss the practical aspects of the Vapnik–Chervonenkis (VC) dimension
concept as an optimal structure for inductive-learning tasks.

• Compare different inductive-learning tasks using graphical interpretation of
approximating functions in a 2D space.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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• Explain basic principles of support vector machines (SVMs) and semi-
supervised support vector machines (S3VM).

• Specify k-nearest neighbor classifier: algorithm and applications.

• Introduce methods for validation of inductive-learning results.

• Introduce SMOTE algorithm for unbalanced data, and compare methods of
evaluation for balanced and unbalanced data.

Many recent approaches to developing models from data have been inspired by the
learning capabilities of biological systems and, in particular, those of humans. In fact,
biological systems learn to cope with the unknown statistical nature of the environ-
ment in a data-driven fashion. Babies are not aware of the laws of mechanics when
they learn how to walk, and most adults drive a car without knowledge of the under-
lying laws of physics. Humans as well as animals also have superior pattern-
recognition capabilities for such tasks as identifying faces, voices, or smells. People
are not born with such capabilities, but learn them through data-driven interaction with
the environment.

It is possible to relate the problem of learning from data samples to the general
notion of inference in classical philosophy. Every predictive-learning process consists
of two main phases:

1. Learning or estimating unknown dependencies in the system from a given set
of samples, and

2. Using estimated dependencies to predict new outputs for future input values of
the system.

These two steps correspond to the two classical types of inference known as
induction (progressing from particular cases—training data—to a general dependency
or model) and deduction (progressing from a general model and given input values to
particular cases of output values). These two phases are shown graphically in
Figure 4.1.

A priori knowledge

(assumptions)

Induction
Deduction

Transduction
Training data Predicted output

Estimated 

Figure 4.1. Types of inference: induction, deduction, and transduction.
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A unique estimated model implies that a learned function can be applied every-
where, i.e., for all possible input values. Such global-function estimation can be over-
kill, because many practical problems require one to deduce estimated outputs only
for a few given input values. In that case, a better approach may be to estimate the
outputs of the unknown function for several points of interest directly from the train-
ing data without building a global model. Such an approach is called transductive
inference in which a local estimation is more important than a global one. An impor-
tant application of the transductive approach is a process of mining association rules,
which has been described in detail in Chapter 8. It is very important to mention that the
standard formalization of machine learning does not apply to this type of inference.

The process of inductive learning and estimating the model may be described,
formalized, and implemented using different learning methods. A learning method
is an algorithm (usually implemented in software) that estimates an unknownmapping
(dependency) between a system’s inputs and outputs from the available data set,
namely, from known samples. Once such a dependency has been accurately esti-
mated, it can be used to predict the future outputs of the system from the known input
values. Learning from data has been traditionally explored in such diverse fields as
statistics, engineering, and computer science. Formalization of the learning process
and a precise, mathematically correct description of different inductive-learning meth-
ods were the primary tasks of disciplines such as statistical learning theory and arti-
ficial intelligence. In this chapter, we will introduce the basics of these theoretical
fundamentals for inductive learning.

4.1 LEARNING MACHINE

Machine learning, as a combination of artificial intelligence and statistics, has proven
to be a fruitful area of research, spawning a number of different problems and algo-
rithms for their solution. These algorithms vary in their goals, in the available training
data sets, and in the learning strategies and representation of data. All of these algo-
rithms, however, learn by searching through an n-dimensional space of a given data
set to find an acceptable generalization. One of the most fundamental machine-
learning tasks is inductive machine learning where a generalization is obtained from
a set of samples, and it is formalized using different techniques and models.

We can define inductive learning as the process of estimating an unknown input–
output dependency or structure of a system using limited number of observations or
measurements of inputs and outputs of the system. In the theory of inductive learning,
all data in a learning process are organized, and for each instance of input–output
pairs, we use a simple term known as a sample. The general learning scenario involves
three components, represented in Figure 4.2:

1. A generator of random input vectors X,

2. A system that returns an output Y for a given input vector X, and
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3. A learning machine, which estimates an unknown (input X, output Y’) map-
ping of the system from the observed (input X, output Y) samples.

This formulation is very general and describes many practical inductive-learning
problems such as interpolation, regression, classification, clustering, and density esti-
mation. The generator produces a random vector X, which is drawn independently
from any distribution. In statistical terminology, this situation is called an observa-
tional setting. It differs from the designed-experiment setting, which involves creating
a deterministic sampling scheme, optimal for a specific analysis according to exper-
imental design theory. The learning machine has no control over which input values
were supplied to the system, and therefore, we are talking about an observational
approach in inductive machine-learning systems.

The second component of the inductive-learning model is the system that pro-
duces an output value Y for every input vector X according to the conditional prob-
ability p(Y/X), which is unknown. Note that this description includes the specific case
of a deterministic system where Y = f(X). Real-world systems rarely have truly random
outputs; however, they often have unmeasured inputs. Statistically, the effects of these
unobserved inputs on the output of the system can be characterized as random and
represented with a probability distribution.

An inductive-learning machine tries to form generalizations from particular true
facts, which we call the training data set. These generalizations are formalized as a
set of functions that approximate a system’s behavior. This is an inherently difficult
problem, and its solution requires a priori knowledge in addition to data. All inductive-
learning methods use a priori knowledge in the form of the selected class of approxi-
mating functions of a learning machine. In the most general case, the learning machine
is capable of implementing a set of functions f(X, w), w W, where X is an input, w is a
parameter of the function, andW is a set of abstract parameters used only to index the set
of functions. In this formulation, the set of functions implemented by the learning
machine can be any set of functions. Ideally, the choice of a set of approximating
functions reflects a priori knowledge about the system and its unknown dependencies.
However, in practice, because of the complex and often informal nature of a priori
knowledge, specifying such approximating functions may be, in many cases, difficult
or impossible.

Generator

of inputs

Learning

machine

System Y

YʹX

Figure 4.2. A learning machine uses observations of the system to form an approximation

of its output.
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To explain the selection of approximating functions, we can use a graphical inter-
pretation of the inductive-learning process. The task of inductive inference is this:
given a collection of samples (xi, f(xi)), return a function h(x) that approximates
f(x). The function h(x) is often called a hypothesis. Figure 4.3 shows a simple example
of this task, where the points in two-dimensional (2D) are given in Figure 4.3a, and it
is necessary to find “the best” function through these points. The true f(x) is unknown,
so there are many choices for h(x). Without more knowledge, we have no way to pre-
fer one of three suggested solutions (Figure 4.3b, c, or d). Because there are almost
always a large number of possible consistent hypotheses, all learning algorithms
search through the solution space based on given criteria. For example, the criterion
may be a linear approximating function that has a minimum distance from all given
data points. This a priori knowledge will restrict the search space to the functions in
the form given in Figure 4.3b.

There is also an important distinction between the two types of approximating
functions we usually use in an inductive-learning process. Their parameters could
be linear or nonlinear. Note that the notion of linearity is with respect to parameters
rather than input variables. For example, polynomial regression in the form

Y =w1x
n +w2x

n – 1+ +w0

is a linear method, because the parameters wi in the function are linear (even if the
function by itself is nonlinear). We will see later that some learning methods such
as multilayer artificial neural networks provide an example of nonlinear parameteri-
zation, since the output of an approximating function depends nonlinearly on para-
meters. A typical factor in these functions is e–ax, where a is a parameter and x is
the input value. Selecting the approximating functions f(X, w) and estimating the
values of parameters w are typical steps for every inductive-learning method.

Before further formalization of a learning process, it is necessary to make a clear
distinction between two concepts that are highly connected with a learning process.
Let us discuss the differences between statistical dependency and causality. The sta-
tistical dependency between input X and output Y is expressed with the approximating
functions of the learning method. The main point is that causality cannot be inferred
from data analysis alone and concluded with some inductive learned model using
input–output approximating functions, Y = f(X, w); instead, it must be assumed or
demonstrated by arguments outside the results of inductive-learning analysis.

(a) (b) (c) (d)

Figure 4.3. Three hypotheses for a given data set. (a) Data set. (b) Linear approximation.

(c) Highly nonlinear approximation. (d) Quadratic approximation.

101LEARNING MACHINE



For example, it is well known that people in Florida are on average older than in the
rest of the United States. This observation may be supported by inductive-learning
dependencies, but it does not imply, however, that the climate in Florida causes people
to live longer. The cause is totally different; people just move there when they retire
and that is possibly the cause, and maybe not the only one, of people being older in
Florida than elsewhere. Similar misinterpretation could be based on the data analysis
of life expectancy for a married versus a single man. Statistics show that the married
man lives longer than the single man. But do not hurry with sensational causality and
conclusions: that marriage is good for one’s health and increases life expectancy. It
can be argued that males with physical problems and/or socially deviant patterns
of behavior are less likely to get married, and this could be one of possible explana-
tions whymarried men live longer. Unobservable factors such as a person’s health and
social behavior are more likely the cause of changed life expectancy, and not the
observed variable, marriage status. These illustrations should lead us to understand
that inductive-learning processes build the model of dependencies but they should
not automatically be interpreted as causality relations. Only experts in the domain
where the data are collected may suggest additional deeper semantics of discovered
dependencies.

Let us return again to the learning machine and its task of system modeling. The
problem encountered by the learning machine is to select a function from the set of
functions this machine supports, which best approximates the system’s responses. The
learning machine is limited to observing a finite number of samples n in order to make
this selection. The finite number of samples, which we call a training data set, is
denoted by (Xi, yi), where i = 1,…,n. The quality of an approximation produced by
the learning machine is measured by the loss function L(y, f(X, w)) where

• y is the output produced by the system,

• X is a set of inputs,

• f(X, w) is the output produced by the learning machine for a selected approx-
imating function, and

• w is the set of parameters in the approximating functions.

Lmeasures the difference between the outputs produced by the system yi and that
produced by the learning machine f(Xi,w) for every input point Xi. By convention, the
loss function is nonnegative so that large positive values correspond to poor approx-
imation and small positive values close to zero show a good approximation. The
expected value of the loss is called the risk functional R(w):

R w = L y, f X,w p X,y dX dy

where L(y, f(X, w)) is a loss function and p(X, y) is a probability distribution of sam-
ples. The R(w) value, for a selected approximating functions, is dependent only on a
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set of parameters w. Inductive learning can be now defined as the process of estimat-
ing the function f(X,wopt), which minimizes the risk functional R(w) over the set of
functions supported by the learning machine, using only the training data set and
not knowing the probability distribution p(X, y). With finite data, we cannot expect
to find f(X, wopt) exactly, so we denote f(X, w∗

opt) as the estimate of parameters w∗
opt

of the optimal solution wopt obtained with finite training data using some learning
procedure.

For common learning problems such as classification or regression, the nature of
the loss function and the interpretation of risk functional are different. In a two-class
classification problem, where the output of the system takes on only two symbolic
values, y = {0, 1}, corresponding to the two classes, a commonly used loss function
measures the classification error:

L y, f X,w =
0 if y = f X,w

1 if y f X,w

Using this loss function, the risk functional quantifies the probability of
misclassification. Inductive learning becomes a problem of finding the classifier
function f(X, w), which minimizes the probability of misclassification using only
the training data set.

Regression is a process of estimating a real-value function based on a finite data
set of noisy samples. A common loss function for regression is the squared error
measure:

L y, f X,w = y – f X,w 2

The corresponding risk functional measures the accuracy of the learning
machine’s predictions of the system output. Maximum accuracy will be obtained
by minimizing the risk functional because, in that case, the approximating function
will describe the best set of given samples. Classification and regression are only
two of many typical learning tasks. For the other data-mining tasks, different loss
functions may be selected, and they are supported with different interpretations of
a risk functional.

What is a learning procedure? Or how should a learning machine use training
data? The answer is given by the concept known as inductive principle. An inductive
principle is a general prescription for obtaining an estimate f(X,wopt

∗) in the class of
approximating functions from the available finite training data. An inductive principle
tells us what to do with the data, whereas the learning method specifies how to obtain
an estimate. Hence a learning method or learning algorithm is a constructive imple-
mentation of an inductive principle. For a given inductive principle, there are many
learning methods corresponding to a different set of functions of a learning machine.
The important issue here is to choose the candidate models (approximating functions
of a learning machine) of the right complexity to describe the training data.
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The mathematical formulation and formalization of the learning problem
explained in this section may give the unintended impression that learning algorithms
do not require human intervention, but this is clearly not the case. Even though avail-
able literature is concerned with the formal description of learning methods, there is an
equally important, informal part of any practical learning system. This part involves
such practical and human-oriented issues as selection of the input and output vari-
ables, data encoding and representation, and incorporating a priori domain knowledge
into the design of a learning system. In many cases, the user also has some influence
over the generator in terms of the sampling rate or distribution. The user very often
selects the most suitable set of functions for the learning machine based on his/her
knowledge of the system. This part is often more critical for an overall success than
the design of the learning machine itself. Therefore, all formalizations in a learning
theory are useful only if we keep in mind that inductive learning is a process in which
there is some overlap between activities that can be formalized and others that are not a
part of formalization.

4.2 STATISTICAL LEARNING THEORY

Statistical learning theory (SLT) is relatively new, but it is perhaps one of the best
currently available formalized theories for finite-sample inductive learning. It is also
known as the Vapnik–Chervonenkis (VC) theory. It rigorously defines all the relevant
concepts for inductive learning and provides mathematical proofs for most inductive-
learning results. In contrast, other approaches such as neural networks, Bayesian infer-
ence, and decision rules are more engineering oriented, with an emphasis on practical
implementation without needing strong theoretical proofs and formalizations.

STL effectively describes statistical estimation with small samples. It explicitly
takes into account the sample size and provides quantitative description of the trade-
off between the complexity of the model and the available information. The theory
includes, as a special case, classical statistical methods developed for large samples.
Understanding SLT is necessary for designing sound constructive methods of inductive
learning. Many nonlinear learning procedures recently developed in neural networks,
artificial intelligence, data mining, and statistics can be understood and interpreted in
terms of general SLT principles. Even though SLT is quite general, it was originally
developed for pattern recognition or classification problems. Therefore, the widely
known practical applications of the theory are mainly for classification tasks. There
is growing empirical evidence, however, of successful application of the theory to other
types of learning problems.

The goal of inductive learning is to estimate unknown dependencies in a class of
approximating functions using available data. The optimal estimate corresponds to the
minimum expected risk functional that includes general distribution of data. This dis-
tribution is unknown, and the only available information about distribution is the finite
training sample. Therefore, the only possibility is to substitute an unknown true risk
functional with its approximation given as empirical risk, which is computable based
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on the available data set. This approach is called empirical risk minimization (ERM),
and it represents the basic inductive principle. Using the ERM inductive principle, one
seeks to find a solution f(X, w∗) that minimizes the empirical risk expressed through
the training error as a substitute for the unknown true risk, which is a measure of the
true error on the entire population. Depending on the chosen loss function and the
chosen class of approximating functions, the ERM inductive principle can be imple-
mented by a variety of methods defined in statistics, neural networks, automatic learn-
ing, etc. The ERM inductive principle is typically used in a learning setting where the
model is given or approximated first and then its parameters are estimated from the
data. This approach works well only when the number of training samples is large
relative to the prespecified model complexity, expressed through the number of free
parameters.

A general property necessary for any inductive principle including ERM is
asymptotic consistency, which is a requirement that the estimated model converge
to the true model or the best possible estimation, as the number of training samples
grows large. An important objective of the STL is to formulate the conditions under
which the ERM principle is consistent. The notion of consistency is illustrated in
Figure 4.4. When the number of samples increases, empirical risk also increases,
while true, expected risk decreases. Both risks approach the common minimum value
of the risk functional: min R(w) over the set of approximating functions and for an
extra large number of samples. If we take the classification problem as an example
of inductive learning, the empirical risk corresponds to the probability of misclassi-
fication for the training data, and the expected risk is the probability of misclassifica-
tion averaged over a large amount of data not included into a training set and with
unknown distribution.

Even though it can be intuitively expected that for n ∞ the empirical risk con-
verges to the true risk, this by itself does not imply the consistency property, which
states that minimizing one risk for a given data set will also minimize the other risk. To
ensure that the consistency of the ERM method is always valid and does not depend
on the properties of the approximating functions, it is necessary that consistency

Risk

functional True (expected) risk

min R(w)

Empirical risk

Number of samples

Figure 4.4. Asymptotic consistency of the ERM.
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requirement should hold for all approximating functions. This requirement is known
as nontrivial consistency. From a practical point of view, conditions for consistency
are at the same time prerequisites for a good generalization obtained with the realized
model. Therefore, it is desirable to formulate conditions for convergence of risk func-
tions in terms of the general properties of a set of the approximating functions.

Let us define the concept of a growth function G(n) as a function that is either
linear or bounded by a logarithmic function of the number of samples n. Typical
behavior of the growth function G(n) is given in Figure 4.5. Every approximating
function that is in the form of the growth function G(n) will have a consistency prop-
erty and potential for a good generalization under inductive learning, because empir-
ical and true risk functions converge. The most important characteristic of the growth
functionG(n) is the concept of VC dimension. At a point n = hwhere the growth starts
to slow down, it is a characteristic of a set of functions. If h is finite, then the G(n)
function does not grow linearly for enough large training data sets, and it is bounded
by a logarithmic function. If G(n) is only linear, then h ∞, and no valid general-
ization through selected approximating functions is possible. The finiteness of h pro-
vides necessary and sufficient conditions for the quick convergence of risk functions,
consistency of ERM, and potentially good generalization in the inductive-learning
process. These requirements place analytic constraints on the ability of the learned
model to generalize, expressed through the empirical risk. All theoretical results in
the STL use the VC dimension defined on the set of loss functions. But it has also
been proved that the VC dimension for theoretical loss functions is equal to the
VC dimension for approximating functions in typical inductive-learning tasks such
as classification or regression.

The ERM inductive principle is intended for relatively large data sets, namely,
when the ratio n/h is large and the empirical risk converges close to the true risk. How-
ever, if n/h is small, namely, when the ratio n/h is less than 20, then a modification of
the ERM principle is necessary. The inductive principle called structural risk minimi-
zation (SRM) provides a formal mechanism for choosing a model with optimal com-
plexity in finite and small data sets. According to SRM, solving a learning problem
with a finite data set requires a priori specification of a structure on a set of approx-
imating functions. For example, a set of functions S1 is a subset of S2, S2 is subset of

G(n)

h ( ln(n/h) + 1)

n ln2

nh

Figure 4.5. Behavior of the growth function G(n).
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S3, etc. The set of approximating functions S1 has the lowest complexity, but the com-
plexity increases with each new superset S2, S3,…,Sk. A simplified graphical represen-
tation of the structure is given in Figure 4.6.

For a given data set, the optimal model estimation is performed through
two steps:

1. Selecting an element of a structure having optimal complexity, and

2. Estimating the model based on the set of approximating functions defined in a
selected element of the structure.

Through these two steps, the SRM provides a quantitative characterization of the
trade-off between the complexity of approximating functions and the quality of fitting
the training data. As the complexity increases (increase of the index k for Sk), the min-
imum empirical risk decreases, and the quality of fitting the data improves. But esti-
mated true risk, measured through the additional testing data set, has a convex form,
and in one moment it moves in a direction opposite that of the empirical risk, as shown
in Figure 4.7. The SRM chooses an optimal element of the structure that yields the
minimal guaranteed bound on the true risk.

In practice, to implement the SRM approach, it is necessary to be able to:

1. calculate or estimate the VC dimension for any element Sk of the structure and

2. minimize the empirical risk for each element of the structure.

For most practical inductive-learning methods that use nonlinear approximating
functions, finding the VC dimension analytically is difficult, as is the nonlinear opti-
mization of empirical risk. Therefore, rigorous application of the SRM principle can-
not only be difficult but, in many cases, impossible with nonlinear approximations.
This does not, however, imply that the STL is impractical. There are various heuristic
procedures that are often used to implement SRM implicitly. Examples of such heur-
istics include early stopping rules and weight initialization, which are often used in
artificial neural networks. These heuristics will be explained together with different
learning methods in the following chapters. The choice of an SRM-optimization strat-
egy suitable for a given learning problem depends on the type of approximating

……….  S1 S2
Sk

Figure 4.6. Structure of a set of approximating functions.
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functions supported by the learning machine. There are three commonly used optimi-
zation approaches:

1. Stochastic approximation (or gradient descent). Given an initial estimate of
the values for the approximating functions of parameter w, the optimal param-
eter values are found by repeatedly updating them. In each step, while com-
puting the gradient of the risk function, the updated values of the parameters
cause a small movement in the direction of the steepest descent along the risk
(error) function.

2. Iterative methods. Parameter values w are estimated iteratively so that at each
iteration the value of the empirical risk is decreased. In contrast to stochastic
approximation, iterative methods do not use gradient estimates; instead they
rely on a particular form of approximating functions with a special iterative
parameter.

3. Greedy optimization. The greedy method is used when the set of approximat-
ing functions is a linear combination of some basic functions. Initially, only
the first term of the approximating functions is used, and the corresponding
parameters are optimized. Optimization corresponds to minimizing the differ-
ences between the training data set and the estimated model. This term is then
held fixed, and the next term is optimized. The optimization process is
repeated until values are found for all parameters w and for all terms in the
approximating functions.

These typical optimization approaches and also other more specific techniques
have one or more of the following problems:

1. Sensitivity to initial conditions. The final solution is very sensitive to the initial
values of the approximation function parameters.

Underfitting Overfitting

Error

Model

complexity

True risk

Empirical risk

Optimal structure—

VC dimension

Figure 4.7. Empirical and true risk as a function of h (model complexity).

108 LEARNING FROM DATA



2. Sensitivity to stopping rules. Nonlinear approximating functions often have
regions that are very flat, where some optimization algorithms can become
“stuck” for a long time (for a large number of iterations). With poorly designed
stopping rules, these regions can be interpreted falsely as local minima by the
optimization algorithm.

3. Sensitivity to multiple local minima. Nonlinear functions may have many local
minima, and optimization methods can find, at best, one of them without try-
ing to reach global minimum. Various heuristics can be used to explore the
solution space and move from a local solution toward a globally optimal
solution.

Working with finite data sets, SLT reaches several conclusions that are important
guidelines in a practical implementation of data-mining techniques. Let us briefly
explain two of these useful principles. First, when solving a problem of inductive
learning based on finite information, one should keep in mind the following general
commonsense principle: Do not attempt to solve a specified problem by indirectly
solving a harder general problem as an intermediate step. We are interested in solving
a specific task, and we should solve it directly. Following STL results, we stress that
for estimation with finite samples, it is always better to solve a specific learning prob-
lem rather than attempt a general one. Conceptually, this means that posing the prob-
lem directly will then require fewer samples for a specified level of accuracy in the
solution. This point, while obvious, has not been clearly stated in most of the classical
textbooks on data analysis.

Second, there is a general belief that for inductive-learning methods with finite
data sets, the best performance is provided by a model of optimal complexity, where
the optimization is based on the general philosophical principle known as Occam’s
razor. According to this principle, limiting the model complexity is more important
than using true assumptions with all details. We should seek simpler models over
complex ones and optimize the trade-off between model complexity and the accuracy
of the model’s description and fit to the training data set. Models that are too complex
and fit the training data very well or too simple and fit the data poorly are both not
good models because they often do not predict future data very well. Model complex-
ity is usually controlled in accordance with Occam’s razor principle by a priori
knowledge.

Summarizing SLT, in order to form a unique model of a system from finite data,
any inductive-learning process requires the following:

1. A wide, flexible set of approximating functions f(X, w), w W, that can be lin-
ear or nonlinear in parameters w.

2. A priori knowledge (or assumptions) used to impose constraints on a potential
solution. Usually such a priori knowledge orders the functions, explicitly or
implicitly, according to some measure of their flexibility to fit the data. Ide-
ally, the choice of a set of approximating functions reflects a priori knowledge
about a system and its unknown dependencies.
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3. An inductive principle, or method of inference, specifying what has to be
done. It is a general prescription for combining a priori knowledge with avail-
able training data in order to produce an estimate of an unknown dependency.

4. A learning method, namely, a constructive, computational implementation of
an inductive principle for a given class of approximating functions. There is a
general belief that for learning methods with finite samples, the best perfor-
mance is provided by a model of optimum complexity, which is selected based
on the general principle known as Occam’s razor. According to this principle,
we should seek simpler models over complex ones and optimize the model
that is the trade-off between model complexity and the accuracy of fit to
the training data.

4.3 TYPES OF LEARNING METHODS

There are two common types of the inductive-learning methods known:

1. Supervised learning (or learning with a teacher), and

2. Unsupervised learning (or learning without a teacher).

Supervised learning is used to estimate an unknown dependency from known
input–output samples. Classification and regression are common tasks supported
by this type of inductive learning. Supervised learning assumes the existence of a
teacher—fitness function or some other external method of estimating the proposed
model. The term “supervised” denotes that the output values for training samples are
known (i.e., provided by a “teacher”).

Figure 4.8a shows a block diagram that illustrates this form of learning. In con-
ceptual terms, we may think of the teacher as having knowledge of the environment,

Environment

(a) (b)

X Teacher

y
Desired

responseX f (X,w)

y – f (X,w)

Learning

system

EnvironmentLearning

system Actual

response X

Error signal

Figure 4.8. Two main types of inductive learning. (a) Supervised learning. (b) Unsupervised

learning.
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with that knowledge being represented by a set of input–output examples. The
environment with its characteristics and model is, however, unknown to the learn-
ing system. The parameters of the learning system are adjusted under the combined
influence of the training samples and the error signal. The error signal is defined as
the difference between the desired response and the actual response of the learning
system. Knowledge of the environment available to the teacher is transferred to the
learning system through the training samples, which adjust the parameters of the
learning system. It is a closed-loop feedback system, but the unknown environment
is not in the loop. As a performance measure for the system, we may think in terms
of the mean squared error or the sum of squared errors over the training samples.
This function may be visualized as a multidimensional error surface, with the free
parameters of the learning system as coordinates. Any learning operation under
supervision is represented as a movement of a point on the error surface. For the
system to improve the performance over time and therefore learn from the teacher,
the operating point on an error surface has to move down successively toward a
minimum of the surface. The minimum point may be a local minimum or a global
minimum. The basic characteristics of optimization methods such as stochastic
approximation, iterative approach, and greedy optimization have been given in
the previous section. An adequate set of input–output samples will move the oper-
ating point toward the minimum, and a supervised learning system will be able to
perform such tasks as pattern classification and function approximation. Different
techniques support this kind of learning, and some of them such as logistic regres-
sion, multilayer perceptron, and decision rules and trees will be explained with
more details in Chapters 5–7.

Under the unsupervised learning scheme, only samples with input values are
given to a learning system, and there is no notion of the output during the learning
process. Unsupervised learning eliminates the teacher and requires that the learner
forms and evaluates the model on its own. The goal of unsupervised learning is to
discover “natural” structure in the input data. In biological systems, perception is a
task learned via unsupervised techniques.

The simplified schema of unsupervised or self-organized learning, without an
external teacher to oversee the learning process, is indicated in Figure 4.8b. The
emphasis in this learning process is on a task-independent measure of the quality
of representation that is learned by the system. The free parameters w of the learning
system are optimized with respect to that measure. Once the system has become tuned
to the regularities of the input data, it develops the ability to form internal representa-
tions for encoding features of the input examples. This representation can be global,
applicable to the entire input data set. These results are obtained with methodologies
such as cluster analysis or some artificial neural networks, explained in Chapters 7 and
9. On the other hand, learned representation for some learning tasks can be only local,
applicable to the specific subsets of data from the environment; association rules are a
typical example of an appropriate methodology. It has been explained with more
details in Chapter 10.
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4.4 COMMON LEARNING TASKS

The generic inductive-learning problem can be subdivided into several common
learning tasks. The fundamentals of inductive learning, along with the classification
of common learning tasks, have already been given in the introductory chapter of this
book. Here, we would like to analyze these tasks in detail, keeping in mind that for
each of these tasks, the nature of the loss function and the output differ. However, the
goal of minimizing the risk based on training data is common to all tasks. We believe
that visualization of these tasks will give the reader the best feeling about the com-
plexity of the learning problem and the techniques required for its solution.

To obtain a graphical interpretation of the learning tasks, we start with the for-
malization and representation of data samples that are the “infrastructure” of the learn-
ing process. Every sample used in data mining represents one entity described with
several attribute–value pairs. That is one row in a tabular representation of a training
data set, and it can be visualized as a point in an n-dimensional space, where n is the
number of attributes (dimensions) for a given sample. This graphical interpretation of
samples is illustrated in Figure 4.9, where a student with the name John represents a
point in a four-dimensional space that has four additional attributes.

When we have a basic idea of the representation of each sample, the training data
set can be interpreted as a set of points in the n-dimensional space. Visualization of
data and a learning process is difficult for large number of dimensions. Therefore, we
will explain and illustrate the common learning tasks in a 2D space, supposing that the
basic principles are the same for a higher number of dimensions. Of course, this
approach is an important simplification that we have to take care of, especially keep-
ing in mind all the characteristics of large multidimensional data sets, explained earlier
under the topic “the curse of dimensionality.”

Let us start with the first and most common task in inductive learning: classifi-
cation. This is a learning function that classifies a data item into one of several pre-
defined classes. The initial training data set is given in Figure 4.10a. Samples belong

Student name

John M 1982

Major

CS 64

John

Sex

Sex

Year of name

Year of birth

Major Credits

Credits

Figure 4.9. Data samples = points in an n-dimensional space.
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to different classes and therefore we use different graphical symbols to visualize each
class. The final result of classification in a 2D space is the curve shown in
Figure 4.10b, which best separates samples into two classes. Using this function,
every new sample, even without a known output (the class to which it belongs),
may be classified correctly. Similarly, when the problem is specified with more than
two classes, more complex functions are a result of a classification process. For an
n-dimensional space of samples, the complexity of the solution increases exponen-
tially, and the classification function is represented in the form of hypersurfaces in
the given space.

The second learning task is regression. The result of the learning process in this
case is a learning function, which maps a data item to a real-value prediction variable.
The initial training data set is given in Figure 4.11a. The regression function in
Figure 4.11b was generated based on some predefined criteria built inside a data-
mining technique. Based on this function, it is possible to estimate the value of a pre-
diction variable for each new sample. If the regression process is performed in the time
domain, specific subtypes of data and inductive-learning techniques can be defined.

Clustering is the most common unsupervised learning task. It is a descriptive task
in which one seeks to identify a finite set of categories or clusters to describe the data.
Figure 4.12a shows the initial data, and they are grouped into clusters, as shown in
Figure 4.12b, using one of the standard distance measures for samples as points in
an n-dimensional space. All clusters are described with some general characteristics,
and the final solutions differ for different clustering techniques. Based on results of the
clustering process, each new sample may be assigned to one of the previously found
clusters using its similarity with the cluster characteristics of the sample as a criterion.

Summarization is also a typical descriptive task where the inductive-learning
process is without a teacher. It involves methods for finding a compact description
for a set (or subset) of data. If a description is formalized, as given in Figure 4.13b, that
information may simplify and therefore improve the decision-making process in a
given domain.

?
(a) (b)

Figure 4.10. Graphical interpretation of classification. (a) Trainingdata set. (b) Classification

function.
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Dependency modeling is a learning task that discovers local models based on a
training data set. The task consists of finding a model that describes significant
dependency between features or between values in a data set covering not the entire
data set, but only some specific subsets. An illustrative example is given in
Figure 4.14b, where the ellipsoidal relation is found for one subset and a linear relation
for the other subset of the training data. These types of modeling are especially useful
in large data sets that describe very complex systems. Discovering general models
based on the entire data set is, in many cases, almost impossible, because of the com-
putational complexity of the problem at hand.

Prediction variable

(a) (b)

Prediction variable

?

New sample

Figure 4.11. Graphical interpretation of regression. (a) Training data set. (b) Regression

function.

?(a) (b)

Figure 4.12. Graphical interpretation of clustering. (a) Training data set. (b) Description of

clusters.
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Change and deviation detection is a learning task, and we have been introduced
already to some of its techniques in Chapter 2. These are the algorithms that detect
outliers. In general, this task focuses on discovering the most significant changes
in a large data set. Graphical illustrations of the task are given in Figure 4.15. In
Figure 4.15a the task is to discover outliers in a given data set with discrete values
of features. The task in Figure 4.15b is detection of time-dependent deviations for
the variable in a continuous form.

The list of inductive-learning tasks is not exhausted with these six classes that are
common specifications for data-mining problems. With wider and more intensive
applications of the data-mining technology, new specific tasks are being developed,
together with the corresponding techniques for inductive learning.

Whatever the learning task and whatever the available data-mining techniques,
we have to accept that the foundation for successful data-mining processes is data-
preprocessing and data-reduction methods. They transform raw and usually messy
data into valuable data sets for mining using methodologies explained in Chapters
2 and 3. As a review, we will enumerate some of these techniques just to show
how many alternatives the data-mining designer has in the beginning phases of the
process: scaling and normalization, encoding, outliers detection and removal, feature

yy
?

3

x5

(a) (b)

x

X < 5 

Y < 3 

Figure 4.13. Graphical interpretation of summarization. (a) Training data set.

(b) Formalized description.

?
(a) (b)

Figure 4.14. Graphical interpretation of dependency-modeling task. (a) Training data set.

(b) Discovered local dependencies.
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selection and composition, data cleansing and scrubbing, data smoothing, missing-
data elimination, and case reduction by sampling.

When the data are preprocessed and when we know what kind of learning task is
defined for our application, a list of data-mining methodologies and corresponding
computer-based tools is available. Depending on the characteristics of the problem
at hand and the available data set, we have to make a decision about the application
of one or more of the data-mining and knowledge-discovery techniques, which
include the following:

1. Statistical methodswhere the typical techniques are Bayesian inference, logis-
tic regression, ANOVA analysis, and log-linear models.

2. Cluster analysis, the common techniques of which are divisible algorithms,
agglomerative algorithms, partitional clustering, and incremental clustering.

3. Decision trees and decision rules are the set of methods of inductive learning
developed mainly in artificial intelligence. Typical techniques include the
CLS method, the ID3 algorithm, the C4.5 algorithm, and the corresponding
pruning algorithms.

4. Association rules represent a set of relatively new methodologies that include
algorithms such as market basket analysis, Apriori algorithm, and WWW
path-traversal patterns.

5. Artificial neural networks, where common examples are multilayer percep-
trons with backpropagation learning, Kohonen networks, or convolutional
neural networks.

6. Genetic algorithms are very useful as a methodology for solving hard-
optimization problems, and they are often a part of a data-mining algorithm.

7. Fuzzy inference systems are based on the theory of fuzzy sets and fuzzy logic.
Fuzzy modeling and fuzzy decision-making are steps very often included in
the data-mining process.

??

(a) (b)

Figure 4.15. Graphical interpretation of change and detection of deviation. (a) Outliers.

(b) Changes in time.
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8. N-dimensional visualization methods are usually skipped in the literature as
a standard data-mining methodology, although useful information may be
discovered using these techniques and tools. Typical data-mining visualiza-
tion techniques are geometric, icon-based, pixel-oriented, and hierarchical
techniques.

This list of data-mining and knowledge-discovery techniques is not exhaustive,
and the order does not suggest any priority in the application of these methods. Itera-
tions and interactivity are basic characteristics of these data-mining techniques. Also,
with more experience in data-mining applications, the reader will understand the
importance of not relying on a single methodology. Parallel application of several
techniques that cover the same inductive-learning task is a standard approach in this
phase of data mining. In that case, for each iteration in a data-mining process, the
results of the different techniques must additionally be evaluated and compared.

4.5 SUPPORT VECTOR MACHINES

The foundations of support vector machines (SVM) have been developed by Vladimir
Vapnik and are gaining popularity due tomany attractive features andpromising empir-
ical performance. The formulation embodies the SRM principle. SVMs were devel-
oped to solve the classification problem, but recently they have been extended to the
domain of regression problems (for prediction of continuous variables). SVMs can
be applied to regression problems by the introduction of an alternative loss function that
is modified to include a distance measure. The term SVM is referring to both classifi-
cation and regression methods, and the terms support vector classification (SVC) and
support vector regression (SVR) may be used for more precise specification.

An SVM is a supervised learning algorithm creating learning functions from a set
of labeled training data. It has a sound theoretical foundation and requires relatively
small number of samples for training, and experiments showed that it is insensitive to
the number of sample’s dimensions. Initially, the algorithm addresses the general
problem of learning to discriminate between members of two classes represented
as n-dimensional vectors. The function can be a classification function (the output
is binary) or the function can be a general regression function.

SVM’s classification function is based on the concept of decision planes that
define decision boundaries between classes of samples. A simple example is shown
in Figure 4.16a where the samples belong either to class gray or black. The separating
line defines a boundary on the right side of which all samples are gray and to the left of
which all samples are black. Any new unclassified sample falling to the right will be
classified as gray (or classified as black should it fall to the left of the separating line).

The classification problem can be restricted to consideration of the two-class
problem without loss of generality. Before considering n-dimensional analysis, let
us look at a simple two-dimensional example. Assume we wish to perform a classi-
fication, and our data has a categorical target variable with two categories. Also
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assume that there are two input attributes with continuous values. If we plot the data
points using the value of one attribute on the X axis and the other on the Y axis, we
might end up with an image such as shown in Figure 4.16b. In this problem the goal is
to separate the two classes by a function that is induced from available examples. The
goal is to produce a classifier that will work well on unseen examples, i.e. it gener-
alizes well. Consider the data in Figure 4.16b. Here there are many possible linear
classifiers that can separate the two classes of samples. Are all decision boundaries
equally good? How to prove that selected one is the best?

The main idea is that the decision boundary should be as far away as possible
from the data points of both classes. There is only one that maximizes the margin
(maximizes the distance between it and the nearest data point of each class). Intui-
tively, the margin is defined as the amount of space or separation between the two
classes as defined by the hyperplane. Geometrically, the margin corresponds to the
shortest distance between the closest data points to a point on the hyperplane. STL
suggests that the choice of the maximummargin hyperplane will lead to maximal gen-
eralization when predicting the classification of previously unseen examples.

Therefore a linear SVM classifier is termed the optimal separating hyperplane
with the maximummargin such as the margin in Figure 4.17b. The goal of SVMmod-
eling in n-dimensional spaces is to find the optimal hyperplane that separates classes
of n-dimensional vectors. The split will be chosen again to have the largest distance
from the hypersurface to the nearest of the positive and negative samples. Intuitively,
this makes the classification correct for testing data that is near, but not identical to the
training data.

Why we should maximize the margin? Skinny margin is more flexible and thus
more complex, and the complexity is not the goal. Fat margin is less complex. SRM
principle expresses a trade-off between training error and model complexity. It

Y Y

X X

(a) (b)

Figure 4.16. Linear separation in 2D space. (a) A decision plane in 2D space is a line. (b) How

to select optimal separating line.
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recommends maximum margin, such as the one in Figure 4.18, as an optimal sepa-
ration criteria ensuring that SVM worst-case generalization errors are minimized.

Based on the vector equation of the line in 2D, we can define function f(x) =w x +
b as a separation model. For all points above line f(x) > 0, and for the points below line
f(x) < 0.We define the sign of this function h(x) = sign(f(x)) as a classification function
because it has the value 1 for all points above the line and the value −1 for all points
below line. An example is given in Figure 4.19.

Before we continue, it is important to note that while the above examples show
2D data set, which can be conveniently represented by points in a plane, in fact we will

YY

X X

(a) (b)

<

Figure 4.17. Comparison between sizes of margin of different decision boundaries.

(a) Margin of decision boundary 1. (b) Margin of decision boundary 2.

YY

X X

(a) (b)

Figure 4.18. SRM principle expresses a trade-off between training error and model

complexity. (a) “Fat” margin. (b) “Skinny” margin.
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typically be dealing with higher-dimensional data. The question is how to determine
an optimal hyperplane in n-dimensional spaces based on given set of training samples.
Consider the problem of separating the set of training vectors D belonging to two
classes (coded binary with −1 and 1)

D = xl,yl ,…, xl,yl , x ℜn,y −1,1 ,

with a hyperplane

w,x + b = 0

The set of vectors is said to be optimally separated by the hyperplane if it is sepa-
rated without error and the distance between the closest vectors to the hyperplane is
maximal. An illustration of the separation with a graphical interpretation of main para-
meters w and b is given in Figure 4.20a. In this way we have parameterized the func-
tion by the weight vector w and the scalar b. The notation w, x denotes the inner or
scalar product of vectors w and x, defined by

w,x =
n

i= 1

wixi

In order for our hyperplane to correctly separate the two classes, we need to sat-
isfy the following constraints:

w,xi + b> 0, for all yi = 1

w,xi + b < 0, for all yi = −1

f (x1, x2) = x1 + 3x2 – 6 = 0

sign( f (x1, x2)) = –1, if f (x1, x2) < 02

sign( f (x1, x2)) = 1, if f (x1, x2) > 0

x1

x2

Figure 4.19. Classification function, sign (f(x)), on a 2D space.
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The set of constraints that we have so far is equivalent to saying that these data
must lie on the correct side (according to class label) of this decision surface. Next
notice that we have also plotted as dotted lines two other hyperplanes represented
in Figure 4.20b, which are the hyperplanes where the function w, x + b is equal
to −1 (on the lower left) and +1 (on the upper right). In order to find the maximum
margin hyperplane, we can see intuitively that we should keep the dotted lines parallel
and equidistant to the decision surface, and maximize their distance from one another,
while satisfying the constraint that the data lie on the correct side of the dotted lines
associated with that class. In mathematical form, the final clause of this sentence (the
constraints) can be written as

yi w,xi + b ≥ 1, i= 1,…, l

The distance between these two margin hyperplanes may be formalized, because
it is the parameter we want to maximize. We may obtain the distance between hyper-
planes in nD space using equations

w,x1 + b = 1

w,x2 + b= −1

where x1 and x2 are any points on corresponding hyperplanes. If we subtract these
equations

x
1

b

x
1

x
2

x
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23

(a) (b)

w

〈w, x〉 + b =0

〈w, x〉 + b = –1

〈w, x〉 + b ⇔ x
1 
+ x

2 
–3 = 0 ⇔ x

2 
= –1x

1 
+ 3

〈w, x〉 + b =1

Figure 4.20. A separating hyperplane (w, b) for 2D data. (a) Parameters w and b. (b) Two

parallel hyperplanes define margin.
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w, x1−x2 = 2

and representing scalar product of vectors by definition,

w x1−x2 cos γ = 2

we obtain

w × d = 2,

where || || represents Euclidean norm or

d =
2
w

Therefore, the problem of “maximum margin” is represented as a maximum of a
distance parameter d, which is a function of parameters w. Maximizing dmeans max-
imizing 1/|w| or minimizing |w|. The learning problem may be reformulated as

argmin
w

1
2
w w =

1
2

w 2

subject to the constraints of linear separability. So, the final problem for optimiza-
tion is

argmin
w,b

1
2
w w such thatyi w,xi + b ≥ 1 for all i= 1,2,…, l

The problem of optimization under constraints may be transformed using the
Lagrangian L(w,b,α):

L w,b,α =
w 2

2
−

l

i= 1

αi w,xi + b yi−1

where αi are the Lagrange multipliers, one for each data point. The first term is the
same as the original objective function, and the second term captures the inequality
constraints. The Lagrangian has to be minimized with respect to w and b:

∂L

∂b
= 0

l

i= 0

αiy
i = 0

∂L

∂w
= 0 w0 =

l

i= 0

yiαixi = 0
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Substituting results of partial derivatives into L leads to the dual formulation of
the optimization problem, which has to be maximized with respect to the constraints
αi ≥ 0:

D α =
l

i= 1

αi−
1
2

l

i= 1

l

j= 1

αiαjy
iyj xi xj

The dual Lagrangian D(α) involves only the Lagrangian multipliers αi and the
training data (there are no more parameters w and b). Finding the solution for real-
world problems will usually require application of quadratic programming (QP) opti-
mization techniques. This problem has a global optimum. The optimization approach
for SVM provides an accurate implementation of the SRM inductive principle. When
αi parameters are determined, it is necessary to determine the values for w and b, and
they determine final classification hyperplane. It is important to note that dual function
D is function of only scalar products of sample vectors, not of vectors alone. Once the
solution has been found in the form of a vector α0, the optimal separating hyperplane is
given by

w0 =
i SVs

yiα0i x
i

b0 = −
1
2
w0 xr + xs

where xr and xs are any support vectors (SVs) from each class. The classifier can then
be constructed as

f x = sign w0,x + b0 = sign
i SVs

yiα0i xi x + b0

Only the points xi that will have nonzero Lagrangian multipliers α0 are termed
support vectors. If the data is linearly separable, all the SVs will lie on the margin,
and hence the number of SVs can be very small as it is represented in Figure 4.21.
This “sparse” representation can be viewed as data compression in the construction
of the classifier. The SVs are the “hard” cases; these are the training samples that
are most difficult to classify correctly and that lie closest to the decision boundary.

The SVM learning algorithm is defined so that, in a typical case, the number of
SVs is small compared with the total number of training examples. This property
allows the SVM to classify new examples efficiently, since the majority of the training
examples can be safely ignored. SVMs effectively remove the uninformative patterns
from the data set by assigning them αiweights of zero. So, if internal points that are not
SVs are changed, no effect will be made on the decision boundary. The hyperplane is
represented sparsely as a linear combination of “SV” points. The SVM automatically
identifies a subset of these informative points and uses them to represent the solution.
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In real-world applications SVMs must deal with (1) handling the cases where
subsets cannot be completely separated, (2) separating the points with nonlinear sur-
faces, and (3) handling classifications with more than two categories. Illustrative
examples are given in Figure 4.22. What are solutions in these cases? We will start
with the problem of data that are not linearly separable. The points such as shown
in Figure 4.23a could be separated only by a nonlinear region. Is it possible to define
linear margin where some points may be on opposite sides of hyperplanes?

Obviously, there is no hyperplane that separates all of the samples in one class
from all of the samples in the other class. In this case there would be no combination
of w and b that could ever satisfy the set of constraints. This situation is depicted in
Figure 4.23b, where it becomes apparent that we need to soften the constraint that
these data lay on the correct side of the +1 and −1 hyperplanes. We need to allow

x
1

x
2

〈w, x〉 + b =0

Margin width

Figure 4.21. A maximal margin hyperplane with its support vectors encircled.

X

Y Y Y

X X

(a) (b) (c)

Figure 4.22. Issues for an SVM in real-world applications. (a) Subsets cannot be completely

separated. (b) Nonlinear separation. (c) Three categories.
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some, but not too many, data points to violate these constraints by a preferably small
amount. This alternative approach turns out to be very useful not only for data sets that
are not linearly separable, but also, and perhaps more importantly, in allowing
improvements in generalization. We modify the optimization problem including cost
of violation factor for samples that violate constraints:

1
2

w 2 +C
l

i= 1

ξi

under new constraints:

w,xi + b yi ≥ 1−ξi

where C is a parameter representing the cost of violating the constraints and ξi are
distances of samples that violate constraints. To allow some flexibility in separating
the categories, SVM models introduce a cost parameter, C, that controls the trade-off
between allowing training errors and forcing rigid margins. It creates a soft margin, as
the one in Figure 4.24 that permits some misclassifications. If C is too small, then
insufficient stress will be placed on fitting the training data. Increasing the value of
C increases the cost of misclassifying points and forces the creation of a more accurate
model that may not generalize well.

This SVMmodel is very similar case to the previous optimization problem for the
linear separable data, except that there is an upper bound C on all αi parameters. The
value of C trades between how large of a margin we would prefer and how many of
the training set examples violate this margin (and by how much). The process

〈w, x〉 + b = 0

〈w, x〉 + b = –1

〈w, x〉 + b = 1

(a) (b)

Figure 4.23. Soft margin SVM. (a) Soft separating hyperplane. (b) Errors points with their

distance.
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of optimization is going through the same steps: Lagrangian, optimization of αi para-
meters, determining w and b values for classification hyperplane. The dual stay the
same, but with additional constraints on α parameters: 0 ≤ αi ≤ C.

Most classification tasks require more complex models in order to make an opti-
mal separation, i.e., correctly classify new test samples on the basis of the trained
SVM. The reason is that the given data set requires nonlinear separation of classes.
One solution to the inseparability problem is to map the data into a higher-dimensional
space and define a separating hyperplane there. This higher-dimensional space is
called the feature space, as opposed to the input space occupied by the training sam-
ples. With an appropriately chosen feature space of sufficient dimensionality, any
consistent training set can be made linearly separable. However, translating the train-
ing set into a higher-dimensional space incurs both computational and learning costs.
Representing the feature vectors corresponding to the training set can be extremely
expensive in terms of memory and time. Computation in the feature space can be
costly because it is high dimensional. Also, in general, there is the question which
function is appropriate for transformation. Do we have to select from infinite number
of potential functions?

There is one characteristic of the SVM optimization process that helps in deter-
mining the steps in the methodology. The SVM decision function for classifying
points with respect to the hyperplane only involves dot products between points. Fur-
thermore, the algorithm that finds a separating hyperplane in the feature space can be
stated entirely in terms of vectors in the input space and dot products in the feature
space. We are transforming training samples from one space into the other. But we
are making computation only with scalar products of points in this new space. This

〈w, x〉 + b = –1

〈w, x〉 + b = 1

〈w, x〉 + b = 0

Xi

Xj
ξi

ξj

(a) (b)

C
C

Figure 4.24. Trade-off between allowing training errors and forcing rigid margins.

(a) Parameters C and ξ for a soft margin. (b) Soft classifier with a fat margin (C > 0).
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product is very easy to compute because only a small subset of points are SVs
involved in product computation. Thus, an SVM can locate a separating hyperplane
in the feature space and classify points in that space without ever representing the
space explicitly, simply by defining a function, called a kernel function. Kernel func-
tion K plays always the role of the dot product in the feature space:

K x,y = Φ x ,Φ y

This approach avoids the computational burden of explicitly representing all
transformed source data and high-dimensional feature vectors. The two most widely
used kernel functions are polynomial kernel

K x,y = x,y + 1 d

and Gaussian kernel

K x,y = exp
− x−y 2

σ2

The polynomial kernel is valid for all positive integers d ≥ 1. The Gaussian kernel
is one of a group of kernel functions known as radial basis functions (RBFs). RBFs are
kernel functions that depend only on the geometric distance between x and y, and the
kernel is valid for all nonzero values of the kernel width σ. It is probably the most
useful and commonly applied kernel function. The concept of a kernel mapping func-
tion is very powerful. It allows SVM models to perform separations even with very

(a) (b)

x1 x1
xi = μ

–║xi – μ║2

xif (xi)f (xi) = exp σ 2

Φ

Figure 4.25. An example of a mapping Ф to a feature space in which the data become

linearly separable. (a) One-dimensional input space. (b) Two-dimensional feature space.
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complex boundaries. We can analyze the relation between a kernel function and a fea-
ture space for simplified version of quadratic kernel k(x, y) = x, y 2 where x, y R2:

x,y 2 = x1y1 + x2y2
2

= x1y1 + x2y2 x1y1 + x2y2

= x21y
2
1 + x

2
2y

2
2 + 2x1x2y1y2

= x21, x
2
2, 2x1x2 y21, y

2
2, 2y1y2

= Φ x ,Φ y

It defines three-dimensional (3D) feature space Φ x = x21,x
2
2, 2x1x2 . Similar

analysis may be performed for other kernel function. For example, through the similar
process, verify that for the “full” quadratic kernel ( x, y + 1)2, the feature space is six-
dimensional.

In practical use of SVM, only the kernel function k (and not transformation func-
tion Φ) is specified. The selection of an appropriate kernel function is important, since
the kernel function defines the feature space in which the training set examples will be
classified. As long as the kernel function is legitimate, an SVM will operate correctly
even if the designer does not know exactly what features of the training data are being
used in the kernel-induced feature space. The definition of a legitimate kernel function
is given by Mercer’s theorem: the function must be continuous and positive definite.

Modified and enhanced SVM constructs an optimal separating hyperplane in the
higher-dimensional space. In this case, the optimization problem becomes

D α =
l

i= 1

αi−
1
2

l

i= 1

l

j= 1

αiαjy
iyjK xi xj

where K(x,y) is the kernel function performing the nonlinear mapping into the feature
space and the constraints are unchanged. Using kernel function we will perform min-
imization of dual Lagrangian in the feature space, and determine all margin parameter,
without representing points in this new space. Consequently, everything that has been
derived concerning the linear case is also applicable for a nonlinear case by using a
suitable kernel K instead of the dot product.

The approach with kernel functions gives modular SVMmethodology. Onemod-
ule is always the same: linear learning module. It will find margin for linear separation
of samples. If the problem of classification is more complex, requiring nonlinear sep-
aration, then we include new preparatory module. This module is based on kernel
function, and it transforms input space into higher feature space where the same linear
learning module may be applied and the final solution is nonlinear classification
model. Illustrative example is given in Figure 4.26. This combination of different ker-
nel functions with standard SVM learning algorithm for linear separation gives the
flexibility to the SVM methodology for efficient application in nonlinear cases.
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The idea of using a hyperplane to separate the feature vectors into two groups
works well when there are only two target categories, but how does SVM handle
the case where the target variable has more than two categories? Several approaches
have been suggested, but two are the most popular: (1) “one against many”where each
category is split out and all of the other categories are merged and (2) “one against
one” where k(k − 1)/2 models are constructed and k is the number of categories.

A preparation process for SVM applications is enormously important for the final
results, and it includes preprocessing of raw data and setting model parameters. SVM
requires that each data sample be represented as a vector of real numbers. If there are
categorical attributes, we first have to convert them into numeric data. Multi-attribute
coding is recommended in this case. For example, a three-category attribute such as
red, green, and blue can be represented with three separate attributes and correspond-
ing codes such as (0,0,1), (0,1,0), and (1,0,0). This approach is appropriate only if the
number of values in an attribute is not too large. Second, scaling values of all numer-
ical attributes before applying SVM is very important in successful application of the
technology. The main advantage is to avoid that attributes with greater numeric ranges
dominate those in smaller ranges. Normalization for each attribute may be applied to
the range [−1; +1] or [0; 1].

Selection of parameters for SVM is very important, and the quality of results
depends on these parameters. Two most important parameters are cost C and param-
eter γ for Gaussian kernel. It is not known beforehand which C and σ are the best for
one problem; consequently some kind of parameter search must be done. The goal is
to identify good (C; σ) so that the classifier can accurately predict unknown data (i.e.,
testing data). Note that it may not be required to achieve high training accuracy. Small
cost C is appropriate for close to linear separable samples. If we select small C for
nonlinear classification problem, it will cause underfitted learning. Large C for non-
linear problems is appropriate, but not too much because the classification margin will
become very thin resulting in overfitted learning. Similar analysis is for Gaussian
kernel σ parameter. Small σ will cause close to linear kernel with no significant trans-
formation in future space and less flexible solutions. Large σ generates extremely
complex nonlinear classification solution.

(a) (c)(b)

Φ

Figure 4.26. SVM performs nonlinear classification by kernel-based transformations.

(a) 2D input space. (b) 3D feature space. (c) 2D input space.
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The experience inmany real-worldSVMapplications suggests that, in general,RBF
model is a reasonable first choice. The RBF kernel nonlinearly maps samples into a
higher-dimensional space, so it, unlike the linear kernel, can handle the case when the
relation between classes is highly nonlinear. The linear kernel should be treated a special
case ofRBF. The second reason for RBF selection is the number of hyperparameters that
influences the complexity of model selection. For example, polynomial kernels have
more parameters than the RBF kernel, and the tuning proves is much more complex
and time consuming. However, there are some situations where the RBF kernel is not
suitable, andonemay just use the linear kernelwith extremely good results. The question
is:when touse the linearkernel as a first choice? If thenumberof features is large,onemay
not need to map data to a higher-dimensional space. Experiments showed that the non-
linear mapping does not improve the SVM performance. Using the linear kernel is good
enough, andC is the only tuning parameter.Manymicroarray data in bioinformatics and
collection of electronic documents for classification are examples of this data set type.As
thenumberof features is smaller, and thenumberof samples increases,SVMsuccessfully
maps data to higher-dimensional spaces using nonlinear kernels.

One of the methods for finding optimal parameter values for an SVM is a grid
search. The algorithm tries values of each parameter across the specified search range
using geometric steps. Grid searches are computationally expensive because the
model must be evaluated at many points within the grid for each parameter. For exam-
ple, if a grid search is used with 10 search intervals and an RBF kernel function is used
with two parameters (C and σ), then the model must be evaluated at 10 × 10 = 100 grid
points, i.e. 100 iterations in a parameter selection process.

At the end we should highlight main strengths of the SVM methodology. First, a
training process is relatively easy with small number of parameters, and the final
model is never presented with local optima, unlike some other techniques. Also,
SVM methodology scales relatively well to high-dimensional data, and it represents
a trade-off between classifier’s complexity and accuracy. Nontraditional data struc-
tures like strings and trees can be used as input samples to SVM, and the technique
is applicable not only for classification problems, but also it is accommodated for pre-
diction. Weaknesses of SVMs include computational inefficiency and need to choose
experimentally a “good” kernel function.

The SVM methodology is very popular in the data-mining community. Software
tools that include SVM are becoming professional, user friendly, and applicable for
many real-world problems where data sets are extremely large. It has been shown that
SVM outperforms other techniques such as logistic regression or artificial neural net-
works on a wide variety of real-world problems. Some of the most successful applica-
tions of the SVM have been in image processing, in particular handwritten digit
recognition and face recognition. Other interesting application areas for SVMs are
in text mining and categorization of large collection of documents and in the analysis
of genome sequences in bioinformatics. Furthermore, the SVM has been successfully
used in a study of text and data formarketing applications. As kernel methods andmax-
imum margin methods including SVM are further improved and taken up by the data-
mining community, they are becoming an essential tool in any data miner’s toolkit.
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4.6 SEMI-SUPERVISED SUPPORT VECTOR MACHINES (S3VM)

In recent decades, the ways of collecting data are more diverse, and the amount of data
is growing exponentially. With the rapid development of various technologies, it
becomes easy to collect large amounts of data. To build good predictive models, it
is necessary to have training data sets with labels. However, because the obtained data
in most of modern applications are extremely massive, it is unfeasible to invest a lot of
resources in the work of their labeling. It is likely to occur that collecting unlabeled
data samples is becoming cheap, but obtaining the labels costs a lot of time, effort, or
money. This is the case in many application areas of machine learning, and the fol-
lowing examples are just a few illustrations in big data environment:

• In speech recognition, it costs almost nothing to record huge amounts of
speech, but labeling it requires some human to listen to it and type a transcript.

• Billions of Web pages are directly available for automated processing, but to
classify them reliably, humans have to read them.

• Protein sequences are nowadays acquired at industrial speed (by genome
sequencing, computational gene finding, and automatic translation), but to
resolve a 3D structure or to determine the functions of a single protein may
require very significant scientific work.

Based on characteristics of training data sets, the classification of machine-
learning tasks can be extended from two into three main types: unsupervised learning,
supervised learning, and a new type so-called semi-supervised learning (SSL). While
supervised and unsupervised learning techniques are introduced earlier, this section is
explaining main ideas behind SSL. Essentially, the learning models in this case are
similar to models in supervised learning with labeled samples; only this time the
model is enhanced using large amount of cheap unlabeled data.

SSL represents one of the research focuses on machine learning in recent years,
and it has attracted much attention in many application fields ranging from bioinfor-
matics to Web mining. These are disciplines where it is easier to obtain unlabeled
samples, while labeling requires significant effort, expertise in the field, and time con-
sumption. Just imagine reading labeling millions of emails as a spam or no spam to
create high-quality automatic classification system. SSL is a machine-learning
approach that is combining unsupervised learning and supervised learning. The basic
idea is in using a large number of unlabeled data to help the supervised learning
method improve modeling results. More formally, in SSL, there are labeled data
set L = {(x1, y1), (x2, y2),…,(xm, ym)} and unlabeled data setU = x1,x2,…,xn , where
m n, x is a d-dimensional input vector, and y are labels. The task is to determine a
function f: X Y, which could accurately predict a label y for each sample x□ X. Since
unlabeled data carry less information about f function than labeled data, they are
required in large amounts in order to increase prediction accuracy of the model.
SSL will be mostly useful whenever there are far more unlabeled data samples than
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labeled ones. This big data assumption implies the need for fast and very efficient SSL
algorithms.

An illustrative example of the influence of unlabeled data in SSL is given in
Figure 4.27. The Figure 4.27a part shows a decision boundary we might adopt after
seeing only one positive (white circle) and one negative (black circle) example. The
Figure 4.27b part shows a decision boundary we might adopt if, in addition to the two
labeled examples, we were given a collection of unlabeled data (gray circles). This
could be viewed as performing clustering of unlabeled samples and then labeling
the clusters by synchronizing these labels with the given labeled data. This labeling
process enables to push the decision boundary away from high-density regions. In
both cases in Figure 4.27, with or without unlabeled samples, maximum margin prin-
ciple has determined the final decision boundaries.

In order to evaluate SSL model, it is necessary to make a comparison with results
of a supervised algorithm that uses only labeled data. The question is, can SSL imple-
mentation have a more accurate prediction and better model by taking into account the
unlabeled points? In principle, the answer is “yes.”However, there are important con-
ditions to reach this improved solution: the distribution of unlabeled samples has to be
relevant for the classification problem. Using more mathematical formulation, one
could say that the knowledge on p(x) distribution, which is gained through the unla-
beled data, has to carry useful information in the inference of p(y|x). If this is not the
case, SSL will no yield an improvement over supervised learning. It might even hap-
pen that using the unlabeled data degrades the prediction accuracy by misguiding the
inference.

SSL include techniques such as semi-supervised support vector machines
(S3VM), self-training algorithms, generative models, graph-based algorithms, and
multi-view approaches. This short review gives some additional details about
S3VM. S3VM is an extension of standard SVM methodology using additionally
available unlabeled data. This approach implements the cluster assumption for
SSL, that is, examples in data cluster have similar labels, so classes are well separated
and do not cut through dense unlabeled data. The main goal of S3VM is to build clas-
sifier by using both labeled and unlabeled data. Similar to the main idea of SVM,
S3VM requires the maximum margin to separate training samples, including all

(a) (b)

Figure 4.27. Classification model using labeled and unlabeled samples. (a) Model based on

only labeled samples. (b) Model based on only labeled and unlabeled samples.
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labeled and unlabeled data. The basic principle of S3VM is presented in Figure 4.28.
If the learning process is made only based on labeled samples represented with small
circles with + or −, SVM model with maximum separation is given in with dashed
lines. If unlabeled samples are taken into modeling and density is accepted as a cri-
terion for separation margin, then maximized classification margin is totally trans-
formed into parallel full lines.

S3VM shows satisfactory results only if two assumptions about unlabeled data
are satisfied:

1. Continuity assumption—Unlabeled samples in n-dimensional space, which
are close to each other, are more likely to share the same label. This is also
generally assumed in supervised learning, and it yields a preference for geo-
metrically simple decision boundaries. In the case of SSL, the smoothness
assumption represents extension that additionally yields a preference for clas-
sification boundaries in low-density regions so that there are fewer samples
close to each other belonging different classes.

2. Cluster assumption—The data tend to form discrete clusters, and points in the
same cluster are more likely to share the same label. Label sharing may be
spread across multiple clusters. For example, if unlabeled samples are organ-
ized into X clusters, then X–Y clusters may belong to one class (one label), and
the rest of Y clusters will belong to the other class (the example is for two-class
problems!). Cluster assumption is a special case of the smoothness assumption
and gives rise to feature learning with clustering algorithms.

With the assumption that smoothness and clustering requirements are satisfied,
core steps in the S3VM algorithm are to:

1. Enumerate all 2u possible labeling combinations of unlabeled samples Xu

(exponential complexity of a problem—it requires analysis of all alternatives
in labeling unlabeled samples).

(a) (b)

Figure 4.28. Semi-supervised model improves classification. (a) Supervised model trained

on labeled samples alone. (b) Semi-supervised model use also unlabeled samples.
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2. Build one standard SVM for each labeling case in the previous step (and vari-
ety of Xl splitting).

3. Pick the SVM with the largest margin.

Obviously the algorithm has a problem of combinatorial explosion of alternatives
in the first step! Variety of optimization methods are applied, and different S3VM
implementations shows reasonable performances in practice (for example, min-cut
approach in a graph of unlabeled and labeled samples). Obviously, S3VM have seri-
ous deficiency in a case of big (unlabeled) data. The methods are using extremely
large time in training, and it is currently the biggest challenge in all implementations
of S3VM.

In general, there is no uniform SSL solution for all applications with available
both unlabeled and labeled data. Depending on available data and knowledge about
the problem, we may use different techniques and approaches: from standard super-
vised learning (such as SVM) when there are enough labeled samples to different SSL
techniques including S3VM when two assumptions in data set are satisfied. If SSL is
used as a first step, verify and discuss solution by comparing with other approaches
including supervised and even unsupervised learning model. Figure 4.29 gives only
illustrative examples with applicable and non-applicable S3VM.

4.7 kNN: NEAREST NEIGHBOR CLASSIFIER

Unlike SVM’s global classification model, k-nearest neighbor (kNN) classifier deter-
mines the decision boundary locally. For 1NN we assign each new sample to the class
of its closest neighbor as it is represented in Figure 4.30a. Initially we have samples
belonging to two classes (+ and −). The new sample “?” should be labeled with the
class of its closest neighbor. 1NN classifier is not very robust methodology. The clas-
sification decision of each test sample relies on the class of a single training sample,

(a) (b)

Figure 4.29. Continuity and clustering assumption determine the quality of semi-supervised

learning. (a) S3VM is not the best approach. (b) S3VM is the appropriate approach.
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which may be incorrectly labeled or atypical. For larger k, kNN will assign new sam-
ple to the majority class of its k closest neighbors where k is a parameter of the meth-
odology. An example for k = 4 is given in Figure 4.30b. kNN classifier for k > 1 is
more robust. Larger k values help reduce the effects of noisy points within the training
data set.

The rationale of kNN classification is that we expect a test sample X to have the
same label as the training sample located in the local region surrounding X. KNN clas-
sifiers are lazy learners, that is, models are not built explicitly unlike SVM and the
other classification models given in the following chapters. Training a kNN classifier
simply consists of determining k. In fact, if we preselect a value for k and do not pre-
process given samples, then kNN approach requires no training at all. kNN simply
memorizes all samples in the training set and then compares the test sample to them.
For this reason, kNN is also called memory-based learning or instance-based learn-
ing. It is usually desirable to have as much training data as possible in machine
learning. But in kNN, large training sets come with a severe efficiency penalty in
classification of testing samples.

Building the kNN model is computationally cheap (just store the training data),
but classifying unknown sample is relatively expensive since it requires the compu-
tation of the kNN of the testing sample to be labeled. This, in general, requires com-
puting the distance of the unlabeled object to all the objects in the labeled set, which
can be expensive particularly for large training sets. Among the various methods of
supervised learning, the nearest neighbor classifier achieves consistently high perfor-
mance, without a priori assumptions about the distributions from which the training
examples are drawn. The reader may have noticed the similarity between the problem
of finding nearest neighbors for a test sample and ad hoc retrieval methodologies. In
standard information retrieval systems such as digital libraries or Web search, we
search for the documents (samples) with the highest similarity to the query document
represented by a set of keywords. Problems are similar, and often the proposed solu-
tions are applicable in both disciplines.

Decision boundaries in 1NN are concatenated segments of the Voronoi diagram
as shown in Figure 4.31. The Voronoi diagram decomposes space into Voronoi cells,

(a) (b)
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Figure 4.30. k-Nearest neighbor classifier. (a) k = 1. (b) k = 4
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where each cell consists of all points that are closer to the sample than to other sam-
ples. Assume that we have X training samples in 2D space. The diagram then parti-
tions the 2D plane into |X| convex polygons, each containing its corresponding sample
(and no other), where a convex polygon is a convex region in 2D space bounded by
lines. For general k > 1 case, consider the region in the space for which the set of kNN
is the same. This again is a convex polygon and the space is partitioned into convex
polygons, within each of which the set of kNN is invariant.

The parameter k in kNN is often chosen based on experience or knowledge about
the classification problem at hand. It is desirable for k to be odd to make ties less likely.
k = 3 and k = 5 are common choices, but much larger values up to 100 are also used.
An alternative way of setting the parameter is to select k through the iterations of test-
ing process and select k that gives best results on testing set.

Time complexity of the algorithm is linear in the size of the training set as we need
to compute the distance of each training sample from the new test sample. Of course,
the computing time goes up as k goes up, but the advantage is that higher values of k
provide smoothing of the classification surface that reduces vulnerability to noise in
the training data. At the same time high value for k may destroy the locality of the
estimation since farther samples are taken into account, and large k increases the com-
putational burden. In practical applications, typically, k is in units or tens rather than in
hundreds or thousands. The nearest neighbor classifier is quite simple algorithm, but
very computationally intensive especially in the testing phase. The choice of the dis-
tance measure is another important consideration. It is well known that the Euclidean
distance measure become less discriminating as the number of attributes increases,
and in some cases it may be better to use cosine or other measures rather than Euclid-
ean distance.

Testing time of the algorithm is independent of the number of classes, and kNN
therefore has a potential advantage for classification problems with multiple classes.
For the example in Figure 4.32, we have three classes (ω1,ω2,ω3) represented by a set
of training samples, and the goal is to find a class label for the testing sample xu. In this
case, we use the Euclidean distance and a value of k = 5 neighbors as the threshold. Of
the five closest neighbors, four belong to ω1 class and one belongs to ω3 class, so xu is
assigned to ω1 as the predominant class in the neighborhood.

Figure 4.31. Voronoi diagram in 2D space.
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In summary, kNN classifier only requires a parameter k, a set of labeled training
samples, and a metric measure for determining distances in n-dimensional space. kNN
classification process is usually based on the following steps:

• Determine parameter k—number of nearest neighbors.

• Calculate the distance between each testing sample and all the training
samples.

• Sort the distance and determine nearest neighbors based on the kth threshold.

• Determine the category (class) for each of the nearest neighbors.

• Use simple majority of the category of nearest neighbors as the prediction
value of the testing sample classification.

There are many techniques available for improving the performance and speed of
a nearest neighbor classification. One solution is to choose a subset of the training data
for classification. The idea of the condensed nearest neighbor (CNN) is to select the
smallest subset Z of training data X such that when Z is used instead of X, error in
classification of new testing samples does not increase. 1NN is used as the nonpara-
metric estimator for classification. It approximates the classification function in a pie-
cewise linear manner. Only the samples that define the classifier need to be kept. Other
samples, inside regions, need not to be stored because they belong to the same class.
An example of CNN classifier in 2D space is given in Figure 4.33. Greedy CNN algo-
rithm is defined with the following steps:

1. Start with empty set Z.

2. Passing samples from X one by one in a random order, and check whether they
can be classified correctly by instances in Z.

ω1

Xu

ω2

ω3

Figure 4.32. Nearest neighbor classifier for k = 5.
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3. If a sample is misclassified, it is added to Z; if it is correctly classified, Z is
unchanged.

4. Repeat a few times over training data set until Z is unchanged. Algorithm does
not guarantee minimum subset for Z.

kNN methodology is relatively simple and could be applicable in many real-
world problems. Still, there are some methodological problems such as scalability,
“curse of dimensionality,” influence of irrelevant attributes, weight factors in the
distance measure, weight factors for votes of k neighbors, etc.

4.8 MODEL SELECTION VS. GENERALIZATION

We assume that the empirical data is given according to an unknown probability dis-
tribution. The question arises as to whether a finite set of empirical data includes suf-
ficient information such that the underlying regularities can be learned and

Condensed 1NN

Not stored samples

Figure 4.33. CNN classifier in 2D space.

(a) (b) (c)

Figure 4.34. Trade-off between model complexity and the amount of data. (a) Too simple

model. (b) Too complex model. (c) Appropriate model.
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represented with a corresponding model. A positive answer to this question is a nec-
essary condition for the success of any learning algorithm. A negative answer would
yield the consequence that a learning system may remember the empirical data per-
fectly and the system may have an unpredictable behavior with unseen data.

We may start discussion about appropriate model selection with an easy prob-
lem of learning a Boolean function from examples. Assume that both inputs and out-
puts are binary. For d inputs, there are 2d different samples, and there are 22d

possible Boolean functions as outputs. Each function is potential hypothesis hi. In
a case of two inputs x1 and x2, there are 24 = 16 different hypotheses as it is given
in Table 4.1.

Each training (learning) sample with two inputs and one output value (x1, x2, o)
removes half the hypotheses (hi). For example, sample (0, 0, 0) removes h9 to h16
because these hypotheses have output value 1 for the input pair (0, 0). This is one
way of interpreting learning: we start with all possible hypotheses, and as we see more
training samples, we remove non-consistent hypotheses. After seeingN samples, there
remain 22d −N possible hypotheses, i.e. Boolean functions as a model for a given data
set. In reality, where all inputs are usually not binary but with k different values (k ),
and also data are high dimensional (d ), then kd N. The number of samples for real-
world data is significantly lower than the number of hypotheses (or the number of
potential models). Therefore, data set by itself is not sufficient to find a unique
solution–model. There is still huge number of hypotheses. We have to make some
extra assumptions to reach a unique solution with the given data (N samples). We call
these assumptions inductive bias (principle) of the learning algorithm. It influences a
model selection. The main question is how well a model trained on training data set
predicts the right output for new samples (not available in training data!), and it repre-
sents essential requirement for model generalization. For best generalization, we
should match the complexity of the hypothesis class with the complexity of the func-
tion underlying training data. We made in the learning process a trade-off between the
complexity of the hypothesis, the amount of data, and the generalization error of new
samples. Therefore, building data-mining model is not straightforward procedure, but
a very sensitive process requiring in many cases feedback information for multiple
mining iterations.

TABLE 4.1 . Boolean Functions as Hypotheses

Inputs Hypotheses

x1 x2 h1 h2 … h16

0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 1
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In the final phase of the data-mining process, when the model is obtained using
one or more inductive-learning techniques, one important question still exists. How
does one verify and validate the model? At the outset, let us differentiate between val-
idation and verification.

Model validation is substantiating that the model, within its domain of applica-
bility, behaves with satisfactory accuracy consistent with the objectives defined by the
users. In other words, in model validation, we substantiate that the data has trans-
formed into the model and that it has sufficient accuracy in representing the observed
system. Model validation deals with building the right model, the model that corre-
sponds to the system. Model verification is substantiating that the model is trans-
formed from the data as intended into new representations with sufficient
accuracy. Model verification deals with building the model right, the model that cor-
responds correctly to the data.

Model validity is a necessary but insufficient condition for the credibility and
acceptability of data-mining results. If, for example, the initial objectives are incor-
rectly identified or the data set is improperly specified, the data-mining results
expressed through the model will not be useful; however, we may still find the model
valid. We can claim that we conducted an “excellent” data-mining process, but the
decision-makers will not accept our results and we cannot do anything about it. There-
fore, we have always to keep in mind, as it has been said, that a problem correctly
formulated is a problem half-solved. Albert Einstein once indicated that the correct
formulation and preparation of a problem was even more crucial than its solution.
The ultimate goal of a data-mining process should not be just to produce a model
for a problem at hand, but to provide one that is sufficiently credible and accepted
and implemented by the decision-makers.

The data-mining results are validated andverified by the testing process.Model test-
ing is demonstrating that inaccuracies exist or revealing the existence of errors in the
model.We subject themodel to test data or test cases to see if it functions properly. “Test
failed” implies the failure of themodel, not the test. Some tests are devised to evaluate the
behavioral accuracy of the model (i.e., validity), and some tests are intended to judge the
accuracy of data transformation into the model (i.e., verification).

The objective of a model obtained through the data-mining process is to classify/
predict new instances correctly. The commonly used measure of a model’s quality is
predictive accuracy. Since new instances are supposed not to be seen by the model in
its learning phase, we need to estimate its predictive accuracy using the true error rate.
The true error rate is statistically defined as the error rate of the model on an asymp-
totically large number of new cases that converge to the actual population distribution.
In practice, the true error rate of a data-mining model must be estimated from all the
available samples, which are usually split into training and testing sets. The model is
first designed using training samples, and then it is evaluated based on its performance
on the test samples. In order for this error estimate to be reliable in predicting future
model performance, not only should the training and the testing sets be sufficiently
large, but they must also be independent. This requirement of independent training
and test samples is still often overlooked in practice.
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How should the available samples be split to form training and test sets? If the
training set is small, then the resulting model will not be very robust and will have
low generalization ability. On the other hand, if the test set is small, then the confi-
dence in the estimated error rate will be low. Various methods are used to estimate the
error rate. They differ in how they utilize the available samples as training and test
sets. If the number of available samples is extremely large (say, 1 million), then all
these methods are likely to lead to the same estimate of the error rate. If the number
of samples is smaller, then the designer of the data-mining experiments has to be very
careful in splitting data. There are no good guidelines available on how to divide the
samples into subsets. No matter how the data are split, it should be clear that different
random splits, even with the specified size of training and testing sets, would result in
different error estimates.

Let us discuss different techniques, usually called resampling methods, for split-
ting data sets into training and test samples. The main advantage of using the resam-
pling approach over the analytical approach for estimating and selecting models is that
the former does not depend on assumptions about the statistical distribution of the data
or specific properties of approximating functions. The main disadvantages of resam-
pling techniques are their high computational effort and the variation in estimates
depending on the resampling strategy.

The basic approach in model estimation is first to prepare or to learn a model
using a portion of the training data set and then to use the remaining samples to esti-
mate the prediction risk for this model. The first portion of the data is called a learning
set, and the second portion is a validation set, also called a testing set. This naïve strat-
egy is based on the assumption that the learning set and the validation set are chosen as
representatives of the same unknown distribution of data. This is usually true for large
data sets, but the strategy has an obvious disadvantage for smaller data sets. With a
smaller number of samples, the specific method of splitting the data starts to have an
impact on the accuracy of the model. The various methods of resampling are used for
smaller data sets, and they differ according to the strategies used to divide the initial
data set. We will give a brief description of the resampling methods that are common
in today’s data-mining practice, and a designer of a data-mining system will have to
make a selection based on the characteristics of the data and the problem:

1. Resubstitution method—This is the simplest method. All the available data are
used for training as well as for testing. In other words, the training and testing
sets are the same. Estimation of the error rate for this “data distribution” is
optimistically biased (estimated error is often smaller than could be expected
in real applications of the model), and therefore the method is very seldom
used in real-world data-mining applications. This is especially the case when
the ratio of sample size to dimensionality is small.

2. Holdout method—Half the data, or sometimes two thirds of the data, is used
for training, and the remaining data is used for testing. Training and testing
sets are independent, and the error estimation is pessimistic. Different
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partitioning will give different estimates. A repetition of the process, with dif-
ferent training and testing sets randomly selected, and integration of the error
results into one standard parameter, will improve the estimate of the model.

3. Leave-one-out method—A model is designed using (n − 1) samples for train-
ing and evaluated on the one remaining sample. This is repeated n times with
different training sets of size (n − 1). This approach has large computational
requirements because n different models have to be designed and compared.

4. Rotation method (n-fold cross-validation)—This approach is a compromise
between holdout and leave-one-out methods. It divides the available samples
into P disjoint subsets, where 1 ≤ P ≤ n. (P − 1) subsets are used for training
and the remaining subset for testing. This is the most popular method in prac-
tice, especially for problems where the number of samples is relatively small.

5. Bootstrap method—This method resamples the available data with replace-
ments to generate a number of “fake” data sets of the same size as the given
data set. The number of these new sets is typically several hundreds. These
new training sets can be used to define so-called bootstrap estimates of the
error rate. Experimental results have shown that the bootstrap estimates can
outperform the cross-validation estimates. This method is especially useful
in small data set situations.

4.9 MODEL ESTIMATION

A model realized through the data-mining process using different inductive-learning
techniques might be estimated using the standard error rate parameter as a measure of
its performance. This value expresses an approximation of the true error rate, a param-
eter defined in STL. The error rate is computed using a testing data set obtained
through one of applied resampling techniques. In addition to the accuracy measured
by the error rate, data-mining models can be compared with respect to their speed,
robustness, scalability, and interpretability, and all these parameters may have an
influence on the final verification and validation of the model. In the short overview
that follows, we will illustrate primary the characteristics of the error rate parameter
for classification tasks; similar approaches and analyses are possible for other com-
mon data-mining tasks.

The computation of error rate is based on counting of errors in a testing process.
These errors are, for a classification problem, simply defined as misclassification
(wrongly classified samples). If all errors are of equal importance, an error rate R
is the number of errors E divided by the number of samples S in the testing set:

R=
E

S

The accuracy AC of a model is a part of the testing data set that is classified cor-
rectly, and it is computed as one minus the error rate:
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AC=1 –R=
S –E

S

For standard classification problems, there can be as many as m2
– m types of

errors, where m is the number of classes.
Two tools commonly used to assess the performance of different classification

models are the confusion matrix and the lift chart. A confusion matrix, sometimes
called a classification matrix, is used to assess the prediction accuracy of a model.
It measures whether a model is confused or not, that is, whether the model is making
mistakes in its predictions. The format of a confusion matrix for a two-class case with
classes yes and no is shown in Table 4.2.

If there are only two classes (positive and negative samples, symbolically repre-
sented with T and F or with 1 and 0), we can have only two types of errors:

1. It is expected to be T, but it is classified as F: these are false negative errors
(C: False−).

2. It is expected to be F, but it is classified as T: these are false positive errors
(B: False+).

If there are more than two classes, the types of errors can be summarized in a
confusion matrix, as shown in Table 4.3. For the number of classes m = 3, there
are six types of errors (m2

– m = 32 – 3 = 6), and they are represented in bold type
in Table 4.3. Every class contains 30 samples in this example, and the total is 90 testing
samples.

TABLE 4.2 . Confusion Matrix for Two-Class
Classification Model

Predicted Class Actual Class

Class 1 Class 2

Class 1 A: True + B: False +
Class 2 C: False − D: True −

TABLE 4.3 . Confusion Matrix for Three Classes

Classification Model True Class Total

0 1 2

0 28 1 4 33
1 2 28 2 32
2 0 1 24 25
Total 30 30 30 90
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The error rate for this example is

R=
E

S
=
10
90

= 0 11

and the corresponding accuracy is

AC= 1−R= 1−0 11 = 0 89 or as a percentage A= 89

Accuracy is not always the best measure of the quality of the classification
model. It is especially true for the real-world problems where the distribution of
classes is unbalanced, for example, if the problem is classification of healthy person
from these with the disease. In many cases the medical database for training and
testing will contain mostly healthy person (99%) and only small percentage of peo-
ple with disease (about 1%). In that case, no matter how good the accuracy of a
model is estimated to be, there is no guarantee that it reflects the real world. There-
fore, we need other measures for model quality. In practice, several measures are
developed, and some of best known are presented in Table 4.4. Computation of
these measures is based on parameters A, B, C, and D for the confusion matrix in
Table 4.2. Selection of the appropriate measure depends on the application domain,
and for example, in medical field, the most often used are measures: sensitivity and
specificity.

Previous measures are primarily developed for classification problems where the
output of the model is expected to be a categorical variable. If the output is numerical,
several additional prediction accuracy measures for regression problems are defined.
It is assumed that the prediction error for each sample ei is defined as the difference
between its actual output Ya value and predicted Yp value:

ei =Yai –Ypi

TABLE 4.4 . Evaluation Metrics for Confusion Matrix 2×2

Evaluation Metrics Computation Using Confusion Matrix

True positive rate (TP) TP = A/(A + C)
False positive rate (FP) FP = B/(B + D)
Sensitivity (SE) SE = TP
Specificity (SP) SP = 1-FP
Accuracy (AC) AC = (A +D)/(A + B + C +D)
Recall (R) R = A/(A + C)
Precision (P) P = A/(A + B)
F-measure (F) F = 2PR/(P+R)

144 LEARNING FROM DATA



Based on this standard error measure for each sample, several predictive accuracy
measures are defined for the entire data set:

1. MAE (mean absolute error) = 1/n │ei│
where n is number of samples in the data set. It represents average error
through all available samples for building the model.

2. MAPE (mean absolute percentage error) = 100% ∗ 1/n │ei/Yai│
This measure gives in percentages how the prediction deviate in average form
the actual value.

3. SSE (sum of squared errors) = ei
2

This measure may become very large, especially if the number of samples
is large.

4. RMSE (root mean squared error) = SSE n

RMSE is the standard deviation of the residuals (prediction errors), where resi-
duals are a measure of how far are samples from the regression model. It is a
measure of how spread out these residuals are. In other words, it tells us how
concentrated the data is around the model. This measure is most often used in
real-world applications.

So far we have considered that every error is equally bad. In many data-mining
applications where the result is classification model, the assumption that all errors
have the same weight is unacceptable. So, the differences between various errors
should be recorded, and the final measure of the error rate will take into account these
differences. When different types of errors are associated with different weights, we
need to multiply every error type with the given weight factor cij. If the error elements
in the confusion matrix are eij, then the total cost function C (which replaces the num-
ber of errors in the accuracy computation) can be calculated as

C =
m

i= 1

m

j= 1

cij eij

In many data-mining applications, it is not adequate to characterize the perfor-
mance of a model by a single number that measures the overall error rate. More com-
plex and global measures are necessary to describe the quality of the model. A lift
chart, sometimes called a cumulative gains chart, is additional measure of classifica-
tion model performance. It shows how classification results are changed by applying
the model to different segments of a testing data set. This change ratio, which is hope-
fully the increase in response rate, is called the “lift.” A lift chart indicates which sub-
set of the data set contains the greatest possible proportion of positive responses or
accurate classification. The higher the lift curve is from the baseline, the better the
performance of the model since the baseline represents the null model, which is no
model at all. To explain a lift chart, suppose a two-class prediction where the outcomes
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were yes (a positive response) or no (a negative response). To create a lift chart,
instances in the testing data set are sorted in descending probability order according
to the predicted probability of a positive response.When the data is plotted, we can see
a graphical depiction of the various probabilities as it is represented with the black
histogram in Figure 4.35a.

Sorted test samples are divided into deciles where each decile is a group of sam-
ples containing 10% of data set. The lift at the specific decile is the ratio between the
percentage of correctly classified samples (positive response) in that decile and the
percentage of the same class in the entire test population. Cumulative lift calculates
lift value for all samples up to particular decile, and it is present as cumulative lift chart
through deciles. The chart is evidence of the quality of the predictive model: how

(a)

100

90

80

70

60

50
Random

Scored
40

30

20

10

0

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

–20.00%

–40.00%

1 2 3 4 5

Decile

Decile

P
er

ce
n
t 

re
sp

o
n
se

R
O

I

6 7 8 9 10

(b)

Random

Scored

Figure 4.35. Assessing the performances of data-mining model. (a) Lift chart. (b) ROI chart.
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much is better than random guessing or how much it is above the random cumulative
chart presented with the white histogram in Figure 4.35a. The baseline, represented as
the white histogram on the figure, indicates the expected result if no model were used
at all. The closer the cumulative gain is to the top left corner of the chart, the better the
model is performing. Note that the best model is not the one with the highest lift when
it is being built with the training data. It is the model that performs the best on unseen
future data.

The lift chart is a big help in evaluating the usefulness of a model. It shows how
responses are changed in percentiles of testing samples population by applying the
data-mining model. For example, in Figure 4.35a, instead of a 10% response rate
when a random 10% of the population is treated, the response rate of a top selected
10% of the population is over 35%. The lift value is 3.5 in this case.

Another important component of interpretation is to assess financial benefits of the
model.Again, a discoveredmodelmaybe interesting and relatively accurate, but acting
on it may cost more than the revenue or savings it generates. The return on investment
(ROI) chart, given in Figure 4.35b, is a good example of how attaching values to a
response and costs to a program can provide additional guidance to decision-making.
Here, ROI is defined as ratio of profit to cost. Note that beyond the eighth decile (80%),
or 80% of testing population, the ROI of the scored model becomes negative. It is at a
maximum for this example at the second decile (20% of a samples population).

We can explain the interpretation and practical use of lift and ROI charts on a
simple example of a company who wants to advertise their products. Suppose they
have a large database of addresses for sending advertising materials. The question
is: will they send these materials to everyone in a database? What are the alternatives?
How to obtain the maximum profit from this advertising campaign? If the company
has additional data about “potential” costumers in their database, they may build the
predictive (classification) model about the behavior of customers and their responses
to the advertisement. In estimation of the classification model, lift chart is telling the
company what are potential improvements in advertising results. What are benefits if
they use the model and based on the model select only the most promising (respon-
sive) subset of database instead of sending ads to everyone? If the results of the cam-
paign are presented in Figure 4.35a, the interpretation may be the following. If the
company is sending the advertising materials to the top 10% of customers selected
by the model, the expected response will be 3.5 times greater than sending the same
ads to randomly selected 10% of customers. On the other hand, sending ads involves
some cost, and receiving response and buying the product results in additional profit
for the company. If the expenses and profits are included in the model, ROI chart
shows the level of profit obtained with the predictive model. From Figure 4.35b it
is obvious that the profit will be negative if ads are sent to all customers in the data-
base. If it is sent only to 10% of top customers selected by the model, ROI will be
about 70%. This simple example may be translated to large number of different
data-mining applications.

While lift and ROI charts are popular in a business community for evaluation of
data-mining models, scientific community “likes” a receiver operating characteristic
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(ROC) curve better. What is the basic idea behind an ROC curve construction? Con-
sider a classification problem where all samples have to be labeled with one of two
possible classes. A typical example is a diagnostic process in medicine, where it is
necessary to classify the patient as being with or without disease. For these types
of problems, two different yet related error rates are of interest. The false acceptance
rate (FAR) is the ratio of the number of test cases that are incorrectly “accepted” by a
given model to the total number of cases. For example, in medical diagnostics, these
are the cases in which the patient is wrongly predicted as having a disease. On the
other hand, the false reject rate (FRR) is the ratio of the number of test cases that
are incorrectly “rejected” by a given model to the total number of cases. In the pre-
vious medical example, these are the cases of test patients who are wrongly classified
as healthy.

For the most of the available data-mining methodologies, a classification model
can be tuned by setting an appropriate threshold value to operate at a desired value of
FAR. If we try to decrease the FAR parameter of the model, however, it would
increase the FRR and vice versa. To analyze both characteristics at the same time,
a new parameter was developed, the ROC curve. It is a plot of FAR versus FRR
for different threshold values in the model. This curve permits one to assess the per-
formance of the model at various operating points (thresholds in a decision process
using the available model) and the performance of the model as a whole (using as
a parameter the area below the ROC curve). The ROC curve is especially useful
for a comparison of the performances of two models obtained by using different
data-mining methodologies. The typical shape of an ROC curve is given in
Figure 4.36 where the axes are sensitivity (FAR) and 1-specificity (1-FRR).

How to construct an ROC curve in practical data-mining applications? Of course,
many data-mining tools have a module for automatic computation and visual repre-
sentation of an ROC curve. What if this tool is not available? At the beginning we are
assuming that we have a table with actual classes and predicted classes for all training
samples. Usually, predicted values as an output from the model are not computed as
0 or 1 (for two-class problem) but as real values on interval [0, 1]. When we select a
threshold value, we may assume that all predicted values above the threshold are 1,
and all values below the threshold are 0. Based on this approximation we may com-
pare actual class with predicted class by constructing a confusion matrix, and compute

FAR
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0
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1-FRR
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1

Figure 4.36. The ROC curve shows the trade-off between sensitivity and 1-specificity values.
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sensitivity and specificity of the model for the given threshold value. In general, we
can compute sensitivity and specificity for large number of different threshold values.
Every pair of values (sensitivity, 1-specificity) represents one discrete point on a final
ROC curve. Examples are given in Figure 4.37. Typically, for graphical presentation,
we are selecting systematically threshold values, for example, starting from 0 and
increasing by 0.05 until 1, and in that case we have 21 different threshold values. That
will generate enough points to reconstruct an ROC curve.

When we are comparing two classification algorithms, we may compare the mea-
sures as accuracy or F-measure and conclude that one model is giving better results
than the other. Also, we may compare lift charts, ROI charts, or ROC curves, and if
one curve is above the other, we may conclude that corresponding model is more
appropriate. But in both cases we may not conclude that there are significant differ-
ences between models or more important that one model shows better performances
than the other with statistical significance. There are some simple tests that could ver-
ify these differences. The first one is McNemar’s test. After testing models of both
classifiers, we are creating a specific contingency table based on classification results
on testing data for both models. Components of the contingency table are explained in
Table 4.5.

After computing the components of the contingency table, we may apply the χ2
statistic with one degree of freedom for the following expression:

e01−e10 −1 2

e01 + e10
χ2
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Figure 4.37. Computing points on an ROC curve. (a) The threshold = 0.5. (b) The

threshold = 0.8.
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McNemar’s test rejects the hypothesis that the two algorithms have the same error
at the significance level α, if previous value is greater than χ2α,1. For example, for
α = 0.05, χ20.05,1 = 3.84.

The other test is applied if we compare two classification models that are tested
with k-fold cross-validation process. The test starts with the results of k-fold cross-
validation obtained from k training/validation set pairs. We compare the error percen-
tages in two classification algorithms based on errors in k validation sets, which are
recorded for two models as: p1i and p2i , i = 1,…,K.

The difference in error rates on fold i is Pi = p1i −p
2
i . Then, we can compute

m=

k
i= 1Pi

K
and S2 =

k
i= 1 Pi−m

2

K−1

We have a statistic that is t distributed with k-1 degrees of freedom and the fol-
lowing test:

K ×m

S
tK−1

Thus, the k-fold cross-validation paired t-test rejects the hypothesis that two algo-
rithms have the same error rate at significance level α, if previous value is outside
interval (−tα/2,K− 1, tα/2,K− 1). For example, the threshold values could be for
α = 0.05 and K = 10 or 30: t0.025,9 = 2.26, and t0.025,29 = 2.05.

Over time, all systems evolve. Thus, from time to time, the model will have to be
retested, retrained and possibly completely rebuilt. Charts of the residual differences
between forecasted and observed values are an excellent way to monitor model
results.

4.10 IMBALANCED DATA CLASSIFICATION

Most data-mining algorithms are working the best when the number of samples in
each class is approximately equal. But in a case of real-world classification problems,
a scenario where the number of observations belonging to one class is significantly
lower than those belonging to the other classes is not so rare at all. These are so-called

TABLE 4.5 . Contingency Table for McNemar’s Test

e00: Number of samples misclassified by both
classifiers

e01: Number of samples misclassified by
classifier 1, but not classifier 2

e10: Number of samples misclassified by
classifier 2, but not classifier 1

e11: Number of samples correctly classified
by both classifier s
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classification problems with imbalanced data, and by convention, we call the classes
having more samples the majority classes while the ones having fewer samples the
minority classes.

Imbalanced data sets exist in many application domains, such as recognition in
advance of unreliable telecommunication customers, detection of oil spills using sat-
ellite radar images, detection of fraudulent telephone calls, filtering spam email,
identifying rare diseases in medical diagnostics, and predicting natural disaster like
earthquakes. For example, if the system is classifying credit card transactions, most
transactions are legitimate, and only a few of them are fraudulent. What could be an
available balance between majority and minority class depends on an application. In
practical applications, the ratio of the small to the large classes can be drastic such
as 1–100, while some applications for fraud detection reported imbalance of
1–100,000. For example, in a case of utilities fraud detection, usually for every
1000 observations, it may be recognized about 20 fraudulent observations; we
may assume that the minority event rate is about 2%. Similar case is in large medical
record databases used to build classification model for some rare diseases. Minority
samples rate may be below 1% because of large number of patients who do not have
that rare disease. In such cases with imbalanced classes, standard classifiers tend to
be overwhelmed by the large majority classes and ignore the small ones. Further-
more, in medical diagnostics of a certain rare disease such as cancer, cancer is
regarded as the positive, minority class, and non-cancer as negative, majority class.
In this kind of applications, missing a cancer using classification model is much
more serious error than the false positive error predicting cancer for healthy person.
Therefore, data-mining professionals have addressed two additional issues of a class
imbalance:

(a) Assign distinct costs tomajority andminority training samples, andmore often

(b) Rebalance the original data set, either by oversampling the minority class or
undersampling the majority class.

With undersampling we randomly select a subset of samples from the majority
class to match the number of samples coming from each class. The main disadvantage
of undersampling is that we lose potentially relevant information given in the left-out
samples. With oversampling, we randomly duplicate or combine samples fromminor-
ity class to match the amount of samples in each class. While we are avoiding losing
information with this approach, we also run the risk of overfitting our model by repeat-
ing some samples.

One of the most popular oversampling techniques is Synthetic Minority Over-
sampling Technique (SMOTE). Its main idea is to form new minority class samples
by interpolating between several minority class samples that lie close together. New
synthetic samples are generated in the following way:

• Randomly select a sample from a minority class, and find its nearest neighbor
belonging also to the minority class.
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• Take the difference between n-dimensional feature vector representing sample
under consideration and a vector for its nearest neighbor.

• Multiply this difference by a random number between 0 and 1, and add it to the
feature vector of a minority sample under consideration. This causes the selec-
tion of a random point along the line segment between specific samples.

• Repeat the previous steps until a balance between minority and majority
classes is obtained.

This approach effectively forces the decision region of the minority class to
become more general. Illustrative example of a SMOTE approach is given in
Figure 4.38. Minority class samples are presented with small circles, while majority
class samples in 2D space are given with X symbol. Minority class consists of only six
2D samples, and it is oversampled with additional five new synthetic samples on lines
between initial members of a minority class and their nearest neighbors.

The explanation why synthetic minority oversampling improves performance
while minority oversampling with replacement does not is obvious from
Figure 4.38. Consider the effect on the decision regions in n-dimensional feature space
when minority oversampling is done by replication (sampling with replacement),
instead of introduction of synthetic samples. With replication, the decision region,
which results in a classification model for the minority class, is becoming smaller
and more specific as the minority samples in the region are replicated. This is the
opposite of the desired effect of a model generality. On the other hand, SMOTE
method of synthetic oversampling enables the classifier to build larger decision
regions that contain not only original but also nearby minority class points.

Usually SMOTE approach assumes a combination of SMOTE oversampling
algorithm for minority class, combined with undersampling of a majority class by ran-
domly removing some of these samples, and making a classification problem more
balanced. Of course, it is not required that the balance expect exactly 50–50%

Synthetic

instances

Figure 4.38. Generation of synthetic sampling SMOTE approach.
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representation of classes. Final effect on the SMOTE-based classification model is
combination of positive aspects of both undersampling and oversampling processes:
better generalization of a minority class and no loss of useful information-related
majority class. The main problem with SMOTE is weak effectiveness for high-
dimensional data, but some improved version of the algorithm solved satisfactory
these problems.

While the initial SMOTE approach does not handle data sets with nominal
features, new version was developed to handle mixed data sets of continuous and
nominal features. This approach is called Synthetic Minority Over-sampling
Technique-Nominal Continuous [SMOTE-NC]. The main generalization is based
on median computation. Compute in the first step the median of standard deviations
of all continuous features for the minority class. If the nominal features differ between
a sample and its potential nearest neighbors, then this median is included in the
Euclidean distance computation. A median is used to penalize the difference of each
nominal feature. For example, it is necessary to determine the distance between two
six-dimensional samples, F1 and F2, where the first three dimensions are numerical
while last three are nominal:

F1 = 1,2,3,A,B,C

F2 = 4,6,5,A,D,E

Initially, value Med is determined representing the median of the standard devia-
tions of all continuous features of the minority class (first three features). Then, the
Euclidean distance between the samples F1 and F2 is determined as

Distance F1,F2 = SQRT 1−4 2 + 2−6 2 + 3−5 2 + 0 +Med2 +Med2

The median term Med is included in the distance twice for two nominal features
with different values in samples F1 and F2. For the first nominal feature, because the
values are the same (both samples have value A), the distance is equal to 0.

Traditionally, accuracy is the most commonly used measure for the quality of the
classification model. However, for classification with the class imbalance problem,
accuracy is no longer a proper measure since the rare class has very little impact
on accuracy as compared with the majority class. For example, in a problem where
a rare class is represented by only 1% of the training data, a simple classification strat-
egy can be to predict the majority class label for every sample. This simplified
approach will achieve a high accuracy of 99%. However, this measurement is mean-
ingless to some applications where the learning is concentrated on the identification of
the rare minority cases. The nature of some applications requires a fairly high rate of
correct detection in the minority class allowing as a balance a small error rate in the
majority class.

Because the accuracy is not meaningful for imbalanced data classification pro-
blems, two additional measures are commonly used as a replacement: precision (also
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called positive predictive value) and recall (also called sensitivity). These two mea-
sures may be replaced with the single one F-measure (as it is given in Table 4.4):

F-measure =
2 × precision × recall
precision + recall

F-measure represents the harmonic mean of precision and recall, and it tends to be
closer to the smaller of the two values. As a consequence, high F-measure value
ensures that both recall and precision are reasonably high.

When the performance of both classes is concerned in imbalanced applications,
both true positive rate (TPrate) and true negative rate (TNrate) are expected to be high
simultaneously. Additional measure is suggested for these cases. It is the geometric
mean or G-mean measure defined as

G-mean = TPrate × TNrate 1 2 = sensitivity × specificity 1 2

G-mean measures the balanced performance of a learning algorithm between
majority and minority classes. The final decision in a model selection should consider
a combination of different measures instead of relying on a single measure. To min-
imize imbalance-biased estimates of performance, it is recommended to report both
the obtained metric values for selected measures and the degree of imbalance in
the data.

4.11 90% ACCURACY … NOW WHAT?

Often forgotten in texts on data mining is a discussion of the deployment process. Any
data-mining student may produce a model with relatively high accuracy over some
small data set using the tools available. However, an experienced data miner sees
beyond the creation of a model during the planning stages. There needs to be a plan
created to evaluate how useful a data-mining model is to a business and how the model
will be rolled out. In a business setting the value of a data-mining model is not simply
the accuracy, but how that model can impact the bottom line of a company. For exam-
ple, in fraud detection, algorithm Amay achieve an accuracy of 90%, while algorithm
B achieves 85% on training data. However, an evaluation of the business impact of
each may reveal that algorithm A would likely underperform algorithm B because
of larger number of very expensive false negative cases. Additional financial evalu-
ation may recommend algorithm B for the final deployment because with this solu-
tions company saves more money. A careful analysis of the business impacts of
data-mining decisions gives much greater insight of a data-mining model.

In this section two case studies are summarized. The first case study details the
deployment of a data-mining model that improved the efficiency of employees in find-
ing fraudulent claims at an insurance company in Chile. The second case study
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involves a system deployed in hospitals to aid in counting compliance with industry
standards in caring for individuals with cardiovascular disease (CVD).

4.11.1 Insurance Fraud Detection

In 2005, insurance company Banmedica S.A. of Chile received 800 digital medical
claims per day. The process of identifying fraud was entirely manual. Those respon-
sible for identifying fraud had to look one by one at medical claims to find fraudulent
cases. Instead it was hoped that data-mining techniques would aid in a more efficient
discovery of fraudulent claims.

The first step in the data-mining process required that the data-mining experts
gain a better understanding of the processing of medical claims. After several meet-
ings with medical experts, the data-mining experts were able to better understand the
business process as it related to fraud detection. They were able to determine the cur-
rent criteria used in manually discriminating between claims that were approved,
rejected, and modified. A number of known fraud cases were discussed and the behav-
ioral patterns that revealed these documented fraud cases.

Next, two data sets were supplied. The first data set contained 169 documented
cases of fraud. Each fraudulent case took place over an extended period of time show-
ing that time was an important factor in these decisions as cases developed. The sec-
ond data set contained 500,000 medical claims with labels supplied by the business of
“approved,” “rejected,” or “reduced.”

Both data sets were analyzed in detail. The smaller data set of known fraud cases
revealed that these fraudulent cases all involved on a small number of medical profes-
sionals, affiliates, and employers. From the original paper, “19 employers and 6 doc-
tors were implicated with 152 medical claims.” The labels of the larger data set were
revealed to be not sufficiently accurate for data mining. Contradictory data points
were found. A lack of standards in recording these medical claims with a large number
of missing values contributed to the poorly labeled data set. Instead of the larger
500,000 point data set, the authors were “forced” to rebuild a subset of this data. This
required manual labeling of the subset.

The manual labeling would require a much smaller set of data points to be used
from the original 500,000. To cope with a smaller set of data points, the problem was
split into four smaller problems, namely, identifying fraudulent medical claims, affili-
ates, medical professionals, and employers. Individual data sets were constructed for
each of these four subtasks ranging in size from 2838 samples in the medical claims
task to 394 samples in the employer subtask. For each subtask a manual selection of
features was performed. This involved selecting only one feature from highly corre-
lated features, replacing categorical features with numerical features, and designing
new features that “summarize temporal behavior over an extended time span.” The
original 125 features were paired down to between 12 and 25 features depending
on the subtask. Additionally, the output of all other subtasks became inputs to each
subtask, thus providing feedback to each subtask. Lastly, 2% of outliers were removed
and features were normalized.
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When modeling the data, it was found that initially the accuracy of a single neural
network on these data sets could vary by as much as 8.4%. Instead of a single neural
network for a particular data set, a committee of neural networks was used. Each data
set was also divided into a training set, a validation set, and a testing set to avoid over-
fitting the data. At this point it was also decided that each of the four models would be
retrained monthly to keep up with the ever-evolving process of fraud.

Neural networks and committees of neural networks output scores rather than an
absolute fraud classification. It was necessary that the output be thresholded. The
threshold was decided after accounting for personnel costs, false alarm costs, and
the cost of not detecting a particular instance of fraud. All of these factors figured into
an ROC curve to decide upon acceptable false and true positive rates. When the med-
ical claims model using the input of the other three subtasks scored a medical claim
above the chosen threshold, then a classification of fraud is given to that claim. The
system was tested on a historical data set of 8819 employers that contains 418
instances of fraud. After this historical data set was split into training, validation,
and test set, the results showed the system identified 73.4% of the true fraudsters
and had a false positive rate of 6.9%.

The completed system was then run each night, giving each new medical claim a
fraud probability. The claims are then reviewed being sorted by the given probabil-
ities. There were previously very few documented cases of fraud. After implementa-
tion there were approximately 75 rejected claims per month. These newly found cases
of fraud accounted for nearly 10% of the raw overall costs to the company! Addition-
ally, the culture of fraud detection changed. A taxonomy of the types of fraud was
created, and further improvements were made on the manual revision process. The
savings covered the operational costs and increased the quality of health coverage.

Overall this project was a big success. The authors spent a lot of time first under-
standing the problem and second analyzing the data in detail before the data was mod-
eled. The final models produced were analyzed in terms of real business costs. In the
end the results showed that the costs of the project were justified and Banmedica S.A.
greatly benefited from the final system.

4.11.2 Improving Cardiac Care

CVD leads to nearly one million deaths per year in the United States or 38% of all
deaths in the United States. Additionally, in 2005 the estimated cost of CVD was
$394 billion compared with an estimated $190 billion on all cancers combined.
CVD is a real problem that appears to be growing in the number of lives claimed
and the percent of the population that will be directly affected by this disease. Certainly
we can gain a better understanding of this disease. There already exist guidelines for the
care of patients with CVD that were created by panels of experts. With the current load
on the medical system, doctors are able to only spend a short amount of time with each
patient. With the large number of guidelines that exists, it is not reasonable to expect
that doctors will follow every guideline on every patient. Ideally a system would aid a
doctor in following the given guidelines without adding additional overheads.
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This case study outlines the use and deployment of a system called REMIND
meant to both find patients at need within the system and enable a better tracking
of when patients are being cared for according to guidelines. Currently two main types
of records are kept for each patient, financial and clinical. The financial records are
used for billing. These records use standardized codes (ICD-9, for example) for doctor
assessments and drugs prescribed. This standardization makes it straightforward for
computer systems to extract information from these records and to be used by data-
mining processes. However, it has been found that these codes are accurate only
60–80% of the time for various reasons. One reason is that when these codes are used
for billing, though two conditions are nearly identical in symptoms and prescriptions,
the amount of money that will be paid out by an insurer may be very different. The
other form of records kept is clinical records. Clinical records are made up of unstruc-
tured text and allow for the transfer of knowledge about a patient’s condition and treat-
ments from one doctor to another. These records are much more accurate, but are not
in a form that is easily used by automated computer systems.

It is not possible that with great demands on the time of doctors and nurses, addi-
tional data may be recorded specifically for this system. Instead, the REMIND system
combines data from all available systems. This includes extracting knowledge from
the unstructured clinical records. The REMIND system combines all available sources
of data available and then using redundancy in data the most likely state of the patient
is found. For example, to determine a patient is diabetic one, may use any of the fol-
lowing pieces of data: billing code 250.xx for diabetes, a free text dictation identifying
a diabetic diagnosis, a blood sugar value >300, a treatment of insulin or oral antidia-
betic, or a common diabetic complication. The likelihood of the patient having dia-
betes increases as more relevant information is found. The REMIND system uses
extracted information from all possible data sources, combined in a Bayesian network.
The various outputs of the network are used along with temporal information to find
the most probable sequence of states with a predefined disease progression modeled as
aMarkov model. The probabilities and structure of the Bayesian network are provided
as domain knowledge provided beforehand by experts and tunable per deployment.
The domain knowledge in the REMIND system is fairly simple as stated by the author
of the system. Additionally, by using a large amount of redundancy, the system per-
forms well for a variety of probability settings and temporal settings for the disease
progression. However, before a wide distribution of the REMIND system, a careful
tuning of all the parameters must take place.

One example deployment was to the South Carolina Heart Center where the goal
was to identify among 61,027 patients those at risk of sudden cardiac death (SCD).
Patients who have previously suffered a myocardial infarction (heart attack, abbrevi-
ated as MI) are at the highest risk of SCD. A study was performed on the efficacy of
implantable cardioverter defibrillators (ICDs). It was found that patients, with a prior
MI and low ventricular function, had their 20-month mortality rate drop from 19.8 to
14.2%. This implantation is now a standard recommendation. Previous to the
REMIND system, one had two options to find who would require the implantation
of an ICD. The first option is to manually review the records of all patients to identify
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those who were eligible for an ICD. This would be extremely time consuming con-
sidering the large number of records. The other approach would be to evaluate the
need for an ICD during regular checkups. However, not all patients come in for reg-
ular checkups, and there would be a high chance that not every patient would be care-
fully considered for the need of an ICD. The REMIND system was given access to
billing and demographics databases and transcribed free text including histories, phys-
ical reports, physician progress notes, and lab reports. From this data the REMIND
system processed all records on a single laptop in 5 hours and found 383 patients
who qualified for an ICD.

To check the validity of the 383 found patients, 383 randomly chosen patients
were mixed with the 383 found previously. Then 150 patients were chosen from
the 766 patients’ sample. An electrophysiologist manually reviewed the 150 patients,
being blinded to the selection made by the REMIND system. The REMIND system
concurred with the manual analysis in 94% (141/150) of the patients. The sensitivity
was 99% (69/70) and the specificity was 90% (72/80). Thus it was shown that the
REMIND system could fairly accurately identify at risk patients in a large database.
An expert was required to verify the results of the system. Additionally, all of the
patients found would be reviewed by a physician before implantation would occur.

From the previous cases we see that a great deal of time was required from experts
to prepare data for mining, and careful analysis of a model application needed to take
place after deployment. Although applied data-mining techniques (neural and Bayes-
ian networks) will be explained in the following chapters, the emphasis of these stories
is on complexity of a data-mining process, and especially deployment phase, in real-
world applications. The system developed for Banmedica was measured after analysis
in terms of fraudulent cases found and the amount of money saved. If these numbers
were not in favor of the system, then it would have been rolled back. In the case of the
REMIND system, the results of the system-wide search had to be manually analyzed
for accuracy. It was not enough that the rules were good, but the actual patients found
needed to be reviewed.

4.12 REVIEW QUESTIONS AND PROBLEMS

1. Explain the differences between the basic types of inferences: induction, deduc-
tion, and transduction.

2. Why do we use the observational approach in most data-mining tasks?

3. Discuss situations in which we would use the interpolated functions given in
Figures 4.3b, c, and d as “the best” data-mining model.

4. Which of the functions have linear parameters and are nonlinear? Explain why.

(a) y = ax 5 + b
(b) y = a/x
(c) y = a ex

(d) y = ea x
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5. Explain the difference between interpolation of loss function for classification
problems and for regression problems.

6. Is it possible that empirical risk becomes higher than expected risk? Explain.

7. Why is it so difficult to estimate the VC dimension for real-world data-mining
applications?

8. What will be the practical benefit of determining the VC dimension in real-world
data-mining applications?

9. Classify the common learning tasks explained in Section 4.4 as supervised or
unsupervised learning tasks. Explain your classification.

10. Analyze the differences between validation and verification of inductive-based
models.

11. In which situations would you recommend the leave-one-out method for valida-
tion of data-mining results?

12. Develop a program for generating “fake” data sets using the bootstrap method.

13. Develop a program for plotting an ROC curve based on a table of FAR–FRR
results.

14. Develop an algorithm for computing the area below the ROC curve (that is a very
important parameter in the evaluation of inductive-learning results for classifica-
tion problems).

15. The testing data set (inputs: A, B, and C, output: class) is given together with test-
ing results of the classification (predicted output). Find and plot two points on the
ROC curve for the threshold values of 0.5 and 0.8.

A B C Class (output) Predicted output

10 2 A 1 0.97
20 1 B 0 0.61
30 3 A 1 0.77
40 2 B 1 0.91
15 1 B 0 0.12

16. Machine-learning techniques differ from statistical techniques in that machine-
learning methods:

(a) Typically assume an underlying distribution for the data.
(b) Are better able to deal with missing and noisy data.
(c) Are not able to explain their behavior.
(d) Have trouble with large-sized data sets.

17. Explain the difference between sensitivity and specificity.
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18. When do you need to use a separate validation set in addition to train and
test sets?

19. In this question we will consider learning problems where each instance x is some
integer in the set X = {1, 2,…, 127} and where each hypothesis h H is an interval
of the form a ≤ x ≤b, where a and b can be any integers between 1 and 127 (inclu-
sive), so long as a ≤ b. A hypothesis a ≤ x ≤ b labels instance x positive if x falls
into the interval defined by a and b and labels the instance negative otherwise.
Assume throughout this question that the teacher is only interested in teaching
concepts that can be represented by some hypothesis in H.

(a) How many distinct hypotheses are there in H?
(b) Suppose the teacher is trying to teach the specific target concept 32 ≤ x ≤ 84. What is

the minimum number of training examples the teacher must present to guarantee that
any consistent learner will learn this concept exactly?

20. Is it true that the SVM learning algorithm is guaranteed to find the globally opti-
mal hypothesis with respect to its object function? Discuss your answer.

21. A marketing company working for a charity has developed two different models
that predict the likelihood that donors will respond to a mailshot asking them to
make a special extra donation. The prediction scores generated for a test set for
these two models are shown in the table below.

(a) Using a classification threshold of 0.5 and assuming that true is the positive target
level, construct a confusion matrix for each of the models.

(b) Generate a cumulative gain chart for each model.
(c) Find the values for the McNamara’s test that compare two models.

ID Target Model
1 Score

Model
2 Score

ID Target Model
1 Score

Model
2 Score

1 False 0.1026 0.2089 16 True 0.7165 0.4569
2 False 0.2937 0.0080 17 True 0.7677 0.8086
3 True 0.5120 0.8378 18 False 0.4468 0.1458
4 True 0.8645 0.7160 19 False 0.2176 0.5809
5 False 0.1987 0.1891 20 False 0.9800 0.5783
6 True 0.7600 0.9398 21 True 0.6562 0.7843
7 True 0.7519 0.9800 22 True 0.9693 0.9521
8 True 0.2994 0.8578 23 False 0.0275 0.0377
9 False 0.0552 0.1560 24 True 0.7047 0.4708
10 False 0.9231 0.5600 25 False 0.3711 0.2846
11 True 0.7563 0.9062 26 False 0.4440 0.1100
12 True 0.5664 0.7301 27 True 0.5440 0.3562
13 True 0.2872 0.8764 28 True 0.5713 0.9200
14 True 0.9326 0.9274 29 False 0.3757 0.0895
15 False 0.0651 0.2992 30 True 0.8224 0.8614
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22. A nearest neighbor approach is best used:

(a) With large-sized data sets.
(b) When irrelevant attributes have been removed from the data.
(c) When a generalized model of the data is desirable.
(d) When an explanation of what has been found is of primary importance.

Select only one choice and give additional explanations.

23. Given desired class C and population P, lift is defined as:

(a) The probability of class C given population P divided by the probability of C given a
sample taken from the population.

(b) The probability of population P given a sample taken from P.
(c) The probability of class C given a sample taken from population P.
(d) The probability of classC given a sample taken from population P divided by the prob-

ability of C within the entire population P.

24. When do you need to use a separate validation set in addition to train and test sets?

25. Show that accuracy is a function of sensitivity and specificity.

4.13 REFERENCES FOR FURTHER STUDY

1. Engel, A., C. Van den Broeck, Statistical Mechanics of Learning, Cambridge Uni-
versity Press, Cambridge, UK, 2001.

The subject of this book is the contribution of machine learning over the last dec-
ade by researchers applying the techniques of statistical mechanics. The authors
provide a coherent account of various important concepts and techniques that
are currently only found scattered in papers. They include many examples and
exercises, making this a book that can be used with courses, or for self-teaching,
or as a handy reference.

2. Cherkassky, V., F. Mulier, Learning from Data: Concepts, Theory and Methods,
2nd edition, John Wiley, New York, 2007.

The book provides a unified treatment of the principles and methods for learning
dependencies from data. It establishes a general conceptual framework in which
various learning methods from statistics, machine learning, and other disciplines
can be applied—showing that a few fundamental principles underlie most new
methods being proposed today. An additional strength of this primarily theoretical
book is the large number of case studies and examples that simplify and make
understandable concepts in statistical learning theory.

3. Berthold, M. and D. J. Hand, eds., Intelligent Data Analysis – An Introduction,
Springer, Berlin, Germany, 2007.

Thebook is a detailed introductory presentation of the key classes of intelligent data-
analysismethods including all commondata-mining techniques. The first half of the
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book is devoted to the discussion of classical statistical issues, ranging from basic
concepts of probability and inference to advancedmultivariate analyses and Bayes-
ian methods. The second part of the book covers theoretical explanations of data-
mining techniques that have their roots in disciplines other than statistics.Numerous
illustrations and examples enhance the reader’s knowledge about theory and prac-
tical evaluations of data-mining techniques.

4. Alpaydin A., Introduction to Machine Learning, 2nd edition, MIT Press, 2010.

The goal of machine learning is to program computers to use example data or past
experience to solve a given problem. Many successful applications of machine
learning exist already, including systems that analyze past sales data to predict cus-
tomer behavior, optimize robot behavior so that a task can be completed using min-
imum resources, and extract knowledge from bioinformatics data. Introduction to
Machine Learning is a comprehensive textbook on the subject, covering a broad
array of topics not usually included in introductory machine-learning texts. In
order to present a unified treatment of machine-learning problems and solutions,
it discusses many methods from different fields, including statistics, pattern recog-
nition, neural networks, artificial intelligence, signal processing, control, and data
mining. All learning algorithms are explained so that the student can easily move
from the equations in the book to a computer program.

5. Haibo He, Yunqian Ma, Imbalanced Learning: Foundations, Algorithms, and
Applications, 1st edition, John Wiley & Sons, Inc., 2013.

Imbalanced learning focuses on how an intelligent system can learn when it is pro-
vided with imbalanced data. Solving imbalanced learning problems is critical in
numerous data-intensive networked systems, including surveillance, security,
Internet, finance, biomedical, defense, and more. Due to the inherent complex
characteristics of imbalanced data sets, learning from such data requires new
understandings, principles, algorithms, and tools to transform vast amounts of
raw data efficiently into information and knowledge representation. The first com-
prehensive look at this new branch of machine learning, this book offers a critical
review of the problem of imbalanced learning, covering the state of the art in tech-
niques, principles, and real-world applications.

6. Aggarwal C., Data Mining, Springer, 2015.

This textbook explores the different aspects of data mining from the fundamentals
to the complex data types and their applications, capturing the wide diversity of
problem domains for data-mining issues. It goes beyond the traditional focus on
data-mining problems to introduce advanced data types such as text, time series,
discrete sequences, spatial data, graph data, and social networks. The chapters of
this book fall into one of three categories:

• Fundamental chapters: Data mining has four main problems, which correspond
to clustering, classification, association pattern mining, and outlier analysis.
These chapters comprehensively discuss a wide variety of methods for these
problems.
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• Domain chapters: These chapters discuss the specific methods used for different
domains of data such as text data, time-series data, sequence data, graph data,
and spatial data.

• Application chapters: These chapters study important applications such as
stream mining, Web mining, ranking, recommendations, social networks, and
privacy preservation. The domain chapters also have an applied flavor.
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5

STATISTICAL METHODS

Chapter Objectives

• Explain methods of statistical inference commonly used in data-mining
applications.

• Identify different statistical parameters for assessing differences in data sets.

• Describe the components and the basic principles of naïve Bayesian classifier
and the logistic regression method.

• Introduce log-linear models using correspondence analysis of contingency
tables.

• Discuss the concepts of ANOVA analysis and linear discriminant analysis of
multidimensional samples.

Statistics is the science of collecting and organizing data and drawing conclusions
from data sets. The organization and description of the general characteristics of data
sets is the subject area of descriptive statistics. How to draw conclusions from data is

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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the subject of statistical inference. In this chapter, the emphasis is on the basic prin-
ciples of statistical inference; other related topics will be described briefly, only
enough to understand the basic concepts.

Statistical data analysis is the most well-established set of methodologies for data
mining. Historically, the first computer-based applications of data analysis were
developed with the support of statisticians. Ranging from one-dimensional data anal-
ysis to multivariate data analysis, statistics offered a variety of methods for data min-
ing, including different types of regression and discriminant analysis. In this short
overview of statistical methods that support the data-mining process, we will not cover
all approaches and methodologies; a selection has been made of the techniques used
most often in real-world data-mining applications.

5.1 STATISTICAL INFERENCE

The totality of the observations with which we are concerned in statistical analysis,
whether their number is finite or infinite, constitutes what we call a population.
The term refers to anything of statistical interest, whether it is a group of people,
objects, or events. The number of observations in the population is defined as the size
of the population. In general, populations may be finite or infinite, but some finite
populations are so large that, in theory, we assume them to be infinite.

In the field of statistical inference, we are interested in arriving at conclusions
concerning a population when it is impossible or impractical to observe the entire
set of observations that make up the population. For example, in attempting to
determine the average length of the life of a certain brand of light bulbs, it would
be practically impossible to test all such bulbs. Therefore, we must depend on a
subset of observations from the population for most statistical-analysis applica-
tions. In statistics, a subset of a population is called a sample, and it describes
a finite data set of n-dimensional vectors. Throughout this book, we will call this
subset of population just simply data set to eliminate confusion between the two
definitions of sample: one, explained earlier, denoting the description of a single
entity in the population, and the other, given here, referring to the subset of a pop-
ulation. From a given data set, we build a statistical model of the population that
will help us to make inferences concerning that same population. If our inferences
from the data set are to be valid, we must obtain samples that are representative of
the population. Very often, we are tempted to choose a data set by selecting the
most convenient members of the population. But such an approach may lead to
erroneous inferences concerning the population. Any sampling procedure that pro-
duces inferences that consistently overestimate or underestimate some character-
istics of the population is said to be biased. To eliminate any possibility of bias in
the sampling procedure, it is desirable to choose a random data set in the sense
that the observations are made independently and at random. The main purpose
of selecting random samples is to elicit information about unknown population
parameters.
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The relation between data sets and the system they describe may be used for
inductive reasoning: from observed data to knowledge of a (partially) unknown
system. Statistical inference is the main form of reasoning relevant to data analysis.
The theory of statistical inference consists of those methods by which one makes
inferences or generalizations about a population. These methods may be categorized
into two major areas: estimation and tests of hypotheses.

In estimation, one wants to come up with a plausible value or a range of plausible
values for the unknown parameters of the system. The goal is to gain information from
a data set T in order to estimate one or more parameters w belonging to the model of
the real-world system f(X, w). A data set T is described by the ordered n-tuples of
values for variables: X = {X1, X2,…,Xn} (attributes of entities in population):

T = x11,…,x1n , x21,…,x2n ,…, xm1,…,xmn

It can be organized in a tabular form as a set of samples with its corresponding
feature values. Once the parameters of the model are estimated, we can use them to
make predictions about the random variable Y from the initial set of attributes Y X,
based on other variables or sets of variables X∗ = X – Y. If Y is numeric, we speak about
regression, and if it takes its values from a discrete, unordered data set, we speak about
classification.

Once we have obtained estimates for the model parameters w from some dataset
T, we may use the resulting model (analytically given as a function f(X∗, w)) to make
predictions about Y when we know the corresponding value of the vector X∗. The dif-
ference between the prediction f(X∗, w) and the real value Y is called the prediction
error. It should preferably take values close to zero. A natural quality measure of a
model f(X∗, w), as a predictor of Y, is the expected mean squared error for the entire
data set T:

ET Y – f X∗,w 2

In statistical testing, on the other hand, one has to decide whether a hypothesis
concerning the value of the population characteristic should be accepted or rejected in
the light of an analysis of the data set. A statistical hypothesis is an assertion or con-
jecture concerning one or more populations. The truth or falsity of a statistical hypoth-
esis can never be known with absolute certainty, unless we examine the entire
population. This, of course, would be impractical in most situations, sometimes even
impossible. Instead, we test a hypothesis on a randomly selected data set. Evidence
from the data set that is inconsistent with the stated hypothesis leads to a rejection
of the hypothesis, whereas evidence supporting the hypothesis leads to its acceptance,
or more precisely, it implies that the data do not contain sufficient evidence to refuse it.
The structure of hypothesis testing is formulated with the use of the term null hypoth-
esis. This refers to any hypothesis that we wish to test and is denoted byH0.H0 is only
rejected if the given data set, on the basis of the applied statistical tests, contains strong
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evidence that the hypothesis is not true. The rejection of H0 leads to the acceptance of
an alternative hypothesis about the population.

In this chapter, some statistical estimation and hypothesis-testing methods are
described in great detail. These methods have been selected primarily based on the
applicability of the technique in a data-mining process on a large data set.

5.2 ASSESSING DIFFERENCES IN DATA SETS

For many data-mining tasks, it would be useful to learn the more general character-
istics about the given data set, regarding both central tendency and data dispersion.
These simple parameters of data sets are obvious descriptors for assessing differences
between different data sets. Typical measures of central tendency include mean,
median, and mode, while measures of data dispersion include variance and standard
deviation.

The most common and effective numeric measure of the center of the data set is
the mean value (also called the arithmetic mean). For the set of n numeric values x1,
x2,…,xn, for the given feature X, the mean is

mean =
1
n

n

i= 1

xi

and it is a built-in function (like all other descriptive statistical measures) in most mod-
ern statistical software tools. For each numeric feature in the n-dimensional set of sam-
ples, it is possible to calculate the mean value as a central tendency characteristic for
this feature. Sometimes, each value xi in a set may be associated with a weight wi,
which reflects the frequency of occurrence, significance, or importance attached to
the value. In this case, the weighted arithmetic mean or the weighted average value is

mean =
n
i= 1wixi
n
i= 1wi

Although the mean is the most useful quantity that we use to describe a set of data,
it is not the only one. For skewed data sets, a better measure of the center of data is the
median. It is the middle value of the ordered set of feature values if the set consists of
an odd number of elements, and it is the average of the middle two values if the num-
ber of elements in the set is even. If x1, x2,…,xn represents a data set of size n, arranged
in increasing order of magnitude, then the median is defined by

median =

x n+ 1 2 if n is odd

xn 2 + x n 2 + 1

2
if n is even

Another measure of the central tendency of a data set is the mode. The mode for
the set of data is the value that occurs most frequently in the set. While mean and
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median are characteristics of primarily numeric data sets, the mode may be applied
also to categorical data, but it has to be interpreted carefully because the data are
not ordered. It is possible for the greatest frequency to correspond to several different
values in a data set. That results in more than one mode for a given data set. Therefore,
we classify data sets as unimodal (with only one mode) and multimodal (with two or
more modes). Multimodal data sets may be precisely defined as bimodal, trimodal,
etc. For unimodal frequency curves that are moderately asymmetrical, we have the
following useful empirical relation for numeric data sets:

mean –mode ≤ 3 × mean –median

that may be used for an analysis of data set distribution and the estimation of one
central tendency measure based on the other two.

As an example, let us analyze these three measures on the simple data set T that
has the following numeric values:

T = 3, 5, 2, 9, 0, 7, 3, 6

After a sorting process the same data set is given as

T = 0, 2, 3, 3, 5, 6, 7, 9

The corresponding descriptive statistical measures for central tendency are

meanT =
0 + 2 + 3 + 3 + 5 + 6 + 7 + 9

8
= 4 375

medianT =
3 + 5
2

= 4

modeT = 3

The degree to which numeric data tend to spread is called dispersion of the data,
and the most common measures of dispersion are the standard deviation σ and the
variance σ2. The variance of n numeric values x1, x2,…,xn is

σ2 =
1

n−1

n

i= 1

xi−mean 2

The standard deviation σ is the square root of the variance σ2. The basic properties
of the standard deviation σ as a measure of spread are as follows:

1. σ measures spread about the mean and should be used only when the mean is
chosen as a measure of the center.

2. σ = 0 only when there is no spread in the data, i.e., when all measurements
have the same value. Otherwise σ > 0.

169ASSESSING DIFFERENCES IN DATA SETS



For the data set given in our example, variance σ2 and standard deviation σ are

σ2 =
1
8

8

i= 1

xi−4 375 2

σ2 = 8 5532

σ = 2 9246

In many statistical software tools, a popularly used visualization tool of descrip-
tive statistical measures for central tendency and dispersion is a boxplot that is typi-
cally determined by the mean value, variance, and sometimes max and min values of
the data set. In our example, the minimal and maximal values in the T set are minT = 0
and maxT = 9. Graphical representation of statistical descriptors for the data set T has
the form of a boxplot, given in Figure 5.1.

Analyzing large data sets requires proper understanding of the data in advance.
This would help domain experts to influence the data-mining process and to properly
evaluate the results of a data-mining application. Central tendency measures for a data
set are valuable only for some specific distributions of data values. Therefore it is
important to know characteristics of a distribution for a data set we are analyzing.
The distribution of values in a data set is described according to the spread of its
values. Usually, this is best done using a histogram representation; an example is
given in Figure 5.2. In addition to quantifying the distribution of values for each fea-
ture, it is also important to know the global character of the distributions and all spe-
cifics. Knowing that data set has classic bell curve empowers researchers to use a
broad range of traditional statistical techniques for data assessment. But in many prac-
tical cases the distributions are skewed or multimodal, and traditional interpretation of
concepts such as mean value or standard deviation does not have a sense.

Part of the assessment process is determining relations between features in a data
set. Simple visualization through the scatter plots gives initial estimation of these rela-
tions. Figure 5.3 shows part of the integrated scatter plot where it compared each pair

Values 10

Max

2σ
5

Mean

–2σ

0 Min

_________________________________

Data set T

Figure 5.1. A boxplot representation of the data set T based on mean value, variance, and

min and max values.
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Figure 5.2. Displaying single feature distribution.
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Figure 5.3. Scatter plots showing the correlation between features from –1 to 1.
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of features. This visualization technique is available in most integrated data-mining
tools. Quantification of these relations is given through the correlation factor.

These visualization processes are part of data understanding phase, and they are
essential in better preparation for data mining. This human interpretation helps to
obtain a general view of the data. It is also possible to identify abnormal or interesting
characteristics, such as anomalies.

5.3 BAYESIAN INFERENCE

It is not hard to imagine situations in which the data are not the only available source of
information about the population or about the system to be modeled. The Bayesian
method provides a principled way to incorporate this external information into the
data-analysis process. This process starts with an already given probability distribu-
tion for the analyzed data set. As this distribution is given before any data is consid-
ered, it is called a prior distribution. The new data set updates this prior distribution
into a posterior distribution. The basic tool for this updating is the Bayes theorem.

The Bayes theorem represents a theoretical background for a statistical approach
to inductive-inferencing classification problems. We will explain first the basic con-
cepts defined in the Bayes theorem and then use this theorem in the explanation of the
naïve Bayesian classification process, or the simple Bayesian classifier.

Let X be a data sample whose class label is unknown. Let H be some hypothesis,
such that the data sample X belongs to a specific class C. We want to determine P(H/
X), the probability that the hypothesisH holds given the observed data sample X. P(H/
X) is the posterior probability representing our confidence in the hypothesis after X is
given. In contrast, P(H) is the prior probability ofH for any sample, regardless of how
the data in the sample looks. The posterior probability P(H/X) is based on more infor-
mation than the prior probability P(H). The Bayesian theorem provides a way of cal-
culating the posterior probability P(H/X) using probabilities P(H), P(X), and P(X/H).
The basic relation is

P H X = P X H ×P H P X

Suppose now that there are a set of m samples S = {S1, S2,…,Sm} (the training data
set) where every sample Si is represented as an n-dimensional vector {x1, x2,…,xn}.
Values xi correspond to attributes A1, A2,…,An, respectively. Also, there are k classes
C1, C2,…,Ck, and every sample belongs to one of these classes. Given an additional
data sample X (its class is unknown), it is possible to predict the class for X using the
highest conditional probability P(Ci/X), where i = 1,…,k. That is the basic idea of
naïve Bayesian classifier. These probabilities are computed using the Bayes theorem:

P Ci X = P X Ci ×P Ci P X
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As P(X) is constant for all classes, only the product P(X/Ci) P(Ci) needs to be
maximized. We compute the prior probabilities of the class as

P Ci = number of training samples of classCi m

where m is total number of training samples.
Because the computation of P(X/Ci) is extremely complex, especially for large

data sets, the naïve assumption of conditional independence between attributes is
made. Using this assumption, we can express P(X/Ci) as a product:

P X Ci =
n

t = 1

P xt Ci

where xt are values for attributes in the sample X. The probabilities P(xt/Ci) can be
estimated from the training data set.

A simple example will show that the naïve Bayesian classification is a compu-
tationally simple process even for large training data sets. Given a training data set
of seven four-dimensional samples (Table 5.1), it is necessary to predict classification
of the new sample X = {1, 2, 2, class = ?}. For each sample, A1, A2, and A3 are input
dimensions and C is the output classification.

In our example, we need to maximize the product P(X/Ci) P(Ci) for i = 1,2
because there are only two classes. First, we compute prior probabilities P(Ci) of
the class:

P C = 1 = 4 7 = 0 5714

P C = 2 = 3 7 = 0 4286

TABLE 5.1 . Training Data Set for a Classification Using
Naïve Bayesian Classifier

Sample Attribute1 Attribute2 Attribute3 Class

A1 A2 A3 C

1 1 2 1 1
2 0 0 1 1
3 2 1 2 2
4 1 2 1 2
5 0 1 2 1
6 2 2 2 2
7 1 0 1 1

173BAYESIAN INFERENCE



Second, we compute conditional probabilities P(xt/Ci) for every attribute value
given in the new sample X = {1, 2, 2, C=?} (or more precisely, X = {A1 = 1, A2 =
2, A3 = 2, C = ?}) using training data sets:

P A1 = 1 C = 1 = 2 4 = 0 50

P A1 = 1 C = 2 = 1 3 = 0 33

P A2 = 2 C = 1 = 1 4 = 0 25

P A2 = 2 C = 2 = 2 3 = 0 66

P A3 = 2 C = 1 = 1 4 = 0 25

P A3 = 2 C = 2 = 2 3 = 0 66

Under the assumption of conditional independence of attributes, the conditional
probabilities P(X/Ci) will be

P X C = 1 =P A1 = 1 C = 1 ×P A2 = 2 C = 1 ×P A3 = 2 C = 1

= 0 50 0 25 0 25 = 0 03125

P X C = 2 =P A1 = 1 C = 2 ×P A2 = 2 C = 2 ×P A3 = 2 C = 2

= 0 33 0 66 0 66 = 0 14375

Finally, multiplying these conditional probabilities with corresponding priori prob-
abilities, we can obtain values proportional (≈) to P(Ci/X) and find their maximum:

P C1 X ≈P X C = 1 ×P C = 1 = 0 03125 × 0 5714 = 0 0179

P C2 X ≈P X C = 2 ×P C = 2 = 0 14375 × 0 4286 = 0 0616

P C2 X =Max P C1 X , P C2 X =Max 0 0179, 0 0616

Based on the previous two values that are the final results of the naive Bayesian
classifier, we can predict that the new sample X belongs to the classC = 2. The product
of probabilities for this class P(X/C = 2) P(C = 2) is higher, and therefore P(C = 2/X)
is higher because it is directly proportional to the computed probability product.

In theory, the Bayesian classifier has the minimum error rate compared with all
other classifiers developed in data mining. In practice, however, this is not always the
case because of inaccuracies in the assumptions of attributes and class-conditional
independence.
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5.4 PREDICTIVE REGRESSION

The prediction of continuous values can be modeled by a statistical technique called
regression. The objective of regression analysis is to determine the best model that can
relate the output variable to various input variables. More formally, regression
analysis is the process of determining how a variable Y is related to one or more other
variables x1,x2,…,xn. Y is usually called the response output, or dependent variable,
and xi-s are inputs, regressors, explanatory variables, or independent variables.
Common reasons for performing regression analysis include the following:

1. The output is expensive to measure but the inputs are not, and so a cheap pre-
diction of the output is sought.

2. The values of the inputs are known before the output is known, and a working
prediction of the output is required.

3. Controlling the input values, we can predict the behavior of corresponding
outputs.

4. There might be a causal link between some of the inputs and the output, and
we want to identify the links.

Before explaining regression technique in details, let us explain main differences
between two concepts: interpolation and regression. In both cases training data set
X = {xt, rt}t=1,N is given where xt are input features and output value rt R:

• If there is no noise in the data set, the task is interpolation. We would like to
find a function f(x) that passes through all these training points such that we
have rt = f(xt). In polynomial interpolation, given N points, we found that
(N − 1) degree polynomial we can use to predict exact output r for any input x.

• In regression, there is noise ε added to the output of the unknown function
f: rt = f(xt) + ε. The explanation for noise is that there are extra hidden variables
zt that we cannot observe. We would like to approximate the output rt = f(xt, zt)
by our model g(xt), not only for present training data but for data in future. We
are minimizing empirical error: E(g/x) = 1/N Σ (rt − g(xt))2 for t = 1 to N.

Generalized linear regression models are currently the most frequently applied
statistical techniques. They are used to describe the relationship between the trend
of one variable and the values taken by several other variables. Modeling this type
of relationship is often called linear regression. Fitting models is not the only task
in statistical modeling.We often want to select one of several possible models as being
the most appropriate. An objective method for choosing between different models is
called analysis of variance, and it is described in Section 5.5.
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The relationship that fits a set of data is characterized by a prediction model called
a regression equation. The most widely used form of the regression model is the gen-
eral linear model formally written as

Y = α+ β1 X1 + β2 X2 + β3 X3 + + βn Xn

Applying this equation to each of the given samples, we obtain a new set of
equations:

yj = α+ β1 x1j + β2 x2j + β3 x3j+ + βn xnj + εj j= 1,…,m

where εj’s are errors of regression for each of m given samples. The linear model is
called linear because the expected value of yj is a linear function: the weighted sum of
input values.

Linear regression with one input variable is the simplest form of regression. It
models a random variable Y (called a response variable) as a linear function of another
random variable X (called a predictor variable). Given n samples or data points of the
form (x1, y1), (x2, y2),…,(xn, yn), where xi X and yi Y, linear regression can be
expressed as

Y = α+ β X

where α and β are regression coefficients. With the assumption that the variance of Y is
a constant, these coefficients can be solved by the method of least squares, which
minimizes the error between the actual data points and the estimated line. The residual
sum of squares is often called the sum of squares of the errors about the regression line,
and it is denoted by SSE:

SSE=
n

i= 1

ei
2 =

n

i= 1

yi−yi
2 =

n

i= 1

yi−α−βxi
2

where yi is the real output value given in the data set and y i is a response value
obtained from the model. Differentiating SSE with respect to α and β, we have

∂ SEE
∂α

= – 2
n

i= 1

yi – α – βxi

∂ SSE
∂β

= – 2
n

i= 1

yi – α – βxi xi

Setting the partial derivatives equal to zero (minimization of the total error) and
rearranging the terms, we obtain the equations

176 STATISTICAL METHODS



nα+ β
n

i= 1

xi =
n

i= 1

yi

α
n

i= 1

xi + β
n

i= 1

xi
2 =

n

i= 1

xiyi

which may be solved simultaneously to yield computing formulas for α and β. Using
standard relations for the mean values, regression coefficients for this simple case of
optimization are

β =
n
i= 1 xi−meanx yi−meany

n
i= 1 xi−meanx

2

α=meany – β meanx

where meanx and meany are the mean values for random variables X and Y given in a
training data set. It is important to remember that our values of α and β, based on a
given data set, are only estimates of the true parameters for the entire population. The
equation y = α + βxmay be used to predict the mean response y0 for the given input x0,
which is not necessarily from the initial set of samples.

For example, if the sample data set is given in the form of a table (Table 5.2) and
we are analyzing the linear regression between two variables (predictor variable A and
response variable B), then the linear regression can be expressed as

B= α+ β A

where α and β coefficients can be calculated based on previous formulas (using
meanA = 5 and meanB = 6), and they have the values

TABLE 5.2 . A Database for the
Application of Regression Methods

A B

1 3
8 9

11 11
4 5
3 2

177PREDICTIVE REGRESSION



α= 1 03

β = 0 92

The optimal regression line is

B= 1 03 + 0 92 A

The initial data set and the regression line are graphically represented in
Figure 5.4 as a set of points and a corresponding line.

Multiple regression is an extension of linear regression and involves more than
one predictor variable. The response variable Y is modeled as a linear function of sev-
eral predictor variables. For example, if the predictor attributes are X1, X2, and X3, then
the multiple linear regression is expressed as

Y = α+ β1 X1 + β2 X2 + β3 X3

where α, β1, β2, β3 are coefficients that are found by using the method of least squares.
For a linear regression model with more than two input variables, it is useful to analyze
the process of determining β parameters through a matrix calculation:

Y = β X

where β = {β0, β1,…,βn}, β0 = α, and X and Y are input and output matrices for a given
training data set. The residual sum of the squares of errors SSE will also have the
matrix representation

SSE= Y – β X ’ Y – β X

B B=1.03+0.92 A
•

10

•
•

•
•

A

10

Figure 5.4. Linear regression for the data set given in Table 5.2.
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and after optimization

∂ SSE
∂β

= 0 X X β =X Y

the final β vector satisfies the matrix equation

β = X X – 1 X Y

where β is the vector of estimated coefficients in a linear regression. Matrices X and Y
have the same dimensions as the training data set. Therefore, an optimal solution for β
vector is relatively easy to find in problems with several hundred training samples. For
real-world data-mining problems, the number of samples may increase to several mil-
lions. In these situations, because of the extreme dimensions of matrices and the expo-
nentially increased complexity of the algorithm, it is necessary to find modifications
and/or approximations in the algorithm or to use totally different regression methods.

There is a large class of regression problems, initially nonlinear, that can be con-
verted into the form of the general linear model. For example, a polynomial relation-
ship such as

Y = α+ β1 X1 + β2 X2 + β3 X1X3 + β4 X2X3

can be converted to the linear form by setting new variables X4 = X1 X3 and X5 =
X2 X3. Also, polynomial regression can be modeled by adding polynomial terms to
the basic linear model. For example, a cubic polynomial curve has the form

Y = α+ β1 X + β2 X2 + β3 X3

By applying transformation to the predictor variables (X1 = X, X2 = X
2, and X3 = X

3),
it is possible to linearize the model and transform it into a multiple-regression problem,
which can be solved by themethod of least squares. It should be noted that the term linear
in the general linear model applies to the dependent variable being a linear function of the
unknown parameters. Thus, a general linear model might also include some higher-order
terms of independent variables, e.g. terms such as X2

1 , e
βX, X1 X2, 1/X, or X3

2 . The basis
is, however, to select the proper transformation of input variables or their combina-
tions. Some useful transformations for linearization of the regression model are given
in Table 5.3.

TABLE 5.3 . Some Useful Transformations to Linearize Regression

Function Proper Transformation Form of Simple Linear Regression

Exponential: Y = α e βx Y∗ = ln Y Regress Y∗ against x
Power: Y = α xβ Y∗ = log Y; x∗ = log x Regress Y∗ against x∗

Reciprocal: Y = α+ β(1/x) x∗ = 1/x Regress Y against x∗

Hyperbolic: Y = x/(α + βx) Y∗ = 1/Y; x∗ = 1/x Regress Y∗ against x∗
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The major effort, on the part of a user, in applying multiple-regression techniques
lies in identifying the relevant independent variables from the initial set and in select-
ing the regression model using only relevant variables. Two general approaches are
common for this task:

1. Sequential search approach—which consists primarily of building a regres-
sion model with an initial set of variables and then selectively adding or delet-
ing variables until some overall criterion is satisfied or optimized.

2. Combinatorial approach—which is, in essence, a brute-force approach,
where the search is performed across all possible combinations of independent
variables to determine the best regression model.

Irrespective of whether the sequential or combinatorial approach is used, the
maximum benefit to model building occurs from a proper understanding of the appli-
cation domain.

Additional postprocessing steps may estimate the quality of the linear regression
model. Correlation analysis attempts to measure the strength of a relationship between
two variables (in our case this relationship is expressed through the linear regression
equation). One parameter, which shows this strength of linear association between
two variables by means of a single number, is called a correlation coefficient r. Its
computation requires some intermediate results in a regression analysis:

r = β
Sxx
Syy

=
Sxy

Sxx Syy

where

Sxx =
n

i= 1

xi –meanx
2

Syy =
n

i= 1

yi –meany
2

Sxy =
n

i= 1

xi –meanx yi –meany

The value of r is between –1 and 1. Negative values for r correspond to regression
lines with negative slopes and a positive r shows a positive slope. We must be very
careful in interpreting the r value. For example, values of r equal to 0.3 and 0.6 only
mean that we have two positive correlations, the second somewhat stronger than the
first. It is wrong to conclude that r = 0.6 indicates a linear relationship twice as strong
as that indicated by the value r = 0.3.
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For our simple example of linear regression given at the beginning of this section,
the model obtained was B = 0.8 + 1.04A. We may estimate the quality of the model
using the correlation coefficient r as a measure. Based on the available data in
Figure 4.3, we obtained intermediate results

SAA = 62

SBB = 60

SAB = 52

and the final correlation coefficient

r =
52

62 60
= 0 85

A correlation coefficient r = 0.85 indicates a good linear relationship between two
variables. Additional interpretation is possible. Because r2 = 0.72, we can say that
approximately 72% of the variations in the values of B is accounted for by a linear
relationship with A.

5.5 ANALYSIS OF VARIANCE

Often the problem of analyzing the quality of the estimated regression line and the
influence of the independent variables on the final regression is handled through
an analysis-of-variance (ANOVA) approach. This is a procedure where the total var-
iation in the dependent variable is subdivided into meaningful components that are
then observed and treated in a systematic fashion. The ANOVA is a powerful tool
that is used in many data-mining applications.

ANOVA is a primarily a method of identifying which of the β’’s in a linear
regression model are nonzero. Suppose that the β parameters have already been esti-
mated by the least-square error algorithm. Then the residuals are differences between
the observed output values and the fitted values:

Ri = yi – f xi

The size of the residuals, for all m samples in a data set, is related to the size of
variance σ2, and it can be estimated by

S2 =

m
i= 1 yi – f xi

2

m – n – 1

assuming that the model is not overparameterized. The numerator is called the residual
sum, while the denominator is called the residual degree of freedom (d.f.).
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The key fact about S2 is that it allows us to compare different linear models. If the
fitted model is adequate, then S2 is a good estimate of σ2. If the fitted model includes
redundant terms (some β’s are really zero), S2 is still good and close to σ2. Only if the
fitted model does not include one or more of the inputs that it ought to will S2 tend to
be significantly larger than the true value of σ2. These criteria are basic decision steps
in the ANOVA algorithm, in which we analyze the influence of input variables on a
final model. First, we start with all inputs and compute S2 for this model. Then, we
omit inputs from the model one by one. If we omit a useful input, the estimate S2 will
significantly increase, but if we omit a redundant input, the estimate should not change
much. Note that omitting one of the inputs from the model is equivalent to forcing the
corresponding β to the zero. In principle, in each iteration, we compare two S2 values
and analyze the differences between them. For this purpose, we introduce an F-ratio or
F-statistic test in the form

F =
S2new
S2old

If the new model (after removing one or more inputs) is adequate, then F will be
close to 1; a value of F significantly larger than one will signal that the model is not
adequate. Using this iterative ANOVA approach, we can identify which inputs are
related to the output and which are not. The ANOVA procedure is only valid if
the models being compared are nested; in other words, one model is special case
of the other.

Suppose that the data set has three input variables x1, x2, and x3 and one output Y.
In preparation for the use of the linear regression method, it is necessary to estimate the
simplest model, in the sense of the number of required inputs. Suppose that after
applying the ANOVA methodology, the results given in Table 5.4 are obtained.

The results of ANOVA analysis show that the input attribute x3 does not have an
influence on the output estimation because the F-ratio value is close to 1:

F21 =
S2
S1

=
3 98
3 56

= 1 12

TABLE 5.4 . ANOVA Analysis for a Data Set with Three
Inputs x1, x2, and x3

Case Set of Inputs Si
2 F

1 x1, x2, x3 3.56
2 x1, x2 3.98 F21 = 1.12
3 x1, x3 6.22 F31 = 1.75
4 x2, x3 8.34 F41 = 2.34
5 x1 9.02 F52 = 2.27
6 x2 9.89 F62 = 2.48

182 STATISTICAL METHODS



In all other cases, the subsets of inputs increase the F-ratio significantly, and
therefore, there is no possibility of reducing the number of input dimensions further
without influencing the quality of the model. The final linear regression model for this
example will be

Y = α+ β1 x1 + β2 x2

Multivariate analysis of variance (MANOVA) is a generalization of the previ-
ously explained ANOVA analysis, and it concerns data-analysis problems in which
the output is a vector rather than a single value. One way to analyze this sort of data
would be to model each element of the output separately, but this ignores the possible
relationship between different outputs. In other words, the analysis would be based on
the assumption that outputs are not related. MANOVA is a form of analysis that does
allow correlation between outputs. Given the set of input and output variables, we
might be able to analyze the available data set using a multivariate linear model:

Yj = α+ β1 x1j + β2 x2j + β3 x3j+ + βn xnj + εj j = 1,2,…,m

where n is the number of input dimensions, m is the number of samples, Yj is a vector
with dimensions c × 1, and c is the number of outputs. This multivariate model can be
fitted in exactly the same way as a linear model using least-square estimation. One
way to do this fitting would be to fit a linear model to each of c dimensions of the
output, one at a time. The corresponding residuals for each dimension will be (yj – y j)
where yj is the exact value for a given dimension and y j is the estimated value.

The analogue of the residual sum of squares for the univariate linear model is the
matrix of the residual sums of squares for the multivariate linear model. This matrix R is
defined as

R=
m

j= 1

yj – yj yj – yj
T

The matrix R has the residual sum of squares for each of the c dimensions stored
on its leading diagonal. The off-diagonal elements are the residual sums of cross pro-
ducts for pairs of dimensions. If we wish to compare two nested linear models to deter-
mine whether certain β’s are equal to zero, then we can construct an extra sum of
squares matrix and apply a method similar to ANOVA—MANOVA. While we
had an F-statistic in the ANOVA methodology, MANOVA is based on matrix R with
four commonly used test statistics: Roy’s greatest root, the Lawley–Hotelling trace,
the Pillai trace, and Wilks’ lambda. Computational details of these tests are not
explained in the book, but most textbooks on statistics will explain these; also, most
standard statistical packages that support MANOVA analysis support all four statis-
tical tests and explain which one to use under what circumstances.

Classical multivariate analysis also includes the method of principal compo-
nent analysis, where the set of vector samples is transformed into a new set with
a reduced number of dimensions. This method has been explained in Chapter 3
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when we were talking about data reduction and data transformation as preproces-
sing phases for data mining.

5.6 LOGISTIC REGRESSION

Linear regression is used to model continuous-value functions. Generalized regres-
sion models represent the theoretical foundation on which the linear regression
approach can be applied to model categorical response variables. A common type
of a generalized linear model is logistic regression. Logistic regression models the
probability of some event occurring as a linear function of a set of predictor variables.

Rather than predicting the value of the dependent variable, the logistic regression
method tries to estimate the probability p that the dependent variable will have a given
value. For example, in place of predicting whether a customer has a good or bad credit
rating, the logistic regression approach tries to estimate the probability of a good credit
rating. The actual state of the dependent variable is determined by looking at the esti-
mated probability. If the estimated probability is greater than 0.50, then the prediction
is closer to YES (a good credit rating); otherwise the output is closer to NO (a bad
credit rating is more probable). Therefore, in logistic regression, the probability p
is called the success probability.

We use logistic regression only when the output variable of the model is defined
as a categorical binary. On the other hand, there is no special reason why any of the
inputs should not also be quantitative, and, therefore, logistic regression supports a
more general input data set. Suppose that output Y has two possible categorical values
coded as 0 and 1. Based on the available data we can compute the probabilities for
both values for the given input sample: P(yj = 0) = 1 – pj and P(yj = 1) = pj. The model
that we will fit these probabilities is accommodated linear regression:

log
pj

1 – pj
= α+ β1 X1j + β2 X2j + β3 X3j+ + βn Xnj

This equation is known as the linear logistic model. The function log(pj/(1 – pj))
is often written as logit(p). The main reason for using the logit form of output is to
prevent the predicting probabilities from becoming values out of required range [0,
1]. Suppose that the estimated model, based on a training data set and using the linear
regression procedure, is given with a linear equation

logit p = 1 5 – 0 6 x1 + 0 4 x2 – 0 3 x3

and also suppose that the new sample for classification has input values {x1, x2, x3} =
{1, 0, 1}. Using the linear logistic model, it is possible to estimate the probability of
the output value 1, (p(Y = 1)) for this sample. First, calculate the corresponding
logit(p):
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logit p = 1 5 – 0 6 1 + 0 4 0 – 0 3 1 = 0 6

and then the probability of the output value 1 for the given inputs:

log
p

1 – p
= 0 6

p =
e0 6

1 + e0 6
= 0 65

Based on the final value for probability p, we may conclude that output value
Y = 1 is more probable than the other categorical value Y = 0. Even this simple exam-
ple shows that logistic regression is a very simple but powerful classification tool in
data-mining applications. With one set of data (training set), it is possible to establish
the logistic regression model, and with other set of data (testing set), we may analyze
the quality of the model in predicting categorical values. The results of logistic regres-
sion may be compared with other data-mining methodologies for classification tasks
such as decision rules, neural networks, and Bayesian classifier.

5.7 LOG-LINEAR MODELS

Log-linear modeling is a way of analyzing the relationship between categorical (or
quantitative) variables. The log-linear model approximates discrete multidimensional
probability distributions. It is a type of generalized linear model where the output Yi is
assumed to have a Poisson distribution, with expected value μj. The natural logarithm
of μj is assumed to be the linear function of inputs:

log μj = α+ β1 X1j + β2 X2j + β3 X3j+ + βn Xnj

Since all the variables of interest are categorical variables, we use a table to rep-
resent them, a frequency table that represents the global distribution of data. The aim
in log-linear modeling is to identify associations between categorical variables. Asso-
ciation corresponds to the interaction terms in the model, so our problem becomes a
problem of finding out which of all β’s are 0 in the model. A similar problem can be
stated in ANOVA analysis. If there is an interaction between the variables in a log-
linear mode, it implies that the variables involved in the interaction are not independ-
ent but related, and the corresponding β is not equal to zero. There is no need for one of
the categorical variables to be considered as an output in this analysis. If the output is
specified, then instead of the log-linear models, we can use logistic regression for
analysis. Therefore, we will next explain log-linear analysis when a data set is defined
without output variables. All given variables are categorical, and we want to analyze
the possible associations between them. That is the task for correspondence analysis.
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Correspondence analysis represents the set of categorical data for analysis within
incidence matrices, also called contingency tables. The result of an analysis of the con-
tingency table answers the question: “Is there a relationship between analyzed attri-
butes or not?” An example of 2 × 2 contingency table, with cumulative totals, is
shown in Table 5.5. The table is a result of a survey to examine the relative attitude
of males and females about abortion. The total set of samples is 1100, and every sam-
ple consists of two categorical attributes with corresponding values. For the attribute
sex, the possible values are male and female, and for attribute support, the values are
yes and no. Cumulative results for all the samples are represented in four elements of
the contingency table.

Are there any differences in the extent of support for abortion between the male
and the female populations? This question may be translated into: “What is the level
of dependency (if any) between the two given attributes: sex and support?” If an
association exists, then there are statistically significant differences in opinion
between the male and the female populations; otherwise both populations have a
similar opinion.

Having seen that log-linear modeling is concerned with association of categorical
variables, wemight attempt to find some quantity (measure) based on this model using
data in the contingency table. But we do not do this. Instead, we define the algorithm
for feature association based on a comparison of two contingency tables:

1. The first step in the analysis is to transform given contingency table into
similar table with expected values. These expected values are calculated under
assumption that the variables are independent.

2. In the second step, we compare these two matrices using the squared distance
measure and the chi-squared test as criteria of association for two categorical
variables.

The computational process for these two steps is very simple for a 2 × 2 contin-
gency table. The process is also applicable for increased dimensions of a contingency
table (analysis of categorical variables with more than two values, with matrices such
as 3 × 4 or 6 × 9).

TABLE 5.5 . A 2 × 2 Contingency Table for 1100 Samples
Surveying Attitudes About Abortion

Support Total

Yes No

Sex Female 309 191 500
Male 319 281 600
Total 628 472 1100
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Let us introduce the notation. Denote the contingency table as Xm × n. The row
totals for the table are

Xj+ =
n

i= 1

Xji

and they are valid for every row (j = 1,…,m). Similarly, we can define the column
totals as

X+ i =
m

j= 1

Xji

The grand total is defined as a sum of row totals:

X+ + =
m

j= 1

Xj+

or as a sum of column totals:

X+ + =
n

i= 1

X+ i

Using these totals we can calculate the contingency table of expected values
under the assumption that there is no association between the row variable and the
column variable. The expected values are

Eji =
Xj+ X+ i

X+ +
for j= 1,…,m, i = 1,…,n

and they are computed for every position in the contingency table. The final result of
this first step will be a totally new table that consists only of expected values, and the
two tables will have the same dimensions.

For our example in Table 5.5, all sums (columns, rows, and grand total) are repre-
sented already in the contingency table. Based on these values, we can construct the
contingency table of expected values. The expected value on the intersection of the
first row and the first column will be

E11 =
X1 + X + 1

X + +
=
500 628
1100

= 285 5

Similarly, we can compute the other expected values, and the final contingency
table with expected values will be as given in Table 5.6.
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The next step in the analysis of categorical attribute dependency is application of
the chi-squared test of association. The initial hypothesisH0 is the assumption that the
two attributes are unrelated, and it is tested by Pearson’s chi-squared formula:

χ2 =
m

j= 1

n

i= 1

Xji –Eji
2

Eji

The greater the value of χ2, the greater the evidence against the hypothesisH0. For
our example, comparing the tables in Tables 5.5 and 5.6, the test gives the following
result:

χ2 = 8 2816

with the d.f. for an m × n dimensional table computed as

d f degrees of freedom = m – 1 n – 1 = 2 – 1 2 – 1 = 1

In general, the hypothesis H0 is rejected at the level of significance α if

χ2 ≥ T α

where T(α) is the threshold value from the χ2 distribution table usually given in text-
books on statistics. For our example, selecting α = 0.05, we obtain the threshold (from
the χ2 tables in most of statistical books)

T 0 05 = χ2 1 – α,d f = χ2 0 95,1 = 3 84

A simple comparison shows that

χ2 = 8 2816 ≥ T 0 05 = 3 84

and therefore, we can conclude that hypothesis H0 is rejected; the attributes analyzed
in the survey have a high level of dependency. In other words, the attitude about abor-
tion shows differences between the male and the female populations.

The same procedure may be generalized and applied to contingency tables where
the categorical attributes have more than two values. The next example shows how the
previously explained procedure can be applied without modifications to the

TABLE 5.6 . 2 × 2 Contingency Table of Expected Values for the
Data Given in Table 5.5

Support Total

Yes No

Sex Female 285.5 214.5 500
Male 342.5 257.5 600
Total 628 472 1100
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contingency table 3 × 3. The initial table given in Table 5.7a is compared with the
table of estimated values that is given in Table 5.7b, and the corresponding test is cal-
culated as χ2 = 3.229. Note that in this case d.f. parameter has the value

d f = n – 1 m – 1 = 3 – 1 3 – 1 = 4

We have to be very careful about drawing additional conclusions and further ana-
lyzing the given data set. It is quite obvious that the sample size is not large. The num-
ber of observations in many cells of the table is small. This is a serious problem, and
additional statistical analysis is necessary to check if the sample is a good represen-
tation of the total population or not.We do not cover this analysis here because in most
real-world data-mining problems, the data set is enough large to eliminate the possi-
bility of occurrence of these deficiencies.

That was one level of generalization for an analysis of contingency tables with
categorical data. The other direction of generalization is inclusion into analysis of
more than two categorical attributes. The methods for three- and high-dimensional
contingency-table analysis are described in many books on advanced statistics; they
explain the procedure of discovered dependencies between several attributes that are
analyzed simultaneously.

5.8 LINEAR DISCRIMINANT ANALYSIS

Linear discriminant analysis (LDA) is concerned with classification problems where
the dependent variable is categorical (nominal or ordinal) and the independent vari-
ables are metric. The objective of LDA is to construct a discriminant function that

TABLE 5.7 . Contingency Tables for Categorical Attributes with Three Values

(a) A 3× 3 Contingency Table of Observed Values

Attribute1 Totals

Low Med. High

Attribute2 Excell. 21 11 4 36
Good 3 2 2 7
Poor 7 1 1 9

Totals 31 14 7 52

(b) A 3 × 3 Contingency Table of Expected Values under H0

Attribute1 Totals

Low Med. High

Attribute2 Excell. 21.5 9.7 4.8 36
Good 4.2 1.9 0.9 7
Poor 5.4 2.4 1.2 9

Totals 31 14 7 52
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yields different scores when computed with data from different output classes.
A linear discriminant function has the following form:

z=w1x1 +w2x2+ +wkxk

where x1, x2,…,xk are independent variables. The quantity z is called the discriminant
score and w1, w2,…,wk are called weights. A geometric interpretation of the discrim-
inant score is shown in Figure 5.5. As the figure shows, the discriminant score for a
data sample represents its projection onto a line defined by the set of weight
parameters.

The construction of a discriminant function z involves finding a set of weight
values wi that maximizes the ratio of the between-class to the within-class variance
of the discriminant score for a preclassified set of samples. Once constructed, the dis-
criminant function z is used to predict the class of a new nonclassified sample. Cutting
scores serve as the criteria against which each individual discriminant score is judged.
The choice of cutting scores depends upon a distribution of samples in classes. Letting
za and zb be the mean discriminant scores of preclassified samples from class A and B,
respectively, the optimal choice for the cutting score zcut-ab is given as

zcut-ab =
za + zb
2

when the two classes of samples are of equal size and are distributed with uniform
variance. A new sample will be classified to one or another class depending on its
score z > zcut-ab or z < zcut-ab. A weighted average of mean discriminant scores is used
as an optimal cutting score when the set of samples for each of the classes is not of
equal size:

X2 •
• • • x

• • x  x

x x

x

X1

Z = W1X1+ W2X2

Figure 5.5. Geometric interpretation of the discriminant score.
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zcut-ab =
na za + nb zb

na + nb

The quantities na and nb represent the number of samples in each class. Although
a single discriminant function z with several discriminant cuts can separate samples
into several classes, multiple discriminant analysis is used for more complex pro-
blems. The term multiple discriminant analysis is used in situations when separate
discriminant functions are constructed for each class. The classification rule in such
situations takes the following form: decide in favor of the class whose discriminant
score is the highest. This is illustrated in Figure 5.6.

5.9 REVIEW QUESTIONS AND PROBLEMS

1. What are the differences between statistical testing and estimation as basic areas
in statistical inference theory?

2. A data set for analysis includes only one attribute X:

X = 7, 12, 5, 18, 5, 9, 13, 12, 19, 7, 12, 12, 13, 3, 4, 5, 13, 8, 7, 6

(a) What is the mean of the data set X?
(b) What is the median?
(c) What is the mode, and what is the modality of the data set X?
(d) Find the standard deviation for X.
(e) Give a graphical summarization of the data set X using a boxplot representation.
(f) Find outliers in the data set X. Discuss the results.

3. For the training set given in Table 5.1, predict the classification of the following
samples using simple Bayesian classifier.

(a) {2, 1, 1}
(b) {0, 1, 1}

Discriminant

score #1

Maxima

selector
Output

Discriminant

score #2

Discriminant

score #n

Input

Figure 5.6. Classification process in multiple discriminant analysis.
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4. Given a data set with two dimensions X and Y:

X Y

1 5
4 2.75
3 3
5 2.5

(a) Use a linear regression method to calculate the parameters α and β where y = α + β x.
(b) Estimate the quality of the model obtained in (a) using the correlation coefficient r.
(c) Use an appropriate nonlinear transformation (one of those represented in Table 5.3) to

improve regression results. What is the equation for a new, improved, and nonlinear
model? Discuss a reduction of the correlation coefficient value.

5. A logit function, obtained through logistic regression, has the form

Logit p = 1 2 – 1 3 × 1 + 0 6 × 2 + 0 4 × 3

Find the probability of output values 0 and 1 for the following samples.

(a) {1, −1, −1}
(b) {−1, 1, 0 }
(c) {0, 0, 0 }

6. Analyze the dependency between categorical attributes X and Y if the data set is
summarized in a 2 × 3 contingency table.

Y

T F

X A 128 7
B 66 30
C 42 55

7. Implement the algorithm for a boxplot representation of each numeric attribute in
an input flat file.

8. What are the basic principles in the construction of a discriminant function
applied in a linear discriminant analysis?

9. Implement the algorithm to analyze a dependency between categorical variables
using two-dimensional contingency tables.

10. Find EMA(4, 4) for the data set {27, 27, 18, 9} if: (a) p = 1/3, and (b) p = 3/4.
Discuss the solutions!
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11. With Bayes classifier, missing data items are:

(a) Treated as equal compares.
(b) Treated as unequal compares.
(c) Replaced with a default value.
(d) Ignored.

Determine what is the true statement.

12. The table below contains counts and ratios for a set of data instances to be used for
supervised Bayesian learning. The output attribute is sex with possible values
male and female. Consider an individual who has said no to the life insurance
promotion, yes to the magazine promotion, and yes to the watch promotion
and has credit card insurance. Use the values in the table together with Bayes clas-
sifier to determine the probability that this individual is male.

Magazine
Promotion

Watch
Promotion

Life Insurance
Promotion

Credit Card
Insurance

Male Female Male Female Male Female Male Female

Yes 4 3 2 2 2 3 2 1
No 2 1 4 2 4 1 4 3

13. The probability that a person owns a sports car given that they subscribe to at least
one automotive magazine is 40%. We also know that 3% of the adult population
subscribes to at least one automotive magazine. Finally, the probability of a per-
son owning a sports car given that they do not subscribe to at least one automotive
magazine is 30%. Use this information together with Bayes theorem to compute
the probability that a person subscribes to at least one automotive magazine given
that they own a sports car.

14. Suppose the fraction of undergraduate students who smoke is 15% and the frac-
tion of graduate students who smoke is 23%. If one-fifth of the college students
are graduate students and the rest are undergraduates, what is the probability that
a student who smokes is a graduate student?

15. Given a 2 × 2 contingency table for X and Y attributes:

X

x1 x2

Y y1 7 4
y2 2 8

(a) Find a contingency table with expected values.
(b) If the threshold value for χ2 test is 8.28, determine whether two attributes X and Y are

dependent or not.
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16. The logit function, obtained through logistic regression, has the form

Logit p = 1 2 – 1 3 × 1 + 0 6 × 2 + 0 4 × 3

Find the probability of output values 0 and 1 for the sample {1, −1, −1}.

17. Given:

• P(Good Movie | Includes Tom Cruise) = 0.01
• P(Good Movie | Tom Cruise absent) = 0.1
• P(Tom Cruise in a randomly chosen movie) = 0.01

What is P(Tom Cruise is in the movie | Not a Good Movie)?

18. You have the following training set with three Boolean input x, y and z and a
Boolean output U. Suppose you have to predict U using a naive Bayesian
classifier.

x y z U

1 0 0 0
0 1 1 0
0 0 1 0
1 0 0 1
0 0 1 1
0 1 0 1
1 1 0 1

(a) After learning is complete, what would be the predicted probability P(U = 0|x = 0,
y = 1, z = 0)?

(b) Using the probabilities obtained during the Bayesian classifier training, what would be
the predicted probability P(U = 0|x = 0)?

19. Three people flip a fair coin. What is the probability that exactly two of them will
get heads?

5.10 REFERENCES FOR FURTHER STUDY

1. Berthold, M., D. J. Hand, eds., Intelligent Data Analysis – An Introduction,
Springer, Berlin, 2007.

The book is a detailed introductory presentation of the key classes of intelligent
data-analysis methods including all common data-mining techniques. The first half
of the book is devoted to the discussion of classical statistical issues, ranging from
basic concepts of probability and inference to advanced multivariate analyses and
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Bayesian methods. The second part of the book covers theoretical explanations of
data-mining techniques with their roots in disciplines other than statistics. Numer-
ous illustrations and examples will enhance a reader’s knowledge about the theory
and practical evaluations of data-mining techniques.

2. Cherkassky, V., F. Mulier, Learning from Data: Concepts, Theory and Methods,
2nd edition, John Wiley, New York, 2007.

The book provides a unified treatment of the principles and methods for learning
dependencies from data. It establishes a general conceptual framework in which
various learning methods from statistics, machine learning, and other disciplines
can be applied—showing that a few fundamental principles underlie most new
methods being proposed today. An additional strength of this primary theoretical
book is a large number of case studies and examples that simplifies and makes
understandable statistical learning theory concepts.

3. Hand, D., H. Mannila, P. Smith, Principles of Data Mining, MIT Press, Cam-
bridge, MA, 2001.

The book consists of three sections. The first, foundations, provides a tutorial over-
view of the principles underlying data-mining algorithms and their applications.
The second section, data-mining algorithms, shows how algorithms are con-
structed to solve specific problems in a principled manner. The third
section shows how all of the preceding analyses fit together when applied to
real-world data-mining problems.

4. Nisbet R., J. Elder, G. Miner, Handbook of Statistical Analysis and Data Mining
Applications, Elsevier Inc., Amsterdam, 2009.

The book is a comprehensive professional reference book that guides business ana-
lysts, scientists, engineers, and researchers (both academic and industrial) through
all stages of data analysis, model building, and implementation. The handbook
helps one discern the technical and business problem, understand the strengths
and weaknesses of modern data-mining algorithms, and employ the right statistical
methods for practical application. Use this book to address massive and complex
datasets with novel statistical approaches and be able to objectively evaluate ana-
lyses and solutions. It has clear, intuitive explanations of the principles and tools
for solving problems using modern analytic techniques, and discusses their appli-
cation to real problems, in ways accessible and beneficial to practitioners across
industries—from science and engineering to medicine, academia, and commerce.
This handbook brings together, in a single resource, all the information a beginner
will need to understand the tools and issues in data mining to build successful data-
mining solutions.

5. Alexander von Eye, Eun-Young Mun, Log-Linear Modeling: Concepts, Interpre-
tation, and Application, John Wiley & Sons, Inc., New York, 2013.

The book begins with basic coverage of categorical data and goes on to describe
the basics of hierarchical log-linear models as well as decomposing effects in
cross-classifications and goodness-of-fit tests. Additional topics include:
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• The generalized linear model (GLM) alongwith popular methods of coding such
as effect coding and dummy coding.

• Parameter interpretation and how to ensure that the parameters reflect the
hypotheses being studied.

• Symmetry, rater agreement, homogeneity of association, logistic regression, and
reduced design models
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6

DECISION TREES AND
DECISION RULES

Chapter Objectives

• Analyze the characteristics of a logic-based approach to classification
problems.

• Describe the differences between decision-tree and decision-rule representa-
tions in a final classification model.

• Explain in depth the C4.5 algorithm for generating decision trees and deci-
sion rules.

• Identify the required changes in the C4.5 algorithm when missing values exist
in training or testing data set.

• Introduce basic characteristics of CART algorithm and Gini index.

• Know when and how to use pruning techniques to reduce the complexity of
decision trees and decision rules.

• Summarize the limitations of representing a classification model by decision
trees and decision rules.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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Decision trees and decision rules are data-miningmethodologies applied in many real-
world applications as a powerful solution to classification problems. Therefore, at the
beginning, let us briefly summarize the basic principles of classification. In general,
classification is a process of learning a function that maps a data item into one of sev-
eral predefined classes. Every classification based on inductive-learning algorithms is
given as input a set of samples that consist of vectors of attribute values (also called
feature vectors) and a corresponding class. The goal of learning is to create a classi-
fication model, known as a classifier, which will predict, with the values of its avail-
able input attributes, the class for some entity (a given sample). In other words,
classification is the process of assigning a discrete label value (class) to an unlabeled
record, and a classifier is a model (a result of classification) that predicts one
attribute—class of a sample—when the other attributes are given. In doing so, samples
are divided into predefined groups. For example, a simple classification might group
customer billing records into two specific classes: those who pay their bills within
30 days and those who takes longer than 30 days to pay. Different classification meth-
odologies are applied today in almost every discipline where the task of classification,
because of the large amount of data, requires automation of the process. Examples of
classification methods used as a part of data-mining applications include classifying
trends in financial market and identifying objects in large image databases.

Amore formalized approach to classification problems is given through its graph-
ical interpretation. A data set with n features may be thought of as a collection of dis-
crete points (one per example) in an n-dimensional space. A classification rule is a
hypercube that contains one or more of these points. When there is more than one cube
for a given class, all the cubes are OR-ed to provide a complete classification for the
class, such as the example of two 2D classes in Figure 6.1. Within a cube the condi-
tions for each part are AND-ed. The size of a cube indicates its generality, i.e., the
larger the cube, the more vertices it contains and potentially covers more sample
points.

In a classification model, the connection between classes and other properties of
the samples can be defined by something as simple as a flowchart or as complex and
unstructured as a procedure manual. Data-mining methodologies restrict discussion to

x x x

x

x          x x

x

x

x

x

x

x

Figure 6.1. Classification of samples in a 2D space.
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formalized, “executable” models of classification, and there are two very different
ways in which they can be constructed. On the one hand, the model might be obtained
by interviewing the relevant expert or experts, and most knowledge-based systems
have been built this way despite the well-known difficulties attendant on taking this
approach. Alternatively, numerous recorded classifications might be examined, and a
model constructed inductively by generalizing from specific examples that are of pri-
mary interest for data-mining applications.

The statistical approach to classification explained in Chapter 5 gives one type of
model for classification problems: summarizing the statistical characteristics of the set
of samples. The other approach is based on logic. Instead of usingmath operations like
addition and multiplication, the logical model is based on expressions that are eval-
uated as true or false by applying Boolean and comparative operators to the feature
values. These methods of modeling give accurate classification results compared with
other nonlogical methods, and they have superior explanatory characteristics.
Decision trees and decision rules are typical data-mining techniques that belong to
a class of methodologies that give the output in the form of logical models.

6.1 DECISION TREES

A particularly efficient method for producing classifiers from data is to generate a
decision tree. The decision-tree representation is the most widely used logic method.
There is a large number of decision-tree induction algorithms described primarily in
the machine-learning and applied-statistics literature. They are supervised learning
methods that construct decision trees from a set of input–output samples. It is an effi-
cient nonparametric method for classification and regression. A decision tree is a hier-
archical model for supervised learning where the local region is identified in a
sequence of recursive splits through decision nodes with test function. A decision tree
is also a nonparametric model in the sense that we do not assume any parametric form
for the class density.

A typical decision-tree learning system adopts a top-down strategy that searches
for a solution in a part of the search space. It guarantees that a simple, but not neces-
sarily the simplest, tree will be found. A decision tree consists of nodes where attri-
butes are tested. In a univariate tree, for each internal node, the test uses only one of the
attributes for testing. The outgoing branches of a node correspond to all the possible
outcomes of the test at the node. A simple decision tree for classification of samples
with two input attributes X and Y is given in Figure 6.2. All samples with feature
values X > 1 and Y = B belong to Class2, while the samples with values X < 1 belong
to Class1, whatever the value for feature Y. The samples, at a nonleaf node in the tree
structure, are thus partitioned along the branches, and each child node gets its corre-
sponding subset of samples. Decision trees that use univariate splits have a simple
representational form, making it relatively easy for the user to understand the inferred
model; at the same time, they represent a restriction on the expressiveness of the
model. In general, any restriction on a particular tree representation can significantly
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restrict the functional form and thus the approximation power of the model. A well-
known tree-growing algorithm for generating decision trees based on univariate splits
is Quinlan’s ID3with an extended version calledC4.5. Greedy search methods, which
involve growing and pruning decision-tree structures, are typically employed in these
algorithms to explore the exponential space of possible models.

The ID3 algorithm starts with all the training samples at the root node of the tree.
An attribute is selected to partition these samples. For each value of the attribute, a
branch is created, and the corresponding subset of samples that have the attribute
value specified by the branch is moved to the newly created child node. The algorithm
is applied recursively to each child node until all samples at a node are of one class.
Every path to the leaf in the decision tree represents a classification rule. Note that the
critical decision in such a top-down decision-tree-generation algorithm is the choice of
attribute at a node. Attribute selection in ID3 and C4.5 algorithms is based on mini-
mizing an information entropy measure applied to the examples at a node. The
approach based on information entropy insists on minimizing the number of tests that
will allow a sample to classify in a database. The attribute selection part of ID3 is
based on the assumption that the complexity of the decision tree is strongly related
to the amount of information conveyed by the value of the given attribute. An infor-
mation-based heuristic selects the attribute providing the highest information gain,
i.e., the attribute that minimizes the information needed in the resulting subtree to clas-
sify the sample. An extension of ID3 is the C4.5 algorithm, which extends the domain
of classification from categorical attributes to numeric ones. The measure favors attri-
butes that result in partitioning the data into subsets that have low class entropy, i.e.,
when the majority of examples in it belong to a single class. The algorithm basically
chooses the attribute that provides the maximum degree of discrimination between
classes locally. More details about basic principles and implementation of these algo-
rithms will be given in the following sections.

Yes No

Y = A Y = B Y = C

Class1 Class2 Class2 Class1

X > 1

Y = ? 

Figure 6.2. A simple decision tree with the tests on attributes X and Y.
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To apply some of the methods, which are based on the inductive-learning
approach, several key requirements have to be satisfied:

1. Attribute-value description—The data to be analyzed must be in a flat-file
form—all information about one object or example must be expressible in
terms of a fixed collection of properties or attributes. Each attribute may have
either discrete or numeric values, but the attributes used to describe samples
must not vary from one case to another. This restriction rules out domains in
which samples have an inherently variable structure.

2. Predefined classes—The categories to which samples are to be assigned must
have been established beforehand. In the terminology of machine learning,
this is supervised learning.

3. Discrete classes—The classes must be sharply delineated: a case either does
or does not belong to a particular class. It is expected that there will be far more
samples than classes.

4. Sufficient data—Inductive generalization given in the form of decision tree
proceeds by identifying patterns in data. The approach is valid if enough num-
ber of robust patterns can be distinguished from chance coincidences. As this
differentiation usually depends on statistical tests, there must be sufficient
number of samples to allow these tests to be effective. The amount of data
required is affected by factors such as the number of properties and classes
and the complexity of the classification model. As these factors increase, more
data will be needed to construct a reliable model.

5. “Logical” classification models—These methods construct only such classi-
fiers that can be expressed as decision trees or decision rules. These forms
essentially restrict the description of a class to a logical expression whose pri-
mitives are statements about the values of particular attributes. Some applica-
tions require weighted attributes or their arithmetic combinations for a reliable
description of classes. In these situations logical models become very com-
plex, and, in general, they are not effective.

6.2 C4.5 ALGORITHM: GENERATING A DECISION TREE

The most important part of the C4.5 algorithm is the process of generating an initial
decision tree from the set of training samples. As a result, the algorithm generates a
classifier in the form of a decision tree; a structure with two types of nodes: a leaf,
indicating a class, or a decision node that specifies some test to be carried out on a
single-attribute value, with one branch and subtree for each possible outcome of
the test.

A decision tree can be used to classify a new sample by starting at the root of
the tree and moving through it until a leaf is encountered. At each nonleaf deci-
sion node, the features’ outcome for the test at the node is determined and
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attention shifts to the root of the selected subtree. For example, if the classification
model of the problem is given with the decision tree in Figure 6.3a, and the sam-
ple for classification in Figure 6.3b, then the algorithm will create the path
through the nodes A, C, and F (leaf node) until it makes the final classification
decision: CLASS2.

The skeleton of the C4.5 algorithm is based on Hunt’s CLSmethod for construct-
ing a decision tree from a set T of training samples. Let the classes be denoted as {C1,
C2,…,Ck}. There are three possibilities for the content of the set T:

1. T contains one or more samples, all belonging to a single classCj. The decision
tree for T is a leaf-identifying class Cj.

2. T contains no samples. The decision tree is again a leaf, but the class to be
associated with the leaf must be determined from information other than T,
such as the overall majority class in T. The C4.5 algorithm uses as a criterion
the most frequent class at the parent of the given node.

3. T contains samples that belong to a mixture of classes. In this situation, the
idea is to refine T into subsets of samples that are heading toward a single-class
collection of samples. Based on single attribute, an appropriate test that has
one or more mutually exclusive outcomes {O1, O2,…,On} is chosen. T is par-
titioned into subsets T1, T2,…,Tn where Ti contains all the samples in T that
have outcome Oi of the chosen test. The decision tree for T consists of a deci-
sion node identifying the test and one branch for each possible outcome
(examples of this type of nodes are nodes A, B, and C in the decision tree
in Figure 6.3a).

The same tree-building procedure is applied recursively to each subset of training
samples, so that the ith branch leads to the decision tree constructed from the subset Ti
of training samples. The successive division of the set of training samples proceeds
until all the subsets consist of samples belonging to a single class.

(Attribute1 > 5)

True False
Attribute Value

(Attribute2 = ”Black”) (Attribute3 = ”No”)

True False True False Attribute1 5
Attribute2 Black

Attribute3 No
D E F G

CLASS1 CLASS2

A

B C

CLASS1CLASS2

(a) (b)

Figure 6.3. Classification of a new sample based on the decision-tree model. (a) Decision

tree. (b) An example for classification.
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The tree-building process is not uniquely defined. For different tests, even for a
different order of their application, different trees will be generated. Ideally, we would
like to choose a test at each stage of sample-set splitting so that the final tree is small.
Since we are looking for a compact decision tree that is consistent with the training set,
why not explore all possible trees and select the simplest? Unfortunately, the problem
of finding the smallest decision tree consistent with a training data set is NP-complete.
Enumeration and analysis of all possible trees will cause a combinatorial explosion for
any real-world problem. For example, for a small database with five attributes and
only twenty training examples, the possible number of decision trees is greater than
106, depending on the number of different values for every attribute. Therefore, most
decision-tree construction methods are non-backtracking, greedy algorithms. Once a
test has been selected using some heuristics to maximize the measure of progress and
the current set of training cases has been partitioned, the consequences of alternative
choices are not explored. The measure of progress is a local measure, and the gain
criterion for a test selection is based on the information available for a given step
of data splitting.

Suppose we have the task of selecting a possible test with n outcomes (n values
for a given feature) that partitions the set T of training samples into subsets T1, T2,…,
Tn. The only information available for guidance is the distribution of classes in T and
its subsets Ti. If S is any set of samples, let freq(Ci, S) stand for the number of samples
in S that belong to class Ci (out of k possible classes), and let S denote the number of
samples in the set S.

The original ID3 algorithm used a criterion called gain to select the attribute to be
tested that is based on the information theory concept: entropy. The following relation
gives the computation of the entropy of the set T (bits are units):

Info T = –

k

i= 1

freq Ci,T
T

log2
freq Ci,T

T

Now consider a similar measurement after T has been partitioned in accordance
with n outcomes of one attribute test X. The expected information requirement can be
found as the weighted sum of entropies over the subsets:

Infox T =
n

i= 1

Ti
T

Info Ti

The quantity

Gain X = Info T – Infox T

measures the information that is gained by partitioning T in accordance with the test X.
The gain criterion selects a test X to maximize Gain(X), i.e., this criterion will select an
attribute with the highest info-gain.
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Let us analyze the application of these measures and the creation of a decision tree
for one simple example. Suppose that the database T is given in a flat form in which
each out of fourteen examples (cases) is described by three input attributes and
belongs to one of two given classes: CLASS1 or CLASS2. The database is given
in tabular form in Table 6.1.

Nine samples belong to CLASS1 and five samples to CLASS2, so the entropy
before splitting is

Info T = −
9
14

log2
9
14

−
5
14

log2
5
14

= 0 940 bits

After using Attribute1 to divide the initial set of samples T into three subsets (test
x1 represents the selection one of three values A, B, or C), the resulting information is
given by

Infox1 T =
5
14

−
2
5
log2

2
5

−
3
5
log2

3
5

+
4
14

−
4
4
log2

4
4

−
0
4
log2

0
4

+
5
14

−
3
5
log2

3
5

−
2
5
log2

5
5

= 0 694bits

TABLE 6.1 . A Simple Flat Database of Examples for Training

Database T:

Attribute1 Attribute2 Attribute3 Class

A 70 True CLASS1
A 90 True CLASS2
A 85 False CLASS2
A 95 False CLASS2
A 70 False CLASS1
B 90 True CLASS1
B 78 False CLASS1
B 65 True CLASS1
B 75 False CLASS1
C 80 True CLASS2
C 70 True CLASS2
C 80 False CLASS1
C 80 False CLASS1
C 96 False CLASS1
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The information gained by this test x1 is

Gain x1 = 0 940 – 0 694 = 0 246bits

If the test and splitting is based on Attribute3 (test x2 represents the selection one
of two values True or False), a similar computation will give new results:

Infox2 T =
6
14

−
3
6
log2

3
6

−
3
6
log2

3
6

+
8
14

−
6
8
log2

6
8

−
2
8
log2

2
8

= 0 892bits

and corresponding gain is

Gain x2 = 0 940 – 0 892 = 0 048bits

Based on the gain criterion, the decision-tree algorithm will select test x1 as an ini-
tial test for splitting the database T because this gain is higher. To find the optimal test, it
will be necessary to analyze a test on Attribute2, which is a numeric feature with con-
tinuous values. In general, C4.5 contains mechanisms for proposing three types of tests:

1. The “standard” test on a discrete attribute, with one outcome and one branch
for each possible value of that attribute (in our example these are both tests x1
for Attribute1 and x2 for Attribute3).

2. If attribute Y has continuous numeric values, a binary test with outcomes Y ≤ Z
and Y > Z could be defined, by comparing its value against a threshold value Z.

3. A more complex test also based also on a discrete attribute, in which the pos-
sible values are allocated to a variable number of groups with one outcome and
branch for each group.

While we have already explained standard test for categorical attributes, addi-
tional explanations are necessary about a procedure for establishing tests on attributes
with numeric values. It might seem that tests on continuous attributes would be dif-
ficult to formulate, since they contain an arbitrary threshold for splitting all values into
two intervals. But there is an algorithm for the computation of optimal threshold value
Z. The training samples are first sorted on the values of the attribute Y being consid-
ered. There are only a finite number of these values, so let us denote them in sorted
order as {v1, v2,…,vm}. Any threshold value lying between vi and vi + 1 will have the
same effect as dividing the cases into those whose value of the attribute Y lies in {v1,
v2,…,vi} and those whose value is in {vi + 1, vi + 2,…,vm}. There are thus only m − 1
possible splits on Y, all of which should be examined systematically to obtain an opti-
mal split. It is usual to choose the midpoint of each interval, (vi + vi+1)/2, as the
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representative threshold. The algorithm C4.5 differs in choosing as the threshold a
smaller value vi for every interval {vi, vi + 1}, rather than the midpoint itself. This
ensures that the threshold values appearing in either the final decision tree or rules
or both actually occur in the database.

To illustrate this threshold-finding process, we could analyze, for our example of
database T, the possibilities of Attribute2 splitting. After a sorting process, the set of
values for Attribute2 is {65, 70, 75, 78, 80, 85, 90, 95, 96}, and the set of potential
threshold values Z is {65, 70, 75, 78, 80, 85, 90, 95}. Out of these eight values, the
optimal Z (with the highest information gain) should be selected. For our example, the
optimal Z value is Z = 80, and the corresponding process of information-gain compu-
tation for the test x3 (Attribute 2 ≤ 80 or Attribute 2 > 80) is the following:

Infox3 T =
9
14

−
7
9
log2

7
9

−
2
9
log2

2
9

+
5
14

−
2
5
log2

2
5

−
3
5
log2

3
5

= 0 837bits

Gain x3 = 0 940 – 0 837 = 0 103bits

Now, if we compare the information gain for the three attributes in our example,
we can see that Attribute1 still gives the highest gain of 0.246 bits, and therefore this
attribute will be selected for the first splitting in the construction of a decision tree. The
root node will have the test for the values of Attribute1, and three branches will be
created, one for each of the attribute values. This initial tree with the corresponding
subsets of samples in the children nodes is represented in Figure 6.4.

Test x1:

Attribute1 = ?

A B C

T1: T2: T3:

Att.2 Att.3 Class Att.2 Att.3 Class Att.2 Att.3 Class

70 True CLASS1 90 True CLASS1 80 True CLASS2

90 True CLASS2 78 False CLASS1 70 True CLASS2

85 False CLASS2 65 True CLASS1 80 False CLASS1

95 False CLASS2 75 False CLASS1 80 False CLASS1

70 False CLASS1 96 False CLASS1

Figure 6.4. Initial decision tree and subset cases for a database in Table 6.1.
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After initial splitting, every child node has several samples from the database, and
the entire process of test selection and optimization will be repeated for every child
node. Because the child node for test x1: Attribute1 = B has four cases and all of them
are in CLASS1, this node will be the leaf node, and no additional tests are necessary
for this branch of the tree.

For the remaining child node where we have five cases in subset T1, tests on the
remaining attributes can be performed; an optimal test (with maximum information
gain) will be test x4 with two alternatives: Attribute 2 ≤ 70 or Attribute 2 > 70:

Info T1 = −
2
5
log2

2
5

−
3
5
log2

3
5

= 0 97 bits

Using Attribute 2 to divide T1 into two subsets (test x4 represents the selection of
one of two intervals), the resulting information is given by

Infox4 T1 =
2
5

−
2
2
log2

2
2

−
0
2
log2

0
2

+
3
5

−
0
3
log2

0
3

−
3
3
log2

3
3

= 0 bits

The information gained by this test is maximal:

Gain x4 = 0 97 – 0 = 0 97bits

and two branches will create the final leaf nodes because the subsets of cases in each of
the branches belong to the same class.

A similar computation will be carried out for the third child of the root node. For
the subset T3 of the database T, the selected optimal test x5 is the test on Attribute 3
values. Branches of the tree, Attribute 3 = True and Attribute 3 = False, will create
uniform subsets of cases, which belong to the same class. The final decision tree
for database T is represented in Figure 6.5.

Alternatively, a decision tree can be presented in the form of an executable code
(or pseudocode) with if-then constructions for branching into a tree structure. The
transformation of a decision tree from one representation to the other is very simple
and straightforward. The final decision tree for our example is given in pseudocode in
Figure 6.6.

While the gain criterion has had some good results in the construction of compact
decision trees, it also has one serious deficiency: a strong bias in favor of tests with
many outcomes. A solution was found in some kinds of normalization. By analogy
with the definition of Info(S), an additional parameter was specified:
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Test nodes

A B
C

≤70 >70 True False

CLASS1 CLASS2 CLASS1 CLASS2 CLASS1

x3:

Attribute

2

x4:

Attribute

3

Leaf

nodes

x1:

Attribute

1

Figure 6.5. A final decision tree for database T given in Table 6.1.

If Attribute1 = A

Then
If Attribute2 <= 70

Then
Classification = CLASS1;

Else
Classification = CLASS2;

Elseif Attribute1 = B

Then
Classification = CLASS1;

Elseif Attribute1 = C

Then
If Attribute3 = True

Then
Classification = CLASS2;

Else
Classification = CLASS1.

Figure 6.6. A decision tree in the form of pseudocode for the database T given in Table 6.1.
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Split-info X = −
n

i= 1

Ti
T

log2
Ti
T

This represented the potential information generated by dividing set T into n sub-
sets Ti. Now, a new gain measure could be defined:

Gain-ratio X =
gain X

Split-info X

This new gain measure expresses the proportion of information generated by the
split that is useful, i.e. that appears helpful in classification. The gain-ratio criterion
also selects a test that maximizes the ratio given earlier. This criterion is robust
and typically gives a consistently better choice of a test than the previous gain crite-
rion. A computation of the gain-ratio test can be illustrated for our example. To find
the gain-ratio measure for the test x1, an additional parameter Split-info(x1) is
calculated:

Split-info x1 = −
5
14

log2
5
14

−
4
14

log2
4
14

−
5
14

log2
5
14

= 1 577 bits

Gain-ratio x1 =
0 246
1 557

= 0 156

A similar procedure should be performed for other tests in the decision tree.
Instead of gain measure, the maximal gain ratio will be the criterion for attribute selec-
tion, along with a test to split samples into subsets. The final decision tree created
using this new criterion for splitting a set of samples will be the most compact.

6.3 UNKNOWN ATTRIBUTE VALUES

The previous version of the C4.5 algorithm is based on the assumption that all values
for all attributes are determined. But in a data set, often some attribute values for some
samples can be missing—such incompleteness is typical in real-world applications.
This might occur because the value is not relevant to a particular sample, or it was
not recorded when the data was collected, or an error was made by the person the
entering data into a database. To solve the problem of missing values, there are
two choices:

1. Discard all samples in a database with missing data.

2. Define a new algorithm or modify an existing algorithm that will work with
missing data.
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The first solution is simple but unacceptable when large amounts of missing
values exist in a set of samples. To address the second alternative, several questions
must be answered:

1. How does one compare two samples with different numbers of unknown
values?

2. Training samples with unknown values cannot be associated with a particular
value of the test, and so they cannot be assigned to any subsets of cases. How
should these samples be treated in the partitioning?

3. In a testing phase of classification, how does one treat a missing value if the
test is on the attribute with the missing value?

All these and many other questions arise with any attempt to find a solution for
missing data. Several classification algorithms that work with missing data are usually
based on filling in a missing value with the most probable value or on looking at the
probability distribution of all values for the given attribute. None of these approaches
is uniformly superior.

In C4.5, it is an accepted principle that samples with unknown values are distrib-
uted probabilistically according to the relative frequency of known values. Let Info(T)
and Infox(T) be calculated as before, except that only samples with known values of
attributes are taken into account. Then the gain parameter can reasonably be corrected
with a factor F, which represents the probability that a given attribute is known
(F = number of samples in the database with a known value for a given attribute/total
number of samples in a data set). The new gain criterion will have the form

Gain x =F Info T – Infox T

Similarly, Split-info(x) can be altered by regarding the samples with unknown
values as an additional group in splitting. If the test x has n outcomes, its Split-info(x)
is computed as if the test divided the data set into n + 1 subsets. This modification has
a direct influence on the final value of the modified criterion Gain-ratio(x).

Let us explain the modifications of the C4.5 decision-tree methodology applied
on one example. The database is similar to previous one (Table 6.1), only there is now
one value missing for Attribute1 denoted by “?” as presented in Table 6.2.

The computation of the gain parameter for Attribute1 is similar as before; only the
missing value corrects some of the previous steps. Eight out of the thirteen cases with
values for Attribute1 belong to CLASS1, and five cases to CLASS2, so the entropy
before splitting is

Info T = −
8
13

log2
8
13

−
5
13

log2
5
13

= 0 961 bits

210 DECISION TREES AND DECISION RULES



After using Attribute1 to divide T into three subsets (test x1 represents the selec-
tion one of three values A, B, or C), the resulting information is given by

Infox1 T =
5
13

−
2
5
log2

2
5

−
3
5
log2

3
5

+
3
13

−
3
3
log2

3
3

−
0
3
log2

0
3

+
5
13

−
3
5
log2

3
5

−
2
5
log2

5
5

= 0 747bits

The information gained by this test is now corrected with the factor F (F = 13/14
for our example):

Gain x1 =
13
14

0 961 – 0 747 = 0 199bits

The gain for this test is slightly lower than the previous value of 0.216 bits. The
split information, however, is still determined from the entire training set and is larger,
since there is an extra category for unknown values:

TABLE 6.2 . A Simple Flat Database of Examples with One
Missing Value

Database T:

Attribute1 Attribute2 Attribute3 Class

A 70 True CLASS1
A 90 True CLASS2
A 85 False CLASS2
A 95 False CLASS2
A 70 False CLASS1
? 90 True CLASS1
B 78 False CLASS1
B 65 True CLASS1
B 75 False CLASS1
C 80 True CLASS2
C 70 True CLASS2
C 80 False CLASS1
C 80 False CLASS1
C 96 False CLASS1
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Split-info x1 = −
5
14

log
5
14

+
3
14

log
3
14

+
5
14

log
5
14

+
1
14

log
1
14

= 1 8

Additionally, the concept of partitioning must be generalized. With every sample
a new parameter, probability, is associated. When a case with known value is assigned
from T to subset Ti, the probability of it belonging to Ti is 1, and in all other subsets
is 0. When a value is not known, only a weaker probabilistic statement can be made.
C4.5 therefore associates with each sample (having a missing value) in each subset Ti
and weight w, representing the probability that the case belongs to each subset. To
make the solution more general, it is necessary to take into account that the probabil-
ities of samples before splitting are not always equal to one (in subsequent iterations of
the decision-tree construction). Therefore, new parameter wnew for missing values
after splitting is equal to the old parameterwold before splitting multiplied by the prob-
ability that the sample belongs to each subset P(Ti), or more formally

wnew =wold P Ti

For example, the record with the missing value, given in the database in
Table 6.2, will be represented in all three subsets after the splitting set T into subsets
Ti using test x1 on Attribute1. New weights wiwill be equal to probabilities 5/13, 3/13,
and 5/13, because the initial (old) value for w is equal to one. The new subsets are
given in Figure 6.7. Ti can be now reinterpreted in C4.5 not as a number of elements
in a set Ti, but as a sum of all weights w for the given set Ti. From Figure 6.7, the new
values are computed as T1 = 5 + 5/13, T2 = 3 + 3/13, and T3 = 5 + 5/13.

If these subsets are partitioned further by the tests on Attribute2 and Attribute3,
the final decision tree for a data set with missing values has the form shown in
Figure 6.8.

The decision tree in Figure 6.8 has much the same structure as before (Fig. 6.6),
but because of the ambiguity in final classification, every decision is attached with two

Att.2 Att.3 Class w Att.2 Att.3 Class w Att.2 Att.3 Class w

70 True 90 True CLASS1 80 True

90 True 78 False CLASS1 70 True

85 False 65 True CLASS1 80 False

95 False 75 False CLASS1 80 False

70 False CLASS1

CLASS1 1

CLASS2 1

CLASS2 1

CLASS2 1

1 96 False

CLASS2 1

CLASS2 1

CLASS1 1

CLASS1 1

CLASS1 1

90 True CLASS1 90 True CLASS1 5/13

T1: (Attribute1 = A) T2: (Attribute1 = B) 

3/13
1

1

1

5/13

T3: (Attribute1 = C)

Figure 6.7. Results of test x1 are subsets Ti (initial set T is with missing value).
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parameters in a form ( Ti /E). Ti is the sum of the fractional samples that reach the
leaf, and E is the number of samples that belong to classes other than the nomi-
nated class.

For example, (3.4/0.4) means that 3.4 (or 3 + 5/13) fractional training samples
reached the leaf, of which 0.4 (or 5/13) did not belong to the class assigned to the leaf.
It is possible to express the Ti and E parameters in percentages:

3/3.4 100% = 88% of cases at a given leaf would be classified as CLASS2.

0.4/3.4 100% = 12% of cases at a given leaf would be classified as CLASS1.

A similar approach is taken in C4.5 when the decision tree is used to classify a
sample previously not present in a database; that is the testing phase. If all attribute
values are known, then the process is straightforward. Starting with a root node in a
decision tree, tests on attribute values will determine traversal through the tree, and at
the end, the algorithm will finish in one of leaf nodes that uniquely defines the class of
a testing example (or with probabilities, if the training set had missing values). If the
value for a relevant testing attribute is unknown, the outcome of the test cannot be
determined. Then the system explores all possible outcomes from the test and com-
bines the resulting classification arithmetically. Since there can be multiple paths from
the root of a tree or subtree to the leaves, a classification is a class distribution rather
than a single class. When the total class distribution for the tested case has been estab-
lished, the class with the highest probability is assigned as the predicted class.

If Attribute1 = A

Then
If Attribute2 <= 70

Then
Classification = CLASS1 (2.0 / 0);

Else
Classification = CLASS2 (3.4 / 0.4);

Elseif Attribute1 = B

Then
Classification = CLASS1 (3.2 / 0);

Elseif Attribute1 = C

Then
If Attribute3 = True

Then
Classification = CLASS2 (2.4 / 0.4);

Else
Classification = CLASS1 (3.0 / 0).

Figure 6.8. Decision tree for the database T with missing values.
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6.4 PRUNING DECISION TREES

Discarding one or more subtrees and replacing them with leaves simplify a decision
tree, and that is the main task in decision-tree pruning. In replacing the subtree with a
leaf, the algorithm expects to lower the predicted error rate and increase the quality of
a classification model. But computation of error rate is not simple. An error rate based
only on a training data set does not provide a suitable estimate. One possibility to esti-
mate the predicted error rate is to use a new, additional set of test samples if they are
available or to use the cross-validation techniques explained in Chapter 4. This tech-
nique divides initially available samples into equal-sized blocks, and, for each block,
the tree is constructed from all samples except this block and tested with a given block
of samples. With the available training and testing samples, the basic idea of decision-
tree pruning is to remove parts of the tree (subtrees) that do not contribute to the clas-
sification accuracy of unseen testing samples, producing a less complex and thus more
comprehensible tree. There are two ways in which the recursive-partitioning method
can be modified:

1. Deciding not to divide a set of samples any further under some conditions. The
stopping criterion is usually based on some statistical tests, such as the χ2 test:
If there are no significant differences in classification accuracy before and
after division, then represent a current node as a leaf. The decision is made
in advance, before splitting, and therefore this approach is called prepruning.

2. Removing retrospectively some of the tree structure using selected accuracy
criteria. The decision in this process of postpruning is made after the tree has
been built.

C4.5 follows the postpruning approach, but it uses a specific technique to esti-
mate the predicted error rate. This method is called pessimistic pruning. For every
node in a tree, the estimation of the upper confidence limit Ucf is computed using
the statistical tables for binomial distribution (given in most textbooks on statistics).
Parameter Ucf is a function of Ti and E for a given node. C4.5 uses the default con-
fidence level of 25% and compares U25% ( Ti /E) for a given node Ti with a weighted
confidence of its leaves. Weights are the total number of cases for every leaf. If the
predicted error for a root node in a subtree is less than weighted sum of U25% for the
leaves (predicted error for the subtree), then a subtree will be replaced with its root
node, which becomes a new leaf in a pruned tree.

Let us illustrate this procedure with one simple example. A subtree of a decision
tree is given in Figure 6.9, where the root node is the test x1 on three possible values
{1, 2, 3} of the attribute A. The children of the root node are leaves denoted with cor-
responding classes and ( Ti /E) parameters. The question is to estimate the possibility
of pruning the subtree and replacing it with its root node as a new, generalized
leaf node.
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To analyze the possibility of replacing the subtree with a leaf node, it is necessary
to compute a predicted error PE for the initial tree and for a replaced node. Using
default confidence of 25%, the upper confidence limits for all nodes are collected from
statistical tables: U25%(6,0) = 0.206, U25%(9,0) = 0.143, U25%(1,0) = 0.750, and
U25%(16,1) = 0.157. Using these values, the predicted errors for the initial tree and
the replaced node are

PEtree = 6 0 206 + 9 0 143 + 1 0 750 = 3 257

PEnode = 16 0 157 = 2 512

Since the existing subtree has a higher value of predicted error than the replaced
node, it is recommended that the decision tree be pruned and the subtree replaced with
the new leaf node.

6.5 C4.5 ALGORITHM: GENERATING DECISION RULES

Even though the pruned trees are more compact than the originals, they can still be very
complex. Large decision trees are difficult to understand because each node has a
specific context established by the outcomes of tests at antecedent nodes. To make
a decision-tree model more readable, a path to each leaf can be transformed into an
IF-THEN production rule. The IF part consists of all tests on a path, and the THEN part
is a final classification. Rules in this form are called decision rules, and a collection of
decision rules for all leaf nodes would classify samples exactly as the tree does. As a
consequence of their tree origin, the IF parts of the rules would be mutually exclusive
and exhaustive, so the order of the rules would not matter. An example of the transfor-
mation of a decision tree into a set of decision rules is given in Figure 6.10, where the
two given attributes, A and B, may have two possible values, 1 and 2, and the final clas-
sification is into one of two classes.

? CLASS1 (16, 1)

⇒⇒
A = 1 A = 2 A = 3

CLASS1 (6, 0) CLASS1 (9, 0) CLASS2 (1, 0)

X1

Figure 6.9. Pruning a subtree by replacing it with one leaf node.
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For our trained decision tree in Figure 6.8, the corresponding five decision rules
will be:

If Attribute1 = A and Attribute2 <= 70
Then Classification = CLASS1 (2.0/0);

If Attribute1 = A and Attribute2 > 70
Then Classification = CLASS2 (3.4/0.4);

If Attribute1 = B
Then Classification = CLASS1 (3.2 / 0);

If Attribute1 = C and Attribute3 = True
Then Classification = CLASS2 (2.4 / 0);

If Attribute1 = C and Attribute3 = False
Then Classification = CLASS1 (3.0 / 0).

Rewriting the tree to a collection of rules, one for each leaf in the tree, would not
result in a simplified model. The number of decision rules in the classification model
can be extremely large, and pruning of rules can improve readability of the model. In
some cases, the antecedents of individual rules may contain irrelevant conditions. The
rules can be generalized by deleting these superfluous conditions without affecting
rule set accuracy. What are criteria for deletion of rule conditions? Let rule R be

If AThen Class-C

and a more general rule R could be

If A then Class-C

where A is obtained by deleting one condition X from A (A = A X). The evidence for
the importance of condition X must be found in the training samples. Each sample in

CLASS1

ROOT
X1: A

If A=1 and B=1

Then CLASS1
A = 1 A = 2

Transformation If A=1 and B=2

Then CLASS2=========⇒
Paths into rules

B = 1 B = 2 If A=2

Then CLASS1
CLASS1 CLASS2

(a) (b)

X2: B

Figure 6.10. Transformation of a decision tree into decision rules. (a) Decision tree.

(b) Decision rules.

216 DECISION TREES AND DECISION RULES



the database that satisfies the condition A either satisfies or does not satisfy the
extended conditions A. Also, each of these cases does or does not belong to the desig-
nated Class-C. The results can be organized into a contingency 2 × 2 table:

Class-C Other classes

Satisfies condition X Y1 E1

Does not satisfy condition X Y2 E2

There are Y1 + E1 cases that are covered by the original rule R, where R misclas-
sifies E1 of them since they belong to classes other thanC. Similarly, Y1 + Y2 + E1 + E2

is the total number of cases covered by rule R , and E1 + E2 are errors. The criterion for
the elimination of condition X from the rule is based on a pessimistic estimate of the
accuracy of rulesR andR . The estimate of the error rate of ruleR can be set toUcf(Y1 +
E1, E1), and that of rule R to Ucf(Y1 + Y2 + E1 + E2, E1 + E2). If the pessimistic error
rate of rule R is no greater than that of the original rule R, then it makes sense to delete
condition X. Of course, more than one condition may have to be deleted when a rule is
generalized. Rather than looking at all possible subsets of conditions that could be
deleted, the C4.5 system performs greedy elimination: at each step, a condition with
the lowest pessimistic error is eliminated. As with all greedy searches, there is no guar-
antee that minimization in every step will lead to a global minimum.

If, for example, the contingency table for a given rule R is given in Table 6.3, then
the corresponding error rates are as follows:

1. For initially given rule R:

Ucf Y1 +E1,E1 =Ucf 9,1 = 0 183

2. For a general rule R without condition X:

Ucf Y1 +Y2 +E1 +E2,E1 +E2 =Ucf 16,1 = 0 157

Because the estimated error rate of the ruleR is lower than the estimated error rate
for the initial rule R, a rule set pruning could be done by simplifying the decision rule R
and replacing it with R .

One complication caused by a rule’s generalization is that the rules are no more
mutually exclusive and exhaustive. There will be the cases that satisfy the conditions
of more than one rule, or of no rules. The conflict resolution schema adopted in C4.5

TABLE 6.3 . Contingency Table for the Rule R

Class-C Other Classes

Satisfies condition X 8 1
Does not satisfy condition X 7 0
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(detailed explanations have not been given in this book) selects one rule when there is
“multiple-rule satisfaction.” When no other rule covers a sample, the solution is a
default rule or a default class. One reasonable choice for the default class would
be the class that appears most frequently in the training set. C.4.5 uses a modified
strategy and simply chooses as the default class the one that contains the most training
samples not covered by any rule.

The other possibility of reducing the complexity of decision rules and decision
trees is a process of grouping attribute values for categorical data. A large number
of values cause a large space of data. There is concern that useful patterns may not
be detectable because of the insufficiency of training data or that patterns will be
detected but the model will be extremely complex. To reduce the number of attribute
values, it is necessary to define appropriate groups. The number of possible splitting is
large: for n values, there exist 2n – 1

– 1 nontrivial binary partitions. Even if the values
are ordered, there are n − 1 “cut values” for binary splitting. A simple example, which
shows the advantages of grouping categorical values in decision-rule reduction, is
given in Figure 6.11.

C4.5 increases the number of grouping combinations because it does not include
only binary categorical data, but also n-ary partitions. The process is iterative, starting
with an initial distribution where every value represents a separate group and then, for
each new iteration, analyzing the possibility of merging the two previous groups into
one. Merging is accepted if the information-gain ratio (explained earlier) is nonde-
creasing. A final result may be two or more groups that will simplify the classification
model based on decision trees and decision rules.

C4.5 was superseded by a commercial system C5.0. The changes include:

• a variant of boosting technique, which constructs an ensemble of classifiers
that are then voted to give a final classification, and

• new data types such as dates, work with “not applicable” values, concept of
variable misclassification costs, and mechanisms to prefilter attributes.

C5.0 greatly improves scalability of both decision trees and rule sets and enables
successful applications with large real-world data sets. In practice, these data can be
translated into more complicated decision trees, which can include dozens of levels
and hundreds of variables.

Initial set of decision rules Grouping attribute values Final set of decision rules

If A then C1

If B then C2

If C then C1

If D then C2

⇒ G1 = {A, C} ⇒ If G1 then C1

If G2 then C2G2 = {B, D}

Figure 6.11. Grouping attribute values can reduce decision-rule set.
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6.6 CART ALGORITHM AND GINI INDEX

CART is an acronym forClassification And Regression Trees. The basic methodology
of divide and conquer described in C4.5 is also used in CART. The main differences
are in the tree structure, the splitting criteria, the pruning method, and the way missing
values are handled.

CART constructs trees that have only binary splits. This restriction simplifies the
splitting criterion because there need not be a penalty for multiway splits. Further-
more, if the label is binary, the binary split restriction allows CART to optimally par-
tition categorical attributes (minimizing any concave splitting criteria) to two subsets
of values in the number of attribute values. The restriction has its disadvantages, how-
ever, because the tree may be less interpretable with multiple splits occurring on the
same attribute at adjacent levels.

CART uses the Gini diversity index as a splitting criterion instead of information-
based criteria for C4.5. The CART authors favor the Gini criterion over information
gain because the Gini can be extended to include symmetrized costs, and it is computed
more rapidly than information gain. The Gini index is used to select the feature at each
internal node of the decision tree. We define the Gini index for a data set S as follows:

Gini S = 1−
c−1

i= 0

p2i

where

• c is the number of predefined classes

• Ci are classes for i = 1,…,c − 1

• si is the number of samples belonging to class Ci

• pi = si/S is a relative frequency of class Ci in the set

This metric indicates the partition purity of the data set S. For branch prediction
where we have two classes, the Gini index lies within [0, 0.5]. If all the data in S
belong to the same class, Gini S equals the minimum value 0, which means that S
is pure. If Gini S equals 0.5, all observations in S are equally distributed among
two classes. This decreases as a split favoring one class: for instance, a 70/30 distri-
bution produces Gini index of 0.42. If we have more than two classes, the maximum
possible value for index increases; for instance, the worst possible diversity for three
classes is a 33% split, and it produce aGini value of 0.67. The Gini coefficient, which
range from 0 to 1 (for extremely large number of classes), is multiplied by 100 to range
between 0 and 100 in some commercial tools.

The quality of a split on a feature into k subsets Si is then computed as the
weighted sum of the Gini indices of the resulting subsets:

Ginisplit =
k−1

i= 0

ni
n

Gini Si
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where

• ni is the number of samples in subset Si after splitting

• n is the total number of samples in the given node

Thus Ginisplit is calculated for all possible features, and the feature with minimum
Ginisplit is selected as split point. The procedure is repetitive as in C4.5. We may com-
pare the results of CART and C4.5 attribute selection by applying entropy index
(C4.5) and Gini index (CART) for splitting Attribute1 in Table 6.1. While we already
have results for C4.5 (Gain-ratio for Attribute1), Ginisplit index for the same attribute
may be calculated as

Ginisplit =
2

i = 0

ni
nGini Si

=
5
14

× 1 –
2
5

2

–
3
5

2

+
4
14

× 1 –
0
4

2

–
4
4

2

+
5
14

× 1 –
2
5

2

–
3
5

2

= 0 34

Interpretation of the absolute value for Ginisplit index is not important. It is impor-
tant that relatively this value is lower for attribute A1 than for other two attributes in
Table 6.1. The reader may check easily this claim. Therefore, based on Gini index
Attribute1 is selected for splitting. It is the same result obtained in C4.5 algorithm
using entropy criterion. Although the results are the same in this example, for many
other data sets, there could be (usually small) differences in results between these two
approaches.

CART also supports the twoing splitting criterion, which can be used for multi-
class problems. At each node, the classes are separated into two superclasses contain-
ing disjoint and mutually exhaustive classes. A splitting criterion for a two-class
problem is used to find the attribute and the two superclasses that optimize the
two-class criterion. The approach gives “strategic” splits in the sense that several
classes that are similar are grouped together. Although twoing splitting rule allows
us to build more balanced trees, this algorithm works slower than Gini rule. For exam-
ple, if the total number of classes is equal to K, then we will have 2K − 1 possible
grouping into two classes. It can be seen that there is a small difference between trees
constructed using Gini and trees constructed via twoing rule. The difference can be
seen mainly at the bottom of the tree where the variables are less significant in com-
parison with top of the tree.

Pruning technique used in CART is called minimal cost complexity pruning,
while C4.5 uses binomial confidence limits. The proposed approach assumes that
the bias in the resubstitution error of a tree increases linearly with the number of leaf
nodes. The cost assigned to a subtree is the sum of two terms: the resubstitution error
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and the number of leaves times a complexity parameter α. It can be shown that, for
every α value, there exists a unique smallest tree minimizing cost of the tree. Note that,
although α runs through a continuum of values, there are at most a finite number of
possible subtrees for analysis and pruning.

Unlike C4.5, CART does not penalize the splitting criterion during the tree con-
struction if examples have unknown values for the attribute used in the split. The cri-
terion uses only those instances for which the value is known. CART finds several
surrogate splits that can be used instead of the original split. During classification,
the first surrogate split based on a known attribute value is used. The surrogates cannot
be chosen based on the original splitting criterion because the subtree at each node is
constructed based on the original split selected. The surrogate splits are therefore cho-
sen to maximize a measure of predictive association with the original split. This pro-
cedure works well if there are attributes that are highly correlated with the chosen
attribute.

As its name implies, CART also supports building regression trees. Regression
trees are somewhat simpler than classification trees because the growing and pruning
criteria used in CART are the same. The regression tree structure is similar to a clas-
sification tree, except that each leaf predicts a real number. The resubstitution estimate
for pruning the tree is the mean squared error.

Among main advantages of CART method is its robustness to outliers and noisy
data. Usually the splitting algorithm will isolate outliers in an individual node or
nodes. Also, an important practical property of CART is that the structure of its clas-
sification or regression trees is invariant with respect to monotone transformations of
independent variables. One can replace any variable with its logarithm or square root
value; the structure of the tree will not change. One of CART disadvantages is that the
system may have unstable decision trees. Insignificant modification of learning sam-
ples, such as eliminating several observations, could lead to radical changes in deci-
sion tree: with significant increase or decrease of tree complexity being changes in
splitting variables and values.

C4.5 and CART are two popular algorithms for decision-tree induction; however,
their corresponding splitting criteria, information gain and the Gini index, are consid-
ered to be skew sensitive. In other words they are not applicable, or minimum they are
not successfully applied, in cases when classes are not equally distributed in training
and testing data sets. It becomes important to design a decision-tree splitting criterion
that captures the divergence in distributions without being dominated by the class
priors. One of the proposed solutions is the Hellinger distance as a decision-tree split-
ting criterion. Resent experimental results show that this distance measure is skew
insensitive.

For application as a decision-tree splitting criterion, we assume a countable space,
so all continuous features are discretized into p partitions or bins. Assuming a two-
class problem (class + and class −), let X+ be samples belonging to class + and
X− are samples with class −. Then, we are essentially interested in calculating the “dis-
tance” in the normalized frequencies distributions aggregated over all the partitions of
the two class distributions X+ and X−. The Hellinger distance between X+ and X− is
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dH X+ ,X− =
p

j= 1

X+ j

X+
−

X− j

X−

2

This formulation is strongly skew insensitive. Experiments with real-world data
show that the proposedmeasuremaybe successfully applied for caseswhereX+ X−.
It essentially captures the divergence between the feature value distributions given the
two different classes.

Recent developments in the field extend technology toward multivariate trees. In
a multivariate tree, at a decision node, all input dimensions can be used for testing (for
example,w1x1 +w2x2 + w0 > 0 as it is presented in Figure 6.12). It is a hyperplane with
an arbitrary orientation. This is 2d (Nd) possible hyperplanes and exhaustive search is
not practical.

With linear multivariate nodes, we can use hyperplanes for better approximation
using fewer nodes. A disadvantage of the technique is that multivariate nodes are mode
difficult to interpret. Also, more complex nodes require more data. The earliest version
of multivariate trees is implemented in CART algorithm, which fine-tunes the weights
wi one by one to decrease impurity. CART also has a preprocessing stage to decrease
dimensionality through subset input selection (and therefore reduction of node
complexity).

6.7 LIMITATIONS OF DECISION TREES AND DECISION RULES

Decision-rule- and decision-tree-based models are relatively simple and readable, and
their generation is very fast. Unlike many statistical approaches, a logical approach
does not depend on assumptions about distribution of attribute values or independence

W1X1 + W2X2 + W0 > 0

Figure 6.12. Multivariate decision node.
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of attributes. Also, this method tends to be more robust across tasks than most other
statistical methods. But there are also some disadvantages and limitations of a logical
approach, and a data-mining analyst has to be aware of it because the selection of an
appropriate methodology is a key step to the success of a data-mining process.

If data samples are represented graphically in an n-dimensional space, where N is
the number of attributes, then a logical classifier (decision trees or decision rules)
divides the space into regions. Each region is labeled with a corresponding class.
An unseen testing sample is then classified by determining the region into which
the given point falls. Decision trees are constructed by successive refinement, splitting
existing regions into smaller ones that contain highly concentrated points of one class.
The number of training cases needed to construct a good classifier is proportional to
the number of regions. More complex classifications require more regions that are
described with more rules and a tree with higher complexity. All that will require
an additional number of training samples to obtain a successful classification.

A graphical representation of decision rules is given by orthogonal hyperplanes in
an n-dimensional space. The regions for classification are hyperrectangles in the same
space. If the problem at hand is such that the classification hyperplanes are not orthog-
onal, but are defined through a linear (or nonlinear) combination of attributes, such as
the example in Figure 6.13, then that increases the complexity of a rule-based model.
A logical approach based on decision rules tries to approximate nonorthogonal and,
sometimes, nonlinear classification with hyperrectangles; classification becomes
extremely complex with large number of rules and a still larger error.

A possible solution to this problem is an additional iteration of the data-mining
process: returning to the beginning of preprocessing phases, it is necessary to trans-
form input features into new dimensions that are linear (or nonlinear) combinations of
initial inputs. This transformation is based on some domain heuristics, and it requires
emphasis with additional effort in data preparation; the reward is a simpler classifica-
tion model with a lower error rate.

The other types of classification problems, where decision rules are not the appro-
priate tool for modeling, have classification criteria in the form: a given class is

×

×

× ×

Classification through a linear

combination of attributes

Rules as orthogonal hyperplanes

x1

x2

×

× ×

Figure 6.13. Approximation of nonorthogonal classification with hyperrectangles.
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supported if n out of m conditions are present. To represent this classifier with rules, it
would be necessary to define (mn) regions only for one class. Medical diagnostic deci-
sions are a typical example of this kind of classification. If 4 out of 11 symptoms sup-
port diagnosis of a given disease, then the corresponding classifier will generate 330
regions in an 11-dimensional space for positive diagnosis only. That corresponds to
330 decision rules. Therefore a data-mining analyst has to be very careful in applying
the orthogonal-classification methodology of decision rules for this type of nonlinear
problems.

Finally, introducing new attributes rather than removing old ones can avoid the
sometimes-intensive fragmentation of the n-dimensional space by additional rules.
Let us analyze a simple example. A classification problem is described by nine binary
inputs {A1, A2,…,A9}, and the output class C is specified by the logical relation

A1 A2 A3 A4 A5 A6 A7 A8 A9 C

The above expression can be rewritten in a conjunctive form:

A1 A4 A7 A1 A5 A7 … C

and it will have 27 factors with only operations. Every one of these factors is a
region in a nine-dimensional space and corresponds to one rule. Taking into account
regions for negative examples, there exist about 50 leaves in the decision tree (and the
same number of rules) describing class C. If new attributes are introduced

B1 =A1 A2 A3,

B2 =A4 A5 A6, and

B3 =A7 A8 A9

the description of class C will be simplified into the logical rule

B1 B2 B3 C

It is possible to specify the correct classification using a decision tree with only
four leaves. In a new three-dimensional space (B1, B2, B3), there will be only four deci-
sion regions. This kind of simplification via constructive induction (development of
new attributes in the preprocessing phase) can be applied also in a case n-of-m attri-
butes’ decision. If none of previous transformations are found appropriate, the only
way to deal with the increased fragmentation of an n-dimensional space is to bring
more data to bear on the problem.
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6.8 REVIEW QUESTIONS AND PROBLEMS

1. Explain the differences between the statistical and logical approaches in the con-
struction of a classification model.

2. What are the new features of C4.5 algorithm comparing with original Quinlan’s
ID3 algorithm for decision-tree generation?

3. Given a data set X with three-dimesional categorical samples:

X: Attribute1 Attribute2 Class

T 1 C2
T 2 C1

F 1 C2

F 2 C2

Construct a decision tree using the computation steps given in the C4.5 algorithm.

4. Given a training data set Y:

Y: A B C Class

15 1 A C1

20 3 B C2

25 2 A C1

30 4 A C1

35 2 B C2

25 4 A C1

15 2 B C2

20 3 B C2

(a) Find the best threshold (for the maximal gain) for attribute A.
(b) Find the best threshold (for the maximal gain) for attribute B.
(c) Find a decision tree for data set Y.
(d) If the testing set is

A B C Class

10 2 A C2

20 1 B C1

30 3 A C2

40 2 B C2

15 1 B C1
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what is the percentage of correct classifications using the decision tree developed in c).
(e) Derive decision rules from the decision tree.

5. Use the C4.5 algorithm to build a decision tree for classifying the following
objects:

Class Size Color Shape

A Small Yellow Round
A Big Yellow Round
A Big Red Round
A Small Red Round
B Small Black Round
B Big Black Cube
B Big Yellow Cube
B Big Black Round
B Small Yellow Cube

6. Given a training data set Y∗ with missing values (−):

Y∗: A B C Class

15 1 A C1

20 3 B C2

25 2 A C1

— 4 A C1

35 2 — C2

25 4 A C1

15 2 B C2

20 3 B C2

(a) Apply a modified C4.5 algorithm to construct a decision tree with the (Ti/E) parameters
explained in Section 6.3.

(b) Analyze the possibility of pruning the decision tree obtained in (a).
(c) Generate decision rules for the solution in (a). Is it necessary to generate a default rule

for this rule-based model?

7. Why is postpruning in C4.5 defined as pessimistic pruning?

8. Suppose that two decision rules are generated with C4.5:

Rule1 X > 3 Y ≥ 2 Class1 9 6 0 4

Rule2 X > 3 Y < 2 Class2 2 4 2 0

Analyze if it is possible to generalize these rules into one using confidence limit
U25% for the binomial distribution.
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9. Discuss the complexity of the algorithm for optimal splitting of numeric attributes
into more than two intervals.

10. In real-world data-mining applications, a final model consists of extremely large
number of decision rules. Discuss the potential actions and analyses you should
perform to reduce the complexity of the model.

11. Search the Web to find the basic characteristics of publicly available or commer-
cial software tools for generating decision rules and decision trees. Document the
results of your search.

12. Consider a binary classification problem (output attribute Value = {Low, High})
with the following set of input attributes and attribute values:

• Air Conditioner = {Working, Broken}
• Engine = {Good, Bad}
• Mileage = {High, Medium, Low}
• Rust = {Yes, No}

Suppose a rule-based classifier produces the following rule set:
Mileage = High − Value = Low
Mileage = Low − Value = High
Air Conditioner = Working and Engine = Good − Value = High
Air Conditioner = Working and Engine = Bad − Value = Low
Air Conditioner = Broken − Value = Low

(a) Are the rules mutually exclusive? Explain your answer.
(b) Is the rule set exhaustive (covering each possible case)? Explain your answer.
(c) Is ordering needed for this set of rules? Explain your answer.
(d) Do you need a default class for the rule set? Explain your answer.

13. Of the following algorithms:

1. C4.5
2. K-nearest neighbor
3. Naïve Bayes
4. Linear regression

(a) Which are fast in training but slow in classification?
(b) Which one produces classification rules?
(c) Which one requires discretization of continuous attributes before application?
(d) Which model is the most complex?

14. (a) How much information is involved in choosing one of eight items, assuming that they
have an equal frequency?

(b) One of 16 items?
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15. The following data set will be used to learn a decision tree for predicting whether
a mushroom is edible or not based on its shape, color, and odor.

Shape Color Odor Edible

C B 1 Yes
D B 1 Yes
D W 1 Yes
D W 2 Yes
C B 2 Yes
D B 2 No
D G 2 No
C U 2 No
C B 3 No
C W 3 No
D W 3 No

(a) What is entropy H(Edible|Odor = 1 or Odor = 3)?
(b) Which attribute would the C4.5 algorithm choose to use for the root of the tree?
(c) Draw the full decision tree that would be learned for this data (no pruning).
(d) Suppose we have a validation set as follows. What will be the training set error and

validation set error of the tree? Express your answer as the number of examples that
would be misclassified.

Shape Color Odor Edible

C B 2 No
D B 2 No
C W 2 Yes

16. Suppose we have three binary input attributes (A, B, and C), class attribute as the
output, and four training examples. We are interested in finding aminimum-depth
decision tree consistent with the training data. Find the tree using C4.5, and show
it will not find the decision tree with the minimum depth.

A B C Class

1 1 0 0
1 0 1 1
0 1 1 1
0 0 1 0
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17. Consider the rules Age > 40 Donor and Age ≤ 50 ¬Donor.
(a) Are these two rules mutually exclusive?
(b) Are these two rules exhaustive?

18. Given a decision tree, you have the option of (a) converting the decision tree to
rules and then pruning the resulting rules or (b) pruning the decision tree and then
converting the pruned tree to rules. What advantage does (a) have over (b)?

6.9 REFERENCES FOR FURTHER STUDY

1. Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San
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explanations of all methods and a large number of examples for all topics are
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all approaches in machine learning.
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learning, is obtained through layered explanations and agent-based implementa-
tions of algorithms.
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covery from multirelational data. The chapters describe a broad selection of prac-
tical, inductive-logic programming approaches to relational data mining and give a
good overview of several interesting applications.

5. Kralj Novak P., Lavrac N., Webb G. L., Supervised Descriptive Rule Discovery:
A Unifying Survey of Contrast Set, Emerging Pattern and SubgroupMining, Jour-
nal of Machine Learning Research, Vol. 10, 2009, pp. 377–403.
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This paper gives a survey of contrast set mining (CSM), emerging pattern mining
(EPM), and subgroup discovery (SD) in a unifying framework named supervised
descriptive rule discovery. While all these research areas aim at discovering pat-
terns in the form of rules induced from labeled data, they use different terminology
and task definitions, claim to have different goals, claim to use different rule learn-
ing heuristics, and use different means for selecting subsets of induced patterns.
This paper contributes a novel understanding of these subareas of data mining
by presenting a unified terminology, by explaining the apparent differences
between the learning tasks as variants of a unique supervised descriptive rule dis-
covery task, and by exploring the apparent differences between the approaches.

6. Maimon Oded Z, Rokach Lior, Data Mining With Decision Trees: Theory And
Applications, 2nd edition, World Scientific, 2014.

Decision trees have become one of the most powerful and popular approaches in
knowledge discovery and data mining; it is the science of exploring large and com-
plex bodies of data in order to discover useful patterns. Decision-tree learning con-
tinues to evolve over time. Existing methods are constantly being improved and
new methods introduced. This second edition is dedicated entirely to the field
of decision trees in data mining to cover all aspects of this important technique,
as well as improved or new methods and techniques developed after the publica-
tion of our first edition. In this new edition, all chapters have been revised and new
topics brought in. New topics include cost-sensitive active learning, learning with
uncertain and imbalanced data, using decision trees beyond classification tasks,
privacy preserving decision-tree learning, lessons learned from comparative
studies, and learning decision trees for big data. A walkthrough guide to existing
open-source data-mining software is also included in this edition. This book invites
readers to explore the many benefits in data mining that decision trees offer.
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7

ARTIFICIAL NEURAL
NETWORKS

Chapter Objectives

• Identify basic components of artificial neural networks and their properties and
capabilities.

• Describe common learning tasks such as pattern association, pattern recogni-
tion, approximation, control, and filtering that are performed by artificial neu-
ral networks.

• Compare different artificial neural-network architecture such as feedforward
and recurrent networks, and discuss their applications

• Explain the learning process at the level of an artificial neuron and its extension
for multiplayer feedforward neural networks.

• Compare the learning processes and the learning tasks of competitive networks
and feedforward networks.

• Presents basic principles of Kohonen maps and their applications

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
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• Discuss the requirements for good generalizations with artificial neural net-
works, based on heuristic parameter tuning.

• Introduce basic principles of deep learning and deep neural networks.

• Analyze main components of convolutional neural networks (CNNs).

Work on artificial neural networks (ANNs) has been motivated by the recognition that
the human brain computes in an entirely different way from the conventional digital
computer. It was a great challenge for many researchers in different disciplines to
model the brain’s computational processes. The brain is a highly complex, nonlinear,
and parallel information-processing system. It has the capability to organize its com-
ponents and to perform certain computations with a higher quality and many times
faster than the fastest computer in existence today. Examples of these processes
are pattern recognition, perception, and motor control. ANNs have been studied
for more than four decades since Rosenblatt first applied the single-layer perceptrons
to pattern-classification learning in the late 1950s.

An ANN is an abstract computational model of the human brain. The human
brain has an estimated 1011 tiny units called neurons. These neurons are intercon-
nected with an estimated 1015 links. Similar to the brain, an ANN is composed of arti-
ficial neurons (or processing units) and interconnections. When we view such a
network as a graph, neurons can be represented as nodes (or vertices) and intercon-
nections as edges. Although the term artificial neural network is most commonly used,
other names include “neural network,” parallel distributed processing (PDP) system,
connectionist model, and distributed adaptive system. ANNs are also referred to in the
literature as neurocomputers.

A neural network, as the name indicates, is a network structure consisting of a
number of nodes connected through directional links. Each node represents a proces-
sing unit, and the links between nodes specify the causal relationship between con-
nected nodes. All nodes are adaptive, which means that the outputs of these nodes
depend onmodifiable parameters pertaining to these nodes. Although there are several
definitions and several approaches to the ANN concept, we may accept the following
definition, which views the ANN as a formalized adaptive machine:

An artificial neural network is amassive parallel distributed processormade up of simple
processing units. It has the ability to learn experiential knowledge expressed through
interunit connection strengths, and can make such knowledge available for use.

It is apparent that an ANN derives its computing power through, first, its massive
parallel distributed structure and, second, its ability to learn and therefore to general-
ize. Generalization refers to the ANN producing reasonable outputs for new inputs not
encountered during a learning process. The use of ANNs offers several useful proper-
ties and capabilities:

1. Nonlinearity: An artificial neuron as a basic unit can be a linear or nonlinear
processing element, but the entire ANN is highly nonlinear. It is a special kind

232 ARTIFICIAL NEURAL NETWORKS



of nonlinearity in the sense that it is distributed throughout the network. This
characteristic is especially important, for ANN models the inherently nonlin-
ear real-world mechanisms responsible for generating data for learning.

2. Learning from examples: An ANN modifies its interconnection weights by
applying a set of training or learning samples. The final effects of a learning
process are tuned parameters of a network (the parameters are distributed
through the main components of the established model), and they represent
implicitly stored knowledge for the problem at hand.

3. Adaptivity: An ANN has a built-in capability to adapt its interconnection
weights to changes in the surrounding environment. In particular, an ANN
trained to operate in a specific environment can be easily retrained to deal with
changes in its environmental conditions. Moreover, when it is operating in a
nonstationary environment, an ANN can be designed to adopt its parameters
in real time.

4. Evidential response: In the context of data classification, an ANN can be
designed to provide information not only about which particular class to select
for a given sample but also about confidence in the decision made. This later
information may be used to reject ambiguous data, should they arise, and
therefore improve the classification performance or performances of the other
tasks modeled by the network.

5. Fault tolerance: An ANN has the potential to be inherently fault tolerant or
capable of robust computation. Its performances do not degrade significantly
under adverse operating conditions such as disconnection of neurons and
noisy or missing data. There is some empirical evidence for robust computa-
tion, but usually it is uncontrolled.

6. Uniformity of analysis and design: Basically, ANNs enjoy universality as
information processors. The same principles, notation, and the same steps
in methodology are used in all domains involving application of ANNs.

To explain a classification of different types of ANNs and their basic principles, it
is necessary to introduce an elementary component of every ANN. This simple pro-
cessing unit is called an artificial neuron.

7.1 MODEL OF AN ARTIFICIAL NEURON

An artificial neuron is an information-processing unit that is fundamental to the oper-
ation of an ANN. The block diagram (Fig. 7.1), which is a model of an artificial neu-
ron, shows that it consists of three basic elements:

1. A set of connecting links from different inputs xi (or synapses), each of which
is characterized by a weight or strength wki. The first index refers to the neuron
in question, and the second index refers to the input of the synapse to which
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the weight refers. In general, the weights of an artificial neuron may lie in a
range that includes negative as well as positive values.

2. An adder for summing the input signals xiweighted by the respective synaptic
strengths wki. The operation described here constitutes a linear combiner.

3. An activation function f for limiting the amplitude of the output yk of a neuron.

The model of the neuron given in Figure 7.1 also includes an externally applied
bias, denoted by bk. The bias has the effect of increasing or lowering the net input of
the activation function, depending on whether it is positive or negative.

In mathematical terms, an artificial neuron is an abstract model of a natural neu-
ron, and its processing capabilities are formalized using the following notation. First,
there are several inputs xi, i = 1,…,m. Each input xi is multiplied by the corresponding
weightwkiwhere k is the index of a given neuron in an ANN. The weights simulate the
biological synaptic strengths in a natural neuron. The weighted sum of products xi wki

for i = 1,…,m is usually denoted as net in the ANN literature:

netk = x1wk1 + x2wk2+ + xmwkm + bk

Using adopted notation for wk0 = bk and default input x0 = 1, a new uniform ver-
sion of net summation will be

netk = x0wk0 + x1wk1 + x2wk2+ + xmwkm =
m

i= 0

xiwki

The same sum can be expressed in vector notation as a scalar product of two m-
dimensional vectors:

netk =X W

where

X = x0,x1,x2,…,xm

W = wk0,wk1,wk2,…,wkm

kth artificial neuron

f(net)Σ net

wkm

x1

x2

•
•
•

xm

wk2

bk

yk

wk1

Figure 7.1. Model of an artificial neuron.
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Finally, an artificial neuron computes the output yk as a certain function of
netk value:

yk = f netk

The function f is called the activation function. Various forms of activation func-
tions can be defined. Some commonly used activation functions are given in
Table 7.1.

Now, when we introduced the basic components of an artificial neuron and its
functionality, we can analyze all the processing phases in a single neuron. For exam-
ple, for the neuron with three inputs and one output, the corresponding input values,
weight factors, and bias are given in Figure 7.2a. It is necessary to find the output y for
different activation functions such as symmetrical hard limit, saturating linear, and
log-sigmoid.

1. Symmetrical hard limit

net = 0 5 0 3 + 0 5 0 2 + 0 2 0 5 + – 0 2 1 = 0 15

y= f net = f 0 15 = 1

2. Saturating linear

net = 0 15 computation is the same as for case1

y = f net = f 0 15 = 0 15

3. Log-sigmoid

net = 0 15 computation is the same as for case1

y = f net = f 0 15 =
1

1 + e – 0 15
= 0 54

The basic principles of computation for one node may be extended for an ANN
with several nodes even if they are in different layers, as given in Figure 7.2b. Suppose
that for the given configuration of three nodes, all bias values are equal to 0 and acti-
vation functions for all nodes are symmetric saturating linear. What is the final output
y3 from the node 3?

The processing of input data is layered. In the first step, the neural network
performs the computation for nodes 1 and 2 that are in the first layer:

net1 = 1 0 2 + 0 5 0 5 = 0 45 y1 = f 0 45 = 0 45

net2 = 1 – 0 6 + 0 5 – 1 = – 1 1 y2 = f – 1 1 = – 1

Outputs y1 and y2 from the first layer nodes are inputs for node 3 in the
second layer:
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TABLE 7.1 . A Neuron’s Common Activation Functions

Activation Function Input–Output Relation Graph

Hard limit y=
1 if net ≥ 0

0 if net < 0

1

0

Symmetrical hard limit y=
1 if net ≥ 0

−1 if net < 0

1

–1

0

Linear y = net

1

0

–1

Saturating linear
y=

1 if net > 1

net if 0 ≤ net ≤ 1

0 if net < 0

1

1
0

Symmetric saturating linear
y=

1 if net > 1

net if −1 ≤ net ≤ 1

−1 if net < −1

1

1

–1

–1 0

Log-sigmoid y=
1

1 + e−net

1

0

Hyperbolic tangent sigmoid y=
enet−e−net

enet + e−net

1

0

–1
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net3 = y1 1 + y2 – 0 5 = 0 45 1 + – 1 – 0 5 = 0 95 y3 = f 0 95 = 0 95

As we can see from the previous examples, the processing steps at the node level
are very simple. In highly connected networks of artificial neurons, computational
tasks are multiplied with an increase in the number of nodes. The complexity of
processing depends on the ANN architecture.

7.2 ARCHITECTURES OF ARTIFICIAL NEURAL NETWORKS

The architecture of an ANN is defined by the characteristics of a node and the char-
acteristics of the node’s connectivity in the network. The basic characteristics of a
single node have been given in a previous section, and in this section the parameters
of connectivity will be introduced. Typically, network architecture is specified by the
number of inputs to the network, the number of outputs, the total number of elemen-
tary nodes that are usually equal processing elements for the entire network, and their
organization and interconnections. Neural networks are generally classified into two
categories on the basis of the type of interconnections: feedforward and recurrent.

The network is feedforward if the processing propagates from the input side to the
output side unanimously, without any loops or feedbacks. In a layered representation
of the feedforward neural network, there are no links between nodes in the same layer;
outputs of nodes in a specific layer are always connected as inputs to nodes in suc-
ceeding layers. This representation is preferred because of its modularity, i.e., nodes
in the same layer have the same functionality or generate the same level of abstraction
about input vectors. If there is a feedback link that forms a circular path in a network
(usually with a delay element as a synchronization component), then the network is
recurrent. Examples of ANNs belonging to both classes are given in Figure 7.3.

Although many neural-network models have been proposed in both classes, the
multilayer feedforward network with a backpropagation-learning mechanism is the
most widely used model in terms of practical applications. Why multilayered net-
works? A simple example will show the basic differences in application requirements
between single-layer and multilayer networks.

Σ| f
y

y1

y2

y3

x1 = 0.5 x1 = 1.0
0.2

–0.6

–0.5

1

–1.0

1.0

0.5

x2 = 0.5

0.3

0.2

0.5

x2 = 0.5

x3 = 0.2
b = –0.2

2

3

(a) (b)

Figure 7.2. Examples of artificial neurons and their interconnections. (a) A single node.

(b) Three interconnected nodes.
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The simplest and well-known classification problem, very often used as an illus-
tration in the neural-network literature, is the exclusive-OR (XOR) problem. The task
is to classify a binary input vector X to class 0 if the vector has an even number of 1’s
or otherwise assign it to class 1. The XOR problem is not linearly separable; this can
easily be observed from the plot in Figure 7.4 for a two-dimensional (2D) input vector
X = {x1, x2}. There is no possibility of obtaining a single linear separation of points
that belong to different classes. In other words, we cannot use a single-layer network
to construct a straight line (in general, it is a linear hyperplane in an n-dimensional
space) to partition the 2D input space into two regions, each containing data points
of only the same class. It is possible to solve the problem with a two-layer network,
as illustrated in Figure 7.5, in which one possible solution for the connection weights
and thresholds is indicated. This network generates a nonlinear separation of points in
a 2D space.

The basic conclusion from this example is that single-layer ANNs are a conven-
ient modeling tool only for relatively simple problems that are based on linear models.
For most real-world problems, where models are highly nonlinear, multilayer net-
works are better and maybe the only solution.

y1

y2

x1

x2

•
•
•

xn

Inputs Hidden

layer 1

Hidden

layer 2

Output

layer

Outputs

y1

y2

x1

x2

•
•
•

xn

Inputs

(a) (b)

Outputs

Delay

Figure 7.3. Typical architectures of artificial neural networks. (a) Feedforward network.

(b) Recurrent network.

?

- Class 1

- Class 2

x2

x1

1

0

0 1

Figure 7.4. XOR problem.
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7.3 LEARNING PROCESS

Amajor task for an ANN is to learn a model of the world (environment) in which it is
embedded and to maintain the model sufficiently consistent with the real world so as
to achieve the specified goals of the concerned application. The learning process is
based on data samples from the real world, and here lies a fundamental difference
between the design of an ANN and a classical information-processing system. In
the latter case, we usually proceed by first formulating a mathematical model of envi-
ronmental observations, validating the model with real data, and then building (pro-
gramming) the system on the basis of the model. In contrast, the design of an ANN is
based directly on real-life data, with the data set being permitted to “speak for itself.”
Thus, an ANN not only provides the implicit model formed through the learning proc-
ess but also performs the information-processing function of interest.

The property that is of primary significance for an ANN is the ability of the net-
work to learn from its environment based on real-life examples and to improve its
performance through that learning process. An ANN learns about its environment
through an interactive process of adjustments applied to its connection weights. Ide-
ally, the network becomes more knowledgeable about its environment after each iter-
ation in the learning process. It is very difficult to agree on a precise definition of the
term learning. In the context of ANNs, one possible definition of inductive learning is:

Learning is a process by which the free parameters of a neural network are adapted
through a process of stimulation by the environment in which the network is
embedded. The type of learning is determined by the manner in which the parameters
change.

A prescribed set of well-defined rules for the solution of a learning problem is
called a learning algorithm. Basically, learning algorithms differ from each other in
the way in which the adjustment of the weights is formulated. Another factor to be
considered in the learning process is the manner in which ANN architecture (nodes
and connections) is built.

y

x1
+2.0

+2.0

1

–1.0

–1.0
+1.0

+1.0

+1.5

–1.0

–1.5

x2 2

3

Figure 7.5. XOR solution: The two-layer ANN with the hard-limit activation function.
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To illustrate one of the learning rules, consider the simple case of a neuron k,
shown in Figure 7.1, constituting the only computational node of the network. Neuron
k is driven by input vector X(n), where n denotes discrete time, or, more precisely, the
time step of the iterative process involved in adjusting the input weights wki. Every
data sample for ANN training (learning) consists of the input vector X(n) and the cor-
responding output d(n).

Inputs Output

Samplek xk1, xk2,…,xkm dk

Processing the input vector X(n), a neuron k produces the output that is denoted
by yk(n):

yk = f
m

i= 1

xi wki

It represents the only output of this simple network, and it is compared to a
desired response or target output dk(n) given in the sample. An error ek(n) produced
at the output is by definition

ek n = dk n – yk n

The error signal produced actuates a control mechanism of the learning algo-
rithm, the purpose of which is to apply a sequence of corrective adjustments to the
input weights of a neuron. The corrective adjustments are designed to make the output
signal yk(n) come closer to the desired response dk(n) in a step-by-step manner. This
objective is achieved by minimizing a cost function E(n), which is the instantaneous
value of error energy, defined for this simple example in terms of the error ek(n):

E n = ½ e2k n

The learning process based on a minimization of the cost function is referred to as
error-correction learning. In particular, minimization of E(n) leads to a learning rule
commonly referred to as the delta rule or Widrow–Hoff rule. Let wkj(n) denote the
value of the weight factor for neuron k excited by input xj(n) at time step n. According
to the delta rule, the adjustment Δwkj(n) is defined by

Δwkj n = η ek n xj n

where η is a positive constant that determines the rate of learning. Therefore, the delta
rule may be stated as follows: the adjustment made to a weight factor of an input
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neuron connection is proportional to the product of the error signal and the input value
of the connection in question.

Having computed the adjustmentΔwkj(n), the updated value of synaptic weight is
determined by

wkj n+ 1 =wkj n +Δwkj n

In effect, wkj(n) and wkj(n + 1) may be viewed as the old and new values of syn-
aptic weight wkj, respectively. From Figure 7.6 we recognize that error-correction
learning is an example of a closed-loop feedback system. Control theory explains that
the stability of such a system is determined by those parameters that constitute the
feedback loop. One of those parameters of particular interest is the learning rate η.
This parameter has to be carefully selected to ensure that the stability of convergence
of the iterative-learning process is achieved. Therefore, in practice, this parameter
plays a key role in determining the performance of error-correction learning.

Let us analyze one simple example of the learning process performed on a single
artificial neuron in Figure 7.7a, with a set of the three training (or learning) examples
given in Figure 7.7b.

The process of adjusting the weight factors for a given neuron will be performed
with the learning rate η = 0.1. The bias value for the neuron is equal 0, and the

Σ| f Σyk(n)

x2(n)

xm(n)

x1(n)

wk1

wk2

wkm

dk(n)

Corrections

•
•
•

– +

Figure 7.6. Error-correction learning performed through weight adjustments.

Σ| f
y

b = 0.0

n (sample) x1
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3 0.3

x2

1

0.7

0.3

x3

0.5

–0.5

–0.3

d

0.7

0.2

0.5

0.5

(a) (b)

0.8

–0.3
x2

x3

x1

Figure 7.7. Initialization of the error-correction learning process for a single neuron.

(a) Artificial neuron with the feedback. (b) Training data set for a leraning process.
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activation function is linear. The first iteration of a learning process, and only for the
first training example, is performed with the following steps:

net 1 = 0 5 1 + – 0 3 1 + 0 8 0 5 = 0 6

y 1 = f net 1 = f 0 6 = 0 6

e 1 = d 1 – y 1 = 0 7 – 0 6 = 0 1

Δw1 1 = 0 1 0 1 1 = 0 01 w1 2 =w1 1 +Δw1 1 = 0 5 + 0 01 = 0 51

Δw2 1 = 0 1 0 1 1 = 0 01 w2 2 =w2 1 +Δw2 1 = −0 3 + 0 01 = −0 29

Δw3 1 = 0 1 0 1 0 5 = 0 005 w3 2 =w3 1 +Δw3 1 = 0 8 + 0 005 = 0 805

Similarly, it is possible to continue with the second and third examples (n = 2 and
n = 3). The results of the learning corrections Δw together with new weight factors w
are given in Table 7.2.

Error-correction learning can be applied on much more complex ANN architec-
ture, and its implementation is discussed in Section 7.5, where the basic principles of
multilayer feedforward ANNs with backpropagation are introduced. This example
only shows howweight factors change with every training (learning) sample.We gave
the results only for the first iteration. The weight-correction process will continue with
either new training samples or use the same data samples in the next iterations. When
to finish the iterative process is defined by a special parameter or set of parameters

TABLE 7.2 . Adjustment of Weight Factors with Training
Examples in Figure 7.7b

Parameter n = 2 n = 3

x1 –1 0.3
x2 0.7 0.3
x3 –0.5 –0.3
y –1.1555 –0.18
d 0.2 0.5
e 1.3555 0.68
Δw1(n) –0.14 0.02
Δw2(n) 0.098 0.02
Δw3(n) –0.07 –0.02
w1(n + 1) 0.37 0.39
w2(n + 1) –0.19 –0.17
w3(n + 1) 0.735 0.715
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called stopping criteria. A learning algorithm may have different stopping criteria,
such as the maximum number of iterations, or the threshold level of the weight factor
may change in two consecutive iterations. This parameter of learning is very important
for final learning results, and it will be discussed in later sections.

7.4 LEARNING TASKS USING ANNS

The choice of a particular learning algorithm is influenced by the learning task that an
ANN is required to perform. We identify six basic learning tasks that apply to the use
of different ANNs. These tasks are subtypes of general learning tasks introduced in
Chapter 4.

7.4.1 Pattern Association

Association has been known to be a prominent feature of human memory since Aris-
totle, and all models of cognition use association in one form or the other as the basic
operation. Association takes one of two forms: autoassociation or heteroassociation.
In autoassociation, an ANN is required to store a set of patterns by repeatedly pre-
senting them to the network. The network is subsequently presented with a partial
description or a distorted, noisy version of an original pattern, and the task is to
retrieve and recall that particular pattern. Heteroassociation differs from autoassocia-
tion in that an arbitrary set of input patterns is paired with another arbitrary set of out-
put patterns. Autoassociation involves the use of unsupervised learning, whereas
heteroassociation learning is supervised. For both, autoassociation and heteroasso-
ciation, there are twomain phases in the application of an ANN for pattern-association
problems:

1. The storage phase, which refers to the training of the network in accordance
with given patterns, and

2. The recall phase, which involves the retrieval of a memorized pattern in
response to the presentation of a noisy or distorted version of a key pattern
to the network.

7.4.2 Pattern Recognition

Pattern recognition is also a task that is performed much better by humans than by the
most powerful computers. We receive data from the world around us via our senses
and are able to recognize the source of the data. We are often able to do so almost
immediately and with practically no effort. Humans perform pattern recognition
through a learning process, so it is with ANNs.

Pattern recognition is formally defined as the process whereby a received pattern
is assigned to one of a prescribed number of classes. An ANN performs pattern
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recognition by first undergoing a training session, during which the network is repeat-
edly presented a set of input patterns along with the category to which each particular
pattern belongs. Later, in a testing phase, a new pattern is presented to the network that
it has not seen before, but belongs to the same population of patterns used during train-
ing. The network is able to identify the class of that particular pattern because of the
information it has extracted from the training data. Graphically, patterns are repre-
sented by points in a multidimensional space. The entire space, which we call decision
space, is divided into regions, each one of which is associated with a class. The deci-
sion boundaries are determined by the training process, and they are tested if a new
unclassified pattern is presented to the network. In essence, pattern recognition repre-
sents a standard classification task.

7.4.3 Function Approximation

Consider a nonlinear input–output mapping described by the functional relationship

Y = f X

where the vector X is the input and Y is the output. The vector-value function f is
assumed to be unknown. We are given the set of labeled examples {Xi, Yi}, and
we have to design an ANN that approximates the unknown function f with a function
F that is very close to original function. Formally,

F Xi – f Xi < ε for all Xi from the training set

where ε is a small positive number. Provided that the size of the training set is large
enough and the network is equipped with an adequate number of free parameters, the
approximation error ε can be made small enough for the task. The approximation
problem described here is a perfect candidate for supervised learning.

7.4.4 Control

Control is another learning task that can be done by an ANN. Control is applied to a
process or a critical part in a system, which has to be maintained in a controlled con-
dition. Consider the control system with feedback shown in Figure 7.8.

Σ Controller

Feedback

–

+

ANN Process
input: x

Process
output: y

Error
signal: e

Reference
signal: d

Process

Figure 7.8. Block diagram of ANN-based feedback control system.
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The system involves the use of feedback to control the output y on the level of a
reference signal d supplied from the external source. A controller of the system can be
realized in an ANN technology. The error signal e, which is the difference between the
process output y and the reference value d, is applied to an ANN-based controller for
the purpose of adjusting its free parameters. The primary objective of the controller is
to supply appropriate inputs x to the process to make its output y track the reference
signal d. It can be trained through:

1. Indirect learning—Using actual input–output measurements on the process,
an ANN model of a control is first constructed offline. When the training is
finished, the ANN controller may be included into the real-time loop.

2. Direct learning—The training phase is online, with real-time data, and the
ANN controller is enabled to learn the adjustments to its free parameters
directly from the process.

7.4.5 Filtering

The term filter often refers to a device or algorithm used to extract information about a
particular quantity from a set of noisy data. Working with series of data in time
domain, frequent domain, or other domains, we may use an ANN as a filter to perform
two basic information-processing tasks:

1. Filtering—This task refers to the extraction of information about a particular
quantity at discrete time n by using data measured up to and including time n.

2. Smoothing—This task differs from filtering in that data need not be available
only at time n; data measured later than time n can also be used to obtain the
required information. This means that in smoothing there is a delay in produ-
cing the result at discrete time n.

7.4.6 Prediction

The task of prediction is to forecast data in the future. The aim is to derive information
about what the quantity of interestwill be like at some time n + n0 in the future, for n0 > 0,
by using data measured up to and including time n. Prediction may be viewed as a form
ofmodel building in the sense that the smaller wemake the prediction error, the better the
network serves as a model of the underlying physical process responsible for generating
the data. The block diagram of an ANN for a prediction task is given in Figure 7.9.

7.5 MULTILAYER PERCEPTRONS

Multilayer feedforward networks are one of the most important and most popular
classes of ANNs in real-world applications. Typically, the network consists of a
set of inputs that constitute the input layer of the network, one or more hidden layers
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of computational nodes, and finally an output layer of computational nodes. The pro-
cessing is in a forward direction on a layer-by-layer basis. This type of ANNs are com-
monly referred to as multilayer perceptrons (MLPs), which represent a generalization
of the simple perceptron, a network with a single layer, considered earlier in this
chapter.

An MLP has three distinctive characteristics:

1. The model of each neuron in the network includes usually a nonlinear activa-
tion function, sigmoidal or hyperbolic.

2. The network contains one or more layers of hidden neurons that are not a part
of the input or output of the network. These hidden nodes enable the network
to learn complex and highly nonlinear tasks by extracting progressively more
meaningful features from the input patterns.

3. The network exhibits a high degree of connectivity from one layer to the
next one.

Figure 7.10 shows the architectural graph of an MLP with two hidden layers of
nodes for processing and an output layer. The network shown here is fully connected.
This means that the neuron in any layer of the network is connected to all the nodes
(neurons) in the previous layer. Data flow through the network progresses in a forward
direction from left to right and on a layer-by-layer basis.

MLPs have been applied successfully to solve some difficult and diverse pro-
blems by training the network in a supervised manner with a highly popular algorithm
known as the error backpropagation algorithm. This algorithm is based on the error-
correction learning rule, and it may be viewed as its generalization. Basically, error
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Figure 7.9. Block diagram of an ANN-based prediction.
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backpropagation learning consists of two phases performed through the different
layers of the network: a forward pass and a backward pass.

In the forward pass, a training sample (input data vector) is applied to the input
nodes of the network, and its effect propagates through the network layer by layer.
Finally, a set of outputs is produced as the actual response of the network. During
the forward phase, the synaptic weights of the network are all fixed. During the back-
ward phase, on the other hand, the weights are all adjusted in accordance with an error-
correction rule. Specifically, the actual response of the network is subtracted from a
desired (target) response, which is a part of the training sample, to produce an error
signal. This error signal is than propagated backward through the network against the
direction of synaptic connections. The synaptic weights are adjusted to make the
actual response of the network closer to the desired response.

Formalization of the backpropagation algorithm starts with the assumption that
an error signal exists at the output of a neuron j at iteration n (i.e. presentation of the
nth training sample). This error is defined by

ej n = dj n – yj n

We define the instantaneous value of the error energy for neuron j as 1 2e2j n .
The total error energy for the entire network is obtained by summing instantaneous
values over all neurons in the output layer. These are the only “visible” neurons
for which the error signal can be calculated directly. We may thus write

E n = ½
j C

e2j n ,

where the set C includes all neurons in the output layer of the network. Let N denote
the total number of samples contained in the training set. The average squared error
energy is obtained by summing E(n) over all n and then normalizing it with respect to
size N, as shown by
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Figure 7.10. A graph of a multilayer-perceptron architecture with two hidden layers.
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Eav =
1
N

N

n= 1

E n

The average error energy Eav is a function of all the free parameters of the net-
work. For a given training set, Eav represents the cost function as a measure of learning
performances. The objective of the learning process is to adjust the free parameters of
the network to minimize Eav. To do this minimization, the weights are updated on a
sample-by-sample basis for one iteration, i.e., one complete presentation of the entire
training set of a network has been dealt with.

To obtain the minimization of the function Eav, we have to use two additional
relations for node-level processing, which have been explained earlier in this chapter:

vj n =
m

i= 1

wji n xi n

and

yj n =φ vj n

where m is the number of inputs for jth neuron. Also, we use the symbol v as a short-
hand notation of the previously defined variable net. The backpropagation algorithm
applies a correction Δwji(n) to the synaptic weight wji(n), which is proportional to the
partial derivative δE(n)/δwji(n). Using the chain rule for derivation, this partial deriv-
ative can be expressed as

∂E n

∂wji n
=
∂E n

∂ej n

∂ej n

∂yj n

∂yj n

∂vj n

∂vj n

∂wji n

The partial derivative δE(n)/δwji(n) represents a sensitive factor, determining the
direction of search in weight space. Knowing that the next relations

∂E n

∂ej n
= ej n from E n = ½ e2j n

∂ej n

∂yj n
= −1 from ej n = dj n – yj n

∂yj n

∂vj n
=φ vj n from yj n =φ vj n

∂vj n

∂wji n
= xi n from wji n xi n
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are valid, we can express the partial derivative ∂E(n)/∂wji(n) in the form

∂E n

∂wji n
= – ej n φ vj n xi n

The correction Δwji(n) applied to wji(n) is defined by the delta rule

Δwji n = –
η ∂E n

∂wji n
= η ej n φ vj n xi n

where η is the learning-rate parameter of the backpropagation algorithm. The use of
the minus sign accounts for gradient descent in weight space, i.e., a direction for
weight change that reduces the value E(n). Asking for φ (vj(n)) in the learning process
is the best explanation for why we prefer continuous functions such as log-sigmoid
and hyperbolic as a standard activation function at the node level. Using the notation
δj(n) = ej(n) φ j(vj(n)), where δj(n) is the local gradient, the final equation for wji(n)
corrections is

Δwji n = η δj n xi n

The local gradient δj(n) points to the required changes in synaptic weights.
According to its definition, the local gradient δj(n) for output neuron j is equal to
the product of the corresponding error signal ej(n) for that neuron and the derivative
φ (vj(n)) of the associated activation function.

Derivative φ (vj(n)) can be easily computed for a standard activation function,
where differentiation is the only requirement for the function. If the activation func-
tion is sigmoid, it means that in the form

yj n =φ vj n =
1

1 + e – vj n

the first derivative is

φ vj n =
e – vj n

1 + e – vj n 2 = yj n 1 – yj n

and a final weight correction is

Δwji n = η ej n yj n 1 – yj n xi n

The final correctionΔwji(n) is proportional to the learning rate η, the error value at
this node is ej(n), and the corresponding input and output values are xi(n) and yj(n).
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Therefore, the process of computation of Δwji(n) for a given sample n is relatively
simple and straightforward.

If the activation function is a hyperbolic tangent, a similar computation will give
the final value for the first derivative φ (vj(n)):

φ vj n = 1 – yj n 1 + yj n

and

Δwji n = η ej n 1 – yj n 1 + yj n xi n

Again, the practical computation of Δwji(n) is very simple because the local-
gradient derivatives depend only on the output value of the node yj(n).

In general, we may identify two different cases of computation for Δwji(n),
depending on where in the network neuron j is located. In the first case, neuron j
is an output node. This case is simple to handle because each output node of the net-
work is supplied with a desired response, making it a straightforward matter to cal-
culate the associated error signal. All previously developed relations are valid for
output nodes without any modifications.

In the second case, neuron j is a hidden node. Even though hidden neurons are not
directly accessible, they share responsibility for any error made at the output of the
network. We may redefine the local gradient δj(n) for a hidden neuron j as the product
of the associated derivative φ (vj(n)) and the weighted sum of the local gradients com-
puted for the neurons in the next layer (hidden or output) that are connected to neu-
ron j:

δj n =φ vj n
k

δk n wkj n , k D

where D denotes the set of all nodes on the next layer that are connected to the node j.
Going backward, all δk(n) for the nodes in the next layer are known before computa-
tion of the local gradient δj(n) for a given node on a layer closer to the inputs.

Let us analyze once more the application of the backpropagation-learning algo-
rithm with two distinct passes of computation that are distinguished for each training
example. In the first pass, which is referred to as the forward pass, the function signals
of the network are computed on a neuron-by-neuron basis, starting with the nodes on
first hidden layer (the input layer is without computational nodes), then the second,
etc., until the computation is finished with final output layer of nodes. In this pass,
based on given input values of each learning sample, a network computes the corre-
sponding output. Synaptic weights remain unaltered during this pass.

The second, backward pass, on the other hand, starts at the output layer, passing
the error signal (the difference between the computed and the desired output value)
leftward through the network, layer by layer, and recursively computing the local
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gradients δ for each neuron. This recursive process permits the synaptic weights of the
network to undergo changes in accordance with the delta rule. For the neuron located
at the output layer, δ is equal to the error signal of that neuron multiplied by the first
derivative of its nonlinearity represented in the activation function. Based on local
gradients δ, it is straightforward to compute Δw for each connection to the output
nodes. Given the δ values for all neurons in the output layer, we use them in the pre-
vious layer before (usually the hidden layer) to compute modified local gradients for
the nodes that are not the final and again to correct Δw for input connections for this
layer. The backward procedure is repeated until all layers are covered and all weight
factors in the network are modified. Then, the backpropagation algorithm continues
with a new training sample. When there are no more training samples, the first iter-
ation of the learning process finishes. With the same samples, it is possible to go
through a second, third, and sometimes hundreds of iterations until error energy
Eav for the given iteration is small enough to stop the algorithm.

The backpropagation algorithm provides an “approximation” to the trajectory in
weight space computed by the method of steepest descent. The smaller we make the
learning rate parameter η, the smaller the changes to the synaptic weights in the net-
work will be from one iteration to the next, and the smoother will be the trajectory in
weight space. This improvement, however, is attained at the cost of a slower rate of
learning. If, on the other hand, we make η too large in order to speed up the learning
process, the resulting large changes in the synaptic weights can cause that network to
become unstable, and the solution will become oscillatory about a minimal point
never reaching it.

A simple method of increasing the rate of learning yet avoiding the danger of
instability is to modify the delta rule by including a momentum term:

Δwji n = η δj n xi n + α Δwji n – 1

where α is usually a positive number called momentum constant andΔwji(n – 1) is the
correction of the weight factor for a previous (n – 1)th sample. α, in practice, is usually
set to the value between 0.1 and 1. The addition of the momentum term smoothes the
weight updating and tends to resist erratic weight changes because of gradient noise or
high spatial frequencies in the error surface. However, the use of momentum terms
does not always seem to speed up training; it is more or less application dependent.
The momentum factor represents a method of averaging; rather than averaging deri-
vatives, momentum averages the weight changes themselves. The idea behind
momentum is apparent from its name, including some kind of inertia in weight cor-
rections. The inclusion of the momentum term in the backpropagation algorithm has a
stabilizing effect in cases where corrections in weight factors have a high oscillation
and sign changes. The momentum term may also have the benefit of preventing the
learning process from terminating in a shallow local minimum on the error surface.

Reflecting practical approaches to the problem of determining the optimal archi-
tecture of the network for a given task, the question about values for three parameters,
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namely, the number of hidden nodes (including the number of hidden layers), learning
rate η, and momentum rate α, becomes very important. Usually the optimal architec-
ture is determined experimentally, but some practical guidelines exist. If several net-
works with different numbers of hidden nodes give close results with respect to error
criteria after the training, then the best network architecture is the one with smallest
number of hidden nodes. Practically, that means starting the training process with net-
works that have a small number of hidden nodes, increasing this number, and then
analyzing the resulting error in each case. If the error does not improve with the
increasing number of hidden nodes, the latest analyzed network configuration can
be selected as optimal. Optimal learning andmomentum constants are also determined
experimentally, but experience shows that the solution should be found with η about
0.1 and α about 0.5.

When the ANN is first set up, the initial weight factors must be given. The goal in
choosing these values is to begin the learning process as fast as possible. The appro-
priate method is to take the initial weights as very small evenly distributed random
numbers. That will cause the output values to be in a midrange regardless of the values
of its inputs, and the learning process will converge much faster with every new
iteration.

In backpropagation learning, we typically use the algorithm to compute the syn-
aptic weights by using as many training samples as possible. The hope is that the neu-
ral network so designed will generalize the best. A network is said to generalize well
when the input–output mapping computed by the network is correct for test data never
used earlier in creating or training the network. In the MLP, if the number of hidden
units is less than the number of inputs, the first layer performs a dimensionality reduc-
tion. Each hidden unit may be interpreted as defining a template. By analyzing these
templates we can extract knowledge from a trained ANN. In this interpretation
weights are defining relative importance in the templates. But the largest number
of training samples and the largest number of learning iterations using these samples
do not necessarily lead to the best generalization. Additional problems occur during
the learning process, and they are briefly described through the following analysis.

The learning process using an ANN may be viewed as a curve-fitting problem.
Such a viewpoint then permits us to look on generalization not as a theoretical prop-
erty of neural networks but as the effect of a good nonlinear interpolation of the input
data. An ANN that is designed to generalize well will produce a correct input–output
mapping, even when the input is slightly different from the samples used to train the
network, as illustrated in Figure 7.11a.When, however, an ANN learns from toomany
input–output samples, the network may end up memorizing the training data. Such a
phenomenon is referred to as overfitting or overtraining. This problem has already
been described in Chapter 4. When the network is overtrained, it loses the ability
to generalize between similar patterns. A smoothness of input–output mapping, on
the other hand, is closely related to the generalization abilities of an ANN. The essence
is to select, based on training data, the simplest function for generalization; that
means the smoothest function that approximates the mapping for a given error
criterion. Smoothness is natural in many applications, depending on the scale of
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the phenomenon being studied. It is therefore important to seek a smooth nonlinear
mapping so that the network is able to classify novel patterns correctly with respect
to the training patterns. In Figure 7.11a and b, a fitting curve with a good generaliza-
tion and an overfitted curve are represented for the same set of training data.

To overcome the problem of overfitting, some additional practical recommenda-
tions may be introduced for the design and application of ANN in general and MLPs
in particular. In ANNs, as in all modeling problems, we want to use the simplest net-
work that can adequately represent the training data set. Do not use a bigger network
when a smaller network will work! An alternative to using the simplest network is to
stop the training before the network overfits. Also, one very important constraint is
that the number of network parameters should be limited. For a network to be able
to generalize, it should have fewer parameters (significantly) than there are data points
in the training set. ANN generalization is extremely poor if there is a large input space
with very few training samples.

Interpretability of data-mining models including ANNs, or the understanding of
the way inputs relate to an output in a model, is a desirable property in applied data-
mining research because the intent of such studies is to gain knowledge about the
underlying reasoning mechanisms. Interpretation may also be used to validate results
that are inconsistent or contradictory to common understanding of issues involved,
and it may also indicate problems with data or models.

While ANNs have been intensively studied and successfully used in classifica-
tion and regression problems, their interpretability still remains vague. They suffer
from the shortcoming of being “black boxes,” i.e., without explicit mechanisms for
determining why an ANN makes a particular decision. That is, one provides the input
values for an ANN and obtains an output value, but generally no information is pro-
vided regarding how those outputs were obtained, how the input values correlate to
the output value, and what is the meaning of large number of weight factors in the
network. ANNs’ acceptability as valid data-mining methods for business and research
requires that beyond providing excellent predictions, they provide meaningful insight

y

(a) (b)

x

y

x

- Training samples

- Testing samples

Figure 7.11. Generalization as a problem of curve fitting. (a) A fitting curve with good

generalization. (b) Overfitted curve.
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that can be understood by variety of users: clinicians, policy makers, business plan-
ners, academicians, and laypersons. Human understanding and acceptance is greatly
enhanced if the input–output relations are explicit, and end users would gain more
confidence in the prediction produced.

Interpretation of trained ANNs can be considered in two forms: broad and
detailed. The aim of a broad interpretation is to characterize how important an input
neuron is for predictive ability of the model. This type of interpretation allows us to
rank input features in order of importance. The broad interpretation is essentially a
sensitivity analysis of the neural network. The methodology does not indicate the sign
or direction of the effect of each input. Thus we cannot draw conclusions regarding the
nature of the correlation between input descriptors and network output, but only we
are concluding about the level of influence.

The goal of a detailed interpretation of an ANN is to extract the structure–
property trends from an ANN model. For example, each of hidden neurons corre-
sponds to the number of piecewise hyperplanes that are components available for
approximating the target function. These hyperplanes act as the basic building blocks
for constructing an explicit ANNmodel. To obtain a more comprehensible system that
approximates the behavior of the ANN, we require the model with less complexity and
at the same time maybe scarifying accuracy of results. The knowledge hidden in a
complex structure of an ANN may be uncovered using a variety of methodologies
that allow mapping an ANN into a rule-based system. Many authors have focused
their activities on compiling the knowledge captured in the topology and weight
matrix of a neural network into a symbolic form: some of them into sets of ordinary
if-then rules, others into formulas from propositional logic or from non-monotonic
logics, or most often into sets of fuzzy rules. These transformations make explicit
the knowledge implicitly captured by the trained neural network, and it allows the
human specialist to understand how the neural network generates a particular result.
It is important to emphasize that any method of rule extraction from ANN is valuable
only to the degree to which the extracted rules are meaningful and comprehensible to a
human expert.

It is proven that the best interpretation of trained ANNswith continuous activation
functions is in a form of fuzzy rule-based systems. In this way, a more comprehensible
description of the action of the ANN is achieved. Multilayer feedforward ANNs are
seen as additive fuzzy rule-based systems. In these systems, the outputs of each rule
are weighted by the activation degree of the rule, and then they are added for an inte-
grated representation of an ANN model. The main disadvantage of most approxima-
tion techniques of neural networks by fuzzy rules is the exponential increase of
required number of rules for a good approximation. Fuzzy rules that express the
input–output mapping of the ANNs are extracted using different approaches
described in numerous references. If the reader is interested for more details about
methodologies, the starting points may be recommended references at the end of this
chapter and also introductory concepts about fuzzy systems given in Chapter 14.
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7.6 COMPETITIVE NETWORKS AND COMPETITIVE LEARNING

Competitive neural networks belong to a class of recurrent networks, and they are
based on algorithms of unsupervised learning, such as the competitive algorithm
explained in this section. In competitive learning, the output neurons of a neural net-
work compete among themselves to become active (to be “fired”). Whereas in MLPs
several output neurons may be active simultaneously, in competitive learning, only a
single output neuron is active at any one time. There are three basic elements neces-
sary to build a network with a competitive-learning rule, a standard technique for this
type of ANNs:

1. A set of neurons that have the same structure and that are connected with ini-
tially randomly selected weights. Therefore, the neurons respond differently to
a given set of input samples.

2. A limit value that is determined on the strength of each neuron.

3. Amechanism that permits the neurons to compete for the right to respond to a
given subset of inputs, such that only one output neuron is active at a time. The
neuron that wins the competition is called winner-take-all neuron.

In the simplest form of competitive learning, an ANN has a single layer of output
neurons, each of which is fully connected to the input nodes. The networkmay include
feedback connections among the neurons, as indicated in Figure 7.12. In the network
architecture described herein, the feedback connections perform lateral inhibition,
with each neuron tending to inhibit the neuron to which it is laterally connected. In
contrast, the feedforward synaptic connections in the network of Figure 7.12 are
all excitatory.

Layer of

inputs

•
•
•

•
•
•

x1

x2

xn

•
•
•

y1

y2

yk

Single layer of

output nodes

Competitive

outputs

Figure 7.12. A graph of a simple competitive network architecture.
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For a neuron k to be the winning neuron, its net value netk for a specified input
sample X = {x1, x2,…,xn} must be the largest among all the neurons in the network.
The output signal yk of the winning neuron k is set equal to one; the outputs of all other
neurons that lose the competition are set equal to zero. We thus write

yk =
1 if netk > netj for all j, j k

0 otherwise

where the induced local value netk represents the combined action of all the forward
and feedback inputs to neuron k.

Let wkj denote the synaptic weights connecting input node j to neuron k. A neuron
then learns by shifting synaptic weights from its inactive input nodes to its active input
nodes. If a particular neuron wins the competition, each input node of that neuron
relinquishes some proportion of its synaptic weight, and the weight relinquished is
then distributed among the active input nodes. According to the standard competi-
tive-learning rule, the change Δwkj applied to synaptic weight wkj is defined by

Δwki =
η xj−wkj if neuron kwins the competition

0 if neuron k loses the competition

where η is the learning-rate parameter. The rule has the overall effect of moving the
synaptic weights of the winning neuron toward the input pattern X. We may use the
geometric analogy represented in Figure 7.13 to illustrate the essence of competitive
learning.

Each output neuron discovers a cluster of input samples by moving its synaptic
weights to the center of gravity of the discovered cluster. Figure 7.13 illustrates the

x2

x1

x2

x1

- Input vectors

(a) (b)

- Synaptic weights

Figure 7.13. Geometric interpretation of competitive learning. (a) Initial state of the

network. (b) Final state of the network.
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ability of a neural network to perform clustering through competitive learning. During
the competitive-learning process, similar samples are grouped by the network and
represented by a single artificial neuron at the output. This grouping, based on data
correlation, is done automatically. For this function to be performed in a stable
way, however, the input samples must fall into sufficiently distinct groups. Otherwise,
the network may be unstable.

Competitive (or winner-take-all) neural networks are often used to cluster input
data where the number of output clusters is given in advance. Well-known examples
of ANNs used for clustering based on unsupervised inductive learning include Koho-
nen’s learning vector quantization (LVQ), self-organizing map (SOM), and networks
based on adaptive-resonance theory models. Since the competitive network discussed
in this chapter is very closely related to the Hamming networks, it is worth reviewing
the key concepts associated with this general and very important class of ANNs. The
Hamming network consists of two layers. The first layer is a standard feedforward
layer, and it performs a correlation between the input vector and the preprocessed out-
put vector. The second layer performs a competition to determine which of the pre-
processed output vectors is closest to the input vector. The index of the second-layer
neuron with a stable positive output (the winner of the competition) is the index of the
prototype vector that best matches the input.

Competitive learning makes efficient adaptive classification, but it suffers from a
few methodological problems. The first problem is that the choice of learning rate η
forces a trade-off between speed of learning and the stability of the final weight fac-
tors. A learning rate near zero results in slow learning. Once a weight vector reaches
the center of a cluster, however, it will tend to stay close to the center. In contrast, a
learning rate near 1 results in fast but unstable learning. A more serious stability prob-
lem occurs when clusters are close together, which causes weight vectors also to
become close, and the learning process switches its values and corresponding classes
with each new example. Problems with the stability of competitive learning may occur
also when a neuron’s initial weight vector is located so far from any input vector that it
never wins the competition, and therefore it never learns. Finally, a competitive-
learning process always has as many clusters as it has output neurons. This may
not be acceptable for some applications, especially when the number of clusters is
not known or if it is difficult to estimate it in advance.

The following example will trace the steps in the computation and learning proc-
ess of competitive networks. Suppose that there is a competitive network with three
inputs and three outputs. The task is to group a set of three-dimensional (3D) input
samples into three clusters. The network is fully connected; there are connections
between all inputs and outputs, and there are also lateral connections between output
nodes. Only local feedback weights are equal to zero, and these connections are not
represented in the final architecture of the network. Output nodes are based on a linear
activation function with the bias value for all nodes equal to zero. The weight factors
for all connections are given in Figure 7.14, and we assume that the network is already
trained with some previous samples.
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Suppose that the new sample vector X has components

X = x1,x2,x3 = 1,0,1

In the first, forward phase, the temporary outputs for competition are computed
through their excitatory connections, and their values are

net1
∗ = 0 5 x1 + – 0 5 x3 = 0 5 1 – 0 5 1 = 0

net2
∗ = 0 3 x1 + 0 7 x2 = 0 3 1 + 0 7 0 = 0 3

net3
∗ = 0 2 x2 + – 0 2 x3 = 0 2 0−0 2 1 = −0 2

and after including lateral inhibitory connections:

net1 = net1
∗ + 0 5 0 3 + 0 6 – 0 2 = 0 03

net2 = net2
∗ + 0 2 0 + 0 1 – 0 2 = 0 28 maximum

net3 = net3
∗ + 0 4 0 + 0 2 0 3 = – 0 14

Competition between outputs shows that the highest output value is net2, and it is
the winner. So the final outputs from the network for a given sample will be

Y = y1,y2,y3 = 0,1,0

Based on the same sample, in the second phase of competitive learning, the pro-
cedure for a weight factor’s correction (only for the winning node y2) starts. The
results of the adaptation of the network, based on learning rate η = 0.2, are new weight
factors:

w12 = 0 3 + 0 2 1 – 0 3 = 0 44

w22 = 0 7 + 0 2 0 – 0 7 = 0 56

w32 = 0 0 + 0 2 1 – 0 0 = 0 20
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Figure 7.14. Example of a competitive neural network.
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The other weight factors in the network remain unchanged because their output
nodes were not the winners in the competition for this sample. New weights are the
results of a competitive-learning process only for one sample. The process repeats iter-
atively for large training data sets.

7.7 SELF-ORGANIZING MAPS

Self-organizing maps (SOM), often called Kohonen maps, are a data visualization
technique introduced by the University of Helsinki Professor Teuvo Kohonen, The
main idea of the SOMs is to project the n-dimensional input data into some represen-
tation that could be better understood visually, for example, in a 2D image map. The
SOM algorithm is a heuristic model used not only to visualize but also to explore linear
and nonlinear relationships in high-dimensional data sets. SOMs were first used in the
1980s for speech recognition problems, but later they become very popular and often
used methodology for variety of clustering and classification-based applications.

The problem that data visualization attempts to solve is that humans simply can-
not visualize high-dimensional data, and SOM techniques are created to help us vis-
ualize and understand characteristics of this dimensional data. The SOM’s output
emphasizes on the salient features of the data and subsequently leads to the automatic
formation of clusters of similar data items. SOMs are interpreted as unsupervised neu-
ral networks (without teacher), and they are solving clustering problem by visualiza-
tion of clusters. As a result of a learning process, SOM is used as an important
visualization and data-reduction aid as it gives a complete picture of the data; similar
data items are transformed in lower dimension but still automatically grouped
together.

The way SOMs perform dimensions reduction is by producing an output map of
usually one or two dimensions. which plot the similarities of the data by grouping
similar data items on the map. Through these transformations. SOMs accomplish
two goals: they reduce dimensions and display similarities. Topological relationships
in input samples are preserved, while complex multidimensional data can be repre-
sented in a lower-dimensional space.

The basic SOM can be visualized as a neural network whose nodes become spe-
cifically tuned to various input sample patterns or classes of patterns in an orderly
fashion. Nodes with weighted connections are sometimes referred to as neurons since
SOMs are actually a specific type of ANNs. SOM is represented as a single-layer feed-
forward network where the output neurons are arranged usually in a 2D topological
grid. The output grid can be either rectangular or hexagonal. In the first case each neu-
ron excluding borders and corners has four nearest neighbors, while in the second
there are six. The hexagonal map requires more calculations, but final visualization
provides more smoothed result. Attached to every output neuron, there is a weight
vector with the same dimensionality as the input space. Each node i has a correspond-
ing weight vector wi = {wi1,wi2,…,wid} where d is a dimension of the input fea-
ture space.
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The structure of the SOM outputs may be one-dimensional (1D) array or 2D
matrix, but also may be more complex structures in 3D such as cylinder or toroid.
Figure 7.15 shows an example of a simple SOM architecture with all interconnections
between inputs and outputs.

An important part of an SOM technique is the data. These are the samples used for
SOM learning. The learning process is competitive and unsupervised, meaning that no
teacher is needed to define the correct output for a given input. Competitive learning is
used for training the SOM, i.e. output neurons compete among themselves to share the
input data samples. The winning neuron, with weights ww, is a neuron that is the “clo-
sest” to the input example x among all other m neurons in the defined metric:

d x,ww = argmin
1 ≤ j ≤m

d x,wj

In the basic version of SOMs, only one output node (winner) at a time is activated
corresponding to each input. The winner-take-all approach reduces the distance
between winner’s node weight vector and the current input sample, making the node
closer to be “representative” for the sample. The SOM learning procedure is an iter-
ative process that finds the parameters of the network (weights w) in order to organize
the data into clusters keeping topological structure. Thus the algorithm finds an appro-
priate projection of high-dimensional data into a low-dimensional space.

The first step of the SOM learning is the initialization of the neurons’ weights
where two methods are widely used. Initial weights can be taken as

1. the coordinates of randomly selected m points from the data set (usually nor-
malized between 0 and 1), or

1st output node

Input values

Feature map (rectangular grid)

Input values

1

w12

w11

2

Weight matrix

1

Figure 7.15. SOM with 2D input and 3 × 3 output.

260 ARTIFICIAL NEURAL NETWORKS



2. small random values sampled evenly from the input data subspace spanned by
the two largest principal component eigenvectors.

The second method can increase the speed of training but may lead to a local min-
ima and miss some nonlinear structures in data.

The learning process is performed after initialization where training data set is
submitted to the SOM one by one sample sequentially and usually in several itera-
tions. Each output with its connections, often called a cell, is a node containing a tem-
plate against which input samples are matched. All output nodes are compared with
the same input sample in parallel, and SOM computes the distances between each cell
and the input. All cells compete so that only the cell with the closest match between
the input and its template produces an active output. Each node therefore acts like a
separate decoder or pattern detector for the same input sample, and the winning node
is commonly known as the best matching unit (BMU).

When the winning node is determined for a given input sample, the learning
phase adapts the weight vectors in the SOM. Adaptation of the weight vectors for each
output occurs through a similar process to competitive learning except that subsets of
nodes are adapted at each learning step in order to produce topologically ordered
maps. The “winning” node BMU aligns its own weight vector with the training input
and hence becomes sensitive to it and will provide maximum response if it is shown to
the network again after training. Nodes in the neighborhood set of the “winning” node
must also be modified in a similar way to create regions of nodes that will respond to
related samples. Nodes outside the neighborhood set remain unchanged. Figure 7.16a
gives an example of 2D matrix outputs for SOM. For the given BMU the neighbor-
hood is defined as a 3 × 3 matrix of nodes surrounding BMU.

Every node within the BMU’s neighborhood (including the BMU) has its
weight vector adjusted according to the following equation in the iterative training
process:

wi t + 1 =wi t + hi t x t −wi t

where hi(t) is a so-called neighborhood function. It is defined as a function of time t or
more precisely a training iteration, and it specifies the neighborhood area of the ith
neuron. It has been found experimentally that in order to achieve global ordering
of the map, the neighborhood set around the winning node should initially be large
to quickly produce a rough mapping. With increased number of iterations through
the training set data, the neighborhood should be reduced to force more localized
adaptation of the network. This is done so the input samples can first move to an area
of SOM where they will probably be, and then they will more precisely determine the
position. This process is similar to coarse adjustment followed by fine-tuning
(Fig. 7.17). The radius of the neighborhood of the BMU is therefore dynamic. To
do this SOM can use, for example, the exponential decay function, which is reducing
the radius dynamically with each of new iterations. The graphical interpretation of the
function is given in Figure 7.16b.
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The simplest neighborhood function, which refers to a neighborhood set of nodes
around the BMU node i, is a monotonically decreasing Gaussian function:

hi t = a t exp
−d i,w
2σ2 t

where α(t) is a learning rate (0<α(t)<1), the width of the kernel σ(t) is a monotonically
decreasing function of time as well, and t is the current time step (iteration of the loop).
While the process will adapt all weight vectors within the current neighborhood
region, including those of the winning neuron, those outside this neighborhood are
left unchanged. The initial radius is set high, some value near the width or height
of the map. As a result, at the early stage of training when the neighborhood is broad
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Figure 7.16. Characteristics of SOM learning process. (a) SOM: BMU and neighborhood.

(b) The radius of the neighborhood diminishes with each sample and iteration. (c) BEFORE

learning, rectangular grid of SOM. (d) AFTER, learning, rectangular grid of SOM.
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and covers almost all the neurons, self-organization takes place at the global scale. As
the iterations continue, the base goes toward the center, so there are fewer neighbors as
time progresses. At the end of training, the neighborhood shrinks to zero, and only
BMU neuron updates its weights. The network will generalize through the process
to organize similar vectors, which it has not previously seen, spatially close at the
SOM outputs.

Apart from reducing the neighborhood, it has also been found that quicker con-
vergence of the SOM algorithm is obtained if the adaptation rate of nodes in the net-
work is reduced over time. Initially the adaptation rate should be high to produce
coarse clustering of nodes. Once this coarse representation has been produced, how-
ever, the adaptation rate is reduced so that smaller changes to the weight vectors are

(a) (b)

(c) (d)

Most responsive neuron, BMU

Figure 7.17. Coarseadjustment followedby fine-tuning! (a)Hexagonalgrid. (b)Rectangular

grid. (c) Neighborhood in a hexagonal grid. (d) Neighborhood in a retangular grid.
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made at each node and regions of the map become fine-tuned to the input training
vectors. Therefore, every node within the BMU’s neighborhood including the
BMU has its weight vector adjusted through the learning process. The previous equa-
tion for weight factor correction hi(t) may include an exponential decrease of “win-
ner’s influence” introducing α(t) also as a monotonically decreasing function.

The number of output neurons in an SOM (i.e., map size) is important to detect
the deviation of the data. If the map size is too small, it might not explain some impor-
tant differences that should be detected between input samples. Conversely, if the map
size is too big, the differences are too small. In practical applications, if there is no
additional heuristics, the number of output neurons in an SOM can be selected using
iterations with different SOM architectures.

Main advantages of SOM technology are the following: presented results are very
easy to understand and interpret, technology is very simple for implementation, and
most importantly it works well in many practical problems. Of course, there are also
some disadvantages. SOMs are computationally expensive, they are also very sensi-
tive to measure of similarity, and finally, they are not applicable for real-world data
sets with missing values. There are several possible improvements in implementations
of SOMs. To reduce the number of iterations in a learning process, good initialization
of weight factors is essential. Principal components of input data can make compu-
tation of the SOM orders of magnitude faster. Also, practical experience shows that
hexagonal grids give output results with a better quality. Finally selection of distance
measure is important as in any clustering algorithm. Euclidean distance is almost
standard, but that does not mean that it is always the best. For an improved quality
(isotropy) of the display, it is advisable to select the grid of the SOM units as
hexagonal.

SOMs have been used in large spectrum of applications such as automatic speech
recognition, clinical data analysis, monitoring of the condition of industrial plants and
processes, classification from satellite images, analysis of genetic information, anal-
ysis of electrical signals from the brain, and retrieval from large document collections.
Illustrative examples are given in Figure 7.18.

7.8 DEEP LEARNING

Deep learning is a subfield of machine learning that initiated enormous interests in the
research community in the last few years including related fields: speech recognition,
computer vision, language processing, and information retrieval. The primary reasons
are some very successful and attractive applications, and they made a lot of publicity
such as new solutions for self-driving cars, recommender systems for sentiment anal-
ysis, and, most recently, the successes with AlphaGo solution winning the best Go
players in the world. Three additional important reasons and trends in computer sci-
ence are supporting recent applications of deep learning: (1) the drastically increased
chip processing abilities (e.g., general-purpose graphics processing unit [GPGPU])
and new computer architectures, (2) significantly increased size of data used for
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analyses and modeling, and (3) recent advances in data-mining and machine-learning
techniques and signal/information-processing research achievements. Deep learning
methodologies are becoming more mature and showing promises for even bigger
advances in the future.

To explain the basic principles of deep learning, it is necessary to start with main
approaches implemented in traditional machine-learning techniques. They are per-
forming training/learning process by repeating the same steps thousands or even mil-
lions of times using available samples in iterations again and again. All these repeating
activities are translated into tuning process of model parameters. Eventually, this proc-
ess converges to the good enough model, applicable for many real-world applications.
But, in many cases, because of user selection of not appropriate input parameters, the
model gets stuck in so-called local minima, and the solution is not applicable. For
decades, construction of a data-mining solution, with the core represented by
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Figure 7.18. SOM applications. (a) Drugs binding to human cytochrome. (b) Interest rate

classification. (c) Analysis of books buying behavior.

265DEEP LEARNING



machine-learning algorithm, required careful engineering and considerable domain
expertise to design a future extractor. This extractor should transform the raw data
included in an input features vector (such as pixel values in an image or letters in
the longer natural language text) into a suitable internal representation. Based on these
new, internal, and usually more complex features, the learning subsystem could detect
the best and highly applicable input–output learning model.

The performances of machine-learning methods are heavily dependent on the
choice of data representation not only for selected input features but also for internal
derived feature representation. For that reason, much of the actual effort in deploying
machine-learning algorithms goes into the design of preprocessing pipelines and data
transformation. It is expected that these processes will result in a representation of data
that could support effective machine learning. Such feature engineering is very
important but labor intensive, and it highlights the main weakness of current
machine-learning algorithms: it is the inability of these algorithms to extract and
organize automatically the discriminative information from the data. Feature engi-
neering is a way to take all advantages of human ingenuity and prior knowledge to
compensate for that weakness. Sometimes this engineering process is successful,
but in many cases it does not include all complexity of inner features and their struc-
tures. Therefore, traditional machine-learning algorithms represent shallow learning
approaches, usually with the depth of one or two layers. That means these algorithms
have only one or two steps in input data transformation to determine the output. This
class of shallowmethodologies include ANNs described in the previous sections, sup-
port vector machines, decision rules, and logistic regression. The real breakthrough in
deep learning was to realize that it is practical to go beyond the shallow one and two
hidden layers in the network learning models, and that is opening up the exploration
and practical implementations of much more expressive models.

To expand the scope and easy applicability of machine-learning techniques, it
would be highly desirable to make learning algorithms less dependent on feature engi-
neering. Deep learning is trying to solve the problem of appropriate set of input feature
selection. The main idea is that the best features for the model are mostly not deter-
mined in advanced or given by some expert in the field; they should be determined
through the machine-learning process. Depending on features’ complexity and a level
of abstraction, deep learning process allows to discover the features “naturally,”
through different layers of machine learning. Usually, at the input, the data set consists
only of raw data, and through the learning process without any additional domain/
expert knowledge, in a layer-by-layer network, important features are discovered.
Because the process of automatic feature detection in the network layers is a core
of the approach, deep learning may be interpreted as a general-purpose framework
for representation learning. In this context, a representation learning represents a
set of methods that allows that a machine, supported by raw data, has ability to auto-
matically discover the representations needed for prediction or classification tasks.
Deep learning covers variety of learning methods with multiple levels of representa-
tion usually in a form of a multilayer network structure. These derived features are
obtained by composing simple nonlinear modules that transform the representation
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of data at one level into a representation at a higher, slightly more abstract level. It is
important that the same deep learning architecture can be trained to perform different
tasks in completely different application domains.

Deep learning is not only about finding good representative features but also
about discovering a hidden structure of features based on large amount of high-
dimensional raw data. The approach gives the best results when the input features
are locally structured through their common spatial or temporal characteristics. Most
recent examples are successful applications of deep learning in analysis of images,
audio signals, or natural language processing where 1D and 2D organization of
raw data is showing space structure in images or time structure in signals. For exam-
ple, in the case of image processing, where input is given as an image with 1000 ×
1000 pixels, it is possible to analyze and extract features from small segments of the
image represented by neighboring 20 × 20 pixels. These initial and local features may
be combined, in the following layers of the network, to determine more complex and
more global features. Image processing is starting with raw data in the form of large
number of pixels, and then the next layer defines the local features such as edges and
corners, while in the following layers some more complex motifs as a combination of
local features may be defined. Following deeper structure of the network, these motifs
are combined into parts of the objects, and finally complete objects may be recog-
nized. Similar hierarchy in feature discovery is applicable in a field of text recognition,
where the features discovered on different layers are characters words phrases

clause sentence story. This idea of iterative feature discovery, from local
characteristics toward global, is presented in Figure 7.19.

The description of the deep learning, which highlights this complex structure of
discovered features, is often given in a form: “Deep learning is a sub-field of machine
learning that is based on learning several levels of representations, corresponding to a
hierarchy of features or concepts, where higher-level concepts are defined from lower-
level ones, and the same lower-level concepts can help to define many higher-level
concepts.” A central idea, referred to as greedy layer-wise unsupervised pre-training,
was to learn a hierarchy of features one level at a time using unsupervised feature
learning to learn a new transformation at each level to be composed with the previ-
ously learned transformations. Finally, the previous set of layers with unsupervised
learning, which automatically determined the best set of features describing given data

Pixel    →     edge    →    shapes   →    motif    →   part   →    object

Figure 7.19. Multilayer transformation of raw input features through deep learning

(https://dl.acm.org/citation.cfm?id=1553453).
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set, could be combined with traditional layer of supervised learning in the final phase.
This architecture represents a deep learning supervised predictor or deep learning clas-
sifier, depending on what kind of final output is generated. The main advantages of
deep architectures are as follows:

1. Deep architectures promote the reuse of features, which is at the heart of the
theoretical advantages behind deep learning.

2. Deep architectures can lead to progressively more abstract features at higher
layers of representations that are constructed in terms of less abstract ones.

One of the approaches for unsupervised feature selection at each layer of deep
learning is using auto-encoder approach. Auto-encoder is the architecture that is trying
to transform input samples into low-dimensional samples. But the requirement is that
the set of features in transformed samples is selected as a set of generic features, which
enables complete reconstruction of each sample in the training data set. Usually, auto-
encoder process is applied several times through several layers of deep network. Basi-
cally, the process of unsupervised learning is trying to learn the features that describe
the best what comes as a main characteristics from the previous layer.

The main idea behind the use of auto-encoders, to build richer feature sets that are
by definition more compact than the input, follows the argument made earlier regard-
ing the human brain striving to create such compact representations for efficient rea-
soning. Auto-encoders consist of an encoder and a decoder. This represents itself as
three layers of neurons, with an input and output layer, as well as a hidden layer in the
middle, as it is presented in Figure 7.20.

After an input vector x is entered into the auto-encoder, a hidden vector y is cre-
ated by the hidden layer. This hidden vector represents the new encoding representa-
tion of the data based on new features. On the output layer, the hidden vector is used to
attempt to reconstruct the input vector, x . To train the auto-encoder, an error function
is defined using the output and input vectors, typically using squared error. This

Input

Hidden

Output

x

x'

Encode

Decode

y

Figure 7.20. Auto-encoder consists of two main tasks: encode and decode.
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concept can be extended to multiple layers, where each subsequent layer “encodes”
the previous layer using significantly fewer neurons.

An auto-encoder is trained with an absolutely standard weight-adjustment algo-
rithm to reproduce the input. By making this happen with fewer hidden nodes than the
inputs, this forces the “hidden layer” units to become good feature detectors. At the
same time, it satisfied a request for reduction of dimensionality of the data, important
especially in a case of Big Data. For example, if the nodes’ activation function in the
hidden layer (with k-nodes) is linear, then the auto-encoder is essentially copying
the method of PCA and mapping the variables onto the k-principle axis. However,
if the activation function is nonlinear, then this allows the auto-encoder to capture
much more complex multimodal behavior in the input data.

This simple reduction of nodes at each layer, along with unsupervised learning,
has led to phenomenal automated feature engineering and has dramatically outper-
formed the past 30 years of human feature engineering in many machine-learning
tasks. With multiple nonlinear layers, say, a depth of 5–20, a deep learning system
can implement extremely intricate functions of its inputs that are simultaneously sen-
sitive to very precise details. The architecture of the deep learning network, presented
in Figure 7.21, consists of stacked auto-encoder with three layers. Deep network
architecture in general has turned out to be very good at discovering natural intrinsic
structures in high-dimensional data and is therefore applicable to many domains of
science, business, and government.

Stacked auto-encoder 
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Figure 7.21. Structure of a deep network using a stacked auto-encoder.
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7.9 CONVOLUTIONAL NEURAL NETWORKS (CNNs)

Convolutional neural networks (CNNs) have played an important role in the history of
deep learning. CNNs are proposed in 1989 by LeCun, but main advances are realized
in last few years. They are a key example of a successful application of insights
obtained by studying the brain to machine-learning applications. CNNs represent
some of the first deep models to perform well, long before arbitrary deep models were
considered viable. Convolutional networks were also some of the first neural net-
works to solve important commercial applications and remain at the forefront of com-
mercial use of deep learning today. They are designed to process very efficiently data
that come in the form of multidimensional arrays: 1D for signals and sequences,
including natural language; 2D for images or audio spectrograms; and 3D for video
or volumetric images. There are four key ideas behind CNNs that make these applica-
tions efficient and successful: (1) local connections, (2) shared weights, (3) pooling,
and (4) the use of many layers.

In traditional ANNs every output unit interacts with every input, and these con-
nections are represented by matrix multiplication of inputs with corresponding para-
meters represented as weight factors in network connections. These networks had
only one or two layers, but with full connectivity. On the other hand, CNNs have
sparse interaction, because they are based on local connectivity. For example, if
the input is picture with 1000 × 1000 pixels, in traditional ANNs, all these pixels will
be connected with each node on the next layer, which means 106 × 106 = 1012 connec-
tions if both layers have the same number of nodes. In the case of CNN, only local
segments of the image will be connected with the next layer. If the local segment is
20 × 20 pixels, it means total of 400 connections to each of the nodes on the next layer,
and that represents much smaller total connectivity. The main ideas about local con-
nections are presented in Figure 7.22 with the simplified version of network of five
inputs and five nodes on the next layer. In the case of traditional shallow ANNs that
are fully connected, total number of connections is 5 × 5 = 25. For the CNN with local
connectivity of three neighboring inputs connected to the node on the next layer, total
number of connections is 3 × 3 + 2 × 2 = 13 (ending nodes in the next layer have only
two local connections with inputs).

(a) (b) (c)

25 parameters 13 parameters

g1 g2 g3 g4 g5

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

Figure 7.22. Connectivity in CNNs is sparse. (a) Global connectivity. (b) Local connectivity.

(c) Multilayer connectivity.
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While connections in CNN are sparse, still units in deeper layers can be indirectly
connected to almost all inputs. In Figure 7.22c three consecutive inputs are always
connected to the node at the next level representing local connectivity. Going one
layer deeper, middle node on the second layer is indirectly connected to all inputs
in the presented network. The CNN connectivity from one layer to the next one
may be sparse and often not direct. But applying multilayer networks, indirect con-
nectivity of deeper nodes to the most of the inputs is obtained.

Parameter sharing refers to using the same parameter for more than one function
in a model. In a traditional neural net, each element of the weight matrix is used
exactly once when computing the output of a layer. Every weight factor is multiplied
by the corresponding input and then never revisited in the entire network. In other
words, the number of parameters is equal the number of connections, or number of
weight factors in the network. In a convolutional neural net, each member, which
is a part of local connections set, is used at every position of the input (except perhaps
some of the boundary pixels, depending on the design decisions regarding the bound-
ary). The parameter sharing used by the convolution operation means that rather than
learning a separate set of parameters for every location, we learn only one set of para-
meters applied to all nodes on the next layer of the network. An illustrative example is
given in Figure 7.23. Instead of 13 global parameters on Figure 7.23a (13 local con-
nections from input layer to the next layer), CNN with three-node local connectivity
defines only three main parameters, namely, “left connection,” “central connection,”
and “right connection,” to the next layer presented in Figure 7.23b.

Local connectivity with parameter sharing is basis for defining convolution ker-
nels in CNNs: small local matrices that are extracting local features from the previous
layer. Selection of appropriate kernels represents semiautomatic feature engineering
in the CNNs. For example, when CNNs are used for image processing, specifically
designed kernels may detect horizontal lines, vertical lines, small circles, and specific
corners, all of them as higher-level features of the image. Simple illustrative examples
of two 3 × 3 kernels for edge detection and sharpening the image are given in
Figure 7.24. These elementary image features extracted on initial network’s layers
may be combined further to more complex advanced features representing specific

13 parameters

(a) (b)

3 parameters

Figure 7.23. Sharing parameters of CNNs. (a) Global parameter. (b) Shared parameter.
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parts of the objects searched in the image. For example, it could be eyes, lips, nose, or
other face characteristics if the analysis is looking for humans in the image.

In the next stage, CNNs are using use a pooling function to modify additionally the
output of the previous layer. A pooling function replaces the output of the network at a
certain location with a summary statistic of the nearby outputs. Pooling over spatial
regions produces invariance to translation, which means that if we translate the input
by a small amount, the values of most of the pooled outputs do not change. Invariance
to local translation can be a very useful property because the network cares more about
whether some feature is present than exactly where it is. For example, when determining
whether an image contains a face, CNN does not need to know the location of the eyes
with pixel-perfect accuracy, but the system just need to determine that there is an eye on
the left side of the face and the other eye on the right side of the face.

A pooling layer takes each feature from the convolutional layer and prepares a con-
densed feature set as a new output. For instance, each unit in the pooling layer may
summarize a region of n × n nodes in the previous layer. As a concrete example, one
common procedure for pooling is known as max pooling. In max pooling, a pooling
unit simply outputs the maximum activation in the specified input region. Two simple
examples of max pooling, for three-node local connectivity, are given in Figure 7.25.

Max pooling may be interpreted as a way for the network to ask whether a given
feature is found anywhere in a region of the image. This approach throws away the
exact positional information. The intuition is that once a feature has been found, its
exact location is not as important; only maybe its rough location is useful relative to
other features of a given sample. A big benefit of pooling in general is that there are
fewer pooled features, and this helps in reducing the total number of parameters in the
following layers.

The final architecture of the CNN consists of several layers, often more than 10,
where convolution and pooling operations and corresponding layers are repeating iter-
atively one after the other. Many software packages today are including CNNs as the
standard deep learning methodology such as GoogLeNet, VGGNet, or ResNet. CNNs
are almost standard models today for every image-related analysis and recognition
problems. It is also successfully applied to recommender systems, natural language
processing, and more. CNN is also computationally very efficient architecture. Using
convolution and pooling operations together with parameter sharing, this architecture
enables CNN models to run on any device, making them universally attractive. CNNs
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Figure 7.24. Simple 3 × 3 image kernels. (a) Edge detection kernel. (b) Sharpening the

image kernel.
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are only one of often used deep architectures, and there are several others developed
recently such as deep belief networks, deep Boltzmann machines, and so on. All of
them are able to handle and decode complex data structures that have ability to work
with multiple nonlinear features.

7.10 REVIEW QUESTIONS AND PROBLEMS

1. Explain the fundamental differences between the design of an artificial neural net-
work and “classical” information-processing systems.

2. Why is the fault-tolerant property one of the most important characteristics and
capabilities of artificial neural networks?

3. What are the basic components of the neuron’s model?

4. Why are continuous functions such as log-sigmoid or hyperbolic tangent common
activation functions in real-world applications of artificial neural networks?

5. Discuss the differences between feedforward and recurrent neural networks.

6. Given a two-input neuron with the following parameters, namely, bias b = 1.2,
weight factors W = [w1, w2] = [3, 2], and input vector X = [−5, 6]T, calculate
the neuron’s output for the following activation functions.

(a) A symmetrical hard limit.
(b) A log-sigmoid.
(c) A hyperbolic tangent.

1. 1. 1. 0.2
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Detection stage

Pooling stage

Figure 7.25. Max-pooling layer in CNNs.
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7. Consider a two-input neuron with the followingweight factorsW and input vector X:

W = 3,2 X = – 5,7 T

We would like to have an output of 0.5.

(a) Is there a transfer function from Table 9.1 that will do the job if the bias is zero?
(b) Is there a bias that will do the job if the linear-transfer function is used?
(c) What is the bias that will do the job with a log-sigmoid activation function?

8. Consider a classification problem defined with the set of three-dimensional sam-
ples X, where two dimensions are inputs and the third one is the output.

X: I1 I2 O

–1 1 1
0 0 1
1 –1 1
1 0 0
0 1 0

(a) Draw a graph of the data points X labeled according to their classes. Is the problem of
classification solvable with a single-neuron perceptron? Explain the answer.

(b) Draw a diagram of the perceptron you would use to solve the problem. Define the ini-
tial values for all network parameters.

(c) Apply single iteration of the delta-learning algorithm. What is the final vector of
weight factors?

9. The one-neuron network is trained to classify input–output samples.

I1 I2 O

1 0 1
1 1 –1
0 1 1

Show that this problem cannot be solved unless the network uses a bias.

10. Consider the classification problem based on the set of samples X.

X: I1 I2 O

–1 1 1
–1 –1 1
0 0 0
1 0 0

(a) Draw a graph of the data points labeled according to their classification. Is the problem
solvable with one artificial neuron? If yes, graph the decision boundaries.

274 ARTIFICIAL NEURAL NETWORKS



(b) Design a single-neuron perceptron to solve this problem. Determine the final weight
factors as a weight vector orthogonal to the decision boundary.

(c) Test your solution with all four samples.
(d) Using your network classify the following samples: (–2, 0), (1, 1), (0, 1), and (–1, –2).
(e) Which of the samples in (d) will always be classified the same way, and for which

samples classification may vary depending on the solution?

11. Implement the program that performs the computation (and learning) of a single-
layer perceptron.

12. For the given competitive network:

0.7

0.5

0.6 0.2

0.3

–0.1

0.5

0.3
x1

x2

x3

y1

y2

y3

–0.7

0.3

0.7
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(a) Find the output vector [Y1, Y2, Y3] if the input sample is [X1, X2, X3] = [1, –1, –1].
(b) What are the new weight factors in the network?

13. Search the Web to find the basic characteristics of publicly available or commer-
cial software tools that are based on artificial neural networks. Document the
results of your search. Which of them are for learning with a teacher, and which
are support learning without a teacher?

14. For a neural network, which one of these structural assumptions is the one that
most affects the trade-off between underfitting (i.e., a high bias model) and over-
fitting (i.e. a high variance model):

(a) The number of hidden nodes.
(b) The learning rate.
(c) The initial choice of weights.
(d) The use of a constant-term unit input.

15. Is it true that the VC dimension of a perceptron is smaller than the VC dimension
of a simple linear SVM? Discuss your answer.

16. Which type of artificial neural-network architecture does not contain a hidden
layer? Why?

(a) Backpropagation.
(b) Perceptron.
(c) Self-organizing map.
(d) Convolutional networks.
(e) Several previous types.
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7.11 REFERENCES FOR FURTHER STUDY

1. Haykin, S., Neural Networks and Learning Machines, 3rd edition, Prentice Hall,
Upper Saddle River, NJ, 2009.

Fluid and authoritative, this well-organized book represents the first comprehen-
sive treatment of neural networks from an engineering perspective, providing
extensive state-of-the-art coverage that will expose readers to the myriad facets
of neural networks and help them appreciate the technology’s origin, capabilities,
and potential applications. The book examines all the important aspects of this
emerging technology, covering the learning process, backpropagation, radial basis
functions, recurrent networks, self-organizing systems, modular networks, tempo-
ral processing, neurodynamics, and VLSI implementation. This also integrates
computer experiments throughout to demonstrate how neural networks are
designed and perform in practice. Chapter objectives, problems, worked examples,
a bibliography, photographs, illustrations, and a thorough glossary all reinforce
concepts throughout. New chapters delve into such areas as support vector
machines, and reinforcement learning/neurodynamic programming, plus readers
will find an entire chapter of case studies to illustrate the real-life practical applica-
tions of neural networks. A highly detailed bibliography is included for easy ref-
erence. It is the book for professional engineers and research scientists.

2. Heaton J., Introduction to Neural Network with Java, Heaton Research, St. Louis,
2005.

Introduction to Neural Networks with Java introduces the Java programmer to the
world of neural networks and artificial intelligence (AI). Neural-network architec-
tures such as the feedforward backpropagation, Hopfield, and Kohonen networks
are discussed. Additional AI topics such as genetic algorithms and simulated
annealing, are also introduced. Practical examples are given for each neural net-
work. Examples include the traveling salesman problem, handwriting recognition,
fuzzy logic, and learning mathematical functions. All Java source code can be
downloaded online. In addition to showing the programmer how to construct these
neural networks, the book discusses the Java Object Oriented Neural Engine
(JOONE). JOONE is a free open-source Java neural engine.

3. Principe J. C., R. Mikkulainen, Advances in Self-Organizing Maps, Series: Lecture
Notes in Computer Science, Vol. 5629, Springer, 2009.

This book constitutes the refereed proceedings of the seventh International Work-
shop on Advances in Self-Organizing Maps, WSOM 2009, held in St. Augustine,
Florida, in June 2009. The 41 revised full papers presented were carefully reviewed
and selected from numerous submissions. The papers deal with topics in the use of
SOM in many areas of social sciences, economics, computational biology, engi-
neering, time-series analysis, data visualization, and theoretical computer science.
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4. Goodfellow I., Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge,
MA, 2016.

Deep learning is a form of machine learning that enables computers to learn from
experience and understand the world in terms of a hierarchy of concepts. Because
the computer gathers knowledge from experience, there is no need for a human
computer operator to formally specify all the knowledge that the computer needs.
The hierarchy of concepts allows the computer to learn complicated concepts by
building them out of simpler ones; a graph of these hierarchies would be many
layers deep. This book introduces a broad range of topics in deep learning. The
text offers mathematical and conceptual background, covering relevant concepts
in linear algebra, probability theory and information theory, numerical computa-
tion, and machine learning. It describes deep learning techniques used by practi-
tioners in industry, including deep feedforward networks, regularization,
optimization algorithms, convolutional networks, sequence modeling, and practi-
cal methodology; and it surveys such applications as natural language processing,
speech recognition, computer vision, online recommendation systems, bioinfor-
matics, and video games. Finally, the book offers research perspectives, covering
such theoretical topics as linear factor models, auto-encoders, representation learn-
ing, structured probabilistic models, Monte Carlo methods, the partition function,
approximate inference, and deep generative models.

5. Fandango A., Mastering TensorFlow 1.x: Advanced machine learning and deep
learning concepts using TensorFlow 1.x and Keras, Packt Publishing, 2018.

TensorFlow is the most popular numerical computation library built from the
ground up for distributed, cloud, and mobile environments. This represents the
data as tensors and the computation as graphs. This book is a comprehensive guide
that lets you explore the advanced features of TensorFlow 1.x. Gain insight into
TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and
Sonnet. Leverage the power of TensorFlow and Keras to build deep learning mod-
els using concepts such as transfer learning, generative adversarial networks, and
deep reinforcement learning. Throughout the book, you will obtain hands-on expe-
rience with varied data sets, such as MNIST, CIFAR-10, PTB, text8, and COCO-
Images.
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8

ENSEMBLE LEARNING

Chapter Objectives

• Explain a basic characteristics of ensemble learning methodologies.

• Distinguish between different implementations of combination schemes for
different learners.

• Compare bagging and boosting approaches.

• Explain main characteristics of random forest algorithm.

• Introduce AdaBoost algorithm and its advantages.

One of primary goals of data mining is to predict an “unknown” value of a new sample
from observed samples. Such a prediction is achieved by two sequential phases as
shown in Figure 8.1:

(a) Training phase—Producing a predictive model from training samples using
one of available supervised learning algorithms.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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(b) Testing phase—Evaluating the generated predictive model using test sam-
ples that are not used in the training phase.

Numerous applications of a data-mining process showed validity of so-called
“no-free-lunch theorem.” It states that there is no single learning algorithm that is
the best and most accurate in all applications. Each algorithm determines a certain
model that comes with a set of assumptions. Sometimes these assumptions hold,
sometimes not, and therefore no single algorithm “wins” all the time!

In order to improve accuracy of a predictive model, the promising approach
called the ensemble learning is introduced. The idea is to combine results from various
predictive models generated using the training samples. Key motivation behind the
proposed approach is to reduce the error rate. An initial assumption is that it will
become much more unlikely that the ensemble will misclassify a new sample compar-
ing with a single predictive model. When combing multiple, independent, and diverse
“decision-makers,” each of which is at least more accurate than random guessing, cor-
rect decisions should be reinforced. The idea may be demonstrated with some simple
decision process where single human performances are compared with human ensem-
bles. For example, given the question “How many jelly beans is in the jar?,” group
average will outperform individual estimates or in TV series “WhoWants to be a Mil-
lionaire?”where audience (ensemble) vote is support for the candidate who is not sure
in the answer.

This idea is proven theoretically by Hansen and group through the statement: IfN
classifiers make independent errors and they have the error probability e < 0.5, then it
can be shown that the error of an ensemble E is monotonically decreasing function of
N. Clearly, performances quickly decrease for dependent classifiers.

8.1 ENSEMBLE LEARNING METHODOLOGIES

The ensemble learning methodology consists also of two sequential phases (1) train-
ing phase and (2) testing phase. However, in the training phase, the ensemble method
generates several different predictive models from training samples as it is presented
in Figure 8.2a. For predicting an unknown value of a test sample, the ensemble
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samples
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methodology
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Figure 8.1. (a) Training phase and (b) testing phase for a predictive model.

280 ENSEMBLE LEARNING



method aggregates outputs of each predictive model (Fig. 8.2b). An integrated predic-
tive model generated by an ensemble approach consists of several predictive models
(predictive model.1, predictive model.2,…, predictive model.n) and a combining rule
as shown in Figure 8.2b. We will refer to such a predictive model as an ensemble. The
field of ensemble learning is still relatively new, and several names are used as syno-
nyms depending also which predictive task is performed including: combination of
multiple classifiers, classifier fusion, mixture of experts, or consensus aggregation.

To perform better than a single predictive model, an ensemble should consist of
predictive models that are independent of each other, i.e. their errors are uncorrelated,
and each of them has accuracy >0.5. The outcome of each predictive model is aggre-
gated to determine the output value of a test sample. We may analyze all steps of
ensemble prediction for a classification task. For example, we may analyze a classi-
fication task where the ensemble consists of 15 classifiers, each of which classifies test
samples into one of two categorical values. The ensemble decides the categorical
value based on dominant frequency of classifiers’ outputs. If 15 predictive models
are different from each other, and each model has the identical error rate (ε = 0.3),
the ensemble will make a wrong prediction only if more than half of the predictive
models misclassify a test sample. Therefore, the error rate of the ensemble is
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15
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Figure 8.2. (a) Training phase and (b) testing phase for building an ensemble.
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which is considerably lower than the 0.3 error rate of a single classifier. The sum is
starting with 8, and it means that 8 or more models misclassified a test sample, while 7
or fewer models classified the sample correctly.

Figure 8.3a shows error rates of an ensemble, which consists of 15 predictive
models (n = 15). The x-axis represents an error rate (ε) of a single classifier. The diag-
onal line represents the case in which all models in the ensemble are identical. The
solid line represents error rates of an ensemble in which predictive models are differ-
ent and independent from each other. An ensemble has a significantly lower error rate
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than a single predictive model only when an error rate (ε) of the members of the
ensemble is lower than 0.5.

We can also analyze the effect of the number of predictive models in an ensemble.
Figure 8.3b shows error-rate curves for ensembles that consist of 5, 15, 25, and 35 pre-
dictive models, respectively. Observe that when an error rate of a predictive model is
lower than 0.5, the larger the number of predictive models is, the lower an error rate of
an ensemble is. For example, when each predictive model of an ensemble has error
rate of 0.4, error rates of each ensemble (n = 5, n = 15, n = 25, and n = 35) is calculated
as 0.317, 0.213, 0.153, and 0.114, respectively. However, this decrease in the error
rate for an ensemble is becoming less significant if the number of classifiers is very
large or when error rate of each classifier becomes relatively small.

The basic questions in creating an ensemble learner are: How to generate base
learners, and how to combine the outputs from base learners? Diverse and independ-
ent learners can be generated by:

(a) Using different learning algorithms for different learning models such as sup-
port vector machines, decision trees, and neural networks.

(b) Using different hyperparameters in the same algorithm to tune different mod-
els (for example, different number of hidden nodes in ANNs).

(c) Using different input representations, such as using different subsets of input
features in a data set.

(d) Using different training subsets of input data to generate different models
usually using the same learning methodology.

Stacked generalization (or stacking) is a methodology that could be classified in
the first group (a). Unlike other well-known techniques, stacking may be (and nor-
mally is) used to combine models of different types. One way of combining multiple
models is specific by introducing the concept of a meta-learner. The learning proce-
dure is as follows:

1. Split the training set into two disjoint sets.

2. Train several base learners on the first part.

3. Test the base learners on the second part.

4. Using the predictions from (3) as the inputs, and the correct responses as the
outputs, train a higher-level learner.

Note that steps (1)–(3) are the same as cross-validation, but instead of using a
winner-takes-all approach, the base learners are combined, possibly nonlinearly.
Although an attractive idea, it is less theoretically analyzed and less widely used than
bagging and boosting, twomost recognized ensemble learningmethodologies. Similar
situation is with second group of methodologies (b): although very simple approach, it
is not used or analyzed intensively. Maybe the main reason is that applying the same
methodology with different parameters does not guarantee independence of models.
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Class (c) methodologies are based on manual or automatic feature selection/
extraction that can be used for generating diverse classifiers using different feature
sets. For example, subsets related to different sensors or subsets of features computed
with different algorithms may be used. To form training data sets, different subsets of
input features are chosen, and then each training sample with the selected input fea-
tures becomes an element of training data sets. In Figure 8.4, there are five training
samples {S1, S2, S3, S4, S5} with four features {F1, F2, F3, F4}. When the training
data set 1 is generated, three features {F1, F2, F4} is randomly selected from input
features {F1, F2, F3, F4}, and all training samples with those features form the first
training set. Similar process is performed for the other training sets. The main require-
ment is that classifiers use different subsets of features that are complementary.

The random subspace method (RSM) is a relatively recent method of ensemble
learning, which is based on theory of stochastic discrimination. Learningmachines are
trained on randomly chosen subspaces of the original input space, and the outputs of
the models are then combined. Illustrative example for movies classification is given
in Figure 8.5. RSMworks well for large feature sets with redundant features. Random
forest methodology, which not only utilizes such an approach but also has some
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Figure 8.4. Features’ selection for ensemble classifiers methodology.

284 ENSEMBLE LEARNING



components of the bagging schema, is implemented in many commercial data-mining
tools, and it is very often used in real-world data-mining applications.

Methodologies based on different training subsets of input samples (d) are the
most popular approaches in ensemble learning, and corresponding techniques such
as bagging and boosting are widely applied in different tools. But, before detailed
explanations of these techniques, it is necessary to explain one additional and final
step in ensemble learning, and that is combining of outcomes for different learners.

8.2 COMBINATION SCHEMES FOR MULTIPLE LEARNERS

Combination schemes include the following:

• Global approach is through learners’ fusion where all learners produce an out-
put, and these outputs are combined by voting, averaging, or stacking. This
represents integration (fusion) functions where for each pattern, all the classi-
fiers contribute to the final decision.

• Local approach is based on learner selection where one or more learners
responsible for generating the output are selected based on their closeness
to the sample. Selection function is applied where for each pattern, just one
classifier, or a subset, is responsible for the final decision.

• Multistage combination uses a serial approach where the next learner is trained
with or tested on only instances where previous learners were inaccurate.

Voting is the simplest way of combining classifiers on a global level and repre-
senting the result as a linear combination of outputs dj for n learners:

yi =
n

j= 1

wjdj wherewj ≥ 0 and
n

j= 1

wj = 1

Result of combination could be different depending on wj. Alternatives for com-
binations are simple sum (equal weights), weighted sum, median, minimum, maxi-
mum, and product of dij. Voting schemes can be seen as approximations under a
Bayesian framework where weights wj approximate prior model probabilities.

Rank-level fusion method is applied for some classifiers, which provide class
“scores,” or some sort of class probabilities. In general, if Ω = {c1,…,ck} is the set
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Classifier C
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+

Figure 8.5. RSM approach in ensemble classifier for movie classification.
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of classes, each of these classifiers can provide an “ordered” (ranked) list of class
labels. For example, if probabilities of output classes are 0.10, 0.75, and 0.20, corre-
sponding ranks for the classes will be 1, 3, and 2, respectively. The highest rank is
given to the class with the highest probability. Let us check an example, where the
number of classifiers is N = 3 and the number of classes k = 4, Ω = {a, b, c, d}.
For a given sample, the ranked outputs of the three classifiers are as follows:

Rank value Classifier 1 Classifier 2 Classifier 3

4 c a b
3 b b a
2 d d c
1 a c d

In this case, final selection of the output class will be determined by accumulation
of scores for each class:

ra = ra 1 + ra 2 + ra 3 = 1 + 4 + 3 = 8

rb = rb 1 + rb 2 + rb 3 = 3 + 3 + 4 = 10

rc = rc 1 + rc 2 + rc 3 = 4 + 1 + 2 = 7

rd = rd 1 + rd 2 + rd 3 = 2 + 3 + 1 = 5

The winner class is b because it has the maximum overall rank.
Additional methodology in combining the results of multiple learners, dynamic

classifier selection (DCS) algorithm, which is representing a local approach, assumes
the following steps:

1. Find the k-nearest training samples to the test input.

2. Look at the accuracies of the base classifiers on these samples.

3. Choose one (or top N) classifiers that best performs on these samples.

4. Combine decisions for selected classifiers.

8.3 BAGGING AND BOOSTING

Bagging and boosting are well-known procedures with solid theoretical background.
They belong to the class (d) of ensemble methodologies, and essentially they are based
on resampling of a training data set.

Bagging, a name derived from bootstrap aggregation, was the first effective
method of ensemble learning and is one of the simplest methods. It was originally
designed for classification and is usually applied to decision tree models, but it can
be used with any type of model for classification or regression. The method uses
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multiple versions of a training set by using the bootstrap, i.e. sampling with replace-
ment. Each of these data sets is used to train a different model. The outputs of the
models are combined by averaging (in the case of regression) or voting (in the case
of classification) to create a single output.

In the bagging methodology a training data set for a predictive model consists of
samples taken with replacement from initial set of samples according to a sampling
distribution. The sampling distribution determines how likely it is that a sample will
be selected. For example, when the sampling distribution is predefined as the uniform
distribution, all N training samples have the same probability, 1/N, of being selected.
In the same training data set, because of replacement sampling, some training samples
may appear multiple times, while any training samples may not appear even once. In
Figure 8.6, there are five training samples {S1, S2, S3, S4, S5} with four features {F1,
F2, F3, F4}. Suppose that three training data sets are formed by samples that are ran-
domly selected with replacement from the training samples according to the uniform
distribution. Each training sample has 1/5 probability of being selected as an element
of a training data set. In the training data set 1, S2 and S4 appear twice, while S1 and S3
do not appear.
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Bagging is only effective when using unstable nonlinear models where small
changes in training data lead to significantly different classifiers and large changes in
accuracy. It decreases error bydecreasing the variance in the results of unstable learners.

Random forests differ in two ways from this general bagging scheme. First, Ran-
dom forest is an ensemble of classifiers, which uses a large number of individual,
unpruned decision trees in the ensemble. Second, it uses a modified tree learning algo-
rithm that selects, at each candidate split in the learning process, a random subset of
the features. This process is sometimes called “feature bagging”. The reason for doing
this is the correlation of the trees in an ordinary bootstrap sample. If one or a few fea-
tures are very strong predictors for the output class, these features will be selected in
many of the trees, causing them to become correlated. The random forest algorithm
brings extra randomness into the model, when it is growing the trees. Instead of
searching for the best feature while splitting a node, it searches for the best feature
among a random subset of features. This process creates a wide diversity, which gen-
erally results in a better model. Typically, for a classification problem with p features
in data set, p (rounded down) features are used in each split. For regression problems
the recommendation is p/3 (rounded down) selected features with a minimum node
size of five samples as the default.

Boosting is the most widely used ensemble method and one of the most powerful
learning ideas introduced in ensemble learning community. Originally designed for
classification, it can also be extended to regression. The algorithm first creates a
“weak” classifier, that is, it suffices that its accuracy on the training set is slightly bet-
ter than random guessing. Samples are given initial weights, and usually it starts with
uniform weighting. For the following iterations, the samples are reweighted to focus
the system on samples that are not correctly classified with recently learned classifier.
During each step of learning, (1) increase weights of the samples that are not correctly
learned by the weak learner, and (2) decrease weights of the samples that are correctly
learned by the weak learner. Final classification is based on weighted vote of weak
classifiers generated in iterations.

8.4 ADABOOST

The original boosting algorithm combined three weak learners to generate a strong,
high quality learner. AdaBoost, short for “adaptive boosting,” is the most popular
boosting algorithm. AdaBoost combine “weak” learners into a highly accurate clas-
sifier to solve difficult highly nonlinear problems. Instead of sampling as in a bagging
approach, AdaBoost reweigh samples! It uses the same training set over and over
again (thus it need not be large), and it may keep adding weak learners until target
training error is reached (Fig. 8.7).

Given a training data set {(x1, y1),…,(xm, ym)} where xi X and yi {−1, +1}.
When a weak classifier is trained with the data, for each input sample xi, the classifier
will give classification h(xi) (where h(xi) {−1, +1}). With these assumptions the main
steps of AdaBoost algorithm are presented in Figure 8.8.
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Simplicity and easy to implement are the main reasons why AdaBoost is so pop-
ular. It can be combined with any classifiers including neural networks, decision trees,
or nearest neighbor classifiers. The algorithm requires almost no parameters to tune
and still is very effective even for the most complex classification problems, but at the
same time it could be sensitive to noise and outliers.

Ensemble learning approach showed all advantages in one very famous applica-
tion, Netflix $1 million competition. The Netflix Prize required to substantially
improve the accuracy of predictions about how much someone is going to love a
movie based on their previous movies’ preferences. Users’ rating for movies was
1–5 stars, and therefore the problem was classification task with five classes. Most
of top ranked competitors have used some variation of ensemble learning, showing
its advantages in practice. Top competitor, BellKor team, explains ideas behind its
success: “Our final solution consists of blending 107 individual predictors. Predictive
accuracy is substantially improved when blending multiple predictors. Our experience
is that most efforts should be concentrated in deriving substantially different
approaches, rather than refining a single technique. Consequently, our solution is
an ensemble of many methods.”
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Gray3Black1Gray1

Distribution D2 Distribution D3Distribution D1

Figure 8.7. AdaBoost iterations.

Initialize distribution over the training set D1(i)=1/m

For t=1,...,T:

•
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1. Train weak learner using distribution Dt.

2. Choose a weight (or confidence value) αt ∈ R.

3. Update the distribution over the training set:

Final vote H(x) is a weighted sum:

H(x)=sign (f(x))=sign
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Where Zt is a normalization factor chosen so that Dt+1 will

be a distribution
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Zt
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Σ

Figure 8.8. AdaBoost algorithm.
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8.5 REVIEW QUESTIONS AND PROBLEMS

1. Explain the basic idea of the ensemble learning, and discuss why the ensemble
mechanism is able to improve prediction accuracy of a model.

2. Designing an ensemble model, there are factors that directly affect accuracy of the
ensemble. Explain those factors and approaches to each of them.

3. Bagging and boosting approach are very famous ensemble approach. Both of them
generate a single predictive model from each different training set. Discuss the dif-
ferences between bagging and boosting approach, and explain advantages and dis-
advantages of each of them.

4. Propose the efficient boosting approach for a large data set.

5. In the bagging methodology, a subset is formed by samples that are randomly
selected with replacement from training samples. On average, a subset contains
approximately what percentage of training samples?

6. In Figure 8.7, draw a picture of the next distribution D4.

7. In Eq. (2) of the AdaBoost algorithm (Fig. 8.8), eαtyiht xi replaces the term
of e−αtyiht xi . Explain how this change influences the AdaBoost algorithm and
the reason.

8. Consider the following data set, where there are 10 samples with 1 dimension and 2
classes:
Training samples:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

f1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Class 1 1 1 −1 1 −1 1 −1 −1 −1

No progress prize candidates yet

Bellkor1

Korbell

When gravity and dinosaurs unite

Gravity

Basho

0.8712

0.8717

0.8743
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8.07

–––
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Progress prize  -RMSE <= 0.8625

Progress prize 2007 -  RMSE = 0.8712 -  Winning team: korbell

Figure 8.9. Top competitors in 2007/2008 for Netflix award.
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1. Determine ALL of the best one-level binary decision trees?
(For example, IF f1 ≤ 0.35 THENClass is 1, and IF f1 > 0.35 THENClass is −1.
The accuracy of that tree is 80%.)

2. We have the following five training data sets randomly selected from the
above training samples. Apply the bagging procedure using those training data
sets.
(A) Construct the best one-level binary decision tree from each training data set.
(B) Predict the training samples using each constructed one-level binary decision tree.
(C) Combine outputs predicted by each decision tree using voting method
(D) What accuracy does the bagging provide?

Training data set 1:

x1 x2 x3 x4 x5 x8 x9 x10 x10 x10

f1 0.1 0.2 0.3 0.4 0.5 0.8 0.9 1.0 1.0 1.0
Class 1 1 1 −1 1 −1 −1 −1 −1 −1

Training data set 2:

x1 x1 x2 x4 x4 x5 x5 x7 x8 x9

f1 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9
Class 1 1 1 −1 −1 1 1 1 −1 −1

Training data set 3:

x2 x4 x5 x6 x7 x7 x7 x8 x9 x10

f1 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1.0
Class 1 −1 1 −1 1 1 1 −1 −1 −1

Training data set 4:

x1 x2 x5 x5 x5 x7 x7 x8 x9 x10

f1 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1.0
Class 1 1 1 1 1 1 1 −1 −1 −1

Training data set 5:

x1 x1 x1 x1 x3 x3 x8 x8 x9 x9

f1 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9
Class 1 1 1 −1 1 −1 1 −1 −1 −1
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3. Applying the AdaBoost algorithm (Fig. 8.8) to the above training samples, we
generate the following initial one-level binary decision tree from that samples:

IF f1 ≤ 0.35 THEN Class is 1
IF f1 > 0.35 THEN Class is −1

To generate the next decision tree, what is the probability (D2 in Fig. 8.8) that
each sample is selected to the training data set? (αt is defined as an accuracy rate
of the initial decision tree on training samples)

9. For classifying a new sample into four classes, C1, C2, C3, and C4, we have an
ensemble, which consists of three different classifiers: Classifier 1, Classifiers
2, and Classifier 3. Each of them has 0.9, 0.6, and 0.6 accuracy rate on training
samples, respectively. When the new sample, X, is given, the outputs of the three
classifiers are as follows:

Class label Classifier 1 Classifier 2 Classifier 3

C1 0.9 0.3 0.0
C2 0.0 0.4 0.9
C3 0.1 0.2 0.0
C4 0.0 0.1 0.1

Each number in the above table describes the probability that a classifier predicts
the class of a new sample as a corresponding class. For example, the probability
that Classifier 1 predicts the class of X as C1 is 0.9.

When the ensemble combines predictions of each of them, as a combination
method,

(a) If the simple sum is used, which class is X classified as and why?
(b) If the weight sum is used, which class is X classified as and why?
(c) If the rank-level fusion is used, which class is X classified as and why?

10. Suppose you have a drug discovery data set, which has 1,950 samples and
100,000 features. You must classify chemical compounds represented by struc-
tural molecular features as active or inactive using ensemble learning. In order to
generate diverse and independent classifiers for an ensemble, which ensemble
methodology do you choose? Explain the reason for selecting that methodology?

11. Which of the following is a fundamental difference between bagging and
boosting?

(a) Bagging is used for supervised learning. Boosting is used with unsupervised clustering.
(b) Bagging gives varying weights to training instances. Boosting gives equal weight to

all training instances.
(c) Bagging does not take the performance of previously built models into account when

building a newmodel. With boosting each newmodel is built based upon the results of
previous models.
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(d) With boosting, each model has an equal weight in the classification of new instances.
With bagging, individual models are given varying weights.

12. Ensemble of classifiers contain 11 independent models, all of which have an error
rate of 0.2. (Hint: Understanding how to use the binomial distribution will be use-
ful in answering this question.)

(a) What is the total error rate of the ensemble?
(b) If the error rate is 0.49, what is the total error rate of the ensemble?

8.6 REFERENCES FOR FURTHER STUDY

1. Thomas G. Dietterich, Ensemble Methods in Machine Learning,in Lecture Notes
in Computer Science on Multiple Classifier Systems, Vol. 1857, Springer, Berlin/
Heidelberg, 2000.

Ensemble methods are learning algorithms that construct a set of classifiers and
then classify new data points by taking a (weighted) vote of their predictions.
The original ensemble method is Bayesian averaging, but more recent algorithms
include error-correcting output coding, bagging, and boosting. This paper reviews
these methods and explains why ensembles can often perform better than any sin-
gle classifier. Some previous studies comparing ensemble methods are reviewed,
and some new experiments are presented to uncover the reasons that AdaBoost
does not overfit rapidly.

2. Gavin Brown, Ensemble Learning, in: Encyclopedia of Machine Learning, C.
Sammut & G.I. Webb (Eds.), Springer Press, Berlin, 2010.

Ensemble learning refers to the procedures employed to train multiple learning
machines and combine their outputs, treating them as a “committee” of deci-
sion-makers. The principle is that the committee decision, with individual predic-
tions combined appropriately, should have better overall accuracy, on average,
than any individual committee member. Numerous empirical and theoretical stud-
ies have demonstrated that ensemble models very often attain higher accuracy than
single models. Ensemble methods constitute some of the most robust and accurate
learning algorithms of the past decade. A multitude of heuristics has been devel-
oped for randomizing the ensemble parameters, to generate diverse models. It is
arguable that this line of investigation is nowadays rather oversubscribed, and
the more interesting research is now in methods for nonstandard data.

3. Kuncheva L. I., Combining Pattern Classifiers: Methods and Algorithms, Wiley
Press, New Jersey, 2004.

Covering pattern classification methods, Combining Classifiers: Ideas and Meth-
ods focuses on the important and widely studied issue of how to combine several
classifiers together in order to achieve improved recognition performance. It is one
of the first books to provide unified, coherent, and expansive coverage of the topic
and as such will be welcomed by those involved in the area. With case studies that
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bring the text alive and demonstrate “real-world” applications, it is destined to
become essential reading.

4. Gérard Biau G., E. Scornet, A Random Forest Guided Tour, arXiv:1511.05741,
November 2015.

The random forest algorithm, proposed by L. Breiman in 2001, has been extremely
successful as a general-purpose classification and regression method. The approach,
which combines several randomized decision trees and aggregates their predictions
by averaging, has shown excellent performance in settingswhere the number of vari-
ables is much larger than the number of observations. Moreover, it is versatile
enough to be applied to large-scale problems, is easily adapted to various ad hoc
learning tasks, and returns measures of variable importance. The present article
reviews the most recent theoretical and methodological developments for random
forests. Emphasis is placed on the mathematical forces driving the algorithm, with
special attention given to the selection of parameters, the resampling mechanism,
and variable importance measures. This review is intended to provide nonexperts
easy access to the main ideas.
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9

CLUSTER ANALYSIS

Chapter Objectives

• Distinguish between different representations of clusters and different mea-
sures of similarities.

• Compare basic characteristics of agglomerative- and partitional-clustering
algorithms.

• Implement agglomerative algorithms using single-link or complete-link mea-
sures of similarity.

• Derive the K-means method for partitional clustering and analysis of its
complexity.

• Explain the implementation of incremental-clustering algorithms and its
advantages and disadvantages.

• Introduce concepts of density clustering and algorithms DBSCAN
and BIRCH.

• Discuss why validation of clustering results is difficult problem.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.

295



Cluster analysis is a set of methodologies for automatic classification of samples into a
number of groups using a measure of association so that the samples in one group are
similar and samples belonging to different groups are not similar. The input for a sys-
tem of cluster analysis is a set of samples and a measure of similarity (or dissimilarity)
between two samples. The output from cluster analysis is a number of groups (clus-
ters) that form a partition, or a structure of partitions, of the data set. One additional
result of cluster analysis is a generalized description of every cluster, and this is espe-
cially important for a deeper analysis of the data set’s characteristics.

9.1 CLUSTERING CONCEPTS

Organizing data into sensible groupings is one of the most fundamental approaches of
understanding and learning. Cluster analysis is the formal study of methods and algo-
rithms for natural grouping, or clustering, of objects according to measured or per-
ceived intrinsic characteristics or similarity. Samples for clustering are represented
as a vector of measurements, or more formally as a point in a multidimensional space.
Samples within a valid cluster are more similar to each other than they are to a sample
belonging to a different cluster. Clustering methodology is particularly appropriate for
the exploration of interrelationships among samples to make a preliminary assessment
of the sample structure. Human’s performances are competitive with automatic-
clustering procedures in one, two, or three dimensions, but most real problems involve
clustering in higher dimensions. It is very difficult for humans to intuitively interpret
data embedded in a high-dimensional space.

Table 9.1 shows a simple example of clustering information for nine customers,
distributed across three clusters. Two features describe customers: the first feature is
the number of items the customers bought, and the second feature shows the price they
paid for each.

TABLE 9.1 . Sample Set of Clusters Consisting of Similar
Objects

# of Items Price

Cluster 1 2 1700
3 2000
4 2300

Cluster 2 10 1800
12 2100
11 2500

Cluster 3 2 100
3 200
3 350
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Customers in Cluster 1 purchase few high-priced items, customers in Cluster 2
purchase many high-priced items, and customers in Cluster 3 purchase few low-priced
items. Even this simple example and interpretation of a cluster’s characteristics shows
that clustering analysis (in some references also called unsupervised classification)
refers to situations in which the objective is to construct decision boundaries (classi-
fication surfaces) based on unlabeled training data set. The samples in these data sets
have only input dimensions, and the learning process is classified as unsupervised.

Clustering is a very difficult problem because data can reveal clusters with dif-
ferent shapes and sizes in an n-dimensional data space. To compound the problem
further, the number of clusters in the data often depends on the resolution (fine vs.
coarse) with which we view the data. The next example illustrates these problems
through the process of clustering points in the Euclidean two-dimensional (2D) space.
Figure 9.1a shows a set of points (samples in a 2D space) scattered on a 2D plane. Let
us analyze the problem of dividing the points into a number of groups. The number of
groups N is not given beforehand. Figure 9.1b shows the natural clusters G1, G2, and
G3 bordered by broken curves. Since the number of clusters is not given, we have
another partition of four clusters in Figure 9.1c that is as natural as the groups in
Figure 9.1b. This kind of arbitrariness for the number of clusters is a major problem
in clustering.

Note that the above clusters can be recognized by sight. For a set of points in a
higher-dimensional Euclidean space, we cannot recognize clusters visually. Accord-
ingly, we need an objective criterion for clustering. To describe this criterion, we have
to introduce a more formalized approach in describing the basic concepts and the clus-
tering process.

An input to a cluster analysis can be described as an ordered pair (X, s), or (X, d),
where X is a set of objects’ descriptions represented with samples and s and d are mea-
sures for similarity or dissimilarity (distance) between samples, respectively. Output
from the clustering system is a partition Λ = {G1,G2,…,GN} whereGk, k = 1,…,N is a
crisp subset of X such that

(a) (b) (c)

Figure 9.1. Cluster analysis of points in a 2D space. (a) Initial data. (b) Three clusters of data.

(c) Four clusters of data.
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G1 G2 GN =X, and

Gi Gj = Ø, i j

The members G1, G2,…,GN of Λ are called clusters. Every cluster may be
described with some characteristics. In discovery-based clustering, both the cluster
(a separate set of points in X) and its descriptions or characterizations are generated
as a result of a clustering procedure. There are several schemata for a formal descrip-
tion of discovered clusters:

1. Represent a cluster of points in an n-dimensional space (samples) by their cen-
troid or by a set of distant (border) points in a cluster.

2. Represent a cluster graphically using nodes in a clustering tree.

3. Represent clusters by using logical expression on sample attributes.

Figure 9.2 illustrates these ideas. Using the centroid to represent a cluster is the
most popular schema. It works well when the clusters are compact or isotropic. When
the clusters are elongated or non-isotropic, however, this schema fails to represent
them properly.

The availability of a vast collection of clustering algorithms in the literature and
also in different software environments can easily confound a user attempting to select
an approach suitable for the problem at hand. It is important to mention that there is no
clustering technique that is universally applicable in uncovering the variety of struc-
tures present in multidimensional data sets. The user’s understanding of the problem
and the corresponding data types will be the best criteria to select the appropriate
method. Most clustering algorithms are based on the following two popular
approaches:

1. Hierarchical clustering.

2. Iterative square-error partitional clustering.

x x

x • C
x x

(a) (b) (c)

X1<2 X1≥2

X2≥5X2<5

C1 C2
C3

C1:   X1<2

C2:   X1≥2 ∧ X2<5

C3:  X1≥2 ∧ X2≥5

Figure 9.2. Different schemata for cluster representation. (a) Centroid. (b) Clustering tree.

(c) Logical expressions.
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Hierarchical techniques organize data in a nested sequence of groups, which can
be displayed in the form of a dendrogram or a tree structure. Square-error partitional
algorithms attempt to obtain that partition that minimizes the within-cluster scatter or
maximizes the between-cluster scatter. These methods are nonhierarchical because all
resulting clusters are groups of samples at the same level of partition. To guarantee
that an optimum solution has been obtained, one has to examine all possible partitions
of the N samples with n dimensions into K clusters (for a given K), but that retrieval
process is not computationally feasible. Notice that the number of all possible parti-
tions of a set of N objects into K clusters is given by

1
K

K

j= 1

Kj jN

So various heuristics are used to reduce the search space, but then there is no guar-
antee that the optimal solution will be found.

Hierarchical methods that produce a nested series of partitions are explained in
Section 9.3, while partitional methods that produce only one level of data grouping are
given with more details in Section 9.4. The next section introduces different measures
of similarity between samples; these measures are the core component of every
clustering algorithm.

9.2 SIMILARITY MEASURES

To formalize the concept of a similarity measure, the following terms and notation are
used throughout this chapter. A sample x (or feature vector, observation) is a single
data vector used by the clustering algorithm in a space of samples X. In many other
texts, the term pattern is used. We do not use this term because of a collision in mean-
ing with patterns as in pattern-association analysis, where the term has a totally dif-
ferent meaning. Most data samples for clustering take the form of finite-dimensional
vectors, and it is unnecessary to distinguish between an object or a sample xi and the
corresponding vector. Accordingly, we assume that each sample xi X, i = 1,…,n, is
represented by a vector xi = {xi1, xi2,…, xim}. The valuem is the number of dimensions
(features) of samples, while n is the total number of samples prepared for a clustering
process that belongs to the sample domain X.

A sample can describe either a physical object (a chair) or an abstract object (a
style of writing). Samples, represented conventionally as multidimensional vectors,
have each dimension as a single feature. These features can be either quantitative
or qualitative descriptions of the object. If the individual scalar component xij of a
sample xi is a feature or attribute value, then each component xij, j = 1,…,m, is an ele-
ment of a domain Pj, where Pj could belong to different types of data such as binary
(Pj = {0,1}), integer (Pj Z), real number (Pj R), or a categorical set of symbols. In
the last case, for example, Pj may be a set of colors: Pj = {white, black, red, blue,
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green}. If weight and color are two features used to describe samples, then the sample
(20, black) is the representation of a black object with 20 units of weight. The first
feature is quantitative and the second one is qualitative. In general, both feature types
can be further subdivided, and details of this taxonomy are already given in Chapter 1.

Quantitative features can be subdivided as:

1. continuous values (e.g., real numbers where Pj R),

2. discrete values (e.g., binary numbers Pj = {0,1} or integers Pj Z), and

3. interval values (e.g., Pj = {xij ≤ 20, 20 < xij < 40, xij ≥ 40}.

Qualitative features can be:

1. nominal or unordered (e.g., color is “blue” or “red”) and

2. ordinal (e.g., military rank with values “general,” “colonel,” etc.).

Since similarity is fundamental to the definition of a cluster, a measure of the sim-
ilarity between two patterns drawn from the same feature space is essential to most
clustering algorithms. This measure must be chosen very carefully because the quality
of a clustering process depends on this decision. It is most common to calculate,
instead of the similarity measure, the dissimilarity between two samples using a dis-
tance measure defined on the feature space. A distance measure may be a metric or a
quasi-metric on the sample space, and it is used to quantify the dissimilarity of
samples.

The word “similarity” in clustering means that the value of s(x, x ) is large when x
and x are two similar samples; the value of s(x, x ) is small when x and x are not sim-
ilar. Moreover, a similarity measure s is symmetric:

s x,x = s x ,x , x,x X

For most clustering techniques, we say that a similarity measure is normalized:

0 ≤ s x,x ≤ 1, x,x X

Very often a measure of dissimilarity is used instead of a similarity measure.
A dissimilarity measure is denoted by d(x, x ), x, x X. Dissimilarity is frequently
called a distance. A distance d(x, x ) is small when x and x are similar; if x and x
are not similar, d(x, x ) is large. We assume without loss of generality that

d x,x ≥ 0, x,x X

Distance measure is also symmetric:

d x,x = d x ,x , x,x X
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and if it is accepted as a metric distance measure, then a triangular inequality is
required:

d x,x ≤ d x,x + d x ,x , x,x ,x X

The most well-known metric distance measure is the Euclidean distance in an m-
dimensional feature space:

d2 xi,xj =
m

k = 1

xik – xjk
2

1
2

Another metric that is frequently used is called the L1 metric or city block
distance:

d1 xi,xj =
m

k = 1

xik – xjk

and finally, the Minkowski metric includes the Euclidean distance and the city block
distance as special cases:

dp xi,xj =
m

k = 1

xik – xjk
p

1 p

It is obvious that when p = 1, then d coincides with L1 distance and when p = 2, d
is identical with the Euclidean metric. For example, for four-dimensional vectors x1 =
{1, 0, 1, 0} and x2 = {2, 1, −3, −1}, these distance measures are d1 = 1 + 1 + 4 + 1 =,
d2 = (1 + 1 + 16 + 1)1/2 = 4.36, and d3 = (1 + 1 + 64 + 1)1/3 = 4.06.

The Euclidean n-dimensional space model offers not only the Euclidean distance
but also other measures of similarity. One of them is called the cosine correlation:

scos xi,xj =
m
k = 1 xik xjk

m
k = 1 x

2
ik

m
k = 1 x

2
jk

1 2

It is easy to see that

scos xi,xj = 1 i, j and λ > 0 where xi = λ xj

scos xi,xj = −1 i, j and λ< 0 where xi = λ xj

For the previously given vectors x1 and x2, the corresponding cosine measure of
similarity is scos(x1, x2) = (2 + 0 – 3 + 0)/( 2½ 15½) = –0.18.
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Computing distances or measures of similarity between samples that have some
or all features that are noncontinuous is problematic, since the different types of fea-
tures are not comparable and one standard measure is not applicable. In practice, dif-
ferent distance measures are used for different features of heterogeneous samples. Let
us explain one possible distance measure for binary data. Assume that each sample is
represented by the n-dimensional vector xi, which has components with binary values
(vij {0,1}). A conventional method for obtaining a distance measure between two
samples xi and xj represented with binary features is to use the 2 × 2 contingency table
for samples xi and xj, as shown in Table 9.2.

The meaning of the table parameters a, b, c, and d, which are given in Table 9.2, is
as follows:

1. a is the number of binary attributes of samples xi and xj such that xik = xjk = 1.

2. b is the number of binary attributes of samples xi and xj such that xik = 1
and xjk = 0.

3. c is the number of binary attributes of samples xi and xj such that xik = 0
and xjk = 1.

4. d is the number of binary attributes of samples xi and xj such that xik = xjk = 0.

For example, if xi and xj are eight-dimensional vectors with binary feature values

xi = 0,0,1,1,0,1,0,1

xj = 0,1,1,0,0,1,0,0

then the values of the parameters a to d in the contingency table are

a= 2, b = 2, c = 1, and d = 3

Several similarity measures for samples with binary features are proposed using
the values in the 2 × 2 contingency table. Some of them are:

1. Simple matching coefficient (SMC)

ssmc xi,xj =
a + d

a+ b + c + d

TABLE 9.2 . The 2 × 2 Contingency Table

xj

1 1 0

xj 1 a b

0 c d
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2. Jaccard’s coefficient

sjc xi,xj =
a

a + b+ c

3. Rao’s coefficient

src xi,xj =
a

a+ b + c + d

For the previously given eight-dimensional samples xi and xj, these measures of
similarity will be ssmc(xi, xj) = 5/8, sjc(xi, xj) = 2/5, and src(xi, xj) = 2/8.

How to measure distances between values when categorical data is not binary?
The simplest way to find similarity between two categorical attributes is to assign a
similarity of 1 if the values are identical and a similarity of 0 if the values are not iden-
tical. For two multivariate categorical data points, the similarity between them will be
directly proportional to the number of attributes in which they match. This simple
measure is also known as the overlap measure in the literature. One obvious drawback
of the overlap measure is that it does not distinguish between the different values taken
by an attribute. All matches, as well as mismatches, are treated as equal.

This observation has motivated researchers to come up with data-driven similar-
ity measures for categorical attributes. Such measures take into account the frequency
distribution of different attribute values in a given data set to define similarity between
two categorical attribute values. Intuitively, the use of additional information would
lead to better performance. There are two main characteristics of categorical data that
are included in new measures of similarity (distance):

1. Number of values taken by each attribute, nk. One attribute might take several
hundred possible values, while another attribute might take very few values.

2. Distribution fk(x), which refers to the distribution of frequency of values taken
by an attribute in the given data set.

Almost all similarity measures assign a similarity value between two
d-dimensional samples X and Y belonging to the data set D as follows:

S X,Y =
d

k = 1

wkSk Xk,Yk

where Sk(Xk, Yk) is the per-attribute similarity between two values for the categorical
attribute Ak. The quantity wk denotes the weight assigned to the attribute Ak. To under-
stand how different measures calculate the per-attribute similarity, Sk(Xk; Yk), consider
a categorical attribute Ak, which takes one of the values in the set {a, b, c, d}. The
per-attribute similarity computation is equivalent to constructing the (symmetric)
matrix shown in Table 9.3.
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Essentially, in determining the similarity between two values, any categorical
measure is filling the entries of this matrix. For example, the overlap measure sets
the diagonal entries to 1 and the off-diagonal entries to 0, i.e., the similarity is 1
if the values match and 0 if the values mismatch. Additionally, measures may use
the following information in computing a similarity value (all the measures in this
paper use only this information):

• f(a), f(b), f(c), and f(d), the frequencies of the values in the data set.

• N, the size of the data set.

• n, the number of values taken by the attribute (4 in the case above).

We will present, as an illustrative example, only one additional measure of sim-
ilarity for categorical data, Goodall3, because it shows good performances in average
for variety of experiments with different data sets. That does not mean that some other
measures such as Eskin, Lin, Smirnov, or Burnaby will not be more appropriate for a
specific data set. The Goodall3 measure, given in Table 9.4, assigns a high similarity
if the matching values are infrequent regardless of the frequencies of the other values.
The range of Sk(Xk; Yk) for matches in the Goodall3 measure is [0, 1 − 2/N(N − 1)],
with the minimum value being attained if Xk is the only value for attribute Ak and max-
imum value being attained if Xk occurs only twice.

There are some advanced distance measures applicable to categorical, but also to
numerical data, that take into account the effect of the surrounding or neighboring

TABLE 9.3 . Similarity Matrix for a Single Categorical
Attribute

a b c d

a S(a,a) S(a,b) S(a,c) S(a,d)
b S(b,b) S(b,c) S(b,d)
c S(c,c) S(c,d)
d S(d,d)

TABLE 9.4 . Goodall3 Similarity Measure for Categorical
Attributes

Measure Sk(Xk, Yk) wk, k = 1,…,d

Goodall3 1−pk2 Xk if Xk = Yk

0 otherwise

1/d
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points in the n-dimensional spaces of samples. These surrounding points are called
contexts. The similarity between two points, xi and xj, with the given context, is meas-
ured using the mutual neighbor distance (MND), which is defined as

MND xi,xj =NN xi,xj +NN xj,xi

where NN(xi, xj) is the neighbor number of xjwith respect to xi. If xi is the closest point
to xj, then NN(xi, xj) is equal to 1, if it is the second closest point, NN(xi, xj) is equal to
2, etc. Figures 9.3 and 9.4 give an example of the computation and basic character-
istics of the MND measure.

Points in Figures 9.3 and 9.4, denoted by A, B, C, D, E, and F, are 2D samples
with features x1 and x2. In Figure 9.3, the nearest neighbor of A is B using Euclidean
distance, and B’s nearest neighbor is A. So,

NN A,B =NN B,A = 1 MND A,B = 2

If we compute the distance between points B and C, the results will be

NN B,C = 1,NN C,B = 2 MND B,C = 3

C

B

D A
F E

x2

x1

Figure 9.4. After changes in the context, B and C are more similar than A and B using the

MND measure.

C

B

A

x2

x1

Figure 9.3. A and B are more similar than B and C using the MND measure.
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Figure 9.4 was obtained from Figure 9.3 by adding three new points D, E, and F
(samples in the data set). Now, because the context has changed, the distances
between the same points A, B, and C have also changed:

NN A,B = 1, NN B,A = 4 MND A,B = 5

NN B,C = 1, NN C,B = 2 MND B,C = 3

The MND between A and B has increased by introducing additional points close
to A, even though A and B have not moved. B and C points become more similar than
points A and B. The MND measure is not a metric because it does not satisfy the tri-
angle inequality. Despite this, MND has been successfully applied in several real-
world clustering tasks.

In general, based on a distance measure between samples, it is possible to define a
distance measure between clusters (set of samples). These measures are an essential
part in estimating the quality of a clustering process, and therefore they are part of
clustering algorithms. The widely used measures for distance between clusters Ci

and Cj are:

1. Dmin(Ci, Cj) = min pi − pj , where pi Ci and pj Cj.

2. Dmean(Ci, Cj) = mi – mj , where mi and mj are centroids of Ci and Cj.

3. Davg(Ci, Cj) = 1/(ni nj) pi − pj , where pi Ci and pj Cj and ni and nj are
the numbers of samples in clusters Ci and Cj.

4. Dmax(Ci, Cj) = max pi − pj , where pi Ci and pj Cj.

9.3 AGGLOMERATIVE HIERARCHICAL CLUSTERING

In hierarchical cluster analysis, we do not specify the number of clusters as a part of
the input. Namely, the input to a system is (X, s), where X is a set of samples and s is a
measure of similarity. An output from a system is a hierarchy of clusters. Most pro-
cedures for hierarchical clustering are not based on the concept of optimization, and
the goal is to find some approximate, suboptimal solution using iterations for
improvement of partitions until convergence. Algorithms of hierarchical cluster anal-
ysis are divided into two categories: divisible algorithms and agglomerative algo-
rithms. A divisible algorithm starts from the entire set of samples X and divides it
into a partition of subsets, then divides each subset into smaller sets, and so on. Thus,
a divisible algorithm generates a sequence of partitions that is ordered from a coarser
one to a finer one. An agglomerative algorithm first regards each object as an initial
cluster. The clusters are merged into a coarser partition, and the merging process pro-
ceeds until the trivial partition is obtained: all objects are in one large cluster. This
process of clustering is a bottom-up process, where partitions are from a finer one
to a coarser one. In general, agglomerative algorithms are more frequently used in
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real-world applications than divisible methods, and therefore we will explain the
agglomerative approach in greater detail.

Most agglomerative hierarchical clustering algorithms are variants of the single-
link or complete-link algorithms. These two basic algorithms differ only in the way
they characterize the similarity between a pair of clusters. In the single-link method,
the distance between two clusters is the minimum of the distances between all pairs of
samples drawn from the two clusters (one element from the first cluster, the other from
the second). In the complete-link algorithm, the distance between two clusters is the
maximum of all distances between all pairs drawn from the two clusters. A graphical
illustration of these two distance measures is given in Figure 9.5.

In either case, two clusters are merged to form a larger cluster based on minimum-
distance criteria. Although the single-link algorithm is computationally more simple,
from a practical viewpoint, it has been observed that the complete-link algorithm
produces more useful hierarchies in most applications.

As explained earlier, the only difference between the single-link and complete-
link approaches is in the distance computation. For both, the basic steps of the agglom-
erative-clustering algorithm are the same. These steps are as follows:

1. Place each sample in its own cluster. Construct the list of inter-cluster dis-
tances for all distinct unordered pairs of samples, and sort this list in ascending
order.

2. Step through the sorted list of distances, forming for each distinct threshold
value dk a graph of the samples where pairs of samples closer than dk are con-
nected into a new cluster by a graph edge. If all the samples are members of a
connected graph, stop. Otherwise, repeat this step.

3. The output of the algorithm is a nested hierarchy of graphs, which can be cut at
the desired dissimilarity level forming a partition (clusters) identified by
simple connected components in the corresponding subgraph.

Let us consider five points {x1, x2, x3, x4, x5} with the following coordinates as a
2D sample for clustering:

Cluster 1
Cluster 1

Cluster 2
Cluster 2

(a) (b)

Figure 9.5. Distances for a single-link and a complete-link clustering algorithm. (a) Single-

link distance. (b) Complete-link distance.
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x1 = 0,2 , x2 = 0,0 , x3 = 1 5,0 , x4 = 5,0 , and x5 = 5,2

For this example, we selected 2D points because it is easier to graphically rep-
resent these points and to trace all the steps in the clustering algorithm. The points
are represented graphically in Figure 9.6.

The distances between these points using the Euclidean measure are

d x1,x2 = 2, d x1,x3 = 2 5, d x1,x4 = 5 39, d x1,x5 = 5

d x2,x3 = 1 5, d x2,x4 = 5, d x2,x5 = 5 29

d x3,x4 = 3 5, d x3,x5 = 4 03

d x4,x5 = 2

The distances between points as clusters in the first iteration are the same for both
single-link and complete-link clustering. Further computation for these two algo-
rithms is different. Using agglomerative single-link clustering, the following steps
are performed to create a cluster and to represent the cluster structure as a dendrogram.

First, x2 and x3 samples are merged, and a cluster {x2, x3} is generated with a
minimum distance equal to 1.5. Second, x4 and x5 are merged into a new cluster
{x4, x5} with a higher merging level of 2.0. At the same time, the minimum sin-
gle-link distance between clusters {x2, x3} and {x1} is also 2.0. So, these two clusters
merge at the same level of similarity as x4 and x5. Finally, the two clusters {x1, x2, x3}
and {x4, x5} are merged at the highest level with a minimum single-link distance of
3.5. The resulting dendrogram is shown in Figure 9.7.

The cluster hierarchy created by using an agglomerative complete-link clustering
algorithm is different comparedwith the single-link solution. First, x2 and x3 aremerged,
and a cluster {x2, x3} is generated with the minimum distance equal to 1.5. Also, in the
second step, x4 and x5 are merged into a new cluster {x4, x5} with a higher merging level
of 2.0. Minimal single-link distance is between clusters {x2, x3}, and {x1} is now 2.5, so
these two clusters merge after the previous two steps. Finally, the two clusters {x1, x2,
x3} and {x4, x5} are merged at the highest level with a minimal complete-link distance of
5.4. The resulting dendrogram is shown in Figure 9.8.

3

2

1

0

0 1 2 3 4 5

Figure 9.6. Five two-dimensional samples for clustering.
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Selecting, for example, a threshold measure of similarity s = 2.2, we can recog-
nize from the dendrograms in Figures 9.7 and 9.8 that the final clusters for single-link
and complete-link algorithms are not the same. A single-link algorithm creates only
two clusters, namely, {x1, x2, x3} and {x4, x5}, while a complete-link algorithm creates
three clusters, namely,{x1}, {x2, x3}, and {x4, x5}.

Unlike traditional agglomerative methods, Chameleon is a clustering algorithm
that tries to improve the clustering quality by using a more elaborate criterion when
merging two clusters. Two clusters will be merged if the interconnectivity and close-
ness of the merged clusters are very similar to the interconnectivity and closeness of
the two individual clusters before merging.

To form the initial subclusters, Chameleon first creates a graph G = (V, E), where
each node v V represents a data sample and a weighted edge e(vi, vj) exists between
two nodes vi and vj if vj is one of the k-nearest neighbors of vi. The weight of each edge
inG represents the closeness between two samples, i.e., an edge will weigh more if the
two data samples are closer to each other.Chameleon then uses a graph-partition algo-
rithm to recursively partition G into many small, unconnected subgraphs by doing a
min-cut on G at each level of recursion. Here, a min-cut on a graph G refers to a

__________1.5_________2.0_______2.2_________________3.5____

x2

x3

x1

x4

x5

Figure 9.7. Dendrogram by single-link method for the data set in Figure 9.6.

__________1.5_________2.0____2.2_____2.5_______________5.4___

x2

x3

x1

x4

x5

Figure 9.8. Dendrogram by complete-link method for the data set in Figure 9.6.
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partitioning of G into two parts of close, equal size such that the total weight of the
edges being cut is minimized. Each subgraph is then treated as an initial subcluster,
and the algorithm is repeated until a certain criterion is reached.

In the second phase, the algorithm goes bottom up. Chameleon determines the
similarity between each pair of elementary clusters Ci and Cj according to their rel-
ative interconnectivity RI(Ci, Cj) and their relative closeness RC(Ci, Cj). Given that
the interconnectivity of a cluster is defined as the total weight of edges that are
removed when a min-cut is performed, the relative interconnectivity RI(Ci, Cj) is
defined as the ratio of the interconnectivity of the merged cluster Ci and Cj to the aver-
age interconnectivity of Ci and Cj. Similarly, the relative closeness RC(Ci, Cj) is
defined as the ratio of the closeness of the merged cluster of Ci and Cj to the average
internal closeness of Ci and Cj. Here the closeness of a cluster refers to the average
weight of the edges that are removed when a min-cut is performed on the cluster.

The similarity function is then computed as a product: RC(Ci, Cj) ∗ RI(Ci, Cj)
α

where α is a parameter between 0 and 1. A value of 1 for α will give equal weight to
bothmeasures, while decreasing αwill place more emphasis on RI(Ci, Cj). Chameleon
can automatically adapt to the internal characteristics of the clusters, and it is effective
in discovering arbitrarily shaped clusters of varying density. However, the algorithm
is ineffective for high-dimensional data having O(n2) time complexity for n samples.

9.4 PARTITIONAL CLUSTERING

Every partitional-clustering algorithm obtains a single partition of the data instead of
the clustering structure, such as a dendrogram, produced by a hierarchical technique.
Partitional methods have the advantage in applications involving large data sets for
which the construction of a dendrogram is computationally very complex. The parti-
tional techniques usually produce clusters by optimizing a criterion function defined
either locally (on a subset of samples) or globally (defined over all of the samples).
Thus we say that a clustering criterion can be either global or local. A global criterion,
such as the Euclidean square-error measure, represents each cluster by a prototype or
centroid and assigns the samples to clusters according to the most similar prototypes.
A local criterion, such as the minimal MND, forms clusters by utilizing the local struc-
ture or context in the data. Therefore, identifying high-density regions in the data
space is a basic criterion for forming clusters.

The most commonly used partitional-clustering strategy is based on the square-
error criterion. The general objective is to obtain the partition that, for a fixed number
of clusters, minimizes the total square error. Suppose that the given set of N samples in
an n-dimensional space has somehow been partitioned into K clusters {C1, C2,…,Ck}.
EachCk has nk samples and each sample is in exactly one cluster so that Σnk = N, where
k = 1,…,K. The mean vectorMk of cluster Ck is defined as the centroid of the cluster or

Mk =
1
nk

nk

i= 1

xik
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where xik is the ith sample belonging to clusterCk. The square error for clusterCk is the
sum of the squared Euclidean distances between each sample in Ck and its centroid.
This error is also called the within-cluster variation:

e2k =
nk

i= 1

xik –Mk
2

The square error for the entire clustering space containing K clusters is the sum of
the within-cluster variations:

E2
k =

K

k = 1

e2k

The objective of a square-error clustering method is to find a partition containing
K clusters that minimize E2

k for a given K.
The K-means partitional-clustering algorithm is the simplest and most com-

monly used algorithm employing a square-error criterion. It starts with a random ini-
tial partition and keeps reassigning the samples to clusters, based on the similarity
between samples and clusters, until a convergence criterion is met. Typically, this cri-
terion is met when there is no reassignment of any sample from one cluster to another
that will cause a decrease of the total squared error. K-means algorithm is popular
because it is easy to implement, and its time and space complexity is relatively small.
A major problem with this algorithm is that it is sensitive to the selection of the initial
partition and may converge to a local minimum of the criterion function if the initial
partition is not properly chosen.

The simple K-means partitional-clustering algorithm is computationally efficient
and gives surprisingly good results if the clusters are compact, hyperspherical in
shape, and well separated in the feature space. The basic steps of the K-means algo-
rithm are as follows:

1. Select an initial partition withK clusters containing randomly chosen samples,
and compute the centroids of the clusters.

2. Generate a new partition by assigning each sample to the closest cluster center.

3. Compute new cluster centers as the centroids of the clusters.

4. Repeat steps 2 and 3 until an optimum value of the criterion function is found
(or until the cluster membership stabilizes).

Let us analyze the steps of the K-means algorithm on the simple data set given in
Figure 9.6. Suppose that the required number of clusters is two and initially, clusters
are formed from random distribution of samples: C1 = {x1, x2, x4} and C2 = {x3, x5}.
The centroids for these two clusters are

M1 =
0 + 0 + 5

3
,
2 + 0 + 0

3
= 1 66, 0 66
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M2 =
1 5 + 5

2
,
0 + 2
2

= 3 25, 1 00

Within-cluster variations, after initial random distribution of samples, are

e21 = 0 – 1 66 2 + 2 – 0 66 2 + 0 – 1 66 2 + 0 – 0 66 2

+ 5 – 1 66 2 + 0 – 0 66 2 = 19 36

e22 = 1 5 – 3 25 2 + 0 – 1 2 + 5 – 3 25 2 + 2 – 1 2 = 8 12

and the total square error is

E2 = e21 + e
2
2 = 19 36 + 8 12 = 27 48

When we reassign all samples, depending on a minimum distance from centroids
M1 and M2, the new redistribution of samples inside clusters will be

d M1,x1 = 1 662 + 1 342
1 2

= 2 1 and d M2,x1 = 3 40 x1 C1

d M1,x2 = 1 79 and d M2,x2 = 3 40 x2 C1

d M1,x3 = 0 83 and d M2,x3 = 2 01 x3 C1

d M1,x4 = 3 41 and d M2,x4 = 2 01 x4 C2

d M1,x5 = 3 60 and d M2,x5 = 2 01 x5 C2

New clusters C1 = {x1, x2, x3} and C2 = {x4, x5} have new centroids

M1 = 0 5, 0 67

M2 = 5 0, 1 0

The corresponding within-cluster variations and the total square error are

e21 = 4 17

e22 = 2 00

E2 = 6 17

We can see that after the first iteration, the total square error is significantly
reduced (from the value 27.48 to 6.17). In this simple example, the first iteration
was at the same time the final one because if we analyze the distances between the
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new centroids and the samples, the latter will all be assigned to the same clusters.
There is no reassignment and therefore the algorithm halts.

In summary, the K-means algorithm and its equivalent in an artificial neural net-
works domain—the Kohonen net—have been applied for clustering on large data sets.
The reasons behind the popularity of the K-means algorithm are as follows:

1. Its time complexity is O(n × k × l), where n is the number of samples, k is the
number of clusters, and l is the number of iterations taken by the algorithm to
converge. Typically, k and l are fixed in advance, and so the algorithm has
linear time complexity in the size of the data set.

2. Its space complexity is O(k + n), and if it is possible to store all the data in the
primary memory, access time to all elements is very fast, and the algorithm is
very efficient.

3. It is an order-independent algorithm. For a given initial distribution of clusters,
it generates the same partition of the data at the end of the partitioning process
irrespective of the order in which the samples are presented to the algorithm.

A big frustration in using iterative partitional-clustering programs is the lack of
guidelines available for choosingK-number of clusters apart from the ambiguity about
the best direction for initial partition, updating the partition, adjusting the number of
clusters, and the stopping criterion. The K-means algorithm is very sensitive to noise
and outlier data points, because a small number of such data can substantially influ-
ence the mean value. Unlike the K-means, the K-medoids method, instead of taking
the mean value of the samples, uses the most centrally located object (medoids) in a
cluster to be the cluster representative. Because of this, the K-medoids method is less
sensitive to noise and outliers. Fuzzy c-means, proposed by Dunn and later improved,
is an extension of K-means algorithm where each data point can be a member of mul-
tiple clusters with a membership value expressed through fuzzy sets. Despite its draw-
backs, k-means remains the most widely used partitional-clustering algorithm in
practice. The algorithm is simple, easily understandable, and reasonably scalable
and can be easily modified to deal with streaming data.

9.5 INCREMENTAL CLUSTERING

There are more and more applications where it is necessary to cluster a large collection
of data. The definition of “large” has varied with changes in technology. In the 1960s,
“large” meant several thousand samples for clustering. Now, there are applications
where millions of samples of high dimensionality have to be clustered. The algorithms
discussed above work on large data sets, where it is possible to accommodate the
entire data set in the main memory. However, there are applications where the entire
data set cannot be stored in the main memory because of its size. There are currently
three possible approaches to solve this problem:
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1. The data set can be stored in a secondary memory, and subsets of this data are
clustered independently, followed by a merging step to yield a clustering of
the entire set. We call this approach the divide-and-conquer approach.

2. An incremental-clustering algorithm can be employed. Here, data are stored in
the secondary memory, and data items are transferred to the main memory one
at a time for clustering. Only the cluster representations are stored perma-
nently in the main memory to alleviate space limitations.

3. A parallel implementation of a clustering algorithm may be used where the
advantages of parallel computers increase the efficiency of the divide-and-
conquer approach.

An incremental-clustering approach is most popular, and we will explain its basic
principles. The following are the global steps of the incremental-clustering algorithm:

1. Assign the first data item to the first cluster.

2. Consider the next data item. Either assign this item to one of the existing clus-
ters or assign it to a new cluster. This assignment is done based on some cri-
terion, e.g., the distance between the new item and the existing cluster
centroids. In that case, after every addition of a new item to an existing cluster,
recompute a new value for the centroid.

3. Repeat step 2 until all the data samples are clustered.

The space requirements of the incremental algorithm are very small, necessary
only for the centroids of the clusters. Typically, these algorithms are noniterative,
and therefore their time requirements are also small. But even if we introduce itera-
tions into the incremental-clustering algorithm, computational complexity and corre-
sponding time requirements do not increase significantly. On the other hand, there is
one obvious weakness of incremental algorithms that we have to be aware of. Most
incremental algorithms do not satisfy one of the most important characteristics of a
clustering process: order independence. An algorithm is order independent if it gen-
erates the same partition for any order in which the data set is presented. Incremental
algorithms are very sensitive to the order of samples, and for different orders, they
generate totally different partitions.

Let us analyze the incremental-clustering algorithm with the set of samples given
in Figure 9.6. Suppose that the order of samples is x1, x2, x3, x4, x5 and the threshold
level of similarity between clusters is δ = 3.

1. The first sample x1 will become the first cluster C1 = {x1}. The coordinates of
x1 will be the coordinates of the centroid M1 = {0, 2}.

2. Start analysis of the other samples.

(a) Second sample x2 is compared with M1, and the distance d is determined:

d x2,M1 = 02 + 22
1 2

= 2 0 < 3
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Therefore, x2 belongs to the cluster C1. The new centroid will be

M1 = 0, 1

(b) The third sample x3 is compared with the centroid M1 (still the only
centroid!):

d x3, M1 = 1 52 + 12
½
= 1 8 < 3

x3 C1 C1 = x1, x2, x3 M1 = 0 5, 0 66

(c) The fourth sample x4 is compared with the centroid M1:

d x4, M1 = 4 52 + 0 662
1 2

= 4 55 > 3

Because the distance of the sample from the given centroid M1 is larger
than the threshold value δ, this sample will create its own cluster C2 =
{x4} with the corresponding centroid M2 = {5, 0}.

(d) The fifth sample x5 is compared with both cluster centroids:

d x5, M1 = 4 52 + 1 442
½
= 4 72 > 3

d x5, M2 = 02 + 22
1 2

= 2 < 3

The sample is closer to the centroid M2, and its distance is less than the
threshold value δ. Therefore, sample x5 is added to the second cluster C2:

C2 = x4, x5 M2 = 5,1

3. All samples are analyzed, and a final clustering solution of two clusters is
obtained:

C1 = x1, x2, x3 and C2 = x4, x5

The reader may check that the result of the incremental-clustering process will not
be the same if the order of the samples is different. Usually, this algorithm is not iter-
ative (although it could be extended!), and the clusters generated after all the samples
have been analyzed in one iteration are the final clusters. If the iterative approach is
used, the centroids of the clusters computed in the previous iteration are used as a basis
for the partitioning of samples in the next iteration.

For most partitional-clustering algorithms, including the iterative approach, a
summarized representation of the cluster is given through its clustering feature
(CF) vector. This vector of parameters is given for every cluster as a triple, consisting
of the number of points (samples) of the cluster, the centroid of the cluster, and the
radius of the cluster. The cluster’s radius is defined as the square root of the average
mean squared distance from the centroid to the points in the cluster (averaged within-
cluster variation). When a new point is added or removed from a cluster, the new CF
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can be computed from the old CF. It is very important that we do not need the set of
points in the cluster to compute a new CF value.

If samples are with categorical data, then we do not have a method to calculate
centroids as representatives of the clusters. In that case, an additional algorithm called
k-nearest neighbor may be used to estimate distances (or similarities) between sam-
ples and existing clusters. The basic steps of the algorithm are:

1. to compute the distances between the new sample and all previous samples,
already classified into clusters,

2. to sort the distances in increasing order and select K samples with the smallest
distance values, and

3. to apply the voting principle. A new sample will be added (classified) to the
largest cluster out of K selected samples.

For example, given six six-dimensional categorical samples

X1 = A, B, A, B, C, B

X2 = A, A, A, B, A, B

X3 = B, B, A, B, A, B

X4 = B, C, A, B, B, A

X5 = B, A, B, A, C, A

X6 = A, C, B, A, B, B

they are gathered into two clusters C1 = {X1, X2, X3} and C2 = {X4, X5, X6}. How does
one to classify the new sample Y = {A, C, A, B, C, A}?

To apply the k-nearest neighbor algorithm, it is necessary, as the first step, to find
all distances between the new sample and the other samples already clustered. Using
the SMC measure, we can find similarities instead of distances between samples.

Similarities with elements in C1 Similarities with elements in C2

SMC(Y, X1) = 4/6 = 0.66 SMC(Y, X4) = 4/6 = 0.66
SMC(Y, X2) = 3/6 = 0.50 SMC(Y, X5) = 2/6 = 0.33
SMC(Y, X3) = 2/6 = 0.33 SMC(Y, X6) = 2/6 = 0.33

Using the 1-nearest neighbor rule (K = 1), the new sample cannot be classified
because there are two samples (X1 and X4) with the same highest similarity (smallest
distances), and one of them is in the class C1 and the other in the class C2. On the other
hand, using the 3-nearest neighbor rule (K = 3) and selecting the three largest simila-
rities in the set, we can see that two samples (X1 and X2) belong to the classC1 and only
one sample belongs to the class C2. Therefore, using a simple voting system, we can
classify the new sample Y into the C1 class.
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9.6 DBSCAN ALGORITHM

Density-based approach in clustering assumes that clusters are regarded as dense
regions of objects in the data space that are separated by regions of low object density
(noise). These regions may have an arbitrary shape. Crucial concepts of this approach
are density and connectivity both measured in terms of local distribution of nearest
neighbors. The algorithm Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) targeting low-dimensional data is the major representative in this
category of density-based clustering algorithms. The main reason why DBSCAN
recognizes the clusters is that within each cluster, we have a typical density of points
that is considerably higher than outside of the cluster. Furthermore, the points’ density
within the areas of noise is lower than the density in any of the clusters.

DBSCAN is based on two main concepts: density reachability and density con-
nectability. Both concepts depend on two input parameters of the DBSCAN cluster-
ing: the size of epsilon neighborhood (ε) and the minimum points in a cluster (m). The
key idea of the DBSCAN algorithm is that for each point of a cluster, the neighbor-
hood of a given radius ε has to contain at least a minimum number of points m; that is,
the density in the neighborhood has to exceed some predefined threshold. For exam-
ple, in Figure 9.9, point p has only two points in the neighborhood ε, while point q has
eight. Obviously, the density around q is higher than around p.

Density reachability defines whether two close points belong to the same cluster.
Point p1 is density reachable from p2 if two conditions are satisfied: (1) the points are
close enough to each other: distance(p1, p2) < ε, and (2) there are enough of points in ε
neighborhood of p2: distance(r, p2) >m, where r are some database points. In the
example represented in Figure 9.9, point p is reachable from point q. Density connec-
tivity is the next building step of DBSCAN. Points p0 and pn are density connected
if there is a sequence of density reachable points (p0, p1, p2,…) from p0 to pn such
that pi + 1 is density reachable from pi. These ideas are translated into DBSCAN
cluster as a set of all density connected points.

The clustering process is based on the classification of the points in the data set as
core points, border points, and noise points (examples are given in Fig. 9.10):

• A point is a core point if it has more than a specified number of points (m)
within neighborhood ε. These are points that are at the interior of a cluster.

q

p

Figure 9.9. Neighborhood (ε) for points p and q.
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• A border point has fewer than m points within its neighborhood ε, but it is in
the neighbor of a core point.

• A noise point is any point that is not a core point or a border point.

Ideally, we would have to know the appropriate parameters ε and m of each clus-
ter. But there is no easy way to get this information in advance for all clusters of the
database. Therefore, DBSCAN uses global values for ε andm, i.e. the same values for
all clusters. Also, numerous experiments indicate that DBSCAN clusters for m > 4 do

Border

Core

Outlier

2

(a)

(b)

1.5

1

0.5

0

–0.5

–1

–1.5

–2 –1 0 1 2

Eps = 1
Noise point

Core point
Border point

MinPts = 4

Figure 9.10. Examples of core, border, and noise points. (a) ε and m determine the type of

the point. (b) Core points build dense regions.
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not significantly differ from the case m = 4, while the algorithm needs considerably
more computations. Therefore, in practice, we may eliminate the parameter m
by setting it to 4 for low-dimensional databases. The main steps of DBSCAN
algorithm are:

• Arbitrary select a point p.
• Retrieve all points density reachable from p with respect to ε and m.

• If p is a core point, a new cluster is formed or existing cluster is extended.

• If p is a border point, no points are density reachable from p, and DBSCAN
visits the next point of the database.

• Continue the process with other points in database until all of the points have
been processed.

• Since global values for ε and m are used, DBSCAN may merge two clusters
into one cluster if two clusters of different density are “close” to each other.
They are close if the distance between clusters is lower than ε.

Examples of clusters obtained by DBSCAN algorithm are illustrated in
Figure 9.11. Obviously, DBSCAN finds all clusters properly, independent of the size,
shape, and location of clusters to each other.

The main advantages of the DBSCAN clustering algorithm are as follows:

1. DBSCAN does not require the number of clusters a priori, as opposed to K-
means and some other popular clustering algorithms.

2. DBSCAN can find arbitrarily shaped clusters.

3. DBSCAN has a notion of noise and eliminate outliers from clusters.

4. DBSCAN requires just two parameters and is mostly insensitive to the order-
ing of the points in the database.

DBSCAN also has some disadvantages. The complexity of the algorithm is still
very high, although with some indexing structures it reaches O(n × log n). Finding
neighbors is an operation based on distance, generally the Euclidean distance, and

Figure 9.11. DBSCAN builds clusters of different shapes.
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the algorithm may find the curse of dimensionality problem for high-dimensional data
sets. Therefore, most applications of the algorithm are for low-dimensional real-world
data.

9.7 BIRCH ALGORITHM

Balanced and Iterative Reducing and Clustering using Hierarchies (BIRCH) is an effi-
cient clustering technique for data in Euclidean vector spaces. The algorithm can effi-
ciently cluster data with a single pass, and also it can deal effectively with outliers.
BIRCH is based on the notion of a CF and a CF tree.

CF is a small representation of an underlying cluster that consists of one or many
samples. BIRCH builds on the idea that samples that are close enough should always
be considered as a group. CFs provide this level of abstraction with corresponding
summarization of samples in a cluster. The idea is that a cluster of data samples
can be represented by a triple of numbers (N, LS, SS), where N is the number of sam-
ples in the cluster, LS is the linear sum of the data points (vectors representing sam-
ples), and SS is the sum of squares of the data points. More formally, the components
of vectors LS and SS are computed for every attribute X of data samples in a cluster:

LS X =
N

i= 1

Xi and SS X =
N

i= 1

X2
i

In Figure 9.12 five 2D samples are representing the cluster, and their CF summary
is given with components: N = 5, LS = (16, 30), and SS = (54, 190). These are com-
mon statistical quantities, and a number of different cluster characteristics and inter-
cluster distance measures can be derived from them. For example, we can compute the
centroid for the cluster based on its CF representation, without revisiting original sam-
ples. Coordinates of the centroid are obtained by dividing the components of the LS
vector by N. In our example the centroid will have the coordinates (3.2, 6.0). The
reader may check on the graphical interpretation of the data (Fig. 9.12) that the posi-
tion of the centroid is correct. The obtained summaries are then used instead of the
original data for further clustering or manipulations with clusters. For example, if
CF1 = (N1, LS1, SS1) and CF2 = (N2, LS2, SS2) are the CF entries of two disjoint clus-
ters, then the CF entry of the cluster formed by merging the two clusters is

CF =CF1 +CF2 = N1 +N2,LS1 +LS2,SS1 + SS2

This simple equation show us how simple is procedure for merging clusters based
on their simplified CF descriptions. That allows efficient incremental merging of
clusters even for the streaming data!

BIRCH uses a hierarchical data structure called CF tree for partitioning the incom-
ing data points in an incremental and dynamic way. A CF tree is a height-balanced tree
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usually stored in a central memory. This allows fast lookups even when large data sets
have been read. It is based on two parameters for nodes. CF nodes can have at maximum
B children for nonleaf nodes and a maximum of L entries for leaf nodes. Also, T is the
threshold for the maximum diameter of an entry in the cluster. The CF tree size is a
function of T. The bigger T is, the smaller the tree will be.

A CF tree is built as the data samples are scanned (Fig. 9.13). At every level of the
tree, a new data sample is inserted to the closest node. Upon reaching a leaf, the sample
is inserted to the closest CF entry, as long as it is not overcrowded (diameter of the
cluster D > T after the insert). Otherwise, a new CF entry is constructed, and the sam-
ple is inserted. Finally, all CF statistics are updated for all nodes from the root to the
leaf to represent the changes made to the tree. Since the maximum number of children
per node (branching factor) is limited, one or several splits can happen. Building CF
tree is only one, but the most important, phase in the BIRCH algorithm. In general,
BIRCH employs four different phases during the clustering process:

1. Phase 1: Scan all data and build an initial in-memory CF tree.

It linearly scans all samples and inserts them in the CF tree as described earlier.

2. Phase 2: Condense the tree to a desirable size by building a smaller CF tree.

This can involve removing outliers and further merging of clusters.
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CF = (5, (16, 30),(54, 190))

Figure 9.12. CF representation and visualization for a 2D cluster.
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3. Phase 3: Global clustering.

Employ a global clustering algorithm using the CF tree’s leaves as input. CFs
allow for effective clustering because the CF tree is very densely compressed
in the central memory at this point. The fact that a CF tree is balanced allows
the log-efficient search.

4. Phase 4: Cluster refining.

This is optional, and it requires more passes over the data to refine the
results. All clusters are now stored in memory. If desired, the actual data
points can be associated with the generated clusters by reading all points
from disk again.

BIRCH performs faster than most of existing algorithms on large data sets. The
algorithm can typically find a good clustering with a single scan of the data and
improve the quality further with a few additional scans (phases 3 and 4). Basic algo-
rithm condenses metric data in the first pass using spherical summaries, and this part
can be an incremental implementation. Additional passes cluster CFs to detect non-
spherical clusters, and the algorithm approximates density function. There are several
extensions of the algorithm trying to include non-metric data and make applicability
of the approach much wider.

Root node

1 2 B

1 2 B

Nonleaf node

CF

CF CF CF

CF CF

Leaf node Leaf node Leaf node

CF1

CF2

CFL

CF2

CFL

CF2

CFL

CF1 CF1

Figure 9.13. CF tree structure.
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9.8 CLUSTERING VALIDATION

How is the output of a clustering algorithm evaluated? What characterizes a “good’
clustering result and a “poor” one? All clustering algorithms will, when presented
with data, produce clusters regardless of whether the data contain clusters or not.
Therefore, the first step in evaluation is actually an assessment of the data domain
rather than the clustering algorithm itself. Data that we do not expect to form clusters
should not be processed by any clustering algorithm. If the data does contain clus-
ters, some clustering algorithms may obtain a “better” solution than others. Cluster
validity is the second step when we expect to have our data clusters. A clustering
structure is valid if it cannot reasonably have occurred by chance or as an artifact
of a clustering algorithm. Applying some of the available cluster methodologies,
we assess the outputs. This analysis uses a specific criterion of optimality that usu-
ally contains knowledge about the application domain and therefore is subjective.
There are three types of validation studies for clustering algorithms. An external
assessment of validity compares the discovered structure to an a priori structure.
An internal examination of validity tries to determine if the discovered structure
is intrinsically appropriate for the data. Both assessments are subjective and domain
dependent. A relative test, as a third approach, compares the two structures obtained
either from different cluster methodologies or by using the same methodology but
with different clustering parameters, such as the order of input samples. This test
measures their relative merit, but we still need to resolve the question how to select
the structures for comparison.

Theory and practical applications both show that all approaches in the valida-
tion of clustering results have a subjective component. Hence, little in the way of
“gold standards” exists in clustering evaluation. Recent studies in cluster analysis
suggest that a user of a clustering algorithm should keep always the following issues
in mind:

1. Every clustering algorithm will find clusters in a given data set whether they
exist or not; the data should, therefore, be subjected to tests for clustering ten-
dency before applying a clustering algorithm, followed by a validation of the
clusters generated by the algorithm.

2. There is no best clustering algorithm; therefore a user is advised to try several
algorithms on a given data set.

It is important to remember that cluster analysis is an exploratory tool; the outputs
of clustering algorithms only suggest or sometimes confirm hypotheses, but never
prove any hypothesis about natural organization of data. Still, there are some standard
clustering validation measures that should be used in practical applications.

Clustering validation has long been recognized as one of the vital issues essential
to the success of clustering applications. Numerical measures, also referred as criteria
or indices, which are applied to judge various aspects of cluster validity, may be clas-
sified into two main categories:
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• Internal measures: Used to measure the goodness of a clustering structure
without use of any external information or when external information is not
available at all. Internal validation measures only rely on information in
the data.

• External measures: Used to measure the extent to which cluster labels match
externally supplied class labels. For example, it is measured how a clustering
partition presents clusters defined by important background characteristics
representing a basis for the partition but not available in the data set or when
the true clusters in the data are known in advance and samples are class-labeled
as a “ground truth.”

Most of internal measures for clustering validation are based on two parameters:
cohesion and separation. Cluster cohesion measures how close are samples inside
each cluster, as it is presented in Figure 9.14a. The most straightforward way to for-
malize that all objects within a cluster should be similar to each other; it is expected
that clusters are highly homogeneous. There are numerous measures that estimate the
cluster compactness based on distance, such as maximum or average pairwise distance
and maximum or average center-based distance. For example, cohesion is measured
as the within-cluster sum of squared errors (WSS):

WSS=
k = 1,N xi &C

xi –mj
2

where N is the number of clusters, C is set of centroids xi determined by the clustering
algorithm, and mj are samples, members of corresponding cluster where xi is a
centroid.

Separation measures how distinct or well separated a cluster is from other clus-
ters, and it is expressed through distances between samples in different clusters as it is
given in Figure 9.14b. For example, the pairwise distances between cluster centers or
the pairwise minimum distances between objects in different clusters are widely used
as measures of separation. Separation as it is usually interpreted cannot be measured
by averaging all between-cluster dissimilarities, because it refers to what goes on
“between” the clusters. The smallest between-cluster distances may have more weight

(a) (b)

Figure 9.14. Components of the internal validation of the clustering. (a) Cluster cohesion.

(b) Cluster separation.
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in the final separation measure than the distance between pairs of farthest clusters. One
possible interpretation of the separation measure is given by

BSS =
xi &C

Ci x – xi
2

where xi are centroids of the clusters, x is centroid of the entire data set, and Ci is the
size of ith cluster. In this case separation is expressed as a weight sum of distances
between centroids of all generated clusters and centroid of the entire data set. Some-
times in this measure it is necessary to include the weight representing the size of
clusters.

One of the approaches in evaluating clustering quality is silhouette method. The
method of silhouette combines cohesion and separation into one parameter. The sil-
houette value si is determined for each sample in the clustered data set:

si =
bi – ai

max bi,ai

where ai is the distance between ith sample and its centroid (cluster center), while bi is
the distance between ith sample and the next closest centroid (Fig. 9.15).

It is obvious that bi > ai for each sample. So, the value of si is positive number, and
we expect values for si greater of 0.5 for most of samples if the clustering is successful.
Taking the average silhouette value S over all n samples

S =
1
N
×

N

i= 1

si

it is obtained a good combined internal measure S (cohesion + separation) for the qual-
ity of a clustering process. The largest overall average silhouette indicates the best
clustering if several clustering algorithms are compared. Also, the appropriate number
of cluster may be determined through experiments using maximum overall average
silhouette criterion.

ai

bi

Figure 9.15. Components of the silhouette coefficient.

325CLUSTERING VALIDATION



The Rand index, developed by William Rand in 1971, is one of the mostly used
external measures for clustering. It is comparing results of clustering algorithm with a
priori given labels (classes) of all samples in data set. This index measures the number
of pairwise agreements between the set of discovered clusters K and a set of class
labels C, given by

R=
a + d

a+ b + c + d

where

• a denotes the number of pairs of data points with the same label in C and
assigned to the same cluster in K

• b denotes the number of pairs with the same label, but in different clusters

• c denotes the number of pairs in the same cluster, but with different class labels

• d denotes the number of pairs with a different label in C that were assigned to a
different cluster in K

The index results in 0 ≤ R ≤ 1, where a value of 1 indicates that C and K are iden-
tical. A high value for this index generally indicates a high level of agreement between
a clustering and the natural classes. Rand indexmay be also used to compare similarity
of results between two clustering algorithms. In that case the results of second cluster-
ing algorithm replace ground truth of labels C.

Purity P is an additional external evaluation measure for the clustering. The local
purity pi is determined for each cluster, and it represents the fraction of data samples
assigned to the majority label in each cluster. Total purity P is accumulated local puri-
ties for each cluster divided by total number of samples in data set:

P=
i= 1,N

pi
M

where pi are purity values for each cluster, N is the number of clusters, and M is the
total number of samples in data set. For example, if the clustering algorithm resulted in
four clusters, c1 to c4, and also the samples have externally determined one out of four
labels (dog, cat, mouse, or fox), the following matrix shows howmuch the clusters are
covered with external labels.

c1 c2 c3 c4

Dog 0 4 9 4
Cat 10 0 1 0
Mouse 0 10 5 12
Fox 1 13 5 10
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Purity p1 for cluster c1 is equal 10 because label cat is majority label with 10 sam-
ples in this cluster. In this case, total purity P, for applied clustering results, is

P=
10 + 13 + 9 + 12

84
=
44
84

= 0 52

One class of clustering algorithms may be very useful in the applications where
the border regions between clusters in N-dimensional spaces are not clearly defined.
For these kinds of data sets, several fuzzy clustering algorithms are developed. One
example is fuzzy c-means clustering algorithm, which works by assigning member-
ship to each data point corresponding to each cluster center on the basis of distance
between the cluster center and the data point. The more the data point is closer to the
cluster center, the more is its membership toward the particular cluster center. Each
data point can have membership to multiple clusters. By relaxing the definition of
membership coefficients from strictly 1 or 0, these values can range from 1 to 0.

Figure 9.16a shows how the specific point P may belong to two different clusters
with centroids CA and CB. Assume that Euclidean distance is used as inversely propor-
tional measure of the membership function, wheremB = 0.6 is greater thanmA = 0.4, but
the point P based on these values still belongs to both clusters. Clearly, summation of
membership of each data point should be equal to one. Figure 9.16b shows the data
samples on X axes, where different membership values are assigned for each single
point depending on distances from centroids of the clusters. If the threshold value
for membership is selected, such as m = 0.3, crisp clusters A and B may be separated.

Fuzzy c-means clustering algorithm gives best result for overlapped data set inN-
dimensional spaces, and multiple experiments showed that it gives comparatively bet-
ter results than k-means algorithm. Unlike k-means where data point must exclusively
belong to one cluster center, here data point is assigned through the membership to
belong to more than one cluster.

X2

X1

CA

CB

P

mA= 0.4

mB= 0.6

m (membership)

1

0

A B

0.3

X

(a) (b)

Figure 9.16. Membership function for samples in fuzzy clustering. (a) Sum of membership

coefficients is equal to 1. (b) Threshold of 0.3 determines the clusters A and B.
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9.9 REVIEW QUESTIONS AND PROBLEMS

1. Why is the validation of a clustering process highly subjective?

2. What increases the complexity of clustering algorithms?

3. (a) Using MND distance, distribute the input samples given as 2D points A(2, 2), B(4, 4),
and C(7, 7) into two clusters.

(b) What will be the distribution of samples in the clusters if samples D(1, 1), E(2, 0), and
F(0, 0) are added?

4. Given five-dimensional numeric samples A = (1, 0, 2, 5, 3) and B = (2, 1, 0, 3, −1),
find:

(a) The Euclidean distance between points.
(b) The city block distance.
(c) The Minkowski distance for p = 3.
(d) The cosine-correlation distance.

5. Given six-dimensional categorical samples C = (A, B, A, B, A, A) and D = (B, B, A,
B, B, A), find:

(a) A simple matching coefficient (SMC) of the similarity between samples.
(b) Jaccard’s coefficient.
(c) Rao’s coefficient.

6. Given a set of five-dimensional categorical samples:

A= 1, 0, 1, 1, 0

B= 1, 1, 0, 1, 0

C = 0, 0, 1, 1, 0

D= 0, 1, 0, 1, 0

E = 1, 0, 1, 0, 1

F = 0, 1, 1, 0, 0

(a) Apply agglomerative hierarchical clustering using:
(i) Single-link similarity measure based on Rao’s coefficient.
(ii) Complete-link similarity measure based on simple matching coefficient SMC.

(b) Plot the dendrograms for the solutions to part (i) and (ii) of (a).

7. Given the samples X1 = {1, 0}, X2 = {0, 1}, X3 = {2, 1}, and X4 = {3, 3}, suppose
that the samples are randomly clustered into two clusters C1 = {X1, X3} and
C2 = {X2, X4}.

(a) Apply one iteration of the K-means partitional-clustering algorithm, and find a new dis-
tribution of samples in clusters. What are the new centroids? How can you prove that the
new distribution of samples is better than the initial one?
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(b) What is the change in the total square error?
(c) Apply the second iteration of the K-means algorithm and discuss the changes in

clusters.

8. For the samples in Problem #7, apply iterative clustering with the threshold value
for cluster radius T = 2. What is the number of clusters and samples distribution
after the first iteration?

9. Suppose that the samples in Problem #6 are distributed into two clusters:

C1 = A,B,E and C2 = C,D,F

Using k-nearest neighbor algorithm, find the classification for the following
samples:

(a) Y = {1, 1, 0, 1, 1} using K = 1.
(b) Y = {1, 1, 0, 1, 1} using K = 3.
(c) Z = {0, 1, 0, 0, 0} using K = 1.
(d) Z = {0, 1, 0, 0, 0} using K = 5.

10. Implement the hierarchical agglomerative algorithm for samples with categorical
values using the SMC measure of similarity.

11. Implement the partitional K-means clustering algorithm. Input samples are given
in the form of a flat file.

12. Implement the incremental-clustering algorithmwith iterations. Input samples are
given in the form of a flat file.

13. Given the similarity matrix between five samples:

(a) Use the similarity matrix in the Table to perform complete-link hierarchical clustering.
Show your results by drawing a dendrogram. The dendrogram should clearly show the
order in which the points are merged.

(b) How many clusters exist if the threshold similarity value is 0.5. Give the elements of
each cluster.

(c) If DBSCAN algorithm is applied with threshold similarity of 0.6 and MinPts ≥ 2
(required density), what are core, border, and noise points in the set of points pi given
in the Table. Explain.

Similarity matrix for Exercise 13.

p1 p2 p3 p4 p5

p1 1.00 0.10 0.41 0.55 0.35
p2 0.10 1.00 0.64 0.47 0.98
p3 0.41 0.64 1.00 0.44 0.85
p4 0.55 0.47 0.44 1.00 0.76
p5 0.35 0.98 0.85 0.76 1.00
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14. Given the points x1 = {1, 0}, x2 = {0,1}, x3={2, 1}, and x4 = {3, 3}. Suppose
that these points are randomly clustered into two clusters: C1 = {x1, x3} and
C2 = {x2, x4}. Apply one iteration of K-means partitional-clustering algorithm
and find new distribution of elements in clusters. What is the change in a total
square error?

15. Answer True/False to the following statements. Discuss your answer if necessary.

1. Running K-means with different initial seeds is likely to produce different results
2. Initial cluster centers have to be data points.
3. Clustering stops when cluster centers are moved to the mean of clusters.
4. k-means can be less sensitive to outliers if standard deviation is used instead of the

average.
5. k-means can be less sensitive to outliers if median is used instead of the average.

16. Identify the clusters in the figure below using the center-, contiguity-, and den-
sity-based clustering. Assume center-based clustering means K-means, contigu-
ity-based means single-link hierarchical, and density-based means DBSCAN.
Also indicate the number of clusters for each case, and give a brief indication
of your reasoning. Note that darkness or the number of dots indicates density.

(a) (b) (c) (d)

17. Derive the mathematical relationship between cosine similarity and Euclidean
distance when each data object has an L2 (Euclidean) length of 1.

18. Given a similarity measure with values in the interval [0, 1], describe two ways to
transform this similarity value into a dissimilarity value in the interval [0, ∞].

19. Distances between samples (A, B, C, D, and E) are given in a graphical form.

A 1 B

2
E 5 C

3 2 3
3 4 2

3 1
D

Determine single-link and complete-link dendrograms for the set of samples.
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20. There is a set S consisting of six points in the plane shown as below: a = (0, 0),
b = (8, 0), c = (16, 0), d = (0, 6), e = (8, 6), f = (16, 6). Now we run the k-means
algorithm on those points with k = 3. The algorithm uses the Euclidean distance
metric (i.e. the straight-line distance between two points) to assign each point to
its nearest centroid. Also we define the following:

• 3-starting configuration is a subset of three starting points from S that form the
initial centroids, e.g. {a, b, c}.

• 3-partition is a partition of S into k non-empty subsets, e.g. {a, b, e}, {c, d}, {f}
is a 3-partition.

(a) How many 3-starting configurations are there?
(b) Fill in the last two columns of the following table.

3-Partition An Example of 3-Starting Configuration
That Can Arrive at the 3-Partition After 0
or More Iterations of k-Means

Number of Unique
3-Starting
Configurations

{a, b} {d, e} {c, f}
{a} {d} {b, c, e, f}
{a, b, d} {c} {e, f}
{a, b} {d} {c, e, f}

21. On the space of nonnegative integers, which of the following functions are dis-
tance measures? Explain.

(a) max(x, y) = the larger of x and y.
(b) diff(x, y) = |x − y| (the magnitude of the difference between x and y).
(c) sum(x, y) = x + y.

22. Find the edit distances between the following pairs of strings:

(a) abcdef and bdaefc.
(b) abccdabc and acbdcab.
(c) abcdef and baedfc.

23. Consider the following three vectors u, v, and w in a six-dimensional space:

u = 1, 0 25, 0, 0, 0 5, 0

v = 0 75, 0, 0, 0 2, 0 4, 0

w= 0, 0 1, 0 75, 0, 0, 1

Suppose cos(x,y) denotes the similarity of vectors x and y under the cosine
similarity measure. Compute all three pairwise similarities among u, v, and w.
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24. Inacertainhigh-dimensional space,pointsAandBare inonecluster, andpointsC,D,
andE are inanother cluster.Points in the sameclustermaybeassumed“close,”while
points in different clusters are “distant.” Assuming the “curse of dimensionality”
applies in this case, we expect certain angles between the lines from one of these
pointsX to two other pointsY andZ to be approximately right angles. Identifywhich
of the following angles we would assume not to be approximately a right angle.

(a) Select which of the following angles are not right angles: ACB, ACD, ADB, CAD,
CEB, CBE.

(b) What is the general rule to select not right angles?

25. Given five vectors in a ten-dimensional space:

1111000000,0100100101,0000011110,0111111111,1011111111

Compute the cosines’ distances of the angles between each pair of these vectors.
Note that, conveniently, each vector has either 4 or 9 1’s. Then, identify one of the
cosines of these angles from the list of fractions below.

(a) Select which of the following values are possible cosine distances: 1/3, ¼, ½, 5/6,
2/3, 3/4.

(b) What is the general rule to select the value as possible cosine measure?

26. Suppose our data set consists of the perfect squares 1, 4, 9, 16, 25, 36, 49, and 64,
which are points in one dimension. Perform a hierarchical clustering on these
points as follows. Initially, each point is in a cluster by itself. At each step, merge
the two clusters with the closest centroids, and continue until only two clusters
remain. What are centroids of these two clusters?

27. Perform a hierarchical clustering of the following six points:

A 0,0 ,B 10,10 ,C 21,21 ,D 33, 33 , E 5,27 , and F 28,6

(a) Using the single-link proximity measure (the distance between clusters is the shortest
distance between any pair of points, one from each cluster).

(b) Using the complete-link proximity measure (the distance between two clusters is the
largest distance between any two points, one from each cluster).

28. Suppose that the data-mining task is to cluster the following eight points (repre-
senting location) into three clusters:

A1 2;10 ;A2 2;5 ;A3 8;4 ;B1 5;8 ;B2 7;5 ;B3 6;4 ;C1 1;2 ;C2 4;9

The distance function is Euclidean distance. Suppose initially we assign A1, B1,
and C1 as the center of each cluster, respectively. Use the k-means algorithm to
determine:

(a) The three cluster centers after the first round of execution.
(b) The final three clusters.
(c) Calculate purity of three clusters if labels of samples are already given: A, B, and C.
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9.10 REFERENCES FOR FURTHER STUDY

1. Jain, A. K., M. N.Murty, P. J. Flynn. Data Clustering: A Review, ACMComputing
Surveys, Vol. 31, No. 3, (September 1999), pp. 264–323.

Although there are several excellent books on clustering algorithms, this review
paper will give the reader enough details about the state-of-the-art techniques in
data clustering, with an emphasis on large data set problems. The paper presents
the taxonomy of clustering techniques and identifies crosscutting themes, recent
advances, and some important applications. For readers interested in practical
implementation of some clustering methods, the paper offers useful advice and
a large spectrum of references.

2. Hand, D., H. Mannila, P. Smith, Principles of Data Mining, MIT Press,
Cambridge, MA, 2001.

The book consists of three sections. The first, foundations, provides a tutorial over-
view of the principles underlying data-mining algorithms and their applications.
The second section, data-mining algorithms, shows how algorithms are con-
structed to solve specific problems in a principled manner. The third
section shows how all of the preceding analyses fit together when applied to
real-world data-mining problems.

3. Miyamoto S., Fuzzy Sets in Information Retrieval and Cluster Analysis, Kluwer
Academic Publishers, Dordrecht, Germany, 1990.

This book offers an in-depth presentation and analysis of some clustering algo-
rithms and reviews the possibilities of combining these techniques with fuzzy rep-
resentation of data. Information retrieval, which, with the development of
advancedWeb-mining techniques, is becoming more important in the data-mining
community, is also explained in the book.

4. Han, J., M. Kamber, Data Mining: Concepts and Techniques, 3rd edition, Morgan
Kaufmann, San Francisco, 2011.

This book gives a sound understanding of data-mining principles. The primary ori-
entation of the book is for database practitioners and professionals with emphasis
on OLAP and data warehousing. In-depth analysis of association rules and cluster-
ing algorithms is the additional strength of the book. All algorithms are presented
in easily understood pseudocode, and they are suitable for use in real-world, large-
scale data-mining projects including advanced applications such as Web mining
and text mining.

5. FilipponeM., F. Camastra, F. Masulli, S. Rovetta, A Survey of Kernel and Spectral
Methods for Clustering, Pattern Recognition, Vol. 41, 2008, pp. 176–190.

Clustering algorithms are a useful tool to explore data structures and have been
employed in many disciplines. The focus of this paper is the partitioning clustering
problem with a special interest in two recent approaches: kernel and spectral meth-
ods. The aim of this paper is to present a survey of kernel and spectral clustering
methods, two approaches able to produce nonlinear separating hypersurfaces
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between clusters. The presented kernel clustering methods are the kernel version of
many classical clustering algorithms, e.g. K-means, SOM, and neural gas. Spectral
clustering arise from concepts in spectral graph theory, and the clustering problem
is configured as a graph cut problemwhere an appropriate objective function has to
be optimized.

6. Slawomir Wierzchon, Mieczyslaw Kłopotek, Modern Algorithms of Cluster
Analysis, Springer, Berlin, 2018.

The book explains feature-based, graph-based, and spectral clusteringmethods and
discusses their formal similarities and differences. Understanding the related for-
mal concepts is particularly vital in the epoch of big data; due to the volume and
characteristics of the data, it is no longer feasible to predominantly rely on merely
viewing the data when facing a clustering problem. The book addresses grid-based
methods, sampling methods, parallelization via MapReduce, usage of tree struc-
tures, random projections, and various heuristic approaches, especially those used
for community detection.
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10

ASSOCIATION RULES

Chapter Objectives

• Explain the local modeling character of association rule techniques.

• Analyze the basic characteristics of large transactional databases.

• Describe the Apriori algorithm and explain all its phases through illustrative
examples.

• Compare the frequent pattern growth method with the Apriori algorithm.

• Outline the solution for association rule generation from frequent itemsets.

• Explain discovery of multidimensional associations.

• Introduce extension of FP-growth methodology for classification problems.

When we talk about machine-learning methods applied in data mining, we may clas-
sified them as parametric or nonparametric methods. In a case of parametric methods,
which are used for density estimation, classification, or regression, we assume that a

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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final model is valid over the entire input space. In regression, for example, when we
derive a linear model, we apply it for all future inputs. In classification, we assume that
all samples (training but also new testing) are drawn from the same density distribu-
tion. Models in these cases are global models valid for the entire n-dimensional space
of samples. The advantage of a parametric method is that it reduces the problem of
modeling with only a small number of parameters. Its main disadvantage is that initial
assumptions do not hold in many real-world problems causing a large error. In non-
parametric estimation, all we assume is that similar inputs have similar outputs. Meth-
ods do not assume any a priori density or parametric form. There is no single global
model. Local models are estimated as they are occurred, affected only by nearby train-
ing samples (Figure 10.1).

Association rule discovery is one of the major techniques of data mining, and it is
perhaps the most common form of local-pattern discovery in unsupervised learning
systems. It is a form of data mining that most closely resembles the process that most
people think about when they try to understand the data-mining process, namely,
“mining” for gold through a vast database. The gold in this case would be a rule that
is interesting, which tells you something about your database that you did not already
know and probably were not able to explicitly articulate. These methodologies
retrieve all possible interesting patterns in the database. This is strength in the sense
that it leaves “no stone unturned.”But it can be viewed also as a weakness because the
user can easily become overwhelmed with a large amount of new information and an
analysis of their usability is difficult and time consuming.

Besides the standard methodologies such as the Apriori technique for association
rule mining, we will explain some extensions such as FP-tree and CMAR algorithms.
All these methodologies show how important and applicable is problem of market-
basket analysis and corresponding methodologies for discovery of association’s rules
in data.

(a) (b)

Figure 10.1. Parametric vs. nonparametric methods. (a) Parametric methods build global

models. (b) Nonparametric methods result in local modeling
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10.1 MARKET-BASKET ANALYSIS

A market basket is a collection of items purchased by a customer in a single transac-
tion, which is a well-defined business activity. For example, customer’s visits to a
grocery store or an online purchase from a virtual store on the Web are typical cus-
tomer transactions. Retailers accumulate huge collections of transactions by recording
business activities over time. One common analysis run against a transaction database
is to find sets of items, or itemset, that appear together in many transactions.
A business can use knowledge of these patterns to improve the placement of these
items in the store or the layout of mail-order catalog pages andWeb pages. An itemset
containing i items is called an i-itemset. The percentage of transactions that contain an
itemset is called the itemset’s support. For an itemset to be interesting, its support must
be higher than a user-specified minimum. Such itemsets are said to be frequent.

Why is finding frequent itemsets a nontrivial problem? First, the number of cus-
tomer transactions can be very large and usually will not fit in a central memory of a
computer. Second, the potential number of frequent itemsets is exponential to the
number of different items, although the actual number of frequent itemsets can be
much smaller. Therefore, we want algorithms that are scalable (their complexity
should increase linearly, not exponentially, with the number of transactions) and that
examine as few infrequent itemsets as possible. Before we explain some of the more
efficient algorithms, let us try to describe the problem more formally and develop its
mathematical model.

From a database of sales transactions, we want to discover the important associa-
tions among items such that the presence of some items in a transaction will imply the
presence of other items in the same transactions. Let I = {i1, i2,…,im} be a set of lit-
erals, called items. Let database DB be a set of transactions, where each transaction
T is a set of items such that T I. Note that the quantities of the items bought in a
transaction are not considered, meaning that each item is a binary variable indicating
whether an item was bought or not. Each transaction is associated with an identifier
called a transaction identifier (TID). An example of the model for such a transaction
database is given in Table 10.1.

Let X be a set of items. A transaction T is said to contain X if and only if X T. An
association rule implies the form X Y, where X I, Y I, and X Y =Ø. The rule X Y

TABLE 10.1 . A Model of a Simple Transaction Database

Database DB:

TID Items

001 A C D
002 B C E
003 A B C E
004 B E
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holds in the transaction set DB with confidence c if c% of the transactions in D that
contain X also contain Y. The rule X Y has support s in the transaction set D if s% of
the transactions in DB contain X Y. Confidence denotes the strength of implication,
and support indicates the frequency of the patterns occurring in the rule. It is often
desirable to pay attention to only those rules that may have a reasonably large support.
Such rules with high confidence and strong support are referred to as strong rules. The
task of mining association rules is essentially to discover strong association rules in
large databases. The problem of mining association rules may be decomposed into
two phases:

1. Discover the large itemsets, i.e., the sets of items that have transaction support
s above a predetermined minimum threshold.

2. Use the large itemsets to generate the association rules for the database that
have confidence c above a predetermined minimum threshold.

The overall performance of mining association rules is determined primarily by
the first step. After the large itemsets are identified, the corresponding association
rules can be derived in a straightforward manner. Efficient counting of large itemsets
is thus the focus of most mining algorithms, and many efficient solutions have been
designed to address previous criteria. The Apriori algorithm provided one early solu-
tion to the problem, and it will be explained in greater detail in this chapter. Other
subsequent algorithms built upon the Apriori algorithm represent refinements of a
basic solution, and they are explained in a wide spectrum of articles including texts
recommended in Section 10.2.

10.2 ALGORITHM APRIORI

The algorithm Apriori computes the frequent itemsets in the database through several
iterations. Iteration i computes all frequent i-itemsets (itemsets with i elements). Each
iteration has two steps: candidate generation and candidate counting and selection.

In the first phase of the first iteration, the generated set of candidate itemsets con-
tains all 1-itemsets (i.e., all items in the database). In the counting phase, the algorithm
counts their support searching again through the whole database. Finally, only 1-
itemsets (items) with s above required threshold will be selected as frequent. Thus,
after the first iteration, all frequent 1-itemsets will be known.

What are the itemsets generated in the second iteration? In other words, how does
one generate 2-itemset candidates? Basically, all pairs of items are candidates. Based
on knowledge about infrequent itemsets obtained from previous iterations, the Apriori
algorithm reduces the set of candidate itemsets by pruning—a priori—those candi-
date itemsets that cannot be frequent. The pruning is based on the observation that
if an itemset is frequent, all its subsets could be frequent as well. Therefore, before
entering the candidate-counting step, the algorithm discards every candidate itemset
that has an infrequent subset.
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Consider the database in Table 10.1. Assume that the minimum support s = 50%;
so an itemset is frequent if it is contained in at least 50% of the transactions—in our
example, in two out of every four transactions in the database. In each iteration, the
Apriori algorithm constructs a candidate set of large itemsets, counts the number of
occurrences of each candidate, and then determines large itemsets based on the pre-
determined minimum support s = 50%.

In the first step of the first iteration, all single items are candidates. Apriori simply
scans all the transactions in a database DB and generates a list of candidates. In the
next step, the algorithm counts the occurrences of each candidate and based on thresh-
old s selects frequent itemsets. All these steps are given in Figure 10.2. Five 1-itemsets
are generated in C1, and, of these, only four are selected as large in L1 because their
support is greater than or equal to 2, or s ≥ 50%.

To discover the set of large 2-itemsets, because any subset of a large itemset could
also have minimum support, the Apriori algorithm uses L1∗L1 to generate the candi-
dates. The operation ∗ is defined in general as

Lk
∗Lk = X Y where X,Y Lk, X Y = k – 1

For k = 1 the operation represents a simple concatenation. Therefore, C2 consists
of 2-itemsets generated by the operation|L1| (|L1| – 1)/2 as candidates in the second
iteration. In our example, this number is 4 3/2 = 6. Scanning the database DB with
this list, the algorithm counts the support for every candidate and in the end selects a
large 2-itemsets L2 for which s ≥ 50%. All these steps and the corresponding results of
the second iteration are given in Figure 10.3.

The set of candidate itemsetsC3 is generated from L2 using the previously defined
operation L2∗L2. Practically, from L2, two large 2-itemsets with the same first item,
such as {B, C} and {B, E}, are identified first. Then, Apriori tests whether the
2-itemset {C, E}, which consists of the second items in the sets {B, C} and
{B, E}, constitutes a large 2-itemset or not. Because {C, E} is a large itemset by itself,
we know that all the subsets of {B, C, E} are large and then {B, C, E} becomes a
candidate 3-itemset. There is no other candidate 3-itemset from L2 in our database

{A}

{C}

{D}

{B}

{E}

1-Itemsets C1 Count s[%] Count s[%]

{A} 2 50 {A} 2 50

{C} 3 75 {C} 3 75

{D} 1 25

{B} 3 75 {B} 3 75

{E} 3 75 {E} 3 75

1-Itemsets Large 1-itemsets L1

(a) (b1) (b2)

Figure 10.2. First iteration of the Apriori algorithm for database DB. (a) Generate phase.

(b1) Count phase. (b2) Select phase.
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DB. Apriori then scans all the transactions and discovers the large 3-itemsets L3, as
shown in Figure 10.4.

In our example, because there is no 4-itemset candidate to be constituted from L3,
Apriori ends the iterative process.

Apriori counts not only the support of all frequent itemsets but also the support of
those infrequent candidate itemsets that could not be eliminated during the pruning
phase. The set of all candidate itemsets that are infrequent but whose support is
counted by Apriori is called the negative border. Thus, an itemset is in the negative
border if it is infrequent, but all its subsets are frequent. In our example, analyzing
Figures 8.1 and 8.2, we can see that the negative border consists of itemsets {D},
{A, B}, and {A, E}. The negative border is especially important for some improve-
ments in the Apriori algorithm such as increased efficiency in generation of large
itemsets.

10.3 FROM FREQUENT ITEMSETS TO ASSOCIATION RULES

The second phase in discovering association rules based on all frequent i-itemsets,
which have been found in the first phase using the Apriori or some other similar algo-
rithm, is relatively simple and straightforward. For a rule that implies {x1, x2, x3} x4,
it is necessary that both itemsets {x1, x2, x3, x4} and {x1, x2, x3} are frequent. Then, the
confidence c of the rule is computed as the quotient of supports for the itemsets c = s

2-Itemsets C2 2-Itemsets Count s[%] Large 2-Itemsets L2 Count s[%]

{A, B} {A, B} 1 25

{A, C} {A, C} 2 50 {A, C} 2 50

{A, E} {A, E} 1 25

{B, C} {B, C } 2 50 {B, C} 2 50

{B, E} {B, E} 3 75 {B, E} 3 75

{C, E} {C, E} 2 50 {C, E} 2 50

(a) (b1) (b2)

Figure 10.3. Second iteration of the Apriori algorithm for database DB. (a) Generate phase.

(b1) Count phase. (b2) Select phase.

3-Itemsets C3 s[%] Large 3-Itemsets L3 Count s[%]

{B, C, E} {B, C, E} 2 50 {B, C, E} 2 50

3-Itemsets Count

(a) (b1) (b2)

Figure 10.4. Third iteration of the Apriori algorithm for database DB. (a) Generate phase.

(b1) Count phase. (b2) Select phase.
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(x1, x2, x3, x4)/s(x1, x2, x3). Strong association rules are rules with a confidence value c
above a given threshold.

For our example of database DB in Table 10.1, if we want to check whether the
association rule {B,C} E is a strong rule, first we select the corresponding supports
from tables L2 and L3:

s B,C = 2, s B,C,E = 2

and using these supports, we compute the confidence of the rule:

c B,C E =
s B,C,E
s B,C

=
2
2
= 1 or 100

Whatever the selected threshold for strong association rules (for example, cT = 0.8
or 80%), this rule will pass because its confidence is maximal, i.e. if a transaction con-
tains items B and C, it will also contain item E. Other rules are also possible for our
database DB, such as A C because c(A C) = s(A, C)/s(A) = 1, and both itemsets
{A} and {A,C} are frequent based on the Apriori algorithm. Therefore, in this phase, it
is necessary only to systematically analyze all possible association rules that could be
generated from the frequent itemsets and select as strong association rules those that
have a confidence value above a given threshold.

Notice that not all the discovered strong association rules (i.e., passing the
required support s and required confidence c) are interesting enough to be presented
and used. For example, consider the following case of mining the survey results in a
school of 5000 students. A retailer of breakfast cereal surveys the activities that the
students engage in every morning. The data show that 60% of the students (i.e.,
3000 students) play basketball, 75% of the students (i.e., 3750 students) eat cereal,
and 40% of them (i.e., 2000 students) play basketball and also eat cereal. Suppose
that a data-mining program for discovering association rules is run on the following
settings: the minimal support is 2000 (s = 0.4) and the minimal confidence is 60%
(c = 0.6). The following association rule will be produced: “(play basketball)
(eat cereal),” since this rule contains the minimal student support and the correspond-
ing confidence c = 2000/3000 = 0.66 is larger than the threshold value. However, the
above association rule is misleading since the overall percentage of students eating
cereal is 75%, larger than 66%. That is, playing basketball and eating cereal are in
fact negatively associated. Being involved in one itemset decreases the likelihood
of being involved in the other. Without fully understanding this aspect, one could
make wrong business or scientific decisions from the association rules derived.

To filter out such misleading associations, one may define that an association rule
A B is interesting if its confidence exceeds a certain measure. The simple argument
we used in the example above suggests that the right heuristic to measure association
should be

s A,B
s A

– s B > d
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or alternatively

s A,B – s A s B > k

where d or k are suitable constants. The expressions above essentially represent tests
of statistical independence. Clearly, the factor of statistical dependence among ana-
lyzed itemsets has to be taken into consideration to determine the usefulness of asso-
ciation rules. In our simple example with students, this test fails for the discovered
association rule:

s A,B – s A s B = 0 4 – 0 6 0 75 = – 0 05 < 0

and, therefore, despite high values for parameters s and c, the rule is not interesting. In
this case, it is even misleading.

10.4 IMPROVING THE EFFICIENCY OF THE APRIORI ALGORITHM

Since the amount of the processed data in mining frequent itemsets tends to be huge, it
is important to devise efficient algorithms to mine such data. Our basic Apriori algo-
rithm scans the database several times, depending on the size of the largest frequent
itemset. Since Apriori algorithm was first introduced and as experience was accumu-
lated, there have been many attempts to devise more efficient algorithms of frequent
itemset mining including approaches such as hash-based technique, partitioning, sam-
pling, and using vertical data format. Several refinements have been proposed that
focus on reducing the number of database scans, the number of candidate itemsets
counted in each scan, or both.

Partition-based Apriori is an algorithm that requires only two scans of the trans-
action database. The database is divided into disjoint partitions, each small enough to
fit into available memory. In a first scan, the algorithm reads each partition and com-
putes locally frequent itemsets on each partition. In the second scan, the algorithm
counts the support of all locally frequent itemsets toward the complete database. If
an itemset is frequent with respect to the complete database, it must be frequent in
at least one partition. That is the heuristics used in the algorithm. Therefore, the second
scan through the database counts itemset’s frequency only for a union of all locally
frequent itemsets. This second scan directly determines all frequent itemsets in the
database as a subset of previously define union.

In some applications, the transaction database has to be mined frequently to cap-
ture customer behavior. In such applications, the efficiency of data mining could be a
more important factor than the complete accuracy of the results. In addition, in some
applications the problem domain may be vaguely defined. Missing some marginal
cases that have confidence and support levels at the borderline may have little effect
on the quality of the solution to the original problem. Allowing imprecise results can
in fact significantly improve the efficiency of the applied mining algorithm.
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As the database size increases, sampling appears to be an attractive approach to
data mining. A sampling-based algorithm typically requires two scans of the database.
The algorithm first takes a sample from the database and generates a set of candidate
itemsets that are highly likely to be frequent in the complete database. In a subsequent
scan over the database, the algorithm counts these itemsets’ exact support and the sup-
port of their negative border. If no itemset in the negative border is frequent, then the
algorithm has discovered all frequent itemsets. Otherwise, some superset of an itemset
in the negative border could be frequent, but its support has not yet been counted. The
sampling algorithm generates and counts all such potentially frequent itemsets in sub-
sequent database scans.

Because it is costly to find frequent itemsets in large databases, incremental
updating techniques should be developed to maintain the discovered frequent itemsets
(and corresponding association rules) so as to avoid mining the whole updated data-
base again. Updates on the database may not only invalidate some existing frequent
itemsets but also turn some new itemsets into frequent ones. Therefore, the problem of
maintaining previously discovered frequent itemsets in large and dynamic databases
is nontrivial. The idea is to reuse the information of the old frequent itemsets and to
integrate the support information of the new frequent itemsets in order to substantially
reduce the pool of candidates to be reexamined.

In many applications, interesting associations among data items often occur at a
relatively high concept level. For example, one possible hierarchy of food components
is presented in Figure 10.5, where M (milk) and B (bread), as concepts in the hierar-
chy, may have several elementary subconcepts. The lowest-level elements in the hier-
archy (M1, M2,…,B1, B2,…) are types of milk and bread defined with its bar code in
the store. The purchase patterns in a transaction database may not show any substan-
tial regularities at the elementary data level, such as at the bar-code level (M1,M2,M3,
B1, B2,…), but may show some interesting regularities at some high concept level(s),
such as milk M and bread B.

Consider the class hierarchy in Figure 10.5. It could be difficult to find high sup-
port for purchase patterns at the primitive-concept level, such as chocolate milk and
wheat bread. However, it would be easy to find in many databases that more than 80%
of customers who purchase milk may also purchase bread. Therefore, it is important to

F (food)

M (milk) B (bread) …

M2(2%) M3(chocolate)     … …M1(fat-free) B1(white) B2(wheat)

Figure 10.5. An example of concept hierarchy for mining multiple-level frequent itemsets.
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mine frequent itemsets at a generalized abstraction level or at multiple-concept levels;
these requirements are supported by the Apriori generalized-data structure.

One extension of the Apriori algorithm considers an is-a hierarchy on database
items, where information about multiple abstraction levels already exist in the data-
base organization. An is-a hierarchy defines which items are a specialization or gen-
eralization of other items. The extended problem is to compute frequent itemsets that
include items from different hierarchy levels. The presence of a hierarchy modifies the
notation of when an item is contained in a transaction. In addition to the items listed
explicitly, the transaction contains their ancestors in the taxonomy. This allows the
detection of relationships involving higher hierarchy levels, since an itemset’s support
can increase if an item is replaced by one of its ancestors.

10.5 FREQUENT PATTERN GROWTH METHOD

Let us define one of the most important problems with scalability of the Apriori algo-
rithm. To generate one frequent pattern of length 100, such as {a1, a2,…,a100}, the
number of candidates that has to be generated will be at least

100

i= 1

100
i = 2100 – 1≈1030

and it will require hundreds of database scans. The complexity of the computation
increases exponentially! That is only one of the many factors that influence the devel-
opment of several new algorithms for association rule mining.

Frequent pattern growth (FP-growth) method is an efficient way of mining fre-
quent itemsets in large databases. The algorithm mines frequent itemsets without the
time-consuming candidate-generation process that is essential for Apriori. When the
database is large, FP-growth first performs a database projection of the frequent items;
it then switches to mining the main memory by constructing a compact data structure
called the FP-tree. For an explanation of the algorithm, we will use the transactional
database in Table 10.2 and the minimum support threshold of 3.

TABLE 10.2 . The Transactional Database T

TID Itemset

01 f, a, c, d, g, i, m, p
02 a, b, c, f, l, m, o
03 b, f, h, j, o
04 b, c, k, s, p
05 a, f, c, e, l, p, m, n
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First, a scan of the database T derives a list L of frequent items occurring three or
more than three times in the database. These are the items (with their supports):

L= f ,4 , c,4 , a,3 , b,3 , m,3 , p,3

The items in L are listed in descending order of frequency. This ordering is impor-
tant since each path of the FP-tree will follow this order.

Second, the root of the tree, labeled ROOT, is created. The database T is scanned
a second time. The scan of the first transaction leads to the construction of the first
branch of the FP-tree: {(f,1), (c,1), (a,1), (m,1), (p,1)}. Only those items that are in
the list of frequent items L are selected. The indices for nodes in the branch (all
are 1) represent the cumulative number of samples at this node in the tree, and of
course, after the first sample, all are 1. The order of the nodes is not as in the sample
but as in the list of frequent items L. For the second transaction, because it shares items
f, c, and a, it shares the prefix {f, c, a} with the previous branch and extends to the new
branch {(f, 2), (c, 2), (a, 2), (m, 1), (p, 1)}, increasing the indices for the common
prefix by one. The new intermediate version of the FP-tree, after two samples from
the database, is given in Figure 10.6a. The remaining transactions can be inserted sim-
ilarly, and the final FP-tree is given in Figure 10.6b.

To facilitate tree traversal, an item header table is built, in which each item in the
list L connects nodes in the FP-tree with the same values through node links. All f
nodes are connected in one list, all c nodes in the other, etc. For simplicity of repre-
sentation only the list for b nodes is given in Figure 10.6b. Using the compact-tree
structure, the FP-growth algorithm mines the complete set of frequent itemsets.

According to the list L of frequent items, the complete set of frequent itemsets can
be divided into subsets (six for our example) without overlap: (1) frequent itemsets
having item p (the end of list L); (2) the itemsets having item m but not p; (3) the fre-
quent itemsets with b and without both m and p; (4) the frequent itemsets with a and
without both b, m and p; (5) the frequent itemsets with c and without both a, b, m and
p; (6) the large itemsets only with f. This classification is valid for our example, but the
same principles can be applied for other databases and other L lists.

ROOT

(a) (b)

ROOT

f, 2 f, 4 c, 1

c, 2 c, 3 b, 1 b, 1

a, 2 a, 3 p, 1
Header

m, 1 b, 1 : m, 2 b, 1

b
p, 1 m, 1 p, 2 m, 1

Figure 10.6. FP-tree for the database T in Table 10.2. (a) FP-tree after two samples.

(b) Final FP-tree.
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Based on node-link connection, we collect all the transactions that p participates
in by starting from the header table of p and following p’s node links. In our example,
two paths will be selected in the FP-tree: {(f,4), (c,3), (a,3), (m,2), (p,2)} and {(c,1),
(b,1), (p,1)}, where samples with a frequent item p are {(f,2), (c,2), (a,2), (m,2), (p,2)
and {(c,1), (b,1), (p,1)}. The given threshold value (3) satisfies only the frequent item-
sets {(c,3), (p,3)} or the simplified {c, p}. All other itemsets with p are below the
threshold value.

The next subsets of frequent itemsets are those with m and without p. The FP-tree
recognizes the paths {(f,4), (c,3), (a,3), (m,2)} and {(f,4), (c,3), (a,3), (b,1), (m,1)} or
the corresponding accumulated samples {(f,2), (c,2), (a,2), (m,2)} and {(f,1), (c,1),
(a,1), (b,1), (m,1)}. Analyzing the samples we discover the frequent itemset {(f,3),
(c,3), (a,3), (m,3)} or, simplified, {f, c, a, m}.

Repeating the same process for subsets 3–6 in our example, additional frequent
itemsets could be mined. These are itemsets {f, c, a} and {f, c}, but they are already
subsets of the frequent itemset {f, c, a,m}. Therefore, the final solution in the FP-growth
method is the set of frequent itemsets, which is, in our example, {{c, p}, {f, c, a, m}}.

Experiments have shown that the FP-growth algorithm is faster than the Apriori
algorithm by about one order of magnitude. Several optimization techniques are
added to the FP-growth algorithm, and there exists its versions for mining sequences
and patterns under constraints.

10.6 ASSOCIATIVE-CLASSIFICATION METHOD

Classification based on multiple association rules (CMAR) is a classification method
adopted from the frequent pattern growth (FP-growth) method for generation of fre-
quent itemsets. The main reason we included CMAR methodology in this chapter is
its FP-growth roots, but there is the possibility of comparing CMAR accuracy and
efficiency with the C4.5 methodology.

Suppose data samples are given with n attributes (A1, A2,…,An). Attributes can be
categorical or continuous. For a continuous attribute, we assume that its values are
discretized into intervals in the preprocessing phase. A training data set T is a set
of samples such that for each sample there exists a class label associated with it.
Let C = {c1, c2,…,cm} be a finite set of class labels.

In general, a pattern P = {a1, a2,…,ak} is a set of attribute values for different
attributes (1 ≤ k ≤ n). A sample is said to match the pattern P if it has all the attribute
values given in the pattern. For rule R: P c, the number of data samples matching
pattern P and having class label c is called the support of rule R, denoted sup(R).
The ratio of the number of samples matching pattern P and having class label c versus
the total number of samples matching pattern P is called the confidence of R, denoted
as conf(R). The associative-classification method (CMAR) consists of two phases:

1. Rule generation or training and

2. Classification or testing.

346 ASSOCIATION RULES



In the first rule generation phase, CMAR computes the complete set of rules in the
form R: P c, such that sup(R) and conf(R) pass the given thresholds. For a given
support threshold and confidence threshold, the associative-classification method
finds the complete set of class-association rules (CAR) passing the thresholds. In a
testing phase, when a new (unclassified) sample comes, the classifier, represented
by a set of association rules, selects the rule that matches the sample and has the high-
est confidence and uses it to predict the classification of the new sample.

We will illustrate the basic steps of the algorithm through one simple example.
Suppose that for a given training data set T, as shown in Table 10.3, the support thresh-
old is 2 and the confidence threshold is 70%.

First, CMAR scans the training data set and finds the set of attribute values occur-
ring beyond the threshold support (at least twice in our database). One simple
approach is to sort each attribute and to find all frequent values. For our database
T, this is a set F = {a1, b2, c1, d3} and it is called a frequent item set. All other attribute
values fail the support threshold. Then, CMAR sorts attribute values in F, in support-
descending order, that is, F-list = (a1, b2, c1, d3).

Now, CMAR scans the training data set again to construct an FP-tree. The FP-tree
is a prefix tree with respect to the F-list. For each sample in a training data set, attribute
values appearing in the F-list are extracted and sorted according to the order in F-list.
For example, for the first sample in database T, (a1, c1) are extracted and inserted in the
tree as the leftmost branch in the tree. The class label A of the sample and the corre-
sponding counter are attached to the last node in the path.

Samples in the training data set share prefixes. For example, the second sample
carries attribute values (a1, b2, c1) in the F-list and shares a common prefix a1 with the
first sample. An additional branch from the node a1 will be inserted in the tree with
new nodes b2 and c1. A new class label B with the count equal to 1 is also inserted at
the end of the new path. The final FP-tree for the database T is given in Figure 10.7a.

After analyzing all the samples and constructing an FP-tree, the set of class-
association rules can be generated dividing all rules into subsets without overlap.
In our example it will be four subsets: (1) the rules having d3 value, (2) the rules hav-
ing c1 but no d3, (3) the rules having b2 but neither d3 nor c1, and (4) the rules having
only a1. CMAR find these subsets one by one.

To find the subset of rules having d3, CMAR traverses nodes having the attribute
value d3 and looks “upward” the FP-tree to collect d3-projected samples. In our exam-
ple, there are three samples represented in the FP-tree, and they are (a1, b2, c1, d3):

TABLE 10.3 . Training Database T for the CMAR Algorithm

ID A B C D Class

01 a1 b1 c1 d1 A
02 a1 b2 c1 d2 B
03 a2 b3 c2 d3 A
04 a1 b2 c3 d3 C
05 a1 b2 c1 d3 C
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C, (a1, b2, d3):C, and (d3):A. The problem of finding all frequent patterns in the train-
ing set can be reduced to mining frequent patterns in the d3-projected database. In our
example, in the d3-projected database, since the pattern (a1, b2, d3) occurs twice, its
support is equal to the required threshold value 2. Also, the rule based on this frequent
pattern, (a1, b2, d3) C, has a confidence 100% (above the threshold value), and that is
the only rule generated in the given projection of the database.

After a search for rules having d3 value, all the nodes of d3 and their correspond-
ing class labels are merged into their parent nodes of the FP-tree. The FP-tree is shrunk
as shown in Figure 10.7b. The remaining set of rules can be mined similarly repeating
the previous procedures for a c1-projected database, then for the b2-projected data-
base, and finally for the a1-projected database. In this analysis, (a1, c1) is a frequent
pattern with support 3, but all rules are with confidence less than threshold value. The
same conclusions can be drawn for pattern (a1, b2) and for (a1). Therefore, the only
association rule generated through the training process with the database T is (a1, b2,
d3) C with support equal to 2 and 100% confidence.

When a set of rules is selected for classification, CMAR is ready to classify new
samples. For the new sample, CMAR collects the subset of rules matching the sample
from the total set of rules. Trivially, if all the rules have the same class, CMAR simply
assigns that label to the new sample. If the rules are not consistent in the class label,
CMAR divides the rules into groups according to the class label and yields the label of
the “strongest” group. To compare the strength of groups, it is necessary to measure
the “combined effect” of each group. Intuitively, if the rules in a group are highly pos-
itively correlated and have good support, the group should have a strong effect.
CMAR uses the strongest rule in the group as its representative, i.e., the rule with

ROOT

(a) (b)

ROOT

a1 d3 a1

A = 1

c1
b2 c1 b2

A = 1 A = 1

c1 d3 c1

B= 1 C = 1 B = 1, C = 1

d3

C = 1

C = 1

Figure 10.7. FP-tree for the database in Table 10.3. (a) Nonmerged FP-tree. (b) FP-tree after

merging d3 nodes
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highest χ2 test value (adopted for this algorithm for a simplified computation). Pre-
liminary experiments have shown that CMAR outperforms the C4.5 algorithm in
terms of average accuracy, efficiency, and scalability.

10.7 MULTIDIMENSIONAL ASSOCIATION RULE MINING

A multidimensional transactional database DB has the schema

ID,A1,A2,…,An, items

where ID is a unique identification of each transaction, Ai are structured attributes in
the database, and items are sets of items connected with the given transaction. The
information in each tuple t = (id, a1, a2,…,an, items-t) can be partitioned into two:
dimensional part (a1, a2,…,an) and itemset part (items-t). It is common sense to divide
the mining process into two steps: first mine patterns about dimensional information
and then find frequent itemsets from the projected subdatabase, or vice versa. Without
any preferences in the methodology, we will illustrate the first approach using the
multidimensional database DB in Table 10.4.

One can first find the frequent multidimensional value combinations and then
find the corresponding frequent itemsets of a database. Suppose that the threshold
value for our database DB in Table 10.4 is set to 2. Then, the combination of attribute
values that occurs two or more than two times is frequent, and it is called a multidi-
mensional pattern or MD-pattern. For mining MD-patterns, a modified bottom-up
computation (BUC) algorithm can be used; it is an efficient “iceberg cube” computing
algorithm. The basic steps of the BUC algorithm are as follows:

1. First, sort all tuples in the database in alphabetical order of values in the first
dimension (A1), because the values for A1 are categorical. The only MD-
pattern found for this dimension is (a, ∗, ∗) because only the value a occurs
two times; the other values b and c occur only once, and they are not part
of the MD-patterns. Value ∗ for the other two dimensions shows that they
are not relevant in this first step, and they could have any combination of
allowed values.

TABLE 10.4 . Multidimensional Transactional Database DB

ID A1 A2 A3 Items

01 a 1 m x, y, z
02 b 2 n z, w
03 a 2 m x, z, w
04 c 3 p x, w
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Select tuples in a database with found MD-pattern (or patterns). In our data-
base, these are the samples with ID values 01 and 03. Sort the reduced data-
base again with respect to the second dimension (A2), where the values are 1
and 2. Since no pattern occurs twice, there are noMD-patterns for exact A1 and
A2 values. Therefore, one can ignore the second dimension A2 (this dimension
does not reduce the database further). All selected tuples are used in the next
phase.

Selected tuples in the database are sorted in alphabetic order of values for
the third dimension (in our example A3 with categorical values). A subgroup
(a,∗, m) is contained in two tuples and it is an MD-pattern. Since there are no
more dimensions in our example, the search continues with the second step.

2. Repeat the processes in step 1; only start not with the first but with the second
dimension (first dimension is not analyzed at all in this iteration). In the fol-
lowing iterations, reduce the search process further for one additional dimen-
sion at the beginning. Continue with other dimensions.

In our example in the second iteration, starting with attribute A2, MD-pattern
(∗, 2, ∗) will be found. Including dimension A3, there are no additional MD-
patterns. The third and last iteration in our example starts with the A3 dimen-
sion, and the corresponding pattern is (∗, ∗, m).

In summary, the modified BUC algorithm defines a set of MD-patterns
with the corresponding projections of a database. The processing tree for our
example of database DB is shown in Figure 10.8. Similar trees will be gener-
ated for a larger number of dimensions.

When allMD-patterns are found, the next step in the analysis of multidimensional
transactional database is the mining of frequent itemsets in theMD-projected database
for each MD-pattern. An alternative approach is based on finding frequent itemsets
first and then the corresponding MD-patterns.

ROOT

(A1, *, *)

(A1, A2, *) (A1, * , A3) (*, A2, A3)

(*, A2, *) (*, *, A3)

(A1, A2, A3)

Figure 10.8. A processing tree using the BUC algorithm for the database in Table 10.4.
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10.8 REVIEW QUESTIONS AND PROBLEMS

1. What is the essential difference between association rules and decision rules
(described in Chapter 6)?

2. What are the typical industries in which market-basket analysis plays an important
role in the strategic decision-making processes?

3. What are the common values for support and confidence parameters in the Apriori
algorithm? Explain using the retail industry as an example.

4. Why is the process of discovering association rules relatively simple compared to
generating large itemsets in transactional databases?

5. Given a simple transactional database X:

X: TID Items

T01 A, B, C, D
T02 A, C, D, F
T03 C, D, E, G, A
T04 A, D, F, B
T05 B, C, G
T06 D, F, G
T07 A, B, G
T08 C, D, F, G

Using the threshold values support = 25% and confidence = 60%, find:

(a) All large itemsets in database X.
(b) Strong association rules for database X.
(c) Analyze misleading associations for the rule set obtained in (b).

6. Given a transactional database Y:

Y: TID Items

T01 A1, B1, C2
T02 A2, C1, D1
T03 B2, C2, E2
T04 B1, C1, E1
T05 A3, C3, E2
T06 C1, D2, E2

Using the threshold values for support s = 30% and confidence c = 60%:

(a) Find all large itemsets in database Y.
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(b) If itemsets are organized in a hierarchy so that A = {A1, A2, A3}, B = {B1, B2},
C = {C1,C2,C3},D = {D1,D2}, and E = {E1, E2}, find large itemsets that are
defined on conceptual level including a hierarchy of items.

(c) Find strong association rules for large itemsets in (b).

7. Implement the Apriori algorithm, and discover large itemsets in transactional
database.

8. Search the Web to find the basic characteristics of publicly available or commer-
cial software tools for association rule discovery. Document the results of your
search.

9. Given a simple transactional database, find FP-tree for this database if:

(a) Support threshold is 5.
(b) Support threshold is 3.

TID Items

1 a b c d
2 a c d f
3 c d e g a
4 a d f b
5 b c g
6 d f g
7 a b g
8 c d f g

10. Given a simple transaction database:

TID Items

1 X Z V
2 X Y U
3 Y Z V
4 Z V W

Using two iterations of the Apriori algorithm, find large 2-itemsets if required
support is s ≥ 50%. Show all steps of the algorithm.

11. Given a frequent itemset A, B, C, D, and E, how many possible association
rules exist?

12. What are the frequent itemsets with a minimum support of 3 for the given set of
transactions?
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TID Items

101 A,B,C,D,E
102 A,C,D
103 D,E
104 B,C,E
105 A,B,D,E
106 A,B
107 B,D,E
108 A,B,D
109 A,D
110 D,E

13. The conviction is a measure for an analysis of a quality of association rules.
The formula for conviction CV in terms of probabilities is given as

CV A B =
P A P B

P A,B

or, in terms of support and confidence of an association rule,

CV A B =
1−sup B

1−conf A B

What are basic characteristics of the convictionmeasure? Explain the meaning of
some characteristic values.

14. Consider the data set given in the table below.

Customer Id Transaction Id Items

418 234145 {X, Z}
345 543789 {U, V, W, X, Y, Z}
323 965157 {U, W, Y}
418 489651 {V, X, Z}
567 748965 {U, Y}
567 325687 {W, X, Y}
323 147895 {X, Y, Z}
635 617851 {U, Z}
345 824697 {V, Y}
635 102458 {V, W, X}

(a) Compute the support for item sets {Y}, {X, Z}, and {X, Y, Z} by treating each trans-
action ID as a market basket.
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(b) Use the results from part (a) to compute the confidence for rules XZ Y and Y XZ.
(c) Repeat part (a) by treating each customer ID as market basket. Each item should be

treated as a binary variable (1 if an item appears in at least one transaction bought
by the customer and 0 otherwise).

(d) Use the results from part (c) to compute the confidence for rules XZ Y and Y XZ.
(e) Find FP-tree for this database if support threshold is 5.

15. A collection of market-basket data has 100,000 frequent items and 1,000,000
infrequent items. Each pair of frequent items appears 100 times, each pair con-
sisting of one frequent and one infrequent item appears 10 times, and each pair
of infrequent items appears once. Answer each of the following questions. Your
answers only have to be correct to within 1%, and for convenience, you may
optionally use scientific notation, e.g., 3.14 × 108 instead of 314,000,000.

(a) What is the total number of pair occurrences? That is, what is the sum of the counts of
all pairs?

(b) We did not state the support threshold, but the given information lets us put bounds on
the support threshold s. What are the tightest upper and lower bounds on s?

16. Assume that we have a data set containing information about 200 individuals.
One hundred of these individuals have purchased life insurance. A supervised
data-mining session has discovered the following rule:

IF age < 30 & credit card insurance = yes

THEN life insurance = yes
(Rule Accuracy = 70%, Rule Coverage = 63%)

How many individuals in the class life insurance = no have credit card insurance
and are less than 30 years old?

17. Assume that the numbers 1 through 7 are items.

(a) Which of the following five association rules has a confidence that is certain
to be at least as great as the confidence of the rule 12=>34567 and no greater
than the confidence of the rule 1234=>5?

Association rules 134 = > 257,124 = > 357,134 = > 567,123 = > 457,124 = > 356

(b) Explain the general characteristics of the rules that are satisfying required constraints.

18. Consider the transaction database in the table below:

TID Items

1 a, b, c, d
2 b, c, e, f
3 a, d, e, f
4 a, e, f
5 b, d, f
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(a) Determine the absolute support of itemsets {a, e, f} and {d, f}. Convert the absolute
support to the relative support.

(b) Show the prefix-based enumeration tree of frequent itemsets, for the data set at an
absolute minimum support level of 2. Assume a lexicographic ordering of a, b, c,
d, e, f.
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the combinatorial explosion of itemsets exacerbates the mining task. The high
complexity of the FI mining problem hinders the application of the stream mining
techniques. We recognize that a critical review of existing techniques is needed in
order to design and develop efficient mining algorithms and data structures that are
able to match the processing rate of the mining with the high arrival rate of data
streams. Within a unifying set of notations and terminologies, we describe in this
paper the efforts and main techniques for mining data streams and present a com-
prehensive survey of a number of the state-of-the-art algorithms on mining fre-
quent itemsets over data streams.

5. Kumar P., Pattern Discovery Using Sequence Data Mining: Applications and
Studies, IGI Global, 2011.

Sequential data from Web server logs, online transaction logs, and performance
measurements is collected each day. This sequential data is a valuable source of
information, as it allows individuals to search for a particular value or event
and also facilitates analysis of the frequency of certain events or sets of related
events. Finding patterns in sequences is of utmost importance in many areas of
science, engineering, and business scenarios. The book provides a comprehensive
view of sequence-mining techniques and presents current research and case studies
in pattern discovery in sequential data by researchers and practitioners. This
research identifies industry applications introduced by various sequence-mining
approaches.
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11

WEB MINING AND TEXT
MINING

Chapter Objectives

• Explain the specifics of Web mining.

• Introduce a classification of basic Web mining subtasks.

• Illustrate the possibilities of Web mining using HITS, LOGSOM, and path-
traversal algorithms.

• Describe query-independent ranking of Web pages and main characteristics of
PageRank algorithm.

• Formalize a text-mining framework specifying the refining and distillation
phases.

• Outline latent semantic indexing methodology.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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11.1 WEB MINING

In a distributed information environment, documents or objects are usually linked
together to facilitate interactive access. Examples for such information-providing
environments include the World Wide Web (WWW) and online services such as
America Online, where users, when seeking information of interest, travel from
one object to another via facilities such as hyperlinks and URL addresses. The
Web is an ever growing body of hypertext and multimedia documents. As of
2008, Google had discovered 1 trillion Web pages. The Internet Archive, which
makes regular copies of many publicly availableWeb pages and media files, was three
petabytes in size as ofMarch 2009. Several billions of pages are added each day to that
number. As the information offered in the Web grows daily, obtaining that informa-
tion becomes more and more tedious. The main difficulty lies in the semistructured or
unstructured Web content that is not easy to regulate and where enforcing a structure
or standards is difficult. A set of Web pages lacks a unifying structure and shows far
more authoring styles and content variation than that seen in traditional print
document collections. This level of complexity makes an “off-the-shelf” database-
management and information-retrieval (IR) solution very complex and almost impos-
sible to use. New methods and tools are necessary. Web mining may be defined as the
use of data-mining techniques to automatically discover and extract information from
Web documents and services. It refers to the overall process of discovery, not just to
the application of standard data-mining tools. Some authors suggest decomposing
Web mining task into four subtasks:

1. Resource finding—This is the process of retrieving data, which is either online
or offline, from the multimedia sources on the Web, such as news articles, for-
ums, blogs, and the text content of HTML documents obtained by removing
the HTML tags.

2. Information selection and preprocessing—This is the process by which dif-
ferent kinds of original data retrieved in the previous subtask is transformed.
These transformations could be either a kind of preprocessing such as remov-
ing stop words, stemming, etc. or a preprocessing aimed at obtaining the
desired representation, such as finding phrases in the training corpus, repre-
senting the text in the first-order logic form, etc.

3. Generalization—Generalization is the process of automatically discovering
general patterns within individual Web sites as well as across multiple sites.
Different general-purpose machine-learning techniques, data-mining techni-
ques, and specific Web-oriented methods are used.

4. Analysis—This is a task in which validation and/or interpretation of the mined
patterns is performed.

There are three factors affecting the way a user perceives and evaluates Web
sites through the data-mining process: (1) Web-page content, (2) Web-page
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design, and (3) overall site design including structure. The first factor concerns
the goods, services, or data offered by the site. The other factors concern the
way in which the site makes content accessible and understandable to its users.
We distinguish between the design of individual pages and the overall site
design, because a site is not simply a collection of pages; it is a network of
related pages. The users will not engage in exploring it unless they find its struc-
ture simple and intuitive. Clearly, understanding user-access patterns in such an
environment will not only help improve the system design (e.g., providing effi-
cient access between highly correlated objects, better authoring design for
WWW pages, etc.) but also be able to lead to better marketing decisions. Com-
mercial results will be improved by putting advertisements in proper places, bet-
ter customer/user classification, and understanding user requirements better
through behavioral analysis.

No longer are companies interested in Web sites that simply direct traffic and
process orders. Now they want to maximize their profits. They want to understand
customer preferences and customize sales pitches to individual users. By evalu-
ating a user’s purchasing and browsing patterns, e-vendors want to serve up
(in real-time) customized menus of attractive offers e-buyers cannot resist. Gath-
ering and aggregating customer information into e-business intelligence is an
important task for any company with Web-based activities. E-businesses expect
big profits from improved decision-making, and therefore e-vendors line up for
data-mining solutions.

Borrowing from marketing theory, we measure the efficiency of a Web page by
its contribution to the success of the site. For an online shop, it is the ratio of visitors
that purchased a product after visiting this page to the total number of visitors that
accessed the page. For a promotional site, the efficiency of the page can be measured
as the ratio of visitors that clicked on an advertisement after visiting the page. The
pages with low efficiency should be redesigned to better serve the purposes of the
site. Navigation-pattern discovery should help in restructuring a site by inserting
links and redesigning pages and ultimately accommodating user needs and
expectations.

To deal with problems of Web-page quality, Web-site structure, and their use,
two families of Web tools emerge. The first includes tools that accompany the users
in their navigation, learn from their behavior, make suggestions as they browse, and,
occasionally, customize the user profile. These tools are usually connected to or built
into parts of different search engines. The second family of tools analyzes the activ-
ities of users offline. Their goal is to provide insight in the semantics of a Web site’s
structure by discovering how this structure is actually utilized. In other words, knowl-
edge of the navigational behavior of users is used to predict future trends. New
data-mining techniques are behind these tools, where Web log files are analyzed
and information uncovered. In the next four sections, we will illustrate Web mining
with four techniques that are representative of a large spectrum of Web mining meth-
odologies developed recently.
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11.2 WEB CONTENT, STRUCTURE, AND USAGE MINING

One possible categorization of Web mining is based on which part of the Web one
mines. There are three main areas ofWeb mining: Web content mining,Web structure
mining, and Web usage mining. Each area is classified by the type of data used in
the mining process. Web content mining uses Web page content as the data source
for the mining process. This could include text, images, video, or any other type of
content on Web pages. Web structure mining focuses on the link structure of Web
pages. Web usage mining does not use data from the Web itself but takes as input
data recorded from the interaction of users using the Internet.

The most common use of Web content mining is in the process of search. There
are many different solutions that take as input Web-page text or images with the intent
of helping users find information that is of interest to them. For example, crawlers are
currently used by search engines to extract Web content into the indices that allow
immediate feedback from searches. The same crawlers can be altered in such a
way that rather than seeking to download all reachable content on the Internet, they
can be focused on a particular topic or area of interest.

To create a focused crawler, a classifier is usually trained on a number of docu-
ments selected by the user to inform the crawler as to the type of content to search for.
The crawler will then identify pages of interest as it finds them and follow any links on
that page. If those links lead to pages that are classified as not being of interest to the
user, then the links on that page will not be used further by the crawler.

Web content mining can also be seen directly in the search process. All major
search engines currently use a list like structure to display search results. The list
is ordered by a ranking algorithm behind the scenes. An alternative view of search
results that has been attempted is to provide the users with clusters of Web pages
as results rather than individual Web pages. Often a hierarchical clustering is per-
formed, which will give multiple topic levels.

As an example consider the Web site Clusty.com that provides a clustered view
of search results. If one keyword were to enter [jaguar] as a search onto this Web
site, one sees both a listing of topics and a list of search results side by side, as
shown in Figure 11.1. This specific query is ambiguous, and the topics returned
show that ambiguity. Some of the topics returned include cars, Onca and Panthery
(animal kingdom), and Jacksonville (American football team). Each of these topics
can be expanded to show all of the documents returned for this query in a
given topic.

Web structure mining considers the relationships betweenWeb pages. Most Web
pages include one or more hyperlinks. These hyperlinks are assumed in structure min-
ing to provide an endorsement by the linking page of the page linked. This assumption
underlies PageRank and HITS that will be explained later in this section.

Web structure mining is mainly used in the IR process. PageRank algorithm may
have directly contributed to the early success of Google. Certainly the analysis of the
structure of the Internet and the interlinking of pages currently contributes to the rank-
ing of documents in most major search engines.
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Web structure mining is also used to aid in Web content mining processes. Often
classification tasks will consider features from both the content of the Web page and
may consider the structure of the Web pages. One of the more common features in
Web mining tasks taken from structure mining is the use of anchor text. Anchor text
refers to the text displayed to users on an HTML hyperlink. Oftentimes the anchor text
provides summary keywords not found on the original Web page. The anchor text is
often as brief as search engine queries. Additionally, if links are endorsements of Web
pages, then the anchor text offers keyword specific endorsements.

Web usage mining refers to the mining of information about the interaction of
users with Web sites. This information may come from server logs, logs recorded
by the client’s browser, registration form information, etc. Many usage questions exist
such as the following: How the link structure of the Web site differs from how users
may prefer to traverse the page? Where are the inefficiencies in the e-commerce proc-
ess of a Web site? What segments exist in our customer base?

There are some key terms in Web usage mining that require defining. A “visitor”
to aWeb site may refer to a person or program that retrieves aWeb page from a server.
A “session” refers to all page views that took place during a single visit to a Web site.
Sessions are often defined by comparing page views and determining the maximum
allowable time between page views before a new session is defined. Thirty minutes is
a standard setting.

Web usage mining data often requires a number of preprocessing steps before
meaningful data mining can be performed. For example, server logs often include a
number of computer visitors that could be search engine crawlers or any other

Figure 11.1. Example query from Clusty.com.
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computer program that may visit Web sites. Sometimes these “robots” identify them-
selves to the server passing a parameter called “user agent” to the server that
uniquely identifies them as robots. Some Web-page requests do not make it to
the Web server for recording, but instead a request may be filled by a cache used
to reduce latency.

Servers record information on a granularity level that is often not useful for min-
ing. For a single Web-page view, a server may record the browsers request for the
HTML page, a number of requests for images included on that page, the Cascading
Style Sheets (CSS) of a page, and perhaps some JavaScript libraries used by that Web
page. Often there will need to be a process to combine all of these requests into a single
record. Some logging solutions sidestep this issue by using JavaScript embedded into
the Web page to make a single request per page view to a logging server. However,
this approach has the distinct disadvantage of not recording data for users that have
disabled JavaScript in their browser.

Web usage mining takes advantage of many of the data-mining approaches
available. Classification may be used to identify characteristics unique to
users that make large purchases. Clustering may be used to segment the Web user
population. For example, one may identify three types of behavior occurring on a
university class Web site. These three behavior patterns could be described as
users cramming for a test, users working on projects, and users consistently
downloading lecture notes from home for study. Association mining may identify
two or more pages often viewed together during the same session, but those
are not directly linked on a Web site. Sequence analysis may offer opportunities
to predict user-navigation patterns and therefore allow for within site
targeted advertisements. More on Web usage mining will be shown through
the LOGSOM algorithm and through the section “Mining Path-Traversal
Patterns.”

11.3 HITS AND LOGSOM ALGORITHMS

To date, index-based search engines for the Web have been the primary tool with
which users search for information. Experienced Web surfers can make effective
use of such engines for tasks that can be solved by searching with tightly constrained
keywords and phrases. These search engines are, however, unsuited for a wide range
of less precise tasks. How does one select a subset of documents with the most value
from the millions that a search engine has prepared for us? To distill a large Web-
search topic to a size that makes sense to a human user, we need a means of identifying
the topic’s most authoritative Web pages. The notion of authority adds a crucial
dimension to the concept of relevance: we wish to locate not only a set of relevant
pages but also those that are of the highest quality.

It is important that the Web consists not only of pages but also hyperlinks that
connect one page to another. This hyperlink structure contains an enormous amount
of information that can help to automatically infer notions of authority. Specifically,
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the creation of a hyperlink by the author of a Web page represents an implicit
endorsement of the page being pointed to. By mining the collective judgment con-
tained in the set of such endorsements, we can gain a richer understanding of the
relevance and quality of the Web’s contents. It is necessary for this process to
uncover two important types of pages: authorities, which provide the best source
of information on a given topic, and hubs, which provide a collection of links to
authorities.

Hub pages appear in a variety of forms, ranging from professionally assembled
resource lists on commercial sites to lists of recommended links on individual home
pages. These pages need not themselves be prominent, and working with hyperlink
information in hubs can cause much difficulty. Although many links represent some
kind of endorsement, some of the links are created for reasons that have nothing to do
with conferring authority. Typical examples are navigation and paid advertisement
hyperlinks. A hub’s distinguishing feature is that they are potent conferrers of author-
ity on a focused topic. We can define a good hub if it is a page that points to many
good authorities. At the same time, a good authority page is a page pointed to by many
good hubs. This mutually reinforcing relationship between hubs and authorities
serves as the central idea applied in the hyperlink-induced topic search (HITS) algo-
rithm that searches for good hubs and authorities. The two main steps of the HITS
algorithm are:

1. Sampling component, which constructs a focused collection of Web pages
likely to be rich in relevant information, and

2. Weight-propagation component, which determines the estimates of hubs and
authorities by an iterative procedure and obtains the subset of the most rele-
vant and authoritative Web pages.

In the sampling phase, we view the Web as a directed graph of pages. The HITS
algorithm starts by constructing the subgraph in which we will search for hubs and
authorities. Our goal is a subgraph rich in relevant, authoritative pages. To construct
such a subgraph, we first use query terms to collect a root set of pages from an index-
based search engine. Since many of these pages are relevant to the search topic, we
expect that at least some of them are authorities or that they have links to most of the
prominent authorities. We therefore expand the root set into a base set by including all
the pages that the root set pages link to up to a designated cutoff size. This base set V
typically contains from 1000 to 5000 pages with corresponding links, and it is a final
result of the first phase of HITS.

In the weight-propagation phase, we extract good hubs and authorities from the
base set V by giving a concrete numeric interpretation to all of them. We associate a
nonnegative authority weight ap and a nonnegative hub weight hp with each page
p V. We are interested only in the relative values of these weights; therefore normal-
ization is applied so that their total sum remains bounded. Since we do not impose any
prior estimates, we set all a and h values to a uniform constant initially. The final
weights are unaffected by this initialization.
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We now update the authority and hub weights as follows. If a page is pointed to
by many good hubs, we would like to increase its authority weight. Thus, we update
the value of ap for the page p to be the sum of hq over all pages q that link to p:

ap =Σhq, q such thatq p

where the notation q p indicates that page q links to page p. In a strictly dual fashion,
if a page points to many good authorities, we increase its hub weight:

hp =Σaq, q such thatp q

There is a more compact way to write these updates. Let us number the pages
{1,2,…,n} and define their adjacency matrix A to be n × n matrix whose (i, j)th ele-
ment is equal to 1 if page i links to page j and 0 otherwise. All pages at the beginning of
the computation are both hubs and authorities, and, therefore, we can represent them
as vectors:

a= a1,a2,…,an and

h= h1,h2,…,hn

Our update rules for authorities and hubs can be written as

a =ATh

h =Aa

or, substituting one into another relation,

a=ATh=ATAa = ATA a

h =Aa =AATh = AAT h

These are relations for iterative computation of vectors a and h. Linear algebra
tells us that this sequence of iterations, when normalized, converges to the principal
eigenvector of ATA. This says that the hub and authority weights we compute are truly
an intrinsic feature of the linked pages collected, not an artifact of our choice of initial
weights. Intuitively, the pages with large weights represent a very dense pattern of
linkage, from pages of large hub weights to pages of large authority weights. Finally,
HITS produces a short list consisting of the pages with the largest hub weights and the
pages with the largest authority weights for the given search topic. Several extensions
and improvements of the HITS algorithm are available in the literature. Here we will
illustrate the basic steps of the algorithm using a simple example.

Suppose that a search engine has selected six relevant documents based on our
query, and we want to select the most important authority and hub in the available set.

364 WEB MINING AND TEXT MINING



The selected documents are linked into a directed subgraph, and the structure is given
in Figure 11.2a, while corresponding adjacency matrix A and initial weight vectors a
and h are given in Figure 11.2b.

The first iteration of the HITS algorithm will give the changes in the a and h
vectors:

a =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

1 1 0 0 0 0

1 1 1 0 0 0

1 0 0 0 0 0

0 0 0 1 1 1

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 1

0 1

0 1

0 1

0 1

0 1

= 0 0 0 1 0 5 0 6 0 3

h =

0 0 0 1 1 1

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

1 1 0 0 0 0

1 1 1 0 0 0

1 0 0 0 0 0

0 1

0 1

0 1

0 1

0 1

0 1
= 0 6 0 5 0 3 0 0 0 1

Even this single iteration of the HITS algorithm shows that, in the given set of
documents, document 5 has the most authority and document 1 is the best hub.

111000

0 0 0 1 1 0 

A  = 0 0 0 0 1 0

0 0 0 0 0 0 

0 0 0 0 0 0

0 0 1 0 0 0

a = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1}

h = {0.1, 0.1, 0.1, 0.1, 0.1, 0.1}

1 2

(a) (b)

3

45

6

Figure 11.2. Initialization of the HITS algorithm. (a) Subgraph of the linked pages. (b)

Adjacency matrix A and weight vectors for the given graph.
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Additional iterations will correct the weight factors for both vectors, but the obtained
ranking of authorities and hubs will stay unchanged for this example.

The continuous growth in the size and use of the Internet creates difficulties in the
search for information. Resource discovery is frustrating and inefficient when simple
keyword searches can convey hundreds of thousands of documents as results. Many
of them are irrelevant pages, some of them may have been moved, and some aban-
doned. While the first Web mining algorithm HITS is primarily based on static infor-
mation describing the Web-site structure, the second one LOGSOM uses dynamic
information about a user’s behavior. LOGSOM is a sophisticated method, which
organizes the layout of the information in a user-interpretable graphic form. The
LOGSOM system uses self-organizing maps (SOM) to organize Web pages into a
two-dimensional (2D) table, according to users’ navigation patterns. The system
organizes Web pages according to the interest of Web users by keeping track of their
navigation paths.

The SOM technique is used as the most appropriate technique for the problem of
Web-page organization because of its strength not only in grouping data points into
clusters but also in graphically representing the relationship among clusters. The sys-
tem starts with a Web log file indicating the date, time, and address of the requested
Web pages as well as the IP address of the user’s machine. The data are grouped into
meaningful transactions or sessions, where a transaction is defined by a set of user-
requested Web pages. We assume that there is a finite set of unique URLs

U = url1,url2,…,urln

and a finite set of m user transactions

T = t1, t2,…, tm

Transactions are represented as a vector with binary values ui:

t = u1,u2,…,un

where

ui =
1 if urli t

0 otherwise

Preprocessed log files can be represented as a binary matrix. One example is
given in Table 11.1.

Since the dimensions of a table (n ×m) for real-world applications would be very
large, especially as input data to self-organizing maps, a reduction is necessary. By
using the k-means clustering algorithm, it is possible to cluster transactions into pre-
specified number k (k m) of transaction groups. An example of a transformed table
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with new reduced data set is represented in Table 11.2, where the elements in the rows
represent the total number of times a group accessed a particular URL (the form of the
table and values are only one illustration, and they are not directly connected with the
values in Table 11.1).

The new reduced table is the input for SOM processing. Details about application
of SOM as a clustering technique and the settings of their parameters are given in the
previous chapter. We will explain only the final results and their interpretation in
terms of Web-page analysis. Each URL will be mapped onto an SOM based on its
similarity with other URLs in terms of user usage or, more precisely, according to
users’ navigation patterns (transaction group “weights” in Table 11.2). Supposing that
the SOM is 2D map with p × p nodes, where p × p ≥ n, then a typical result of SOM
processing is given in Table 11.3. The dimensions and values in the table are not the
results of any computation with values in Tables 11.1 and 11.2, but a typical illustra-
tion of the SOM’s final presentation.

The SOM organizes Web pages into similar classes based on users’ navigation
patterns. The blank nodes in the table show that there are no corresponding URLs,
while the numbered nodes indicate the number of URLs contained within each node
(or within each class). The distance on the map indicates the similarity of the Web
pages measured by the user-navigation patterns. For example, the number 54 in
the last row shows that 54Web pages are grouped in the same class because they have
been accessed by similar types of people as indicated by their transaction patterns.
Similarity here is measured not by similarity of content but by similarity of usage.
Therefore, the organization of the web documents in this graphical representation
is based solely on the users’ navigation behavior.

TABLE 11.1 . Transactions Described by a Set of URLs

url1 url2 … urln

t1 0 1 1
t2 1 1 0
…

tm 0 0 0

TABLE 11.2 . Representing URLs as Vectors of Transaction Group Activity

Transaction Groups

1 2 … k

url1 15 0 2
url2 2 1 10
…

urln 0 1 2
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What are the possible applications of the LOGSOM methodology? The ability to
identify which Web pages are being accessed by a company’s potential customers
gives the company information to make improved decisions. If one Web page within
a node successfully refers clients to the desired information or desired page, the other
pages in the same node are likely to be successful as well. Instead of subjectively
deciding where to place an Internet advertisement, the company can now decide
objectively, supported directly by the user-navigation patterns.

11.4 MINING PATH-TRAVERSAL PATTERNS

Before improving a company’s Web site, we need a way of evaluating its current
usage. Ideally, we would like to evaluate a site based on the data automatically
recorded on it. Each site is electronically administered by a Web server, which logs
all activities that take place in it in a file called a Web server log. All traces left by the
Web users are stored in this log. Therefore, from these log files we can extract infor-
mation that indirectly reflects the site’s quality by applying data-mining techniques.
We can mine data to optimize the performance of a Web server, to discover which
products are being purchased together, or to identify whether the site is being used
as expected. The concrete specification of the problem guides us through different
data-mining techniques applied to the same Web server log.

While the LOGSOM methodology is concentrated on similarity of Web pages,
other techniques emphasize the similarity of a user’s paths through the Web. Captur-
ing user-access patterns in a Web environment is referred to as mining path-traversal
patterns. It represents an additional class of data-mining techniques, which is showing
great promise. Note that because users travel along information paths to search for the
desired information, some objects or documents are visited because of their location
rather than their content. This feature of the traversal pattern unavoidably increases the
difficulty of extracting meaningful information from a sequence of traversal data and
explains the reason why current Web usage analyses are mainly able to provide sta-
tistical information for traveling points, but not for traveling paths. However, as these
information-providing services become increasingly popular, there is a growing
demand for capturing user-traveling behavior to improve the quality of such services.

We first focus on the theory behind the navigational patterns of users in the Web.
It is necessary to formalize known facts about navigation: that not all pages across a

TABLE 11.3 . A Typical SOM Generated by the Description of URLs

1 2 3 … p

1 2 1 15
2 3 1 10 …

…

p 54 … 11
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path are of equal importance and that the users tend to revisit pages previously
accessed. To achieve a data-mining task, we define a navigation pattern in the
Web as a generalized notion of a sequence, the materialization of which is the directed
acyclic graph. A sequence is an ordered list of items, in our case Web pages, ordered
by time of access. The log file L is a multiset of recorded sequences. It is not a simple
set, because a sequence may appear more than once.

When we want to observe sequence s as a concatenation of the consecutive sub-
sequences x and y, we use the notation

s= xy

The function length(s) returns the number of elements in the sequence s. The
function prefix(s, i) returns the subsequence comprising the first i elements of s. If
s = prefix(s,i), we say that s is a prefix of s and is denoted as s ≤ s. Analysis of
log files shows that Web users tend to move backward and revisit pages with a high
frequency. Therefore, a log file may contain duplicates. Such revisits may be part of a
guided tour or may indicate disorientation. In the first case, their existence is precious
as information and should be retained. To model cycles in a sequence, we label each
element of the sequence with its occurrence number within the sequence, thus distin-
guishing between the first, second, third, and other occurrences of the same page.

Moreover, some sequences may have common prefixes. If we merge all common
prefixes together, we transform parts of the log file into a tree structure, each node of
which is annotated with the number of sequences having the same prefix up to and
including this node. The tree contains the same information as the initial log file.
Hence, when we look for frequent sequences, we can scan the tree instead of the orig-
inal log multiset. On the tree, a prefix shared among k sequences appears and gets
tested only once.

Sequence mining can be explained as follows: Given a collection of sequences
ordered in time, where each sequence contains a set of Web pages, the goal is to dis-
cover sequences of maximal length that appear more frequently than a given percent-
age threshold over the whole collection. A frequent sequence is maximal if all
sequences containing it have a lower frequency. This definition of the sequence-
mining problem implies that the items constituting a frequent sequence need not nec-
essarily occur adjacent to each other. They just appear in the same order. This property
is desirable when we study the behavior of Web users because we want to record their
intents, not their errors and disorientations.

Many of these sequences even those with the highest frequencies could be of a
trivial nature. In general, only the designer of the site can say what is trivial and what
is not. The designer has to read all patterns discovered by the mining process and dis-
card unimportant ones. It would be much more efficient to automatically test data-
mining results against the expectations of the designer. However, we can hardly expect
a site designer towrite down all combinations ofWeb pages that are considered typical;
expectations are formed in the humanmind in muchmore abstract terms. Extraction of
informative and useful maximal sequences continues to be a challenge for researchers.
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Although there are several techniques proposed in the literature, we will explain
one of the proposed solutions for mining-traversal patterns that consists of two steps:

(a) In a first step, an algorithm is developed to convert the original sequence of
log data into a set of traversal subsequences. Each traversal subsequence
represents a maximum forward reference from the starting point of a user
access. It should be noted that this step of conversion would filter out the
effect of backward references, which are mainly made for ease of traveling.
The new reduced set of user-defined forward paths enables us to concentrate
on mining meaningful user-access sequences.

(b) The second step consists of a separate algorithm for determining the frequent-
traversal patterns, termed large reference sequences. A large reference
sequence is a sequence that appears a sufficient number of times in the
log database. In the final phase, the algorithm forms the maximal references
obtained from large reference sequences. Amaximal large sequence is a large
reference sequence that is not contained in any other maximal reference
sequence.

For example, suppose the traversal log of a given user contains the following path
(to keep it simple, Web pages are represented by letters):

Path = ABCDCBEGHGWAOUOV

The path is transformed into the tree structure shown in Figure 11.3. The set of
maximum forward referencesMRF found in the step (a) after elimination of backward
references is

MFR= ABCD,ABEGH,ABEGW,AOU,AOV

A

OB

C

G

E U V

D

H W

Figure 11.3. An example of traversal patterns.
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Whenmaximum forward references have been obtained for all users, the problem
of finding frequent-traversal patterns is mapped into one of finding frequently occur-
ring consecutive subsequences among all maximum forward references. In our exam-
ple, if the threshold value is 0.4 (or 40%), large reference sequences (LRS) with
lengths 2, 3, and 4 are

LRS= AB,BE,EG,AO,ABE,BEG,ABEG

Finally, with large reference sequences determined,maximal reference sequences
can be obtained through the process of selection. The resulting set for our example is

MRS= ABEG,AO

In general, these sequences, obtained from large log files, correspond to a fre-
quently accessed pattern in an information-providing service.

The problem of finding large reference sequences is very similar to that of finding
frequent itemsets (occurring in a sufficient number of transactions) in association rule
mining. However, they are different from each other in that a reference sequence in the
mining-traversal patterns has to be references in a given order, whereas a large itemset
in mining association rules is just a combination of items in a transaction. The corre-
sponding algorithms are different because they perform operations on different data
structures: lists in the first case and sets in the second. As the popularity of Internet
applications explodes, it is expected that one of the most important data-mining issues
for years to come will be the problem on how to effectively discover knowledge on
the Web.

11.5 PageRank ALGORITHM

PageRank was originally published by Sergey Brin and Larry Page, the co-creators of
Google. It likely contributed to the early success of Google. PageRank provides a
global ranking of nodes in a graph. For search engines it provides a query-independent
authority ranking of all Web pages. PageRank has similar goals of finding authorita-
tive Web pages to that of the HITS algorithm. The main assumption behind the
PageRank algorithm is that every link from page a to page b is a vote by page a
for page b. Not all votes are equal. Votes are weighted by the PageRank score of
the originating node.

PageRank is based on the random surfer model. If some surfer were to randomly
select a starting Web page and at each time step the surfer were to randomly select a
link on the current Web page, then PageRank could be seen as the probability that this
random surfer is on any given page. Some Web pages do not contain any hyperlinks.
In this model it is assumed that the random surfer selects a random Web page when
exiting pages with no hyperlinks. Additionally, there is some chance that the random
surfer will stop following links and restart the process.
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Computationally the PageRank (Pr) of page u can be computed as follows:

Pr u =
1−d
N

+ d
v In u

Pr v
Out v

where d is a dampening factor 0 ≤ d ≤ 1 usually set to 0.85 and N refers to the total
number of nodes in the graph. The function In(u) returns the set of nodes with edges
pointing into node u. |Out(v)| returns the number of nodes with edges pointing from v
to that node. For example, if theWeb-page connections are those given in Figure 11.4,
and the current node under consideration were node B, then the following values
would hold through all iterations: N = 3, In(B) = {A,C}, |Out(A)| = |{B,C}| = 2,
and |Out(C)| = |{B}| = 1. The values for Pr(A), Pr(B), and Pr(C) would vary depending
on the calculations from the previous iterations. The result is a recursive definition of
PageRank. To calculate the PageRank of a given node, one must calculate the PageR-
ank of all nodes with edges pointing into that given node.

Often PageRank is calculated using an iterative approach where all nodes are
given an initial value for Pr of 1/N. Then during a single iteration, we calculate what
the PageRank of each node would be according to the current values of all nodes link-
ing to that node. This process is repeated until the change between iterations is below
some predetermined threshold or a maximum number of iterations are achieved. Let
us consider an example graph with three nodes as follows:

Initially, the Pr values are as follows:

Pr A =
1
N
= 0 333

Pr B = 0 333

Pr C = 0 333

The first iteration corrects initial values as follows:

Pr A =
1−0 85

3
+ 0 85

Pr B
1

=
0 15
3

+ 0 85 0 333 = 0 333

Pr B =
1−0 85

3
+ 0 85

Pr A
2

+
Pr C
1

=
0 15
3

+ 0 85
0 333
2

+ 0 333 = 0 475

A

C

B

Figure 11.4. First example used to demonstrate PageRank.
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Pr C =
1−0 85

3
+ 0 85

Pr A
2

=
0 15
3

+ 0 85
0 333
2

= 0 192

The second iteration then shows the passing of these values through the graph:

Pr A =
1−0 85

3
+ 0 85

Pr B
1

=
0 15
3

+ 0 85 0 475 = 0 454

Pr B =
1−0 85

3
+ 0 85

Pr A
2

+
Pr C
1

=
0 15
3

+ 0 85
0 454
2

+ 0 192 = 0 406

Pr C =
1−0 85

3
+ 0 85

Pr A
2

=
0 15
3

+ 0 85
0 454
2

= 0 243

If we carry this same procedure out to 100 iterations, we achieve the following
results:

Pr A = 0 388

Pr B = 0 397

Pr C = 0 215

Additional iterations produce the same results. From this we can see a stable
ordering emerge. B has the largest PageRank value having two in-links, more than
any other. However, page A is not far behind, since page B has only a single link
to page A without dividing its PageRank value among a number of outbound links.

Next we consider the example used for the HITS algorithm, which is applied on
the graph in Figure 11.5a. The PageRank of this graph with a dampening factor of 0.85
is given in Figure 11.5b after running 100 iterations. A reader may, for the practice,
check the results after the first iteration or implement PageRank algorithm and check
final results in Figure 11.5b.

Node PageRank

1 0.095

2 0.095

3 0.198

4 0.162

5 0.330

6 0.121

1 2

3

(a) (b)

45

6

Figure 11.5. An example graph and scoring for PageRank also used with HITS. (a) Graph of

linked pages. (b) Calculated PageRank for given graph.
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From the values given in Figure 11.5b, we can interpret that node 5 has the high-
est PageRank by far and also has the highest in-degree or edges pointing in to it. Sur-
prising perhaps is that node 3 has the next highest score, having a score higher than
node 4, which has more in-edges. The reason is that node 6 has only one out-edge
pointing to node 3, while the edges pointing to node 4 are each one of multiple
out edges. Lastly, as expected the lowest ranked edges are those with no in-edges,
nodes 1 and 2.

One of the main contributions of Google’s founders is implementation experi-
mental evaluation of PageRank algorithm. They included database of Web sites with
161 millions of links, and the algorithm converges in 45 iterations. Repeated experi-
ments with 322 millions of links converged in 52 iterations. These experiments were
evidence that PageRank converge in log(n) time where n is number of links, and it is
applicable for growing Web. Of course, initial version of the PageRank algorithm,
explained in a simplified form in this text, had numerous modifications to evolve into
current commercial version implemented in Google search engine.

11.6 RECOMMENDER SYSTEMS

The explosive growth of Internet has resulted in a phenomenon known as information
abundance, and it demands new techniques that can assist us to discover resources of
interest among the enormous options we are presented with. All of this paved a way
for the introduction of recommender systems (RS). RSs help users or groups of users
deal with information overload by proposing to them items suited to their interests.
The history of RSs started in the late 1990s, but main advances are obtained with
the Netflix competition for movie RSs that attracted over 41,000 participating teams
and turned RS into a hot topic among researchers.

RSs exploit various sources of information: about users and their demographics,
about products and their features, and about user interactions with the products. Data
infrastructure for RS may be either explicit with different scales of rating and satis-
faction or implicit: product purchased, book read, song heard, or Web-site content
clicked. Research activities in RSs has become very active recently and successfully
been used in many industry sectors to recommend items such as Netflix movies, Ama-
zon products, jobs to Facebook users, books, songs, news, friends, restaurants, food,
apparels, vehicles, banners, or content on a social site. The basic principle of recom-
mendations is that significant dependencies exist between user and item-centric activ-
ity, and discovery of these dependencies is available based on large amount of historic
data. The basic models for RSs work with two categories of data:

(a) The user-item interactions, such as user rating movies or user buying behav-
ior, and

(b) Attribute information about the users and items, including textual profiles or
relevant keywords.

374 WEB MINING AND TEXT MINING



RS algorithms basically perform information filtering and can be classified into
two main types:

(a) Collaborative filtering and

(b) Content-based filtering.

While collaborative filtering usually uses user-item interaction data, content-
based filtering is using additional attribute information about users and items to
develop the model. The term “collaborative filtering” refers to the use of ratings from
multiple users in a collaborative way to predict missing ratings. These dependencies
can be learned in a data-driven manner from the ratings user-item matrix, and the
resulting model is used to make predictions for target users. The larger the number
of rated items that are available, the easier it is to make robust predictions. The main
challenge in designing collaborative filtering methods is that the underlying ratings
matrices are highly sparse. Consider an example of a movie application in which users
specify ratings indicating their like or dislike of specific movies. Most users would
have viewed only a small fraction of the large universe of available movies; the matrix
will be with the large number of “empty ratings.”

In content-based RSs, the descriptive attributes of items are used to make recom-
mendations. The term “content” refers to these descriptions. The ratings and buying
behavior of users are combined with the content information available about items.
For example, consider a situation where John has rated highly the movie Terminator,
but we do not have access to the ratings of other users for this movie. Therefore, col-
laborative filtering methods are ruled out. However, the item description of Termina-
tor movie contains similar genre keywords as other science fiction movies, such as
Alien and Predator. In such cases, these movies can be recommended to John based
on similarity of movie attributes.

From the perspective of the user, recommendations can help improve overall user
satisfaction with the product presented at the Web site. At the merchant end, the rec-
ommendation process can provide insights into the needs of the user and help custom-
ize the user experience further. While a product recommendation directly increases the
profit of the merchant by facilitating product sales, an increase in the number of social
connections improves the experience of a user at a social network. This, in turn,
encourages the growth of the social network. Social networks are heavily dependent
on the growth of the network to increase their advertising revenues. Therefore, the
recommendation of potential friends or specific links enables better growth and con-
nectivity of the network.

11.7 TEXT MINING

Enormous amounts of knowledge reside today in text documents that are stored either
within organizations or are freely available. Text databases are rapidly growing
because of the increasing amounts of information available in electronic form, such
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as electronic publications, digital libraries, e-mail, and the World Wide Web. Data
stored in most text databases are semistructured, and special data-mining techniques,
called text mining, have been developed for discovering new information from large
collections of textual data.

In general, there are two key technologies that make online text mining possible.
One is Internet search capabilities and the other is the text-analysis methodology.
Internet search has been around for a few years. With the explosion of Web sites
in the past decade, numerous search engines are designed to help users find content
appeared practically overnight. Yahoo, AltaVista, and Excite are three of the earliest,
while Google and Bing are most popular in recent years. Search engines operate by
indexing the content in a particular Web site and allowing users to search these indi-
ces. With the new generation of Internet-search tools, users can gain relevant infor-
mation by processing a smaller amount of links, pages, and indices.

Text analysis, as a field, has been around longer than Internet search. It has been a
part of the efforts to make computers understand natural languages, and it is com-
monly thought of as a problem for artificial intelligence. Text analysis can be used
anywhere where there is a large amount of text that need to be analyzed. Although
automatic processing of documents using different techniques does not allow the
depth of analysis that a human can bring to the task, it can be used to extract key points
in the text, categorize documents, and generate summaries in a situation when a large
number of documents makes manual analysis impossible.

To understand the details of text documents, you can either search for keywords,
or you can try to categorize the semantic content of the document itself. When iden-
tifying keywords in text documents, you are looking at defining specific details or
elements within documents that can be used to show connections or relationships with
other documents. In the IR domain, documents have been traditionally represented in
the vector space model. Documents are tokenized using simple syntactic rules (such as
white-space delimiters in English), and tokens are transformed to canonical form (e.g.,
“reading” to “read,” “is,” “was,” and “are” to “be”). Each canonical token represents
an axis in a Euclidean space. Documents are vectors in this n-dimensional space. If a
token t called term occurs n times in document d, then the tth coordinate of d is simply
n. One may choose to normalize the length of the document to 1, using the L1, L2, or
L∞ norms:

d1 = t n d, t , d2 = t n d, t 2, d∞ = maxt n(d, t)

where n(d,t) is the number of occurrences of a term t in a document d. These representations do
not capture the fact that some terms, also called keywords (like “algorithm”), are more important
than others (like “the” and “is”) in determining document content. If t occurs in nt out of N
documents, nt/N gives sense of rarity and, hence, the importance of the term. The inverse
document frequency IDF = 1 + log(nt/N) is used to stretch the axes of the vector space
differentially. Thus the tth coordinate of document d may be represented with the value
(n(d,t)/||d1||) × IDF(t)) in the weighted vector space model. In spite of being extremely crude
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and not capturing any aspect of language or semantics, this model often performs well for its
intended purpose. Also, in spite of minor variations, all these models of text regard documents
as multisets of terms, without paying attention to ordering between terms. Therefore, they are
collectively called bag-of-words models. Very often, the outputs from these keyword
approaches can be expressed as relational data sets that may be then analyzed using one of
the standard data-mining techniques.

Hypertext documents, usually represented as basic components on theWeb, are a
special type of text-based documents that have hyperlinks in addition to text. They are
modeled with varying levels of details, depending on the application. In the simplest
model, hypertext can be regarded as directed graph (D, L) where D is the set of nodes
representing documents or Web pages and L is the set of links. Crude models may not
need to include the text models at the node level, when the emphasis is on documents’
links. More refined models will characterize some sort of joint distribution between
the term distribution of a node and those in a certain neighborhood of the document in
the graph.

Content-based analysis and partition of documents is a more complicated prob-
lem. Some progress has been made along these lines, and new text-mining techniques
have been defined, but no standards or common theoretical background has been
established in the domain. Generally, you can think of text categorization as compar-
ing a document to other documents or to some predefined set of terms or definitions.
The results of these comparisons can be presented visually within a semantic land-
scape in which similar documents are placed together in the semantic space and dis-
similar documents are placed further apart. For example, indirect evidence often lets
us build semantic connections between documents that may not even share the same
terms. For example, “car” and “auto” terms co-occurring in a set of documents may
lead us to believe that these terms are related. This may help us to relate documents
with these terms as similar. Depending on the particular algorithm used to generate the
landscape, the resulting topographic map can depict the strengths of similarities
among documents in terms of Euclidean distance. This idea is analogous to the type
of approach used to construct Kohonen feature maps. Given the semantic landscape,
you may then extrapolate concepts represented by documents.

The automatic analysis of text information can be used for several different gen-
eral purposes:

1. To provide an overview of the contents of a large document collection and
organize them in the most efficient way,

2. To identify hidden structures between documents or groups of documents,

3. To increase the efficiency and effectiveness of a search process to find similar
or related information, and

4. To detect duplicate information or documents in an archive.

Text mining is an emerging set of functionalities that are primarily built on text-
analysis technology. Text is the most common vehicle for the formal exchange of
information. The motivation for trying to automatically extract, organize, and use
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information from it is compelling, even if success is only partial. While traditional,
commercial text-retrieval systems are based on inverted text indices composed of sta-
tistics such as word occurrence per document, text mining must provide values
beyond the retrieval of text indices such as keywords. Text mining is about looking
for semantic patterns in text, and it may be defined as the process of analyzing text to
extract interesting, nontrivial information that is useful for particular purposes.

As the most natural form of storing information is text, text mining is believed to
have a commercial potential even higher than that of traditional data mining with
structured data. In fact, recent studies indicate that 80% of a company’s information
is contained in text documents. Text mining, however, is also a much more complex
task than traditional data mining as it involves dealing with unstructured text data that
are inherently ambiguous. Text mining is a multidisciplinary field involving IR, text
analysis, information extraction, natural language processing, clustering, categoriza-
tion, visualization, machine learning, and other methodologies already included in the
data-mining “menu”; even some additional specific techniques developed lately and
applied on semistructured data can be included in this field. Market research, business
intelligence gathering, e-mail management, claim analysis, E-procurement, and auto-
mated help desk are only a few of the possible applications where text mining can be
deployed successfully. The text-mining process, which is graphically represented in
Figure 11.6, consists of two phases:

• Text refining that transforms free-form text documents into a chosen interme-
diate form (IF) and

• Knowledge distillation that deduces patterns or knowledge from an intermedi-
ate form.

An (IF) can be semistructured such as the conceptual-graph representation or
structured such as the relational data representation. Intermediate forms with varying

Text
IF

Text

refining

Document-based

intermediate form

Concept-based

intermediate form

Knowledge

distillation

Clustering

categorization

visualization

Predictive

modeling

associative

discovery

Figure 11.6. A text-mining framework.
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degrees of complexity are suitable for different mining purposes. They can be classi-
fied as document based, wherein each entity represents a document, or concept based,
wherein each entity represents an object or concept of interests in a specific domain.
Mining a document-based IF deduces patterns and relationships across documents.
Document clustering, visualization, and categorization are examples of mining from
document-based IFs.

For a fine-grained, domain-specific, knowledge-discovery task, it is necessary to
perform a semantic analysis and derive a sufficiently rich representation to capture
the relationship between objects or concepts described in the document. Mining a
concept-based IF derives patterns and relationships across objects and concepts.
These semantic analysis methods are computationally expensive, and it is a challenge
to make them more efficient and scalable for very large text corpora. Text-mining
operations such as predictive modeling and association discovery fall in this category.
A document-based IF can be transformed into a concept-based IF by realigning or
extracting the relevant information according to the objects of interests in a specific
domain. It follows that a document-based IF is usually domain independent and a con-
cept-based is a domain-dependent representation.

Text-refining and knowledge-distillation functions as well as the intermediate
form adopted are the basis for classifying different text-mining tools and their corre-
sponding techniques. One group of techniques, and recently available commercial
products, focuses on document organization, visualization, and navigation. Another
group focuses on text-analysis functions, IR, categorization, and summarization.

An important and large subclass of these text-mining tools and techniques is
based on document visualization. The general approach here is to organize documents
based on their similarities and present the groups or clusters of the documents as 2D or
3D graphics. IBM’s Intelligent Miner and SAS Enterprise Miner are probably the
most comprehensive commercial text-mining products. They offer a set of text-
analysis tools that include tools for feature extraction, clustering, summarization,
and categorization; it also incorporates a text search engine. More examples of
text-mining tools are given in Appendix A.

Domain knowledge, not used and analyzed by any currently available text-mining
tool, could play an important role in the text-mining process. Specifically, domain
knowledge can be used as early as in the text-refining stage to improve parsing efficiency
and derive a more compact intermediate form. Domain knowledge could also play a part
in knowledge distillation to improve learning efficiency. All these ideas are still in their
infancy, and we expect that the next generation of text-mining techniques and tools will
improve the quality of information and knowledge discovery from text.

11.8 LATENT SEMANTIC ANALYSIS

Latent semantic analysis (LSA) is a method that was originally developed to improve
the accuracy and effectiveness of IR techniques by focusing on semantic meaning of
words across a series of usage contexts, as opposed to using simple string-matching
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operations. LSA is a way of partitioning free text using a statistical model of word
usage that is similar to eigenvector decomposition and factor analysis. Rather than
focusing on superficial features such as word frequency, this approach provides a
quantitative measure of semantic similarities among documents based on a word’s
context.

Two major shortcomings to the use of term counts are synonyms and poly-
semes. Synonyms refer to different words that have the same or similar meanings
but are entirely different words. In the case of the vector approach, no match
would be found between a query using the term “altruistic” and a document using
the word “benevolent” though the meanings are quite similar. On the other hand
polysemes are words that have multiple meanings. The term “bank” could mean a
financial system, to rely upon, or a type of basketball shot. All of these lead to
very different types of documents, which can be problematic for document
comparisons.

LSA attempts to solve these problems, not with extensive dictionaries and natural
language processing engines, but by using mathematical patterns within the data itself
to uncover these relationships. We do this by reducing the number of dimensions used
to represent a document using a mathematical matrix operation called singular value
decomposition.

Let us take a look at an example data set. This very simple data set consists of five
documents. Wewill show the dimension reduction steps of LSA on the first four docu-
ments (d1… 4), which will make up our training data. Then we will make distance
comparisons to a fifth document (d5) in our test set, using the nearest neighbor clas-
sification approach. Initial documents’ set is:

• d1: A bank will protect your money.

• d2: A guard will protect a bank.

• d3: Your bank shot is money.

• d4: A bank shot is lucky.

• d5: Bank guard.

From the text data we derive a vector representation of our documents using only
term counts. This vector representation could be thought of as a matrix with rows
representing terms and columns representing documents. This representation may
be seen in Figure 11.7.

The first step of LSA is to decompose the matrix representing our original data set
of four documents, matrix A, using SVD as follows: A = USVT. The calculation of
singular value decomposition (SVD) is beyond the scope of this text, but there are
several computing packages that will perform this operation for you (such as R or
MATLAB packages). The matrices resulting from this decomposition can be seen
in Figure 11.8. The U and VT matrices provided a vector of weights for terms and
documents, respectively. Considering VT, this matrix gives a new four-dimensional
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representation to each document where each document is described with correspond-
ing column. Each of the new dimensions is derived from the original 10 word count
dimensions. For example, document 1 is now represented as follows: d1 = − 0.56x1 +
0.095x2 − 0.602x3 + 0.562x4d1 = −0.56x1 + 0.095x2 – 0.602x3 + 0.562x4, where each
xn represents one of the newly derived dimensions. The S matrix is a diagonal matrix
of eigenvalues for each principal component direction.

With this initial step, we have already reduced the number of dimensions repre-
senting each document from 10 to 4. We now show how one would go about further
reducing the number of dimensions. When the data set contains many documents, the
previous step is not enough to reduce the number of dimensions meaningfully. To
perform further reduction, we first observe that matrix S provides us with a diagonal
matrix of eigenvalues in descending order as follows: λ1,…,λ4 = {3.869, 2.344, 1.758,
0.667}. We will be able to capture most of the variability of the data by retaining only
the first k eigenvalues rather than all n terms (in our matrix S, n = 4). If for example

k = 2, then we retain λ21 + λ
2
2

4
i= 1λ

2
i = 0 853 or 85% of the variability when we

move from the four new dimensions per document down to only two. The rank 2
approximations can be seen in Figure 11.9. This rank 2 approximation is achieved

Terms d1 d2 d3 d4 d5

a 1 2 0

bank 1 1 1 1 1

guard 0 1 0

is 0 0 1 1 0

lucky A = 0 0 0 1 d5 = 0

money 1 0 1

protect 1 1 0

1 0

0 1

0 0

0 0

shot 0 0 1 1 0

will 1 1 0 0 0

your 1 0 1 0 0

Figure 11.7. Initial term counts.
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Figure 11.8. Singular value decomposition of initial data.
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by selecting the first k columns fromU, the upper left k × kmatrix from S, and the top k
rows from VT as is shown in Figure 11.9.

The rank k approximation to VT gives us our dimensionally reduced data set
where each document is now described with only two dimensions. VT can be thought
of as a transformation of the original document matrix and can be used for any of a
number of text-mining tasks such as classification and clustering. Improved results
may be obtained using the newly derived dimensions, comparing against the data-
mining tasks using the original word counts.

In most text-mining cases, all training documents (in our case 4) would have been
included in matrix A and been transformed together. Document five (d5) was inten-
tionally left out of these calculations to demonstrate a technique called “folding in,”
which allows for a small number of documents to be transformed into the new reduced
space and compared with training documents’ database. Matrices from our previous
SVD calculations are used for this transformation. This is done using the following
modified formula: V T =A TUkS−1

k . This equation is a rearranging of terms from the
initial SVD equation replacing the original data set, matrix A, with the term counts
for document five (d5) as matrix A . The resulting multiplication can be seen in
Figure 11.10. The result is the document d5 represented in the reduced 2D space,
d5 = [−0.172, 0.025].

To visualize the transformed data, we have plotted our example documents, d1…5,
in Figure 11.11. We now perform the nearest neighbor classification algorithm. If the
task is to disambiguate the term “bank” and the possible classes are “financial insti-
tution” and “basketball shot,” then a review of the original text reveals that documents
d1, d2, and d5 are of class “financial institution” and documents d3 and d4 are of the
class “basketball shot.” To classify the test document d5, we compare d5 with other
document. The closest neighbor will determine the class of d5. Ideally, d5 should
be nearest to d1 and d2 and furthest from d3 and d4 as pointed earlier. Table 11.4 shows
these calculations using the Euclidean distance metric. The assessment for which doc-
ument is closest is made based on both the original 10 dimensions and the reduced set
of 2 dimensions. Table 11.5 shows the same comparison using cosine similarity to
compare documents. Cosine similarity is often used in text-mining tasks for document
comparisons.
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Figure 11.9. Rank 2 approximation of the singular value decomposition.
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Euclidean distance as shown in Table 11.4 when using 10 dimensions ranks d3
and d4 above d1 and d2. By the formulation of Euclidean distance when two docu-
ments both share a term or both do not share a term, the result is a distance of zero
for that dimension. After applying the LSA transformation, the Euclidean distance
ranks d1 above d3 and d4. However, document d2 only is ranked above d3 and not d4.

Cosine similarity calculates the cosine of the angle between two vectors repre-
senting points in n-dimensional space. The result is a similarity score between 0
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Figure 11.11. 2D plot of documents and query using LSA.
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and 1, where a 1 shows highest similarity and 0 shows no similarity. For document
vector comparisons, no additional strength of similarity is added by two vectors con-
taining a zero for a specific term. This is very beneficial characteristics for textual
applications. When we consider Table 11.5 we see that without the transformation,
in ten-dimensional space, d2 is ranked above d3 and d4 for containing both terms
had in d5. However, d1 is ranked below d3 and d4 for having more terms than these
other sentences. After the LSA transformation, d1 and d2 are ranked above d3 and d4,
providing the expected ranking. In this simple example the best results occurred when
we first transformed the data using LSA and then used cosine similarity to measure the
similarity between initial, training documents in a database and a new document for
comparison. Using the nearest neighbor classifier, d5 would be classified correctly as
“financial institution” document using cosine similarity for both the 10D and 2D case
or using Euclidean distance for the 2D case. Euclidean distance in the 10D case would
have classified d5 incorrectly. If we used k-nearest neighbor with k = 3, then Euclidean
distance in the 10D case would have also incorrectly classified d5. Clearly, the LSA
transformation affects the results of document comparisons, even in this very simple
example. Results are better because LSA enable better representation of documents’
semantics.

TABLE 11.4 . Use of Euclidean Distance to Find Nearest Neighbor to d5 in Both 2D and
10D (The Smallest Distance Ranks First)

Comparison 10D (Original) 2D (LSA)

Dist. Rank Dist. Rank

d1–d5 2.449 3–4 0.394 1
d2–d5 2.449 3–4 0.715 3
d3–d5 2.236 1–2 0.752 4
d4–d5 2.236 1–2 0.489 2

TABLE 11.5 . Use of Cosine Similarity to Find Most Similar Document to d5 in Both 2D
and 10D (The Largest Similarity Ranks First)

Comparison 10D (Original) 2D (LSA)

Sim. Rank Sim. Rank

d1–d5 0.289 4 0.999 1
d2–d5 0.500 1 0.826 2
d3–d5 0.316 2–3 0.317 4
d4–d5 0.316 2–3 0.603 3
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11.9 REVIEW QUESTIONS AND PROBLEMS

1. Give specific examples of where Web content mining, Web structure mining, and
Web usage mining would be valuable. Discuss the benefits.

2. Given a table of linked Web pages:

Page Linked to Page

A B, D, E, F
B C, D, E
C B, E, F
D A, F, E
E B, C, F
F A, B

(a) Find authorities using two iterations of the HITS algorithm.
(b) Find hubs using two iterations of the HITS algorithm.
(c) Find thePageRank scores for eachpage after one iterationusing0.1 as thedampening factor.
(d) Explain the HITS and PageRank authority rankings obtained in a and c.

3. For the traversal log: {X, Y, Z, W, Y, A, B, C, D, Y, C, D, E, F, D, E, X, Y, A, B,
M, N},

(a) Find maximal forward references.
(b) Find large reference sequences if the threshold value is 0.3 (or 30%).
(c) Find maximal reference sequences.

4. Given the following text documents and assumed decomposition:

Document Text

A Web content mining
B Web structure mining
C Web usage mining
D Text mining

−0.60 0.43 0.00 0.00 2.75 0.00 0.00 0.00 −0.55 −0.55 −0.55 −0.30
−0.20 0.14 0.00 0.82 0.00 1.21 0.00 0.00 0.17 0.17 0.17 -0.95

USVT= −0.71 -0.36 0.00 0.00 0.00 0.00 1.00 0.00 0.00 −0.71 0.71 0.00
−0.20 0.14 -−.71 −0.41 −0.00 0.00 0.00 1.00 0.82 -0.41 -0.41 0.00
−0.20 0.14 0.71 -0.41
−0.11 -0.79 0.00 0.00

(a) Create matrix A by using term counts from the original documents.
(b) Obtain rank 1, 2, and 3 approximations to the document representations.
(c) Calculate the variability preserved by rank 1, 2, and 3 approximations.
(d) Manually cluster documents A, B, C, and D into two clusters.
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5. Given a table of linked Web pages and a dampening factor of 0.15:

Page Linked to Page

A F
B F
C F
D F
E A, F
F E

(a) Find the PageRank scores for each page after one iteration.
(b) Find the PageRank scores after 100 iterations recording the absolute difference

between scores per iteration (be sure to use some programming or scripting language
to obtain these scores).

(c) Explain the scores and rankings computed previously in parts (a) and (b). How quickly
would you say that the scores converged? Explain.

6. Why is the text-refining task very important in a text-mining process? What are
results of text refining?

7. Implement the HITS algorithm, and discover authorities and hubs if the input is
the table of linked pages.

8. Implement the PageRank algorithm and discover central nodes in a table of
linked pages.

9. Develop a software tool for discovering maximal reference sequences in a Web
log file.

10. Search the Web to find the basic characteristics of publicly available or commer-
cial software tools for association rule discovery. Document the results of your
search.

11. Apply LSA to 20 Web pages of your choosing and compare the clusters obtained
using the original term counts as attributes against the attributes derived using
LSA. Comment on the successes and shortcomings of this approach.

12. What are the two main steps in mining-traversal patterns using log data?

13. The XYZ Corporation maintains a set of five Web pages: {A, B, C, D, and E}.
The following sessions (listed in timestamp order) have been created:

S1 = A,B,C ,S2 = A,C ,S3 = B,C,E ,andS4 = A,C,D,C,E

Suppose that support threshold is 30%. Find all large sequences (after building
the tree!).
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14. Suppose a Web graph is undirected, i.e. page i points to page j if and only if page j
points to page i. Are the following statements true or false? Justify your answers
briefly.

(a) The hubbiness and authority vectors are identical; i.e for each page, its hubbiness is
equal to its authority.

(b) The matrixM that we use to compute PageRank is symmetric; i.e.M[i; j] =M[j; i] for
all i and j.

15. Consider three Web pages A, B, and C with the following links:

BA

C

Suppose we compute PageRank with d = 0.7 and we introduce the additional con-
straint that the sum of the PageRanks of the three pages must be normalized to 3.
Compute the PageRanks model for ranks defined as a, b, and c of the three pages
A, B, and C, only in the first iteration.

16. Imagine that you have been given a data set of 1,000 documents that have been clas-
sified as being about entertainment or education. There are 700 entertainment docu-
ments in the data set and 300 education documents in the data set. The tables below
give the number of documents from each topic that a selection of words occurred in.

Word-document counts for the entertainment dataset

fun is machine christmas family learning
415 695 35 0 400 70

Word-document counts for the education dataset

fun is machine christmas family learning
200 295 120 0 10 105

What target level will a naive Bayes model predict for the following query doc-
ument: “machine learning is fun” in both data sets?

17. Compute the cosine measure, using the raw frequencies of words, between the
following two sentences:

(a) “The sly fox jumped over the lazy dog.”

(b) “The dog jumped at the intruder.”
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11.10 REFERENCES FOR FURTHER STUDY

1. Han, J., M. Kamber, Data Mining: Concepts and Techniques, 3rd edition, Morgan
Kaufmann, San Francisco, 2011.

This book gives a sound understanding of data-mining principles. The primary ori-
entation of the book is for database practitioners and professionals with emphasis
on OLAP and data warehousing. In-depth analysis of association rules and cluster-
ing algorithms is the additional strength of the book. All algorithms are presented
in easily understood pseudocode, and they are suitable for use in real-world, large-
scale data-mining projects including advanced applications such as Web mining
and text mining.

2. Chang, G., M. J. Haeley, J. A. M. McHugh, J. T. L. Wang,Mining the World Wide
Web: An Information Search Approach, Kluwer Academic Publishers, Boston,
MA, 2001.

This book is an effort to bridge the gap between information search and data min-
ing on the Web. The first part of the book focuses on information retrieval on the
Web. The ability to find relevant documents on the Web is essential to the process
of Web mining. The cleaner the set of Web documents and data, the better the
knowledge that can be extracted from it. In the second part of the book, basic con-
cepts and techniques on text mining, Web mining, and Web crawling are intro-
duced. A case study, in the last part of the book, focuses on a search engine
prototype called EnviroDaemon.

3. Akerkar, R., P. Lingras, Building an Intelligent Web: Theory and Practice, Jones
and Bartlett Publishers, Sudbury, MA, 2008.

This provides a number of techniques used inWeb mining. Code is provided along
with illustrative examples showing how to perform Web content mining, Web
structure mining, and Web usage mining.

4. Zhang Q., R. S. Segall, Review of Data, Text and Web Mining Software, Kyber-
netes, Vol. 39, No. 4, 2010, pp. 625–655.

The paper reviews and compares selected software for data mining, text mining
(TM), and web mining that are not available as free open-source software. The
software for data mining are SAS® Enterprise Miner™, Megaputer PolyAnalyst®
5.0, NeuralWare Predict®, and BioDiscovery GeneSight®. The software for TM
are Compare Suite, SAS® Text Miner, TextAnalyst, VisualText, Megaputer Poly-
Analyst® 5.0, and WordStat. The software for Web mining are Megaputer Poly-
Analyst®, SPSS Clementine®, ClickTracks, and QL2. The paper discusses and
compares the existing features, characteristics, and algorithms of selected software
for data mining, TM, and web mining, respectively.

5. Struhl Steven, Practical Text Analytics: Interpreting Text and Unstructured Data
for Business Intelligence, Kogan Page Limited, July 2015.

Bridging the gap between the marketer who must put text analytics to use and data
analysis experts, Practical Text Analytics is an accessible guide to the many
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advances in text analytics. It explains the different approaches and methods and
their uses, strengths, and weaknesses, in a way that is relevant to marketing profes-
sionals. Each chapter includes illustrations and charts, hints and tips, pointers on
the tools and techniques, definitions, and case studies/examples. Consultant and
researcher Steven Struhl presents the process of text analysis in ways that will help
marketers clarify and organize the confusing array of methods, frame the right
questions, and apply the results successfully to find meaning in any unstructured
data and develop effective new marketing strategies.

6. Aggarwal C. C., C. Zhai, Mining Text Data, Springer, Heidelberg, 2012.

Text-mining applications have experienced tremendous advances because of Web
2.0 and social networking applications. Recent advances in hardware and software
technology have led to a number of unique scenarios where text-mining algorithms
are learned. Mining Text Data introduces an important niche in the text analytics
field and is an edited volume contributed by leading international researchers and
practitioners focused on social networks and data mining. This book contains a
wide swath in topics across social networks and data mining. There is a special
focus on Text Embedded with Heterogeneous and Multimedia Data, which makes
the mining process much more challenging.

7. Aggarwal C. C., Recommender Systems, Springer, Heidelberg, 2016.

This book comprehensively covers the topic of recommender systems, which pro-
vide personalized recommendations of products or services to users based on their
previous searches or purchases. Recommender system methods have been adapted
to diverse applications including query log mining, social networking, news
recommendations, and computational advertising. This book synthesizes both fun-
damental and advanced topics of a research area that has now reached maturity.
The chapters of this book are organized into three categories: (1) algorithms
and evaluation, (2) recommendations in specific domains and contexts, and (3)
advanced topics and applications.
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ADVANCES IN DATA MINING

Chapter Objectives

• Analyze the characteristics of graph-mining algorithms and introduce some
illustrative examples.

• Identify the required changes in data-mining algorithm when temporal and
spatial components are introduced.

• Introduce basic characteristics of distributed-data-mining algorithms and
specific modifications for distributed DBSCAN clustering.

• Describe the differences between causality and correlation.

• Introduce basic principles in Bayesian network modeling.

• Know when and how to include privacy protection in data-mining process.

• Summarize social and legal aspects of data-mining applications.

• Highlights the concepts of cloud computing, Hadoop framework, and Map/
Reduce programming paradigm.

• Explain basic principles of reinforcement learning and insight Q-learning
methodology.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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Current technological progress permits the storage and access of large amounts of data
at virtually no cost. These developments have created unprecedented opportunities for
large-scale data-driven discoveries, as well as the potential for fundamental gains in
scientific and business understanding. The popularity of the Internet and the Web
makes it imperative that the data-mining framework is extended to include distributed,
time- and space-dependent information and tools. New complex and distributed sys-
tems are supported by enhanced multimedia data sources such as images and signals
and advanced data structures such as graphs. In this environment, data-mining appli-
cations have new social and legal challenges, and privacy preserving is one of the pri-
ority tasks.

12.1 GRAPH MINING

Traditional data-mining tasks such as association rule mining, market basket analy-
sis, and cluster analysis commonly attempt to find patterns in a data set characterized
by a collection of independent instances of a single relation. This is consistent with
the classical statistical inference problem of trying to identify a model given a ran-
dom sample from a common underlying distribution. An emerging challenge for data
mining is the problem of mining richly structured data sets, where the objects are
linked in some way. Many real-world data sets describe a variety of entity types
linked via multiple types of relations. These links provide additional context that
can be helpful for many data-mining tasks. Yet multi-relational data violates the tra-
ditional assumption of independent, identically distributed data instances that pro-
vides the basis for many statistical machine-learning algorithms. Naively applying
traditional statistical inference procedures, which assume that samples are independ-
ent, may lead in many applications to inappropriate conclusions. Care must be taken
that potential correlations due to links between samples are handled appropriately. In
fact, record linkage is knowledge that should be exploited. Clearly, this is informa-
tion that can be used to improve the predictive accuracy of the learned models: attri-
butes of linked objects are often correlated and links are more likely to exist between
objects that have some commonality. Relationships between objects represent a rich
source of information and ultimately knowledge. Therefore, new approaches are
needed that can exploit the dependencies across the attribute and link structure. Cer-
tainly, as a general data structure, graph can meet demands of modeling complicated
relations among data.

Graph-based data mining represents a collection of techniques for mining the
relational aspects of data represented as a graph. It has the task of finding novel, use-
ful, and understandable graph-theoretic patterns in a graph representation of data.
Graph mining has become an important topic of research recently because of numer-
ous applications to a wide variety of data-mining problems in computational biology,
chemical data analysis, drug discovery, and communication networking. Some exam-
ples of graph represented data are presented in Figure 12.1. Traditional data-mining
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and management algorithms such as clustering, classification, frequent pattern min-
ing, and indexing have now been extended to the graph scenario. While the field
of graph mining has been a relatively recent development in the data-mining commu-
nity, it has been studied under different names by other groups of researchers. This is
because research on graphs has a long history in mathematics, but most notably impor-
tant results are obtained by sociologists in the field of a social network analysis. How-
ever, there are important differences, and the primary one is that of network size.
Social networks are, in general, small with the larger studies considering a few hun-
dred nodes. On the other hand, graph-mining data sets in new application domains
may typically consist of hundreds of thousands of nodes and millions of edges.

Many data sets of interest today are best described as a linked collection of inter-
related objects. These may represent homogeneous networks, in which there is a
single-object type and single-link type, or richer heterogeneous networks, in which
there may bemultiple-object andmultiple-link types and possibly other semantic infor-
mation. Examples of homogeneous networks include single mode social networks,
such as people connected by friendship links, or the WWW, a collection of linked
Web pages. Examples of heterogeneous networks include those in medical domains
describing patients, diseases, treatments, and contacts or in bibliographic domains
describing publications, authors, and venues. Graph-mining techniques explicitly con-
sider these links when building predictive or descriptive models of the linked data.

The requirement of different applications with graph-based data sets is not very
uniform. Thus, graph models and mining algorithms that work well in one domain
may not work well in another. For example, chemical data is often represented as
graphs in which the nodes correspond to atoms and the links correspond to bonds
between the atoms. The individual graphs are quite small, though there are significant
repetitions among the different nodes. Biological data is modeled in a similar way as
chemical data. However, the individual graphs are typically much larger. Protein
interaction networks link proteins that must work together to perform some particular
biological function. A single biological network could easily contain thousands of
nodes. In the case of computer networks and the Web, the number of nodes in the

(a) (b) (c)

Figure 12.1. Graph representation of data. (a) Chemical compound. (b) Social network (c)

Genome co-expression network.
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underlying graph may be massive. Computer networks consist of routers/computers
representing nodes and the links between them. Since the number of nodes is massive,
this can lead to a very large number of distinct edges. Social networks may bemodeled
with large graphs, which are defined by people who appear as nodes, and links, which
correspond to communications or relationships between these different people. The
links in the social network can be used to determine relevant communities, members
with particular expertise sets, and the flow of information in the social network. For
example, the problem of community detection in social networks is related to the
problem of node clustering of very large graphs. In this case, we wish to determine
dense clusters of nodes based on the underlying linkage structure. It is clear that
the design of a particular mining algorithm depends upon the application domain
at hand.

Before introducing some illustrative examples of graph-mining techniques, it will
summarize some basic concepts from graph theory. Graph theory provides a vocab-
ulary that can be used to label and denote many structural properties in data. Also,
graph theory gives us mathematical operations and ideas with which many of these
properties can be quantified and measured.

A graph G = G(N, L) consists of two sets of information: a set of nodes N = {n1,
n2,…,nk} and a set of links between pairs of nodes L = {l1, l2,…,lm}. A graph with
nodes and without links is called an empty graph, while the graph with only one node
is a trivial graph. Two nodes, ni and nj, are adjacent if there is a link between them.
A graph G(N, L) can be presented as a diagram in Figure 12.2a in which points depict
nodes and lines between two points are links. A graph G (N , L ) is a subgraph of
G(N, L) if N N and L L.

An induced subgraph of a graph G has a subset of the nodes of G and the same
links between pairs of nodes as in G. For example, the subgraph (b) in Figure 12.3 is
an induced subgraph of the graph (a), but the subgraph (c) is a general subgraph but
not an induced subgraph of G, since the incoming link L1 of the node labeled as N2 in
(a) is not retained in (c) while the node labeled as N2 is included.

The degree of a node, denoted by d(ni), is the number of links connected to the
given node. Equivalently, the degree of a node is the number of nodes adjacent to it.
For example, in Figure 12.2a, the degree d(B) = 3. The degree of a node ranges from a
minimum of 0, if no nodes are adjacent to a given node, to a maximum k − 1, if a given

A D

CB

A D A
2

3

1

D

CB CB

(a) (b) (c)

Figure 12.2. (a) Undirected graph. (b) Directed Graph. (c) Weighted Graph.
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node is adjacent to all other nodes in the graph. The degrees are very easy to compute,
and yet they can be very informative for many applications. For some applications, it
is useful to summarize the degrees of all nodes in the graph. The mean nodal degree is
a statistic that reports the average degree of the nodes in the graph:

dav =
k
i−1d ni
k

For the graph in Figure 12.2a, dav = (1 + 3 + 2 + 2)/4 = 2. One might also be inter-
ested in the variability of the nodal degrees. If all the degrees of all nodes are equal, the
graph is said to be d-regular, and its variability is equal to 0. If the nodes differ in
degrees, the variance is calculated as a measure for variability:

SD2 =
k

i= 1

d ni −dav 2

k

The maximum number of links in the graph is defined by the number of nodes.
Since there are k nodes in the graph, and if we exclude the loops as links, there are
k(k − 1)/2 possible links that could be presented in the graph. If all links are present,
then all nodes are adjacent, and the graph is said to be complete. Consider now what
proportion of these links is actually present. The density of a graph is the proportion
of actual links in the graph to maximum possible number of links. The density of a
graph goes from 0 when there are no links in a graph to 1 when all possible links are
presented.

We can also analyze the paths between a pair of nodes, and they are represented
by multiple links. We define a path from s N to t N as an alternating sequence of
nodes and links, beginning with node s and ending with node t, such that each link
connects its preceding with its succeeding node. It is likely that there are several paths
between given pair of nodes and that these paths are differ in lengths (number of links
included in the path). A shortest path between two nodes is referred as a geodesic. The
geodesic distance dG or simply the distance between two nodes is defined as the length
of a geodesic between them, and it represents the length of the shortest path. By def-
inition, dG(s; s) = 0 for every node s N, and dG(s; t) = dG(t; s) for each pair of nodes s;

N1 N1 N1

N1N1

L1

L1

L1

N1

N2

L2 L2

N2

L2

(a) (b) (c)

Figure 12.3. (a) Graph. (b) Induced Subgraph. (c) General Subgraph (but not Induced).
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t V. For example, the paths between nodes A and D in Figure 12.2a are A–B–D and
A–B–C–D. The shortest one is A–B–D, and therefore the distance d(A,D) = 2. If there
is no path between two nodes, then the distance is infinite (or undefined). The diam-
eter of a connected graph is the length of the largest geodesic between any pairs of
nodes. It represents the largest nodal eccentricity. The diameter of a graph can range
from 1, if the graph is complete, to a maximum of k − 1. If a graph is not connected, its
diameter is infinite. For the graph in Figure 12.2a, the diameter is 2.

These basic definitions are introduced for non-labeled and non-directed graphs
such the one in Figure 12.2a. A directed graph, or digraph G(N, L) consists of a
set of nodes N and set of directed links L. Each link is defined by an order pair of
nodes (sender, receiver). Since each link is directed, there are k(k − 1) possible links
in the graph. A labeled graph is a graph in which each link carries some value. There-
fore, a labeled graph G consists of three set of information: G(N,L,V), where the new
component V = {v1, v2,…,vt} is a set of values attached to links. An example of a direc-
ted graph is given in Figure 12.2b, while the graph in Figure 12.2c is a labeled graph.
Different applications use different types of graphs in modeling linked data. In this
chapter a primary focus is on undirected and unlabeled graphs, although the reader
still has to be aware that there are numerous graph-mining algorithms for directed
and/or labeled graphs.

Besides a graphical representation, each graph may be presented in a form of the
incidence matrix I(G) where nodes are indexing the rows and links are indexing col-
umns. The matrix entry in the position (i,j) has value a if node ni is incident with a the
link lj. The other matrix representation of a graph (in a case of undirected and unla-
beled graphs) is k × k adjacency matrix where both rows and columns are defined by
nodes. The graph-structured data can be transformed without much computational
effort into an adjacency matrix, which is a well-known representation of a graph in
mathematical graph theory. On the intersection (i,j) is the value of 1 if the nodes ni
and nj are connected by a link; otherwise it is 0 value (Figure 12.4b).

If a graph has labeled links, the following conversion of the graph to a new graph
that has labels at its nodes only is applied. This transformation reduces the ambiguity
in the adjacency matrix representation. Given a node pair (u, v) and a directed or undi-
rected link {u, v} between the nodes, i.e., node(u)−link({u, v})−node(v) where node()
and link() stand for the labels of a node and a link, respectively. The link() label infor-
mation can be removed and transformed into a new node(u, v), and the following tri-
angular graph may be deduced where the original information of the node pair and the
link between them is preserved.

node(u)

node(u)

node(v)

node(v)

node({u,v})

link({u,v})
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This operation on each link in the original graph can convert the graph into
another graph representation having no labels on the links while preserving the
topological information of the original graph.

Accordingly, the adjacency matrix of Figure 12.5a is converted to that of
Figure 12.5b as follows:

1

N1

N1

N1

N1

N1

N2

N1 N2 N1

N2

L1

L1

L1

L1

L2

L2

N1 L1 L1 L2N2

10

0

0

0 0

0

0

0 0 0

0 00 1 0 1

1 00 0 1 0

1 00 0 0 0

1 00 0 0 0

0 00 1 0 0

The aforementioned explanation was for directed graphs. But the identical pre-
processing may be applied to undirected graphs. The difference from the case of direc-
ted graphs is that the adjacency matrix becomes diagonally symmetric. The adjacency
matrix of Figure 12.6a is represented at Figure 12.6b.

For the sake of the efficiency in memory consumption but also for more efficient
computations with graphs, we define a code representation of an adjacency matrix as
follows. In case of an undirected graph, the code of an adjacency matrix Xk, i.e., code
(Xk), is represented by a binary number. It is obtained by scanning the upper triangular
elements of the matrix along each column until diagonal elements (for undirected
graph). For example, the code of the adjacency matrix in Figure 12.6b is given by

Code Xk = 0101100101

Variety of operations is defined in graph theory, and corresponding algorithms
are developed to perform efficiently these operations. The algorithms are working

n1

n2 n4 n5
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Figure 12.4. Matrix representations of graphs. (a) Incidence matrix: nodes × links.

(b) Adjacency matrix: nodes × nodes.
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with graphical, matrix, or code representations of graphs. One of very important
operations is join operation of two graphs and forming new, more complex graph.
This operation is used in many graph-mining algorithms including frequent patterns
mining in graphs. The join operation is demonstrated through the example depicted in
Figure 12.7. The examples of the adjacency matrices X4, Y4, and join result Z5 are
given in (d) representing the graphs at (a), (b), and (c).

Graph analysis includes a number of parameters that describe important charac-
teristics of a graph, and they are used as fundamental concepts in developing graph-
mining algorithms. Over the years, graph-mining researchers have introduced a large
number of centrality indices, measures of the importance of the nodes in a graph
according to one criterion or another.

Perhaps the simplest centrality measure is degree, which is the number of links
for a given node. Degree is a measure in some sense of the “popularity” of a node in
the presented graph. Nodes with high degree are considered to be more central. How-
ever, this weights a node only by its immediate neighbors and not by, for example, its
2-hop and 3-hop neighbors. A more sophisticated centrality measure is closeness,
which is the mean geodesic (i.e. shortest path) distance between a vertex and all other
vertices reachable from it. Examples of computations for both measures are given in

N1

N2 N2

N1

N1

N1L1

L1 L1

L1

L2
L2

(a) (b)

Figure 12.5. Preprocessing of labeled links and self-looped nodes in a graph. (a) Original

graph. (b) Graph with preprocessed labeled links.
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Figure 12.6. Undirected graph representations. (a) Original Graph. (b) Adjacency Matrix.
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Figure 12.8. Closeness can be regarded as a measure of how long it will take infor-
mation to spread from a given node to others in the graph. Nodes that have low dis-
tance to all other nodes in the graph have high closeness centrality.

Another important class of centrality measures is the class of betweenness mea-
sures. Betweenness is a measure of the extent to which a vertex lies on the paths
between others. The simplest and most widely used betweenness measure is
shortest-path betweenness, usually called simply betweenness. The betweenness of
a node i is defined to be the fraction of shortest paths between any pairs of vertices
in a graph that pass through node i. This is, in some sense, a measure of the influence a
node has over the spread of connections through the network. Nodes with high
betweenness values occur on larger number of shortest paths and are presumably more
important than nodes with low betweenness. The parameter is costly to compute espe-
cially when the graphs are complex with large number of nodes and links. Currently,
the fastest known algorithms requireO(n3) time complexity andO(n2) space complex-
ity, where n is the number of nodes in the graph.

Illustrative examples of centrality measures and their interpretations are given in
Figure 12.9. Node X has importance because it bridges the structural hole between the
two clusters of interconnected nodes. It has the highest betweenness measure compar-
ing to all other nodes in the graph. Such nodes get lots of brokerage opportunities and
can control the flow in the paths between subgraphs. On the other hand, node Y is in
the middle of a dense web of nodes, which provides easy, short path access to neigh-
boring nodes; thus Y also has a good central position in the subgraph. This character-
istic of the node Y is described with the highest degree measure.
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Figure 12.7. An example of join operation between graphs (a) and (b). (d) Matrix

representation of a Join operation.

399GRAPH MINING



Vertex-betweenness index reflects the amount of control exerted by a given ver-
tex over the interactions between the other vertices in the graph. The other approach to
measure betweenness is to concentrate on links in the graph instead of nodes. Edge-
betweenness centrality is related to the frequency of an edge that places on the shortest
paths between all pairs of vertices. The betweenness centrality of an edge in a network
is given by the sum of the edge-betweenness values for all pairs of nodes in the graph
going through the given edge. The edges with highest betweenness values are most
likely to lie between subgraphs, rather than inside a subgraph. Consequently, succes-
sively removing edges with the highest edge betweenness will eventually isolate sub-
graphs consisting of nodes that share connections only with other nodes in the same
subgraph. This gives edge-betweenness index a central role in graph clustering algo-
rithms where it is necessary to separate large graph into smaller highly connected sub-
graphs. Edge (also called link) betweenness centrality is traditionally determined in
two steps:

1. Compute the length and number of shortest paths between all pairs of nodes
through the link.

2. Sum all link dependencies.

N3

N1

N2
Degree Closeness

15/9 = 1.66

14/9 = 1.55

17/9 = 1.88

N1

N2

N3

6

5

4

Figure 12.8. Degree and closeness parameters of the graph.

Z

Y X

Figure 12.9. Different types of node’s importance in a graph.
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The overall betweenness centrality of a link v is obtained by summing up its par-
tial betweenness values for this link calculated using the graph transformation on
breadth first strategy from each node. For example, if at the beginning it is given a
graph in Figure 12.10a, it is necessary to find link betweenness measures for all links
in the graph. In the first step, we are building “modified” graph, which is starting with
node A, and specify all links in the graph, layer by layer: first neighbors, second neigh-
bors, etc. The resulting graph is given in Figure 12.10b. This graph is starting point for
partial betweenness computation. The total betweenness will be sum of partial scores
obtained for transformed graphs with root nodes A to K. The process with each trans-
formed graph in (b) consists of:

• forward phase, and

• backward phase.

It will be illustrated with activities on the graph in Figure 12.10b. In the forward
phase, the count of shortest paths from A to all other nodes of the network is deter-
mined. The computation is performed iteratively, layer by layer. For example, the
number of shortest paths from the initial node A to the node I is computed based
on the number of shortest paths from node A to the nodes F and G.

The result of the completed forward phase is given in Figure 12.11a. Each node is
labeled with the number of shortest paths from the root node A. For example, the node
J has three shortest paths, two of them through the nodeH (ADHJ and AEHJ) and one
through the node G (ADGJ).

Backward phase is starting from the bottom of the layered graph structure, in our
example from the node K. If there are multiple paths from the given node up, count
betweenness measure of each link fractionally. The proportion is determined by the
number of shortest paths to these nodes on the previous layer. What amount we are
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Figure 12.10. Preparatory phase for link betweenness computation. (a) Initial graph. (b)

Transformed graph with the root in node A.
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splitting between these links? The amount is defined as (1 + sum of all betweenness
measures entering into the node from below). For example, from the node K, there are
two paths toward nodes I and J, and because both nodes have the same number of
shortest paths (3), the amount we are splitting is 1 + 0 = 1, and the partial betweenness
measures for links IK and JK are 0.5. In a similar way we may compute betweenness
measures for node G. Total betweenness value for splitting is 1 + 0.5 + 0.5 = 2. There
is only one node up; it is D and link betweenness measure for GD is 2.

When we computed betweenness measures for all links in the graph, the proce-
dure should be repeated for other nodes in the graph as the root nodes, until it is
explored each node of the network. Finally, all partial link scores determined for dif-
ferent graphs should be added to determine final link betweenness score.

Graph-mining applications are far more challenging to implement because of the
additional constraints that arise from the structural nature of the underlying graph. The
problem of frequent pattern mining has been widely studied in the context of mining
transactional data. Recently, the techniques for frequent pattern mining have also been
extended to the case of graph data. This algorithm attempts to find interesting or com-
monly occurring subgraphs in a set of graphs. Discovery of these patterns may be the
sole purpose of the systems, or the discovered patterns may be used for graph clas-
sification or graph summarization. The main difference in the case of graphs is that
the process of determining support is quite different. The problem can be defined
in different ways depending upon the application domain. In the first case, we have
a group of graphs, and we wish to determine all patterns that support a fraction of the
corresponding graphs. In the second case, we have a single large graph, and wewish to
determine all patterns that are supported at least a certain number of times in this large
graph. In both cases, we need to account for the isomorphism issue in determining
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Figure 12.11. Computation of the partial link betweenness measure. (a) Forward phase.

(b) Backward phase.
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whether one graph is supported by another. However, the problem of defining the sup-
port is much more challenging, if overlaps are allowed between different embeddings.
Frequently occurring subgraphs in a large graph or a set of graphs could represent
important motifs in the real-world data.

Apriori-style algorithms can be extended to the case of discovering frequent sub-
graphs in graph data by using a similar level-wise strategy of generating (k + 1)-
candidates from k-patterns. Various measures to mine substructures’ frequencies in
graphs are used similarly to conventional data mining. The selection of the measures
depends on the objective and the constraints of the mining approach. The most pop-
ular measure in the graph-based data mining is a “support” parameter whose definition
is identical with that of market basket analysis. Given a graph data setD, the support of
the subgraph Gs, sup(Gs), is defined as

sup Gs =
number of graphs includingGs inD

total number of graphs inD

By specifying a “minimum support” value, subgraphs Gs whose support values
are above threshold are mined as candidates or components of candidates for maxi-
mum frequent subgraphs. The main difference in an apriori implementation is that we
need to define the join process of two subgraphs a little differently. Two graphs of size
k can be joined if they have a structure of size (k − 1) in common. The size of this
structure could be defined in terms of either nodes or edges. The algorithm may starts
by finding all frequent single- and double-link subgraphs. Then, in each iteration, it
generates candidate subgraphs by expanding the subgraphs found in the previous iter-
ation by one edge. The algorithm checks howmany times the candidate subgraph with
the extension occurs within an entire graph or set of graphs. The candidates, whose
frequency is below a user-defined level, are pruned. The algorithm returns all sub-
graphs occurring more frequently than the given threshold. A naïve approach of a sub-
graph extension from k − 1 size to size k is computationally very expensive as it is
illustrated in Figure 12.12. Therefore, the candidate generation of frequent induced
subgraph is done with some constraints. Two frequent graphs are joined only when
the following conditions are satisfied to generate a candidate of frequent graph of size
k + 1. Let Xk and Yk be adjacency matrices of two frequent graphs G(Xk) and G(Yk) of
size k. If both G(Xk) and G(Yk) have equal elements of the matrices except for the ele-
ments of the kth row and the kth column, then they may be joined to generate Zk + 1 as
an adjacency matrix for a candidate graph of size k + 1:

Xk =
Xk−1 x1

xT2 0
, Yk =

Xk−1 y1

yT2 0
, Zk + 1 =

Xk−1 x1 y1

xT2 0 zk,k + 1

yT2 zk + 1,k 0

In this matrix representations, Xk − 1 is the common adjacency matrix representing
the graph whose size is k − 1, while xi and yi (i = 1, 2) are (k − 1) × 1 column vectors.
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These column vectors are representing the differences between two graphs prepared
for join operation.

The process suffers from computational intractability when the graph size
becomes too large. One problem is subgraph isomorphism, with NP complexity, as
a core step in a graph matching. Also, all frequent patterns may not be equally relevant
in the case of graphs. In particular, patterns that are highly connected, which means
dense subgraphs, are much more relevant. This additional analysis requires more com-
putations. One possible application of discovering frequent subgraphs is summarized
representation of larger, complex graphs. After extracting common subgraphs, it is
possible to simplify large graphs by condensing these subgraphs into new nodes. Illus-
trative example is given in Figure 12.13 where subgraph of four nodes is replaced in
the set of graphs with a single node. The resulting graphs represent summarized rep-
resentation of the initial graph set.

In recent years, significant attention has focused on studying the structural prop-
erties of networks such as the World Wide Web (WWW), online social networks,
communication networks, citation networks, and biological networks. Across these
large networks, an important characteristic is that they can be characterized by the
nature of the underlying graphs and subgraphs, and clustering is often used technique
for miming these large networks. The problem of graph clustering arises in two dif-
ferent contexts: a single large graph or large set of smaller graphs. In the first case, we
wish to determine dense node clusters in a single large graph minimizing the inter-
cluster similarity for a fixed number of clusters. This problem arises in the context of a
number of applications such as graph partitioning and the minimum cut problem. The
determination of dense regions in the graph is a critical problem from the perspective
of a number of different applications in social networks andWeb page summarization.

6 edges

22 new graphs

7 edges

Figure 12.12. Free extensions in graphs.
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Top-down clustering algorithms are closely related to the concept of centrality anal-
ysis in graphs where central nodes are typically key members in the network that are
well connected to other members of the community. Centrality analysis can also be
used in order to determine the central points in information flows. Thus, it is clear that
the same kind of structural analysis algorithm can lead to different kinds of insights in
graphs. For example, if the criterion for separating graph into subgraphs is a maximum
measure of link betweenness, then graph in Figure 12.14a may be transformed into six
subgraphs as it is presented in Figure 12.14b. In this case the maximum betweenness
of 49 was for the link (7, 8), and elimination of this link defines two clusters on the
highest level of hierarchy. The next value of betweenness 33 was found for links:
(3,7), (8, 9), (6, 7), and (8, 12). After elimination of these links on the second level
of hierarchy, the graph is decomposed into six dense subgraphs of clustered nodes.

The second case of cluster analysis assumes multiple graphs, each of which may
possibly be of modest size. These large number of graphs need to be clustered based
on their underlying structural behavior. The problem is challenging because of the
need to match the structures of the underlying graphs and use these structures for clus-
tering purposes. The main idea is that we wish to cluster graphs as objects, and the
distance between graphs is defined based on a structural similarity function such as
the edit distance. This clustering approach makes it an ideal technique for applications
in areas such as scientific data exploration, information retrieval, computational biol-
ogy, Web log analysis, forensics analysis, blog analysis, and many others.

Link analysis is an important field that received a lot of attention recently when
advances in information technology (IT) enabled mining of extremely large networks.
The basic data structure is still a graph; only the emphasis in analysis is on links and
their characteristics: labeled or unlabeled and directed or undirected. There is an inher-
ent ambiguity with respect to the term “link” that occurs in many circumstances, but

Figure 12.13. Graph summarization through graph compression.
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especially in discussions with people whose background and research interests are in
the database community. In the database community, especially the subcommunity
that uses the well-known entity-relationship (ER) model, a “link” is a connection
between two records in two different tables. This usage of the term “link” in the data-
base community differs from that in the intelligence community and in the artificial
intelligence (AI) research community. Their interpretation of a “link” typically refers
to some real-world connection between two entities. Probably the most famous exam-
ple of exploiting link structure in the graph is the use of links to improve information
retrieval results. Both the well-known page rank measure and hubs and authority
scores are based on the link structure of the Web. Link analysis techniques are used
in law enforcement, intelligence analysis, fraud detection, and related domains. It is
sometimes described using the metaphor of “connecting the dots” because link dia-
grams, showing the connections between people, places, events, and things, represent
invaluable tools in these domains.

12.2 TEMPORAL DATA MINING

Time is one of the essential natures of data. Many real-life data describes the property
or status of some object at a particular time instant. Today time-series data are being
generated at an unprecedented speed from almost every application domain, e.g., daily
fluctuations of stock market, traces of dynamic processes and scientific experiments,
medical and biological experimental observations, various readings obtained from
sensor networks, Web logs, computer network traffic, position updates of moving
objects in location-based services, etc. Time series or, more generally, temporal
sequences appear naturally in a variety of different domains, from engineering to sci-
entific research, finance, and medicine. In engineering matters, they usually arise with
either sensor-based monitoring, such as telecommunication control, or log-based sys-
tems monitoring. In scientific research, they appear, for example, in spatial missions
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Figure 12.14. Graph clustering using betweennessmeasure. (a) Initial graph. (b) Subgraphs,

after elimination of links with maximum betweenness.
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or in the genetics domain. In healthcare, temporal sequences are a reality for decades,
with data originated by complex data acquisition systems like ECGs or even with sim-
ple ones like measuring the patient temperature or treatment effectiveness. For exam-
ple, a supermarket transaction database records the items purchased by customers at
some time point. In this database, every transaction has a time stamp in which the
transaction is conducted. In a telecommunication database, every signal is also asso-
ciated with a time. The price of a stock at the stock market database is not a constant,
but changes with time as well.

Temporal databases capture attributes whose values change with time. Temporal
data mining is concerned with data mining of these large data sets. Samples related
with the temporal information present in this type of databases need to be treated dif-
ferently from static samples. The accommodation of time into mining techniques pro-
vides a window into the temporal arrangement of events and, thus, an ability to
suggest cause and effect that are overlooked when the temporal component is ignored
or treated as a simple numeric attribute. Moreover, temporal data mining has the abil-
ity to mine the behavioral aspects of objects as opposed to simply mining rules that
describe their states at a point in time. Temporal data mining is an important extension
as it has the capability of mining activity rather than just states and, thus, inferring
relationships of contextual and temporal proximity, some of which may also indicate
a cause–effect association.

Temporal data mining is concerned with data mining of large sequential data sets.
By sequential data, we mean data that is ordered with respect to some index. For
example, time series constitute a popular class of sequential data, where records
are indexed by time. Other examples of sequential data could be text, gene sequences,
protein sequences, Web logs, lists of moves in a chess game, etc. Here, although there
is no notion of time as such, the ordering among the records is very important and is
central to the data description/modeling. Sequential data include:

1. Temporal sequences representing ordered series of nominal symbols from
particular alphabet (examples are huge number of relatively short sequences
in Web log files or relatively small number of extremely long gene expression
sequences). This category includes ordered but not time-stamped collections
of samples. The sequence relationships include before, after, meet, and
overlap.

2. Time series representing time-stamped series of continuous, real-valued ele-
ments (examples are relatively small number of long sequences of multiple
sensor data or monitoring recordings from digital medical devices). Typically,
most of the existing work on time series assume that time is discrete. Formally,
a time-series data is defined as a sequence of pairs T = [(p1, t1), (p2, t2),…,
(pn, tn)] where t1 < t2 < <tn. Each pi is a data point in a d-dimensional data
space, and each ti is the time stamp at which pi occurs. If the sampling rate of
time series is constant, one can omit the time stamps and consider series as
sequences of d-dimensional data points. Such a sequence is called the raw rep-
resentation of the time series.
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Traditional analyses of temporal data require statistical approach because of noise
in raw data, missing values, or incorrect recordings. They include (1) long-term trend
estimation; (2) cyclic variations, e.g., business cycles; (3) seasonal patterns; and (4)
irregular movements representing outliers. Examples are given in Figure 12.15. The
discovery of relations in temporal data requires more emphasis in a data-mining proc-
ess on the following three steps: (1) the representation and modeling of the data
sequence in a suitable form, (2) the definition of similarity measures between
sequences, and (3) the application of variety of new models and representations to
the actual mining problems.

12.2.1 Temporal Data Representation

The representation of temporal data is especially important when dealing with large
volumes of data, since direct manipulation of continuous, high-dimensional data in an
efficient way is extremely difficult. There are a few ways this problem can be
addressed:

Original data or with minimal preprocessing Use data as it is without or with
minimal preprocessing. We preserve the characteristics of each data point when a
model is built. The main disadvantage of this process is that it is extremely inef-
ficient to build data-mining models with millions of records of temporal data, all
of them with different values.

Time Time

Time Time

X

X

X

X

(a) (b)

(c) (d)

Figure 12.15. Traditional statistical analyses of time series. (a) Trend. (b) Cycles. (c) Seasonal.

(d) Outliers.
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Windowing and piecewise approximations There is well-known psycholog-
ical evidence that human eye segments smooth curves into piecewise straight
lines. Based on this theory, there are a number of algorithms for segmenting a
curve that represents a time series. Figure 12.16 shows a simple example where
it replaces the original nonlinear function with several piecewise linear functions.
As shown in the figure, the initial real-valued elements (time series) are parti-
tioned into several segments. Finding the required number of segments that best
represent the original sequence is not trivial. An easy approach is to predefine the
number of segments. A more realistic approach may be to define them when a
change point is detected in the original sequence. Another technique based on
the same idea segments a sequence by iteratively merging two similar segments.
Segments to be merged are selected based on the squared error minimization cri-
teria. Even though these methods have the advantage of ability to reduce the
impact of noise in the original sequence, when it comes to real-world applications
(for example, sequence matching), differences in amplitudes (scaling) and time
axis distortions are not addressed easily.

To overcome these drawbacks, Piecewise Aggregate Approximation (PAA) tech-
nique was introduced. It approximates the original data by segmenting the sequences
into same length sections and recording the mean value of these sections. A time series
C of length n is represented as C = {c1, c2,… , cn}. The task is to represent C as C in a
w-dimensional space (w < n) by mean values of cis in w equal-sized segments. The ith
element of C is calculated as a mean of all value in the segment:

Ci =
w× i

j=w× i−1 + 1

cij, 1 ≤ i ≤ the number of segments

For example, if the original sequence is C = {−2, −4, −3, −1, 0, 1, 2, 1, 1, 0},
where n = C = 10, and we decide to represent C in two sections of the same length,
then

C = mean −2, −4, −3, −1,0 ,mean 1,2,1,1,0

C = −2,1

Usually PAA is visualized as a linear combination of box basis functions as it is
illustrated in Figure 12.16b where a continuous function is replaced with 10 discrete
averages for each interval.

A modified PAA algorithm, which is called Symbolic Aggregate approXimation
(SAX), is proposed with the assumption that the original normalized time series, C,
have a Gaussian distribution of PAA values. SAX defines “breakpoints” in the Gaus-
sian curve that will produce equal-sized areas below the curve. Formally, breakpoints
are a sorted list of numbers B = β1, β2, β3,… , βa − 1 such that the areas under the Gaus-
sian curve from βi to βi + 1 are equal 1/a and they are constant. α is a parameter of the
methodology representing the number of intervals. These breakpoints can be
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determined in a statistical table. For example, Figure 12.17 gives the breakpoints for α
values from 3 to 10.

Once the breakpoints are defined as well as the corresponding coding symbols for
each interval, the sequence is discretized as follows:

1. Obtain the PAA averages of the time series.

2. All PAA averages in the given interval (βi, βi + 1) are coded with a specific
symbol for this interval. For example, if α = 3, all PAA averages less than
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Figure 12.16. Simplified representation of temporal data. (a) Piecewise Linear

Approximation. (b) Piecewise Aggregated Approximation.
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the smallest breakpoint (−0.43) are mapped to “a.” All PAA coefficients less
than the second breakpoint but greater than first breakpoint (−0.43, 0.43) are
mapped to “b,” and all average values larger than the second breakpoint (0.43)
are mapped to “c.” This process is illustrated in Figure 12.18.

It is assumed that the symbols “a,” “b,” and “c” are approximately equiprob-
able symbols in the representation of a time series. The original sequence is
then represented as a concatenation of these symbols, which is known as a
“word.” For example, the mapping from PAA (C ) to a word C is represented
asC = (bcccccbaaaaabbccccbb)C = (aabcbbbc). The main advantage of the
SAX method is that 100 different discrete numerical values in an initial
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discrete time series C are first reduced to 20 different (average) values using
PAA and then they are transformed into only three different categorical values
using SAX:

C = c1,c2,…,c100 C = c1,c2,…,c20 C = f a,b,c

The proposed approach is intuitive and simple, yet powerful methodol-
ogy in a simplified representation of a large number of different values in time
series. The method is fast to compute and support different distance measures.
Therefore, it is applicable as a data-reduction step for different data-mining
techniques.
Transformation based representations The main idea behind transforma-
tion-based techniques is to map the original data into a point of a more man-
ageable domain. One of the widely used methods is the discrete Fourier
transformation (DFT). It transforms a sequence in the time domain to a point
in the frequency domain. This is done by selecting the top-K frequencies and
representing each sequence as a point in the K-dimensional space. One impor-
tant property that is worth noting is that Fourier coefficients do not change
under the shift operation. One problem with DFT is that is misses the impor-
tant feature of time localization. To avoid this problem, piecewise Fourier
transform was proposed, but the size of the pieces introduces new problems.
Large pieces reduce the power of multi-resolution, while modeling of low fre-
quencies with small pieces does not always give expected representations. The
discrete wavelet transformation (DWT) has been introduced to overcome the
difficulties in DFT. DWT transformation technique, analogously to fast Four-
ier transformation, turns a discrete vector of function values with the length N
into a vector of N wavelet coefficients. Wavelet transformation is a linear
operation and it is usually implemented as a recursion. The advantage of
using DWT is its ability of multi-resolution representation of signals. It has
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the time–frequency localization property. Therefore signals represented by
wavelet transformations bear more information than that of DFT.

In some applications we need to retrieve objects from a database of certain
shapes. Trends can often be reflected by specifying shapes of interest such as steep
peaks or upward and downward changes. For example, in a stock market database,
we may want to retrieve stocks whose closing price contains a head and shoulder pat-
tern, and we should be able to represent and recognize these shapes. Pattern discovery
can be driven by a template-based mining language in which the analyst specifies the
shapes that should be looked for. Shape definition language (SDL) was proposed to
translate the initial sequence with real-valued elements occurring in historical data
into a sequence of symbols from a given alphabet. SDL is capable of describing vari-
ety of queries about the shapes found in the database. It allows the user to create their
own language with complex patterns in terms of primitives. More interestingly, it per-
forms well on approximate matching where the user cares only about the overall shape
of the sequence but not on specific details. The first step in the representation process
is defining the alphabet of symbols and then translating the initial sequence to a
sequence of symbols. The translation is done by considering sample-to-sample transi-
tions and then assigning a symbol of the described alphabet to each transition.

A significantly different approach is to convert a sequence into discrete represen-
tation by using clustering. A sliding window of width w is used to generate subse-
quences from the original sequence. These subsequences are then clustered,
considering the pattern similarity between subsequences, using a suitable clustering
method, for example, k-nearest neighbor method. A different symbol is then assigned
to each cluster. The discrete version of the time series is obtained by using cluster
identities corresponding to the subsequence. For example, the original time sequence
is defined with integer values given in time (1, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5) as it is
represented in Figure 12.19a. The window width is defined by three consecutive
values, and samples of primitives are collected through the time series. After simpli-
fied clustering, the final set of three “frequent” primitive shapes, representing cluster
centroids, is given in Figure 12.19b. Assigning symbolic representation for these
shapes, namely, a1, a2, and a3, the final symbolic representation of the series will
be (a3, a2, a1, a1, a3, a2).

12.2.2 Similarity Measures Between Sequences

The individual elements of the sequences may be vectors of real numbers (e.g. in
applications involving speech or audio signals), or they may be symbolic data (e.g.
in applications involving gene sequences). After representing each sequence in a suit-
able form, it is necessary to define a similarity measure between sequences in order to
determine if they match. Given two sequences T1 and T2, we need to define an appro-
priate similarity function Sim, which calculates closeness of the two sequences,
denoted by Sim(T1, T2). Usually the similarity measure is expressed in terms of
inverse distance measure, and for various types of sequences and applications, we
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have numerous distance measures. An important issue in measuring similarity
between two sequences is the ability to deal with outlying points, noise in the data,
amplitude differences causing scaling problems, and the existence of gaps and other
time distortion problems. The most straightforward distance measure for time series is
the Euclidean distance and its variants, based on the common Lp norms. It is used in
time-domain continuous representations by viewing each subsequence with n discrete
values as a point in Rn. Besides being relatively straightforward and intuitive, Euclid-
ean distance and its variants have several other advantages. The complexity of eval-
uating these measures is linear, and they are easy to implement and indexable with any
access method and, in addition, are parameter-free. Furthermore, the Euclidean dis-
tance is surprisingly competitive with other more complex approaches, especially
if the size of the training set/database is relatively large. However, since the mapping
between the points of two time series is fixed, these distance measures are very sen-
sitive to noise and misalignments in time and are unable to handle local time shifting,
i.e., similar segments that are out of phase.

When a sequence is represented as a sequence of discrete symbols of an alphabet,
the similarity between two sequences is, most of the times, achieved by comparing
each element of one sequence with the correspondent one in the other sequence.
The best known such distance is the longest common subsequence (LCS) similarity,
utilizing the search for the LCS in both sequences we are comparing, and normalized
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with the length of the longer sequence. For example, if two sequences X and Y are
given as X = {10, 5, 6, 9, 22, 15, 4, 2} and Y = {6, 5, 10, 22, 15, 4, 2, 6, 8}, then
the longest common sequence is

LCS X,Y = 22,15,4,2

and normalized similarity measure is

LCS-Similarity X,Y =
LCS X,Y

max X , Y
=
4
9

In order to deal with noise, scaling, approximate values, and translation problems,
a simple improvement consists in determining the pairs of sequence portions that
agree in both sequences after some linear transformation is applied. It consists in
determining if there is a linear function f, such that one sequence can be approximately
mapped into the other. In most applications involving determination of similarity
between pairs of sequences, the sequences would be of different lengths. In such
cases, it is not possible to blindly accumulate distances between corresponding ele-
ments of the sequences. This brings us to the second aspect of sequence matching,
namely, sequence alignment. Essentially we need to properly insert “gaps” in the
two sequences or decide which should be corresponding elements in the two
sequences. There are many situations in which such symbolic sequence matching pro-
blems find applications. For example, many biological sequences such as genes, pro-
teins, etc. can be regarded as sequences over a finite alphabet. When two such
sequences are similar, it is expected that the corresponding biological entities have
similar functions because of related biochemical mechanisms. The approach includes
a similarity measure for sequences based on the concept of the edit distance for strings
of discrete symbols. This distance reflects the amount of work needed to transform a
sequence to another and is able to deal with different sequence length and gap exist-
ence. Typical edit operations are insert, delete, and replace, and they may be included
in the measure with the same or with different weights (costs) in the transformation
process. The distance between two strings is defined as the least sum of edit operation
costs that needs to be performed to transform one string into another. For example, if
two sequences are given: X = {a, b, c, b, d, a, b, c} and Y = {b, b, b, d, b}, the following
operations are applied to transform X into Y: delete(a), replace(c,b), delete(a), delete
(c). The total number of operations in this case is 4, and it represents non-normalized
distance measure between two sequences.

12.2.3 Temporal Data Modeling

A model is a global, high-level, and often abstract representation for the data. Typi-
cally, models are specified by a collection of model parameters that can be estimated
from a given data set. It is possible to classify models as predictive or descriptive
depending on the task they are performing. In contrast to the (global) model structure,
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a temporal pattern is a local model that makes a specific statement about a few data
samples in time. Spikes, for example, are patterns in a real-valued time series that may
be of interest. Similarly, in symbolic sequences, regular expressions represent well-
defined patterns. In bioinformatics, genes are known to appear as local patterns inter-
spersed between chunks of noncoding DNA. Matching and discovery of such patterns
are very useful in many applications not only in bioinformatics. Due to their readily
interpretable structure, patterns play a particularly dominant role in data mining. There
have been many techniques used to model global or local temporal events. We will
introduce only some of most popular modeling techniques.

Finite state machine (FSM) has a set of states and set of transitions. A state may
have transitions to other states that are caused by fulfilling some conditions within the
state. An FSMmust have an initial state, usually shown drawn with an arrow, and it is
a state that provides a starting point of the model. Inputs to the states, in our case repre-
senting symbols in a sequence, act as triggers for the transition from one state to
another state. An accept state, which is also known as final state, is usually represented
by a double circle in a graph representation. The machine reaches the final state when
it has performed the procedure successfully or in our case recognized a sequence pat-
tern. An FSM can be represented using a state transition table or state transition dia-
gram. Figure 12.20a and b shows both of these representations for a modeling
recognition of binary number with even number of ones. FSM does not work very
well when the transitions are not precise and does not scale well when the set of sym-
bols for sequence representation is large.

Markov model (MM) extends the basic idea behind FSM. Both FSM and MM
are directed graphs. As with FSR, MM always has a current state. Start and end
nodes are drawn for illustrative purposes and need not be present. Unlike in FSM tran-
sitions are not associated with specific input values. Arcs carry a probability value for
transition from one state to the other. For example, the probability that transition from
state “Start” to “S1” is 0.4, and the probability staying in the “Start” state is 0.6. The
sum of the probability values coming out of each node should be 1. MM shows only
transitions with probability greater than 0. If a transition is not shown, it is assumed to
have a probability of 0. The probabilities are combined to determine the final prob-
ability of the pattern produced by the MM. For example, with the MM shown in
Figure 12.21, the probability that the MM takes the horizontal path from starting node
to S2 is 0.4 × 0.7 = 0.28.

Condition
Current state

Input 0

S1

S1

S2

S2

S2

S1Input 1

S1 S2

0
(a) (b)

0
1

1

Figure 12.20. Finite state machine. (a) State transition table. (b) State transition diagram.
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MM is derived based on the memoryless assumption. It states that given the cur-
rent state of the system, the future evolution of the system is independent of its history.
MM have been used widely in speech recognition and natural language processing.

Hidden Markov model (HMM) is an extension to MM. Similar to MM, HMM
consists of set of states and transition probabilities. In a regular MM, the states are
visible to the observer, and the state transition probabilities are the only parameters.
In HMM, each state is associated with a state probability distribution. For example,
assume that we were given a sequence of events in a coin toss: O = (HTTHTHH),
where H = Head and T = Tail. But additional information is necessary. What is
not given is the sequence generated with one or two coins. According to the above
definitions, Figure 12.22 shows two possible models. Figure 12.22a assumes that only
one coin was tossed. We can model this system as an MM with two-state model,
where Head and Tail are these two states with the same initial probabilities. The prob-
ability of the sequence O is P(O) = 0.5 × 0.7 × 0.3 × 0.7 × 0.3 × 0.7 × 0.7 = 0.0108.

Another possibility to explain the observed sequence is shown in Figure 12.22b.
There are again two states in this model, and each state corresponds to a separate
biased coin being tossed. Each state has its own probability distribution of Heads
and Tails, and therefore the model is represented as an HMM. Obviously, in this
model, we have several “paths” to determine the probability of the sequence. In other
words, we can start with tossing one or other coin and continue with this selection. In
all these cases composite probability will be different. In this situation we may search
for the maximum probability of the sequence O in the HMM. HMM may be forma-
lized as a directed graph with V vertices and A arcs. Set V = {v1, v2,…,vn} represents
states, and matrix A = {aij} represents transition probability distribution, where aij is
the transitional probability from state i to state j. Given a set of possible observations

0.6 0.3 1.0

Start
0.4 0.7

S1 S2

Figure 12.21. A simple Markov model.
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Figure 12.22. Markov model vs. hidden Markov model. (a) 1-coin model. (b) 2-coin model.
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O = {o1, o2,…,om} for each state vi, the probability of seeing each observation in the
sequence is given by Bi = {oi1, oi2,…,oim}. The initial state distribution is represented
as σ, which determines the starting state at time t = 0.

12.2.4 Mining Sequences

Temporal data-mining tasks include prediction, classification, clustering, search and
retrieval, and pattern discovery. The first four have been investigated extensively in
traditional time-series analysis, pattern recognition, and information retrieval. We will
concentrate in this text on illustrative examples of algorithms for pattern discovery in
large databases, which are of more recent origin and showing wide applicability. The
problem of pattern discovery is to find and evaluate all “interesting” patterns in the
data. There are many ways of defining what constitutes a pattern in the data, and
we shall discuss some generic approaches. There is no universal notion for interest-
ingness of a pattern either. However, one concept that is found very useful in data
mining is that of frequent patterns. A frequent pattern is one that occurs many times
in the data. Much of data-mining literature is concerned with formulating useful
pattern structures and developing efficient algorithms for discovering all patterns
that occur frequently in the data.

A pattern is a local structure in the database. In the sequential patterns framework,
we are given a collection of sequences, and the task is to discover sequences of items
called sequential patterns that occur in sufficiently many of those sequences. In the
frequent episodes analysis, the data set may be given in a single long sequence
or in a large set of shorter sequences. An event sequence is denoted by {(E1, t1),
(E2, t2), … (En, tn)}, where Ei takes values from a finite set of event types E and ti
is an integer denoting the time stamp of the ith event. The sequence is ordered with
respect to the time stamps so that ti ≤ ti+1 for all i = 1, 2,…,n. The following is an
example event sequence S with 10 events in it:

S = A,2 , B,3 , A,7 , C,8 , B,9 , D,11 , C,12 , A,13 , B,14 , C,15

An episode is a partially ordered set of events. When the order among the events
of an episode is total, it is called a serial episode, and when there is no order at all, the
episode is called a parallel episode. For example, (A B C) is a 3-node serial
episode. The arrows in our notation serve to emphasize the total order. In contrast,
parallel episodes are somewhat similar to itemsets, and so, we can denote a 3-node
parallel episode with event types A, B, and C as (ABC).

An episode is said to occur in an event sequence if there exist events in the
sequence occurring with exactly the same order as that prescribed in the episode.
For example, in the example, the events (A, 2), (B, 3), and (C, 8) constitute an occur-
rence of the serial episode (A B C), while the events (A, 7), (B, 3), and (C, 8) do
not, because for this serial episode to occur, A must occur before B and C. Both these
sets of events, however, are valid occurrences of the parallel episode (ABC), since
there are no restrictions with regard to the order in which the events must occur
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for parallel episodes. Let α and β be two episodes. β is said to be a sub-episode of α if
all the event types in β appear in α as well and if the partial order among the event types
of β is the same as that for the corresponding event types in α. For example, (A C) is
a 2-node sub-episode of the serial episode (A B C), while (B A) is not. In the
case of parallel episodes, this order constraint is not required.

The sequential pattern mining framework may extend the frequent itemset idea
described in the chapter on association rules with temporal order. The database D of
itemsets is considering no longer just some unordered collection of transactions. Now,
each transaction inD carries a time stamp as well as a customer ID. Each transaction as
earlier is simply a collection of items. The transactions associated with a single cus-
tomer can be regarded as a sequence of itemsets ordered by time, and D would have
one such transaction sequence corresponding to each customer. Consider an example
database with five customers whose corresponding transaction sequences are as
follows:

Customer ID Transaction Sequence

1 ({A,B}{A,C,D}{B,E})
2 ({D,G} {A,B,E,H})
3 ({A}{B,D}{A,B,E,F}{G,H})
4 ({A}{F})
5 ({A,D} {B,E,G,H} {F})

Each customer’s transaction sequence is enclosed in angular braces, while the
items bought in a single transaction are enclosed in round braces. For example, cus-
tomer 3 made 4 visits to the supermarket. In his/her first visit, he/she bought only item
A; in the second visit, items are B and D; and so on.

The temporal patterns of interest are sequences of itemsets. A sequence S of item-
sets is denoted by {s1 s2 sn}, where sj is an itemset. Since S has n itemsets, it is called
an n-sequence. A sequence A = {a1 a2 an} is said to be contained in another sequence
B = {b1 b2 bm} if there exist integers i1 < i2 < <in such that a1 bi1, a2 bi2, …, an
bin. That is, an n-sequence A is contained in a sequence B if there exists an n-length

subsequence in b, in which each itemset contains the corresponding itemsets of a. For
example, the sequence {(A)(BC)} is contained in {(AB) (F) (BCE) (DE)} but not in
{(BC) (AB) (C) (DEF)}. Further, a sequence is said to bemaximal in a set of sequences
if it is not contained in any other sequence. In the set of example customer transaction
sequences listed above, all are maximal (with respect to the given set of sequences)
except the sequence of customer 4, which is contained in transaction sequences of
customers 3 and 5.

The Apriori algorithm described earlier can be used to find frequent sequences,
except that there is a small difference in the definition of support. Earlier, the support
of an itemset was defined as the fraction of all transactions that contained the itemset.
Now, the support for any arbitrary sequence A is the fraction of customer transaction
sequences in the database D that contain A. For our example database, the sequence
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{(D)(GH)} has a support of 0.4, since it is contained in two out of the five transaction
sequences (namely, that of customer 3 and customer 5). The user specifies a minimum
support threshold. Any sequence of itemsets with support greater than or equal to the
threshold value is called a large sequence. If a sequence A is large andmaximal, then it
is regarded as a sequential pattern. The process of frequent episode discovery is an
Apriori-style iterative algorithm that starts with discovering frequent 1-element
sequences. These are then combined to form candidate 2-element sequences, and then
by counting their frequencies, 2-element frequent sequences are obtained. This proc-
ess is continued till frequent sequences of all lengths are found. The task of a sequence
mining is to systematically discover all sequential patterns in database D.

Counting frequencies of parallel itemsets is straightforward and described in tra-
ditional algorithms for frequent itemset detection. Counting serial itemsets, on the
other hand, requires more computational resources. For example, unlike for parallel
itemsets, we need finite state automata to recognize serial episodes. More specifically,
an appropriate l-state automaton can be used to recognize occurrences of an l-node
serial sequence. For example, for the sequence (A B A A), there would be
a 5-state automaton given in Figure 12.23. It transits from its first state on seeing
an event of type A and then waits for an event of type B to transit to its next state
and so on.We need such automata for each episode whose frequency is being counted.

While we described the framework using an example of mining a database of cus-
tomer transaction sequences for temporal buying patterns, this concept of sequential
patterns is quite general and can be used in many other situations as well. Indeed, the
problem of motif discovery in a database of protein sequences can also be easily
addressed in this framework. Another example is Web navigation mining. Here the
database contains a sequence ofWeb sites that a user navigates through in each brows-
ing session. Sequential pattern mining can be used to discover sequences of Web sites
that are frequently visited. Temporal associations are particularly appropriate as can-
didates for causal rules’ analysis in temporally related medical data, such as in the
histories of patients’medical visits. Patients are associated with both static properties,
such as gender, and temporal properties, such as age, symptoms, or current medical
treatments. Adapting this method to deal with temporal information leads to some dif-
ferent approaches. A possible extension is a new meaning for a typical association
rule: X=>Y. It states now that if X occurs, then Y will occur within time T. Stating
a rule in this new form allows for controlling the impact of the occurrence of one event
to the other event occurrence, within a specific time interval. In the case of the sequen-
tial pattern framework, some generalizations are proposed to incorporate minimum
and maximum time gap constraints between successive elements of a sequential
pattern.

Mining continuous data streams is a new research topic related to temporal data
mining that has recently received significant attention. The term “data stream” per-
tains to data arriving over time in a nearly continuous fashion. It is often fast-changing
stream with huge number multidimensional data. Data are collected close to their
source, such as sensors data, so they are usually with a low level of abstraction. In
streaming data-mining applications, the data is often available for mining only once,
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as it flows by. That cause several challenging problems including how to aggregate the
data, how to obtain scalability of traditional analyses in massive, heterogeneous, non-
stationary data environment, and how to incorporate incremental learning into a data-
mining process. Linear, single-scan algorithms are still rare in commercial data-
mining tools, but also still challenged in a research community. Many applications,
such as network monitoring, telecommunication applications, stock market analysis,
bio-surveillance systems, and distribute sensors depend critically on the efficient pro-
cessing and analysis of data streams. For example, a frequent itemset mining algo-
rithm over data stream is developed. It is based on an incremental algorithm to
maintain the FP stream, which is a tree data structure to represent the frequent itemsets
and their dynamics in time (Figure 12.24).
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Figure 12.23. FSA for the sequence A B A A.
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Figure 12.24. Multidimensional streams.
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Ubiquitous data mining (UDM) is an additional new field that defines a process of
performing analysis of data on mobile, embedded, and ubiquitous devices. It repre-
sents the next generation of data-mining systems that will support the intelligent
and time-critical information needs of mobile users and will facilitate “anytime, any-
where” data mining. It is the next natural step in the world of ubiquitous computing.
The underlying focus of UDM systems is to perform computationally intensive min-
ing techniques in mobile environments that are constrained by limited computational
resources and varying network characteristics. Additional technical challenges are
how to minimize energy consumption of the mobile device during the data-mining
process, how to present results on relatively small screens, and how to transfer
data-mining results over a wireless network with a limited bandwidth.

12.3 SPATIAL DATA MINING

Spatial data mining (SDM) is the process of discovering interesting and previously
unknown but potentially useful information from large spatial data sets. Spatial data
carries topological and/or distance information, and it is often organized in databases
by spatial indexing structures and accessed by spatial access methods. The applica-
tions covered by SDM include geomarketing, environmental studies, risk analysis,
remote sensing, geographical information systems (GIS), computer cartography, envi-
ronmental planning, and so on. For example, in geomarketing, a store can establish its
trade area, i.e. the spatial extent of its customers, and then analyze the profile of those
customers on the basis of both their properties and the area where they live. Simple
illustrations of SDM results are given in Figure 12.25, where (a) shows that a fire is
often located close to a dry tree and a bird is often seen in the neighborhood of a house,
while (b) emphasizes a significant trend that can be observed for the city of Munich
where the average rent decreases quite regularly when moving away from the city.
One of the main reasons for developing large number of SDM applications is enor-
mous amount of special data that is collected recently at relatively low price. High
spatial and spectral resolution remote sensing systems and other environmental mon-
itoring devices gather vast amounts of geo-referenced digital imagery, video, and
sound. The complexity of spatial data and intrinsic spatial relationships limits the use-
fulness of conventional data-mining techniques for extracting spatial patterns.

One of the fundamental assumptions of data-mining analysis is that the data sam-
ples are independently generated. However, in the analysis of spatial data, the assump-
tion about the independence of samples is generally false. In fact, spatial data tends to
be highly self-correlated. Extracting interesting and useful patterns from spatial data
sets is more difficult than extracting corresponding patterns from traditional numeric
and categorical data due to the complexity of spatial data types, spatial relationships,
and spatial autocorrelation. The spatial attributes of a spatial object most often include
information related to spatial locations, e.g., longitude, latitude, and elevation, as well
as shape. Relationships among nonspatial objects are explicit in data inputs, e.g. arith-
metic relation, ordering, is instance of, subclass of, and membership of. In contrast,
relationships among spatial objects are often implicit, such as overlap, intersect, close,
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and behind. Proximity can be defined in highly general terms, including distance,
direction, and/or topology. Also, spatial heterogeneity or the non-stationarity of the
observed variables with respect to location is often evident since many space pro-
cesses are local. Omitting the fact that nearby items tend to be more similar than items
situated more apart causes inconsistent results in the spatial data analysis. In summary,
specific features of spatial data that preclude the use of general purpose data-mining
algorithms are (1) rich data types (e.g., extended spatial objects), (2) implicit spatial
relationships among the variables, (3) observations that are not independent, and (4)
spatial autocorrelation among the features (Figure 12.26).

One possible way to deal with implicit spatial relationships is to materialize the
relationships into traditional data input columns and then apply classical data-mining
techniques. However, this approach can result in loss of information. Another way to
capture implicit spatial relationships is to develop models or techniques to incorporate
spatial information into the SDM process. A concept within statistics devoted to the
analysis of spatial relations is called spatial autocorrelation. Knowledge-discovery
techniques that ignore spatial autocorrelation typically perform poorly in the presence
of spatial data.

The spatial relationship among locations in a spatial framework is often modeled
via a contiguity matrix. A simple contiguity matrix may represent a neighborhood
relationship defined using adjacency. Figure 12.27a shows a gridded spatial frame-
work with four locations, A, B, C, and D. A binary matrix representation of a
four-neighborhood relationship is shown in Figure 12.27b. The row-normalized rep-
resentation of this matrix is called a contiguity matrix, as shown in Figure 12.27c. The
essential idea is to specify the pairs of locations that influence each other along with
the relative intensity of interaction.
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Figure 12.25. Illustrative examples of spatial-data-mining results. (a) Example of co-

location spatial data mining (Shekhar and Chawla, 2003). (b) Average rent for the

communities of Bavaria (Ester et al., 1997).
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SDM consists of extracting knowledge, spatial relationships, and any other prop-
erties that are not explicitly stored in the database. SDM is used to find implicit reg-
ularities and relations between spatial data and nonspatial data. In effect, a spatial
database constitutes a spatial continuum in which properties concerning a particular
place are generally linked and explained in terms of the properties of its neighborhood.
In this section, we introduce as illustrations of SDM characteristics two important and
often used techniques: (1) spatial autoregressive modeling (SAR) and (2) spatial out-
liers’ detection using variogram-cloud technique.

1. The spatial autoregressive model is a classification technique that decom-
poses a classifier into two parts, spatial autoregression and logistic transfor-
mation. Spatial dependencies are modeled using the framework of logistic
regression analysis. If the spatially dependent values yi are related to each
other, then the traditional regression equation can be modified as

y= ρWy +Xβ + ε

whereW is the neighborhood relationship contiguity matrix and ρ is a param-
eter that reflects the strength of the spatial dependencies between the elements
of the dependent variable. After the correction term ρWy is introduced, the
components of the residual error vector ε are then assumed to be generated
from independent and identical standard normal distributions. As in the case
of classical regression, the proposed equation has to be transformed via the

Traditional Data Mining Spatial Data Mining
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Figure 12.26. Main differences between traditional data mining and spatial data mining.
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logistic function for binary dependent variables, and we refer to this equation
as the Spatial AutoRegressive model (SAR). Notice that when ρ = 0, this equa-
tion collapses to the classical regression model. If the spatial autocorrelation
coefficient is statistically significant, then SAR will quantify the presence of
spatial autocorrelation in the classification model. It will indicate the extent to
which variations in the dependent variable (y) are influenced by the average of
neighboring observation values.

2. A spatial outlier is a spatially referenced object whose nonspatial attribute
values differ significantly from those of other spatially referenced objects
in its spatial neighborhood. This kind of outliers shows a local instability
in values of nonspatial attributes. They represent spatially referenced objects
whose nonspatial attributes are extreme relative to its neighbors, even though
the attributes may not be significantly different from the entire population. For
example, a new house in an old neighborhood of a growing metropolitan area
is a spatial outlier based on the nonspatial attribute house age.

A variogram-cloud technique displays data points related by neighborhood rela-
tionships. For each pair of samples, the square root of the absolute difference between
attribute values at the locations versus the Euclidean distance between the locations is
plotted. In data sets exhibiting strong spatial dependence, the variance in the attribute
differences will increase with increasing distance between locations. Locations that
are near to one another, but with large attribute differences, might indicate a spatial
outlier, even though the values at both locations may appear to be reasonable when
examining the data set nonspatially. For example, the spatial data set is represented
with six five-dimensional samples given in Figure 12.28a. Traditional nonspatial anal-
ysis will not discover any outliers, especially because the number of samples is rel-
atively small. However, after applying a variogram-cloud technique, assuming that
first two attributes are X–Y spatial coordinates and the other three are characteristics
of samples, the conclusion could be significantly changed. Figure 12.29 shows the
variogram cloud for this data set. This plot has some pairs of points that are out of
main dense region of common distances.
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Figure 12.28. An example of variogram-cloud graph. (a) Spatial data set. (b) Critical

sample’s relations in a variogram cloud.
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Computation of spatial distances and distances of samples, as a part of a vario-
gram technique, shows that there is a sample spatially relatively close to a group of
other samples (small space distances) but with very high distances in other nonspatial
attributes. This is the sample S3, which is spatially close to samples S1, S5, and S6.
Coordinates of these samples and corresponding distances are given in Figure 12.28b
selecting S3 as a candidate for an outlier. Visualization of these and other relations
between samples through a variogram shows the same results.

12.4 DISTRIBUTED DATA MINING

The emergence of tremendous data sets creates a growing need for analyzing them
across geographical lines using distributed systems. These developments have created
unprecedented opportunities for large-scale data-driven knowledge discovery, as well
as the potential for fundamental gains in scientific and business understanding. Imple-
mentations of data-mining techniques on high-performance distributed computing
platforms are moving away from centralized computing models for both technical
and organizational reasons. In some cases, centralization is hard because it requires
these multi-terabyte data sets to be transmitted over very long distances. In others,
centralization violates privacy legislation, exposes business secrets, or poses other
social challenges. Common examples of such challenges arise in medicine where rel-
evant data might be spread among multiple parties, in commercial organizations such
as drug companies or hospitals, government bodies such as the US Food and Drug
Administration, and nongovernment organizations such as charities and public-health
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Figure 12.29. A variogram-cloud technique discovers an outlier.
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organizations. Each organization is bound by regulatory restrictions, such as privacy
legislation, or corporate requirements on proprietary information that could give com-
petitors a commercial advantage. Consequently, a need exists for developing algo-
rithms, tools, services, and infrastructure that let us mine data distributed across
organizations while preserving privacy.

This shift toward intrinsically distributed, complex environments has prompted a
range of new data-mining challenges. The added dimension of distributed data signif-
icantly increases the data-mining process’s complexity. Advances in computing and
communication over wired and wireless networks have resulted in many pervasive
distributed computing environments. Many of these environments deal with different
distributed sources of voluminous data, multiple compute nodes, and distributed user
community. Analyzing and monitoring these distributed data sources require a new
data-mining technology designed for distributed applications. The field of distributed
data mining (DDM) deals with these problems—mining distributed data by paying
careful attention to the distributed resources. In addition to data being distributed,
the advent of the Internet has led to increasingly complex data, including natural lan-
guage text, images, time series, sensor data, multi-relational and object data types, and
so on. To further complicate matters, systems with distributed streaming data need
incremental or online mining tools that require complete process whenever a change
is made to the underlying data. Data-mining techniques involving in such complex
environment must encounter great dynamics due to changes in the system, and it
can affect the overall performance of the system. Providing support for all these fea-
tures in DDM systems requires novel solutions.

The Web architecture, with layered protocols and services, provides a sound
framework for supporting DDM. New framework embraces the growing trend of mer-
ging computation with communication. DDM accepts the fact that data may be inher-
ently distributed among different loosely coupled sites often with heterogeneous data
and connected by a network. It offers techniques to discover new knowledge through
distributed data analysis and modeling using minimal communication of data. Also,
interactions in a distributed system need to be implemented in a reliable, stable, and
scalable way. Ultimately, systems must be able to hide this technological complexity
from users.

Today, the goods that are able to be transacted through e-services are not
restricted only for real entities such as electronics, furniture, or plane tickets. The
Internet and WWW evolve to include also resources such as software, computation
abilities, or useful data sets. These new resources are potentially able to be sold or
rented to clients as services for Internet users. Data mining is emerging as intuitively
suitable for being delivered as an e-service because the approach reduces the high cost
of setting up and maintaining infrastructure of supporting technologies. To efficiently
and effectively deliver data mining as a service in the WWW, Web service technol-
ogies are introduced to provide layers of abstractions and standards above existing
software systems. These layers are capable of bridging any operating system, hard-
ware platform, or programming language, just as the Web is doing. The natural exten-
sion for these services is grid computing. The grid is a distributed computing
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infrastructure that enables coordinated resource sharing within dynamic organizations
consisting of individuals, institutions, and resources. The main aim of grid computing
is to give organizations and application developers the ability to create distributed
computing environments that can utilize computing resources on demand. Grid com-
puting can leverage the computing power of a large numbers of server computers,
desktop PCs, clusters, and other kind of hardware. Therefore, it can help increase effi-
ciencies and reduce the cost of computing networks by decreasing data processing
time and optimizing resources and distributing workloads. Grid allows users to
achieve much faster results on large operations and at lower costs. Recent develop-
ment and applications show that the grid technology represents a critical infrastructure
for high-performance DDM and knowledge discovery. This technology is particularly
suitable for applications that typically deal with very large amount of distributed data
such as retail transactions, scientific simulation, or telecommunication data that can-
not be analyzed on traditional machines in acceptable times. As the grid is becoming a
well-accepted computing infrastructure in science and industry, it provides more gen-
eral data-mining services, algorithms, and applications. This framework helps ana-
lysts, scientists, organizations, and professionals to leverage grid capacity in
supporting high-performance distributed computing for solving their data-mining
problem in a distributed way. The creation of so-called knowledge grids on top of data
and computational grids is the condition for meeting the challenges posed by the
increasing demand for power and abstractions coming from complex data-mining sce-
narios in business, science, and engineering.

It is not only that DDM infrastructure is changing by offering new approaches
through Web services together with grid technology. Basic data-mining algorithms
also need changes in a distributed environment. Most off-the-shelf data-mining sys-
tems are designed to work as a monolithic centralized application. They normally
download the relevant data to a centralized location and then perform the data-mining
operations. This centralized approach does not work well in many of the emerging
distributed, ubiquitous, possibly privacy-sensitive data-mining applications.
A primary goal of DDM algorithms is to achieve the same or similar data-mining
result as a centralized solution, without moving data from their original locations. Dis-
tributed approach assumes that local computation is done on each of the sites, and
either a central site communicates with each distributed site to compute the global
model, or a peer-to-peer architecture is used. In the latter case, individual nodes per-
formmost of the tasks by communicating with neighboring nodes by message passing
over an asynchronous network. Illustrative examples are networks of independent and
intelligent sensors that are connected to each other in an ad hoc fashion. Some features
of a distributed mining scenario are as follows:

• The system consists of multiple independent sites of data and computation.

• Sites exchange their results by communicating with other sites often through
message passing.

• Communication between the sites is expensive and often represents a
bottleneck.
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• Sites have resource constraints, e.g. battery power in distributed sensor
systems.

• Sites have privacy and/or security concerns.

• The system should have the ability to efficiently scale up because distributed
systems may consist today of millions of nodes.

• The system should have the ability to function correctly in the presence of local
site failures and also missing or incorrect data.

Obviously, the emphasis in DDM algorithms is on the local computation and
communication. Local algorithms for DDM can be broadly classified under two
categories:

• Exact local algorithms: Those algorithms guarantee to always terminate with
precisely the same result that would have to be found by a centralized algo-
rithm. Exact local algorithms are obviously more desirable, but are more dif-
ficult to develop and in some cases seemingly not possible.

• Approximate local algorithms: Those algorithms cannot make accuracy guar-
anteed by centralized solutions. They make a balance between quality of solu-
tion and system’s responses.

Selection of a type of local algorithm depends on the data-mining problem and
application domain including the amount of data and its dynamics. In general, approx-
imate approaches are used in cases when the balance between accuracy and efficiency
is important, and communications between sites represent a bottleneck. We will illus-
trate this balance between local computation and communication with a simple
approximate algorithm useful in many data-mining applications. For example, if
we want to compare the data vectors observed at different sites, the centralized
approach will collect these vectors to the central computer and then compare the vec-
tors using whatever metric is appropriate for the domain. DDM technology offers
more efficient solutions for the problem using a simple randomized technique.

Vectors a = (a1, a2,…,am) and b = (b1, b2,…,bm) are given at two distributed sites
A and B, respectively. We want to approximate the Euclidean distance between them
using a small number of messages and reduced data transfer between sites A and B.
Centralized solution requires that one vector is transferred on the other site; that is, m
components of one vector are transferred. How to obtain the same result with less than
m data transfer? Note that the problem of computing the Euclidean distance between a
pair of vectors a and b can be represented as the problem of computing the inner pro-
ducts as follows:

d2 a,b = a • a + b • b −2 a • b

where (a • b) represents scalar product between vectors a and b defined as ai bi and
(a • a) is special case of the scalar product representing square of the magnitude of the
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vector a. The reader can easily check the previous relation. If, for example, the vectors
a and b are a = (1,2,3) and b = (2,1,2), then the Euclidean distance may be calculated
as d2 = 14 + 9 – 2 × 10 = 3. While products (a • a) and (b • b) can be computed locally
and each result is a single value, the core challenge is to develop an algorithm for dis-
tributed inner product computation (a • b). A simple, communication-efficient rando-
mized technique for computing this inner product between two vectors observed at
two different sites may consist of the following steps:

1. Vectors a and b are given on two sites A and B, respectively. SiteA sends to the
site B a random number generator seed. [That is only one passed message.]

2. Both sites A and B cooperatively generate random matrix R with dimensions
k ×m, where k m. Each entry in the matrix R is generated independently and
identically from some fixed distribution with mean zero and finite variance.

3. Based on the matrix R, sites A and B compute their own local matrix products:

ˆa=R a and ˆb=Rb

Dimensions of new local vectors ^a and ^b are k, and that means significantly
lower than initial lengths of m.

4. Site A sends the resulting vector ^a to the site B. [That represents k passed
messages.]

5. Site B computes approximate inner product (a • b) = (^aT • ^b)/k.

So, instead of sending an m-dimensional vector to the other site, the algorithm
sends only a (k + 1)-dimensional vector where k m (k is a user-defined parameter).
The inner product of vectors can still be estimated accurately with lower communi-
cation load.

In the DDM literature, one of two assumptions is commonly adopted as to how
data is distributed across sites: (1) homogeneously or horizontally partitioned or (2)
heterogeneously or vertically partitioned. Both viewpoints assume that the data tables
at each distributed site are partitions of a single global table. It is important to stress
that the global table viewpoint is strictly conceptual. It is not necessarily assumed that
such a table was physically realized and partitioned to form the tables at each site. In
the homogeneous case, the global table is horizontally partitioned. The tables at each
site are subsets of the global table; they have exactly the same attributes. Fig-
ures 12.30a illustrate the homogeneously distributed case using an example from
weather data where both tables use the same three attributes. In the heterogeneous
case, the table is vertically partitioned, where each site contains a subset of columns.
That means sites do not have the same attributes. However, samples at each site are
assumed to contain a unique identifier to facilitate matching, and Figure 12.30b illus-
trates this case. The tables at distributed sites have different attributes and samples are
linked through a unique identifier, Patient ID.

DDM technology support different data-mining tasks including classification,
prediction, clustering, market basket analysis, and outliers’ detection. A solution
for each of these tasks may be implemented with variety of DDM algorithms. For
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example, distributed Apriori has several versions for frequent itemset generation in
distributed transactional database. They usually require multiple synchronizations
and communication steps. Most of these implementations assume that platforms
are homogeneous, and therefore the data sets are partitioned evenly among the sites.
However, in practice, both the data sets and the processing platforms are more likely to
be heterogeneous running multiple and different systems and tools. This leads to
unbalanced data set distributions and workloads causing additional problems in
implementation.

One of recent trends is online mining technology used for monitoring in distrib-
uted sensor networks. This is because deployments of large-scale distributed sensor
networks are now possible owing to hardware advances and increasing software sup-
port. Online data mining, also called data stream mining, is concerned with extracting
patterns, detecting outliers, or developing dynamic models of system’s behavior from
continuous data streams such as those generated by sensor networks. Because of the
massive amount of data and the speed of which the data are generated, many data-
mining applications in sensor networks require in-network processing such as aggre-
gation to reduce sample size and the communication overhead. Online data mining in
sensor networks offers many additional challenges, including:

• limited communication bandwidth,

• constraints on local computing resources,

• limited power supply,

• need for fault tolerance, and

• asynchronous nature of the network.

Obviously, data-mining systems have evolved in short period of time from stand-
alone programs characterized by single algorithms with little support for the entire
knowledge-discovery process to integrated systems incorporating several mining
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Figure 12.30. (a) Horizontally vs. (b) vertically partitioned data.
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algorithms, multiple users, communications, and various and heterogeneous data for-
mats and distributed data sources. Although many DDM algorithms are developed
and deployed in variety of applications, the trend will be illustrated in this book with
only one example of a distributed clustering algorithm.

12.4.1 Distributed DBSCAN Clustering

Distributed clustering assumes that samples to be clustered reside on different sites.
Instead of transmitting all samples to a central site where we can apply one of standard
clustering algorithms to analyze the data locally, the data are clustered independently
on the distributed local sites. Then, in a subsequent step, the central site is trying to
establish a global clustering model based on the downloaded local models, i.e. sum-
marized representatives of local data. Distributed clustering is carried out on two dif-
ferent levels, i.e. the local level and the global level (Figure 12.31). On the local level,
all sites carry out a clustering independently from each other. Communication with
central site and determining global model should reflect an optimum trade-off
between complexity and accuracy of the algorithm.

Local models consist of a set of representatives for each locally found cluster.
A representative is a good approximation for samples residing on the corresponding
local site. The local model is transferred to a central site, where the local models are
merged in order to form a global model. The representation of local models should be
enough simple so there will be no overload in communications. At the same time,
local model should be enough informative to support high quality of approximate
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Figure 12.31. System architecture for distributed clustering.
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global clustering. The global model is created by analyzing and integrating local
representatives. The resulting global clustering is sent back, at the end of the process,
to all local sites.

This global distributed framework may be more precisely specified when we
implement specific clustering algorithm. The density-based clustering algorithm
DBSCAN is a good candidate, because it is robust to outliers, is easy to implement,
supports clusters of different shapes, and allows incremental online implementation.
Main steps of the algorithm are explained in Chapter 9, and the same process is
applied locally. To find local clusters, DBSCAN starts with an arbitrary core object
p, which is not yet clustered and retrieves all objects density-reachable from p. The
retrieval of density-reachable objects is performed in iterations until all local samples
are analyzed. After having clustered the data locally, we need a small number of repre-
sentatives that will describe the local clustering result accurately. For determining
suitable representatives of the clusters, the concept of specific core points is
introduced.

Let C be a local cluster with respect to the given DBSCAN parameters ε and
MinPts. Furthermore, let CorC C be the set of core points belonging to this cluster.
Then ScorC C is called a complete set of specific core points of C iff the following
conditions are true:

• ScorC CorC
• si,sj ScorC: si Neighborhoodε (sj)

• c CorC, s ScorC: c Neighborhoodε (s)

ScorC set of points consists of very small number of specific core points that
describes the cluster C. For example, given in Figure 12.32a, sites 2 and 3 have only
one specific core point, while site 1, because of the cluster shape, has two specific core
points. To further simplify the representation of local clusters, the number of specific
core points, |ScorC| =K, is used as input parameters for a further local “clustering step”
with an adapted version of K-means. For each cluster C found by DBSCAN, k-means
use ScorC points as starting points. The result is K = |ScorC| subclusters and centroids
within C.

Each local model LocalModelk consists of a set of mk pairs: a representative r
(complete specific core point) and a ε radius value. The numberm of pairs transmitted
from each site k is determined by the number n of clusters Ci found on site k. Each of
these pairs (r, εr) represents subset of samples that are all located in corresponding
local cluster. Obviously, we have to check whether it is possible to merge two or more
of these clusters, found on different sites, together. That is the main task of a global
modeling part. To find such a global model, the algorithm continues with the density-
based clustering algorithm DBSCAN again, but only for collected representatives
from local models. Because of characteristics of these representative points, the
parameterMinPtsglobal is set to 2, and radius εglobal value should be set generally close
to 2εlocal.
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In Figure 12.32, an example of distributed DBSCAN for εglobal = 2εlocal is
depicted. In Figure 12.32a the independently detected clusters on sites 1, 2, and 3
are represented. The cluster on site 1 is represented using K-means by two represen-
tatives, R1 and R2, whereas the clusters on site 2 and site 3 are only represented by one
representative as shown in Figure 12.32b. Figure 12.32c illustrates that all four local
clusters from the different sites are merged together to one large cluster. This integra-
tion is obtained by using an εglobal parameter equal to 2εlocal. Figure 12.32c also makes
clear that an εglobal = εlocal is insufficient to detect this global cluster. When the final
global model is obtained, the model is distributed to local sites. This model makes
corrections comparing previously found local models. For example, in the local clus-
tering, some points may be left as outliers, but with the global model they may be
integrated into modified clusters.
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Figure 12.32. Distributed DBSCAN clustering (Januzaj 2003). (a) Local clusters. (b) Local

representatives. (c) Global model with εglobal = 2εlocal.
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12.5 CORRELATION DOES NOT IMPLY CAUSALITY!

An associational concept is any relationship that can be defined in terms of a
frequency-based joint distribution of observed variables, while a causal concept is
any relationship that cannot be defined from the distribution alone. Even simple exam-
ples show that the associational criterion is neither necessary nor sufficient for cau-
sality confirmation. For example, data mining might determine that males with
income between $50,000 and $65,000 who subscribe to certain magazines are likely
purchasers of a product you want to sell. While you can take advantage of this pattern,
say, by aiming your marketing at people who fit the pattern, you should not assume
that any of these factors (income, type of magazine) cause them to buy your product.
The predictive relationships found via data mining are not necessarily causes of an
action or behavior.

The research questions that motivate many studies in the health, social, and
behavioral sciences are not statistical but causal in nature. For example, what is the
efficacy of a given drug in a given population, or what fraction of past crimes could
have been avoided by a given policy? The central target of such studies is determining
of cause–effect relationships among variables of interests, for example, treatments–
diseases or policies–crime, as preconditions–outcomes relationships. In order to
express causal assumptions mathematically, certain extensions are required in the
standard mathematical language of statistics, and these extensions are not generally
emphasized in the mainstream literature and education.

The aim of standard statistical analysis, typified by regression and other esti-
mation techniques, is to infer parameters of a distribution from samples drawn of
that distribution. With the help of such parameters, one can infer associations
among variables or estimate the likelihood of past and future events. These tasks
are managed well by standard statistical analysis so long as experimental condi-
tions remain the same. Causal analysis goes one step further; its aim is to infer
aspects of the data-generation process. Associations characterize static conditions,
while causal analysis deals with changing conditions. There is nothing in the joint
distribution of symptoms and diseases to tell us that curing the former would or
would not cure the latter.

Drawing analogy to visual perception, the information contained in a probability
function is analogous to a geometrical description of a three-dimensional object; it is
sufficient for predicting how that object will be viewed from any angle outside the
object, but it is insufficient for predicting how the object will be deformed if manipu-
lated and squeezed by external forces. The additional information needed for making
predictions such as the object’s resilience or elasticity is analogous to the information
that causal assumptions provide. These considerations imply that the slogan “corre-
lation does not imply causation” can be translated into a useful principle: one cannot
substantiate causal claims from associations alone, even at the population level.
Behind every causal conclusion, there must lie some causal assumption that is not test-
able in observational studies.
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Any mathematical approach to causal analysis must acquire new notation for
expressing causal assumptions and causal claims. To illustrate, the syntax of proba-
bility calculus does not permit us to express the simple fact that “symptoms do not
cause diseases,” let alone draw mathematical conclusions from such facts. All we
can say is that two events are dependent—meaning that if we find one, we can expect
to encounter the other, but we cannot distinguish statistical dependence, quantified by
the conditional probability P(disease/symptom) from causal dependence, for which
we have no expression in standard probability calculus. Symbolic representation
for the relation “symptoms cause disease” is distinct from the symbolic representation
of “symptoms are associated with disease.”

The need to adopt a new notation, foreign to the province of probability theory,
has been traumatic to most persons trained in statistics, partly because the adaptation
of a new language is difficult in general and partly because statisticians—this author
included—have been accustomed to assuming that all phenomena, processes,
thoughts, and modes of inference can be captured in the powerful language of prob-
ability theory. Causality formalization requires new mathematical machinery for
cause–effect analysis and a formal foundation for counterfactual analysis including
concepts such as “path diagrams,” “controlled distributions,” causal structures, and
causal models.

12.5.1 Bayesian Networks

One of the powerful aspects of graphical models is that a specific graph can make
probabilistic statements for a broad class of distributions. In order to motivate the
use of directed graphs to describe probability distributions, consider first an arbitrary
joint distribution p(a, b, c) over three variables, a, b, and c. By application of the prod-
uct rule of probability, we can write the joint distribution in the form

p a,b,c = p c a,b p a,b = p c a,b p b a p a

We now represent the right-hand side of the equation in terms of a simple graph-
ical model as follows: First, we introduce a node for each of the random variables a, b,
and c and associate each node with the corresponding conditional distribution on the
right-hand side of the equation. Then, for each conditional distribution, we add direc-
ted links (arrows) to the graph from the nodes corresponding to the variables on which
the distribution is conditioned. Thus for the factor p(c|a, b), there will be links from
nodes a and b to node c, whereas for the factor p(a) there will be no incoming links as
it is presented in Figure 12.33a. If there is a link going from a node a to a node b, then
we say that node a is the parent of node b, and we say that node b is the child of node a.

For given K variables, we can again represent a joint probability distribution as a
directed graph having K nodes, one for each conditional distribution, with each node
having incoming links from all lower numbered nodes. We say that this graph is fully
connected because there is a link between every pair of nodes. Consider now the graph
shown in Figure 12.33b, which is not a fully connected graph because, for instance,
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there is no link from x1 to x2 or from x3 to x7. We may transform this graph to the
corresponding representation of the joint probability distribution written in terms
of the product of a set of conditional distributions, one for each node in the graph.
The joint distribution of all seven variables is given by

p x1,x2,…,x7 = p x1 p x2 p x3 p x4 x1,x2,x3 p x5 x1,x3 p x6 x4 p x7 x4,x5

Any joint distribution can be represented by a corresponding graphical model. It
is the absence of links in the graph that conveys interesting information about the
properties of the class of distributions that the graph represents. We can interpret such
models as expressing the processes by which the observed data arose, and in many
situations we may draw conclusions about new samples from a given probability dis-
tribution. The directed graphs that we are considering are subject to an important
restriction, namely, that there must be no directed cycles; in other words, there are
no closed paths within the graph such that we can move from node to node along links
following the direction of the arrows and end up back at the starting node. Such graphs
are also called directed acyclic graphs (DAGs).

An important concept for probability distributions over multiple variables is that
of conditional independence. Consider three variables a, b, and c, and suppose that the
conditional distribution of a, given b and c, is such that it does not depend on the value
of b so that

p a b,c = p a c

We say that a is conditionally independent of b given c. This can be extended in a
slightly different way if we consider the joint distribution of a and b conditioned on c,
which we can write in the form

p a,b c = p a b,c p b c = p a c p b c

a

(a) (b)

b

x1

x2

x4 x5

x7

x3

x6c

Figure 12.33. A directed graphical model representing the joint probability distribution

over a set of variables. (a) Fully connected. (b) Partially connected.
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The joint distribution of a and b, conditioned on c, may be factorized into the
product of the marginal distribution of a and the marginal distribution of b (again both
conditioned on c). This says that the variables a and b are statistically independent,
given c. This independence may be presented in a graphical form in Figure 12.34a.
The other typical joint distributions may be graphically interpreted. The distribution
for Figure 12.34b represents the case

p b,c a = p c a p b c

while for Figure 12.34c the probability p(c|a, b) is under the assumption that variables
a and b are independent p(a, b) = p(a) p(b).

In general, graphical models may capture the causal processes by which the
observed data was generated. For this reason, such models are often called generative
models. We could make previous models in Figure 12.33 generative by introducing a
suitable prior distribution p(x) for all input variables (these are variables—nodes with-
out input links). For the case in Figure 12.33a, this is a variable a, and for the case in
Figure 12.33b, these are variables x1, x2, and x3. In practice, producing synthetic
observations from a generative model can prove informative in understanding the
form of the probability distribution represented by that model.

This preliminary analysis about joint probability distributions brings us to the
concept of Bayesian networks (BN), which are also called in the literature belief net-
works or probabilistic networks. The nodes in a BN represent variables of interest
(e.g., the temperature of a device, the gender of a patient, the price of a product,
the occurrence of an event), and the links represent dependencies among the variables.
Each node has states, or a set of probable values for each variable. For example, the
weather could be cloudy or sunny, an enemy battalion could be near or far, symptoms
of a disease are present or not present, and the garbage disposal is working or not
working. Nodes are connected with an arrow to show causality, also indicating the
direction of influence. These arrows are called edges. The dependencies are quantified
by conditional probabilities for each node given its parents in the network.
Figure 12.35 presents some BN architectures, initially without probability distribu-
tions. In general, we can formally describe a BN as a graph in which the follow-
ing holds:

(a) (b) (c)

a
a

a

b
b

bc

c

c

Figure 12.34. Joint probability distributions show different dependencies between

variables a, b, and c.
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1. A set of random variables makes up the nodes of the network.

2. A set of directed links connects pairs of nodes. The intuitive meaning of an
arrow from node X to node Y is that X has a direct influence on Y.

3. Each node has a conditional probability table (CPT) that quantifies the effects
that the parents have on the node. The parents of a node X are all those nodes
that have arrows pointing to X.

4. The graph has no directed cycles (hence a DAG).

Each node in the BN corresponds to a random variable X and has a probability
distribution of the variable P(X). If there is a directed arc from node X to node Y, this
indicates that X has a direct influence on Y. The influence is specified by the condi-
tional probability P(Y|X). Nodes and arcs define a structure of the BN. Probabilities
are parameters of the structure.

We turn now to the problem of inference in graphical models, in which some of
the nodes in a graph are clamped to observed values, and we wish to compute the
posterior distributions of one or more subsets of other nodes. The network supports
the computation of the probabilities of any subset of variables given evidence about
any other subset. We can exploit the graphical structure both to find efficient algo-
rithms for inference and to make the structure of those algorithms transparent. Spe-
cifically, many inference-based algorithms can be expressed in terms of the
propagation of local probabilities around the graph. A BN can be considered as a
probabilistic graph in which the probabilistic knowledge is represented by the topol-
ogy of the network and the conditional probabilities at each node. Themain purpose of
building knowledge on probabilities is to use it for inference, i.e., computing the
answer for particular cases about the domain.

For example, we may assume that rain causes the grass to get wet. Causal graph in
Figure 12.36 explains cause–effect relation between these variables including corre-
sponding probabilities. If P(Rain) = P(R) = 0.4 is given, that also means P(¬R) = 0.6.
Also, note that the sum of presented conditional probabilities is not equal to 1. If you
analyze the relations between probabilities, P(W R) + P(¬W R) = 1, and also
P(W ¬R) + P(¬W ¬R) = 1, not the sum of given probabilities. In these expressions

Cloudy

Rain

Disposal

Disposal

breaker

Kitchen

circuit

Kitchen

lightsWet grass

Sprinkler

Figure 12.35. Two examples of Bayesian network architectures.

439CORRELATION DOES NOT IMPLY CAUSALITY!



R means “Rain,” and W means “Wet grass.” Based on the given BN, we may check
what is the probability of “Wet grass”:

P W =P W R P R +P W ¬R P ¬R = 0 9 × 0 4 + 0 2 × 0 6 = 0 48 or 48

Bayesian rule allow us to invert the dependencies and obtain probabilities of par-
ents in the graph based on probabilities of children. That could be useful in many
applications, such as determining probability of a diagnosis based on symptoms.
For example, based on the BN in Figure 12.36, we may determine conditional prob-
ability P(Rain Wet grass) = P(R W). We know that

P R,W =P W R P R =P R W P W

and therefore

P R W =
P W R P R

P W
=

P W R P R

P W R P R +P W ¬R P ¬R

= 0 9∗0 4 0 9∗0 4 + 0 2∗0 6 = 0 75

Let us include now more complex problem and more complex BN represented in
Figure 12.37. In this case we have three nodes, and they are connected serially, often
called head-to-tail connections of three events. Now additional event “Cloudy” with
yes and no values is included as a variable at the beginning of the network. R node
blocks a path from C to W, which separates them. If R node is removed, there is
no path fromC toW. Therefore, relation between conditional probabilities in the graph
is given as P(C, R, W) = P(C) ∗ P(R|C) ∗ P(W|R).

In our case, based on the BN in Figure 12.37, it is possible to determine and use
“forward” and “backward” conditional probabilities as we represented in the previous
BN. We are starting with

P W C =P W R ∗P R C +P W ¬R ∗P ¬R C = 0 9∗0 8 + 0 2∗0 2 = 0 76

Then, we may use Bayesian rule for inverted conditional probabilities:

P C W =
P W C ∗P C

P W
= 0 65 P W requires detailed computation

Rain

p(W ∣R) = 0.9

p(W ∣ ¬R) = 0.2

p(R) = 0.4

Wet grass

Figure 12.36. Simple causal graph.

440 ADVANCES IN DATA MINING



More complex connections may be analyzed in BN. Figure 12.38 shows the
graph structure and the assumed input parameters.

The parameters of a graphical model are represented by the conditional probabil-
ity distributions in a form of CPTs for each node given its parents. The simplest form
of a formalized distribution, a CPT, is suitable when the nodes are discrete valued. All
nodes in Figure 12.38 are represented with discrete set of states and corresponding
CPTs. For example, “Sprinkler” node (S) may be “on” and “off,” and it is represented
in the table with T and F values. Sprinkler CPT is generated including input discrete
values for node “Cloudy,” C. Many algorithms for BN analysis may be expressed in
terms of the propagation of probabilities through the graph.

All probabilistic models, no matter how refined and accurate, Bayesian included,
describe a distribution over possible observed events, but say nothing about what will
happen if a certain intervention occurs. For example, what if I turn on the sprinkler?
What effect does that have on the season or on the connection between wetness and

Cloudy

p(R∣C) = 0.8

p(R ∣ ¬C) = 0.8

p(C ) = 0.4
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Figure 12.37. An extended causal graph.
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slipperiness? A causal network is a BN with the added property that the parents of
each node are its direct causes. In such a network, the result of an intervention is obvi-
ous: the sprinkler node is set to “on,” and the causal link between the season and the
sprinkler is removed. All other causal links and conditional probabilities remain intact.
This added property endows the causal network with the capability of representing
and responding to external or spontaneous changes. For example, to represent a dis-
abled sprinkler in the story of Figure 12.38, we simply delete from the network all
links incident to the node Sprinkler. To represent the policy of turning the sprinkler
off if it rains, we simply add a link between Rain and Sprinkle. Such changes would
require much greater remodeling efforts if the network were not constructed along the
causal direction. This remodeling flexibility may well be cited as the ingredient that
manages novel situations instantaneously, without requiring training or adaptation of
the model.

12.6 PRIVACY, SECURITY, AND LEGAL ASPECTS OF DATAMINING

An important lesson of the Industrial Revolution was that the introduction of new
technologies can have a profound effect on our ethical principles. In today’s Informa-
tion Revolution we strive to adapt our ethics to diverse concepts in cyberspace. The
recent emergence of very large databases, and their associated data-mining tools, pre-
sents us with yet another set of ethical challenges to consider. The rapid dissemination
of data-mining technologies calls for an urgent examination of their social impact. It
should be clear that data mining itself is not socially problematic. Ethical challenges
arise when it is executed over data of a personal nature. For example, the mining of
manufacturing data is unlikely to lead to any consequences of a personally objection-
able nature. However, mining clickstreams of data obtained fromWeb users initiate a
variety of ethical and social dilemmas. Perhaps the most significant of these is the
invasion of privacy, but that is not the only one.

Thanks to the proliferation of digital technologies and networks such as the Inter-
net and tremendous advances in the capacity of storage devices and parallel decreases
in their cost and physical size, many private records are linked and shared more widely
and stored far longer than ever before, often without the individual consumer’s knowl-
edge or consent. As more everyday activities move online, digital records contain
more detailed information about individuals’ behavior. Merchants’ record data are
no longer only on what individuals buy and how they pay for their purchases. Instead,
those data include every detail of what we look at, the books we read, the movies we
watch, the music we listen to, the games we play, and the places we visit. The robust-
ness of these records is difficult to overestimate and is not limited to settings involving
commercial transactions. More and more computers track every moment of most
employees’ days. Email and voice mail are stored digitally; even the content of tele-
phone conversations may be recorded. Digital time clocks and entry keys record phys-
ical movements. Computers store work product, text messages, and Internet browsing
records—often in keystroke-by-keystroke detail, they monitor employee behavior.
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The ubiquitous nature of data collection, analysis, and observation is not limited
only to the workplace. Digital devices for paying tolls, computer diagnostic equip-
ment in car engines, and global positioning services that are increasingly common
on passenger vehicles record every mile driven. Cellular telephones and personal dig-
ital assistants record not only call and appointment information but also location and
transmit this information to service providers. ISPs record online activities, digital
cable and satellite record what we watch and when, alarm systems record when we
enter and leave our homes, and all of these data are held by third parties. Information
on our browsing habits is available to both the employer and the ISP. If an employee
buys an airline ticket through an online travel service, such as Travelocity or Expedia,
the information concerning that transaction will be available to the employer, the ISP,
the travel service, the airline, and the provider of the payment mechanism, at a
minimum.

All indications are that this is just the beginning. Broadband Internet access into
homes has not only increased the personal activities we now engage in online but also
created new and successful markets for remote computer backup and online photo,
email, and music storage services. With Voice over IP telephone service, digital phone
calls are becoming indistinguishable from digital documents: both can be stored and
accessed remotely. Global positioning technologies are appearing in more and more
products, and radio-frequency identification tags are beginning to be used to identify
high-end consumer goods, pets, and even people.

Many individuals are unaware of the extent of the personal data stored, analyzed,
and used by governments’ institutions, private corporations, and research labs. It is
usually only when things go wrong that individuals exercise their rights to obtain this
data and seek to eliminate or correct it. For many of those, whose records are accessed
through data mining, we do not know it is happening and may never find out because
nothing incriminating is signaled. But we still know that data mining allows compa-
nies to accumulate and analyze vast amounts of information about us, sufficient per-
haps to create, with the help of data mining, what some have called personality or
psychological “mosaics” of the subjects. One result of the entry into the information
age is that faceless bureaucrats (in company, in government, everywhere) will be able
to compile dossiers on anyone and everyone, for any reason or for no reason at all. The
possibility, even if slim, that this information could somehow be used to our detriment
or simply revealed to others can create a chilling effect on all these activities.

Data and the information derived from that data using data mining is an extremely
valuable resource for any organization. Every data-mining professional is aware of
this, but few are concentrated on the impact that data mining could have on privacy
and the laws surrounding the privacy of personal data. Recent survey showed that
data-mining professionals “prefer to focus on the advantages of web-data mining
instead of discussing the possible dangers.” These professionals argued that Web data
mining does not threaten privacy. One might wonder why professionals are not aware
of or concerned over the possible misuse of their work and the possible harm it might
cause to individuals and society. Part of the reason some professionals are not con-
cerned over the possible misuse of their work and the possible harm it might cause

443PRIVACY, SECURITY, AND LEGAL ASPECTS OF DATA MINING



might lie in the explanations that “they are primary technical professionals and some-
body else should take care about these social and legal aspects.” But sensible regula-
tions of data mining depend on understanding of its many variants and its potential
harms. Therefore, technical professional has to be a part of the team, often leading,
which will try to solve privacy challenges.

The key ethical issues in mining personal data are that people are generally:

1. not aware that their personal information is being gathered,

2. do not know to what use the data will be made, and/or

3. have not consented to such collecting or data use.

In order to alleviate concerns about data privacy, a number of techniques have
recently been proposed in order to perform the data-mining tasks in a privacy-
preserving way. These techniques for performing privacy-preserving data mining
are drawn from a wide array of related topics such as cryptography and information
hiding. Most privacy-preserving data-mining methods apply a transformation that
reduces the effectiveness of the underlying data when it is applied to data-mining
methods or algorithms. In fact, there is a natural trade-off between privacy and accu-
racy, though this trade-off is affected by the particular algorithm that is used for pri-
vacy preservation. The key directions in the field of privacy-preserving data mining
include:

• Privacy-preserving data publishing: These techniques tend to study different
transformation methods associated with privacy. They concentrate on how the
perturbed data can be used in conjunction with classical data-mining methods.

• Changing the results of data-mining applications to preserve privacy: These
techniques are concentrated on privacy of data-mining results where some
results are modified in order to preserve the privacy. A classic example of such
techniques are association rule hiding methods, in which some of the associ-
ation rules are suppressed in order to preserve privacy.

• Cryptographic methods for distributed privacy: If the data are distributed
across multiple sites, a variety of cryptographic protocols may be used in order
to communicate among the different sites so that secure function computation
is possible without revealing sensitive information.

Recent research trends propose that issues of privacy protection, currently
viewed in terms of data access, be reconceptualized in terms of data use. From a
technology perspective, this requires supplementing legal and technical mechan-
isms for access control with new mechanisms for transparency and accountability
of data used in data-mining process. Current technical solutions of the impact of data
mining on privacy have generally focused on limiting access to data at the point of
collection or storage. Most effort has been put into the application of cryptographic
and statistical techniques to construct finely tuned access-limiting mechanisms.
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Even if privacy-preserving data-mining techniques prove to be practical, they are
unlikely to provide sufficient public assurance that data-mining inferences conform
to legal restrictions. While privacy-preserving data-mining techniques are certainly
necessary in some contexts, they are not sufficient privacy protection without the
transparency and accountability.

In the long run, access restriction alone is not enough neither to protect privacy
nor to ensure reliable conclusions, and the best example of these challenges is Web
and Web mining technology. As we leave the well-bounded world of enterprise
databases and enter the open, unbounded world of the Web, data users need a
new class of tools to verify that the results they see are based on data that is from
trustworthy sources and is used according to agreed-upon institutional and legal
requirements. The implications of data mining on digital social networks such as
Facebook, WhatsApp, or Twitter may be enormous. Unless it is part of a public
record designed for consumption by everyone or describes an activity observed
by strangers, the stored information is rarely known outside our families, much less
outside our social networks. An expectation that such information and potential
derivatives will remain “private” on Internet is not anymore reasonable assumption
from the social network perspective. One of the major contributors to these contro-
versies is the absence of clear legal standards. Thirty years ago, the lack of relevant
law was understandable: the technologies were new, their capacity was largely
unknown, and the types of legal issues they might raise were novel. Today, it is
inexplicable and threatens to undermine both privacy and security. Hence, we must
develop technical, legal, and policy foundations for transparency and accountability
of large-scale mining across distributed heterogeneous data sources. Policy aware-
ness is a property of the Semantic Web still in development that should provide
users with accessible and understandable views of the policies associated with
resources.

The following issues related to privacy concerns may assist in individual privacy
protection during a data-mining process and should be a part of the best data-mining
practices:

• Whether there is a clear description of a program’s collection of personal
information, including how the collected information will serve the program’s
purpose. In other words, be transparent early on about a data-mining project’s
purpose. Clearly state up front the business benefits that will be achieved by
data mining. Provide notice of the combining of the information from different
sources. Companies, like Walmart or Kroger, store much of their business and
customer data in large warehouses. Their customers are not told the extent of
the information that is accumulated on them, how long it will be kept, nor the
uses to which the data will be put, or other users with which data will be shared.

• Whether information collected for one purpose will then be used for additional
secondary purposes in the future. Ensure that any new purpose of a project is
consistent with the project’s original purpose. Maintain oversight of data-
mining project and create audit requirements.
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• Whether privacy protections are built in to systems in the early developmental
stage. Build in privacy considerations up front, and bring in all stakeholders at
the beginning, including privacy advocates to get input from them. Ensure the
accuracy of data entry.

• What type of action will be taken on the basis of information discovered
through a data-mining process? Where appropriate, anonymize personal infor-
mation. Limit the actions that may be taken as a result of unverified findings
from data mining.

• Whether there is an adequate feedback system for individuals to review and
correct their personal information that is collected and maintained in order
to avoid “false positives” in a data-mining program. Determine whether an
individual should have a choice in the collection of information. Provide notice
to individuals about use of their personal information. Create a system where
individuals can ensure that any incorrect personal information can be
corrected.

• Whether there are proper disposal procedures for collected and derived per-
sonal information that has been determined to be irrelevant.

Some observers suggest that the privacy issues presented by data mining will be
resolved by technologies, not by law or policy. But even the best technological solu-
tions will still require a legal framework in which to operate, and the absence of that
framework may not only slow their development and deployment, but make them
entirely unworkable. Although there is no explicit right to privacy of personal data
in the Constitution, legislation and court decisions on privacy are usually based on
parts of the First, Fourth, Fifth, and Fourteenth Amendments. Except for healthcare
and financial organizations and data collected from children, there is no law that gov-
erns the collection and use of personal data by commercial enterprises. Therefore, it is
essentially up to each organization to decide how they will use the personal data they
have accumulated on their customers. In early March 2005, hackers stole the personal
information of 32,000 people from the databases of LexisNexis. The stolen data
included Social Security numbers and financial information. Although the CEO of
LexisNexis claimed that the information they collect is governed by the US Fair Credit
Reporting Act, members of Congress disagreed. As a result of this and other large-
scale identity thefts in recent years, Congress is considering new laws explaining what
personal data a company can collect and share. For example, Congress is considering
a law to prohibit almost all sales of Social Security numbers.

At the same time, especially since 9/11, government agencies have been eager to
experiment with the data-mining process as a way of nabbing criminals and terrorists.
Although details of their operation often remain unknown, a number of such programs
have come to light since 2001. The DOJ, through the FBI, has been collecting tele-
phone logs, banking records, and other personal information regarding thousands of
Americans not only in connection with counterterrorism efforts but also in furtherance
of ordinary law enforcement. A 2004 report by the Government Accountability Office
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(GAO) found 42 federal departments—including every cabinet-level agency that
responded to the GAO’s survey—engaged in, or were planning to engage in, 122
data-mining efforts involving personal information (U.S. General Accounting Office,
Data Mining: Federal Efforts Cover a Wide Range of Uses [GAO-04-548], May
2004, pp. 27–64). Recently US government recognized that sensible regulation of
data mining depends on understanding its many variants and its potential harms,
and many of these data-mining programs are reevaluated. In the United Kingdom,
the problem is being addressed more comprehensively by the Foundation for Infor-
mation Policy Research, an independent organization examining the interaction
between IT and society with goals: to identify technical developments with significant
social impact, commission research into public policy alternatives, and promote pub-
lic understanding and dialogue between technologists and policy makers in the United
Kingdom and Europe. It combines IT researchers with people interested in social
impacts and uses a strong media presence to disseminate its arguments and educate
the public.

There is one additional legal challenge related specifically to data mining.
Today’s privacy laws and guidelines, if they exist, protect data that is explicit, con-
fidential, and exchanged between databases. However, there is no legal or normative
protection for data that is implicit, nonconfidential, and not exchanged. Data mining
can reveal sensitive information that is derived from nonsensitive data and metadata
through the inference process. Information gathered in data mining is usually implicit
patterns, models, or outliers in the data, and questionable is the application of privacy
regulations primary written for traditional explicit data.

In addition to data privacy issues, data mining raises other social concerns. For
example, some researchers argue that data mining and the use of consumer profiles in
some companies can actually exclude groups of customers from full participation in
the marketplace and limit their access to information.

As data mining increasingly affects decisions in domains protected by anti-
discrimination law, there is much interest in algorithmically measuring and ensuring
fairness in the field. What does it mean for a data-mining model to be fair or nondis-
criminatory? The answer is not simple, but the basic idea is that the models were
trained with data that reflect society’s biases and algorithms amplify these biases.
Although reliance on data and quantitative measures can help quantify and eliminate
some of existing biases, latest research has warned that data-mining algorithms can
also introduce totally new biases or perpetuate existing ones.

Recently social study research and numerous media, including highly respected
Naturemagazine, have pointed out plenty of anecdotal evidence that decision-making
by data-mining algorithms may unintentionally discriminate people. For example, if
one naively trains a model to filter resumes and find the most qualified candidates for
certain jobs based on prior hires data, even if the algorithm is explicitly instructed to
ignore “protected attributes” like race or gender, the results can turn out to be race or
gender biased. It turns out that race and gender are correlated with other “unprotected”
information like names, which the naive algorithm can use. When Harvard Professor
Latanya Sweeney put her name into a search engine, she was delivered an ad saying
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“Latanya Sweeney, Arrested?” and offered a background check for a fee. The result of
that background check was that Dr. Sweeney had no arrest record, and an initial trig-
gering of this ad was obviously deeply unfair and discriminatory to Dr. Sweeney.
Searching on people whose first names indicated they were more likely to be black,
like Latanya, was much more likely to produce this “Arrested? ad.” If potential
employers put Dr. Sweeney’s name into a search engine, they might write her off
immediately upon seeing the ad.

A vetted methodology for avoiding discrimination against protected attributes in
data mining is lacking. An initial idea was based on naïve approach that require that
the data-mining algorithm should ignore all protected attributes such as race, color,
religion, gender, disability, or family status. However, this idea of “fairness through
unawareness” is ineffective, and sometimes it is a source of discrimination by them-
selves. There is an entirely new field emerging at the intersection of computer science,
law, and social study. In the long run it is necessary to develop fundamental scientific
understanding for ensuring transparency and accountability of using data mining in
the society. Within this goal guaranteeing fairness of algorithms is one of the key
issues. Current approaches to fair data mining are typically focused on interventions
at the data preparation, model learning, or including tuning postprocessing stages.
While fair data-mining algorithms have already been proposed, the insight of under-
lying mechanisms how such discrimination happens from the computational perspec-
tive is not yet scientifically understood. We need to develop theoretical understanding
how algorithms may become discriminatory and establish fundamental machine-
learning principles for prevention. The state-of-the-art fair data mining should
advance from heuristic repairing to proactive and theoretically supported prevention.

Good privacy and fairness protection not only can help to build support for data
mining and other tools to enhance security, but it can also contribute to making those
tools more effective. Still, as the data-mining and machine-learning industry makes
significant progress in performing various tasks and actions in the everyday life,
questions are raised regarding ethics, responsibilities, and human engagement in these
real-time applications. Instead of highly publicized and discussed with confronting
opinions application of self-driving cars, let us present an illustrative example of a
smaller, locally developed application. They are also very important, although they
are not always under enough society attention. These new applications often open
the questions of a balance between attractiveness and usefulness of collected data
and intelligent decisions on one hand and privacy, legality, and even fairness issues
on the other hand.

An illustrative example is a high school in Hangzhou City, Zhejiang Province,
located on the eastern coast of China, which has employed facial recognition technol-
ogy to monitor students’ attentiveness in a classroom. Three cameras at the front of the
classroom scan students’ faces every 30 seconds, analyzing their facial expressions to
detect different moods—surprised, sad, antipathy, angry, happy, afraid, or neutral.
The recordings are stored and averaged during each class. The system, called “smart
classroom behavior management system,” also analyzes students’ actions during the
classes, categorized into reading, listening, writing, standing up, raising hands, or
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leaning on the desk. As the result of this monitoring system, the teacher’s screen dis-
plays a list of student names deemed “not paying attention.” Similar systems, based on
facial recognition technology in schools, were used to serve meals to students at
school cafeterias or pay for items at local stores.

As technology designers, we should provide information infrastructure that helps
society to be more certain that data-mining power is used only in legally approved
ways and that the data that may give rise to consequences for individuals is based
on inferences that are derived from accurate, approved, fair, and legally available data.
Future data-mining solutions reconciling any social issues must not only be applicable
to the ever-changing technological environment but also flexible with regard to spe-
cific contexts and disputes.

12.7 CLOUD COMPUTING BASED ON HADOOP
AND MAP/REDUCE

Modern information societies are defined by vast repositories of data, both public
and private where new generation of applications must be able to scale up to adjust
big data frameworks. Current technological advances in storage, communication,
and computations have enabled cost-effective capture of big data in a timely manner.
Big data find a solution for more computing power in cloud computing platforms.
As the National Institute of Standards and Technology defined, “Cloud computing is
a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applica-
tions, and services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.” The growth of cloud computing
enables businesses to turn into new service-based IT solutions overcoming chal-
lenges of big investments in IT infrastructure. The cloud may be considered as a
marketplace, where the storage and computing capabilities of a cloud can be leased
as necessary.

Cloud computing offers enterprises and users high scalability, high availability,
and high reliability. It can improve resource utilization efficiency and can reduce the
cost of business information construction, investment, and maintenance. As the public
cloud services from Amazon, Google, Microsoft, and other specialized companies
become more sophisticated and better developed, more and more companies are
migrating toward the cloud computing platform.

The core of cloud computing model is a new parallel computing architecture,
often called cluster computing. It is organized as large number of computing nodes
(standard processing modules with processor, central memory, and disk), which
are stored together on racks, usually 8–64 on each rack. The nodes on a single rack
are connected by a gigabit Ethernet network. There can be many racks multiple nodes,
and racks are connected by another level of network through a special high speed net-
work or switch. Figure 12.39 highlights main components of the architecture of a
large-scale parallel computing system.
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These new computing facilities have given rise to a new generation of program-
ming systems, which take advantage of the power of parallelism and at the same time
avoid the reliability problems that arise when the computing hardware consists of
thousands of independent components. Series of Google products has opened the door
to the proposed massive data storage, and cloud computing becomes the de facto
standard in a big data field, with Google as a technology leader. While Google’s tech-
nology was not open source, Yahoo was first to offer an open-source software frame-
work designed for supporting data-intensive applications called Hadoop.

Instead of relying on expensive proprietary hardware to store and process the
data, Hadoop enables distributed processing of large amounts of data on large clusters
of commodity servers. Hadoop has many advantages comparing other previously
developed architectures, and it is particularly suitable for big data management and
analysis because of:

• High scalability: Hadoop allows hardware infrastructure to be scaled up and
down with no need to change data formats. The system will automatically
redistribute data and computation jobs to accommodate hardware changes.

• Cost efficiency: Hadoop brings massively parallel computation to commodity
servers, leading to a sizeable decrease in cost per terabyte of storage, which
makes massively parallel computation affordable for the ever-growing volume
of big data.

Switch

Computing

Nodes Nodes Nodes Nodes

Rack Rack Rack Rack

Computing Computing Computing

Figure 12.39. Computing nodes are organized into racks, and racks are interconnected by a

switch.
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• Fault tolerance: Missing data and computation failures are common in big data
analytics. Hadoop can recover the data and computation failures caused by
node breakdown or network congestion.

The foundation of Hadoop is Hadoop Distributed File System (HDFS). This
module is responsible for storing and retrieving data. It is designed and optimized
to deal with large amount of data. Files are composed of chunks of about 64 mega-
bytes, and each chunk is replicated several times on different compute nodes or racks
enabling HDFS protection from failures mechanisms. HDFS is the only mandatory
module of the Hadoop framework, and all other components are optional. Second
important component that represents core module of Hadoop and that is essential
for big data applications on the cloud is MapReduce.

MapReduce, a powerful programming framework, enables the automatic paral-
leling and distribution of computation applications on large clusters of commodity
machines. It gives a style of solving specific problems when big data is available.
One of the most significant advantages of MapReduce is that it provides abstractions
that hide many implementation details from the programmer. MapReduce can be
viewed as the first breakthrough in the new abstractions that allow us to organize com-
putations, not over individual machines, but over entire clusters. Additionally,
MapReduce can also provide great fault tolerance ability, which is important for work-
ing with the large data sets. The core idea of MapReduce is to divide massive data into
small chunks firstly and then deal with these chunks in parallel and in a distributed
manner to generate intermediate results. By aggregating all the intermediate results,
the final result is derived.

MapReduce codifies this generic “recipe” for processing large data sets into two
stages. In the first so-calledMap function, a user-specified computation is applied over
all input records in a data set. It takes a collection of input objects and turns each into
zero ormore key–value pairs. Key values are not necessarily unique. TheseMap opera-
tions occur in parallel and yield intermediate output that is then aggregated by the sec-
ond function called Reduce. Reduce tasks are also parallel, and they combine the
elements on eachkey–value list by applying the functionwritten by the user. The results
produced by all the Reduce tasks form the aggregated output of the map–reduce proc-
ess. This MapReduce programming model has achieved massive scalability in real-
world applications across hundreds or thousands of servers within a Hadoop cluster.

An illustrative example of a MapReduce process could explain all advantages of
the framework. Suppose that there is a large collection of text documents in a database
and the task is to count the number of times each distinct word is occurring in the
document corpus. Figure 12.40 illustrates the basic steps in MapReduce process to
perform the required task. To simplify explanations, we selected to process the data-
base with only three documents, and assumption is that there are three servers for Map
functions and two servers for Reduce functions. Of course, scalability of the solution
enables to extend the problem to millions of documents with hundreds or even thou-
sands of Map and Reduce servers in the cloud, while the example only captures the
essence of MapReduce framework.
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In a simple example, because there are only three documents and three Map ser-
vers, each document (at Figure 12.40a) is assigned to a separate server, and the Map
function is decomposing the document text into set of distinct words (Figure 12.40b).
The final result of the Map phase is an integrated list of key–value pairs for all docu-
ments. In our case, it is a list of all words with its count in each document
(Figure 12.40c). Results of a Map phase are now distributed between Reduce servers.
Sorted list of words is distributed between two Reduce servers in our example. Reduce
phase accumulates the words that are repeating in different documents, and the
Reduce aggregation produces final word count results (Figure 12.40d). Final output
is written in the distributed file system, one file per reducer, where each file will con-
tain roughly the same number of words.

Although a two-stage MapReduce processing structure may appear to be very
restrictive, many interesting algorithms can be expressed quite concisely, especially
if one decomposes complex algorithms into a sequence of MapReduce jobs. An illus-
trative example is Google’s PageRank algorithm. It is important to realize that also
many algorithms cannot be easily expressed as a single MapReduce job. Consider
what would happen if the task is to find mean value of large set of numerical values.
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Figure 12.40. MapReduce process for word count problem. Based on Jeff Dean & Sanjay

Ghemawat slides [Google inc.].
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The Mapper would compute the mean of an arbitrary subset of values associated with
the same key, and the Reducer would compute the mean of those (mean) values. As a
concrete example, we know that

Mean 1; 2; 3; 4; 5 Mean Mean 1; 2 ;Mean 3; 4; 5

and it means that simple implementation ofMapReduce framework for this problem is
not applicable.

The availability of cloud-based solutions has dramatically lowered the cost of
storage and enables a new business models that support on-demand, pay-for-use,
and scalable IT services over the Internet. Clouds provide services at different levels
of resource use:

• Software as a Service (SaaS) model enables a software provider to license a
software application to be used and purchased on demand. Application can
be accessed through networks from various clients (Web browser, mobile
phone, etc.) The application requires no client installation, just a browser or
other client device and network connectivity.

• Platform as a Service (PaaS) model provides developers a service that can be
used as a complete software development lifecycle management, from pla-
nning and design, through building application and deployment, to finally test-
ing and maintenance.

• Infrastructure as a Service (IaaS) focuses on enabling technologies. The cloud
consumers directly use infrastructure components (storage, network, firewalls,
etc.) that are enabled by the cloud provider.

The trend of making everything-as-a-service has affected many disciplines
including machine learning and data mining. Machine Learning as a Service
(MLaaS) is an integrate framework of automated and semiautomated cloud platforms
that cover most infrastructure required during data-mining process including data pre-
processing, model training, model evaluation, and application of the machine-learning
model in a real-world environments. Obtained prediction results can be bridged with
other IT infrastructure in the company. Information governance, security, and system
management support each processing phase to ensure regulation and policies for all
data used or derived in data-mining process. Compliance is tracked to ensure controls
about delivering expected results.

Amazon Machine Learning services, Microsoft Azure Machine Learning, and
Google Cloud AI are three initial and leading frameworks that are offering cloud
MLaaS services that allow for fast model developing and deployment with little
data-mining experience. Tools for classification, regression, clustering, anomaly
detection, ranking, and recommender systems are available in all three frameworks
with different levels of automation and graphical interfaces. These platforms include
additionally APIs, which could perform text, speech and image recognition, topics
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extraction, voice verification, sentiment analysis, etc. Besides fully integrated plat-
forms, you can use high-level APIs for performing specific machine-learning tasks
in the cloud environment. These are the services with easy trained models that you
can feed your data into, and get results. APIs do not require machine-learning exper-
tise at all. Currently, the APIs from main vendors include applications such as text
recognition, text translation, textual analysis, sentiment analysis, facial recognition,
image annotation, and video recognition.

12.8 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a class of machine-learning algorithms that aims at
allowing an agent to learn how to behave in an environment. RL agent has the ability
to act, and this interaction with the environment enables agent to learn by trial and
error. Each action in the environment influences the agent’s future state. Success
of an agent’s action is measured by a scalar reward signal, which represents the only
feedback from the environment. In general, the main goal of the RL process is selec-
tion of appropriate actions that will maximize reward in a multiple agent–environment
interaction. The agent has to explore the environment by performing actions and ana-
lyzing the consequences. The effects on the environments are obtained through
rewards for each agent’s action, and that feedback is a core of a machine-learning
process. The goal of the agent is to perform set of actions that will maximize the
reward signal in the long run.

Model-free RL algorithms do not rely on the availability of a perfect model.
Instead, they rely on interaction with the environment and learning step by step
through these interactions. Because the model is unknown, the learner has to try
out different actions to see their results and to evaluate potential rewards. Each step
in the agent–environment interaction generates a learning sample. These samples are
used to bring some value in accordance to the immediate reward and also to estimate
the value of the next state.

RLmay be formalized as a framework defining the interaction between a learning
agent and its environment in terms of (1) states, (2) actions, and (3) rewards. The main
components and their interactions are given in Figure 12.41. The framework is a

StateReward Action

Environment

Agent

Figure 12.41. Main components in the reinforcement learning process.
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simplified representation of essential features and main dynamics of the RL process.
The agent, to be involved in the learning process, must have a single goal or alternative
goals relating to the state of the environment, and it must be able to learn from its own
experience. Beyond the agent and the environment, additional three elements partic-
ipate in an RL activities: a policy, a reward function, and a value function.

A policy defines the learning agent’s way of behaving at a given time. It is a
mapping function from perceived states of the environment to actions to be taken
when the agent is in those states. A reward function highlights the main goal in
an RL problem; it specifies a reward for an agent being in a given state or doing
some specific action in a state. The environment sends to the RL agent a single num-
ber as a reward for every step in each learning sample. While the reward signal indi-
cates what is good in an immediate sense, a value function specifies what is good, as
a solution in the long-run learning process. The agent’s main objective is to maxi-
mize the total reward it receives over multiple learning samples. One of the core RL
challenges, which is not essential in other kinds of machine learning, is the trade-off
between exploration and exploitation processes. The agent has to exploit what it
already knows in order to obtain the highest reward, but it also has to explore
unknown paths using new samples in order to make better action selections in
the future.

One of the basic and most popular RL methods is the Q-learning algorithm. The
basic idea in Q-learning is to incrementally estimate Q-values for all new actions,
based on feedback expressed through rewards, and the previous agent’sQ-value func-
tion.Q-learning is exploration insensitive. It means that the learning process will con-
verge to the optimal policy regardless of the exploration policy being followed. The
only required assumption is that each state–action pair is visited an infinite or in prac-
tice enough large number of times.

Basic ideas and components of a Q-learning algorithm will be illustrated through
a relatively simple example. Suppose that there is an environment that represents a
building with five rooms connected by doors. The layout of the framework is given
in Figure 12.42a, where the rooms are numerated 0 to 4, while number 5 is represent-
ing the outside space. Notice that the doors from rooms 1 and 4 lead into the “room” 5
(outside), while the other doors are between regular rooms. We may call each room,
including outside, a “state” of the environment, and the agent’s movement from one
room to another should be called an “action.” In the graph formalization on
Figure 12.42b, a “state” is depicted as a node in a graph, while “actions” are repre-
sented by the arrows between states. The structure of the building is represented with
the corresponding graph where actions are represented between two states only if
there are direct doors between corresponding rooms.

For illustration of a Q-learning process, an agent may be initially located in any
room, and it should learn how to move from that room to reach the goal—outside the
building space 5. To set this “room” 5 as a goal, it is necessary to associate a reward
value to each door or each action in the graph. Assume that the doors from rooms 1
and 4 leading immediately to the goal state 5 have an instant highest reward of 100. It
includes “room” 5 feedback loop to itself with the same reward of 100. In Q-learning,
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the goal is to reach the state with the highest reward so that if the agent arrives at the
goal, it should remain there forever.

In the reward matrix R in Figure 12.43a, the value (−1) shows that there is no link
(door) between corresponding rooms (states). The reward value of 0 is assigned for all
existing doors, which are not leading to the goal, outside state 5. The reward matrix
may be translated into the graph in Figure 12.43b where only existing links/actions
with corresponding awards 0 or 100 are specified.

The agent starts activities of learning, and at the beginning the assumption is that
the agent knows nothing. Therefore, the matrix Q is initialized to zero. The main tran-
sition rule of Q-learning is represented by two simple formulas:

QLEARNED state,action =R state,action + γ∗Max QOLD next state,all actions

QNEW state,action = 1−α QOLD state,action + αQLEARNED state,action

where α is the learning rate (0 ≤ α ≤ 1) and γ is the discount factor (0 ≤ γ ≤ 1).
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Figure 12.42. A framework for illustration ofQ-learning process. (a) Five-roombuilding. (b)

Graph representation of the building. From: http://mnemstudio.org/path-finding-q-learning-

tutorial.htm
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Figure 12.43. Reward function R for the five-room building environment. (a) Tabular

representation of R matrix. (b) Graph representation of R matrix.
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These formulas connect calculation of a new Q-values in the matrix based on ini-
tial R matrix of rewards and current exploration of the agent in the current state and
with the current action. The agent will learn without teacher, based on experiences
with every new action. The exploration process is analyzed through episodes, where
each episode consists of an agent moving from the initial state to the goal state, and it
is equivalent to one training session. Each time the agent arrives at the goal state, the
learning process goes to the next episode. More training results applied in theQmeth-
odology gives a more optimized matrix Q.

Let us start with the simple learning process assuming that the learning parameter
α, discount parameter γ = 0.8, and the initial state is randomly selected as room 1. In
this caseQNEW =QLEARNED. There are two possible actions for the current state 1: (1)
go to state 3, or (2) go to state 5. The agent does not have any initial knowledge, and it
selects randomly to go to room 5 as the action. In that case correction in the Q matrix
will be calculated as follows:

QNEW 1,5 =R 1,5 + 0 8∗Max Q 5,1 ,Q 5,4 ,Q 5,5 = 100 + 0 8∗0 = 100

Initial R(1,5) value is taken from R matrix, while all alternative Q-values for
actions from state 5 toward states 1, 4, and 5 are equal 0 in the current Q matrix.
Because the agent arrived in the goal state 5, this episode is finished, and the optimized
Qmatrix has only one new valueQ(1,5) = 100. All the other values stay the same with
values 0.

For the next episode, the agent starts with a randomly chosen initial state 3. Based
on the matrix R, there are three possible actions: go to state 1, 2, or 4. Without addi-
tional knowledge, the agent uses a random selection of state 1 as the action. The cor-
rection in the Q matrix will be calculated as

QNEW 3,1 =R 3,1 + 0 8∗Max Q 1,3 ,Q 1,5 = 0 + 0 8∗Max 0,100 = 80

This time the values for R(3,1) and Q(1, 3) are both 0, while Q(1,5) = 100 is
already learned value from the previous episode. The matrix Q becomes the matrix
with two corrected values, as it is given on the Figure 12.44a. With each new episode
new values or modified previous values will be introduced in theQmatrix.With larger
number of learning episodes and often changes in the matrix Q, the values in the
matrix may become very high. The matrix Q can be normalized and converted to per-
centages by dividing all nonzero entries by the highest number in the matrix. If the
reader practices calculation of Q matrix after several randomly selected episodes,
the obtained result will be similar to the normalized matrix on Figure 12.44b.

Once the matrix Q gets close enough to a state of convergence, the agent has
learned the most optimal paths to the goal state for the given environment. The state
of convergence may be recognized when the matrix Q is not changing significantly
with any additional episodes. The agent learns enough, and it behaves in the environ-
ment by tracing the best sequences of states; it is essentially a simple process, which is
following the actions with the highest Q-values at each state.

RL approach become widely well-knownwith AlphaGo system. The ancient Chi-
nese game of Go has challenged AI researchers for many decades. Methods that
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achieve human-level skills in other games, such as poker and chess, have not been
successful in producing strong Go programs. Recently, a Google DeepMind team
developed a program called AlphaGo that broke this barrier in the game of Go learning
by combining deep learning neural networks and RL. The system beats the best
human players in the world in high-profile matches. But the RL approach shows
the ability of building more advanced learning systems, where application’s areas
are much wider than games. The promising and highly publicized application of
RL technology is humanlike behavior of automatic agents in self-driving cars.
Today’s driverless vehicles are becoming more and more sophisticated; still they
are often falter in complex situations that still involve interacting with human drivers.

A number of industrial-robot makers are testing the RL approach as a way to train
their machines to perform new tasks without manual programming. Applications of
RL in high-dimensional control problems, including robotics, have been the subject of
research in academia and industry, while startups are beginning to use RL to build new
generation of products for industrial robotics. Google worked with DeepMind group
in using RL to make its data centers more energy efficient. It is difficult to figure out
how all the elements in a data center will affect energy usage, but an RL algorithm can
learn from collated data and experiment in simulation to suggest, say, how and when
to operate the cooling systems.

In the financial sector there are several solution leveraging RL for evaluating
trading strategies. It is turning out that RL represents a robust methodology for train-
ing systems to optimize financial objectives. It has primary applications in stock
market trading, where Q-learning algorithm is able to learn an optimal trading strat-
egy with one simple instruction: maximize the value of user’s portfolio. Also, per-
sonalizing Web services such as the delivery of news articles or advertisements is
one approach to increasing users’ satisfaction with a Web site or to increase the yield
of a marketing campaign. This is a natural domain for RL. An RL system can
improve a recommendation policy by making adjustments in response to user feed-
back. One way to obtain user feedback is by means of Web site satisfaction surveys,
but for acquiring feedback in real time, it is common to monitor user clicks as indi-
cators of interest in a link.
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Figure 12.44. Dynamic changes of Q matrix with each new episode. (a) Q matrix after two
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In spite of all initial successes with RL, there are several warnings from some
experienced users and researchers that the approach, to be successful, requires a
huge amount of data. While some solutions may be obtained with large number
of simulations if available, the researchers are aware that RL becomes less effective
when dealing with highly complicated problems with high-dimensional state and
action spaces. Some recognize potential solutions in combining different
machine-learning approaches such as integration of RL with deep learning
techniques.

12.9 REVIEW QUESTIONS AND PROBLEMS

1. What are the benefits in modeling social networks with a graph structure? What
kind of graphs you would you in this case?

2. For the given undirected graph G:

1 2 3

54

(a) Compute degree and variability parameters of the graph.
(b) Find adjacency matrix for the graph G.
(c) Determine binary code(G) for the graph.
(d) Find closeness parameter or each node of the graph.
(e) What is the betweenness measure for the node #2?

3. For the graph given in Problem #2, find partial betweenness centrality using
modified graph starting with node #5.

4. Give real-world examples for traditional analyses of temporal data (i.e. trends,
cycles, seasonal patterns, outliers).

5. Given the temporal sequence S = {1 2 3 2 4 6 7 5 3 1 0 2}.

(a) Find PAA for four sections of the sequence.
(b) Determine SAX values for solution in (a) if (i) α = 3 and (ii) α = 4.
(c) Find PAA for three sections of the sequence.
(d) Determine SAX values for solution in (c) if (i) α = 3 and (ii) α = 4.

6. Given the sequence S = {A B C B A A B A B C B A B A B B C B A C C}.

(a) Find the longest subsequence with frequency ≥ 3.
(b) Construct finite state automaton (FSA) for the subsequence found in (a).
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7. Find normalized contiguity matrix for the table of US cities:

Minneapolis Chicago New York

Nashville Louisville Charlotte

Make assumption that only neighboring cities (vertical and horizontal) in the
table are close.

8. For the Bayesian network in Figure 12.38, determine:

(a) P(C, R, W)
(b) P( C, S, W)

9. Review the latest articles on privacy-preserving data mining that are available on
the Internet. Discuss the trends in the field.

10. What are the largest sources of unintended personal data on the Internet? How to
increase awareness of Web users of their personal data that are available on the
Web for variety of data-mining activities?

11. Discuss an implementation of transparency and accountability mechanisms in a
data-mining process. Illustrate your ideas with examples of real-world data-
mining applications.

12. Give examples of data-mining applications where you would use distributed-
data-mining approach. Explain the reasons.

13. Develop and explain all steps of MapReduce process for inverted file index.
Inputs are text document. The output should be a list of words used in the docu-
ments, where each word is connected with the list of keys, representing each doc-
ument containing the word.

14. Find the set of 2-shingles for the “documents” (or simple text) in (a) and (b):

(a) ABRACADABRA
(b) BRICABRAC
(c) How many 2-shingles two texts have in common?

15. For the following graph:

C -- D -- E

/ \

A B

\ /

F -- G – H

compute the betweenness of every edge.
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16. The following is a description of the causal relationship between storms, the
behavior of burglars and cats, and house alarms:

Stormy nights are rare. Burglary is also rare, and if it is a stormy night,
burglars are likely to stay at home (burglars do not like going out in storms).
Cats do not like storms either, and if there is a storm, they like to go inside.
The alarm on your house is designed to be triggered if a burglar breaks into
your house, but sometimes it can be set off by your cat coming into the house,
and sometimes it might not be triggered even if a burglar breaks in (it could
be faulty or the burglar might be very good).

Define the topology of a Bayesian network that encodes these causal
relationships.

17. Consider the time series (−3, −1, 0, 3, 5, 7, ∗). Here, a missing entry at the end is
denoted by ∗.
(a) What would be the estimated value of the missing entry using linear interpolation on a

window of size 3?
(b) What would be the estimated value if the fourth value in the time series is missing and

calculation is based on the same window size?

12.10 REFERENCES FOR FURTHER STUDY

1. Aggarwal C. C., Yu P. S., Privacy-Preserving Data Mining: Models and Algo-
rithms, Springer, Berlin, 2008.

The book proposes a number of techniques to perform the data-mining tasks in a
privacy-preserving way. These techniques generally fall into the following cate-
gories: data modification techniques, cryptographic methods and protocols for data
sharing, statistical techniques for disclosure and inference control, query auditing
methods, randomization, and perturbation-based techniques. This edited volume
contains surveys by distinguished researchers in the privacy field. Each survey
includes the key research content as well as future research directions. Privacy-
Preserving Data Mining: Models and Algorithms is designed for researchers, pro-
fessors, and advanced-level students in computer science and is also suitable for
industry practitioners.

2. Mitsa T., Temporal data Mining, Chapmann & Hall / CRC Press, 2010.

From basic data-mining concepts to state-of-the-art advances, Temporal Data Min-
ing covers the theory of this subject as well as its application in a variety of fields. It
discusses the incorporation of temporality in databases as well as temporal data rep-
resentation, similarity computation, data classification, clustering, pattern discovery,
and prediction. The book also explores the use of temporal data mining in medicine
and biomedical informatics, business and industrial applications, Web usage
mining, and spatiotemporal data mining. Along with various state-of-the-art
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algorithms, each chapter includes detailed references and short descriptions of rel-
evant algorithms and techniques described in other references. In the appendices, the
author explains how data mining fits the overall goal of an organization and how
these data can be interpreted for the purpose of characterizing a population. She also
provides programs written in the Java language that implement some of the algo-
rithms presented in the first chapter.

3. Zeitouni K., A Survey of Spatial Data Mining Methods: Databases and Statistics
Point of View, In “Data warehousing and web engineering”, Becker S., editor,
IRM Press, 2002.

This chapter reviews the data-mining methods that are combined with geographic
information systems (GIS) for carrying out spatial analysis of geographic data. We
will first look at data-mining functions as applied to such data and then highlight
their specificity compared with their application to classical data. We will go on to
describe the research that is currently going on in this area, pointing out that there
are two approaches: the first comes from learning on spatial databases, while the
second is based on spatial statistics. We will conclude by discussing the main dif-
ferences between these two approaches and the elements they have in common.

4. Chakrabarti D., Faloutsos C., Graph Mining: Laws, Generators, and Algorithms,
ACM Computing Surveys, Vol. 38, March 2006, pp. 1–69.

How does the Web look? How could we tell an abnormal social network from a
normal one? These and similar questions are important in many fields where the
data can intuitively be cast as a graph; examples range from computer networks to
sociology to biology and many more. Indeed, anyM: N relation in database termi-
nology can be represented as a graph. A lot of these questions boil down to the
following: “How can we generate synthetic but realistic graphs?” To answer this,
we must first understand what patterns are common in real-world graphs and can
thus be considered a mark of normality/realism. This survey gives an overview of
the incredible variety of work that has been done on these problems. One of our
main contributions is the integration of points of view from physics, mathematics,
sociology, and computer science. Further, we briefly describe recent advances on
some related and interesting graph problems.

5. Pearl J., Causality: Models, Reasoning and Inference, 2nd edition, Cambridge
University Press, 2009.

This book fulfills a long-standing need for a rigorous yet accessible treatise on the
mathematics of causal inference. Judea Pearl has done a masterful job of describing
the most important approaches and displaying their underlying logical unity. The
book deserves to be read by all scientists who use non-experimental data to study
causation and would serve well as a graduate or advanced undergraduate course
text. The book should prove invaluable to researchers in artificial intelligence, sta-
tistics, economics, epidemiology, and philosophy and, indeed, all those interested
in the fundamental notion of causality. It may well prove to be one of the most
influential books of the next decade.
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6. Gosavi A., Simulation-Based Optimization: Parametric Optimization Techniques
and Reinforcement Learning, 2nd edition, Springer, New York, NY, 2014.

The book introduces the evolving area of static and dynamic simulation-based
optimization. Covered in detail are model-free optimization techniques—
especially designed for those discrete-event stochastic systems that can be simu-
lated but whose analytical models are difficult to find in closed mathematical
forms. It includes an in-depth consideration of dynamic simulation optimization
via temporal differences and reinforcement learning: Q-learning, SARSA, and
R-SMART algorithms, and policy search, via API, Q-P-learning, actor-critics,
and learning automata. A special examination is given to neural-network-based
function approximation for reinforcement learning, semi-Markov decision pro-
cesses (SMDPs), finite-horizon problems, two time scales, case studies for indus-
trial tasks, computer codes (placed online), and convergence proofs, via Banach
fixed point theory and ordinary differential equations. The book is themed around
three areas in separate sets of chapters—static simulation optimization, reinforce-
ment learning, and convergence analysis.

7. Talia D., Data Analysis in the Cloud: Models, Techniques and Applications, Else-
vier Inc., 2015.

The book introduces and discusses models, methods, techniques, and systems to
analyze the large number of digital data sources available on the Internet using the
computing and storage facilities of the cloud. Coverage includes scalable data-
mining and knowledge-discovery techniques together with cloud computing con-
cepts, models, and systems. Specific sections focus on map–reduce and NoSQL
models. The book also includes techniques for conducting high-performance dis-
tributed analysis of large data on clouds. Finally, the book examines research
trends such as big data pervasive computing, data-intensive exascale computing,
and massive social network analysis.
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13

GENETIC ALGORITHMS

Chapter Objectives

• Identify effective algorithms for approximate solutions of optimization
problems described with large data sets.

• Compare basic principles and concepts of natural evolution and simulated
evolution expressed through genetic algorithms.

• Describe the main steps of a genetic algorithm with illustrative examples.

• Explain standard and nonstandard genetic operators such as a mechanism for
improving solutions.

• Discuss a schema concept with don’t care values and its application to approx-
imate optimization.

• Apply a genetic algorithm to the traveling salesman problem and optimization
of classification rules as examples of hard optimizations.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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There is a large class of interesting problems for which no reasonably fast algorithms
have been developed. Many of these problems are optimization problems that arise
frequently in applications. The fundamental approach to optimization is to formulate
a single standard of measurement—a cost function—that summarizes the perfor-
mance or value of a decision and iteratively improves this performance by selecting
from among the available alternatives. Most classical methods of optimization gener-
ate a deterministic sequence of trial solutions based on the gradient or higher-order
statistics of the cost function. In general, any abstract task to be accomplished can
be thought of as solving a problem, which can be perceived as a search through a space
of potential solutions. Since we are looking for “the best” solution, we can view this
task as an optimization process. For small data spaces, classical exhaustive search
methods usually suffice; for large spaces, special techniques must be employed.
Under regular conditions, the techniques can be shown to generate sequences that
asymptotically converge to optimal solutions, and in certain cases they converge
exponentially fast. But the methods often fail to perform adequately when random
perturbations are imposed on the function that is optimized. Further, locally optimal
solutions often prove insufficient in real-world situations. Despite such problems,
which we call hard-optimization problems, it is often possible to find an effective
algorithm whose solution is approximately optimal. One of the approaches is based
on genetic algorithms (GAs), which are developed on the principles of natural
evolution.

Natural evolution is a population-based optimization process. Simulating this
process on a computer results in stochastic-optimization techniques that can often
outperform classical methods of optimization when applied to difficult real-world pro-
blems. The problems that the biological species have solved are typified by chaos,
chance, temporality, and nonlinear interactivity. These are the characteristics of the
problems that have proved to be especially intractable to classical methods of optimi-
zation. Therefore, the main avenue of research in simulated evolution is a genetic
algorithm, which is a new iterative optimization method that emphasizes some facets
of natural evolution. GAs approximate an optimal solution to the problem at hand;
they are by nature stochastic algorithms whose search methods model some natural
phenomena such as genetic inheritance and the Darwinian strife for survival.

13.1 FUNDAMENTALS OF GENETIC ALGORITHMS

GAs are derivative-free stochastic-optimization methods based loosely on the con-
cepts of natural selection and evolutionary processes. They were first proposed and
investigated by John Holland at the University of Michigan in 1975. The basic idea
of GAs was revealed by a number of biologists when they used computers to perform
simulations of natural genetic systems. In these systems, one or more chromosomes
combine to form the total genetic prescription for the construction and operation of
some organism. The chromosomes are composed of genes, which may take a number
of values called allele values. The position of a gene (its locus) is identified separately
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from the gene’s function. Thus, we can talk of a particular gene, e.g., an animal’s eye-
color gene with its locus at position 10 and its allele value as blue eyes.

Before going into details of the applications of GAs in the following sections, let
us understand its basic principles and components. GAs encode each point in a param-
eter or solution space into a binary-bit string called a chromosome. These points in an
n-dimensional space do not represent samples in the terms that we defined them at the
beginning of this book. While samples in other data-mining methodologies are data
sets given in advance for training and testing, sets of n-dimensional points in GAs are
a part of a GA, and they are produced iteratively in the optimization process. Each
point or binary string represents a potential solution to the problem that is to be solved.
In GAs, the decision variables of an optimization problem are coded by a structure of
one or more strings, which are analogous to chromosomes in natural genetic systems.
The coding strings are composed of features that are analogous to genes. Features are
located in different positions in the string, where each feature has its own position
(locus) and a definite allele value, which complies with the proposed coding method.
The string structures in the chromosomes go through different operations similar to
the natural evolution process to produce better alternative solutions. The quality of
new chromosomes is estimated based on the “fitness” value, which can be considered
as the objective function for the optimization problem. The basic relations between
concepts in natural evolution and GAs are given in Table 13.1. Instead of single a
point, GAs usually keep a set of points as a population, which is then evolved repeat-
edly toward a better overall fitness value. In each generation, the GA constructs a new
population using genetic operators such as crossover and mutation. Members with
higher fitness values are more likely to survive and participate in mating or crossover
operations.

As a general-purpose optimization tool, GAs are moving out of academia and
finding significant applications in many other venues. Typical situations where
GAs are particularly useful are in difficult optimization cases for which analytical
methods do not work well. GAs have been quite successfully applied to optimization
problems like wire routing, scheduling, adaptive control, game playing, transportation
problems, traveling salesman problems (TSP), database query optimization, machine
learning, etc. During the last decades, the significance of optimization has grown even
further because many important large-scale combinatorial-optimization problems and

TABLE 13.1 . Basic Concepts in Genetic Algorithms

Concept in Natural Evolution Concept in Genetic Algorithms

Chromosome String
Gene Features in the string
Locus Position in the string
Allele Position value (usually 0 or 1)
Genotype String structure
Phenotype Set of characteristics (features)
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highly constrained engineering problems can only be solved approximately. GAs aim
at such complex problems. They belong to the class of probabilistic algorithms, yet
they are very different from random algorithms as they combine elements of directed
and stochastic search. Another important property of genetics-based search methods is
that they maintain a population of potential solutions while all other methods process a
single point of the search space. Because of these characteristics, GAs are more robust
than existing directed-search methods.

Gas are popular because they do not depend on functional derivatives and they
have the following characteristics:

1. GAs are parallel-search procedures that can be implemented on parallel-
processing machines for massively speeding up their operations.

2. GAs are applicable to both continuous- and discrete-optimization problems.

3. GAs are stochastic and less likely to get trapped in local minima, which inev-
itably are present in any practical optimization application.

4. GAs’ flexibility facilitates both structure and parameter identification in com-
plex models.

The GA theory provides some explanation why, for a given problem formulation,
we may obtain convergence to the sought optimal point. Unfortunately, practical
applications do not always follow the theory, the main reason being:

1. The coding of the problem often moves the GA to operate in a different space
than that of the problem itself.

2. There are practical limits on the hypothetically unlimited number of iterations
(generations in the GA).

3. There is a limit on the hypothetically unlimited population size.

One of the implications of these observations is the inability of GAs, under certain
conditions, to find the optimal solution or even an approximation to the optimal solu-
tion; such failures are usually caused by premature convergence to a local optimum.
Do not forget that this problem is common not only for the other optimization algo-
rithms but also for the other data-mining techniques.

13.2 OPTIMIZATION USING GENETIC ALGORITHMS

Let us note first that without any loss of generality, we can assume that all optimiza-
tion problems can be analyzed as maximization problems only. If the optimization
problem is to minimize a function f(x), this is equivalent to maximizing a function
g(x) = –f(x). Moreover, we may assume that the objective function f(x) takes positive
values in its domain. Otherwise, we can translate the function for some positive con-
stant C so that it will be always positive; i.e.,
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max f ∗ x =max f x +C

If each variable xi, with real values, is coded as a binary string of length m, then
the relation between the initial value and the coded information is

xi = a+ decimal binary-stringi
b – a

2m – 1

where the variable xi can take the values from a domain Di = [a, b] and m is the smal-
lest integer such that the binary code has the required precision. For example, the
value for variable x given on the domain [10, 20] is a binary-coded string with the
length equal to 3 and the code 100. While the range of codes is between 000 and
111, the question is: what is the real value of the coded variable x? For this example
m = 3 and the corresponding precision is

b – a

2m – 1
=

20 – 10

23 – 1
=
10
7

= 1 42

and that is the difference between two successive xi values that could be tested as can-
didates for extreme. Finally, the attribute with the code 100 has a decimal value:

x = 10 + decimal 100 1 42 = 10 + 4 1 42 = 15 68

Each chromosome as a potential solution is represented by a concatenation of
binary codes for all features in the problem to be optimized. Its total length m is a
sum of the features’ code lengths mi:

m=
k

i= 1

mi

where k is the number of features or input variables for the problem at hand. When we
introduce these basic principles of a code construction, it is possible to explain the
main steps of a GA.

13.2.1 Encoding Schemes and Initialization

A GA starts with designing a representation of a solution for the given problem.
A solution here means any value that is a candidate for a correct solution that can be
evaluated. For example, suppose we want to maximize function y = 5 – (x – 1)2. Then,
x = 2 is a potential solution, x = 2.5 is another solution, and x = 3 is the correct solution of
the problem that maximizes y. The representation of each solution for a GA is up to the
designer. It depends on what each solution looks like and which solution form will be
convenient for applying a GA. The most common representation of a solution is as a
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string of characters, i.e., a string of codes for feature representation, where the characters
belong to a fixed alphabet. The larger the alphabet, the more the information that can be
represented by each character in the string. Therefore, fewer elements in a string are
necessary to encode specific amounts of information. However, in most real-world
applications, GAs usually use a binary-coding schema.

The encoding process transforms points in a feature space into bit string repre-
sentation. For instance, a point (11, 6, 9) in a three-dimensional feature space, with
ranges [0, 15] for each dimension, can be represented as a concatenated binary string:

11,6,9 101101101001

in which each feature’s decimal value is encoded as a gene composed of four bits
using a binary coding.

Other encoding schemes, such as Gray coding, can also be used, and, when nec-
essary, arrangements can be made for encoding negative, floating-point, or discrete-
value numbers. Encoding schemes provide a way of translating problem-specific
knowledge directly into the GA framework. This process plays a key role in determin-
ing GAs’ performances. Moreover, genetic operators can and should be designed
along with the encoding scheme used for a specific application.

A set of all features values encoded into a bit string represents one chromosome.
In GAs we are manipulating not a single chromosome but a set of chromosomes called
a population. To initialize a population, we can simply set some pop-size number of
chromosomes randomly. The size of the population is also one of the most important
choices faced by any user of GAs and may be critical in many applications: will we
reach the approximate solution at all, and if yes, how fast? If the population size is too
small, the GA may converge too quickly and maybe to a solution that is only the local
optimum; if it is too large, the GAmay waste computational resources and the waiting
time for an improvement might be too long.

13.2.2 Fitness Evaluation

The next step, after creating a population, is to calculate the fitness value of each mem-
ber in the population because each chromosome is a candidate for an optimal solution.
For a maximization problem, the fitness value fi of the ith member is usually the objec-
tive function evaluated at this member (or the point in parameter space). The fitness of
a solution is a measure that can be used to compare solutions to determine which is
better. The fitness values may be determined from complex analytical formulas and
simulation models or by referring to observations from experiments or real-life prob-
lem settings. GAs will work correctly if fitness values are determined appropriately
keeping in mind that a selection of the objective function is highly subjective and
problem dependent.

We usually need fitness values that are positive, so some kind of scaling and/or
translation of data may become necessary if the objective function is not strictly pos-
itive. Another approach is to use the rankings of members in a population as their
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fitness values. The advantage of this approach is that the objective function does not
need to be accurate, as long as it can provide the correct ranking information.

13.2.3 Selection

In this phase, we have to create a new population from the current generation. The
selection operation determines which parent chromosomes participate in producing
offspring for the next generation. Usually, members are selected for mating with a
selection probability proportional to their fitness values. The most common way to
implement this method is to set the selection probability p equal to

pi =
fi
n
k = 1fk

where n is the population size and fi is a fitness value for the ith chromosome. The
effect of this selection method is to allow members with above-average values to
reproduce and replace members with below-average fitness values.

For the selection process (selection of a new population with respect to the prob-
ability distribution based on fitness values), a roulette wheel with slots sized according
to fitness for each chromosome is used. We construct such a roulette wheel as follows:

1. Calculate the fitness value f(vi) for each chromosome vi.

2. Find the total fitness of the population:

F =
pop-size

i= 1

f vi

3. Calculate the probability of a selection pi for each chromosome vi:

pi =
f vi
F

4. Calculate a cumulative probability qi after each chromosome vi is included:

qi =
i

j= 1

pi

where q increases from 0 to maximum 1. Value 1 shows that all chromosomes from
the population are included into a cumulative probability.

The selection process is based on spinning the roulette wheel pop-size times.
Each time we select a single chromosome for a new population. An implementation
could repeat steps 1 and 2 pop-size times:

1. Generate a random number r from the range [0, 1].

2. If r < q1, then select the first chromosome v1; otherwise select the ith chromo-
some vi such that qi – 1 < r ≤ qi.

471OPTIMIZATION USING GENETIC ALGORITHMS



Obviously, some chromosomes would be selected more than once. That is in
accordance with the theory. GA performs a multidirectional search by maintaining
a population of potential solutions and encourages good solutions. The population
undergoes a simulated evolution—in each generation the relatively “good” solutions
reproduce, while the relatively “bad” solutions die. To distinguish between different
solutions, we use an objective or evaluation function, which plays the role of an
environment.

13.2.4 Crossover

The strength of GAs arises from the structured information exchange of crossover
combinations of highly fit individuals. So what we need is a crossover-like operator
that would exploit important similarities between chromosomes. The probability
of crossover PC is the parameter that will define the expected number of
chromosomes—PC pop-size—which undergo the crossover operation. We define
the chromosomes for crossover in a current population using the following iterative
procedure. Steps 1 and 2 have to be repeated for all chromosomes:

1. Generate a random number r from the range [0, 1].

2. If r < PC, select the given chromosome for crossover.

If PC is set to 1, all chromosomes in the population will be included into the cross-
over operation; if PC = 0.5, only half of the population will perform crossover, and the
other half will be included into a new population directly without changes.

To exploit the potential of the current gene pool, we use crossover operators to
generate new chromosomes that will retain the good features from the previous gen-
eration. Crossover is usually applied to selected pairs of parents.

One-point crossover is the most basic crossover operator, where a crossover point
on the genetic code is selected at random and two parent chromosomes are interchanged
at this point. In two-point crossover, two points are selected, and a part of chromosome
string between these two points is then swapped to generate two children of the new
generation. Examples of one- and two-point crossover are shown in Figure 13.1.

We can define an n-point crossover similarly, where the parts of strings between
points 1 and 2, 3 and 4, and finally n − 1 and n are swapped. The effect of crossover is
similar to that of mating in the natural evolutionary process in which parents pass seg-
ments of their own chromosomes on to their children. Therefore, some children are
able to outperform their parents if they get “good” genes or genetic traits from their
parents.

13.2.5 Mutation

Crossover exploits existing gene potentials, but if the population does not contain all
the encoded information needed to solve a particular problem, no amount of gene mix-
ing can produce a satisfactory solution. For this reason, a mutation operator capable of
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spontaneously generating new chromosomes is included. The most common way of
implementing mutation is to flip a bit with a probability equal to a very low given
mutation rate (MR). A mutation operator can prevent any single bit from converging
to a value through the entire population, and, more importantly, it can prevent the pop-
ulation from converging and stagnating at any local optima. The MR is usually kept
low so good chromosomes obtained from crossover are not lost. If the MR is high (for
example, above 0.1), GA performance will approach that of a primitive random
search. Figure 13.2 provides an example of mutation.

In the natural evolutionary process, selection, crossover, and mutation all occur
simultaneously to generate offspring. Here we split them into consecutive phases to
facilitate implementation of and experimentation with GAs. Note that this section only
gives a general description of the basics of GAs. Detailed implementations of GAs
vary considerably, but the main phases and the iterative process remain.

At the end of this section, we can summarize that the major components of GAs
include encoding schemas, fitness evaluation, parent selection, and application of
crossover operators and mutation operators. These phases are performed iteratively,
as represented in Figure 13.3.

It is relatively easy to keep track of the best individual chromosomes in the evo-
lution process. It is customary in GA implementations to store “the best ever” indi-
vidual at a separate location. In that way, the algorithm would report the best value
found during the whole process, just in the final population.

Selected point for one-point crossover (after the fifth position in the string)

⇓
1 0 0 1 1 1 1 0 1 0 0 1 0 0 1 0

⇒
1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0

(a)

Selected points for two-point crossover (after the second and fifth positions in the strings)

⇓ ⇓
1 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0

⇒
1 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0

(b)

Figure 13.1. Crossover operators. (a) One-point crossover. (b)Two-point crossover.

Randomly selected mutated bit

(in the sixth position)

Chromosome after mutation

⇓ ⇓
1 0 0 1 1 1 1 0 ⇒ 1 0 0 1 1 0 1 0 

Figure 13.2. Mutation operator.
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Optimization under constraints is also the class of problems for which GAs are an
appropriate solution. The constraint-handling techniques for GAs can be grouped into
different categories. One typical way of dealing with GA candidates that violate the
constraints is to generate potential solutions without considering the constraints and
then to penalize them by decreasing the “goodness” of the evaluation function. In
other words, a constrained problem is transformed to an unconstrained one by asso-
ciating a penalty with all constraint violations. These penalties are included in the
function evaluation, and there are different kinds of implementations. Some penalty
functions assign a constant as a penalty measure. Other penalty functions depend on
the degree of violation: the larger the violation, the greater the penalty. The growth of
the penalty function can be logarithmic, linear, quadratic, exponential, etc., depending
upon the size of the violation. Several implementations of GAs’ optimization under
constraints are given in the texts recommended for further study (Section 13.9).

13.3 A SIMPLE ILLUSTRATION OF A GENETIC ALGORITHM

To apply a GA for a particular problem, we have to define or to select the following
five components:

1. A genetic representation or encoding schema for potential solutions to the
problem.

2. A way to create an initial population of potential solutions.

3. An evaluation function that plays the role of the environment, rating solutions
in terms of their “fitness.”

4. Genetic operators that alter the composition of offspring.

5. Values for the various parameters that the GA uses (population size, rate of
applied operators, etc.).

Encoding schemata

Fitness evaluation

YES
Testing the end of the algorithm

NO

Parent selection

Crossover operators

Mutation operators

Halt

Figure 13.3. Major phases of a genetic algorithm.
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We discuss the main features of GAs by presenting a simple example. Suppose
that the problem is the optimization of a simple function of one variable. The function
is defined as

f x = x2

The task is to find x from the range [0, 31] that maximizes the function f(x). We
selected this problem because it is relatively easy to analyze optimization of the func-
tion f(x) analytically, to compare the results of the analytic optimization with a GA,
and to find the approximate optimal solution.

13.3.1 Representation

The first step in the GA is to represent the solution alternative (a value for the input
feature) in a coded-string format. Typically, the string is a series of features with their
values; each feature’s value can be coded with one from a set of discrete values called
allele set. The allele set is defined according to the needs of the problem, and finding
the appropriate coding method is a part of the art of using GAs. The coding method
must be minimal but completely expressive. We will use a binary vector as a chromo-
some to represent real values of the single variable x. The length of the vector depends
on the required precision, which, in this example, is selected as 1. Therefore, we need a
minimum five-bit code (string) to accommodate the range with required precision:

b – a

2m – 1
≤Required precision

31 – 0
2m – 1

≤ 1

2m ≥ 32

m ≥ 5

For this example, the mapping from a real number to a binary code is defined by
the relation (because a = 0)

Code = binary xdecimal

Opposite mapping from the binary code to the real value of the argument is also
unique:

x = decimal Codebinary

and it will be used only for checking the intermediate results of optimization. For
example, if we want to transform the value x = 11 into a binary string, the corres-
ponding code will be 01011. On the other hand, code 11001 represents decimal value
x = 25.
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13.3.2 Initial Population

The initialization process is very simple: we randomly create a population of chromo-
somes (binary codes) with the given length. Suppose that we decide that the parameter
for the number of strings in the population is equal to four. Then one possible ran-
domly selected population of chromosomes is

CR1 = 01101

CR2 = 11000

CR3 = 01000

CR4 = 10011

13.3.3 Evaluation

The evaluation function for binary vectors representing chromosomes is equivalent to
the initial function f(x) where the given chromosome represents the binary code for the
real value x. As noted earlier, the evaluation function plays the role of the environ-
ment, rating potential solutions in terms of their fitness. For our example, four chro-
mosomes CR1 to CR4 correspond to values for input variable x:

x1 CR1 = 13

x2 CR2 = 24

x3 CR3 = 8

x4 CR4 = 19

Consequently, the evaluation function would rate them as follows:

f x1 = 169

f x2 = 576

f x3 = 64

f x4 = 361

The results of evaluating the chromosomes initially generated may be given in a
tabular form, and they are represented in Table 13.2. The expected reproduction col-
umn shows “the evaluated quality” of chromosomes in the initial population. Chro-
mosomes CR2 and CR4 are more likely to be reproduced in the next generation than
CR1 and CR3.
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13.3.4 Alternation

In the alternation phase, the new population is selected based on the population eval-
uated in the previous iteration. Clearly, the chromosome CR4 in our example is the
best of the four chromosomes, since its evaluation returns the highest value. In the
alternation phase, an individual may be selected depending on its objective-function
value or fitness value. For maximization problems, the higher the individual’s fitness,
the more probable that it can be selected for the next generation. There are different
schemes that can be used in the selection process. In the simple GA we proposed
earlier, the roulette wheel selection technique, an individual is selected randomly
depending on a computed probability of selection for each individual. The probability
of selection is computed by dividing the individual’s fitness value by the sum of
fitness values of the corresponding population, and these values are represented in
column 5 in Table 13.2.

In the next step we design the roulette wheel, which is, for our problem, graph-
ically represented in Figure 13.4.

TABLE 13.2 . Evaluation of the Initial Population

CRi Code x f(x) f(x)/ f(x) Expected
Reproduction: f(x)/fav

1 01101 13 169 0.14 0.58
2 11000 24 576 0.49 1.97
3 01000 8 64 0.06 0.22
4 10011 19 361 0.31 1.23

1170 1.00 4.00
Average 293 0.25 1.00
Max 576 0.49 1.97

49%

CR2

14%

CR1

31% 6%

CR4
CR3

Figure 13.4. Roulette wheel for selection of the next population.
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Using the roulette wheel, we can select chromosomes for the next population.
Suppose that the randomly selected chromosomes for the next generation are CR1,
CR2, CR2, CR4 (the selection is in accordance with the expected reproduction—
column 6 in Table 13.2). In the next step, these four chromosomes undergo the genetic
operations: crossover and mutation.

13.3.5 Genetic Operators

Crossover is not necessarily applied to all pairs of selected individuals. A choice is
made depending on a specified probability called crossover probability (PC), which
is typically between 0.5 and 1. If crossover is not applied (PC = 0), the offspring are
simply a duplication of the parents. For the process of crossover, it is necessary to
determine the percentage of the population that will perform the crossover. For our
particular problem, we use the following parameters of the GA:

1. Population size, pop-size = 4 (the parameter was already used).

2. Probability of crossover, PC = 1.

3. Probability of mutation, PM = 0.001 (the parameter will be used in a mutation
operation).

A value of 1 for the probability of crossover translates into a 100% crossover—all
chromosomes will be included in the crossover operation.

The second set of parameters in this phase of a GA is the random selection of
parents for crossover and positions in the strings where the crossover will be per-
formed. Suppose that these are randomly selected pairs, CR1–CR2 and CR2–CR4,
and crossover is after the third position in the strings for both pairs. Then the selected
strings

First pair:

CR1 = 01101

CR2 = 11000

Second pair:

CR2 = 11000

CR4 = 10011
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will become, after crossover, a new population:

CR1 = 01100

CR2 = 11001

CR3 = 11011

CR4 = 10000

The second operator that can be applied in every iteration of a GA is mutation. For
our example, the mutation operator has a probability of 0.1%, which means that on the
1000 transformed bits, a mutation will be performed only once. Because we trans-
formed only 20 bits (one population of 4 × 5 bits is transformed into another), the
probability that a mutation will occur is very small. Therefore, we can assume that
the strings CR 1 to CR 4 will stay unchanged with respect to a mutation operation
in this first iteration. It is expected that only one bit will be changed for every
50 iterations.

That was the final processing step in the first iteration of the GA. The results, in
the form of the new population CR 1 to CR 4, are used in the next iteration, which
starts again with an evaluation process.

13.3.6 Evaluation (Second Iteration)

The process of evaluation is repeated in the new population. These results are given in
Table 13.3.

The process of optimization with additional iterations of the GA can be continued
in accordance with Figure 13.3. We will stop here with a presentation of computa-
tional steps for our example and give some additional analyses of results useful for
a deeper understanding of a GA.

Although the search techniques used in the GA are based on many random para-
meters, they are capable of achieving a better solution by exploiting the best alterna-
tives in each population. A comparison of sums and average and max values from
Tables 13.2 and 13.3

1
= 1170

2
= 1754

Average1 = 293 Average2 = 439

Max1 = 576 Max2 = 729

shows that the new second population is approaching closer to the maximum of the
function f(x). The best result obtained from the evaluation of chromosomes in the first
two iterations is the chromosome CR3 = 11011 and it corresponds to the feature’s
value x = 27 (theoretically it is known that the maximum of f(x) is for x = 31, where
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f(x) reaches the value 961). This increase will not be obtained in each GA iteration, but
on average, the final population is much closer to a solution after a large number of
iterations. The number of iterations is one possible stopping criterion for the GA algo-
rithm. The other possibilities for stopping the GA are when the difference between the
sums in two successive iterations is less than the given threshold, when a suitable fit-
ness value is achieved, or when the computation time is limited.

13.4 SCHEMATA

The theoretical foundations of GAs rely on a binary string representation of solutions
and on the notation of a schema—a template allowing exploration of similarities
among chromosomes. To introduce the concept of a schema, we have to first formal-
ize some related terms. The search space Ω is the complete set of possible chromo-
somes or strings. In a fixed-length string l, where each bit (gene) can take on a
value in the alphabet A of size k, the resulting size of the search space is kl. For exam-
ple, in binary-coded strings where the length of the string is 8, the size of the search
space is 28 = 256. A string in the population S is denoted by a vector x Ω. So, in the
previously described example, x would be an element of {0, 1}8. A schema is a sim-
ilarity template that defines a subset of strings with fixed values in certain positions.

A schema is built by introducing a don’t care symbol (∗) into the alphabet of
genes. Each position in the scheme can take on the values of the alphabet (fixed posi-
tions) or a “don’t care” symbol. In the binary case, for example, the schemata of the
length l are defined asH {0, 1, ∗}l. A schema represents all the strings that match it on
all positions other than “∗.” In other words, a schema defines a subset of the search
space or a hyperplane partition of this search space. For example, let us consider the
strings and schemata of the length 10. The schema

∗111100100

matches two strings

0111100100 , 1111100100 ,

TABLE 13.3 . Evaluation of the Second Generation of Chromosomes

CRi Code x f(x) f(x)/ f(x) Expected Reproduction:
f(x)/fav

1 01100 12 144 0.08 0.32
2 11001 25 625 0.36 1.44
3 11011 27 729 0.42 1.68
4 10000 16 256 0.14 0.56

1754 1.00 4.00
Average 439 0.25 1.00
Max 729 0.42 1.68
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and the schema

∗1∗1100100

matches four strings

0101100100 , 0111100100 , 1101100100 , 1111100100

Of course, the schema

1001110001

represents one string only, and the schema

∗∗∗∗∗∗∗∗∗∗

represents all strings of length 10. In general, the total number of possible schemata is
(k + 1)l, where k is the number of symbols in the alphabet and l is the length of the
string. In the binary example of coding strings, with a length of 10, it is (2 +
1)10 = 310 = 59049 different strings. It is clear that every binary schema matches
exactly 2r strings, where r is the number of don’t care symbols in a schema template.
On the other hand, each string of length m is matched by 2m different schemata.

We can graphically illustrate the representation of different schemata for five-bit
codes used to optimize the function f(x) = x2 on interval [0, 31]. Every schema repre-
sents a subspace in the 2D space of the problem. For example, the schema 1∗∗∗∗

reduces the search space of the solutions on the subspace given in Figure 13.5a,
and the schema 1∗0∗∗ has a corresponding search space in Figure 13.5b.

Different schemata have different characteristics. There are three important
schema properties: order (O), length (L), and fitness (F). The order of the schema
S denoted by O(S) is the number of 0 and 1 positions, i.e., fixed positions presented
in the schema. A computation of the parameter is very simple: it is the length of the

f(x) f(x)

0 0

(a) (b) 

16 31 x 16 19 24 27 31 x

Figure 13.5. f(x) = x2: search spaces for different schemata. (a) Schema 1∗∗∗∗. (b)

Schema 1∗0∗∗.
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template minus the number of don’t care symbols. For example, the following three
schemata, each of length 10

S1 = ∗∗∗001∗110

S2 = ∗∗∗∗∗0∗∗0∗

S3 = 11101∗∗001

have the following orders:

O S1 = 10 – 4 = 6, O S2 = 10 – 8 = 2, O S3 = 10 – 2 = 8

The schema S3 is the most specific one and the schema S2 is the most general one.
The notation of the order of a schema is useful in calculating survival probabilities of
the schema for mutations.

The length of the schema S, denoted by L(S), is the distance between the first
and the last fixed-string positions. It defines the compactness of information contained
in a schema. For example, the values of this parameter for the given schemata S1 to
S3 are

L S1 = 10 – 4 = 6, L S2 = 9 – 6 = 3, L S3 = 10 – 1 = 9

Note that the schema with a single fixed position has a length of zero. The length
L of a schema is a useful parameter in calculating the survival probabilities of the
schema for crossover.

Another property of a schema S is its fitness F(S, t) at time t (i.e., for the given
population). It is defined as the average fitness of all strings in the population matched
by the schema S. Assume there are p strings {v1, v2,…,vp} in a population matched by
a schema S at the time t. Then

F S, t =
p
i= 1f vi
p

The fundamental theorem of schema construction given in this book without
proof explains that the short (high O), low-order (low L), and above-average sche-
mata (high F) receive exponentially increasing number of strings in the next genera-
tions of a GA. An immediate result of this theorem is that GAs explore the search
space by short, low-order schemata that, subsequently, are used for information
exchange during crossover and mutation operations. Therefore, a GA seeks near-
optimal performance through the analysis of these schemata, called the building
blocks. Note, however, that the building-block approach is just a question of empirical
results without any proof, and these rules for some real-world problems are easily
violated.
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13.5 TRAVELING SALESMAN PROBLEM

In this section, we explain how a GA can be used to approach the TSP. Simply stated,
the traveling salesmanmust visit every city in his territory exactly once and then return
to the starting point. Given the cost of travel between all the cities, how should he plan
his itinerary at minimum total cost for the entire tour? The TSP is a problem in com-
binatorial optimization and arises in numerous applications. There are several branch-
and-bound algorithms, approximate algorithms, and heuristic search algorithms that
approach this problem. During the last few years, there have been several attempts to
approximate the TSP solution using GAs.

The TSP description is based on a graph representation of data. The problem
could be formalized as follows: given an undirected weighted graph, find the shortest
route, i.e., a shortest path in which every vertex is visited exactly once, except that the
initial and terminal vertices are the same. Figure 13.6 shows an example of such a
graph and its optimal solution. A, B, C, etc., are the cities that were visited, and
the numbers associated with the edges are the cost of travel between the cities.

It is natural to represent each solution of the problem, even if it is not optimal, as a
permutation of the cities. The terminal city can be omitted in the representation since it
should always be the same as the initial city. For the computation of the total distance
of each tour, the terminal city must be counted.

By representing each solution as a permutation of the cities, each city will be vis-
ited exactly once. Not every permutation, however, represents a valid solution, since
some cities are not directly connected (e.g. A and E in Figure 10.6). One practical
approach is to assign an artificially large distance between cities that are not directly
connected. In this way, invalid solutions that contain consecutive nonadjacent cities
will disappear, and all solutions will be allowed.

Our objective here is to minimize the total distance of each tour. We can select
different fitness functions that will reflect this objective. For example, if the total dis-
tance is s, then f(s) could be a simple f(s) = s if we minimize the fitness function; alter-
natives for the maximization of a fitness function are f(s) = 1/s, f(s) = 1/s2, f(s) = K – s,
where K is a positive constant that makes f(s) ≥ 0. There is no general formula to
design the best fitness function. But when we do not adequately reflect the goodness

9

6 3

7 10

5 4 

8

9 3 4 8 7

Optimal solution: A ----->B------>C-------E------>D----->(A)

A B

C

D E

Figure 13.6. Graphical representation of the traveling salesman problem with a

corresponding optimal solution.
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of the solution in the fitness function, finding an optimal or near-optimal solution will
not be effective.

When dealing with permutations as solutions, simple crossover operations will
result in invalid solutions. For example, for the problem in Figure 10.6, a crossover
of two solutions after the third positions in the strings

ADEBC

AECDB

will produce new strings

ADEDB

AECBC

which are invalid solutions because they do not represent permutations of initial ele-
ments in the strings. To avoid this problem, a modified crossover operation is intro-
duced that directly operates on permutations and still gives permutations. This is a
partially matched crossover (PMX) operation. It can be used not only for the TSP
but also for any other problems that involve permutations in a solution’s representa-
tion. We illustrate the effects of the PMX operation by an example. Assume that two
solutions are given as permutations of the same symbols, and suppose that the PMX is
a two-point operation. Selecting two strings and two random crossing points is the first
step in the process of applying the PMX operation:

ADEBC

AECDB

The substrings between crossing points are called matching sections. In our exam-
ple, we have two elements in the matching sections: E B for the first string and C D for
the second one. The crossover operation requires an exchange of the symbols E with C,
denoted as an ordered pair (E, C), and B with D, represented as (B, D). The next step in
the PMX operation is to permute each of these two-element permutations in each string.
In other words, it is necessary to exchange the places for pairs (E, C) and (B, D) in both
strings. The result of (E, C) changes in the first string is ADCBE, and after second pair
(B, D) has been changed, the final version of the first string is A B C D E. The second
string after application of the same permutations will become A C E D B first and then
A C E B D finally. If we analyze the two strings obtained by PMX operation

484 GENETIC ALGORITHMS



ABCDE

ACEBD

we can see that middle parts of the strings were really exchanged as in a standard
crossover operation. On the other hand, the two new strings remain as valid permuta-
tions, since the symbols are actually permuted within each string.

Theother steps of aGAappliedon theTSPare unchanged.AGAbasedon the above
operator outperforms a random search for TSP, but still leaves much room for improve-
ment. Typical results from the algorithm,when applied to 100 randomly generated cities,
gave, after 20,000 generations, a value of the whole tour 9.4% above minimum.

13.6 MACHINE LEARNING USING GENETIC ALGORITHMS

Optimization problems are one of the most common application categories of GAs. In
general, an optimization problem attempts to determine a solution that maximizes the
profit in an organization or minimizes the cost of production by determining values for
selected features of the production process. Another typical area where GAs are applied
is the discovery of input-to-output mapping for a given, usually complex, system, which
is the type of problem that all machine-learning algorithms are trying to solve.

The basic idea of input-to-output mapping is to come up with an appropriate form
of a function or a model, which is typically simpler than the mapping given
originally—usually represented through a set of input–output samples. We believe
that a function best describes this mapping. Measures of the term “best” depend on
the specific application. Common measures are accuracy of the function, its robust-
ness, and its computational efficiency. Generally, determining a function that satisfies
all these criteria is not necessarily an easy task; therefore, a GA determines a “good”
function, which can then be used successfully in applications such as pattern classi-
fication, control, and prediction. The process of mapping may be automated, and this
automation, using GA technology, represents another approach to the formation of a
model for inductive machine learning.

In the previous chapters of the book, we described different algorithms for
machine learning. Developing a new model (input-to-output abstract relation) based
on some given set of samples is an idea that can also be implemented in the domain of
GAs. There are several approaches to GA-based learning. We will explain the prin-
ciples of the technique that is based on schemata and the possibilities of its application
to classification problems.

Let us consider a simple database that will be used as an example throughout this
section. Suppose that the training or learning data set is described with a set of attri-
butes where each attribute has its categorical range: a set of possible values. These
attributes are given in Table 13.4.
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The description of a classification model with two classes of samples, C1 and C2,
can be represented in an if-then form where on the left side is a Boolean expression of
the input features’ values and on the right side its corresponding class:

A1 = x A5 = s A1 = y A4 = n C1

A3 = y A4 = n A1 = x C2

These classification rules or classifiers can be represented in a more general way:
as some strings over a given alphabet. For our data set with six inputs and one output,
each classifier has the form

p1,p2,p3,p4,p5,p6 d

where pi denotes the value of the ith attribute (1 ≤ i ≤ 6) for the domains described in
Table 13.4 and d is one of two classes. To describe the classification rules in a given
form, it is necessary to include the “don’t care” symbol “∗” into the set of values for
each attribute. For example, the new set of values for attribute A1 is {x, y, z, ∗}. Similar
extensions are given for other attributes. The rules that were given earlier for classes
C1 and C2 can be decomposed to the segments under conjunction (AND logical oper-
ation) and expressed as

x∗∗∗s∗ C1

y∗∗n∗∗ C1

∗∗yn∗∗ C2

x∗∗∗∗∗ C2

To simplify the example, we assume that the system has to classify into only two
classes: C1 and not C1. Any system can be easily generalized to handle multiple

TABLE 13.4 . Attributes Ai with Possible
Values for a Given Data Set s

Attributes Values

A1 x, y, z
A2 x, y, z
A3 y, n
A4 m, n, p
A5 r, s, t, u
A6 y, n
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classes (multiple classification). For a simple classification with a single rule C1, we
can accept only two values for d: d = 1 (member of the class C1) and d = 0 (not a
member of the class C1).

Let us assume that at some stage of the learning process, there is a small and ran-
domly generated population of classifiers Q in the system, where each classifier is
given with its strength s:

Q1
∗∗∗ms∗ 1, s1 = 12 3

Q2
∗∗y∗∗n 0, s2 = 10 1

Q3 xy∗∗∗∗ 1, s3 = 8 7

Q4
∗z∗∗∗∗ 0, s4 = 2 3

Strengths si are parameters that are computed based on the available training data
set. They show the fitness of a rule to the training data set, and they are proportional to
the percentage of the data set supported by the rule.

The basic iterative steps of a GA, including corresponding operators, are applied
here to optimize the set of rules with respect to the fitness function of the rules to
training data set. The operators used in this learning technique are, again, mutation
and crossover. However, some modifications are necessary for mutation. Let us con-
sider the first attribute A1 with its domain {x, y, z, ∗ }. Thus, when mutation is called,
we would change the mutated character (code) to one of the other three values that
have equal probability. The strength of the offspring is usually the same as that of its
parents. For example, if mutation is the rule Q3 on the randomly selected position 2,
replacing the value y with a randomly selected value ∗, the new mutated classifier
will be

Q3M x∗∗∗∗∗ 1, s3M = 8 7

The crossover does not require any modification. We take advantage of the fact
that all classifiers are of equal length. Therefore, to crossover two selected parents,
say, Q1 and Q2

Q1
∗∗∗ms∗ 1

Q2
∗∗y∗∗n 0

we generate a random crossover-position point. Suppose that we cross over after the
third character in the string as marked, and then the offspring are

Q1c
∗∗∗∗∗n 0,

Q2c
∗∗yms∗ 1
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The strength of the offspring is an average (possibly weighted) of the parents’
strengths. Now the system is ready to continue its learning process: starting another
cycle and accepting further positive and negative samples from the training set and
modifying the strengths of classifiers as a measure of fitness. We can note that the
training data set is included in the learning process through evaluation of schema’s
strengths for each iteration. We expect that the population of classifiers converges
to some rules with very high strengths.

One of the possible implementations of the previous ideas is the GIL system,
which moves the GA closer to the symbolic level—mainly by defining specialized
operators that manipulate binary strings. Previous symbolic classifiers are translated
into binary strings, where for each attribute a binary string of fixed length is generated.
The length is equal to the number of possible values for the given attribute. In the
string, the required value is set to 1, and all others are set to 0. For example, if attribute
A1 has the value z, it is represented with the binary string 001 (0s are for values x, y). If
the value of some attribute is ∗, that means that all values are possible, so it is repre-
sented with value 1 in all positions of the binary string.

For our previous example, with six attributes and a total number of seventeen
different values for all attributes, the classifier symbolically represented as

x∗∗∗r∗ y∗∗n∗∗ 1

can be transformed into the binary representation

100 111 11 111 1000 11 010 111 11 010 1111 11

where bars separate bitsets for each attribute. The operators of the GIL system are
modeled on inductive reasoning, which includes various inductive operators such
as RuleExchange, RuleCopy, RuleGeneralization, RuleSpecialization, RuleSplit,
SelectorDrop, ReferenceChange, ReferenceExtension, etc. We discuss some of them
in turn.

13.6.1 RuleExchange

The RuleExchange operator is similar to a crossover of the classical GA, as it
exchanges selected complex between two parent chromosomes. For example, two
parents (two rules)

100 111 11 111 1000 11 010 111 11 010 1111 11 and

111 001 01 111 1111 01 110 100 10 010 0011 01
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may produce the following offspring (new rules):

100 111 11 111 1000 11 110 100 10 010 0011 01 and

111 001 01 111 1111 01 010 111 11 010 1111 11

13.6.2 RuleGeneralization

This unary operator generalizes a random subset of complexes. For example, for a
parent

100 111 11 111 1000 11 110 100 10 010 0011 01 010 111 11 010 1111 11

and the second and third complexes selected for generalization, the bits areORed, and
the following offspring is produced:

100 111 11 111 1000 11 110 111 11 010 1111 11

13.6.3 RuleSpecialization

This unary operator specializes a random subset of complexes. For example, for a
parent

100 111 11 111 1000 11 110 100 10 010 0011 01 010 111 11 010 1111 11

and the second and third complexes selected for specialization, the bits are ANDed,
and the following offspring is produced:

100 111 11 111 1000 11 010 100 10 010 0011 01

13.6.4 RuleSplit

This operator acts on a single complex, splitting it into a number of complexes. For
example, a parent
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100 111 11 111 1000 11

= = =

may produce the following offspring (the operator splits the second selector):

100 011 11 111 1000 11 100 100 11 111 1000 11

The GIL system is a complex inductive-learning system based on GA principles.
It requires a number of parameters such as the probabilities of applying each operator.
The process is iterative. At each iteration, all chromosomes are evaluated with respect
to their completeness, consistency, and fitness criteria, and a new population is formed
with those chromosomes that are better and more likely to appear. The operators are
applied to the new population, and the cycle is repeated.

13.7 GENETIC ALGORITHMS FOR CLUSTERING

Much effort has been undertaken toward applying GAs to provide better solutions
than those found by traditional clustering algorithms. The emphasis was on appropri-
ate encoding schemes, specific genetic operators, and corresponding fitness functions.
Several encoding schemes have been proposed specifically for data clustering, and
main three types are binary, integer, and real encoding.

Binary encoding solution is usually represented as a binary string of length
N, where N is the number of data set samples. Each position of the binary string cor-
responds to a particular sample. The value of the ith gene is 1 if the ith sample is a
prototype of a cluster and zero otherwise. For example, the data set s in Table 13.5

TABLE 13.5 . Three Clusters are Defined
for a Given Data Set s

Samples Feature 1 Feature 2 Cluster

1 1 1 C1

2 1 2 C1

3 2 1 C1

4 2 2 C1

5 10 1 C2

6 10 2 C2

7 11 1 C2

8 11 2 C2

9 5 5 C3

10 5 6 C3
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can be encoded by means of the string [0100001010], in which samples 2, 7, and 9 are
prototypes for clusters C1, C2, and C3. Total number of 1s in the string is equal to a
priori defined number of clusters. Clearly, such an encoding scheme leads to a
medoid-based representation in which the cluster prototypes coincide with represen-
tative samples from the data set. There is an alternative way to represent a data par-
tition using a binary encoding. The matrix of k × N dimensions is used in which the
rows represent clusters and the columns represent samples. In this case, if the jth sam-
ple belongs to the ith cluster, then 1 is assigned to (i,j) genotype, whereas the other
elements of the same column receive 0. For example, using this representation, the
data set in Table 13.5 would be encoded as 3 × 10 matrix in Table 13.6.

Integer encoding uses a vector of N integer positions where N is the number of
data set samples. Each position corresponds to a particular sample, i.e., the ith position
(gene) represents the ith data sample. Assuming that there is k clusters, each gene has a
value over the alphabet {1, 2, 3,…,k}. These values define the cluster labels. For
example, the integer vector [1111222233] represents the clusters depicted in
Table 13.5. Another way of representing a partition by means of an integer encoding
scheme involves using an array of only k elements to provide a medoid-based repre-
sentation of the data set. In this case, each array element represents the index of the
sample xi, i = 1, 2,…,N (with respect to the order the samples appear in the data set)
corresponding to the prototype of a given cluster. As an example, the array [1 6 10]
may represent a partition in which 1, 6, and 10 are indices of the cluster prototypes
(medoids) for the data set in Table 13.5. Integer encoding is usually more computa-
tionally efficient than the binary encoding schemes.

Real encoding is the third encoding scheme where the genotypes are made up
of real numbers that represent the coordinates of the cluster centroids. In an
n-dimensional space, the first n positions represent the n coordinates of the first cen-
troid, the next n positions represent the coordinates of the second centroid, and so
forth. To illustrate this, the genotype [1.5 1.5 10.5 1.5 5.0 5.5] encodes the three cen-
troids, (1.5, 1.5), (10.5, 1.5), and (5.0, 5.5), of clusters C1, C2, and C3 in Table 13.5,
respectively.

Second important decision, in applying GAs for clustering, is a selection of
appropriate genetic operators. A number of crossover and mutation operators are pro-
posed trying to solve an important problem of the context insensitivity in GAs. It
means when traditional genetic operators are employed in clustering problems, they
usually just manipulate gene values without taking into account their connections with

TABLE 13.6 . Binary Encoded Data Set s given in Table 13.5

1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1

491GENETIC ALGORITHMS FOR CLUSTERING



other genes. For example, crossover operation presented in Figure 13.7 shows how
two parents representing the same solution to the clustering problem (different label-
ing but the same integer encoding) produce the resulting offspring representing clus-
tering solutions different from the ones encoded into their parents. Moreover,
assuming that the number of clusters has been fixed in advance as k = 3, invalid solu-
tions with only two clusters have been derived. Therefore, it is necessary to develop
specially designed genetic operators for clustering problems. For example, the cross-
over operator should be repeatedly applied, or randomly scrambling mutation was
performed, until a valid child has been found.

Different clustering validity criteria are adapted as fitness functions to evolve
data partitions in clustering problems. They depend primary on encoding schemes
but also on a selected set of genetic operators. We will illustrate in this text only
one example of a clustering fitness function when real, centroid-based encoding
scheme is used. Fitness function f minimizes the sum of squared Euclidean distances
of the samples from their respective cluster means. Formally, the fitness function f
(C1, C2,…,Ck) is

f C1,C2,…,Ck =
k

j= 1 xi Cj

xi – zj
2

where {C1, C2,…,Ck} is the set of k clusters encoded into the genotype, xi is a sam-
ple in a data set, and zj is the centroid of cluster Cj. It is important to stress that this
criterion is valid only if the number of clusters k is given in advance, and it mini-
mizes the intra-cluster distances and maximizes the inter-cluster distances as well. In
general, fitness functions are based on the distance between samples and either clus-
ters’ centroids or medoids. Although these types of functions are widely used, usu-
ally they are biased toward the discovery of spherical clusters, which clearly will be
inappropriate in many real-world applications. Other approaches are possible includ-
ing density-based fitness function. In practice, the success of a GA to solve a clus-
tering problem is highly dependent upon how it has been designed in terms of
encoding scheme, operators, fitness function, selection procedure, and initial popu-
lation generation.

1 1 1 1 2 2 2 2 3 3

1 1 1 1 3 3 3 3 2 2

1 1 1 1 2 2 2 2 2 2

1 1 1 1 3 3 3 3 3 3

Figure 13.7. Equal parents produce different offspring through crossover.
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13.8 REVIEW QUESTIONS AND PROBLEMS

1. Given a binary string that represents a concatenation of four attribute values:

2,5,4,7 = 010101100111

Use this example to explain the basic concepts of a genetic algorithm and their
equivalents in natural evolution.

2. If we want to optimize a function f(x) using a genetic algorithm, where the pre-
cision requirement for x is six decimal places and the range is [–1, 2], what will be
the length of a binary vector (chromosome)?

3. If v1 = (0 0 1 1 0 0 1 1) and v2 = (0 1 0 1 0 1 0 1) are two chromosomes, and
suppose that the crossover point is randomly selected after the fifth gene, what
are the two resulting offspring?

4. Given the schema (∗ 1 ∗ 0 0), what are the strings that match with it?

5. What is the number of strings that match with the schema (∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗)?

6. The function f(x) = –x2 + 16x is defined on interval [0, 63]. Use two iterations
of a genetic algorithm to establish the approximate solution for a maximum
of f(x).

7. For the function f(x) given in problem #6, compare three schemata

S1 = ∗1∗1∗∗

S2 = ∗10∗1∗

S3 = ∗∗1∗∗∗

with respect to order (O), length (L), and fitness (F).

8. Given a parent chromosome (1 1 0 0 0 1 0 0 0 1), what is the potential offspring
(give examples) if the mutation probability is:

(a) pm = 1.0
(b) pm = 0.5
(c) pm = 0.2
(d) pm = 0.1
(e) pm = 0.0001

9. Explain the basic principles of the building-block hypothesis and its potential
applications.

10. Perform a partially matched crossover (PMC) operation for two strings S1 and S2,
in which two randomly selected crossing points are given.
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S1 = ACBDFGE

S2 = BDCFEGA

11. Search the Web to find the basic characteristics of publicly available or commer-
cial software tools that are based on genetic algorithms. Document the results of
your search.
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billions of potential solutions. This book gives you experience making genetic
algorithms work for you using easy-to-follow example projects that you can fall
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14

FUZZY SETS AND FUZZY LOGIC

Chapter Objectives

• Explain the concept of fuzzy sets with formal interpretation in continuous and
discrete domains.

• Analyze characteristics of fuzzy sets and fuzzy set operations.

• Describe the extension principle as a basic mechanism for fuzzy inferences.

• Discuss the importance of linguistic imprecision and computing with them in
decision-making processes.

• Construct methods for multifactorial evaluation and extraction of a fuzzy rule-
based model from large, numeric data sets.

• Understand why fuzzy computing and fuzzy systems are an important part of
data-mining technology.

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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In the previous chapters, a number of different methodologies for the analysis of large
data sets have been discussed. Most of the approaches presented, however, assume
that the data is precise. That is, they assume that we deal with exact measurements
for further analysis. Historically, as reflected in classical mathematics, we commonly
seek a precise and crisp description of things or events. This precision is accomplished
by expressing phenomena in numeric or categorical values. But in most, if not all, real-
world scenarios, we will never have totally precise values. There is always going to be
a degree of uncertainty. However, classical mathematics can encounter substantial dif-
ficulties because of this fuzziness. In many real-world situations, we may say that
fuzziness is reality whereas crispness or precision is simplification and idealization.
The polarity between fuzziness and precision is quite a striking contradiction in the
development of modern information-processing systems. One effective means of
resolving the contradiction is the fuzzy set theory, a bridge between high precision
and the high complexity of fuzziness.

14.1 FUZZY SETS

Fuzzy concepts derive from fuzzy phenomena that commonly occur in the real world.
For example, rain is a common natural phenomenon that is difficult to describe pre-
cisely since it can rain with varying intensity anywhere from a light shower to a tor-
rential downpour. Since the word rain does not adequately or precisely describe the
wide variations in the amount and intensity of any rain event, “rain” is considered a
fuzzy phenomenon.

Often, the concepts formed in the human brain for perceiving, recognizing, and
categorizing natural phenomena are also fuzzy. The boundaries of these concepts are
vague. Therefore, the judging and reasoning that emerges from them are also fuzzy.
For instance, “rain” might be classified as “light rain,” “moderate rain,” and “heavy
rain” in order to describe the degree of raining. Unfortunately, it is difficult to say
when the rain is light, moderate, or heavy, because the boundaries are undefined.
The concepts of “light,” “moderate,” and “heavy” are prime examples of fuzzy con-
cepts themselves. To explain the principles of fuzzy sets, we will start with the basics
in classical set theory.

The notion of a set occurs frequently as we tend to organize, summarize, and gen-
eralize knowledge about objects. We can even speculate that the fundamental nature of
any human being is to organize, arrange, and systematically classify information about
the diversity of any environment. The encapsulation of objects into a collection whose
members all share some general features naturally implies the notion of a set. Sets are
used often and almost unconsciously; we talk about a set of even numbers, positive tem-
peratures, personal computers, fruits, and the like. For example, a classical set A of real
numbers greater than 6 is a set with a crisp boundary, and it can be expressed as

A= x x> 6
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where there is a clear, unambiguous boundary 6 such that if x is greater than this num-
ber, then x belongs to the set A; otherwise x does not belong to the set. Although clas-
sical sets have suitable applications and have proven to be an important tool for
mathematics and computer science, they do not reflect the nature of human concepts
and thoughts, which tend to be abstract and imprecise. As an illustration, mathemat-
ically we can express a set of tall persons as a collection of persons whose height is
more than 6 ft; this is the set denoted by previous equation, if we let A = “tall person”
and x = “height.” Yet, this is an unnatural and inadequate way of representing our
usual concept of “tall person.” The dichotomous nature of the classical set would clas-
sify a person 6.001 ft tall as a tall person, but not a person 5.999 ft tall. This distinction
is intuitively unreasonable. The flaw comes from the sharp transition between inclu-
sions and exclusions in a set.

In contrast to a classical set, a fuzzy set, as the name implies, is a set without a
crisp boundary. That is, the transition from “belongs to a set” to “does not belong to a
set” is gradual, and this smooth transition is characterized by membership functions
that give sets flexibility in modeling commonly used linguistic expressions such as
“the water is hot” or “the temperature is high.” Let us introduce some basic definitions
and their formalizations concerning fuzzy sets.

Let X be a space of objects and x be a generic element ofX. A classical set A, A X,
is defined as a collection of elements or objects x X such that each x can either belong
or not belong to the set A. By defining a characteristic function for each element x in
X, we can represent a classical set A by a set of ordered pairs (x, 0) or (x, 1), which
indicates x A or x A, respectively.

Unlike the aforementioned conventional set, a fuzzy set expresses the degree to
which an element belongs to a set. The characteristic function of a fuzzy set is allowed
to have values between 0 and 1, which denotes the degree of membership of an ele-
ment in a given set. If X is a collection of objects denoted generically by x, then a fuzzy
set A in X is defined as a set of ordered pairs:

A= x,mA x x X

where μA(x) is called the membership function (or MF for short) for the fuzzy set A.
The membership function maps each element of X to a membership grade (or mem-
bership value) between 0 and 1.

Obviously, the definition of a fuzzy set is a simple extension of the definition of a
classical set in which the characteristic function is permitted to have any value
between 0 and 1. If the value of the membership function μA(x) is restricted to either
0 or 1, then A is reduced to a classic set, and μA(x) is the characteristic function of A.
For clarity, we shall also refer to classical sets as ordinary sets, crisp sets, nonfuzzy
sets, or, just, sets.

Usually X is referred to as the universe of discourse, or, simply, the universe, and
it may consist of discrete (ordered or nonordered) objects or continuous space. This
can be clarified by the following examples. Let X = {San Francisco, Boston, Los
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Angeles} be the set of cities one may choose to live in. The fuzzy set C = “desirable
city to live in” may be described as follows:

LetC = SanFrancisco, 0 9 , Boston, 0 8 , LosAngeles, 0 6

The universe of discourse X is discrete, and it contains nonordered objects: three
big cities in the United States. As one can see, the membership grades listed above are
quite subjective; anyone can come up with three different but legitimate values to
reflect his or her preference.

In the next example, let X = {0, 1, 2, 3, 4, 5, 6} be a set of the number of children a
family may choose to have. Then the fuzzy set A = “sensible number of children in a
family” may be described as follows:

A= 0, 0 1 , 1, 0 3 , 2, 0 7 , 3, 1 , 4, 0 7 , 5, 0 3 , 6, 0 1

or, in the notation that we will use through this chapter,

A= 0 1 0 + 0 3 1 + 0 7 2 + 1 0 3 + 0 7 4 + 0 3 5 + 0 1 6

Here we have a discrete-order universe X; the membership function for the fuzzy
set A is shown in Figure 14.1a. Again, the membership grades of this fuzzy set are
obviously subjective measures.

Finally, let X = R+ be the set of possible ages for human beings. Then the fuzzy set
B = “about 50-years old” may be expressed as

B= x,μB x x X

where

μB x =
1

1 + x−50 10 4

μ(x) μ(x)

1 1

50

(a) (b)

1 2 3 4 5 6 x x

Figure 14.1. Discrete and continuous representation of membership functions for given

fuzzy sets. (a) A = “sensible number of children”. (b) B = “about 50 years old.”
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This is illustrated in Figure 14.1b.
As mentioned earlier, a fuzzy set is completely characterized by its membership

function (MF). Since many fuzzy sets in use have a universe of discourse X consisting
of the real line R, it would be impractical to list all the pairs defining a membership
function. A more convenient and concise way to define a membership function is to
express it as a mathematical formula. Several classes of parametrized membership func-
tions are introduced, and in real-world applications of fuzzy sets, the shape of member-
ship functions is usually restricted to a certain class of functions that can be specified
with only a few parameters. The most well known are triangular, trapezoidal, and Gaus-
sian; Figure 14.2 shows these commonly used shapes for membership functions.

A triangular membership function is specified by three parameters {a, b, c} as
follows:

μ x = triangle x, a, b, c =

0 for x ≤ a
x−a

b−a
for a ≤ x ≤ b

c−x
c−b

for b ≤ x ≤ c

0 for c ≤ x

The parameters {a, b, c}, with a < b < c, determine the x coordinates of the three
corners of the underlying triangular membership function.

A trapezoidal membership function is specified by four parameters {a, b, c, d} as
follows:

μ x = trapezoid x, a, b, c, d =

0 for x ≤ a
x−a

b−a
for a ≤ x ≤ b

1 for b ≤ x ≤ c
d−x

d−c
for c ≤ x ≤ d

0 for d ≤ x

1

(a) (b) (c)

1 1

σ

cba a b c d c

Figure 14.2. Most commonly used shapes for membership functions. (a) Triangular.

(b) Trapezoidal. (c) Gaussian.
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The parameters {a, b, c, d}, with a < b ≤ c < d, determine the x coordinates of the
four corners of the underlying trapezoidal membership function. A triangular mem-
bership function can be seen as a special case of the trapezoidal form where b = c.

Finally, a Gaussian membership function is specified by two parameters {c, σ}:

μ x = gaussian x, c, σ = e – 1 2 x – c σ 2

A Gaussian membership function is determined completely by c and σ; c repre-
sents the membership-function center, and σ determines the membership-function
width. Figure 14.3 illustrates the three classes of parametrized membership functions.

From the preceding examples, it is obvious that the construction of a fuzzy set
depends on two things: the identification of a suitable universe of discourse and
the specification of an appropriate membership function. The specification of mem-
bership function is subjective, which means that the membership functions for the
same concept (say, “sensible number of children in a family”) when specified by dif-
ferent persons may vary considerably. This subjectivity comes from individual differ-
ences in perceiving or expressing abstract concepts and has little to do with
randomness. Therefore, the subjectivity and nonrandomness of fuzzy sets is the pri-
mary difference between the study of fuzzy sets and the probability theory, which
deals with the objective treatment of random phenomena.

There are several parameters and characteristics of membership function that are
used very often in some fuzzy set operations and fuzzy set inference systems. We will
define only some of them that are, in our opinion, the most important:

1. Support—The support of a fuzzy set A is the set of all points x in the universe
of discourse X such that μA(x) > 0:

Support A = x μA x > 0

2. Core—The core of a fuzzy set A is the set of all points x in X such
that μA(x) = 1:

1 1 1

20 40 60 80 100 x 20 40 60 80 100 x 20 40 60 80 100 x

(a) (b) (c)

Figure 14.3. Examples of parametrized membership functions. (a) Triangle(x, 20, 60, 80).

(b) Trapezoid(x, 10, 20, 60, 90). (c) Gaussian(x, 50, 20).
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Core A = x μA x = 1

3. Normalization—A fuzzy set A is normal if its core in nonempty. In other
words, we can always find a point x X such that μA(x) = 1.

4. Cardinality—Given a fuzzy set A in a finite universe X, its cardinality, denoted
by Card(A), is defined as

Card A = μA x wherex X

Often, Card(X) is referred to as the scalar cardinality or the count of A. For
example, the fuzzy set A = 0.1/1 + 0.3/2 + 0.6/3 + 1.0/4 + 0.4/5 in universe
X = {1, 2, 3, 4, 5, 6} has a cardinality Card(A) = 2.4.

5. α-cut—The α-cut or α-level set of a fuzzy set A is a crisp set defined by

Aα = x μA x ≥ α

6. Fuzzy number—Fuzzy numbers are a special type of fuzzy sets restricting the
possible types of membership functions:

(a) The membership function must be normalized (i.e., the core is nonempty)
and singular. This results in precisely one point, which lies inside the core,
modeling the typical value of the fuzzy number. This point is called the
modal value.

(b) The membership function has to monotonically increase left of the core
and monotonically decrease on the right. This ensures that only one peak
and, therefore, only one typical value exists. The spread of the support
(i.e., the nonzero area of the fuzzy set) describes the degree of imprecision
expressed by the fuzzy number.

A graphical illustration for some of these basic concepts is given in Figure 14.4.

μ (x)

1 A(x, μ(x))

0.5
α-cut = 0.5

Core

Support

Figure 14.4. Core, support, and α-cut for fuzzy set A.
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14.2 FUZZY SET OPERATIONS

Union, intersections, and complement are the most basic operations in classic sets.
Corresponding to the ordinary set operations, fuzzy sets too have operations, which
were initially defined by Zadeh, the founder of the fuzzy set theory.

The union of two fuzzy sets A and B is a fuzzy set C, written as C = A B or C = A
OR B, whose membership function μC(x) is related to those of A and B by

μC x =max μA x , μB x = μA x μB x , x X

As pointed out by Zadeh, a more intuitive but equivalent definition of the union of
two fuzzy sets A and B is the “smallest” fuzzy set containing both A and B. Alterna-
tively, if D is any fuzzy set that contains both A and B, then it also contains A B.

The intersection of fuzzy sets can be defined analogously. The intersection of two
fuzzy sets A and B is a fuzzy set C, written as C = A B or C = A AND B, whose mem-
bership function is related to those of A and B by

μC x =min μA x , μB x = μA x μB x , x X

As in the case of the union of sets, it is obvious that the intersection of A and B is
the “largest” fuzzy set that is contained in both A and B. This reduces to the ordinary
intersection operation if both A and B are nonfuzzy.

The complement of a fuzzy set A, denoted by A , is defined by the membership
function as

μA x = 1 – μA x , x X

Figure 14.5 demonstrates these three basic operations: Figure 14.5a illustrates
two fuzzy sets A and B; Figure 14.5b is the complement of A; Figure 14.5c is the union
of A and B; and Figure 14.5d is the intersection of A and B.

Let A and B be fuzzy sets in X and Y domains, respectively. The Cartesian product
of A and B, denoted by A × B, is a fuzzy set in the product space X × Y with a mem-
bership function:

μA×B x,y =min μA x , μB y = μA x μB y , x X and y Y

Numeric computations based on these simple fuzzy operations are illustrated
through one simple example with a discrete universe of discourse S. Let S = {1, 2,
3, 4, 5} and assume that fuzzy sets A and B are given by

A= 0 1 + 0 5 2 + 0 8 3 + 1 0 4 + 0 2 5

B= 0 9 1 + 0 4 2 + 0 3 3 + 0 1 4 + 0 5
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Then,

A B= 0 9 1 + 0 5 2 + 0 8 3 + 1 0 4 + 0 2 5

A B= 0 1 + 0 4 2 + 0 3 3 + 0 1 4 + 0 5

AC = 1 1 + 0 5 2 + 0 2 3 + 0 4 + 0 8 5

and the Cartesian product of fuzzy sets A and B is

A ×B= 0 1,1 + 0 1,2 + 0 1,3 + 0 1,4 + 0 1,5

+ 0 5 2,1 + 0 4 2,2 + 0 3 2,3 + 0 1 2,4 + 0 2,5

+ 0 8 3,1 + 0 4 3,2 + 0 3 3,3 + 0 1 3,4 + 0 3,5

+ 0 9 4,1 + 0 4 4,2 + 0 3 4,3 + 0 1 4,4 + 0 4,5

+ 0 2 5,1 + 0 2 5,2 + 0 2 5,3 + 0 1 5,4 + 0 5,5

Fuzzy sets, as defined by membership function, can be compared in different
ways. Although the primary intention of comparing is to express the extent to which
two fuzzy numbers match, it is almost impossible to come up with a single method.
Instead, we can enumerate several classes of methods available today for satisfying

1

1

1

A B

1

(a) (b)

(c) (d)

Figure 14.5. Basic operations on fuzzy sets. (a) Fuzzy sets A and B. (b) C = A . (c) C = A B.

(d) C = A B.
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this objective. One class, distance measures, considers a distance function between
membership functions of fuzzy sets A and B and treats it as an indicator of their close-
ness. Comparing fuzzy sets via distance measures does not place the matching pro-
cedure in the set-theory perspective. In general, the distance between A and B,
defined in the same universe of discourse X, where X R, can be defined using the
Minkowski distance

D A, B = A x –B x p
1 p

, x X

where p ≥ 1. Several specific cases are typically encountered in applications:

1. Hamming distance for p = 1,

2. Euclidean distance for p = 2, and

3. Tchebychev distance for p = ∞.

For example, the distance between given fuzzy sets A and B, based on Euclidian
measure, is

D A, B = 0 – 0 9 2 + 0 5 – 0 4 2 + 0 8 – 0 3 2 + 1 – 0 1 2 + 0 2 – 0 2 = 1 39

For continuous universes of discourse, summation is replaced by integration. The
more similar the two fuzzy sets, the lower the distance function between them. Some-
times, it is more convenient to normalize the distance function and denote it dn(A, B)
and use this version to express similarity as a straight complement, 1 – dn(A, B).

The other approach to comparing fuzzy sets is the use of possibility and necessity
measures. The possibility measure of fuzzy set A with respect to fuzzy set B, denoted
by Pos(A, B), is defined as

Pos A, B =max min A x , B x , x X

The necessity measure of A with respect to B, Nec(A, B), is defined as

Nec A, B =min max A x ,1 –B x , x X

For the given fuzzy sets A and B, these alternative measures for fuzzy set com-
parison are

Pos A, B = max min 0,0 5,0 8,1 0,0 2 , 0 9,0 4,0 3,0 1,0

=max 0,0 4,0 3,0 1,0 = 0 4

Nec A, B =min max 0,0 5,0 8,1 0,0 2 , 0 1,0 6,0 7,0 9,1 0

=min 0 1,0 6,0 8,1 0,1 0 = 0 1
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An interesting interpretation arises from these measures. The possibility measure
quantifies the extent to which A and B overlap. By virtue of the definition introduced,
the measure is symmetric. On the other hand, the necessity measure describes the
degree to which B is included in A. As seen from the definition, the measure is asym-
metrical. A visualization of these two measures is given in Figure 14.6.

A number of simple yet useful operations may be performed on fuzzy sets. These
are one-argument mappings, because they apply to a single membership function:

1. Normalization—This operation converts a subnormal, nonempty fuzzy set
into a normalized version by dividing the original membership function by
the height of A:

NormA x = x,μA x hgt x = μA x maxμA x wherex X

2. Concentration—When fuzzy sets are concentrated, their membership func-
tions take on relatively smaller values. That is, the membership function
becomes more concentrated around points with higher membership grades
as, for instance, being raised to power two:

ConA x = x,μ2A x wherex X

3. Dilation—Dilation has the opposite effect from concentration and is produced
by modifying the membership function through exponential transformation,
where the exponent is less than 1:

DilA x = x,μ1 2
A x wherex X

The basic effects of the previous three operations are illustrated in Figure 14.7.
In practice, when the universe of discourse X is a continuous space (the real axis R

or its subset), we usually partition X into several fuzzy sets whose membership

μ (x)

1
Pos(A, B)

B

A

Nec(A, B)

20 40 60 80 100 120 x

Figure 14.6. Comparison of fuzzy sets representing linguistic terms A = high speed and

B = speed around 80 km/h.
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functions cover X in a more or less uniform manner. These fuzzy sets, which usually
carry names that conform to adjectives appearing in our daily linguistic usage, such as
“large,” “medium,” or “small,” are called linguistic values or linguistic labels. Thus,
the universe of discourse X is often called the linguistic variable. Let us give some
simple examples.

Suppose that X = “age.” Then we can define fuzzy sets “young,” “middle aged,”
and “old” that are characterized by MFs μyoung(x), μmiddleaged(x), and μold(x), respec-
tively. Just as a variable can assume various values, a linguistic variable “age” can
assume different linguistic values, such as “young,” “middle aged,” and “old” in this
case. If “age” assumes the value of “young,” then we have the expression “age is
young,” and so also for the other values. Typical membership functions for these lin-
guistic values are displayed in Figure 14.8, where the universe of discourse X is totally
covered by the membership functions and their smooth and gradual transition from
one to another. Unary fuzzy operations, concentration and dilation, may be interpreted
as linguistic modifiers “very” and “more or less,” respectively.

μ (x) μ (x) μ(x)

1 1 1

A A
A

x x x

(a) (b) (c)

Figure 14.7. Simple unary fuzzy operations. (a) Normalization. (b) Concentration.

(c) Dilation.

μ(x)

Young Middle age Old

1

20 40 60 80 100 Age

Figure 14.8. Typical membership functions for linguistic values “young,” “middle aged,”

and “old.”
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A linguistic variable is characterized by a quintuple (x, T(x), X,G,M) in which x is
the name of the variable; T(x) is the term set of x, the set of its linguistic values; X is the
universe of discourse;G is a syntactic rule, which generates the terms in T(x); andM is
a semantic rule, which associates with each linguistic value A its meaningM(A), where
M(A) denotes a membership function for a fuzzy set in X. For example, if age is inter-
preted as a linguistic variable, then the term set T(age) could be

T age =
very young, young, not very young, not young,… middle aged, not

middle aged, notold, more-or-lessold, old, veryold

where each term in T(age) is characterized by a fuzzy set of a universe of discourse
X = [0,100]. The syntactic rule refers to the way the linguistic values in the term set
T(age) are generated, and the semantic rule defines the membership function of each
linguistic value of the term set T(age), such as the linguistic values in Figure 14.8.

14.3 EXTENSION PRINCIPLE AND FUZZY RELATIONS

As in the set theory, we can define several generic relations between two fuzzy sets,
such as equality and inclusion. We say that two fuzzy sets, A and B, defined in
the same space X are equal if and only if (iff ) their membership functions are identical:

A=B iff μA x = μB x , x X

Analogously, we shall define the notion of containment, which plays a central role
in both ordinary and fuzzy sets. This definition of containment is, of course, a natural
extension of the case for ordinary sets. Fuzzy set A is contained in fuzzy set B (or, equiv-
alently, A is a subset of B) if and only if μA(x) ≤ μB(x) for all x. In symbols,

A B μA x ≤ μB x , x X

Figure 14.9 illustrates the concept of A B.

μ(x)

1

B

A

x

Figure 14.9. The concept of A B where A and B are fuzzy sets.
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When the fuzzy sets A and B are defined in a finite universe X, and the require-
ment that for each x in X, μA(x) ≤ μB(x) is relaxed, we may define the degree of
subsethood DS as

DS A, B =
1

Card A
Card A – max 0, A x –B x , x X

DS(A, B) provides a normalized measure of the degree to which the inequality
μA(x) ≤ μB(x) is violated.

Now we have enough background to explain one of the most important concepts
in formalization of a fuzzy-reasoning process. The extension principle is a basic trans-
formation of the fuzzy set theory that provides a general procedure for extending the
crisp domains of mathematical expressions to fuzzy domains. This procedure gener-
alizes a common point-to-point mapping of a function f between fuzzy sets. The exten-
sion principle plays a fundamental role in translating set-based concepts into their
fuzzy counterparts. Essentially, the extension principle is used to transform fuzzy sets
via functions. Let X and Y be two sets, and F is a mapping from X to Y:

F X Y

Let A be a fuzzy set in X. The extension principle states that the image of A under
this mapping is a fuzzy set B = f(A) in Y such that for each y Y:

μB y =maxμA x , subject to x X and y = f x

The basic idea is illustrated in Figure 14.10. The extension principle easily gener-
alizes to functions of many variables as follows. Let Xi, i = 1,…,n, and Y be universes of

y y = f(x)

B

μ(y) x

A
1

1

μ(x)

Figure 14.10. The idea of the extension principle.
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discourse, and X = X1 × X2 × × Xn constitute the Cartesian product of the Xis.
Consider fuzzy sets Ai in Xi, i = 1,…,n and a mapping y=f(x), where the input is an
n-dimensional vector x = (x1, x2,…,xn) and x X. Fuzzy sets A1, A2,…,An are then trans-
formed via f, producing the fuzzy set B = f(A1, A2,…,An) in Y such that for each y Y:

μB y =maxx min μA1 x1 ,μA2 x2 ,…,μAn xn

subject to x X and y = f(x). Actually, in the expression above, the min operator is just a
choice within a family of operators called triangular norms.

More specifically, suppose that f is a function from X to Y where X and Y are dis-
crete universes of discourse and A is a fuzzy set on X defined as

A= μA x1 x1 + μA x2 x2 + μA x3 x3+ + μA xn xn

Then the extension principle states that the image of fuzzy set A under the map-
ping f can be expressed as a fuzzy set B:

B= f A = μA x1 y1 + μA x2 y2 + μA x3 y3+ + μA xn yn

where yi = f(xi), i = 1,…,n. In other words, the fuzzy set B can be defined through the
mapped values xi using the function f.

Let us analyze the extension principle using one example. Suppose that X = {1, 2,
3, 4} and Y = {1, 2, 3, 4, 5, 6} are two universes of discourse and the function for
transformation is y = x + 2. For a given fuzzy set A = 0.1/1 + 0.2/2 + 0.7/3 + 1.0/4
in X, it is necessary to find a corresponding fuzzy set B(y) in Y using the extension
principle through function B = f(A). In this case, the process of computation is straight-
forward, and a final, transformed fuzzy set is B = 0.1/3 + 0.2/4 + 0.7/5 + 1.0/6.

Another problem will show that the computational process is not always a one-
step process. Suppose that A is given as

A= 0 1 – 2 + 0 4 – 1 + 0 8 0 + 0 9 1 + 0 3 2

and the function f is

f x = x2 – 3

Upon applying the extension principle, we have

B = 0 1 1 + 0 4 – 2 + 0 8 – 3 + 0 9 – 2 + 0 31

= 0 8 – 3 + 0 4 0 9 – 2 + 0 1 0 3 1

= 0 8 – 3 + 0 9 – 2 + 0 3 1

where represents the max function. For a fuzzy set with a continuous universe of
discourse X, an analogous procedure applies.

Besides being useful in the application of the extension principle, some of the
unary and binary fuzzy relations are also very important in a fuzzy-reasoning process.

511EXTENSION PRINCIPLE AND FUZZY RELATIONS



Binary fuzzy relations are fuzzy sets in X × Y that map each element in X × Y to a mem-
bership grade between 0 and 1. Let X and Y be two universes of discourse. Then

R= x,y ,μR x,y x,y X ×Y

is a binary fuzzy relation in X × Y. Note that μR(x, y) is in fact a two-dimensional (2D)
membership function. For example, let X = Y = R+ (the positive real axis); the fuzzy
relation is given as R = “y is much greater than x.” The membership function of the
fuzzy relation can be subjectively defined as

μR x,y =

y−x

x + y+ 2
, if y> x

0 if y ≤ x

IfX andY are a finite set of discrete values such asX = {3, 4, 5} andY={3, 4, 5, 6, 7},
then it is convenient to express the fuzzy relation R as a relation matrix:

R=

0 0 111 0 200 0 273 0 333

0 0 0 091 0 167 0 231

0 0 0 0 077 0 143

where the element at row i and column j is equal to the membership grade between the
ith element of X and the jth element of Y.

Common examples of binary fuzzy relations are as follows:

1. x is close to y (x and y are numbers).

2. x depends on y (x and y are categorical data).

3. x and y look alike.

4. If x is large, then y is small.

Fuzzy relations in different product spaces can be combined through a composi-
tion operation. Different composition operations have been suggested for fuzzy r-
elations; the best known is the max–min composition proposed by Zadeh. Let R1

and R2 be two fuzzy relations defined on X × Y and Y × Z, respectively. The max–
min composition of R1 and R2 is a fuzzy set defined by

R1 R2 = x, z ,maxymin μR1 x, y , μR2 y, z x X, y Y , z Z

or, equivalently,

R1 R2 = y μR1 x, y μR2 y, z

with the understanding that and represent max and min, respectively.
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When R1 and R2 are expressed as relation matrices, the calculation of R1 R2 is
similar to the matrix-multiplication process, except that × and + operations are
replaced by and , respectively.

The following example demonstrates how to apply the max–min composition on
two relations and how to interpret the resulting fuzzy relation R1 R2. Let R1 = “x is
relevant to y” and R2 = “y is relevant to z” be two fuzzy relations defined on X × Y and
Y × Z, where X = {1, 2, 3}, Y = {α, β, γ, δ}, and Z = {a, b}. Assume that R1 and R2 can
be expressed as the following relation matrices of μ values:

R1 =

0 1 0 3 0 5 0 7

0 4 0 2 0 8 0 9

0 6 0 8 0 3 0 2

R2 =

0 9 0 1

0 2 0 3

0 5 0 6

0 7 0 2

Fuzzy relation R1 R2 can be interpreted as a derived relation “x is relevant to z”
based on relations R1 and R2. We will make a detailed max–min composition only for
one element in a resulting fuzzy relation: (x, z) = (2, a):

μR1 R2 2,a =max 0 4 0 9,0 2 0 2,0 8 0 5,0 9 0 7

=max 0 4,0 2,0 5,0 7

= 0 7

Analogously, we can compute the other elements, and the final fuzzy matrix R1

R2 will be

R1 R2 =

0 7 0 5

0 7 0 6

0 6 0 3

14.4 FUZZY LOGIC AND FUZZY INFERENCE SYSTEMS

Fuzzy logic enables us to handle uncertainty in a very intuitive and natural manner. In
addition to making it possible to formalize imprecise data, it also enables us to do
arithmetic and Boolean operations using fuzzy sets. Finally, it describes the inference
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systems based on fuzzy rules. Fuzzy rules and fuzzy-reasoning processes, which are
the most important modeling tools based on the fuzzy set theory, are the backbone of
any fuzzy inference system. Typically, a fuzzy rule has the general format of a con-
ditional proposition. A fuzzy If-then rule, also known as fuzzy implication, assumes
the form

If x is A, then y is B

where A and B are linguistic values defined by fuzzy sets on the universes of discourse
X and Y, respectively. Often, “x is A” is called the antecedent or premise, while “y is B’
is called the consequence or conclusion. Examples of fuzzy If-then rules are wide-
spread in our daily linguistic expressions, such as the following:

1. If pressure is high, then volume is small.

2. If the road is slippery, then driving is dangerous.

3. If a tomato is red, then it is ripe.

4. If the speed is high, then apply the brake a little.

Before we can employ fuzzy If-then rules to model and analyze a fuzzy-reasoning
process, we have to formalize the meaning of the expression “If x is A then y is B,”
sometimes abbreviated in a formal presentation as A B. In essence, the expression
describes a relation between two variables x and y; this suggests that a fuzzy If-then
rule be defined as a binary fuzzy relation R on the product space X × Y. R can be
viewed as a fuzzy set with a 2D membership function:

μR x, y = f μA x , μB y

If we interpret A B as A entails B, still it can be formalized in several
different ways. One formula that could be applied based on a standard logical inter-
pretation is

R=A B=A B

Note that this is only one of several possible interpretations for fuzzy implication.
The accepted meaning of A B represents the basis for an explanation of the fuzzy-
reasoning process using If-then fuzzy rules.

Fuzzy reasoning, also known as approximate reasoning, is an inference procedure
that derives its conclusions from a set of fuzzy rules and known facts (they also can be
fuzzy sets). The basic rule of inference in a traditional two-valued logic is modus
ponens, according to which we can infer the truth of a proposition B from the truth
of A and the implication A B. However, in much of human reasoning, modus
ponens is employed in an approximate manner. For example, if we have the rule
“if the tomato is red, then it is ripe” and we know that “the tomato is more or less
red,” then we may infer that “the tomato is more or less ripe.” This type of approx-
imate reasoning can be formalized as
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Fact x is A
Rule If x is A, then y is B

Conclusion y is B

where A is close to A and B is close to B. When A, A , B, and B are fuzzy sets of an
approximate universe, the foregoing inference procedure is called approximate rea-
soning or fuzzy reasoning; it is also called generalized modus ponens, since it has
modus ponens as a special case.

Using the composition rule of inference, we can formulate the inference proce-
dure of fuzzy reasoning. Let A, A , and B be fuzzy sets on X, X, and Y domains, respec-
tively. Assume that the fuzzy implication A B is expressed as a fuzzy relation R on
X × Y. Then the fuzzy set B induced by A and A B is defined by

μB y =maxxmin μA x , μR x, y

= x μA x μR x, y

Some typical characteristics of the fuzzy-reasoning process and some conclu-
sions useful for this type of reasoning are as follows:

1. A, A B B orμB y ≥ μB y

2. If A A orμA x ≥ μA x B =B

Let us analyze the computational steps of a fuzzy-reasoning process for one sim-
ple example. Given the fact A = “x is above average height” and the fuzzy rule “if x is
high, then his/her weight is also high,” we can formalize this as a fuzzy implication A

B. We can use a discrete representation of the initially given fuzzy sets A, A , and B
(based on subjective heuristics):

A : x μ(x) A: x μ(x) B: y μ(y)

5 6 0.3 5 6 0 120 0
5 9 1.0 5 9 0.2 150 0.2
6 0.4 6 0.8 180 0.5
6 3 0 6 3 1.0 210 1.0

μR(x, y) can be computed in several different ways, such as

μR x,y =
1 for μA x ≤ μB y

μB y otherwise
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or as the Lukasiewicz-norm

μR x,y = 1 1 – μA x + μB y

Both definitions lead to a very different interpretation of fuzzy implication.
Applying the first relation for μR(x, y) on the numeric representation for our sets A
and B, the 2D membership function will be

μR x,y =

1 1 1 1

0 1 1 1

0 0 2 0 5 1

0 0 2 0 5 1

Now, using the basic relation for inference procedure, we obtain

μB y =maxxmin μA x ,μR x,y

=maxxmin 0 3 1 0 4 0

1 1 1 1

0 1 1 1

0 0 2 0 5 1

0 0 2 0 5 1

=maxx

0 3 0 3 0 3 0 3

0 1 1 1

0 0 2 0 4 0 4

0 0 0 0

= 0 3 1 1 1

The resulting fuzzy set B can be represented in the form of a table:

B y μ(y)

120 0.3
150 1.0
180 1.0
210 1.0
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Or it can be interpreted approximately in linguistic terms: “x’s weight is more-or-
less high.” A graphical comparison of membership functions for fuzzy sets A, A , B,
and B is given in Figure 14.11.

To use fuzzy sets in approximate reasoning (a set of linguistic values with
numeric representations of membership functions), the main tasks for the designer
of a system are to:

1. represent any fuzzy data, given as a linguistic value, in terms of the code-
book A,

2. use these coded values for different communication and processing steps, and

3. at the end of approximate reasoning, transform the computed results back into
its original (linguistic) format using the same codebook A.

These three fundamental tasks are commonly referred to as encoding, transmis-
sion and processing, and decoding (the terms have been borrowed from communica-
tion theory). The encoding activities occur at the transmitter while the decoding take
place at the receiver. Figure 14.12 illustrates encoding and decoding with the use of

μ(x) μ(x)

1

(a) (b)

1
A′ A B′ B

5′ 5′6″ 6′ 6′9″ 3″ x x120 150 180 210

Figure 14.11. Comparison of approximate reasoning result B with initially given fuzzy sets

A , A, and B and the fuzzy rule A B. (a) Fuzzy sets A and A . (b) Fuzzy sets B and B

(conclusion).

Encoded informationX Y
Fuzzy encoder ( + processing)    

Fuzzy decoder

Codebook Codebook

Figure 14.12. Fuzzy communication channel with fuzzy encoding and decoding.
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the codebook A. Any input information, whatever its nature, is encoded (represented)
in terms of the elements of the codebook. In this internal format, encoded information
is sent with or without processing across the channel. Using the same codebook, the
output message is decoded at the receiver.

Fuzzy set literature has traditionally used the terms fuzzification and defuzzifica-
tion to denote encoding and decoding, respectively. These are, unfortunately, quite
misleading and meaningless terms because they mask the very nature of the proces-
sing that takes place in fuzzy reasoning. They neither address any design criteria nor
introduce any measures aimed at characterizing the quality of encoding and decoding
information completed by the fuzzy channel.

The next two sections are examples of the application of fuzzy logic and fuzzy
reasoning to decision-making processes, where the available data sets are ambiguous.
These applications include multifactorial evaluation and extraction of fuzzy rules-
based models from large numeric data sets.

14.5 MULTIFACTORIAL EVALUATION

Multifactorial evaluation is a good example of the application of the fuzzy set theory
to decision-making processes. Its purpose is to provide a synthetic evaluation of an
object relative to an objective in a fuzzy decision environment that has many factors.
LetU = {u1, u2,…,un} be a set of objects for evaluation, let F = {f1, f2,…,fm} be the set
of basic factors in the evaluation process, and let E = {e1, e2,…,ep} be a set of descrip-
tive grades or qualitative classes used in the evaluation. For every object u U, there is
a single-factor evaluation matrix R(u) with dimensions m × p, which is usually the
result of a survey. This matrix may be interpreted and used as a 2D membership func-
tion for fuzzy relation F × E.

With the preceding three elements, F, E, and R, the evaluation result D(u) for a
given object u U can be derived using the basic fuzzy-processing procedure: the
product of fuzzy relations through max–min composition. This has been shown in
Figure 14.13. An additional input to the process is the weight vector W(u) for eval-
uation factors, which can be viewed as a fuzzy set for a given input u. A detailed expla-
nation of the computational steps in the multifactorial-evaluation process will be given
through two examples.

R(u)

u
W(u) • R(u)

D(u)

W(u)

Figure 14.13. Multifactorial-evaluation model.
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14.5.1 A Cloth-Selection Problem

Assume that the basic factors of interest in the selection of cloth consist of f1 = style,
f2 = quality, and f3 = price, i.e., F = {f1, f2, f3}. The verbal grades used for the selection
are e1 = best, e2 = good, e3 = fair, and e4 = poor, i.e.,E = {e1, e2, e3, e4}. For a particular
piece of cloth u, the single-factor evaluation may be carried out by professionals or
customers by a survey. For example, if the survey results of the “style” factor f1
are 60% for the best, 20% for the good, 10% for the fair, and 10% for the poor, then
the single-factor evaluation vector R1(u) is

R1 u = 0 6, 0 2, 0 1, 0 1

Similarly, we can obtain the following single-factor evaluation vectors for f2
and f3:

R2 u = 0 1, 0 5, 0 3, 0 1

R3 u = 0 1, 0 3, 0 4, 0 2

Based on single-factor evaluations, we can build the following evaluation matrix:

R u =

R1 u

R2 u

R3 u

=

0 6 0 2 0 1 0 1

0 1 0 5 0 3 0 1

0 1 0 3 0 4 0 2

If a customer’s weight vector with respect to the three factors is

W u = 0 4, 0 4, 0 2

then it is possible to apply the multifactorial-evaluation model to compute the eval-
uation for a piece of cloth u. “Multiplication” of matricesW(u) and R(u) is based on the
max–min composition of fuzzy relations, where the resulting evaluation is in the form
of a fuzzy set D(u) = [d1, d2, d3, d4]:

D u =W u R u = 0 4 0 4 0 2

0 6 0 2 0 1 0 1

0 1 0 5 0 3 0 1

0 1 0 3 0 4 0 2

= 0 4 0 4 0 3 0 2
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where, for example, d1 is calculated through the following steps:

d1 = w1 r11 w2 r21 w3 r31

= 0 4 0 6 0 4 0 1 0 2 0 1

= 0 4 0 1 0 1

= 0 4

The values for d2, d3, and d4 are found similarly, where and represent the
operations min and max, respectively. Because the largest components of D(u) are
d1 = 0.4 and d2 = 0.4 at the same time, the analyzed piece of cloth receives a rating
somewhere between “best” and “good.”

14.5.2 A Problem of Evaluating Teaching

Assume that the basic factors that influence students’ evaluation of teaching are f1 =
clarity and understandability, f2 = proficiency in teaching, f3 = liveliness and stimula-
tion, and f4 = writing neatness or clarity, i.e., F = {f1, f2, f3, f4}. Let E = {e1, e2, e3,
e4} = {excellent, very good, good, poor} be the verbal grade set. We evaluate a teacher
u. By selecting an appropriate group of students and faculty, we can have them
respond with their ratings on each factor and then obtain the single-factor evaluation.
As in the previous example, we can combine the single-factor evaluation into an eval-
uation matrix. Suppose that the final matrix R(u) is

R u =

0 7 0 2 0 1 0 0

0 6 0 3 0 1 0 0

0 2 0 6 0 1 0 1

0 1 0 1 0 6 0 2

For a specific weight vectorW(u) = {0.2, 0.3, 0.4, 0.1}, describing the importance
of the teaching-evaluation factor fi and using the multifactorial-evaluation model, it is
easy to find

D u =W u R u = 0 2 0 3 0 4 0 1

0 7 0 2 0 1 0 0

0 6 0 3 0 1 0 0

0 2 0 6 0 1 0 1

0 1 0 1 0 6 0 2

= 0 2 0 4 0 1 0 1
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Analyzing the evaluation results D(u), because d2 = 0.4 is a maximum, we may
conclude that teacher u should be rated as “very good.”

14.6 EXTRACTING FUZZY MODELS FROM DATA

In the context of different data-mining analyses, it is of great interest to see how fuzzy
models can automatically be derived from a data set. Besides prediction, classifica-
tion, and all other data-mining tasks, understandability is of prime concern, because
the resulting fuzzy model should offer an insight into the underlying system. To
achieve this goal, different approaches exist. Let us explain a common technique that
constructs grid-based rule sets using a global granulation of the input and output
spaces.

Grid-based rule setsmodel each input variable usually through a small set of lin-
guistic values. The resulting rule base uses all or a subset of all possible combinations
of these linguistic values for each variable, resulting in a global granulation of the fea-
ture space into rectangular regions. Figure 14.14 illustrates this approach in two
dimensions: with three linguistic values (low, medium, high) for the first dimension
x1 and two linguistic values for the second dimension x2 (young, old).

Extracting grid-based fuzzy models from data is straightforward when the input
granulation is fixed, i.e., the antecedents of all rules are predefined. Then, only a
matching consequent for each rule needs to be found. This approach, with fixed
grids, is usually called the Mamdani model. After predefinition of the granulation
of all input variables and also the output variable, one sweeps through the entire data
set and determines the closest example to the geometrical center of each rule,

x2 x2

Old

R2,1 R2,2 R2,3 

Young

R1,1 R1,2 R1,3 

x1μ μ
1

Low Medium High x1

Figure 14.14. A global granulation for a two-dimensional space using three membership

functions for x1 and two for x2.
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assigning the closest fuzzy value output to the corresponding rule. Using graphical
interpretation in a 2D space, the global steps of the procedure are illustrated through
an example in which only one input x and one output dimension y exist. The formal
analytical specification, even with more than one input/output dimension, is very
easy to establish:

1. Granulate the input and output space. Divide each variable xi into ni equidis-
tant, triangular membership functions. In our example, both input x and output
y are granulated using the same four linguistic values: low, below average,
above average, and high. A representation of the input–output granulated
space is given in Figure 14.15.

2. Analyze the entire data set in the granulated space. First, enter a data set in the
granulated space, and then find the points that lie closest to the centers of the
granulated regions. Mark these points and the centers of the region. In our
example, after entering all discrete data, the selected center points (closest
to the data) are additionally marked with x, as in Figure 14.16.

3. Generate fuzzy rules from given data. Data representative directly selects the
regions in a granulated space. These regions may be described with the
corresponding fuzzy rules. In our example, four regions are selected, one
for each fuzzy input linguistic value, and they are represented in
Figure 14.17 with a corresponding crisp approximation (a thick line through
the middle of the regions). These regions are the graphical representation of
fuzzy rules. The same rules may be expressed linguistically as a set of IF-
THEN constructions:

y y

High

Above average

Below average

Low

x

1

Low Below average Above average High x

Figure 14.15. Granulation of a two-dimensional I/O space.
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R1 IF x is small THEN y is above average

R2 IF x is below average THEN y is above average

R3 IF x is above average THEN y is high

R4 IF x is high THEN y is above average

Note how the generated model misses the extremes that lie far from the existing
rule centers. This behavior occurs because only one pattern per rule is used to

y y

High x

Above average x x x

Below average

Low

x
μ μ

1

Low xBelow average Above average High

Figure 14.16. Selection of characteristic points in a granulated space.

y y

R1 R2 R3 R4

High x

Above average x x x

Below average

Low

xμ μ
1

Low xBelow average Above average High

Figure 14.17. Graphical representation of generated fuzzy rules and the resulting crisp

approximation.
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determine the outcome of this rule. Even a combined approach would very much
depend on the predefined granulation. If the function to be modeled has a high var-
iance inside one rule, the resulting fuzzy rule model will fail to model this behavior.

For practical applications it is obvious, however, that using such a predefined,
fixed grid results in a fuzzy model that will either not fit the underlying functions very
well or consist of a large number of rules because of small granulation. Therefore, new
approaches have been introduced that automatically determine the granulations of
both input and output variables based on a given data set. We will explain the basic
steps for one of these algorithms using the same data set from the previous example
and the graphical representation of applied procedures:

1. Initially, only one membership function is used to model each of the input
variables as well as the output variable, resulting in one large rule covering
the entire feature space. Subsequently, new membership functions are intro-
duced at points of maximum error (the maximum distance between data points
and the obtained crisp approximation). Figure 14.18 illustrates this first step in
which the crisp approximation is represented with a thick line and the selected
point of maximal error with a triangle.

2. For the selected point of maximum error, new triangular fuzzy values for both
input and output variables are introduced. Processes of granulation, determin-
ing fuzzy rules in the form of space regions, and crisp approximation are
repeated for a space, with additional input and output fuzzy values for the sec-
ond step—that means two fuzzy values for both input and output variables.
The final results of the second step, for our example, are presented in
Figure 14.19.

y y

x
μ μ

1

x

Figure 14.18. The first step in automatically determining fuzzy granulation.
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3. Step 2 is repeated until a maximum number of divisions (fuzzy values) is
reached, or the approximation error remains below a certain threshold value.
Figures 14.20 and 14.21 demonstrate two additional iterations of the algo-
rithm for a data set. Here granulation was stopped after a maximum of four
membership functions was generated for each variable. Obviously this algo-
rithm is able to model extremes much better than the previous one with a fixed
granulation. At the same time, it has a strong tendency to favor extremes and to
concentrate on outliers. The final set of fuzzy rules, using dynamically created
fuzzy values Ax to Dx and Ay to Dy for input and output variables, is

y y

xμ
μ

1

x

Figure 14.19. The second step (first iteration) in automatically determining granulation.

y y

xμ μ
1

Figure 14.20. The second step (second iteration) in automatically determining granulation.
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R1 IF x is Ax THEN y is Ay

R2 IF x is Bx THEN y is By

R3 IF x is Cx THEN y is Cy

R4 IF x is Dx THEN y is Dy

14.7 DATA MINING AND FUZZY SETS

There is a growing indisputable role of fuzzy set technology in the realm of data min-
ing. In a data-mining process, discovered models, learned concepts, or patterns of
interest are often vague and have non-sharp boundaries. Unfortunately, the represen-
tation of graduality is often foiled in data-mining applications, especially in connec-
tion with the learning of predictive models. For example, the fact that neural networks
are often used as data-mining methods, although their learning result (weight matrices
of numbers) is hardly interpretable, shows that in contrast to the standard definition,
the goal of understandable models is often neglected. In fact, one should recognize
that graduality is not only advantageous for expressing concepts and patterns but also
for modeling the qualifying properties and relations. Of course, correctness, complete-
ness, and efficiency are important in data-mining models, but in order to manage sys-
tems that are more and more complex, there is a constantly growing demand to keep
the solutions conceptually simple and understandable. Modern technologies are
accepted more readily, if the methods applied and models derived are easy to under-
stand, and the results can be checked against human intuition.

The complexity of the learning task, obviously, leads to a problem: when learning
from information, one must choose between mostly quantitative methods that achieve

y y

By

Dy
Ay

Cy

x
μ μ Dx Cx

Ax Bx
1

Figure 14.21. The second step (third iteration) in automatically determining granulation.

526 FUZZY SETS AND FUZZY LOGIC



good performances and qualitative models that explain to a user what is going on in
the complex system. Fuzzy set theory has the potential to produce models that are
more comprehensible, less complex, and more robust. Fuzzy information granulation
appears to be appropriate approach for trading off accuracy against complexity and
understandability of data-mining models. Also, fuzzy set theory in conjunction with
possibility theory can contribute considerably to the modeling and processing of var-
ious forms of uncertain and incomplete information available in large real-world
systems.

The tools and technologies that have been developed in fuzzy set theory have the
potential to support all of the steps that comprise a process of knowledge discovery.
Fuzzy methods appear to be particularly useful for data-preprocessing and data-
postprocessing phases of a data-mining process. In particular, it has already been used
in the data selection phase, e.g., for modeling vague data in terms of fuzzy sets, to
“condense” several crisp observations into a single fuzzy one, or to create fuzzy sum-
maries of the data.

Standard methods of data mining can be extended to include fuzzy set represen-
tation in a rather generic way. Achieving focus is important in data mining because
there are too many attributes and values to be considered and can result in combina-
torial explosion. Most unsupervised data-mining approaches try to achieve focus by
recognizing the most interesting structures and their features even if there is still some
level of ambiguity. For example, in standard clustering, each sample is assigned to one
cluster in a unique way. Consequently, the individual clusters are separated by sharp
boundaries. In practice, such boundaries are often not very natural or even counter-
intuitive. Rather, the boundary of single clusters and the transition between different
clusters are usually “smooth” rather than abrupt. This is the main motivation under-
lying fuzzy extensions to clustering algorithms. In fuzzy clustering an object may
belong to different clusters at the same time, at least to some extent, and the degree
to which it belongs to a particular cluster is expressed in terms of a membership
degree.

The most frequent application of fuzzy set theory in data mining is related the
adaptation of rule-based predictive models. This is hardly surprising, since rule-based
models have always been a cornerstone of fuzzy systems and a central aspect of
research in the field. Set of fuzzy rules can represent both classification and regression
models. Instead of dividing quantitative attributes into fixed intervals, they employ
linguistic terms to represent the revealed regularities. Therefore, no user-supplied
thresholds are required, and quantitative values can be directly inferred from the rules.
The linguistic representation leads to the discovery of natural and more understand-
able rules.

Decision-tree induction includes well-known algorithms such as ID3, C4.5, C5.0,
and CART. Fuzzy variants of decision-tree induction have been developed for quite a
while and seem to remain a topic of interest even today. In fact, these approaches pro-
vide a typical example for the “fuzzification” of standard predictive methods. In the
case of decision trees, it is primarily the “crisp” thresholds used for defining splitting
attributes, such as size > 181 at inner nodes. Such thresholds lead to hard decision
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boundaries in the input space, which means that a slight variation of an attribute (e.g.
size = 182 instead of size = 181) can entail a completely different classification of a
sample. Usually, a decision in favor of one particular class label has to be made, even
if the sample under consideration seems to have partial membership in several classes
simultaneously. Moreover, the learning process becomes unstable in the sense that a
slight variation of the training samples can change the induced decision tree drasti-
cally. In order to make the decision boundaries “soft,” an obvious idea is to apply
fuzzy predicates at the nodes of a decision tree, such as size = LARGE, where LARGE
is a fuzzy set. In that case the sample is not assigned to exactly one successor node in a
unique way, but perhaps to several successors with a certain degree. Also, for fuzzy
classification solutions, the consequent of single rules is usually a class assignment
represented with a singleton fuzzy set. Evaluating a rule-based model thus becomes
trivial and simply amounts to “maximum matching,” that is, searching the maximally
supporting rule for each class.

Especially important trend, in the field of fuzzy systems, are hybrid methods that
combine fuzzy set theory with other methodologies such as neural networks. In the
neurofuzzy methods the main idea is to encode a fuzzy system in a neural network
and to apply standard approaches like backpropagation in order to train such a net-
work. This way, neurofuzzy systems combine the representational advantages of fuzzy
systems with the flexibility and adaptivity of neural networks. Interpretations of fuzzy
membership include similarity, preference, and uncertainty. A primary motivation
was to provide an interface between a numerical scale and a symbolic scale, which
is usually composed of linguistic terms. Thus, fuzzy sets have the capability to inter-
face quantitative data with qualitative knowledge structures expressed in terms of nat-
ural language. In general, due to their closeness to human reasoning, solutions
obtained using fuzzy approaches are easy to understand and to apply. This provides
the user with comprehensive information and often data summarization for grasping
the essence of discovery from a large amount of information in a complex system.

14.8 REVIEW QUESTIONS AND PROBLEMS

1. Find some examples of fuzzy variables in daily life.

2. Show graphically and explain why the law of contradiction is violated in the fuzzy
set theory.

3. The membership function of a fuzzy set is defined as

μA x =

1 for 0 < x < 20
50 – x
30

for 20 ≤ x < 50

0 for x ≥ 50
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(a) What will be linguistic description of the fuzzy set A if x is the variable “age”
in years?

(b) Give an analytical description for μB(x) if B is a fuzzy set “age is close to 60 years.”

4. Assume you were told that the room temperature is around 70 F. How you would
represent this information:

(a) by a set notation.
(b) by a fuzzy set notation.

5. Consider the fuzzy sets A, B, and C defined on the interval x = [0, 10] with
corresponding μ functions:

μA x =
x

x+ 2
μB x = 2−x μC x =

x2

24
for x 0,4 89

1 otherwise

Determine analytically and graphically:

(a) A and B .
(b) A C and A B.
(c) A C and A B.
(d) A B C.
(e) A C .
(f) Calculate the α-cuts for A, B, and C if α = 0.2, α = 0.5, and α = 1.

6. Consider two fuzzy sets with triangular membership functions A(x, 1, 2, 3) and B(x,
2, 2, 4). Find their intersection and union graphically, and express them analyti-
cally using the min and max operators.

7. If X = {3, 4, 5} and Y = {3, 4, 5, 6, 7}, and the binary fuzzy relation R = “Y is much
greater than X” is defined by the analytical membership function

μR X,Y =

Y –X

X + Y + 2
if Y >X

0 if Y ≤X

what will be corresponding relation matrix of R (for all discrete X and Y values)?

8. Apply the extension principle to the fuzzy set

A = 0 1 −2 + 0 4 −1 + 0 8 0 + 0 9 1 + 0 3 2

where the mapping function f(x) = x2 – 3.

(a) What is the resulting image B where B = f(A)?
(b) Sketch this transformation graphically.
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9. Assume that the proposition “if x is A then y is B” is given where A and B are
fuzzy sets:

A= 0 5 x1 + 1 x2 + 0 6 x3

B= 1 y1 + 0 4 y2

Given a fact expressed by the proposition “x is A∗,” where

A∗ = 0 6 x1 + 0 9 x2 + 0 7 x3

derive the conclusion in the form “y is B∗” using the generalized modus ponens
inference rule.

10. Solve problem #9 by using

A = 0 6 x1 + 1 x2 + 0 9 x3

B = 0 6 y1 + 1 y2

A∗= 0 5 x1 + 0 9 x2 + 1 x3

11. The test scores for the three students are given in the following table:

Math Physics Chemistry Language

Henry 66 91 95 83
Lucy 91 88 80 73
John 80 88 80 78

Find the best student using multifactorial evaluation, if the weight factors for the
subjects are given as the vector W = [0.3, 0.2, 0.1, 0.4].

12. Search the Web to find basic characteristics of publicly available or commercial
software tools that are based on fuzzy sets and fuzzy logic. Make a report of your
search.
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data. Over the years, additional methodologies have been investigated and pro-
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are extraordinarily valuable tools for representing and manipulating all kinds of
data, and genetic algorithms and evolutionary programming techniques drawn
from biology provide the most effective means for designing and tuning these sys-
tems. You do not need a background in fuzzy modeling or genetic algorithms to
benefit, for this book provides it, along with detailed instruction in methods that
you can immediately put to work in your own projects. The author provides many
diverse examples and also an extended example in which evolutionary strategies
are used to create a complex scheduling system.

4. Laurent A., Lesot M. ed., Scalable Fuzzy Algorithms for Data Management and
Analysis, Methods and Design, IGI Global, 2010.

The book presents innovative, cutting-edge fuzzy techniques that highlight the rel-
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research areas including data representation, structuring and querying, and infor-
mation retrieval and data mining. It encompasses different forms of databases,
including data warehouses, data cubes, tabular or relational data, and many
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applications among which are music warehouses, video mining, bioinformatics,
semantic Web, and data streams.

5. Chen, G., Liu, F., Shojafar, M., ed., Fuzzy System and Data Mining, IOS Press,
April 2016.

Fuzzy logic is widely used in machine control. The term “fuzzy” refers to the fact
that the logic involved can deal with concepts that cannot be expressed as either
“true” or “false,” but rather as “partially true.” Fuzzy set theory is very suitable for
modeling the uncertain duration in process simulation, as well as defining the fuzzy
goals and fuzzy constraints of decision-making. It has many applications in indus-
try, engineering and social sciences. This book presents the proceedings of the
2015 International Conference on Fuzzy System and Data Mining (FSDM), held
in Shanghai, China. The application domain covers geography, biology, econom-
ics, medicine, the energy industry, social science, logistics, transport, industrial
and production engineering, and computer science. The papers presented at the
conference focus on topics such as system diagnosis, rule induction, process sim-
ulation/control, and decision-making.
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15

VISUALIZATION METHODS

Chapter Objectives

• Recognize the importance of a visual-perception analysis in humans to
discover appropriate data-visualization techniques.

• Distinguish between scientific-visualization and information-visualization
techniques.

• Understand the basic characteristics of geometric, icon-based, pixel-oriented,
and hierarchical techniques in visualization of large data sets.

• Explain the methods of parallel coordinates and radial visualization for
n-dimensional data sets.

• Analyze the requirements for advanced visualization systems in data mining.

How are humans capable of recognizing hundreds of faces? What is our “channel
capacity”when dealing with the visual or any other of our senses? How many distinct
visual icons and orientations can humans accurately perceive? It is important to factor

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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all these cognitive limitations when designing a visualization technique that avoids
delivering ambiguous or misleading information. Categorization lays the foundation
for a well-known cognitive technique: the “chunking” phenomena. Howmany chunks
can you hang onto? That varies among people, but the typical range forms “the mag-
ical number seven, plus or minus two.” The process of reorganizing large amounts of
data into fewer chunks with more bits of information per chunk is known in cognitive
science as “recoding.” We expand our comprehension abilities by reformatting pro-
blems into multiple dimensions or sequences of chunks or by redefining the problem
in a way that invokes relative judgment, followed by a second focus of attention.

15.1 PERCEPTION AND VISUALIZATION

Perception is our chief means of knowing and understanding the world; images are the
mental pictures produced by this understanding. In perception as well as art, a mean-
ingful whole is created by the relationship of the parts to each other. Our ability to see
patterns in things and pull together parts into a meaningful whole is the key to per-
ception and thought. As we view our environment, we are actually performing the
enormously complex task of deriving meaning out of essentially separate and dispa-
rate sensory elements. The eye, unlike the camera, is not a mechanism for capturing
images so much as it is a complex processing unit that detects changes, forms, and
features and selectively prepares data for the brain to interpret. The image we perceive
is a mental one, the result of gleaning what remains constant while the eye scans. As
we survey our three-dimensional (3D) ambient environment, properties such as con-
tour, texture, and regularity allow us to discriminate objects and see them as constants.

Human beings do not normally think in terms of data; they are inspired by and
think in terms of images (mental pictures of a given situation), and they assimilate
information more quickly and effectively as visual images than as textual or tabular
forms. Human vision is still the most powerful means of sifting out irrelevant infor-
mation and detecting significant patterns. The effectiveness of this process is based on
a picture’s submodalities (shape, color, luminance, motion, vectors, texture). They
depict abstract information as a visual grammar that integrates different aspects of
represented information. Visually presenting abstract information, using graphical
metaphors in an immersive 2D or 3D environment, increases one’s ability to assim-
ilate many dimensions of the data in a broad and immediately comprehensible form. It
converts aspects of information into experiences our senses and mind can compre-
hend, analyze, and act upon.

We have heard the phrase “Seeing is believing” many times, though merely see-
ing is not enough. When you understand what you see, seeing becomes believing.
Recently, scientists discovered that seeing and understanding together enable humans
to discover new knowledge with deeper insight from large amounts of data. The
approach integrates the human mind’s exploratory abilities with the enormous proces-
sing power of computers to form a powerful visualization environment that capitalizes
on the best of both worlds. A computer-based visualization technique has to
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incorporate the computer less as a tool and more as a communication medium. The
power of visualization to exploit human perception offers both a challenge and an
opportunity. The challenge is to avoid visualizing incorrect patterns, leading to incor-
rect decisions and actions. The opportunity is to use knowledge about human percep-
tion when designing visualizations. Visualization creates a feedback loop between
perceptual stimuli and the user’s cognition.

Visual data-mining technology builds on visual and analytical processes devel-
oped in various disciplines including scientific visualization, computer graphics, data
mining, statistics, and machine learning with custom extensions that handle very large
multidimensional data sets interactively. The methodologies are based on both func-
tionality that characterizes structures and displays data and human capabilities that
perceives patterns, exceptions, trends, and relationships.

15.2 SCIENTIFIC VISUALIZATION AND INFORMATION
VISUALIZATION

Visualization is defined in the dictionary as “a mental image.” In the field of computer
graphics, the term has a much more specific meaning. Technically, visualization con-
cerns itself with the display of behavior and, particularly, with making complex states
of behavior comprehensible to the human eye. Computer visualization, in particular,
is about using computer graphics and other techniques to think about more cases,
more variables, and more relations. The goal is to think clearly, appropriately, with
insight, and to act with conviction. Unlike presentations, visualizations are typically
interactive and very often animated.

Because of the high rate of technological progress, the amount of data stored in
databases increases rapidly. This proves true for traditional relational databases and
complex 2D and 3D multimedia databases that store images, computer-aided design
(CAD) drawings, geographic information, and molecular biology structure. Many of
the applications mentioned rely on very large databases consisting of millions of data
objects with several tens to a few hundred dimensions. When confronted with the
complexity of data, users face tough problems: Where do I start? What looks inter-
esting here? Have I missed anything? What are the other ways to derive the answer?
Is there other data available? People think iteratively and ask ad hoc questions of com-
plex data while looking for insights.

Computation, based on these large data sets and databases, creates content.
Visualization makes computation and its content accessible to humans. Therefore,
visual data mining uses visualization to augment the data-mining process. Some
data-mining techniques and algorithms are difficult for decision-makers to understand
and use. Visualization can make the data and the mining results more accessible,
allowing comparison and verification of results. Visualization can also be used to steer
the data-mining algorithm.

It is useful to develop taxonomy for data visualization, not only because it brings
order to disjointed techniques but also because it clarifies and interprets ideas and
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purposes behind these techniques. Taxonomy may trigger the imagination to combine
existing techniques or discover a totally new technique.

Visualization techniques can be classified in a number of ways. They can be clas-
sified as to whether their focus is geometric or symbolic; whether the stimulus is 2D,
3D, or n-D; or whether the display is static or dynamic. Many visualization tasks
involve detection of differences in data rather than a measurement of absolute values.
It is the well-known Weber’s law that states that the likelihood of detection is propor-
tional to the relative change, not the absolute change, of a graphical attribute. In
general, visualizations can be used to explore data, to confirm a hypothesis, or to
manipulate a view.

In exploratory visualizations, the user does not necessarily know what he/she is
looking for. This creates a dynamic scenario in which interaction is critical. The user is
searching for structures or trends and is attempting to arrive at some hypothesis. In
confirmatory visualizations, the user has a hypothesis that needs only to be tested.
This scenario is more stable and predictable. System parameters are often predeter-
mined, and visualization tools are necessary for the user to confirm or refute the
hypothesis. In manipulative (production) visualizations, the user has a validated
hypothesis and so knows exactly what is to be presented. Therefore, he focuses on
refining the visualization to optimize the presentation. This type is the most stable
and predictable of all visualizations.

The accepted taxonomy in this book is primarily based on different approaches in
visualization caused by different types of source data. Visualization techniques are
divided roughly into two classes, depending on whether physical data is involved.
These two classes are scientific visualization and information visualization.

Scientific visualization focuses primarily on physical data such as the human
body, the earth, molecules, and so on. Scientific visualization also deals with multi-
dimensional data, but most of the data sets used in this field use the spatial attributes of
the data for visualization purposes, e.g., computer-aided tomography (CAT) and com-
puter-aided design (CAD). Also, many of the geographical information systems (GIS)
use either the Cartesian coordinate system or some modified geographical coordinates
to achieve a reasonable visualization of the data.

Information visualization focuses on abstract, nonphysical data such as text, hierar-
chies, and statistical data.Data-mining techniques are primarilyoriented toward informa-
tion visualization. The challenge for nonphysical data is in designing a visual
representation of multidimensional samples (where the number of dimensions is greater
than three).Multidimensional informationvisualizationspresentdata that isnotprimarily
plenary or spatial. One-, two-, and three-dimensional data include temporal information-
visualization schemes that can be viewed as a subset of multidimensional information
visualization. One approach is to map the nonphysical data to a virtual object such as
a cone tree, which can be manipulated as if it were a physical object. Another approach
is to map the nonphysical data to the graphical properties of points, lines, and areas.

Using historical developments as criteria, we can divide information-
visualization techniques (IVT) into two broad categories: traditional IVT and novel
IVT. Traditional methods of 2D and 3D graphics offer an opportunity for information
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visualization, even though these techniques are more often used for presentation of
physical data in scientific visualization. Traditional visual metaphors are used for a
single or a small number of dimensions, and they include:

1. bar charts that show aggregations and frequencies,

2. histograms that show the distribution of variables values,

3. line charts for understanding trends in order,

4. pie charts for visualizing fractions of a total, and

5. scatter plots for bivariate analysis.

Color coding is one of the most common traditional IVTmethods for displaying a
one-dimensional set of values where each value is represented by a different color.
This representation becomes a continuous tonal variation of color when real numbers
are the values of a dimension. Normally, a color spectrum from blue to red is chosen,
representing a natural variation from “cool” to “hot,” in other words from the smallest
to the highest values.

With the development of large data warehouses, data cubes became very pop-
ular information-visualization techniques. A data cube, the raw-data structure in a
multidimensional database, organizes information along a sequence of categories.
The categorizing variables are called dimensions. The data, called measures, are
stored in cells along given dimensions. The cube dimensions are organized into
hierarchies and usually include a dimension representing time. The hierarchical
levels for the dimension time may be year, quarter, month, day, and hour. Similar
hierarchies could be defined for other dimensions given in a data warehouse. Mul-
tidimensional databases in modern data warehouses automatically aggregate mea-
sures across hierarchical dimensions. They support hierarchical navigation;
expand and collapse dimensions; enable drill-down, drill-up, or drill-across;
and facilitate comparisons through time. In a transaction information in the data-
base, the cube dimensions might be product, store, department, customer number,
region, month, or year. The dimensions are predefined indices in a cube cell, and
the measures in a cell are roll-ups or aggregations over the transactions. They are
usually sums but may include functions such as average, standard deviation, and
percentage.

For example, the values for the dimensions in a database may be:

1. Region: north, south, east, west.

2. Product: shoes, shirts.

3. Month: January, February, March,…,December.

Then, the cell corresponding to [north, shirt, February] is the total sales of shirts
for the northern region for the month of February.
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Novel information-visualization techniques can simultaneously represent large
data sets with many dimensions on one screen. Widely accepted classification of these
new techniques is:

1. geometric projection techniques,

2. icon-based techniques,

3. pixel-oriented techniques, and

4. hierarchical techniques.

Geometric projection techniques aim to find interesting projections of multidi-
mensional data sets. We will present some illustrative examples of these techniques.

The scatter-plot matrix technique is an approach that is very often available in new
data-mining software tools. A grid of 2D scatter plots is the standardmeans of extending
a standard 2D scatter plot to higher dimensions. If you have 10-dimensional data, a 10 ×
10 array of scatter plots is used to provide a visualization of each dimension versus every
other dimension. This is useful for looking at all possible two-way interactions or cor-
relations between dimensions. Positive and negative correlations, but only between two
dimensions, can be seen easily. The standard display quickly becomes inadequate for
extremely large numbers of dimensions, and user interactions of zooming and panning
are needed to interpret the scatter plots effectively.

The survey plot is a simple technique of extending an n-dimensional point (sam-
ple) in a line graph. Each dimension of the sample is represented on a separate axis in
which the dimension’s value is a proportional line from the center of the axis. The
principles of representation are given in Figure 15.1.

This visualization of n-dimensional data allows you to see correlations between
any two variables, especially when the data is sorted according to a particular dimen-
sion. When color is used for different classes of samples, you can sometimes use a sort
to see which dimensions are best at classifying data samples. This technique was eval-
uated with different machine-learning data sets, and it showed the ability to present
exact IF–THEN rules in a set of samples.

The Andrews’s curves technique plots each n-dimensional sample as a curved
line. This is an approach similar to a Fourier transformation of a data point. This tech-
nique uses the function f(t) in the time domain t to transform the n-dimensional point

Dimension 1 Dimension 2 Dimension 3 Dimension 4

Sample

Figure 15.1. A four-dimensional survey plot.
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X = (x1, x2, x3,…, xn) into a continuous plot. The function is usually plotted in the
interval – π ≤ t ≤ π. An example of the transforming function f(t) is

f t =
x1
1 41

+ x2 sin t + x3 cos t + x4 sin 2t + x5 cos 2t +

One advantage of this visualization is that it can represent many dimensions; the
disadvantage, however, is the computational time required to display each n-
dimensional point for large data sets.

The class of geometric projection techniques includes also techniques of exploratory
statistics such as principal component analysis, factor analysis, and multidimensional
scaling. Parallel-coordinate-visualization technique and radial-visualization technique
belong in this category of visualizations, and they are explained in the next sections.

Another class of techniques for visual data mining is the icon-based techniques or
iconic display techniques. The idea is to map each multidimensional data item to an
icon. An example is the stick figure technique. It maps two dimensions to the display
dimensions, and the remaining dimensions are mapped to the angles and/or limb
lengths of the stick figure icon. This technique limits the number of dimensions that
can be visualized. A variety of special symbols have been invented to convey simul-
taneously the variations on several dimensions for the same sample. In 2D displays,
these include Chernoff’s faces, glyphs, stars, and color mapping. Glyphs represent
samples as complex symbols whose features are functions of data. We think of glyphs
as location-independent representations of samples. For successful use of glyphs,
however, some sort of suggestive layout is often essential, because comparison of
glyph shapes is what this type of rendering primarily does. If glyphs are used to
enhance a scatter plot, the scatter plot takes over the layout functions. Figure 15.2
shows how the other icon-based technique, called a star display, is applied to quality
of life measures for various states. Seven dimensions represent seven equidistant radi-
uses for a circle: one circle for each sample. Every dimension is normalized on interval

California Vermont New hampshire

Literacy

Life expectancy Population

No. of cold days

Non-homicide

rate 
High-school

graduates

Income

Figure 15.2. A star display for data on seven quality-of-life measures for three states.

539SCIENTIFIC VISUALIZATION AND INFORMATION VISUALIZATION



[0, 1], where the value 0 is in the center of the circle and the value 1 is at the end of the
corresponding radius. This representation is convenient for a relatively large number
of dimensions but for a very small number of samples. It is usually used for compar-
ative analyses of samples, and it may be included as a part of more complex
visualizations.

The other approach is an icon-based, shape-coding technique that visualizes an
arbitrary number of dimensions. The icon used in this approach maps each dimension
to a small array of pixels and arranges the pixel arrays of each data item into a square
or a rectangle. The pixels corresponding to each of the dimensions are mapped to gray
scale or color according to the dimension’s data value. The small squares or rectangles
corresponding to the data items or samples are then arranged successively in a line-by-
line fashion.

The third class of visualization techniques for multidimensional data aims to map
each data value to a colored pixel and present the data values belonging to each attribute
in separate windows. Since the pixel-oriented techniques use only one pixel per data
value, the techniques allow a visualization of the largest amount of data that is possible
on current displays (up to about 1,000,000 data values). If one pixel represents one data
value, themain question is how to arrange the pixels on the screen.These techniques use
different arrangements for different purposes. Finally, the hierarchical techniques of
visualization subdivide the k-dimensional space and present the subspaces in a hierar-
chical fashion. For example, the lowest levels are 2D subspaces.A common example of
hierarchical techniques is dimensional-stacking representation.

Dimensional stacking is a recursive-visualization technique for displaying high-
dimensional data. Each dimension is discretized into a small number of bins, and the
display area is broken into a grid of subimages. The number of subimages is based on
the number of bins associated with the two “outer” dimensions that are user-specified.
The subimages are decomposed further based on the number of bins for two more
dimensions. This decomposition process continues recursively until all dimensions
have been assigned.

Some of the novel visual metaphors that combine data-visualization techniques
are already built into advanced visualization tools, and they include the following:

1. Parabox that combines boxes, parallel coordinates, and bubble plots for visua-
lizing n-dimensional data. It handles both continuous and categorical data.
The reason for combining box and parallel-coordinate plots involves their rel-
ative strengths. Box plots work well for showing distribution summaries. The
strength of parallel coordinates is their ability to display high-dimensional out-
liers, individual cases with exceptional values. Details about this class of vis-
ualization techniques are given in Section 15.3.

2. Data constellations, a component for visualizing large graphs with thousands
of nodes and links. Two tables parametrize Data Constellations, one corre-
sponding to nodes and another to links. Different layout algorithms dynami-
cally position the nodes so that patterns emerge (a visual interpretation of
outliers, clusters, etc.).
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3. Data sheet, a dynamic scrollable-text visualization that bridges the gap
between text and graphics. The user can adjust the zoom factor, progressively
displaying smaller and smaller fonts, eventually switching to a one-pixel rep-
resentation. This process is called smashing.

4. Timetable, a technique for showing thousands of time-stamped events.

5. Multiscape landscape visualization that encodes information using 3D “sky-
scrapers” on a 2D landscape.

An example of one of these novel visual representations is given in Figure 15.3,
where a large graph is visualized using the Data Constellations technique with one
possible graph-layout algorithm.

For most basic visualization techniques that endeavor to show each item in a data
set, such as scatterplots or parallel coordinates, a massive number of items will over-
load the visualization, resulting in clutter that both causes scalability problems as well
as hinders the user’s understanding of its structure and contents. New visualization
techniques have been proposed to overcome data overload problem and to introduce
abstractions that reduce the amount of items to display either in data space or in visual
space. The approach is based on coupling aggregation in data space with a corre-
sponding visual representation of the aggregation as a visual entity in the graphical
space. This visual aggregate can convey additional information about the underlying
contents, such as an average value, minima and maxima, or even its data distribution.

Drawing visual representations of abstractions performed in data space allow for
creating simplified versions of visualization while still retaining the general overview.
By dynamically changing the abstraction parameters, the user can also retrieve details-
on-demand. There are several algorithms to perform data aggregations in a visualiza-
tion process. For example, given a set of data items, hierarchical aggregation is based
on iteratively building a tree of aggregates either bottom up or top down. Each aggre-
gate item consists of one or more children that are either the original data items
(leaves) or aggregate items (nodes). The root of the tree is an aggregate item that repre-
sents the entire data set. One of the main visual aggregations for scatterplots involves

Figure 15.3. Data constellations as a novel visual metaphor.
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hierarchical aggregations of data into hulls, as it is represented in Figure 15.4. Hulls
are variations and extensions of rectangular boxes as aggregates. They show enhanced
displayed dimensions by using 2D or 3D convex hulls instead of axis-aligned boxes as
a constrained visual metric. Clearly, the benefit of a data aggregate hierarchy and cor-
responding visual aggregates is that the resulting visualization can be adapted to the
requirements of the human user as well as the technical limitations of the visualization
platform.

15.3 PARALLEL COORDINATES

Geometric projection techniques include the parallel-coordinate-visualization tech-
nique, one of the most frequently used modern visualization tools. The basic idea
is to map the k-dimensional space onto the two-display dimensions by using k equi-
distant axes parallel to one of the display axes. The axes correspond to the dimensions
and are linearly scaled from the minimum to the maximum value of the corresponding
dimension. Each data item is presented as a polygonal line, intersecting each of the
axes at the point that corresponds to the value of the considered dimension.

Suppose that a set of six-dimensional samples, given in Table 15.1, is a small
relational database. To visualize this data, it is necessary to determine the maximum
andminimum values for each dimension. If we accept that these values are determined
automatically based on a stored database, then graphical representation of data is
given in Figure 15.5.

The anchored-visualization perspective focuses on displaying data with an arbi-
trary number of dimensions, say, between four and twenty, using and combining

Figure 15.4. Convex hull aggregation (Elmquist 2010).
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multidimensional-visualization techniques such as weighted Parabox, bubble plots,
and parallel coordinates. These methods handle both continuous and categorical data.
The reason for combining them involves their relative strengths. Box plots work well
for showing distribution summaries. Parallel coordinates’ strength is their ability to
display high-dimensional outliers, individual cases with exceptional values. Bubble
plots are used for categorical data, and the size of the circles inside the bubbles shows
the number of samples and their respective value. The dimensions are organized along
a series of parallel axes, as with parallel-coordinate plots. Lines are drawn between the
bubble and the box plots connecting the dimensions of each available sample. Com-
bining these techniques results in a visual component that excels the visual represen-
tations created using separate methodologies.

An example of multidimensional anchored visualization, based on a simple and
small data set, is given in Table 15.2. The total number of dimensions is five, two of
them are categorical and three are numeric. Categorical dimensions are represented by
bubble plots (one bubble for every value) and numeric dimensions by boxes. The cir-
cle inside the bubbles shows visually the percentage that the given value represents in
a database. Lines inside the boxes represent mean value and standard deviation for a
given numeric dimension. The resulting representation in Figure 15.6 shows all six
five-dimensional samples as connecting lines. Although the database given in
Table 15.2 is small, still, by using anchored representation, we can see that one sample
is an outlier for both numeric and categorical dimensions.

TABLE 15.1 . Database with Six Numeric Attributes

Sample# Dimensions

A B C D E F

1 1 5 10 3 3 5
2 3 1 3 1 2 2
3 2 2 1 2 4 2
4 4 2 1 3 1 2

4 5 10 3 4 5

1 1 1 1 1 2
A B C D E F

Figure 15.5. Graphical representation of six-dimensional samples from the database given

in Table 15.1 using a parallel-coordinate-visualization technique.
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The circular-coordinate method is a simple variation of parallel coordinates, in
which the axes radiate from the center of a circle and extend to the perimeter. The line
segments are longer on the outer part of the circle where higher data values are typ-
ically mapped, whereas inner-dimensional values toward the center of the circle are
more cluttered. This visualization is actually a star and glyph visualization of the data
superimposed on one another. Because of the asymmetry of lower (inner) data values
from higher ones, certain patterns may be easier to detect with this visualization.

15.4 RADIAL VISUALIZATION

Radial visualization is a technique for representation of multidimensional data where
the number of dimensions is significantly greater than 3. Data dimensions are laid out
as points equally spaced around the perimeter of a circle. For example, in the case of
an eight-dimensional space, the distribution of dimensions will be given as in
Figure 15.7.

TABLE 15.2 . The Database for Visualization

Sample # Dimensions

A B C D E

1 Low Low 2 4 3
2 Med. Med. 4 2 1
3 High Med. 7 5 9
4 Med. Low 1 3 5
5 Low Low 3 1 2
6 Low Med. 4 3 2

High High 7 5 9

Med. Med.

Low Low

0 0 0
Dimensions A B C D E

Figure 15.6. Parabox visualization of a database given in Table 15.2.

544 VISUALIZATION METHODS



A model of springs is used for point representation. One end of n springs (one
spring for each of n dimensions) is attached to n perimeter points. The other end
of the springs is attached to a data point. Spring constants can be used to represent
values of dimensions for a given point. The spring constant Ki equals the value of
the ith coordinate of the given n-dimensional point where i = 1,…,n. Values for all
dimensions are normalized to the interval between 0 and 1. Each data point is then
displayed in 2D under condition that the sum of the spring forces is equal to 0.
The radial visualization of a four-dimensional point P(K1, K2, K3, K4) with the cor-
responding spring force is given in Figure 15.8.

Using basic laws from physics, we can establish a relation between coordinates in
an n-dimensional space and in 2D presentation. For our example of 4D representation
given in Figure 15.8, point P is under the influence of four forces F1, F2, F3, and F4.

D7

D6
D8

D5 D1

D4 D2

D3

Figure 15.7. Radial visualization for an eight-dimensional space.

D4(0, 1)

D3(–1, 0) D1(1, 0)

P(x, y)

D2(0,–1)

F4

F3 F1 

F2

Figure 15.8. Sum of the spring forces for the given point P is equal to 0.

545RADIAL VISUALIZATION



Knowing that every one of these forces can be expressed as a product of a spring con-
stant and a distance or in a vector form

F =K d

it is possible to calculate this force for a given point. For example, force F1 in
Figure 15.8 is a product of a spring constant K1 and a distance vector between points
P(x, y) and D1(1,0):

F1 =K1 x – 1 i+ y j

The same analysis will give expressions for F2, F3, and F4. Using the basic rela-
tion between forces

F1 +F2 +F3 +F4 = 0

we will obtain

K1 x – 1 i+ y j +K2 x i + y + 1 j +K3 x + 1 i+ y j +K4 x i+ y – 1 j = 0

Both the i and j components of the previous vector have to be equal to 0, and
therefore

K1 x – 1 +K2x +K3 x+ 1 +K4x = 0

K1y +K2 y+ 1 +K3y+K4 y – 1 = 0

or

x=
K1 –K3

K1 +K2 +K3 +K4

y=
K4 –K2

K1 +K2 +K3 +K4

These are the basic relations for representing a four-dimensional point P∗(K1,K2,
K3,K4) in a 2D space P(x, y) using the radial-visualization technique. Similar proce-
dures may be performed to get transformations for other n-dimensional spaces.

We can analyze the behavior of n-dimensional points after transformation and
representation with two dimensions. For example, if all n coordinates have the same
value, the data point will lie exactly in the center of the circle. In our four-dimensional
space, if the initial point is P1

∗(0.6, 0.6, 0.6, 0.6), then using relations for x and y its
presentation will be P1(0, 0). If the n-dimensional point is a unit vector for one dimen-
sion, then the projected point will lie exactly at the fixed point on the edge of the circle
(where the spring for that dimension is fixed). Point P2

∗(0, 0, 1, 0) will be represented
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as P2(−1, 0). Radial visualization represents a nonlinear transformation of the data,
which preserves certain symmetries. This technique emphasizes the relations between
dimensional values, not between separate absolute values. Some additional features of
radial visualization include the following:

1. Points with approximately equal coordinate values will lie close to the center
of the representational circle. For example, P3

∗(0.5, 0.6, 0.4, 0.5) will have 2D
coordinates P3(0.05, –0.05).

2. Points that have one or two coordinate values greater than the others lie closer
to the origins of those dimensions. For example, P4

∗(0.1, 0.8, 0.6, –0.1) will
have a 2D representation P4(–0.36, –0.64). The point is in a third quadrant
closer to D2 and D3, points where the spring is fixed for the second and third
dimensions.

3. An n-dimensional line will map to the line or in a special case to the point. For
example, points P5

∗(0.3, 0.3, 0.3, 0.3), P6
∗(0.6, 0.6, 0.6, 0.6), and P7

∗(0.9, 0.9,
0.9, 0.9) are on a line in a four-dimensional space, and all three of them will be
transformed into the same 2D point P567(0, 0).

4. A sphere will map to an ellipse.

5. An n-dimensional plane maps to a bounded polygon.

The Gradviz method is a simple extension of a radial visualization that places the
dimensional anchors on a rectangular grid instead of the perimeter of a circle. The
spring forces work the same way. Dimensional labeling for Gradviz is difficult,
but the number of dimensions that can be displayed increases significantly in compar-
ison with the Radviz technique. For example, in a typical Radviz display, fifty seems
to be a reasonable limit to the points around a circle. However, in a grid layout sup-
ported by the Gradviz technique, you can easily fit 50 × 50 grid points or dimensions
into the same area.

15.5 VISUALIZATION USING SELF-ORGANIZING MAPS

Self-organizing map (SOM) is often seen as a promising technique for exploratory
analyses through visualization of high-dimensional data. It visualizes a data structure
of a high-dimensional data space usually as a 2D or 3D geometrical picture. SOMs
are, in effect, a nonlinear form of principal component analysis and share similar goals
to multidimensional scaling. PCA is much faster to compute, but it has disadvantage
comparing SOMs of not retaining the topology of the higher-dimensional space.

The topology of the data set in its n-dimensional space is captured by the SOM
and reflected in the ordering of its output nodes. This is an important feature of the
SOM that allows the data to be projected onto a lower-dimensional space while
roughly preserving the order of the data in its original space. Resultant SOMs are
then visualized using graphical representations. SOM algorithm may use different
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data-visualization techniques including a cell or U-matrix visualization (a distance
matrix visualization), projections (mesh visualization), visualization of component
planes (in a multiples linked view), and 2D and 3D surface plot of distance matrices.
These representations use visual variables (size, value, texture, color, shape, orienta-
tion) added to the position property of the map elements. This allows exploration of
relationships between samples. A coordinate system enables to determine distance
and direction, from which other relationships (size, shape, density, arrangement,
etc.) may be derived. Multiple levels of detail allow exploration at various scales,
creating the potential for hierarchical grouping of items, regionalization, and other
types of generalizations. Graphical representations in SOMs are used to represent
uncovered structure and patterns that may be hidden in the data set and to support
understanding and knowledge construction. An illustrative example is given in
Figure 15.9 where linear or nonlinear relationships are detected by the SOM.

For years there has been visualization of primary numeric data using pie charts,
colored graphs, graphs over time, multidimensional analysis, Pareto charts, and so
forth. The counterpart to numeric data is unstructured textual data. Textual data is
found in many places but nowhere more prominently than on the Web. Unstructured
electronic data includes emails, email attachments, pdf files, spread sheets, Power-
Point files, text files, document files, and many more. In this new environment the
end user faces massive amounts often millions of unstructured documents. The end
user cannot read them all, and especially there is no way he/she could manually organ-
ize or summarize them. Unstructured data runs less formal part of the organization,
while structured data runs the formal part of the organization. It is a good assumption,
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Figure 15.9. Output maps generated by the SOM detect relationships in data.
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confirmed in many real-world applications, that as many business decisions are made
in the unstructured environment as in the structured environment.

The SOM is one efficient solution for the problems of unstructured visualization
of documents and unstructured data. With a properly constructed SOM, you can ana-
lyze literally millions of unstructured documents that can be merged into a single
SOM. The SOM deals not only with individual unstructured documents but also rela-
tionships between documents. The SOMs may show text that is correlated to other
text. For example, in the medical field, working with medical patient records, this abil-
ity to correlate is very attractive. The SOM also allows the analyst to see the larger
picture as well as drilling down to the detailed picture. The SOM goes down to the
individual stemmed text level, and that is as accurate as textual processing can
become. All these characteristics have resulted in the growing popularity of SOM’s
visualizations in order to assist visual inspection of complex high-dimensional data.
For the end user the flexibility of the SOM algorithm is defined through a number of
parameters. For appropriate configuration of the network, and tuning the visualization
output, user-defined parameters include grid dimensions (2D, 3D), grid shape (rectan-
gle, hexagon), number of output nodes, neighborhood function, neighborhood size,
learning rate function, initial weights in the network, way of learning and number
of iterations, and order of input samples.

15.6 VISUALIZATION SYSTEMS FOR DATA MINING

Many organizations, particularly within the business community, have made signif-
icant investments in collecting, storing, and converting business information into
results that can be used. Unfortunately, typical implementations of business “intelli-
gence software” have proven to be too complex for most users except for their core
reporting and charting capabilities. Users’ demands for multidimensional analysis,
finer data granularity, and multiple data sources, simultaneously, all at Internet speed,
require too much specialist intervention for broad utilization. The result is a report
explosion in which literally hundreds of predefined reports are generated and pushed
throughout the organization. Every report produces another. Presentations get more
complex. Data is exploding. The best opportunities and the most important decisions
are often the hardest to see. This is in direct conflict with the needs of frontline deci-
sion-makers and knowledge workers who are demanding to be included in the ana-
lytical process.

Presenting information visually, in an environment that encourages the exploration
of linked events, leads to deeper insights and more results that can be acted upon. Over
the past decade, research on information visualization has focused on developing spe-
cific visualization techniques. An essential task for the next period is to integrate these
techniques into a larger system that supports work with information in an interactive
way, through the three basic components: foraging the data, thinking about data,
and acting on data.
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The vision of a visual data-mining system stems from the following principles:
simplicity, visibility, user autonomy, reliability, reusability, availability, and secu-
rity. A visual data-mining system must be syntactically simple to be useful. Simple
does not mean trivial or nonpowerful. Simple to learn means use of intuitive and
friendly input mechanisms as well as instinctive and easy-to-interpret output knowl-
edge. Simple to apply means an effective discourse between humans and informa-
tion. Simple to retrieve or recall means a customized data structure that facilitates
fast and reliable searches. Simple to execute means a minimum number of steps
needed to achieve the results. In short, simple means the smallest, functionally suf-
ficient system possible.

A genuinely visual data-mining system must not impose knowledge on its users,
but instead guide them through the mining process to draw conclusions. Users should
study the visual abstractions and gain insight instead of accepting an automated deci-
sion. A key capability in visual analysis, called visibility, is the ability to focus on
particular regions of interest. There are two aspects of visibility: excluding and restor-
ing data. The exclude process eliminates the unwanted data items from the display so
that only the selected set is visible. The restore process brings all data back, making
them visible again.

A reliable data-mining system must provide for estimated error or accuracy of the
projected information in each step of the mining process. This error information can
compensate for the deficiency that an imprecise analysis of data visualization can
cause. A reusable, visual data-mining system must be adaptable to a variety of envir-
onments to reduce the customization effort, provide assured performance, and
improve system portability. A practical, visual data-mining system must be generally
and widely available. The quest for new knowledge or deeper insights into existing
knowledge cannot be planned. It requires that the knowledge received from one
domain adapt to another domain through physical means or electronic connections.
A complete, visual data-mining system must include security measures to protect
the data, the newly discovered knowledge, and the user’s identity because of various
social issues.

Through data visualization we want to understand or get an overview of the
whole or a part of the n-dimensional data, analyzing also some specific cases.
Visualization of multidimensional data helps decision-makers to:

1. slice information into multiple dimensions and present information at various
levels of granularity,

2. view trends and develop historical tracers to show operations over time,

3. produce pointers to synergies across multiple dimensions,

4. provide exception analysis and identify isolated (needle in the haystack)
opportunities,

5. monitor adversarial capabilities and developments,

6. create indicators of duplicative efforts, and

7. conduct What-If Analysis and Cross-Analysis of variables in a data set.
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Visualization tools transform raw experimental or simulated data into a form suit-
able for human understanding. Representations can take on many different forms,
depending on the nature of the original data and the information that is to be extracted.
However, the visualization process that should be supported by modern visualization-
software tools can generally be subdivided into three main stages: data preprocessing,
visualization mapping, and rendering. Through these three steps the tool has to answer
the questions: What should be shown in a plot? How should one work with individual
plots? How should multiple plots be organized?

Data preprocessing involves such diverse operations as interpolating irregular
data, filtering and smoothing raw data, and deriving functions for measured or sim-
ulated quantities. Visualization mapping is the most crucial stage of the process, invol-
ving design and adequate representation of the filtered data, which efficiently conveys
the relevant and meaningful information. Finally, the representation is often rendered
to communicate information to the human user.

Data visualization is essential for understanding the concept of multidimensional
spaces. It allows the user to explore the data in different ways and at different levels of
abstraction to find the right level of details. Therefore, techniques are most useful if
they are highly interactive, permit direct manipulation, and include a rapid response
time. The analyst must be able to navigate the data, change its grain (resolution), and
alter its representation (symbols, colors, etc.).

Broadly speaking, the problems addressed by current information-visualization
tools and requirements for a new generation fall into the following classes:

1. Presentation graphics—These generally consist of bars, pies, and line charts
that are easily populated with static data and drop into printed reports or pre-
sentations. The next generation of presentation graphics enriches the static
displays with a 3D or projected n-dimensional information landscape. The
user can then navigate through the landscape and animate it to display
time-oriented information.

2. Visual interfaces for information access—They are focused on enabling users
to navigate through complex information spaces to locate and retrieve infor-
mation. Supported user tasks involve searching, backtracking, and history log-
ging. User-interface techniques attempt to preserve user context and support
smooth transitions between locations.

3. Full visual discovery and analysis—These systems combine the insights com-
municated by presentation graphics with an ability to probe, drill down, filter,
and manipulate the display to answer the “why” question as well as the “what”
question. The difference between answering a “what” and a “why” question
involves an interactive operation. Therefore, in addition to the visualization
technique, effective data exploration requires using some interaction and dis-
tortion techniques. The interaction techniques let the user directly interact
with the visualization. Examples of interaction techniques include interactive
mapping, projection, filtering, zooming, and interactive linking and brushing.
These techniques allow dynamic changes in the visualizations according to the
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exploration objectives, but they also make it possible to relate and combine
multiple, independent visualizations. Note that connecting multiple visualiza-
tions by linking and brushing, e.g., provides more information than consider-
ing the component visualizations independently. The distortion techniques
help in the interactive exploration process by providing a means for focusing
while preserving an overview of the data. Distortion techniques show portions
of the data with a high level of detail, while other parts are shown with a much
lower level of detail.

Three tasks are fundamental to data exploration with these new visualization tools:

1. Finding Gestalt—Local and global linearities and nonlinearities, discontinu-
ities, clusters, outliers, unusual groups, and so on are examples of gestalt fea-
tures that can be of interest. Focusing through individual views is the basic
requirement to obtain a qualitative exploration of data using visualization.
Focusing determines what gestalt of the data is seen. The meaning of focusing
depends very much on the type of visualization technique chosen.

2. Posing queries—This is a natural task after the initial gestalt features have
been found, and the user requires query identification and characterization
technique. Queries can concern individual cases as well as subsets of cases.
The goal is essentially to find intelligible parts of the data. In graphical data
analysis it is natural to pose queries graphically. For example, familiar brush-
ing techniques such as coloring or otherwise highlighting a subset of data
means issuing a query about this subset. It is desirable that the view where
the query is posed and the view that present the response are linked. Ideally,
responses to queries should be instantaneous.

3. Making comparisons—Two types of comparisons are frequently made in
practice. The first one is a comparison of variables or projections, and the sec-
ond one is a comparison of subsets of data. In the first case, one compares
views “from different angles”; in the second, comparison is based on views
“of different slices” of the data. In either case, it is likely that a large number
of plots are generated, and therefore it is a challenge to organize the plots in
such a way that meaningful comparisons are possible.

Visualization has been used routinely in data mining as a presentation tool to gen-
erate initial views, navigate data with complicated structures, and convey the results of
an analysis. Generally, the analytical methods themselves do not involve visualiza-
tion. The loosely coupled relationships between visualization and analytical data-
mining techniques represent the majority of today’s state of the art in visual data
mining. The process-sandwich strategy, which interlaces analytical processes with
graphical visualization, penalizes both procedures with the other’s deficiencies and
limitations. For example, because an analytical process cannot analyze multimedia
data, we have to give up the strength of visualization to study movies and music in
a visual data-mining environment. A stronger strategy lies in tightly coupling the
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visualization and analytical processes into one data-mining tool. Letting human vis-
ualization participate in the decision-making in analytical processes remains a major
challenge. Certain mathematical steps within an analytical procedure may be substi-
tuted by human decisions based on visualization to allow the same procedure to ana-
lyze a broader scope of information. Visualization supports humans in dealing with
decisions that can no longer be automated.

For example, visualization techniques can be used for efficient process of “visual
clustering.” The algorithm is based on finding a set of projections P = [P1, P2,…,Pk}
useful for separating the initial data into clusters. Each projection represents the his-
togram information of the point density in the projected space. The most important
information about a projection is whether it contains well-separated clusters. Note that
well-separated clusters in one projection could result frommore than one cluster in the
original space. Figure 15.10 shows an illustration of these projections. You can see
that the axes’ parallel projections do not preserve well the information necessary
for clustering. Additional projections A and B, in Figure 15.10, define three clusters
in the initial data set.

Visual techniques that preserve some characteristics of the data set can be inval-
uable for obtaining good separators in a clustering process. In contrast to dimension
reduction approaches such as principal component analyses, this visual approach
does not require that a single projection preserves all clusters. In the projections,
some clusters may overlap and therefore not be distinguishable, such as projection
A in Figure 15.10. The algorithm only needs projections that separate the data set
into at least two subsets without dividing any clusters. The subsets may then be
refined using other projections and possibly partitioned further based on separators
in other projections. Based on the visual representation of the projections, it is pos-
sible to find clusters with unexpected characteristics (shapes, dependencies) that
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Figure 15.10. An example of the need for general projections, which are not parallel to

axes, to improve clustering process.
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would be very difficult or impossible to find by tuning the parameter settings of
automatic-clustering algorithms.

In general, model visualization and exploratory data analysis (EDA) are data-
mining tasks in which visualization techniques have played a major role. Model vis-
ualization is the process of using visual techniques to make the discovered knowledge
understandable and interpretable by humans. Techniques range from simple scatter
plots and histograms to sophisticated multidimensional visualizations and animations.
These visualization techniques are being used not only to convey mining results more
understandable to end users but also to help them understand how the algorithm
works. EDA, on the other hand, is the interactive exploration of usually graphical
representations of a data set without heavy dependence on preconceived assumptions
and models, thus attempting to identify interesting and previously unknown patterns.
Visual data exploration techniques are designed to take advantage of the powerful vis-
ual capabilities of human beings. They can support users in formulating hypotheses
about the data that may be useful in further stages of the mining process.

15.7 REVIEW QUESTIONS AND PROBLEMS

1. Explain the power of n-dimensional visualization as a data-mining technique.
What are the phases of data mining supported by data visualization?

2. What are fundamental experiences in human perception we would build into
effective visualization tools?

3. Discuss the differences between scientific visualization and information
visualization.

4. The following is the data set X:

X: Year A B

1996 7 100
1997 5 150
1998 7 120
1999 9 150
2000 5 130
2001 7 150

Although the following visualization techniques are not explained with enough
details in this book, use your knowledge from earlier studies of statistics and other
courses to create 2D presentations:

(a) Show a bar chart for the variable A.
(b) Show a histogram for the variable B.
(c) Show a line chart for the variable B.
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(d) Show a pie chart for the variable A.
(e) Show a scatter plot for A and B variables.

5. Explain the concept of a data cube and where it is used for visualization of large
data sets.

6. Use examples to discuss the differences between icon-based and pixel-oriented
visualization techniques.

7. Given seven-dimensional samples:

x1 x2 x3 x4 x5 x6 x7

A 1 25 7 T 1 5
B 3 27 3 T 2 9
A 5 29 5 T 1 7
A 2 21 9 F 3 2
B 5 30 7 F 1 7

(a) Make a graphical representation of samples using the parallel-coordinates technique.
(b) Are there any outliers in the given data set?

8. Derive formulas for radial visualization of

(a) Three-dimensional samples.
(b) Eight-dimensional samples.
(c) Using the formulas derived in (a), represent samples (2, 8, 3) and (8, 0, 0).
(d) Using the formulas derived in (b), represent samples (2, 8, 3, 0, 7, 0, 0, 0) and (8, 8, 0,

0, 0, 0, 0, 0).

9. Implement a software tool supporting a radial-visualization technique.

10. Explain the requirements for full visual discovery in advanced visualization tools.

11. Search the Web to find the basic characteristics of publicly available or commer-
cial software tools for visualization of n-dimensional samples. Document the
results of your search.

15.8 REFERENCES FOR FURTHER STUDY
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and Knowledge Discovery, Morgan Kaufmann, San Diego, CA, 2002.

Leading researchers from the fields of data mining, data visualization, and statistics
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cepts and components of visualization, details current efforts to include
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tern, is an increasingly common technique in information-visualization research.
In spite of its prevalence, little work has been done to study this visualization par-
adigm as a methodology in its own right. We provide a historical review of radial
visualization, tracing it to its roots in centuries-old statistical graphics. We then
identify the types of problem domains to which modern radial-visualization tech-
niques have been applied. A taxonomy for radial visualization is proposed in the
form of seven design patterns encompassing nearly all recent works in this area.
From an analysis of these patterns, we distill a series of design considerations that
system builders can use to create new visualizations that address aspects of the
design space that have not yet been explored. It is hoped that our taxonomy will
provide a framework for facilitating discourse among researchers and stimulate the
development of additional theories and systems involving radial visualization as a
distinct design metaphor.

4. Ferreira de Oliveira M. C., H. Levkowitz, From Visual Data Exploration to Visual
Data Mining: A Survey, IEEE Transactions On Visualization And Computer
Graphics, Vol. 9, No. 3, July–September 2003, pp. 378–394.

The authors survey work on the different uses of graphical mapping and interaction
techniques for visual data mining of large data sets represented as table data. Basic
terminology related to data mining, data sets, and visualization is introduced. Pre-
vious work on information visualization is reviewed in light of different categor-
izations of techniques and systems. The role of interaction techniques is discussed,
in addition to work addressing the question of selecting and evaluating visualiza-
tion techniques. We review some representative work on the use of information-
visualization techniques in the context of mining data. This includes both visual
data exploration and visually expressing the outcome of specific mining algo-
rithms. We also review recent innovative approaches that attempt to integrate vis-
ualization into the DM/KDD process, using it to enhance user interaction and
comprehension.

5. Tufte E. R., Beautiful Evidence, Graphic Press, LLC, 2nd edition, January 2007.

Beautiful Evidence is a masterpiece from a pioneer in the field of data visualiza-
tion. It is not often an iconoclast comes along, trashes the old ways, and replaces
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them with an irresistible new interpretation. By teasing out the sublime from the
seemingly mundane world of charts, graphs, and tables, Tufte has proven to a gen-
eration of graphic designers that great thinking begets great presentation. In Beau-
tiful Evidence, his fourth work on analytical design, Tufte digs more deeply into art
and science to reveal very old connections between truth and beauty—all the way
from Galileo to Google.

6. Segall, Richard S., Jeffrey S. Cook, Handbook of Research on Big Data Storage
and Visualization Techniques, IGI Global, 2018.

The digital age has presented an exponential growth in the amount of data available
to individuals looking to draw conclusions based on given or collected information
across industries. Challenges associated with the analysis, security, sharing, stor-
age, and visualization of large and complex data sets continue to plague data scien-
tists and analysts alike as traditional data processing applications struggle to
adequately manage big data. The handbook is a critical scholarly resource that
explores big data analytics and technologies and their role in developing a broad
understanding of issues pertaining to the use of big data in multidisciplinary fields.
Featuring coverage on a broad range of topics, such as architecture patterns, pro-
graming systems, and computational energy, this publication is geared toward
professionals, researchers, and students seeking current research and application
topics on the subject.
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APPENDIX A
INFORMATION ON

DATA MINING

This summary of some recognized journals, conferences, blog sites, data-mining
tools, and data sets is being provided to help readers to communicate with other users
of data-mining technology and to receive information about trends and new applica-
tions in the field. It could be especially useful for students who are starting to work in
data mining and trying to find appropriate information or solve current class-oriented
tasks. This list is not intended to endorse any specificWeb site, and the reader has to be
aware that this is only small sample of possible resources on the Internet.

A.1 DATA-MINING JOURNALS

1. Data Mining and Knowledge Discovery (DMKD)

https://link.springer.com/journal/10618
Data Mining and Knowledge Discovery is a premier technical publication in the

KDD field, providing a resource collecting relevant common methods and techniques
and a forum for unifying the diverse constituent research communities. The journal
publishes original technical papers in both the research and practice of DMKD,
surveys and tutorials of important areas and techniques, and detailed descriptions of
significant applications. The scope ofDataMining and KnowledgeDiscovery includes:
(1) theory and foundational issues including data and knowledge representation, uncer-
tainty management, algorithmic complexity, and statistics over massive data sets; (2)
data-mining methods such as classification, clustering, probabilistic modeling,

Data Mining: Concepts, Models, Methods, and Algorithms, Third Edition. Mehmed Kantardzic.
© 2020 by The Institute of Electrical and Electronics Engineers, Inc.
Published 2020 by John Wiley & Sons, Inc.
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prediction and estimation, dependency analysis, search, and optimization; (3) algo-
rithms for spatial, textual, and multimedia data mining, scalability to large databases,
parallel and distributed data-mining techniques, and automated discovery agents; (4)
knowledge-discovery process including data preprocessing, evaluating, consolidating,
and explaining discovered knowledge, data and knowledge visualization, and interac-
tive data exploration and discovery; and (5) application issues such as application
case studies, data-mining systems and tools, details of successes and failures of
KDD, resource/knowledge discovery on the Web, and privacy and security issues.

2. IEEE Transactions on Knowledge and Data Engineering (TKDE)

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
The IEEE Transactions on Knowledge and Data Engineering is an archival

journal published monthly. The information published in this Transactions is
designed to inform researchers, developers, managers, strategic planners, users,
and others interested in state-of-the-art and state-of-the-practice activities in the
knowledge and data engineering area. We are interested in well-defined theoretical
results and empirical studies that have potential impact on the acquisition, manage-
ment, storage, and graceful degeneration of knowledge and data, as well as in pro-
vision of knowledge and data services. Specific topics include, but are not limited to
(1) artificial intelligence techniques, including speech, voice, graphics, images, and
documents; (2) knowledge and data engineering tools and techniques; (3) parallel
and distributed processing; (4) real-time distributed; (5) system architectures, inte-
gration, and modeling; (6) database design, modeling, and management; (7) query
design and implementation languages; (8) distributed database control; (9) algo-
rithms for data and knowledge management; (10) performance evaluation of algo-
rithms and systems; (11) data communications aspects; m) system applications and
experience; (12) knowledge-based and expert systems; and (13) integrity, security,
and fault tolerance.

3. Knowledge and Information Systems (KAIS)

http://www.cs.uvm.edu/~kais/
Knowledge and Information Systems (KAIS) is a peer-reviewed archival journal

published by Springer. It provides an international forum for researchers and profes-
sionals to share their knowledge and report new advances on all topics related to knowl-
edge systems and advanced information systems. The journal focuses on knowledge
systems and advanced information systems, including their theoretical foundations,
infrastructure, enabling technologies, and emerging applications. In addition to archival
papers, the journal also publishes significant ongoing research in the form of short
papers and very short papers on “visions and directions.”

4. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

http://computer.org/tpami/
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) is a

scholarly archival journal published monthly. Its editorial board strives to present
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most important research results in areas within TPAMI’s scope. This includes all
traditional areas of computer vision and image understanding, all traditional areas
of pattern analysis and recognition, and selected areas of machine intelligence.
Areas such as machine learning, search techniques, document and handwriting anal-
ysis, medical image analysis, video and image sequence analysis, content-based
retrieval of image and video, face and gesture recognition, and relevant specialized
hardware and/or software architectures are also covered.

5. Machine Learning

https://link.springer.com/journal/10994
Machine Learning is an international forum for research on computational

approaches to learning. The journal publishes articles reporting substantive results
on a wide range of learning methods applied to a variety of learning problems. It fea-
tures papers that describe research on problems and methods, applications research,
and issues of research methodology, and papers making claims about learning pro-
blems or methods provide solid support via empirical studies, theoretical analysis,
or comparison to psychological phenomena. Application papers show how to apply
learning methods to solve important application problems. Research methodology
papers improve how machine-learning research is conducted. All papers describe
the supporting evidence in ways that can be verified or replicated by other researchers.
The papers also detail the learning component clearly and discuss assumptions regard-
ing knowledge representation and the performance task.

6. Journal of Machine Learning Research (JMLR)

http://www.jmlr.org/
The Journal of Machine Learning Research provides an international forum for the

electronic and paper publication of high-quality scholarly articles in all areas of machine
learning. All published papers are freely available online. JMLR has a commitment to
rigorous yet rapid reviewing. JMLR provides a venue for papers on machine learning
featuring new algorithms with empirical, theoretical, psychological, or biological jus-
tification; experimental and/or theoretical studies yielding new insight into the design
and behavior of learning in intelligent systems; accounts of applications of existing tech-
niques that shed light on the strengths and weaknesses of the methods; formalization of
new learning tasks (e.g. in the context of new applications) and of methods for assessing
performance on those tasks; development of new analytical frameworks that advance
theoretical studies of practical learning methods; computational models of data from
natural learning systems at the behavioral or neural level; or extremely well-written sur-
veys of existing work.

7. ACM Transactions on Knowledge Discovery from Data (TKDD)

https://tkdd.acm.org/index.cfm
The ACM Transactions on Knowledge Discovery from Data addresses a full

range of research in the knowledge discovery and analysis of diverse forms of data.
Such subjects include scalable and effective algorithms for data mining and data
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warehousing, mining data streams, mining multi-media data, mining high-
dimensional data, mining text, Web, and semi-structured data, mining spatial and tem-
poral data, data mining for community generation, social network analysis, and graph
structured data, security and privacy issues in data mining, visual, interactive and
online data mining, pre-processing and post-processing for data mining, robust and
scalable statistical methods, data-mining languages, foundations of data mining,
KDD framework and process, and novel applications and infrastructures exploiting
data-mining technology.

8. Journal of Intelligent Information Systems (JIIS)

https://link.springer.com/journal/10844
The Journal of Intelligent Information Systems: Integrating Artificial Intelligence

and Database Technologies (JIIS) fosters and presents research and development
results focused on the integration of artificial intelligence and database technologies
to create next-generation information systems—Intelligent Information Systems. JIIS
provides a forum wherein academics, researchers, and practitioners may publish high-
quality, original and state-of-the-art papers describing theoretical aspects, systems
architectures, analysis and design tools and techniques, and implementation experi-
ences in intelligent information systems. Articles published in JIIS include research
papers, invited papers, meeting, workshop and conference announcements and
reports, survey and tutorial articles, and book reviews. Topics include foundations
and principles of data, information, and knowledge models; methodologies for IIS
analysis, design, implementation, validation, maintenance, and evolution; and more.

9. Statistical Analysis and Data Mining

https://onlinelibrary.wiley.com/journal/19321872
The Statistical Analysis and Data Mining addresses the broad area of data anal-

ysis, including data-mining algorithms, statistical approaches, and practical applica-
tions. Topics include problems involving massive and complex data sets, solutions
using innovative data-mining algorithms and/or novel statistical approaches, and
the objective evaluation of analyses and solutions. Of special interest are articles that
describe analytical techniques and discuss their application to real problems in such a
way that they are accessible and beneficial to domain experts across science, engineer-
ing, and commerce.

10. Intelligent Data Analysis

http://www.iospress.nl/html/1088467x.php
Intelligent Data Analysis provides a forum for the examination of issues related

to the research and applications of artificial intelligence techniques in data analysis
across a variety of disciplines. These techniques include (but are not limited to) all
areas of data visualization, data preprocessing (fusion, editing, transformation, fil-
tering, sampling), data engineering, database mining techniques, tools and applica-
tions, use of domain knowledge in data analysis, evolutionary algorithms, machine
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learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filter-
ing, and postprocessing. In particular, we prefer papers that discuss development
of new AI-related data-analysis architectures, methodologies, and techniques and
their applications to various domains. Papers published in this journal are geared
heavily toward applications, with an anticipated split of 70% of the papers published
being applications-oriented research and the remaining 30% containing more
theoretical research.

11. Expert Systems With Applications

https://www.journals.elsevier.com/expert-systems-with-applications
Expert Systems With Applications is a refereed international journal whose focus is

on exchanging information relating to expert and intelligent systems applied in industry,
government, and universities worldwide. The thrust of the journal is to publish papers
dealing with the design, development, testing, implementation, and/or management of
expert and intelligent systems and also to provide practical guidelines in the develop-
ment and management of these systems. The journal will publish papers in expert and
intelligent systems technology and application in the areas of, but not limited to, finance,
accounting, engineering, marketing, auditing, law, procurement and contracting,
project management, risk assessment, information management, information retrieval,
crisis management, stock trading, strategic management, network management,
telecommunications, space education, intelligent front ends, intelligent database-
management systems, medicine, chemistry, human resources management, human cap-
ital, business, production management, archaeology, economics, energy, and defense.
Papers in multi-agent systems, knowledge management, neural networks, knowledge
discovery, data and text mining, multimedia mining, and genetic algorithms will also
be published in the journal.

12. Computational Statistics & Data Analysis (CSDA)

https://www.journals.elsevier.com/computational-statistics-and-data-analysis
Computational Statistics & Data Analysis (CSDA), an Official Publication of the

network Computational andMethodological Statistics (CMStatistics) and of the Inter-
national Association for Statistical Computing (IASC), is an international journal ded-
icated to the dissemination of methodological research and applications in the areas of
computational statistics and data analysis. The journal consists of three refereed sec-
tions that are divided into the following subject areas: I) computational statistics, II)
statistical methodology for data analysis and statistical methodology, and III) special
applications.

13. Neurocomputing

https://www.journals.elsevier.com/neurocomputing/
Neurocomputing publishes articles describing recent fundamental contributions

in the field of neurocomputing. Neurocomputing theory, practice, and applications
are the essential topics being covered. Neurocomputing welcomes theoretical
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contributions aimed at winning further understanding of neural networks and learning
systems, including, but not restricted to, architectures, learning methods, analysis of
network dynamics, theories of learning, self-organization, biological neural-network
modeling, sensorimotor transformations, and interdisciplinary topics with artificial
intelligence, artificial life, cognitive science, computational learning theory, fuzzy
logic, genetic algorithms, information theory, machine learning, neurobiology, and
pattern recognition.

14. Information Sciences

https://www.journals.elsevier.com/information-sciences/
The journal is designed to serve researchers, developers, managers, strategic

planners, graduate students, and others interested in state-of-the art research activities
in information, knowledge engineering, and intelligent systems. Readers are assumed
to have a common interest in information science, but with diverse backgrounds in
fields such as engineering, mathematics, statistics, physics, computer science, cell
biology, molecular biology, management science, cognitive science, neurobiology,
behavioral sciences, and biochemistry. The journal publishes high-quality, refereed
articles. It emphasizes a balanced coverage of both theory and practice. It fully
acknowledges and vividly promotes a breadth of the discipline of information
sciences.

15. ACM Transactions on Intelligent Systems and Technology (TIST)

https://tist.acm.org/index.cfm
ACM Transactions on Intelligent Systems and Technology is a scholarly journal

that publishes the highest-quality papers on intelligent systems, applicable algorithms
and technology with a multidisciplinary perspective. An intelligent system is one that
uses artificial intelligence (AI) techniques to offer important services (e.g. as a com-
ponent of a larger system) to allow integrated systems to perceive, reason, learn, and
act intelligently in the real world.

A.2 DATA-MINING CONFERENCES

1. SIAM International Conference on Data Mining (SDM)

http://www.siam.org/meetings/
This conference provides a venue for researchers who are addressing extrac-

ting knowledge from large data sets that requires the use of sophisticated, high-
performance, and principled analysis techniques and algorithms, based on sound
theoretical and statistical foundations. It also provides an ideal setting for graduate
students and others new to the field to learn about cutting-edge research by hearing
outstanding invited speakers and attending presentations and tutorials (included with
conference registration). A set of focused workshops are also held in the conference.
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The proceedings of the conference are published in archival form and are also made
available on the SIAM Web site.

2. The ACM SIGKDDConference on Knowledge Discovery and DataMining (KDD)

http://www.kdd.org/
The annual ACM SIGKDD conference is the premier international forum for

data-mining researchers and practitioners from academia, industry, and government
to share their ideas, research results, and experiences. It features keynote presenta-
tions, oral paper presentations, poster sessions, workshops, tutorials, panels, exhi-
bits, and demonstrations. Authors can submit their original work either to SIGKDD
Research track or SIGKDD Industry/Government track. The research track accepts
papers on all aspects of knowledge discovery and data mining overlapping with
topics from machine learning, statistics, databases, and pattern recognition. Papers
are expected to describe innovative ideas and solutions that are rigorously evaluated
and well presented. The Industrial/Government track highlights challenges, lessons,
concerns, and research issues arising out of deploying applications of KDD technol-
ogy. The focus is on promoting the exchange of ideas between researchers and
practitioners of data mining.

3. IEEE International Conference on Data Mining (ICDM)

http://www.cs.uvm.edu/~icdm/
The IEEE International Conference on Data Mining (ICDM) has established

itself as the world’s premier research conference in data mining. The conference pro-
vides a leading forum for presentation of original research results, as well as exchange
and dissemination of innovative, practical development experiences. The conference
covers all aspects of data mining, including algorithms, software and systems, and
applications. In addition, ICDM draws researchers and application developers from
a wide range of data-mining-related areas such as statistics, machine learning, pattern
recognition, databases and data warehousing, data visualization, knowledge-based
systems, and high-performance computing. By promoting novel, high-quality
research findings and innovative solutions to challenging data-mining problems,
the conference seeks to continuously advance the state-of-the-art in data mining.
Besides the technical program, the conference will feature workshops, tutorials,
panels, and the ICDM data-mining contest.

4. International Conference on Machine Learning and Applications (ICMLA)

http://www.icmla-conference.org/
The aim of the conference is to bring researchers working in the areas of machine

learning and applications together. The conference will cover both theoretical and
experimental research results. Submission of machine-learning papers describing
machine-learning applications in fields like medicine, biology, industry, manufactur-
ing, security, education, virtual environments, game playing, and problem solving is
strongly encouraged.
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5. The World Congress in Computer Science Computer Engineering and Applied
Computing (WORLDCOMP)

http://www.world-academy-of-science.org/
WORLDCOMP is the largest annual gathering of researchers in computer sci-

ence, computer engineering, and applied computing. It assembles a spectrum of
affiliated research conferences, workshops, and symposiums into a coordinated
research meeting held in a common place at a common time. This model facilitates
communication among researchers in different fields of computer science and com-
puter engineering. The WORLDCOMP is composed of more than 20 major confer-
ences. Each conference will have its own proceedings. All conference proceedings/
books are considered for inclusion in major database indexes that are designed to
provide easy access to the current literature of the sciences (database examples:
DBLP, ISI Thomson Scientific, IEE INSPEC).

6. IADIS European Conference on Data Mining (ECDM)

http://www.datamining-conf.org/
The European Conference on Data Mining (ECDM) is aimed to gather research-

ers and application developers from a wide range of data-mining-related areas such as
statistics, computational intelligence, pattern recognition, databases, and visualiza-
tion. ECDM is aimed to advance the state of the art in data-mining field and its various
real-world applications. ECDM will provide opportunities for technical collaboration
among data-mining and machine-learning researchers around the globe.

7. Neural Information Processing Systems (NIPS) Conference

http://nips.cc/
The Neural Information Processing Systems (NIPS) Foundation is a nonprofit

corporation whose purpose is to foster the exchange of research on neural information
processing systems in their biological, technological, mathematical, and theoretical
aspects. Neural information processing is a field that benefits from a combined view
of biological, physical, mathematical, and computational sciences.

The primary focus of the NIPS Foundation is the presentation of a continuing
series of professional meetings known as the Neural Information Processing Systems
conference, held over the years at various locations in the United States and Canada.

The NIPS conference features a single track program, with contributions from a
large number of intellectual communities. Presentation topics include algorithms and
architectures, applications, brain imaging, cognitive science and artificial intelligence,
control and reinforcement learning, emerging technologies, learning theory, neurosci-
ence, speech and signal processing, and visual processing.

8. European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD)

http://www.ecmlpkdd.org/
The European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases (ECML PKDD) is one of the leading academic
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conferences on machine learning and knowledge discovery, held in Europe every
year. ECML PKDD is a merger of two European conferences, European Conference
on Machine Learning (ECML) and European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD). In 2008 the conferences were merged
into one conference, and the division into traditional ECML topics and traditional
PKDD topics was removed.

9. Association for the Advancement of Artificial Intelligence (AAAI) Conference

http://www.aaai.org/
Founded in 1979, the Association for the Advancement of Artificial Intelligence

(AAAI) (formerly the American Association for Artificial Intelligence) is a nonprofit
scientific society devoted to advancing the scientific understanding of the mechan-
isms underlying thought and intelligent behavior and their embodiment in machines.
AAAI also aims to increase public understanding of artificial intelligence, improve the
teaching and training of AI practitioners, and provide guidance for research planners
and funders concerning the importance and potential of current AI developments and
future directions.Major AAAI activities include organizing and sponsoring confer-
ences, symposia, and workshops; publishing a quarterly magazine for all members;
publishing books, proceedings, and reports; and awarding grants, scholarships, and
other honors. The purpose of the AAAI conference is to promote research in AI
and scientific exchange among AI researchers, practitioners, scientists, and engineers
in related disciplines.

10. International Conference on Very Large Data Base (VLDB)

http://www.vldb.org/
VLDB Endowment Inc. is a nonprofit organization incorporated in the United

States for the sole purpose of promoting and exchanging scholarly work in databases
and related fields throughout the world. Since 1992, the Endowment has started to pub-
lish a quarterly journal, the VLDB Journal, for disseminating archival research results,
which has become one of the most successful journals in the database area. The VLDB
Journal is published in collaboration with Springer-Verlag. On various activities, the
Endowment closely cooperates with ACM SIGMOD.VLDB conference is a premier
annual international forum for data management and database researchers, vendors,
practitioners, application developers, and users. The conference features research talks,
tutorials, demonstrations, and workshops. It covers current issues in data management,
database, and information systems research. Data management and databases remain
among the main technological cornerstones of emerging applications of the twenty-first
century.

11. ACM International Conference on Web Search and Data Mining (WSDM)

http://www.wsdm-conference.org/
WSDM (pronounced “wisdom”) is one of the premier conferences on

Web-inspired research involving search and data mining. WSDM is a highly selective
conference that includes invited talks, as well as refereed full papers. WSDM
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publishes original, high-quality papers related to search and data mining on the Web
and the Social Web, with an emphasis on practical yet principled novel models of
search and data mining, algorithm design and analysis, economic implications, and
in-depth experimental analysis of accuracy and performance.

12. IEEE International Conference on Big Data

http://cci.drexel.edu/bigdata/bigdata2018/index.html
In recent years, “big data” has become a new ubiquitous term. Big data is trans-

forming science, engineering, medicine, healthcare, finance, business, and ultimately
our society itself. The IEEE Big Data conference series started in 2013 has established
itself as the top tier research conference in big data. It provides a leading forum for
disseminating the latest results in big data research, development, and applications.

13. International Conference on Artificial Intelligence and Statistics (AISTATS)

https://www.aistats.org/
AISTATS is an interdisciplinary gathering of researchers at the intersection of

computer science, artificial intelligence, machine learning, statistics, and related areas.
Since its inception in 1985, the primary goal of AISTATS has been to broaden
research in these fields by promoting the exchange of ideas among them. The Society
for Artificial Intelligence and Statistics is a nonprofit organization, incorporated in
New Jersey (USA), dedicated to facilitating interactions between researchers in AI
and statistics. The Society has a governing board, but no general membership. The
primary responsibilities of the Society are to maintain the AI-Stats home page on
WWW, maintain the AI-Stats electronic mailing list, and organize the biennial Inter-
national Workshops on Artificial Intelligence and Statistics.

14. ACM Conference on Recommender Systems (RecSys)

https://recsys.acm.org/
The ACM Recommender Systems (RecSys) conference is the premier interna-

tional forum for the presentation of new research results, systems, and techniques
in the broad field of recommender systems. Recommendation is a particular form
of information filtering that exploits past behaviors and user similarities to generate
a list of information items that is personally tailored to an end user’s preferences. As
RecSys brings together the main international research groups working on recom-
mender systems, along with many of the world’s leading e-commerce companies,
it has become the most important annual conference for the presentation and discus-
sion of recommender systems research.

A.3 DATA-MINING FORUMS/BLOGS

1. KDnuggets Forums

http://www.kdnuggets.com/phpBB/index.php
Good resource for sharing experience and asking questions.
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2. Data Mining and Predictive Analytics

http://abbottanalytics.blogspot.com/
The posts on this blog cover topics related to data mining and predictive analytics

from the perspectives of both research and industry.

3. AI, Data Mining, Machine Learning and Other Things

http://blog.markus-breitenbach.com/
This blog discusses machine learning with emphasis on AI and statistics.

4. Data Miners Blog

http://blog.data-miners.com/
The posts on this blog provide industry-oriented reflections on topics from data

analysis and visualization.

5. Data Mining Research

http://www.dataminingblog.com/
This blog provides a venue for exchanging ideas and comments about data-

mining techniques and applications.

6. Machine Learning (Theory)

http://hunch.net/
A blog dedicated to the various aspects of machine-learning theory and

applications.

7. Forrester Big Data Blog

https://go.forrester.com/blogs/category/big-data/
An aggregation of blogs from company contributors focusing on big data topics.

8. IBM Big Data Hub Blogs

http://www.ibmbigdatahub.com/blogs
Blogs from IBM thought leaders.

9. Big on Data

http://www.zdnet.com/blog/big-data/
Andrew Brust, Tony Baer and George Anadiotis cover big data technologies

including Hadoop, NoSQL, Data Warehousing, BI, and Predictive Analytics.
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10. Deep Data Mining

http://www.deep-data-mining.com/
Mostly focused on technical aspect of data mining, by Jay Zhou.

11. Insight Data Science Blog

https://blog.insightdatascience.com/
Blog on latest trends and topics in data science by alumnus of Insight Data

Science Fellows Program.

12. Machine Learning Mastery

https://machinelearningmastery.com/blog/
By Jason Brownlee, on programming and machine learning.

13. Statisfaction

https://statisfaction.wordpress.com/
A blog by jointly written by PhD students and post-docs from Paris (U. Paris-

Dauphine, CREST). Mainly tips and tricks useful in everyday jobs, links to various
interesting pages, articles, seminars, etc.

14. The Practical Quant

http://practicalquant.blogspot.com/
By Ben Lorica, O’Reilly Media Chief Data Scientist, on OLAP analytics, big

data, data applications, etc.

15. What’s the Big Data

https://whatsthebigdata.com/
By Gil Press. Gil covers the Big Data space and also writes a column on Big Data

and Business in Forbes.

A.4 DATA SETS

This section describes a number of freely available data sets ready for use in data-
mining algorithms. We selected few examples for students who are starting to learn
data mining, and they would like to practice traditional data-mining tasks. A majority
of these data sets are hosted on the UCI Machine Learning Repository. For more data
sets look up this repository at http://archive.ics.uci.edu/ml/index.html. Two additional
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resources are Stanford SNAP Web data repository (http://snap.stanford.edu/data/
index.html) and

KDD Cup data sets (http://www.kdd.org/kdd-cup).

Classification

Iris Data Set. http://archive.ics.uci.edu/ml/datasets/Iris
The Iris Data Set is a small data set often used in machine learning and data min-

ing. It includes 150 data points each representing measurements of 3 different kinds of
iris. The task is to learn to classify iris based on 4 measurements. This data set was
used by R. A. Fisher in 1936 as an example for discriminant analysis.

Adult Data Set. http://archive.ics.uci.edu/ml/datasets/Adult
The Adult Data Set contains 48,842 samples extracted from the US Census. The

task is to classify individuals as having an income that does or does not exceed $50k/
yr. based on factors such as age, education, race, sex, and native country.

Breast Cancer Wisconsin (Diagnostic) Data Set. http://archive.ics.uci.
edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

This data set consists of a number of measurements taken over a “digitized image
of a fine needle aspirate (FNA) of a breast mass.” There are 569 samples. The task is to
classify each data point as benign or malignant.

Bank Marketing Data Set. https://archive.ics.uci.edu/ml/datasets/Bank
+Marketing

The data is related with direct-marketing campaigns of a Portuguese banking
institution. The marketing campaigns were based on phone calls. Often, more than
one contact to the same client was required, in order to access if the product (bank
term deposit) would be (“yes”) or not (“no”) subscribed. The classification goal is
to predict if the client will subscribe (yes/no) a term deposit (variable y).

Electricity Market (Data Stream Classification). https://sourceforge.net/
projects/moa-datastream/files/Datasets/Classification/elecNormNew.arff.zip/
download/

This data records the rise and fall of electric price over 24-hour period due to sup-
ply and demand. This data set contains 45,312 instances. The task is to predict the
change of the price relative to a moving average of the last 24 hours.

Spam Detection (Data Stream Classification). http://www.liaad.up.pt/
kdus/downloads/spam-dataset/

This data set represent gradual concept drift with 9324 samples. The labels are
legitimate or spam. The ratio between the two classes is 80 : 20

Forrest Cover (Data Stream Classification). https://archive.ics.uci.edu/ml/
datasets/Covertype
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Predicting forest cover type from cartographic variables only (no remotely sensed
data). The actual forest cover type for a givenobservation (30 × 30mcell)was determined
fromUSForest Service (USFS)Region 2Resource Information System (RIS) data. Inde-
pendent variableswere derived fromdata originally obtained fromUSGeological Survey
(USGS) and USFS data. Data is in raw form (not scaled) and contains binary (0 or 1) col-
umns of data for qualitative independent variables (wilderness areas and soil types).

Clustering

BagofWordsDataSet. http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
Word counts have been extracted from five document sources: Enron Emails,

NIPS full papers, KOS blog entries, NYTimes news articles, and Pubmed abstracts.
The task is to cluster the documents used in this data set based on the word counts
found. One may compare the output clusters with the sources from which each doc-
ument came.

US Census Data (1990) Data Set. http://archive.ics.uci.edu/ml/datasets/US
+Census+Data+%281990%29

This data set is a 1% sample from the 1990 Public Use Microdata Samples
(PUMS). It contains 2,458,285 records and 68 attributes.

Individual Household Electric Power Consumption Data Set. https://
archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

This archive contains 2,075,259 measurements gathered between December
2006 and November 2010 (47 months). It records energy use from three electric
meters of the house.

Gas Sensor Dataset at Different Concentrations Data Set. https://
archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different
+Concentrations

This data set contains 13,910 measurements from 16 chemical sensors exposed to
6 gases at different concentration levels. This data set is an extension of the Gas Sensor
Array Drift Dataset ([Web Link]), providing now the information about the concen-
tration level at which the sensors were exposed for each measurement.

Regression

Auto MPG Data Set. http://archive.ics.uci.edu/ml/datasets/Auto+MPG
This data set provides a number of attributes of cars that can be used to attempt to

predict the “city-cycle fuel consumption in miles per gallon.” There are 398 data
points and 8 attributes.

Computer Hardware Data Set. http://archive.ics.uci.edu/ml/datasets/
Computer+Hardware

This data set provides a number of CPU attributes that can be used to predict
relative CPU performance. It contains 209 data points and 10 attributes.
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Web Mining

Anonymous Microsoft Web Data. http://archive.ics.uci.edu/ml/datasets/
Anonymous+Microsoft+Web+Data

This data set contains page visits for a number of anonymous users who visited
www.microsoft.com. The task is to predict future categories of pages a user will visit
based on the Web pages previously visited.

KDD Cup 2000. http://www.kdd.org/kdd-cup/view/kdd-cup-2000
This Web site contains five tasks used in a data-mining competition run yearly

called KDD Cup. KDD Cup 2000 uses clickstream and purchase data obtained from
Gazelle.com. Gazelle.com sold legwear and legcare products and closed their online
store that same year. This Web site provides links to papers and posters of the winners
of the various tasks and outlines their effective methods. Additionally the description
of the tasks provides great insight into original approaches to using data mining with
clickstream data.

Web Page. http://lib.stat.cmu.edu/datasets/bankresearch.zip
Contains 11,000 Web sites from 11 categories.

Text Mining

Reuters-21578 Text Categorization Collection. http://kdd.ics.uci.edu/
databases/reuters21578/reuters21578.html

This is a collection of news articles that appeared on Reuters newswire in 1987.
All of the news articles have been categorized. The categorization provides opportu-
nities to test text classification or clustering methodologies.

20 Newsgroups. http://people.csail.mit.edu/jrennie/20Newsgroups/
The 20 Newsgroups data set contains 20,000 newsgroup documents. These

documents are divided nearly evenly among 20 different newsgroups. Similar to
the Reuters collection, this data set provides opportunities for text classification
and clustering.

Time Series

Dodgers Loop Sensor Data Set. http://archive.ics.uci.edu/ml/datasets/
Dodgers+Loop+Sensor

This data set provides the number of cars counted by a sensor every 5 minutes
over 25 weeks. The sensor was for the Glendale on ramp for the 101 North freeway
in Los Angeles. The goal of this data was to “predict the presence of a baseball game at
Dodgers stadium.”

Balloon. http://lib.stat.cmu.edu/datasets/balloon
Data set consisting 2001 readings of radiation from a balloon. The data contains

trend and outliers.
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Data for Association Rule Mining

KDD CUP 2009. http://www.kdd.org/kdd-cup/view/kdd-cup-2009
Data from French telecom company Orange to predict the propensity of custo-

mers to switch provider (churn), buy new products or services (appetency), or buy
upgrades or add-ons proposed to them to make the sale more profitable (upselling).

Connect-4 Data Set. https://archive.ics.uci.edu/ml/datasets/Connect-4
This database contains all legal 8-ply positions in the game of connect-4 in which

neither player has won yet and in which the next move is not forced. x is the first
player; o the second. The outcome class is the game theoretical value for the first
player.

A.5 COMERCIALLY AND PUBLICLY AVAILABLE TOOLS

This summary of some publicly available commercial data-mining products is being
provided to help readers better understand what software tools can be found on the
market and what their features are. It is not intended to endorse or critique any specific
product. Potential users will need to decide for themselves the suitability of each prod-
uct for their specific applications and data-mining environments. This is primarily
intended as a starting point from which users can obtain more information. There
is a constant stream of new products appearing in the market and hence this list is
by no means comprehensive. Because these changes are very frequent, the author sug-
gests the following web site for information about the latest tools and their perfor-
mances: http://www.kdnuggets.com.

1. Free Software
DataLab

– Publisher: Epina Software Labs (http://datalab.epina.at/en_home.html)
– DataLab, a complete and powerful data-mining tool with a unique data explo-

ration process, with a focus on marketing and interoperability with SAS. There
is a public version for students.

DBMiner

– Publisher: Simon Fraser University (http://ddm.cs.sfu.ca)
– DBMiner is a publicly available tool for data mining. It is a multiple-strategy

tool, and it supports methodologies such as clustering, association rules, sum-
marization, and visualization. DBMiner uses Microsoft SQL Server 7.0 Plato
and runs on different Windows platforms.

GenIQ Model

– Publisher: DM STAT-1 Consulting (www.geniqmodel.com)
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– GenIQModel uses machine learning for regression task, automatically performs
variable selection and new variable construction, and then specifies the model
equation to “optimize the decile table.”

NETMAP

– Publisher: http://sourceforge.net/projects/netmap
– NETMAP is a general purpose, information-visualization tool. It is most effec-

tive for large, qualitative, text-based data sets. It runs on Unix workstations.

RapidMiner

– Publisher: Rapid-I (http://rapid-i.com)
– Rapid-I provides software, solutions, and services in the fields of predictive ana-

lytics, data mining, and text mining. The company concentrates on automatic
intelligent analyses on a large-scale base, i.e. for large amounts of structured
data like database systems and unstructured data like texts. The open-source
data-mining specialist Rapid-I enables other companies to use leading-edge
technologies for data mining and business intelligence. The discovery and lev-
erage of unused business intelligence from existing data enables better informed
decisions and allows for process optimization.

SIPNA

– Publisher: http://eric.univ-lyon2.fr/~ricco/sipina.html
– Sipina-W is publicly available software that includes different traditional data-

mining techniques such as CART, Elisee, ID3, C4.5, and some newmethods for
generating decision trees.

SNNS

– Publisher: University of Stuttart (http://www.ra.cs.uni-tuebingen.de/SNNS/)
– SNNS is a publicly available software. It is a simulation environment for

research on and application of artificial neural networks. The environment is
available on Unix and Windows platforms.

TiMBL

– Publisher: http://ilk.uvt.nl/timbl/
– TiMBL is a publicly available software. It includes several memory-based

learning techniques for discrete data. A representation of the training set is
explicitly stored in memory, and new cases are classified by extrapolation from
the most similar cases.

TOOLDIAG

– Publisher: http://sites.google.com/site/tooldiag/Home
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– TOOLDIAG is a publicly available tool for data mining. It consists of several
programs in C for statistical pattern recognition of multivariate numeric data.
The tool is primary oriented toward classification problems.

Weka

– Publisher: University of Waikato (http://www.cs.waikato.ac.nz/ml/)
– Weka is a software environment that integrates several machine-learning tools

within a common framework and a uniform GUI. Classification and summari-
zation are the main data-mining tasks supported by the Weka system.

Orange

– Publisher: https://orange.biolab.si/
– Orange is an open-source software for both novice and expert. It supports inter-

active visualization, visual programming, and add-ons for extendibility.

KNIME

– Publisher: https://www.knime.com
– KNIME is an open-source software that has more than 2000 modules, hundreds

of examples, and a vast range of integrated tools. KINME supports scripting
integration, big data, machine learning, complex data types, and more.

OpenStat

– Publisher: http://openstat.info/OpenStatMain.htm
– OpenStatcontainsa largevarietyofparametric, nonparametric,multivariate,meas-

urement, statistical process control, financial, and other procedures. One can also
simulate a variety of data for tests, theoretical distributions, multivariate data, etc.
You will want to explore all of these options once you acquire the program.

2. Commercial Software WITH Trial Version
Alice d’Isoft

– Vendor: Isoft (www.alice-soft.com)
– ISoft provides a complete range of tools and services dedicated to analytical

CRM, behavioral analysis, data modeling and analysis, data mining, and data
morphing.

ANGOSS’ Suite

– Vendor: Angoss Software Corp. (www.datawatch.com/in-action/angoss/)
– ANGOSS’ Suite consists of KnowledgeSTUDIO® and KnowledgeSEEKER®.

KnowledgeSTUDIO® is an advanced data mining and predictive analytics suite
for all phases of the model development and deployment cycle—profiling, explo-
ration, modeling, implementation, scoring, validation, monitoring, and building
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scorecards—all in a high-performance visual environment. KnowledgeSTUDIO
is widely used by marketing, sales and risk analysts providing business users and
expert analysts alike with a powerful, scalable, and complete data-mining solu-
tion. KnowledgeSEEKER® is a single-strategy desktop or client/server tool rely-
ing on a tree-basedmethodology for datamining. It provides a niceGUI for model
building and letting the user explore data. It also allows users to export the dis-
covered data model as text, SQL query, or Prolog program. It runs on Windows
and Unix platforms and accepts data from a variety of sources.

BayesiaLab

– Vendor: Bayesia (www.bayesia.com)
– BayesiaLab, a complete and powerful data mining tool based on Bayesian net-

works, including data preparation, missing values imputation, data and variable
clustering, and unsupervised and supervised learning.

DataEngine

– Vendor: MIT GmbH (www.dataengine.de)
– DataEngine is a multiple-strategy data-mining tool for data modeling, combin-

ing conventional data-analysis methods with fuzzy technology, neural net-
works, and advanced statistical techniques. It works on the Windows platform.

EvolverTM

– Vendor: Palisade Corp. (www.palisade.com)
– Evolver is a single-strategy tool. It uses genetic algorithm technology to solve

complex optimization problems. This tool runs on all Windows platforms, and it
is based on data stored in Microsoft Excel tables.

GhostMiner System

– Vendor: FQS Poland (https://www.g6g-softwaredirectory.com/ai/data-mining/
20154-FQS-Poland-Fujitsu-GhostMiner.php)

– GhostMiner, complete data-mining suite, including k-nearest neighbors, neural
nets, decision tree, neurofuzzy, SVM, PCA, clustering, and visualization.

NeuroSolutions

– Vendor: NeuroDimension Inc. (www.neurosolutions.com)
– NeuroSolutions combines a modular, icon-based network design interface with

an implementation of advanced learning procedures, such as recurrent backpro-
pagation and backpropagation through time, and it solves data-mining problems
such as classification, prediction, and function approximation. Some other nota-
ble features include C++ source code generation, customized components
through DLLs, a comprehensive macro language, and Visual Basic accessibility
through OLE Automation. The tool runs on all Windows platforms.
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Oracle Data Mining

– Vendor: Oracle (www.oracle.com)
– Oracle Data Mining (ODM)—an option to Oracle Database 11g Enterprise

Edition—enables customers to produce actionable predictive information and
build integrated business intelligence applications. Using data-mining function-
ality embedded in Oracle Database 11g, customers can find patterns and insights
hidden in their data. Application developers can quickly automate the discovery
and distribution of new business intelligence—predictions, patterns, and
discoveries—throughout their organization.

Optimus RP

– Vendor: Golden Helix Inc. (www.goldenhelix.com)
– Optimus RP uses formal inference-based recursive modeling (recursive parti-

tioning based on dynamic programming) to find complex relationships in data
and to build highly accurate predictive and segmentation models.

Partek Software

– Vendor: Partek Inc. (www.partek.com)
– Partek Software is a multiple-strategy data-mining product. It is based on sev-

eral methodologies including statistical techniques, neural networks, fuzzy
logic, genetic algorithms, and data visualization. It runs on Unix platforms.

RialtoTM

– Vendor: Exeura (http://www.exeura.eu/en/products/rialto/)
– Exeura RialtoTM provides comprehensive support for the entire data mining and

analytics lifecycle at an affordable price in a single, easy-to-use tool.

Salford Predictive Miner

– Vendor: Salford Systems (http://salford-systems.com)
– Salford Predictive Miner (SPM) includes CART®, MARS, TreeNet, and Ran-

dom Forests, and powerful new automation and modeling capabilities. CART®
is a robust, easy-to-use decision tree that automatically sifts large, complex data-
bases, searching for and isolating significant patterns and relationships. Multi-
variate adaptive regression splines (MARS) focuses on the development and
deployment of accurate and easy-to-understand regression models. TreeNet
demonstrates remarkable performance for both regression and classification
and can work with varying sizes of data sets, from small to huge, while readily
managing a large number of columns. Random Forests is best suited for the
analysis of complex data structures embedded in small to moderate data sets
containing typically less than 10,000 rows but allowing for more than 1 million
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columns. Random Forests has therefore been enthusiastically endorsed bymany
biomedical and pharmaceutical researchers.

Synapse

– Vendor: Peltarion (www.peltarion.com)
– Synapse, a development environment for neural networks and other adaptive

systems, supporting the entire development cycle from data import and prepro-
cessing via model construction and training to evaluation and deployment,
allows deployment as .NET components.

SOMine

– Vendor: Viscovery (www.viscovery.net)
– This single-strategy data-mining tool is based on self-organizing maps and is

uniquely capable of visualizing multidimensional data. SOMine supports cluster-
ing, classification, andvisualization processes. Itworks on allWindowsplatforms.

TIBCO Spotfire® Professional

– Vendor: TIBCO Software Inc (https://www.tibco.com/)
– TIBCO Spotfire® Professional makes it easy to build and deploy reusable ana-

lytic applications over the Web or perform pure ad hoc analytics, driven on the
fly by your own knowledge, intuition, and desire to answer the next question.
Spotfire analytics does all this by letting you interactively query, visualize,
aggregate, filter, and drill into data sets of virtually any size. Ultimately you will
reach faster insights with Spotfire and bring clarity to business issues or oppor-
tunities in a way that gets all the decision-makers on the same page quickly.

Alteryx

– Publisher: https://www.alteryx.com/
– Alteryx is a leading software vendor for self-servicing machine learning.

Perform machine-learning task by drag and drop, and then share the results
through organization in a matter of hours.

Neural Designer

– Publisher: https://www.neuraldesigner.com/
– Neural Designer simplifies the task of building application using neural networks.

Analance

– Publisher: https://analance.ducenit.com/
– Self-service data analytics software that is easy to use and supports guided

workflows. Support interactive result analysis and visualization.
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Microsoft Azure Machine Learning Studio

– Publisher: https://azure.microsoft.com/en-us/services/machine-learning-studio/
– Machine Learning Studio is a browser-based, easy-to-use machine-learning

platform. Drag and drop actions to perform actions such as preprocessing,
model training, and performance testing.

IBM Watson Machine Learning

– Publisher: https://www.ibm.com/cloud/machine-learning
– You can use your own data to train your model using the IBMWatson Machine

Learning platform.

3. Commercial Software WITHOUT Trial Version
AdvancedMiner

– Vendor: StatConsulting (http://algolytics.com/)
– AdvancedMiner is a platform for data mining and analysis, featuring modeling

interface (OOP script, latest GUI design, advanced visualization) and grid com-
puting.

Affinium Model

– Vendor: Unica Corp. (https://www-01.ibm.com/support/docview.wss?uid=
swg27027009&aid=1)

– AffiniumModel (fromUnica) includes valuator, profiler, response modeler, and
cross-seller. Unica provides innovative marketing solutions that turn your pas-
sion for marketing into business success. Our unique interactive marketing
approach incorporates customer and Web analytics, centralized decision, cross
channel execution, and integrated marketing operations. More than 1000 orga-
nizations worldwide depend on Unica.

IBM SPSS Modeler Professional
– Vendor: SPSS Inc., an IBM company

(https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statisti-
cal-software)

– IBM SPSS Modeler Professional has optimization techniques for large data sets,
including boosting and bagging, which improve model stability and accuracy. It
also enhanced visualization for key algorithms, including neural net and decision
tree. In particular, new interactive visualization for key algorithms and ensemble
models is offered in order to make results easier to understand and communicate.

DataDetective
– Vendor: Sentient Information Systems (www.sentient.nl)
– DataDetective, the powerful yet easy-to-use data-mining platform and the crime

analysis software of choice for the Dutch police.
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DeltaMaster

– Vendor: Bissantz & Company GmbH (www.bissantz.com)
– Delta Miner is a multiple-strategy tool supporting clustering, summarization,

deviation detection, and visualization processes. A common application is
the analysis of financial controlling data. It runs on Windows platforms and
it integrates new search techniques and “business intelligence” methodologies
into an OLAP front end.

EWA Systems
– Vendor: EWA Systems Inc. (http://www.ewa-gsi.com/)
– EWA Systems provide enterprise analytics solutions: math and statistics librar-

ies, data mining, text mining, optimization, visualization, and rule engine soft-
ware are all available from one coordinated source. EWA Systems’ ability to
tackle such a broad range of analytical solutions means our clients gain efficien-
cies in purchasing software that fits together modularly, as well as incurring
decreased consulting costs. Our tools have been deployed worldwide in indus-
tries as diverse as financial analysis, e-commerce, manufacturing, and education
where their outstanding performance and quality is unrivaled. Whether you are
using a single PC or a supercomputer, EWA Systems has the numerical software
capabilities to fit your need.

FastStatsTM

– Vendor: APTECO Limited (www.apteco.com)
– FastStats Suite, marketing analysis products, including data mining, customer

profiling, and campaign management.

IBM Intelligent Miner

– Vendor: IBM (www.ibm.com)
– DB2 Data Warehouse Edition (DWE) is a suite of products that combines the

strength of DB2 Universal Database™ (DB2 UDB) with the powerful business
intelligence infrastructure from IBM®. DB2 Data Warehouse Edition provides
a comprehensive business intelligence platform with the tools that your
enterprise and partners need to deploy and build next-generation analytic
solutions.

KnowledgeMiner

– Vendor: KnowledgeMiner Software (www.knowledgeminer.com)
– KnowledgeMiner, a self-organizing modeling tool that uses GMDH neural nets

and artificial intelligence to easily extract knowledge from data (MacOS).

MATLAB NN Toolbox

– Vendor: MathWorks Inc. (www.mathworks.com)

581APPENDIX A



– AMATLAB extension implements an engineering environment for research in
neural networks and its design, simulation, and application. It offers various net-
work architectures and different learning strategies. Classification and function
approximations are typical data-mining problems that can be solved using this
tool. It runs on Windows, Mac, and Unix platforms.

Predictive Data Mining Suite

– Vendor: Predictive Dynamix (www.predx.com)
– Predictive Data Mining Suite integrates graphical and statistical data analysis

with modeling algorithms including neural networks, clustering, fuzzy systems,
and genetic algorithms.

Enterprise Miner

– Vendor: SAS Institute Inc. (www.sas.com)
– SAS (Enterprise Miner) represents one of the most comprehensive sets of inte-

grated tools for data mining. It also offers a variety of data manipulation and trans-
formation features. In addition to statisticalmethods, the SASdata-mining solution
employs neural networks, decision trees, and SASWebhound that analyzesWeb-
site traffic. It runs onWindows andUnix platforms, and it provides a user-friendly
GUI front end to the SEMMA (Sample, Explore, Modify, Model, Assess).

SPAD

– Vendor: Coheris (www.coheris.fr)
– SPAD provides powerful exploratory analyses and data-mining tools, including

PCA, clustering, interactive decision trees, discriminant analyses, neural net-
works, text mining, and more, all via user-friendly GUI.

Viscovery Data Mining Suite

– Vendor: Viscovery (www.viscovery.net)
– The Viscovery® Data Mining Suite offers a selection of software for predictive

analytics and data mining designed to comprehensively address the needs of busi-
ness and technical users. Workflows support the generation of high-performance
predictive models that may be integrated in real-time and updated automatically.
The Viscovery Data Mining Suite comprises the modules—Profiler, Predictor,
Scheduler, Decision Maker, One(2)One Engine—for the realization of predictive
analytics and data-mining applications.

Warehouse Miner

– Vendor: Teradata Corp. (www.teradata.com)
– Warehouse Miner provides different statistical analyses, decision-tree methods,

and regression methodologies for in-place mining on a Teradata database-
management system.
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A.6 WEB SITE LINKS

General Web Sites

Web Sites for Data-Mining Software Tools

Web Site Description

www.ics.uci.edu A comprehensive machine-learning site. Popular for its large
repository of standard data sets and machine-learning
programs for experimental evaluation

www.cs.cmu.edu/Groups/AI/
html

This address collects files, programs, and publications of
interest to the artificial intelligence research community

https://research.reading.ac.uk/
dsai/

An online resource to AI programs, software, data sets,
bibliographies, and links

http://archive.ics.uci.edu/ml/ Repositories focusing on the scientific study of machine
learning

www.kdnuggets.com This site contains information about data-mining activities
and pointers to past and current research. It maintains a
guide to commercial and public-domain tools for data
mining. It also provides links to companies supporting
software, consulting, and data-mining services

https://www.webopedia.com/ This site provides news, articles, and other useful sites in
data-mining applications.

www.research.microsoft.com Journal of Data Mining & Knowledge Discovery: The
journal consolidates papers in both the research and
practice of knowledge discovery, surveys of
implementation techniques and application papers.

http://www.kdd.org/ Web site for machine-learning and data-mining conference
KDD. Also hosts previous KDD Cup Datasets

https://snap.stanford.edu/data/ Stanford Large Network Dataset Collection

Web Site Data-Mining Tool

http://algolytics.com/products/advancedminer/ AdvancedMiner
https://www-01.ibm.com/support/docview.wss?
uid=swg27027009

Affinium Model (sold to IBM)

www.dazsi.com AgentBase/Marketeer
https://isoft.fr/en/isoft-welcome/ Alice d’Isoft
https://www.alteryx.com/ Alteryx
https://analance.ducenit.com/ Analance
www.openchannelsoftware.com Autoclass III
www.bayesia.com BayesiaLab
www.kmi.open.ac.uk/projects/bkd/ Bayesian Knowledge Discoverer

(Continued )
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Web Site Data-Mining Tool

http://salford-systems.com/cart.php CART
www.spss.com/clementine Clementine (IBM)
http://www.oracle.com/technetwork/apps-tech/darwin-
097216.html

Darwin

www.sentient.nl/?dden DataDetective
http://www.datamind.biz/ DataMind
http://www.datasage.com/ds/f?p=111:1:::::: Datasage
www.bissantz.de Delta Miner
www.pilotsw.com Discovery
www.palisade.com/ Evolver
www.apteco.com FastStats Suite
www.urbanscience.com GainSmarts
www.geniqmodel.com/ GenIQ Model
www.goldenhelix.com Golden Helix Optimus RP
https://www.ibm.com/cloud/machine-learning IBM Watson Machine Learning
www.software.ibm.com Intelligent Miner
www.acknosoft.com KATE Tools
www.ncr.com Knowledge Discovery Workbench
www.dialogis.de Kepler
https://www.knime.com/ KNIME Machine Learning

Software
www.dialogis.de KnowledgeMiner
https://www.datawatch.com/in-action/angoss/ KnowledgeSeeker Datawatch
www.mathworks.com/products/neuralnet MATLAB neural-network toolbox
https://azure.microsoft.com/en-us/services/machine-
learning-studio/

Microsoft Azure Machine Learning
Studio

www.neurosolutions.com Neuro Net
www.neuralware.com/ NeuralWorks Professional II/PLUS
https://www.neuraldesigner.com/ Neural Designer
www.wardsystems.com/ NeuroShell2/NeuroWindows
http://openstat.info/OpenStatMain.htm OpenStat
https://orange.biolab.si/ Orange Data Mining Software
www.predx.com Predictive Data Mining Suite
www.rapid-i.com RapidMiner
www.sas.com SAS Enterprise Miner
https://www.ibm.com/products/cognos-analytics IBM Cognos Analytics
www.spss.com SPSS (IBM)
http://statlab.yale.edu/ STATlab
https://www.fernuni-hagen.de/BWLOR/spirit/index.php SPIRIT
www.mitgmbh.de WINROSA
www.wizsoft.com WizWhy
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Data-Mining Vendors

Data-Mining
Vendor

Address Web Site

Datawatch 1820 E. Big Beaver Rd.
Troy MI 48083
United States

https://www.datawatch.com/
in-action/angoss/

Business Objects,
Inc. (sold to SAP)

20813 Stevens Creek Blvd.,
Suite 100,

Cupertino, CA 95014, USA

https://www.sap.com/products/
analytics/business-intelligence-bi.
html

Cognos Corp.
(Sold to IBM)

67 S. Bedford St., Suite 200, W.
Burlington, MA 01803, USA

https://www.ibm.com/products/
cognos-analytics

IBM Corp. Old Orchard Road,
Armonk, NY 10504, USA

www.ibm.com

Integral Solutions
Ltd.

Berk House, Basing View,
Basingstoke,
Hampshire RG21 4RG, UK

www.isl.co.uk

ISoft Route de l’Orme Les
Algorithmes Bâtiment Euclide
91190 Saint-Aubin France

https://isoft.fr/en/isoft-welcome/

NeuralWare Inc. NeuralWare,
409 Elk Street, Suite 200,
Carnegie, PA 15106-2627
USA

www.neuralware.com

Pilot Software, Inc.
(Sold to SAP)

One Canal Park,
Cambridge, MA 02141, USA

www.pilotsw.com

SPSS, Inc.
(Sold to IBM)

444 N. Michigan Ave.,
Chicago, IL 60611-3962, USA

https://www.ibm.com/analytics/
data-science/predictive-analytics/
spss-statistical-software

SAS Institute Inc. SAS Campus Dr.,
Cary, NC 27513-2414, USA

www.sas.com

Sisense 1359 Broadway, 4th Floor,
New York, NY, 10018, USA

https://www.sisense.com

Maxus Systems
International Inc.

318 Town Line Rd,
Mendon, VT 05701, USA

www.maxussystems.com

Visualize, Inc. 452 Bonnie Briar, Suite
100,Birmingham, MI 48009

https://visualize.com/

Data Description,
Inc.

PO Box 4555, Ithaca,
NY 14850, USA

www.datadesk.com

i2 Ltd.
Sold to IBM

Breaks House
Mill Court, Great Shelford,
Cambridge, CB2, SLD, UK

https://www-01.ibm.com/software/
uk/industry/i2software/

(Continued )
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Data-Mining
Vendor

Address Web Site

Advanced Visual
Systems, Inc.

2 Burlington Woods Drive,
Suite 100,Burlington, MA
01803

www.avs.com

Imagix Corp. 6025 White Oak Lane,
San Luis Obispo, CA 93401,
USA

www.imagix.com

Helsinki University
of Technology
(merged into Aalto
University)

Neural Networks Research
Center, P. O. Box 1000,

FIN-02015 HUT, Finland

https://www.aalto.fi/en/aalto-
university/history

IBM Haifa
Research
Laboratory

Matam, Haifa 31905,
Israel

http://www.research.ibm.com/labs/
haifa/

Infospace, Inc. 1501 Main Street, Suite 201,
Venice, CA 90291, USA

http://www.infospace.com/

GR-FX Pty Limited P. O. Box 2121,
Clovelly, NSW, 2031
Australia

https://www.zoominfo.com/c/
gr-fx-pty-limited/48648893

Analytic
Technologies

Analytic Technologies,
P.O. Box 910359,
Lexington, KY 40513, USA

analytictech.com

Artificial
Intelligence
Software SpA

Via Carlo Esterle,
9-20132 Milano, Italy

www.iunet.it/ais

General Dynamics 3150 Fairview Park Drive
Falls Church, VA 22042, USA

https://www.gdit.com/

Quadstone Ltd. 16 Chester Street, Edinburgh,
EH3 7RA, Scotland

www.quadstone.co.uk

Perspecta, Inc 15052 Conference Center
Drive, Chantilly, VA 20151,
USA

www.perspecta.com

Dynamic Diagrams 12 Bassett Street,
Providence, RI 02903, USA

https://www.dynamicdiagrams.
com/

NetScout Systems,
Inc.

4 Technology Park Drive,
Westford, MA 01886, USA

https://www.netscout.com /

MapInfo Corp. 1 Global View,
Troy, NY 12180, USA

https://www.pitneybowes.com/us/
location-intelligence/geographic-
information-systems/mapinfo-
pro.html

(Continued )
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Data-Mining
Vendor

Address Web Site

Information
Builders, Inc.

Two Penn Plaza, New York,
NY 10121-2898

www.informationbuilders.com

Prism Solutions,
Inc.

7455 Arroyo Crossing Pkwy,
Suite 220,Las Vegas, Nevada
89113

www.prismsol.com/

Oracle Corp. 500 Oracle Parkway,
Redwood Shores, CA 94086
USA

www.oracle.com/index.html

Microsoft
Corporation

One Microsoft Way,
Redmond, WA 98052, USA

www.microsoft.com/en-us/

Computer
Associates
International, Inc.

One Computer Associates Plaza
Islandia, NY 11788-7000, USA

www.ca.com/us.html
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APPENDIX B
DATA-MINING APPLICATIONS

Many businesses and scientific communities are currently employing data-mining
technology. Their number continues to grow, as more and more data-mining success
stories become known. Here we present a small collection of real-life examples of
data-mining implementations from the business and scientific world. We also present
some pitfalls of data mining to make readers aware that this process needs to be
applied with care and knowledge (both about the application domain and about the
methodology) to obtain useful results.

In the previous chapters of this book, we have studied the principles and methods
of data mining. Since data mining is a young discipline with wide and diverse appli-
cations, there is a still a serious gap between the general principles of data mining and
the domain-specific knowledge required to apply it effectively. In this appendix, we
examine a few application domains illustrated by the results of data-mining systems
that have been implemented.

B.1 DATA MINING FOR FINANCIAL DATA ANALYSIS

Most banks and financial institutions offer a wide variety of banking services such as
checking, savings, business and individual customer transactions, investment ser-
vices, credits, and loans. Financial data, collected in the banking and financial indus-
try, are often relatively complete and reliable and of a high quality, which facilitates
systematic data analysis and data mining to improve a company’s competitiveness.

In the banking industry, data mining is used heavily in the areas of modeling and
predicting credit fraud, in evaluating risk, in performing trend analyses, in analyzing
profitability, and in helping with direct-marketing campaigns. In the financial
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markets, neural networks have been used in forecasting stock prices, options trading,
rating bonds, portfolio management, commodity-price prediction, and mergers and
acquisitions analyses; it has also been used in forecasting financial disasters. Daiwa
Securities, NECCorporation, Carl &Associates, LBS Capital Management,Walkrich
Investment Advisors, and O’Sullivan Brothers Investments are only a few of the
financial companies who use neural-network technology for data mining. A wide
range of successful business applications has been reported, although the retrieval
of technical details is not always easy. The number of investment companies and
banks that mine data is far more extensive than the list mentioned earlier, but you will
not often find them willing to be referenced. Usually, they have policies not to discuss
it. Therefore, finding articles about banking companies who use data mining is not an
easy task, unless you look at the SEC reports of some of the data-mining companies
who sell their tools and services. There, you will find customers such as Bank of
America, First USA Bank, Wells Fargo Bank, and U.S. Bancorp.

The widespread use of data mining in banking has not been unnoticed. For exam-
ple, fraud costs industries billions of dollars, so it is not surprising to see that systems
have been developed to combat fraudulent activities in such areas as credit card, stock
market, and other financial transactions. Fraud is an extremely serious problem for
credit card companies. For example, Visa and MasterCard lost over $700 million
in 1 year from fraud. A neural-network-based credit card fraud-detection system
implemented in Capital One has been able to cut the company’s losses from fraud
by more than 50%. Several successful data-mining systems are explained here to sup-
port the importance of data-mining technology in financial institutions.

The term “robo-advisor” was essentially not known concept just 5 years ago, but
it is now commonplace in the financial landscape. The term is a little bit misleading
because it does not involve robots at all. Rather, robo-advisors, developed by compa-
nies such as Betterment and Wealthfront, are smart algorithms built to calibrate a
financial portfolio to the goals and risk tolerance of each specific user. Users enter
their goals, for example, retiring at age 65 with $250,000.00 in savings, and also
age, income, and current financial assets. The intelligent advisor algorithm then
spreads investments across asset classes and financial instruments in order to reach
the user’s goals. The system calibrates to changes in the user’s goals and to real-time
changes in the market, aiming always to find the best fit for the user’s original goals.
Robo-advisors have gained significant traction with millennial consumers who do not
need a physical advisor to feel comfortable investing and who are less able to validate
the fees paid to human advisors.

Additional trend of big data applications, which started with financial industry, is
spreading through many other domains as a blockchain technology. A blockchain is
essentially a distributed database of records for all transactions or digital events that
have been executed and shared among participating parties. Each transaction in the
public database is verified by consensus of a majority of the participants in the system.
Once entered, information can never be erased. The blockchain contains a certain and
verifiable record of every single transaction ever made. Bitcoin, the decentralized
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peer-to-peer digital currency, is the most popular example that uses blockchain tech-
nology. The digital currency bitcoin is highly controversial, but the underlying block-
chain technology has worked flawlessly and found wide range of applications in both
financial and nonfinancial world.

The main hypothesis is that the blockchain establishes a system of creating a dis-
tributed consensus in the digital online world. This allows participating entities to
know for certain that a digital event happened by creating an irrefutable record in
a public ledger. It enables development of a democratic open and scalable digital
economy from a centralized one. There are tremendous application opportunities in
this disruptive technology, and the revolution in this space has just begun.

Due to the growing role of social responsibility and security on the Internet, the
blockchain technologies are becoming increasingly relevant. In a system using block-
chain, it is nearly impossible to forge any digital transactions, so the credibility of such
systems will surely strengthen. As the initial hype around blockchain in the financial
services’ industry will slow down, we will see many more potential use cases for the
government, healthcare, manufacturing, and other industries. For example, block-
chain strongly influences the intellectual property management and opens new
insights in protection from copyright infringement:

US Treasury Department

Worth particular mention is a system developed by the Financial Crimes Enforce-
ment Network (FINCEN) of the US Treasury Department called “FAIS.” FAIS
detects potential money-laundering activities from a large number of big cash trans-
actions. The Bank Secrecy Act of 1971 required the reporting of all cash transactions
greater than $10,000, and these transactions, of about 14 million a year, are the basis
for detecting suspicious financial activities. By combining user expertise with the sys-
tem’s rule-based reasoner, visualization facilities, and association-analysis module,
FIAS uncovers previously unknown and potentially high-value leads for possible
investigation. The reports generated by the FIAS application have helped FINCEN
uncover more than 400 cases of money-laundering activities, involving more than $1
billion in potentially laundered funds. In addition, FAIS is reported to be able to dis-
cover criminal activities that law enforcement in the field would otherwise miss, e.g.
connections in cases involving nearly 300 individuals, more than 80 front operations,
and thousands of cash transactions.

Mellon Bank, USA

Mellon Bank has used the data on existing credit card customers to characterize their
behavior, and they try to predict what they will do next. Using IBM Intelligent Miner,
Mellon developed a credit card-attrition model to predict which customers will stop
usingMellon’s credit card in the next few months. Based on the prediction results, the
bank can take marketing actions to retain these customers’ loyalty.
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Capital One Financial Group

Financial companies are one of the biggest users of data-mining technology.
One such user is Capital One Financial Corp., one of the nation’s largest credit card
issuers. It offers 3000 financial products, including secured, joint, co-branded, and
college-student cards. Using data-mining techniques, the company tries to help mar-
ket and sell the most appropriate financial product to 150 million potential prospects
residing in its over 2-terabyte Oracle-based data warehouse. Even after a customer
has signed up, Capital One continues to use data mining for tracking the ongoing
profitability and other characteristics of each of its customers. The use of data mining
and other strategies has helped Capital One expand from $1 billion to $12.8 billion in
managed loans over 8 years. An additional successful data-mining application at
Capital One is fraud detection.

American Express

Another example of data mining is at American Express, where data
warehousing and data mining are being used to cut spending. American Express
has created a single Microsoft SQL Server database by merging its worldwide pur-
chasing system, corporate purchasing card, and corporate card databases. This
allows American Express to find exceptions and patterns to target for cost cutting.
One of the main applications is loan application screening. American Express used
statistical methods to divide loan applications into three categories: those that should
definitely be accepted, those that should definitely be rejected, and those that
required a human expert to judge. The human experts could correctly predict if
an applicant would, or would not, default on the loan in only about 50% of the cases.
Machine learning produced rules that were much more accurate—correctly predict-
ing default in 70% of the cases—and that were immediately put into use.

MetLife, Inc.

MetLife’s intelligent text analyzer has been developed to help automate the underwrit-
ing of 260,000 life insurance applications received by the company every year. Auto-
mation is difficult because the applications include many freeform text fields. The use of
keywords or simple parsing techniques to understand the text fields has proven to be
inadequate, while the application of full semantic natural-language processing was
perceived to be too complex and unnecessary. As a compromise solution, the “infor-
mation-extraction” approach was used in which the input text is skimmed for specific
information relevant to the particular application. The system currently processes
20,000 life insurance applications a month, and it is reported that 89% of the text fields
processed by the system exceed the established confidence-level threshold.

Bank of America (USA)

Bank of America is one of the world’s largest financial institutions. With approxi-
mately 59 million consumer and small business relationships, 6,000 retail banking
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offices, and more than 18,000 ATMs, Bank of America is among the world’s leading
wealth management companies and is a global leader in corporate and investment
banking and trading across a broad range of asset classes. Bank of America identi-
fied savings of $4.8 million in 2 years (a 400% return on investment) from use of a
credit risk management system provided by SAS institute consultants and based on
statistical and data-mining analytics [“Predicting Returns from the Use of Data Min-
ing to Support CRM,” http://insight.nau.edu/WhitePapers.asp]. They has also devel-
oped profiles of most valuable accounts, with relationship managers being assigned
to the top 10% of the bank’s customers in order to identify opportunities to sell them
additional services [“Using Data Mining on the Road to Successful BI, Part 3”,
Information Management Special Reports, October 2004]. To retain deposits, the
Global Wealth and Investment Management division has used KXEN Analytic
Framework in identifying clients likely to move assets and then creating offers con-
ducive to retention [“KXEN Analytic Framework”, Information Management Mag-
azine, July/Aug 2009].

B.2 DATA MINING FOR THE TELECOMUNICATION INDUSTRY

The telecommunication industry has quickly evolved from offering local and long-
distance telephone services to providing many other comprehensive communication
services including voice, fax, pager, cellular phone, images, e-mail, computer and
Web data transmission, and other data traffic. The integration of telecommunications,
computer networks, Internet, and numerous other means of communication and com-
puting is underway. The U.S. Telecommunications Act of 1996 allowed Regional
Bell Operating Companies to enter the long-distance market as well as offer
“cable-like” services. The European Liberalization of Telecommunications Services
has been effective from the beginning of 1998. Besides deregulation, there has been a
sale by the FCC of airwaves to companies pioneering new ways to communicate. The
cellular industry is rapidly taking on a life of its own. With all this deregulation of the
telecommunication industry, the market is expanding rapidly and becoming highly
competitive.

The hypercompetitive nature of the industry has created a need to understand cus-
tomers, to keep them, and to model effective ways to market new products. This cre-
ates a great demand for data mining to help understand the new business involved,
identify telecommunication patterns, catch fraudulent activities, make better use of
resources, and improve the quality of services. In general, the telecommunications
industry is interested in answering some strategic questions through data-mining
applications such as the following:

• How does one retain customers and keep them loyal as competitors offer special
offers and reduced rates?

• Which customers are most likely to churn?
• What characteristics indicate high-risk investments, such as investing in new fiber
optic lines?
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• How does one predict whether customers will buy additional products like cellular
services, call waiting, or basic services?

• What characteristics differentiate our products from those of our competitors?

Companies like AT&T, AirTouch Communications, and AMS Mobile Commu-
nication Industry Group have announced the use of data mining to improve their mar-
keting activities. There are several companies including Lightbridge and Verizon that
use data-mining technology to look at cellular fraud for the telecommunications
industry. Another trend has been to use advanced visualization techniques to model
and analyze wireless-telecommunication networks.

The tendencies in the communication technologies indicates that the text commu-
nication became the socially acceptable form of personal interaction. People increas-
ingly prefer chatting rather than personal contacts or even making phone calls. The
idea of chatbots appeared first in the 1960s. But only after more than half a century
passed we can confirm that the world is ready for their implementation into the real
life. A chatbot is a complex computer program that conducts a conversation in natural
language via written text or generated voice, understands the intent of the user, and
sends an automatic response based on business rules and data of the organization for
which the chatbot is developed.

All the technology leaders, including Microsoft, Facebook, Google, Amazon,
IBM, Apple, and Samsung, have created open platforms and interfaces for the chatbot
acceptance by society. Siri was introduced in 2010, IBMWatsons started in 2011, and
the pilot version of the Bixby Samsung voice assistant appeared in smartphones in
2012. Alexa has been learning to answer the questions since 2014, and the Google
Assistant has gained its modern shape in 2016. The excitement about chatbots is
not weakening. More than 2 billion of business-related messages are sent through
Facebook Messenger chats.

Part of the reason behind this success is the ease of use and the range of services
that chatbots comes pre-loaded with. From streaming music on Spotify and ordering a
taxi on Uber to seekingmedical advice fromWebMD, they does it all through a simple
conversation. The customer-service chatbot provides a solution to a two additional
dimensions: (1) scalability of solution that enables personalized interactions usually
not supported at scale and (2) speed enabling customers to expect instant services.
Chatbots are more and more involved in our daily lives: our experiences—from con-
versations to entertainment to shopping—will be delivered by someone who really
knows and understands user preferences. This someone will be able to preempt user
needs, moods, likes, and dislikes. This someone is becoming a friend, a confidant,
sometimes doctor, or a legal advisor.

While the new trends in communications are target of variety of IT and other
companies, selected examples of data-mining applications in the telecommunication
industry follow:
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Cablevision Systems, Inc.

Cablevision Systems Inc., a cable TV provider from New York, was concerned about
its competitiveness after deregulation allowed telecom companies into the cable
industry. As a consequence, it decided that it needed a central data repository so that
its marketing people could have faster and more accurate access to data. Using data
mining, the marketing people at Cablevision were able to identify nine primary cus-
tomer segments among the company’s 2.8 million customers. This included custo-
mers in the segment that are likely to “switch” to another provider. Cablevision
also focused on those segments most likely to buy its offerings for new services.
The company has used data-mining to compare the profiles of two sets of targeted
customers—those who bought new services and those who did not. This has led
the company to make some changes in its messages to customers, which, in turn,
has led to a thirty percent increase in targeted customers signing up for new services

Worldcom

Worldcom is another company that has found great value in data mining. By mining
databases of its customer-service and telemarketing data, Worldcom has discovered
new ways to sell voice and data services. For example, it has found that people who
buy two or more services were likely to be relatively loyal customers. It also found that
people were willing to buy packages of products such as long-distance, cellular-phone,
Internet, andotherservices.Consequently,Worldcomstarted tooffermoresuchpackages.

BBC TV

TV-program schedulers would like to know the likely audience for a proposed pro-
gram and the best time to show it. The data for audience prediction are fairly com-
plex. Factors, which determine the audience share gained by a particular program,
include not only the characteristics of the program itself and the time at which it is
shown but also the nature of the competing programs in other channels. Using Clem-
entine, Integral Solutions Limited developed a system to predict television audiences
for the BBC. The prediction accuracy was reported to be the same as that achieved by
the best performance of BBC’s planners.

Bell Atlantic

Bell Atlantic developed telephone technician dispatch system. When a customer
reports a telephone problem to Bell Atlantic, the company must decide what type
of technician to dispatch to resolve the issue. Starting in 1991, this decision was made
using a handcrafted expert system, but in 1999 it was replaced by another set of rules
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created with machine learning. The learned rules save Bell Atlantic more than 10mil-
lion dollars per year because they make fewer erroneous decisions. In addition, the
original expert system had reached a stage in its evolution where it could not be
maintained cost effectively. Because the learned system was built by training it on
examples, it is easy to maintain and to adapt to regional differences and changing
cost structures.

B.3 DATA MINING FOR THE RETAIL INDUSTRY

Slimmargins have pushed retailers into data warehousing earlier than other industries.
Retailers have seen improved decision-support processes, leading directly to
improved efficiency in inventory management and financial forecasting. The early
adoption of data warehousing by retailers has allowed them a better opportunity to
take advantage of data mining. The retail industry is a major application area for data
mining since it collects huge amounts of data on sales, customer-shopping history,
goods transportation, consumption patterns, service records, and so on. The quantity
of data collected continues to expand rapidly, especially due to the increasing avail-
ability and popularity of business conducted on the Web, or e-commerce. Walmart’s
push to use radio frequency identification (RFID) tags for supply chain optimization is
a great story that illustrates the dawn of the big data era in retail industry. RFID is a
great example of machine-generated data that could be collected, organized, and ana-
lyzed. Today, the world has become much more instrumented and interconnected
thanks to many new technologies, including RFID tagging. Important examples of
a combination of RFID technology producing big data together with data mining
include tracking products at the skid level or the stock-keeping unit (SKU) level.
A variety sources and types of retail data provide a rich source for data mining. Today,
many stores also have Web sites where customers can make purchases online, but at
the same time producing really big data for analysis of customers’ satisfaction and
other characteristics of retailer-customer relation.

Retail data mining can help identify customer-buying behaviors, discover cus-
tomer-shopping patterns and trends, improve the quality of customer services, achieve
better customer retention and satisfaction, enhance goods consumption, design more
effective goods transportation and distribution policies, and, in general, reduce the
cost of business and increase profitability. In the forefront of applications that
have been adopted by the retail industry are direct-marketing applications. The
direct-mailing industry is an area where data mining is widely used. Almost every type
of retailer uses direct marketing, including catalogers, consumer retail chains, grocers,
publishers, B2B marketers, and packaged goods manufacturers. The claim could be
made that every Fortune 500 company has used some level of data mining in their
direct-marketing campaigns. Large retail chains and groceries stores use vast amounts
of sale data that is “information rich.” Direct marketers are mainly concerned about
customer segmentation, which is essentially a clustering or classification problem.
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As the volume of customer communications through Internet grows exponen-
tially and consumers’ attention spans shrink by the day, delivering individually rele-
vant content and experiences has become amarketing imperative for all organizations.
Machine-learning personalization in marketing provides a more scalable way to
achieve unique experiences for individuals, rather than segments of people or global
population. It allows the company to utilize algorithms that will deliver one-to-one
experiences, typically in the form of recommendations for products or content. With
next-generation platforms, machine-learning personalization can also be applied to
recommending categories, brands, and offers, as well as dynamically modifying site
navigation, search results, and list sorting. Popularized by household names like Ama-
zon and Netflix, algorithms are not just for giant e-commerce companies. They can be
utilized by marketers from companies of any size.

Retailers are interested in creating data-mining models to answer questions such
as the following:

• What are the best types of advertisements to reach certain segments of customers?
• What is the optimal timing at which to send mailers?
• What is the latest product trend?
• What types of products can be sold together?
• How does one retain profitable customers?
• What are the significant customer segments that buy products?

Data mining helps to model and identify the traits of profitable customers, and it
also helps to reveal the “hidden relationship” in data that standard-query processes
have not found. IBM has used data mining for several retailers to analyze shopping
patterns within stores based on point-of-sale (POS) information. For example, one
retail company with $2 billion in revenue, 300,000 UPC codes, and 129 stores in
15 states found some interesting results: “…we found that people who were coming
into the shop gravitated to the left-hand side of the store for promotional items, and
they were not necessarily shopping the whole store.” Such information is used to
change promotional activities and provide a better understanding of how to lay out
a store in order to optimize sales. Additional real-world examples of data-mining sys-
tems in retail industry follow:

Safeway, UK

Grocery chains have been another big user of data-mining technology. Safeway is
one such grocery chain with more than $10 billion in sales. It uses Intelligent Miner
from IBM to continually extract business knowledge from its product-transaction
data. For example, the data-mining system found that the top-spending 25% custo-
mers very often purchased a particular cheese product ranked below 200 in sales.
Normally, without the data-mining results, the product would have been discontin-
ued. But the extracted rule showed that discontinuation would disappoint the best
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customers, and Safeway continues to order this cheese, though it is ranked low in
sales. Thanks to data mining, Safeway is also able to generate customized mailing
to its customers by applying the sequence-discovery function of Intelligent Miner,
allowing the company to maintain its competitive edge.

RS Components, UK

RS Components, a UK-based distributor of technical products such as electronic and
electrical components and instrumentation, has used the IBM Intelligent Miner to
develop a system to do cross-selling (suggested related products on the phone when
customers ask for one set of products) and in warehouse product allocation. The com-
pany had one warehouse in Corby before 1995 and decided to open another in the
Midlands to expand its business. The problem was how to split the products into these
two warehouses so that the number of partial orders and split shipments could be
minimized. Remarkably, the percentage of split orders is just about 6% after using
the patterns found by the system, much better than expected.

Kroger Co. (USA)

The Kroger is the largest grocery store chain in the United States. 40% of all US
households have one of Kroger’s loyalty cards. The Kroger is trying to drive loyalty
for life with their customers. In particular, their customers are rewarded with offers
on what they buy instead of trying to be sold something else. In other words, each of
them could receive coupons different from each other, not the same coupons. In order
to match the best customers with the right coupons, the Kroger analyses customers’
behavior using the data-mining techniques. For instance, one recent mailing was
customized to 95% of the intended recipients. Such business strategy for looking
at customers to win customers for life makes the Kroger beat their largest competitor,
Walmart, for the last six years largely.

Korea Customs Service (South Korea)

The Korea Customs Service (KCS) is a government agency established to secure
national revenues by controlling imports and exports for the economic development
of South Korea and to protect domestic industry through contraband control. It is
responsible for the customs clearance of imported goods as well as tax collection
at the customs border. For detecting illegal cargo, they implemented a system using
SAS for fraud detection, based on its widespread use and trustworthy reputation in
the data-mining field. This system enabled more specific and accurate sorting of ille-
gal cargo. For instance, the number of potentially illegal factors increased from 77 to
163. As a result, the detection rate for important items, as well as the total rate,
increased by more than 20%[https://unctad.org/meetings/en/Presentation/dtl_
eWeek2018p78_KeunhooLee_en.pdf].
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Bookmark.com (USA)

Bookmark.com is an AI-powered Web-site building platform, which uses machine
learning to build custom Web sites. Bookmark’s AI technology, called the Artificial
Intelligence Design Assistant (AiDA), learns each user’s unique needs from a few
nuggets of client information such as name, location, and type of business. Using
the information provided, AiDA crawls competitor Web sites along with any
information about a client’s business or public found across Google, Facebook,
and other social channels. AiDA then determines which components, colors, and
layouts would be most optimal and relevant for each Web site. Machine learning
helps AiDA improve with each new Web site it builds. In addition to using machine
learning to create personalized and engaging Web sites, Bookmark is also looking to
implement AI into their shopper service efforts. The idea is to use machine learning
to provide their shoppers with quality, personalized support that speaks expressly to
their individual experiences with Bookmark’s platform.

B.4 DATA MINING IN HEALTHCARE
AND BIOMEDICAL RESEARCH

With the amount of information and issues in the healthcare industry, not to mention the
pharmaceutical industry and biomedical research, opportunities for data-mining appli-
cations are extremely widespread, and benefits from the results are enormous. Storing
patients’ records in electronic format and the development in medical information sys-
tems cause a large amount of clinical data to be available online. Regularities, trends,
and surprising events extracted from these data by data-mining methods are important
in assisting clinicians to make informed decisions, thereby improving health services.

Clinicians evaluate a patient’s condition over time. The analysis of large quantities
of time-stamped data will provide doctors with important information regarding the
progress of the disease. Therefore, systems capable of performing temporal abstraction
and reasoning become crucial in this context. Although the use of temporal-reasoning
methods requires an intensive knowledge-acquisition effort, data mining has been used
in many successful medical applications, including data validation in intensive care, the
monitoring of children’s growth, analysis of diabetic patient’s data, the monitoring of
heart-transplant patients, and intelligent anesthesia monitoring.

Data mining has been used extensively in the medical industry. Data visualization
and artificial neural networks are especially important areas of data mining applicable
in the medical field. For example, NeuroMedical Systems used neural networks to
perform a pap smear diagnostic aid. Vysis Company uses neural networks to perform
protein analyses for drug development. The University of Rochester Cancer Center
and the Oxford Transplant Center use KnowledgeSeeker, a decision-tree-based tech-
nology, to help with their research in oncology.

The past decade has seen an explosive growth in biomedical research, ranging
from the development of new pharmaceuticals and advances in cancer therapies to
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the identification and study of the human genome. The logic behind investigating the
genetic causes of diseases is that once the molecular bases of diseases are known, pre-
cisely targeted medical interventions for diagnostics, prevention, and treatment of the
disease themselves can be developed. Much of the work occurs in the context of the
development of new pharmaceutical products that can be used to fight a host of dis-
eases ranging from various cancers to degenerative disorders such as Alzheimer’s
disease.

A great deal of biomedical research has focused on DNA data analysis, and the
results have led to the discovery of genetic causes for many diseases and disabilities.
An important focus in genome research is the study of DNA sequences since such
sequences form the foundation of the genetic codes of all living organisms. What
is DNA? Deoxyribonucleic acid (DNA) forms the foundation for all living organisms.
DNA contains the instructions that tell cells how to behave and is the primary mech-
anism that permits us to transfer our genes to our offspring. DNA is built in sequences
that form the foundations of our genetic codes and that are critical for understanding
how our genes behave. Each gene comprises a series of building blocks called nucleo-
tides. When these nucleotides are combined, they form long, twisted, and paired DNA
sequences or chains. Unraveling these sequences has become a challenge since the
1950s when the structure of the DNA was first understood. If we understand DNA
sequences, theoretically, we will be able to identify and predict faults, weaknesses,
or other factors in our genes that can affect our lives. Getting a better grasp of
DNA sequences could potentially lead to improved procedures to treat cancer, birth
defects, and other pathological processes. Data-mining technologies are only one
weapon in the arsenal used to understand these types of data, and the use of visual-
ization and classification techniques is playing a crucial role in these activities.

It is estimated that humans have around 100,000 genes, each one having DNA
that encodes a unique protein specialized for a function or a set of functions. Genes
controlling production of hemoglobin, regulation of insulin, and susceptibility to
Huntington’s chorea are among those that have been isolated in recent years. There
are seemingly endless varieties of ways in which nucleotides can be ordered and
sequenced to form distinct genes. Any one gene might comprise a sequence contain-
ing hundreds of thousands of individual nucleotides arranged in a particular order.
Furthermore, the process of DNA sequencing used to extract genetic information from
cells and tissues usually produces only fragments of genes. It has been difficult to tell
using traditional methods where these fragments fit into the overall complete sequence
from which they are drawn. Genetic scientists face the difficult task of trying to inter-
pret these sequences and form hypotheses about which genes they might belong to and
the disease processes that they may control. The task of identifying good candidate
gene sequences for further research and development is like finding a needle in a hay-
stack. There can be hundreds of candidates for any given disease being studied. There-
fore, companies must decide which sequences are the most promising ones to pursue
for further development. How do they determine which ones would make good ther-
apeutic targets? Historically, this has been a process based largely on trial and error.
For every lead that eventually turns into a successful pharmaceutical intervention that

600 APPENDIX B



is effective in clinical settings, there are dozens of others that do not produce the antici-
pated results. This is a research area that is crying out for innovations that can help to
make these analytical processes more efficient. Since pattern analysis, data visualiza-
tion, and similarity search techniques have been developed in data mining, this field
has become a powerful infrastructure for further research and discovery in DNA
sequences. We will describe one attempt to innovate the process of mapping human
genomes that has been undertaken by Incyte Pharmaceuticals, Inc. in cooperation with
Silicon Graphics:

Incyte Pharmaceuticals, Inc.

Incyte Pharmaceuticals is a publicly held company founded in 1991, and it is
involved in high-throughput DNA sequencing and development of software, data-
bases, and other products to support the analysis of genetic information. The first
component of their activities is a large database called LiveSeq that contains more
than 3 million human-gene sequences and expression records. Clients of the com-
pany buy a subscription to the database and receive monthly updates that include
all of the new sequences identified since the last update. All of these sequences
can be considered as candidate genes that might be important for future genome
mapping. This information has been derived from DNA sequencing and bioanalysis
of gene fragments extracted from cell and tissue samples. The tissue libraries contain
different types of tissues including normal and diseased tissues, which are very
important for comparison and analyses.

To help impose a conceptual structure of the massive amount of information
contained in LifeSeq, the data have been coded and linked to several levels. There-
fore, DNA sequences can be grouped into many different categories, depending on
the level of generalization. LifeSeq has been organized to permit comparisons of
classes of sequence information within a hypothesis-testing mode. For example, a
researcher could compare gene sequences isolated from diseased and nondiseased
tissue from an organ. One of the most important tools that is provided in LifeSeq is a
measure of similarity among sequences that are derived from specific sources. If
there is a difference between two tissue groups for any available sequences, this
might indicate that these sequences should be explored more fully. Sequences occur-
ring more frequently in the diseased sample might reflect genetic factors in the dis-
ease process. On the other hand, sequences occurring more frequently in the
nondiseased sample might indicate mechanisms that protect the body from the
disease.

Although it has proved invaluable to the company and their clients in its current
incarnation, additional features are being planned and implemented to extend the
LifeSeq functionality into research areas such as:

• Identifying co-occurring gene sequences.
• Tying genes to disease stage.
• Using LifeSeq to predict molecular toxicology.
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Although the LifeSeq database is an invaluable research resource, queries to the data-
baseoftenproduce very largedata sets that aredifficult toanalyze in text format.For this
reason, Incyte developed the LifeSeq 3D application that provides visualization of data
sets andalso allowsusers to cluster or classify and display informationabout genes. The
3Dversionhasbeendevelopedusing theSiliconGraphicsMineSet tool.Thisversionhas
customized functions that let researchers explore data from LifeSeq and discover novel
genes within the context of targeted protein functions and tissue types.

Maine Medical Center (USA)

Maine Medical Center—a teaching hospital and the major community hospital for
the Portland, Maine, area—has been named to the U.S. News and World Report Best
Hospitals list twice in orthopedics and heart care. In order to improve quality of
patient care in measurable ways, Maine Medical Center has used scorecards as
key performance indicators. Using SAS, the hospital creates balanced scorecards
that measure everything from staff handwashing compliance to whether a congestive
heart patient is actually offered a flu vaccination. 100 percent of heart failure patients
are getting quality care as benchmarked by national organizations, and a medication
error reduction process has improved 35%.

https://www.sunjournal.com/2010/01/07/medical-group-launches-prevention-
campaign/.
On November 2009, the Central Maine Medical Group (CMMG) announced the

launch of a prevention and screening campaign called “Saving Lives Through Evi-
dence-Based Medicine.” The new initiative is employed to redesign the ways that it
works as a team of providers to make certain that each of our patients undergoes the
necessary screening tests identified by the current medical literature using data-
mining techniques. In particular, data-mining process identifies someone at risk
for an undetected health problem [http://www.cmmc.org/news.taf].

B.5 DATA MINING IN SCIENCE AND ENGINEERING

Enormous amounts of data have been generated in science and engineering, e.g. in
cosmology, molecular biology, and chemical engineering. In cosmology, advanced
computational tools are needed to help astronomers understand the origin of large-
scale cosmological structures as well as the formation and evolution of their astro-
physical components (galaxies, quasars, and clusters). Over three terabytes of image
data have been collected by the Digital Palomar Observatory Sky Survey, which con-
tain on the order of two billion sky objects. It has been a challenging task for astron-
omers to catalog the entire data set, i.e. a record of the sky location of each object and
its corresponding classification such as a star or a galaxy. The Sky Image Cataloging
and Analysis Tool (SKICAT) has been developed to automate this task. The SKICAT
system integrates methods from machine learning, image processing, classification,
and databases, and it is reported to be able to classify objects, replacing visual clas-
sification, with high accuracy.
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In molecular biology, recent technological advances are applied in such areas as
molecular genetics, protein sequencing, and macromolecular structure determination
as was mentioned earlier. Artificial neural networks and some advanced statistical
methods have shown particular promise in these applications. In chemical engineer-
ing, advanced models have been used to describe the interaction among various chem-
ical processes, and also new tools have been developed to obtain a visualization of
these structures and processes. Let us have a brief look at a few important cases of
data-mining applications in engineering problems. Pavilion Technologies’ Process
Insights, an application-development tool that combines neural networks, fuzzy logic,
and statistical methods, has been successfully used by Eastman Kodak and other com-
panies to develop chemical manufacturing and control applications to reduce waste,
improve product quality, and increase plant throughput. Historical process data is used
to build a predictive model of plant behavior, and this model is then used to change the
control set points in the plant for optimization.

DataEngine is another data-mining tool that has been used in a wide range of
engineering applications, especially in the process industry. The basic components
of the tool are neural networks, fuzzy logic, and advanced graphical user interfaces.
The tool has been applied to process analysis in the chemical, steel, and rubber indus-
tries, resulting in a saving in input materials and improvements in quality and produc-
tivity. Successful data-mining applications in some industrial complexes and
engineering environments follow:

Boeing

To improve its manufacturing process, Boeing has successfully applied machine-
learning algorithms to the discovery of informative and useful rules from its plant
data. In particular, it has been found that it is more beneficial to seek concise pre-
dictive rules that cover small subsets of the data, rather than generate general deci-
sion trees. A variety of rules were extracted to predict such events as when a
manufactured part is likely to fail inspection or when a delay will occur at a partic-
ular machine. These rules have been found to facilitate the identification of relatively
rare but potentially important anomalies.

R.R. Donnelly

This is an interesting application of data-mining technology in printing press control.
During rotogravure printing, grooves sometimes develop on the printing cylinder,
ruining the final product. This phenomenon is known as banding. The printing com-
pany R.R. Donnelly hired a consultant for advice on how to reduce its banding pro-
blems and at the same time used machine learning to create rules for determining the
process parameters (e.g. the viscosity of the ink) to reduce banding. The learned rules
were superior to the consultant’s advice in that they were more specific to the plant
where the training data was collected and they filled gaps in the consultant’s advice
and thus were more complete. In fact, one learned rule contradicted the consultant’s
advice and proved to be correct. The learned rules have been in everyday use in the
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Donnelly plant in Gallatin, Tennessee, for over a decade and have reduced the num-
ber of banding occurrences from 538 to 26.

Southern California Gas Company

The Southern California Gas Company is using SAS software as a strategic market-
ing tool. The company maintains a data mart called the Customer Marketing Infor-
mation Database that contains internal billing and order data along with external
demographic data. According to the company, it has saved hundreds of thousands
of dollars by identifying and discarding ineffective marketing practices.

WebWatcher

Despite the best effort of Web designers, we all have had the experience of not being
able to find a certain Web page we want. A bad design for a commercial Web site
obviously means the loss of customers. One challenge for the data-mining community
has been the creation of “adaptive Web sites,”Web sites that automatically improve
their organization and presentation by learning from user-access patterns. One early
attempt is WebWatcher, an operational tour guide for the WWW. It learns to predict
what links users will follow on a particular page, highlight the links along the way,
and learn from experience to improve its advice-giving skills. The prediction is based
on many previous access patterns and the current user’s stated interests. It has also
been reported that Microsoft is to include in its electronic-commerce system a feature
called Intelligent Cross-Sell that can be used to analyze the activity of shoppers on a
Web site and automatically adapt the site to that user’s preferences.

AbitibiBowater Inc. (Canada)

AbitibiBowater Inc. is a pulp and paper manufacturer headquartered in Montreal,
Quebec, Canada. The pulp and paper, a key component of the forest products indus-
try, is a major contributor to Canada’s economy. In addition to market pulp, the sec-
tor produces newsprint, specialty papers, paperboard, building board, and other
paper products. It is the largest industrial energy consumer, representing 23% of
industrial energy consumption in Canada. AbitibiBowater Inc. used data-mining
techniques to detect a period of high performance and reduce energy consumption
in the papermaking process, so that they recognized that lower temporary consump-
tion is caused by the reduced set point for chip preheating and cleaning of the heating
tower on the reject refiners. AbitibiBowater Inc. was able to reproduce the process
conditions required to maintain steam recovery. This has saved AbitibiBowater 200
gigajoules1 daily—the equivalent of $600,000 a year [Head Up CIPEC(Canadian

1A gigajoule (GJ) is a metric term used for measuring energy use. For example, 1 GJ is equivalent to the
amount of energy available from either 277.8 kWh of electricity, or 26.1 m3 of natural gas, or 25.8 l of
heating oil.
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Industry Program for Energy Conservation) new letter: August 15, 2009 Vol.
XIII, No.15].

eHarmony

The eHarmony dating service, which rather than matching prospective partners on
the basis of their stated preferences, uses statistical analysis to match prospective
partners, based on a 29 parameter model derived from 5000 successful marriages.
Its competitors such as Perfectmatch use different models, such as the Jungian
Myers–Briggs personality typing technique to parameterize individuals entered into
their database. It is worth observing that while the process of matching partners may
amount to little more than data retrieval using some complex set of rules, the process
of determining what these rules need to be involves often complex knowledge discov-
ery and mining techniques.

The Maintenance of Military Platforms

Another area where data-mining techniques offer promising gains in efficiency is in
the maintenance of military platforms. Good and analytically based maintenance
programs, with the Amberley Ageing Aircraft Program for the F-111 as a good exam-
ple, systematically analyze component failure statistics to identify components with
wear out or other failure rate problems. They can then be removed from the fleet by
replacement with new or reengineered and thus more reliable components. This type
of analysis is a simple rule-based approach, where the rule is simply the frequency of
faults in specific components.

B.6 PITFALLS OF DATA MINING

Despite the above and many other success stories often presented by vendors and con-
sultants to show the benefits that data mining provides, this technology has several
pitfalls. When used improperly, data mining can generate lots of “garbage.” As
one professor from MIT pointed out: “Given enough time, enough attempts, and
enough imagination, almost any set of data can be teased out of any conclusion.”
David J. Lainweber, managing director of First Quadrant Corp. in Pasadena, Califor-
nia, gives an example of the pitfalls of data mining. Working with a United Nations
data set, he found that historically, butter production in Bangladesh is the single best
predictor of the Standard & Poor’s 500 stock index. This example is similar to another
absurd correlation that is heard yearly around Super Bowl time—a win by the NFC
team implies a rise in stock prices. Peter Coy, Businessweek’s associate economics
editor, warns of four pitfalls in data mining:

1. It is tempting to develop a theory to fit an oddity found in the data.
2. One can find evidence to support any preconception if you let the computer churn

long enough.
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3. A finding makes more sense if there is a plausible theory for it. But a beguiling
story can disguise weaknesses in the data.

4. The more factors or features in a data set the computer considers, the more likely
the program will find a relationship, valid or not.

It is crucial to realize that data mining can involve a great deal of planning and
preparation. Just having a large amount of data alone is no guarantee of the success of
a data-mining project. In the words of one senior product manager from Oracle, “Be
prepared to generate a lot of garbage until you hit something that is actionable and
meaningful for your business.”

This appendix is certainly not an inclusive list of all data-mining activities,
but it does provide examples of how data-mining technology is employed
today. We expect that new generations of data-mining tools and methodol-
ogies will increase and extend the spectrum of application domains.
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Deviation detection, 3, 115
Differences, 42
Dimensional stacking, 540
Directed acyclic graph (DAG), 369, 437
Discrete Fourier Transform (DFT), 412
Discrete optimization, 468
Discrete Wavelet Transform (DWT), 412
Discriminant function, 189
Distance error, 85
Distance measure, 40, 78, 117, 138, 221, 300
Distributed data mining, 426
distributed DBSCAN, 432

Divisible clustering algorithms, 116, 306
Document visualization, 379
Domain-specific knowledge, 7, 379
Don’t care symbol, 480

Eigenvalue, 81, 381
Eigenvector, 81, 364, 380
Empirical risk, 104
Empirical risk minimization (ERM), 105
Encoding, 8, 469, 491
Encoding scheme, 469
Ensemble learning, 279
AdaBoost, 288
bagging, 286
boosting, 288

Entropy, 77

Error back-propagation algorithm, 246
Error-correction learning, 240
Error energy, 247
Error rate, 280
Euclidean distance, 301
Exponential moving average, 47
Exploratory analysis, 2
Exploratory visualizations, 536
Extension principle, 510

False acceptance rate (FAR), 148
False reject rate (FRT), 148
Fault tolerance, 233, 451
Feature composition, 67
Feature discretization, 83, 86
Feature ranking, 67
Feature reduction, 67
Feature selection, 67
relief algorithm, 75

Filtering data, 62
First-principle models, 2
Fitness evaluation, 470
F-list, 347
FP-tree, 344
Free parameters, 105, 239
Function approximation, 244
Fuzzification, 518
Fuzzy inference systems, 116, 513
Fuzzy logic, 513
Fuzzy number, 503
Fuzzy relation, 509
containment, 509
equality, 509

Fuzzy rules, 514
Fuzzy set, 526
Fuzzy set operation, 504
cartesian product, 505
complement, 504
concentration, 507
dilation, 507
intersection, 504
normalization, 507
union, 504

Gain function, 203
Gain-ratio function, 209
Gaussian membership function, 502
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Gene, 466
Generalization, 138
Generalized Apriori, 344
Generalized modus ponens, 515
Genetic algorithm, 465
Genetic operators, 478

crossover, 478
mutation, 478
selection, 471

Geometric projection visualization, 538
GINI index, 219
Glyphs, 539
G-mean, 154
Gradviz, 547
Graph mining, 392

centrality, 398
closeness, 399
betweenness, 399

Graph compression, 405
Graph clustering, 400, 406
Gray coding, 470
Greedy optimization, 108
Grid-based rule, 521
Growth function, 106

Hamming distance, 78, 506
Hamming networks, 257
Hard limit function, 235
Heteroassociation, 243
Hidden node, 250
Hierarchical clustering, 306
Hierarchical visualization techniques, 540
Histogram, 537
Holdout method, 141
Hubs, 363
Hyperbolic tangent sigmoid, 236
Hypertext, 377

Icon-based visualization, 539
Image kernel, 272
Imbalanced data, 150

classification, 150
re-balance, 151

Induction, 98
Inductive-learning methods, 110
Inductive machine learning, 99
Inductive principle, 103

Info function, 203
Information visualization, 536
Information retrieval (IR), 358
Infrastructure as a Service (IaaS), 453
Initial population, 476
Interesting association rules, 341
Internet searching, 376
Interval scale, 34
Inverse document frequency, 376
Itemset, 337, 419

Jaccard coefficient, 303

Kernel function, 127
Knowledge distillation, 378

Large data set, 141, 170, 538
Large itemset, 338
Large reference sequence, 370
Latent semantic analysis (LSA), 379
Lateral inhibition, 255
Learning machine, 99
Learning method, 99
Learning process, 99, 239
Learning rate, 241, 456
Learning system, 104, 110, 458
Learning tasks, 112
Learning theory, 4, 104
Learning without teacher, 110
Learning with teacher, 110
Leave-one-out method, 142
Lift chart, 143
Linear discriminant analysis (LDA), 189
Line chart, 537
Linguistic variable, 508
Local gradient, 249
Locus, 466
Logical classification models, 201
Log-linear models, 185
Log-sigmoid function, 235
Longest common sequence (LCS), 415
Loss function, 102

Machine learning, 4
Mamdani model, 521
Manipulative visualization, 536
MapReduce, 451
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Market basket analysis, 337
Markov model (MM), 416
hidden Markov model (HMM), 417

Max-min composition, 512
MD-pattern, 349
Mean, 41, 51, 68, 168
Median, 168
Membership function, 327, 499
Metric distance measure, 301
Minkowski metric, 301
Min-max normalization, 41
Misclassification, 103, 142
Missing data, 210
Mode, 168
Model, 6
estimation, 142
selection, 138
validation, 140
verification, 140

Momentum constant, 251
Moving average, 40
Multidimensional association rules, 349
Multifactorial evaluation, 518
Multilayer perceptron, 245
Multiple discriminant analysis, 191
Multiple regression, 178
Multiscape, 541
Multivariate analysis of variance

(MANOVA), 183
Mutual neighbor distance (MND), 305

Naïve Bayesian classifier, 172
N-dimensional data, 53
N-dimensional space, 297
N-dimensional visualization, 117
N-fold cross-validation, 142
Necessity measure, 506
Negative border, 340
Neighbor number (NN), 305
Neuro-Fuzzy system, 528
Nominal scale, 35
Normalization, 40
NP hard problem, 55
Null hypothesis, 167

Objective function, 122, 467
Observational approach, 7

OLAP (online analytical processing), 18
Optimization, 108
Ordinal scale, 35
Outlier analysis, 49
Outlier detection, 49
Outlier detection, distance based, 53
Overfitting (overtraining), 108, 252

PageRank algorithm, 371
Parabox, 540
Parallel coordinates, 542
Parameter identification, 5
Partially matched crossover (PMC), 484
Partitional clustering, 310
Pattern, 6
association, 243
recognition, 243

Pearson correlation coefficient, 70
Perception, 534
Personalization, 597
Piecewise aggregate approximation

(PAA), 409
Pie chart, 537, 548
Pixel-oriented visualization, 540
Platform as a Service (PaaS), 453
Population, 470
Possibility measure, 506
Postpruning, 214
Prediction, 2
Predictive accuracy, 74, 140
Predictive data mining, 3
Predictive regression, 175
Prepruning, 214
Principal components, 73, 81
Principal component analysis (PCA), 80
Projected database, 348
Pruning decision tree, 214
Purity, 219, 326

Q learning, 455

Radial visualization (Radviz), 544
Radio frequency identification (RFID),

443, 596
Rand index, 326
Random variable, 167, 436
Rao’s coefficient, 303
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Ratios, 42
Ratio scale, 34
Receiver operating characteristic (ROC), 147
Regression, 167, 175

equation, 176
logistic, 184
linear, 176
multiple, 178
nonlinear, 179

Reinforcement learning, 454
Resampling methods, 141
Resubstitution method, 141
Return on investment (ROI) chart, 147
Risk functional, 102
Rotation method, 142
RuleExchange, 488
RuleGeneralization, 489
RuleSpecialization, 489
RuleSplit, 489

Sample, 6
Sampling, 90

average, 92
incremental, 92
inverse, 92
random, 92
stratified, 92
systematic, 91

Saturating linear function, 235
Scaling, 8, 40, 414, 547
Scatter plot, 170, 537
Schemata, 480

fitness, 480
length, 481
order, 481

Scientific visualization, 535
Scrubbing, 16, 116
Semi-supervised learning (SSL), 131
Semi-supervised support vector machines

(S3VM), 131
Sensitivity, 108, 144, 148
Sequence, 368
Sequence mining, 369
Sequential pattern, 420
Silhouette coefficient, 325
Similarity measure, 77, 299, 413
Simple matching coefficient (SMC), 302

Single-link method, 307
Smoothing data, 41
SMOTE, 151
Software as a Service (SaaS), 453
Spatial data mining, 422

autoregressive model, 424
spatial outlier, 425

Specificity, 144
Split-info function, 209
SQL (Structured query language), 18
SSE (Sum of squares of the errors), 176
Standard deviation, 37, 41, 145, 168
Star display, 539
Statistics, 4
Statistical dependency, 101
Statistical inference, 166
Statistical learning theory (SLT), 104
Statistical methods, 165
Statistical testing, 167
Stochastic approximation, 108
Stopping rules, 107
Strong rules, 338
Structural risk minimization (SRM), 106
Structure identification, 5
Summarization, 113, 379
Supervised learning, 110
Support, 123, 337, 346, 402, 419, 502
Survey plot, 538
Survival data, 48
Synapse, 233
System identification, 5

Tchebyshev distance, 506
Temporal data mining, 406

sequences, 407
time series, 407

Testing sample, 135, 214
Test of hypothesis, 167
Text analysis, 376
Text database, 375
Text mining, 375
Text-refining, 379
Time lag (time window), 45
Time series

multivariate, 48
univariate, 48

Training sample, 105, 173, 201, 247, 284
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Transduction, 98
Traveling salesman problem (TSP), 467
Trial and error, 6, 53, 454
True risk functional, 104

Ubiquitous data mining, 422
Underfitting, 108
Unobserved inputs, 14, 100
Unsupervised learning, 110, 255

Value reduction, 83
Vapnik–Chervonenkis (VC) theory, 104
dimension, 106

Variables, 13
continuous, 34
categorical, 34
dependent, 13
discrete, 34
independent, 13
nominal, 34
numeric, 34
ordinal, 35
periodic, 35
unobserved, 13

Variance, 68, 70, 169, 181, 395
Variogram cloud technique, 424

Visual clustering, 553
Visual data mining, 535, 539
Visualization, 533
Visualization tool, 18, 170, 540
Voronoi diagram, 135

Web mining, 357
content, 358
HITS(Hyperlink-Induced Topic

Search), 362
LOGSOM algorithm, 366
path-traversal patterns, 368
structure, 360
usage, 360

Web page
content, 360
design, 358
quality, 359

Web site
design, 358
structure, 359

Widrow–Hoff rule, 240
Winner-take-all rule, 255, 257, 260

XOR problem, 238
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