
Wireless Networks

Yuan Zhang
Chunxiang Xu
Xuemin Sherman Shen

Data Security
in Cloud
Storage

Wireless Networks

Series Editor

Xuemin Sherman Shen
University of Waterloo
Waterloo, ON, Canada

The purpose of Springer’s new Wireless Networks book series is to establish
the state of the art and set the course for future research and development in
wireless communication networks. The scope of this series includes not only all
aspects of wireless networks (including cellular networks, WiFi, sensor networks,
and vehicular networks), but related areas such as cloud computing and big data.
The series serves as a central source of references for wireless networks research
and development. It aims to publish thorough and cohesive overviews on specific
topics in wireless networks, as well as works that are larger in scope than survey
articles and that contain more detailed background information. The series also
provides coverage of advanced and timely topics worthy of monographs, contributed
volumes, textbooks and handbooks.

More information about this series at http://www.springer.com/series/14180

http://www.springer.com/series/14180

Yuan Zhang • Chunxiang Xu •
Xuemin Sherman Shen

Data Security in Cloud
Storage

123

Yuan Zhang
School of Computer Science & Engineering
University of Electronic Science
and Technology of China
Chengdu, Sichuan, China

Chunxiang Xu
School of Computer Science & Engineering
University of Electronic Science
and Technology of China
Chengdu, Sichuan, China

Xuemin Sherman Shen
Department of Electrical and Computer
Engineering
University of Waterloo
Waterloo, ON, Canada

ISSN 2366-1186 ISSN 2366-1445 (electronic)
Wireless Networks
ISBN 978-981-15-4373-9 ISBN 978-981-15-4374-6 (eBook)
https://doi.org/10.1007/978-981-15-4374-6

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0002-7909-9845
https://orcid.org/0000-0002-5411-7621
https://orcid.org/0000-0002-4140-287X
https://doi.org/10.1007/978-981-15-4374-6

Preface

Cloud storage is a service that lets users store data by transferring it over the
Internet or another network to an offsite storage system maintained by a third
party. It is increasingly demanded along the users’ data exploded and it provides
users an efficient and convenient way to manage their data. Despite the appealing
advantages of data outsourcing, cloud storage services are confronted with various
threats from many aspects. Compared with traditional data storage systems (where
users store their data locally), cloud storage provides users with a completely
different paradigm to manage their data, which also introduces new and challenging
threats towards data security. Specifically, in the cloud storage service, users do
not physically own their data once outsourcing the data to a cloud server (which
is subject to a cloud service provider), and these data are fully controlled by the
cloud server. As such, once the cloud server (including insiders working at the cloud
service provider) misbehaves, the outsourced data would suffer from threats, such
as corruption, modification, removal, and privacy violation. In addition, since the
data are transmitted over public and insecure networks, external adversaries (e.g.,
hackers) might eavesdrop on the communication channel between the user and the
cloud server, tamper with the interaction messages between them, and extract the
data contents from the cloud server for financial or political reasons.

This monograph gives a comprehensive overview of data security in cloud
storage, which includes cloud storage reliability, cloud storage confidentiality,
and data investigations in cloud storage. With these security issues, five research
topics are introduced and studied, i.e., secure verification of data integrity, secure
deduplication, secure keyword search, secure data provenance, and secure data time-
stamping. This monograph not only presents basic paradigms and principles of the
aforementioned research topics and the corresponding techniques that secure cloud
storage but also provides a comprehensive survey on each of the research topics. In
addition, this monograph also analyzes the relationship among these research topics.

As emerging techniques, such as indistinguishability obfuscation, blockchains,
and trusted execution environments (TEEs), have been developed in the last decade,
it has shown great potentials in enhancing data security. This monograph also
introduces the latest advances in enhancing cloud storage reliability, confidentiality,

v

vi Preface

and investigations and analyzes their pros and cons. Finally, open research issues
and future work on the related topics are also discussed.

We would like to thank Prof. Nan Cheng (Xidian University), Prof. Hongwei
Li (University of Electronic Science and Technology of China), Prof. Xiaohui
Liang (University of Massachusetts at Boston), Prof. Xiaodong Lin (University of
Guelph), Prof. Jianbing Ni (Queen’s University), Prof. Haomiao Yang (University
of Electronic Science and Technology of China), Prof. Kan Yang (The University of
Memphis), Prof. Shui Yu (University of Technology Sydney), Prof. Xiaojun Zhang
(Southwest Petroleum University), and Prof. Jianying Zhou (Singapore University
of Technology and Design) for their contributions in the presented research works.
We would also like to thank Shanshan Li and Dongxiao Liu for reviewing parts of
this monograph and all the members of BBCR group for the valuable discussions
and their insightful suggestions, ideas, and comments. Special thanks also go to the
staff at Springer Science+Business Media: Celine Chang, Susan Lagerstrom-Fife,
Jane Li, and Suraj Kumar, for their help throughout the publication process.

Chengdu, China Yuan Zhang
Chengdu, China Chunxiang Xu
Waterloo, Canada Xuemin Sherman Shen

Contents

1 Introduction . 1
1.1 An Overview of Cloud Storage. 2

1.1.1 Cloud Storage Architecture . 2
1.1.2 Cloud Storage Applications . 3

1.2 Data Security in Cloud Storage. 5
1.3 Organization of the Monograph . 7
References . 9

2 Basic Techniques for Data Security . 11
2.1 Data Authentication .. 11

2.1.1 Message Authentication Code . 12
2.1.2 Hash Function.. 13
2.1.3 Digital Signature . 14

2.2 Data Confidentiality. 16
2.2.1 Symmetric-Key Encryption . 16
2.2.2 Public-Key Encryption . 17

2.3 Threshold Cryptography .. 18
2.4 Public-Key Cryptosystems . 18

2.4.1 PKI-Based Public-Key Cryptosystems . 19
2.4.2 Identity-Based Public-Key Cryptosystems . 19
2.4.3 Certificateless Public-Key Cryptosystems .. 20

2.5 Blockchain.. 20
2.6 Trusted Execution Environments .. 24
2.7 Summary and Further Reading .. 25
References . 25

3 Cloud Storage Reliability . 29
3.1 Data Integrity .. 29
3.2 Proofs of Storage: Definition and Criteria . 30

3.2.1 Threat Models. 31
3.2.2 Security Criteria . 33

3.3 Proofs of Storage for Cloud Storage Systems . 34

vii

viii Contents

3.3.1 Proofs of Storage for Dynamic Data . 38
3.3.2 Enhancement of Security . 40
3.3.3 Constructing Public Verification on Different

Cryptosystems . 42
3.3.4 Other Works . 43

3.4 Latest Advances in Proofs of Storage .. 44
3.4.1 Proofs of Storage Based on Indistinguishability

Obfuscation . 44
3.4.2 Proofs of Storage Based on Blockchain . 47

3.5 Summary and Further Reading .. 51
References . 52

4 Secure Deduplication . 55
4.1 Deduplication Classification . 55
4.2 Secure Deduplication: Threats and Countermeasures 57

4.2.1 Proofs of Ownership .. 58
4.2.2 Randomized Deduplication . 60

4.3 Message-Locked Encryption . 60
4.3.1 Overview . 61
4.3.2 Threat Models of Encrypted Deduplication Storage

Systems. 64
4.3.3 Security Definition .. 65

4.4 Encrypted Deduplication Systems . 65
4.4.1 Enhancement of Security . 66
4.4.2 Practical Concern . 73
4.4.3 Other Works . 76

4.5 When Secure Deduplication Meets eHealth: A Case Study 76
4.5.1 Cloud-Based eHealth Systems . 77
4.5.2 Adversary Model and Security Goals . 78
4.5.3 Analysis of EMRs in Actual eHealth Systems 79
4.5.4 Study of HealthDep .. 81

4.6 Summary and Further Reading .. 84
References . 84

5 Secure Keyword Search . 87
5.1 Keyword Search Over Encrypted Data. 87
5.2 Symmetric-Key Searchable Encryption .. 89

5.2.1 System and Threat Models . 89
5.2.2 Survey on Symmetric-Key Searchable Encryption 89

5.3 Public-Key Searchable Encryption .. 98
5.3.1 System model . 99
5.3.2 Threat Model and Security Definition . 100
5.3.3 Survey on Public-Key Searchable Encryption.. 100

5.4 Latest Advances in Public-Key Searchable Encryption 104
5.4.1 Public-Key Searchable Encryption Against Keyword

Guessing Attacks . 104

Contents ix

5.4.2 Remark and Further Discussion . 112
5.5 Summary and Further Reading .. 113
References . 114

6 Secure Data Provenance . 119
6.1 Introduction to Secure Data Provenance .. 119

6.1.1 Data Provenance vs. Secure Data Provenance.. 120
6.1.2 System and Threat Models . 123

6.2 Survey on Secure Data Provenance . 125
6.3 Blockchain: A Panacea for Secure Data Provenance 127

6.3.1 Blockchain-Based Secure Data Provenance 128
6.3.2 Implementation Based on Ethereum .. 135
6.3.3 Data Provenance and Beyond: Further Discussion 137

6.4 Summary and Further Reading .. 139
References . 140

7 Secure Data Time-Stamping . 143
7.1 Introduction to Secure Data Time-Stamping . 143

7.1.1 What Kinds of Data Would Benefit from Secure
Time-Stamping? . 144

7.1.2 System and Threat Models . 145
7.2 Survey on Secure Time-Stamping .. 146
7.3 Secure Time-Stamping and Blockchain.. 149

7.3.1 Distributed Cryptocurrencies from Secure
Time-Stamping.. 150

7.3.2 Secure Time-Stamping from Blockchain . 151
7.4 Summary and Further Reading .. 164
References . 164

8 Summary and Future Research Directions . 167
8.1 Summary . 167
8.2 Future Work . 169

8.2.1 Secure Data Integrity Verification from Smart Contract 169
8.2.2 Combination of Encrypted Deduplication and

Symmetric-key Searchable Encryption . 170
8.2.3 Secure Provenance Under Complex Models 171
8.2.4 Securely Time-stamping Operations in the Digital World 171

Acronyms

CA Certificate authority
CDN Content distribution network
CE Convergent encryption
eHealth Electronic healthcare
EHRs Electronic health records
EMRs Electronic medical records
EPD Essential provenance data
FE Functional encryption
FHE Fully homomorphic encryption
HIPAA Health Insurance Portability and Accountability Act
HVTs Homomorphic verifiable tags
IdP Identity provider
IMEI International Mobile Equipment Identity
iO Indistinguishability obfuscation
IoT Internet of things
IRS Index Repository Service
KGA Keyword guessing attack
KGC Key generation center
MHT Merkle hash tree
MLE Message-locked encryption
NPD Nonessential provenance data
OPRF Oblivious pseudorandom function
ORAM Oblivious random access machine
PDP Provable data possession
PIR Private information retrieval
PKI Public-key infrastructure
PKG Private key generator
PoR Proofs of retrievability
PoS Proof of stake
PoW Proof of work
POW Proof of ownership

xi

xii Acronyms

PSE Public-key searchable encryption
SE Searchable encryption
SSE Symmetric-key searchable encryption
SIM Subscriber identity module
TEEs Trusted execution environments
TPA Third-party auditor
TSP Time-stamping service provider
WoL Window of latching
WoT Window of time-stamping

Chapter 1
Introduction

Currently, digital data are explosively generated and lots of data-intensive applica-
tions are emerging, which is pushing us towards the era of big data and we have to
change the data management paradigm [1]. Recent reports from International Data
Corporation (IDC, https://www.idc.com/) indicate that the digital data we create
and copy are doubling in size every 2 years, have researched 18 ZB in 2018. IDC
also predicts that the digital data in the digital world will reach 44 ZB by 2020
and will grow to 175 ZB in 2025 (https://www.seagate.com/files/www-content/
our-story/trends/files/idc-seagate-dataage-whitepaper.pdf). We have enjoyed great
advancements in our knowledge, services, and productivity brought by available
big data sets. This can be reflected in several areas, such as the healthcare industry,
education industry, and electronic commerce, and has deeply impacted on human
society.

On the other hand, due to the large volume of data we create and the new
paradigm of utilizing data in emerging applications, we have to deploy and
maintain local storage devices and services to access and utilize the data, which
causes considerable costs to us. With cloud storage services, both individuals and
commercial users (e.g., enterprises) are able to outsource their data to a cloud server
and access the data remotely via the Internet. Such services provide users with
an efficient and flexible way to manage their data without bearing heavy costs to
maintain the data locally. Some recent reports [2, 3] point out that more than 79%
of organizations attempt to utilize data outsourcing services, and such an increasing
demand for the cloud storage service leads to the growing number of cloud storage
providers.

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_1&domain=pdf
https://www.idc.com/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1007/978-981-15-4374-6_1

2 1 Introduction

1.1 An Overview of Cloud Storage

In a sense, the cloud storage service serves as a fundamental component for most of
the services provided by cloud service providers. In this section, we introduce cloud
storage and its applications.

1.1.1 Cloud Storage Architecture

Generally, there are two entities in a cloud storage system: users and cloud service
provider, as shown in Fig. 1.1.

Users are the data owners. They have a large number of data files to be outsourced
to a remote server and want to access the outsourced data flexibly and efficiently.
Such a data outsourcing service is provided by a cloud service provider who
has significant storage space and computation resources. The storage space and
computation capability are provided by a large number of powerful machines and
devices that are deployed/employed and maintained by the cloud service provider.

Roughly speaking, the cloud service provider employs a three-layer framework
to provide the cloud storage service [2]. On the top of the framework, the cloud
service provider interacts with all users to receive their service requests including
data outsourcing, data access, and other operations on their data. After receiving a
service request from a user, the cloud service provider handles it via some prescribed
algorithms and returns the corresponding result to the user as the response. The
cloud service provider deploys or employs a large number of machines and devices

Fig. 1.1 Cloud storage architecture

1.1 An Overview of Cloud Storage 3

to provide the cloud storage service. These machines and devices might be located
in different places in the physical world to ensure the high quality of service,
reduce operating costs, and/or enhance the reliability of the system. However, it
also introduces additional costs to utilize these machines and devices for the cloud
service provider. To address this problem, an intermediate layer between the cloud
service provider and the physical machines and devices, called virtual machines, is
introduced. It enables all machines and devices to form a group and work together,
such that the cloud service provider is able to utilize them easily and efficiently.

In the cloud storage system, all the operations performed by the cloud service
provider are transparent to its users. Users only need to focus on how to utilize
their data, rather than how the data are stored. As such, from the perspective of
users, the cloud service provider and its machines and devices can be considered
as a whole entity, which is well known as the cloud server. Furthermore, such a
data management paradigm enables users to outsource their data using a device
(e.g., computers) and to subsequently access the outsourced data using different
devices (e.g., smartphones and laptops). This is very useful in some data-intensive
applications that will be elaborated in the next section.

1.1.2 Cloud Storage Applications

Cloud storage is the most prominent manifestation of cloud computing. It inherits
the unprecedented advantages of cloud computing, such as on-demand self-service,
broad network access, location independent resource pooling, rapid elasticity,
usage-based pricing, and transference of risk [4]. In addition, it also has inherent
characteristics, such as relief of the burden for storage management, universal
data access with location independence, and avoidance of capital expenditure on
hardware, software, and personnel maintenance.

Therefore, the cloud storage service has become a fundamental component in
some applications and has deeply impacted on people’s daily life. We briefly
introduce several cloud-based applications that can be enhanced and improved
significantly by utilizing cloud storage services, namely electronic healthcare, data
sharing, and the Internet of things (IoT).

1.1.2.1 Electronic Healthcare

Compared with traditional paper-based systems, electronic healthcare (eHealth)
systems provide a more efficient, less error-prone, and more flexible service for both
doctors and patients [5, 6]. As modern eHealth systems are data-intensive, both the
patients and medical institutions have to bear heavy costs to maintain electronic
health records (short for EHRs).

Actually, the wide deployment of cloud storage services has already shown great
benefits in managing EHRs, which not only allows patients and medical institutions

4 1 Introduction

to outsource EHRs to the cloud server [7, 8], but also makes a great contribution
to the judgment and dispute resolution in medical malpractices [9]. In addition,
practical eHealth systems always need to support data sharing among different
entities. Typical scenarios include group consultations, where a patient is treated
by a group of doctors and EHRs are generated by these doctors one by one, and
each doctor generates EHRs according to the ones generated by the previous doctor.

Traditionally, this is achieved by requiring the patient to transfer the EHRs
generated by the previous doctor to the next one, which is very cumbersome and
inefficient. With the employment of cloud storage services, the patient’s EHRs
are outsourced to the cloud server, she/he would never need to transfer the EHRs
by herself/himself. Instead, she/he just needs to delegate all authorized doctors
to access her/his EHRs from the cloud server, and thereby improving efficiency
significantly.

1.1.2.2 Data Sharing

Data sharing is a fundamental requirement for many applications [10]. In the
previous section, we have introduced the significance of data sharing in eHealth
systems. In this section, we provide more applications and discuss the potentials of
utilizing cloud storage services.

Particularly, in an open-source software development system, the system require-
ments are released by a project manager, and multiple developers would work
together as a group on the project to complete the source code. In such an
application, the source code completed by one developer might be revised by
another one. Traditionally, the project manager has to keep online to assist all
developers in completing the source code to ensure the consistency of the source
code on each developer. Each developer not only requests the latest version of the
source code from the manager, but also needs to know how the source code was
revised and updated, which is error-prone and cumbersome for the manager. The
same problems also exist in the collaboration systems wherein multiple users jointly
edit a document.

With the employment of cloud storage services, the open-source software
development system can be directly implemented, and it is easy to share data
among developers via the cloud server [11]. Currently, several systems, such as
Codeanywhere [12] and Google Doc [13], have been implemented.

1.1.2.3 IoT

In most IoT applications, IoT devices are lightweight and have limited capabilities
in terms of storage and computation [14]. Therefore, these IoT devices cannot have
capabilities of processing the data collected by them and can only send raw data
to a target entity. In most cases, the entity not only needs to store all raw data for

1.2 Data Security in Cloud Storage 5

data archiving, but also has to process the data before using it, which introduces
considerable costs.

However, with the employment of cloud storage services, the IoT devices in
these applications are enhanced significantly in terms of storage and computation
capability. After collecting the data, the IoT device can send it to the cloud server
which not only provides the data backup service, but also assists target entities in
processing the data in an efficient and flexible way [15].

1.2 Data Security in Cloud Storage

While people enjoy the desirable benefits from the cloud storage service, critical
security concerns in data outsourcing have been raised seriously [16–18]. Compared
with traditional data storage systems (users store their data locally), the cloud
storage service provides users with a completely different paradigm to manage
their data, which introduces new and challenging threats towards data security.
Specifically, in the cloud storage service, users do not physically own their data
once outsourcing the data to the cloud server, and these data are fully controlled
by the cloud server. As such, once the cloud server (including insiders working at
the cloud service provider) misbehaves, the outsourced data would be confronted
with threats, such as corruption, modification, removal, and privacy violation. In
addition, since the data are transmitted over public and insecure networks, external
adversaries (e.g., hackers) might eavesdrop on the communication channel between
the user and the cloud server, tamper with the interaction messages between them,
and extract the data contents from the cloud server for financial or political reasons
[19, 20].

However, ensuring the security of cloud storage services is challenging in reality,
which is reflected in two aspects. On the one hand, although the infrastructures
under the cloud service provider are much powerful and reliable than personal
machines and devices, they still suffer from internal faults for the data security.
These internal faults include network failures, system malfunctions, misoperations,
and software bugs. They would occur in practice, no matter what high degree of
reliable countermeasures the cloud service provider would employ. On the other
hand, both the cloud server and the external adversary have a strong motivation
to compromise the data security if this could increase their profits in the system
significantly. Therefore, it is critical and challenging to ensure data security in cloud
storage [21, 22].

From the perspective of users, data security in cloud storage mainly includes
three parts: data reliability, data confidentiality, and secure data investigations.

Data reliability of cloud storage service serves as the fundamental assurance of
its security [23, 24]. Recall that users would not physically own their data once
having outsourced the data to the cloud server. They are always worried about the
data integrity, i.e., whether the outsourced data is well maintained on the cloud
server. However, the integrity of outsourced data is being put at risk in practice.

6 1 Introduction

For example, the cloud server may always conceal incidents of data corruption for a
good reputation, or may delete a part of data that is never accessed to reduce storage
costs. Moreover, an external adversary motivated by financial or political reward
may attempt to tamper with the outsourced data but convince the users that their
data are still retained intact.

Data confidentiality is an essential part of cloud storage security. In reality,
some of the outsourced data include the privacy information about their owners,
and thereby are very sensitive. Without proper protection, adversaries (including
the internal and external ones) could easily extract the data contents from the
outsourced data, which allows the adversaries to violate the users’ privacy. To
protect data contents against adversaries, users always encrypt their data before
outsourcing. This can be achieved by utilizing conventional encryption, e.g., AES
[25], but it makes efficient data outsourcing and fine-grained access to outsourced
data impossible, which introduces considerable costs to users. This problem can be
further divided into two parts and will be discussed below.

On the one hand, in reality, different users would outsource the same data to one
cloud server, which enables the cloud server to perform data deduplication across
its users to reduce storage costs. However, due to the randomness of conventional
encryption algorithms (i.e., different users would produce different ciphertexts for
the same data), deduplication over encrypted data is impeded [26].

On the other hand, in some cases, after a user outsources an entire (encrypted)
data set to the cloud server, she/he would only need to retrieve some subset of the
outsourced data set from the cloud server. In this case, if the data is encrypted by
using conventional encryption algorithms, the user has to download the entire data
set, decrypt it, and retrieve the target data from the entire data set. This introduces
prohibitive costs in terms of communication and computation on the user side [27,
28].

Therefore, in actual cloud storage systems, although data confidentiality is a
basic requirement for users, more interfaces that support efficient data outsourcing
and data retrieval are also required. However, new security challenges and threats
towards data confidentiality are also introduced.

Secure data investigations guarantee the trustworthiness of outsourced data and
the cloud storage service. As discussed before, cloud storage has served as a
fundamental component in several data-intensive applications, e.g., eHealth, to
make the data management easy and reliable. On the other hand, the data outsourced
to the cloud server also serves as the key evidence in post investigations. For
example, in an eHealth system, when a medical malpractice occurs, an investigator
who is subject to an authority needs to reconcile the dispute among the medical
institution and the patient as well as her/his families. The most important evidence
to reconcile the dispute is the corresponding EHRs outsourced to the cloud server.
However, it is usual that the defendant challenges the authenticity of a digital
evidence during the trial, since EHRs are fully controlled by the cloud server and the
defendant may question the EHRs that investigators are working on and presented
in the courtroom is not the same ones originated from the medical institution.

1.3 Organization of the Monograph 7

To interference with the judge’s judgment, an adversary might launch the following
two types of attacks.

First, the adversary would tamper with the outsourced data and the corresponding
provenance information which keeps track of what happens to the data throughout
the lifecycle of the data. If the adversary succeeds, the outsourced data cannot serve
as the evidence since they are invalid [29].

Second, the adversary would also tamper with the time when the data is created
to interference with the judgment. In some cases, the creation time of a data file
is very critical in post investigations [30–32]. If the adversary successfully back-
dates/forward-dates the data, the trustworthiness and authenticity of the judgment
based on the data cannot be guaranteed.

1.3 Organization of the Monograph

In this monograph, we investigate the data security issues in cloud storage systems.
The aim of this monograph is threefold.

First, we elaborate on the threats described above and analyze how they can
be utilized by adversaries and why these vulnerabilities are critical. This presents
basic paradigms and principles of secure cloud storage to a general audience with a
basic computer, communication, or cryptography background. This also serves as a
general introduction suitable for beginning researchers in related areas.

Second, this monograph includes five research topics in secure cloud storage:
secure data integrity verification, secure deduplication, secure keyword search,
secure data provenance, and secure data time-stamping. We make a comprehensive
survey of each research topic and analyze the pros and cons of schemes and
techniques in each research topic. We stress that these research topics are closely
related to each other, and these research works jointly ensure data security in cloud
storage. Specifically, the relationship among these topics is shown in Fig. 1.2. From
the perspective of a user, after she/he outsources data to a cloud server, she/he
first cares about the reliability of the storage service, i.e., whether the data remains
intact on the cloud server. This is related to the data integrity verification technique.
Once the reliability is ensured, the user would focus on their privacy, i.e., whether
someone, who is not authorized by the user, is able to extract the contents of
her/his data from the cloud server. This assurance corresponds to data confidentiality
and can be provided by the employment of encryption algorithms. However, from
the point of view of pragmatism, the user would wish the costs of utilizing
cloud storage service as low as possible, but the privacy preservation retains. The
technique that satisfies this requirement is secure deduplication. Furthermore, the
user also needs to retrieve target data from the cloud server without downloading
the entire ciphertext set, which requires the cloud storage system to guarantee the
confidentiality of outsourced data without sacrificing its availability. The technique
that accomplishes this goal is secure keyword search. In addition, a secure cloud
storage system also needs to support data investigations, where the provenance

8 1 Introduction

Fig. 1.2 Relationship among research topics

information about outsourced data should be securely maintained. Consequently,
secure data provenance is of critical importance in cloud storage systems. Some
cloud-based applications also need to certify the time when the data is created, since
the creation time of the data also serves as a key evidence in data investigations for
these applications. As such, secure time-stamping is also an important technique of
data investigations in cloud storage systems. All these techniques have been deeply
investigated in these research topics and can be utilized to construct secure cloud
storage systems to provide users with reliable, economical, secure, and efficient
storage services.

Third, we also provide a literature review and study on the latest advances in
each research topic and outlook several potential research directions. This serves as
a reference for experts in related areas.

The remainder of the monograph is organized as follows: In Chap. 2, we intro-
duce basic theorems, cryptographic primitives, and techniques for the protection of

References 9

data security, which serves as preliminary knowledge for subsequent chapters. In
Chap. 3, we introduce secure data integrity verification, which is the most important
technique to ensure the reliability of cloud storage. In Chap. 4, we introduce
secure data deduplication, which can be utilized to ensure data confidentiality
while saving storage space. In Chap. 5, we introduce secure keyword search, which
achieves search over ciphertexts by keywords. In Chap. 6, we introduce secure
data provenance, which is a fundamental technique in secure data investigations.
In Chap. 7, we introduce secure time-stamping, which is the key cryptographic
primitive to certify the time when data is created and is critical to support secure
data investigations. Finally, in Chap. 8, we summarize the monograph and outlook
some future research directions in secure cloud storage systems.

References

1. McAfee A, Brynjolfsson E, Davenport TH, Patil D, Barton D (2012) Big data: the management
revolution. Harv Bus Rev 90(10):60–68

2. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging
it platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener
Comput Syst 25(6):599–616

3. Sookhak M, Gani A, Talebian H, Akhunzada A, Khan SU, Buyya R, Zomaya AY (2015)
Remote data auditing in cloud computing environments: a survey, taxonomy, and open issues.
ACM Comput Surv 47(4):1–34

4. Mell P, Grance T (2011) The NIST definition of cloud computing. http://faculty.winthrop.edu/
domanm/csci411/Handouts/NIST.pdf

5. Zhang Y, Xu C, Li H, Yang K, Zhou J, Lin X (2018) HealthDep: an efficient and secure
deduplication scheme for cloud-assisted eHealth systems. IEEE Trans Ind Inf 14(9):4101–4112

6. Zhang K, Shen X (2015) Security and privacy for mobile healthcare networks. Springer, Berlin
7. Liang J, Qin Z, Xiao S, Ou L, Lin X (2019) Efficient and secure decision tree classification for

cloud-assisted online diagnosis services. IEEE Trans Dependable Secure Comput. https://doi.
org/10.1109/TDSC.2019.2922958

8. Liang J, Qin Z, Xiao S, Zhang J, Yin H, Li K (2020) Privacy-preserving range query over multi-
source electronic health records in public clouds. J Parallel Distrib Comput 135:127–139

9. Cao S, Zhang G, Liu P, Zhang X, Neri F (2019) Cloud-assisted secure eHealth systems for
tamper-proofing EHR via blockchain. Inf Sci 485:427–440

10. Zhang Y, Xu C, Zhao J, Zhang X, Wen J (2015) Cryptanalysis of an integrity checking scheme
for cloud data sharing. J Inf Secur Appl 23:68–73

11. Wang H, Zhang Y, Chen K, Sui G, Zhao Y, Huang X (2019) Functional broadcast encryption
with applications to data sharing for cloud storage. Inf Sci 502:109–124

12. Codeanywhere. https://codeanywhere.com
13. Google doc. http://www.google.cn/intl/zh-cn_all/docs/about/
14. Zhang Y, Xu C, Li H, Yang K, Cheng N, Shen X (2020) PROTECT: efficient password-based

threshold single-sign-on authentication for mobile users against perpetual leakage. IEEE Trans
Mob Comput. https://doi.org/10.1109/TMC.2020.2975792

15. Lin X, Ni J, Shen X (2018) Privacy-enhancing fog computing and its applications. Springer,
Heidelberg

16. Wang C, Wang Q, Ren K, Lou W (2010) Privacy-preserving public auditing for data storage
security in cloud computing. In: IEEE international conference on computer communications,
pp 1–9

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf
https://doi.org/10.1109/TDSC.2019.2922958
https://doi.org/10.1109/TDSC.2019.2922958
https://codeanywhere.com
http://www.google.cn/intl/zh-cn_all/docs/about/
https://doi.org/10.1109/TMC.2020.2975792

10 1 Introduction

17. Wang C, Chow SS, Wang Q, Ren K, Lou W (2013) Privacy-preserving public auditing for
secure cloud storage. IEEE Trans Comput 62(2):362–375

18. Zhang Y, Xu C, Liang X, Li H, Mu Y, Zhang X (2017) Efficient public verification of data
integrity for cloud storage systems from indistinguishability obfuscation. IEEE Trans Inf
Forensics Secur 12(3):676–688

19. Kamara S, Lauter K (2010) Cryptographic cloud storage. In: International conference on
financial cryptography and data security, pp 136–149

20. Zhang Y, Xu C, Yu S, Li H, Zhang X (2015) SCLPV: secure certificateless public verification
for cloud-based cyber-physical-social systems against malicious auditors. IEEE Trans Comput
Social Syst 2(4):159–170

21. Yang K, Jia X (2013) An efficient and secure dynamic auditing protocol for data storage in
cloud computing. IEEE Trans Parallel Distrib Syst 24(9):1717–1726

22. Zhang Y, Xu C, Lin X, Shen X (2019) Blockchain-based public integrity verification for cloud
storage against procrastinating auditors. IEEE Trans Cloud Comput. https://doi.org/10.1109/
TCC.2019.2908400

23. Armknecht F, Barman L, Bohli J, Karame GO (2016) Mirror: enabling proofs of data
replication and retrievability in the cloud. In: {USENIX} security symposium, pp 1051–1068

24. Zhang Y, Xu C, Li H, Liang X (2016) Cryptographic public verification of data integrity for
cloud storage systems. IEEE Cloud Comput 3(5):44–52

25. Daemen J, Rijmen V (2013) The design of Rijndael: AES-the advanced encryption standard.
Springer, Berlin

26. Bellare M, Keelveedhi S, Ristenpart T (2013) Message-locked encryption and secure dedu-
plication. In: Annual international conference on the theory and applications of cryptographic
techniques, pp 296–312

27. Curtmola R, Garay J, Kamara S, Ostrovsky R (2011) Searchable symmetric encryption:
improved definitions and efficient constructions. J Comput Secur 19(5):895–934

28. Zhang Y, Xu C, Ni J, Li H, Shen X (2019) Blockchain-assisted public-key encryption with
keyword search against keyword guessing attacks for cloud storage. IEEE Trans Cloud
Comput. https://doi.org/10.1109/TCC.2019.2923222

29. Lu R, Lin X, Liang X, Shen X (2010) Secure provenance: the essential of bread and butter
of data forensics in cloud computing. In: ACM symposium on information, computer and
communications security, pp 282–292

30. Haber S, Stornetta WS (1990) How to time-stamp a digital document. In: Annual cryptology
conference, pp 437–455

31. Zhang Y, Xu C, Li H, Yang H, She X (2019) Chronos: secure and accurate time-stamping
scheme for digital files via blockchain. In: IEEE international conference on communications,
pp 1–6

32. Zhang Y, Xu C, Cheng N, Li H, Yang H, Shen X (2019) Chronos+: an accurate blockchain-
based time-stamping scheme for cloud storage. IEEE Trans Serv Comput 13(2):216–229.
https://doi.org/10.1109/TSC.2019.2947476

https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2923222
https://doi.org/10.1109/TSC.2019.2947476

Chapter 2
Basic Techniques for Data Security

In this chapter, we introduce basic theorems, cryptographic primitives, and tech-
niques for protection of data security. These theorems, cryptographic primitives,
and techniques serve as fundamental building blocks in subsequent chapters and
have widely used in different application scenarios to ensure data security.

2.1 Data Authentication

We first present notations and conventions used in this monograph. We follow the
usage of asymptotic notation in [1].

Given two integers i, j ∈ N(i ≤ j), where N is the natural number set, we
denote by [i, j] the set {i, i + 1, i + 2, . . . , j }. Given a finite set T, |T| denotes
the number of components in T. Given two bit-strings x and y, x||y denotes their
concatenation. For a function F whose inputs include two fields, assuming its inputs
are a and b, its output is y, the computation of F is denoted by y = F(a, b).

Common notations and their description are given in the following. We denote
by ⊕ the exclusive-or (XOR) operator, by {0, 1}∗ the set of all finite bit-strings,
by {0, 1}n the set of all bit-strings of length n, by p a prime number, by Zp the
additive group of integers modulo p and the set {0, 1, . . . , p − 1}, by Z∗

p the
multiplicative group of invertible integers modulo p, by G an additive group, by
GT a multiplicative group, and by e a bilinear pairing described below.

Bilinear Maps We assume that G is an additive group whose order is a prime p

and GT is a multiplicative group with the same order. e : G×G → GT is a bilinear
map if it has three properties:

1. Bilinearity: e(xP, yQ) = e(P,Q)xy , ∀ P,Q ∈ G and a, b ∈ Z∗
p;

2. Non-degeneracy: ∀ P,Q ∈ G and P �= Q, e(P,Q) �= 1;
3. There is an efficient algorithm to compute e.

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_2&domain=pdf
https://doi.org/10.1007/978-981-15-4374-6_2

12 2 Basic Techniques for Data Security

We introduce several data authentication techniques, including message authen-
tication code, hash function, and digital signatures.

We stress that all these data authentication techniques only target at guarantee
message integrity, rather than message confidentiality. Note that these techniques
have the same goal (i.e., ensuring the integrity of the target message), but they are
applied in completely different scenarios, which will be elaborated later.

2.1.1 Message Authentication Code

The objective of a message authentication code is to protect an adversary against
tampering with a message sent by one entity to another, or against injecting a new
message, without detecting by the receiver.

MAC requires the sender (say Alice) and the receiver (say Bob) to share a
secret that is unknown to the adversary, it is a cryptographic primitive within the
symmetric-key setting, i.e., Alice and Bob share the same secret key k. When Alice
wishes to send a message M to Bob in an authenticated way, she computes a MAC
tag τ based on M and k, and sends M and τ to Bob. Upon receiving M and τ , Bob
verifies whether τ is valid by using k and the received M . Alice computes τ using
a tag-generation algorithm MAC. Bob verifies the validity of τ using a verification
algorithm Vrfy.

Formally, a MAC consists of three algorithms, i.e., KeyGen, MAC, and Vrfy,
such that

• KeyGen is a key-generation algorithm, it takes as input the security parameter
and outputs a key k;

• MAC is a tag-generation algorithm, it takes as input k and a message M ∈ {0, 1}∗,
and outputs a MAC tag τ .

• Vrfy is a verification algorithm, it takes as input k, M , and τ , outputs a bit of
{0, 1}, where if the output is 1, it means that τ is valid under k and M; if the
output is 0, it means that τ is invalid under k and M .

The security of MAC requires that an adversary cannot generate a valid tag on
any “new” message that its MAC tag was not previously generated. This security
is captured by a security notion of “existentially unforgeable under an adaptive
chosen-message attack.” Here, “existential unforgeability” refers to the fact that the
adversary must not be able to forge a valid tag on any message; “adaptive chosen-
message attack” refers to the fact that the adversary can get MAC tags on arbitrary
messages that are chosen adaptively during its attack, i.e., he can request a MAC tag
on any message from a so-called MAC oracle as needed without any limitation on
his choice [2].

2.1 Data Authentication 13

2.1.2 Hash Function

At a fundamental level, a hash function maps a long input string to a shorter output
string [3]. In this monograph, all hash functions we will use have the fixed-size
output, which means that the size of output string of the hash function is fixed. The
primary security requirement of hash functions is to achieve collision resistance [4].

Essentially, hash functions are two-input function that takes as input a key and a
string, and outputs a short, fixed-size string. However, the key is generally not kept
secret and the security requirement should be achieved even when the adversary
knows the key. In other words, in most cases, the key of the hash function is not
explicitly appeared when we describe the function and is inherently embedded into
the function as a public parameter.

Formally, a hash function h consists of two algorithms, i.e., KeyGen and h, such
that the following conditions hold.

• KeyGen is a key-generation algorithm, it takes as input a security parameter �

and outputs a key s.
• h takes as input s and a string x ∈ {0, 1}∗ and output a string hs(x) ∈ {0, 1}f (�),

where f is a function that maps � bits to some bits depending on the setting, and
hs(x) refers to the fact that s is inherently embedded into the function.

There are three security notions to capture the security of hash functions: col-
lision resistance, second-preimage/target-collision resistance, and preimage resis-
tance. The first one is the strongest one, and the last two are weaker than the first one.

Informally, a hash function h is collision resistant if it is computationally
infeasible for any adversary to find a collision in h; h is the second-preimage
resistant of given s and a uniform x, it is computationally infeasible for any
adversary to find x

′ �= x such that hs(x
′
) = hs(x); h is preimage resistant if given s

and a uniform y, it is computationally infeasible for any adversary to find an input
x such that hs(x) = y, which essentially means that hs is a one-way function.

As introduced before, both the MAC and the hash function are cryptographic
primitives to guarantee message integrity within symmetric-key cryptosystems.
However, there is a key difference between them, i.e., they are applied in completely
different scenarios [5].

Specifically, MAC is designed for such a scenario: Alice and Bob share a secret
key and want to communicate with each other in an authenticated way; Both Alice
and Bob do not hold the message and the MAC tag in advance; After receiving
a message as well as the corresponding MAC tag from Alice/Bob, Bob/Alice can
detect whether there is an adversary that has tampered with the message.

Whereas, the hash function is designed for such a scenario: Alice outsources a
message to a remote server (e.g., a cloud server) and wants to share the message
with Bob by allowing Bob to download the message from the server; The hash
value of the message is stored in a public but secure space such that Bob is able
to obtain it and confirms that the hash value is the correct one; Bob downloads the
message from the server and checks whether the downloaded message matches the
hash value.

14 2 Basic Techniques for Data Security

2.1.3 Digital Signature

Digital signatures can be considered as the public-key counterpart of message
authentication codes (MACs), and their syntax and security assurances are analo-
gous [1]. In a signature scheme, a signer first generates a pair of keys (sk, pk),
where sk is called a private key (or secret key) that should be kept secret and is used
to generate the signature and pk is called a verification key (or public key) that is
published publicly and is used to verify the validity of the signature. Given sk, it
is easy to compute pk, but given pk, it is infeasible to compute sk. This is based
on some mathematical hard problems. The signature scheme allows the signer to
generate a signature on a message using sk such that anyone who knows pk is able
to verify the validity of the signature and whether the message originated from the
singer was modified in transit. Compared with MAC, the signature scheme frees
from the heavy costs caused by sharing the MAC key among two entities. This
is economical and favorable for the scenario that a sender wants to send data to
multiple receivers. Signature schemes also provide the property of non-repudiation,
which is very useful and desirable in some application scenarios, but MAC cannot
provide. Non-repudiation refers to the fact that once the signer signs a message, he
cannot deny having done so at any later point in time. Furthermore, the signatures
are publicly verifiable, this allows that a signature on a message generated by the
signer could be shown to other entities if necessary.

Formally, a digital signature scheme consists of three algorithms: KeyGen, Sig,
and Vrfy, such that:

• KeyGen is a key-generation algorithm, it takes as input a security parameter �

and output a pair of keys (sk, pk) as described before.
• Sig is a signature-generation algorithm, it takes as input sk and a message

M , outputs a signature σ . In this monograph, this process is denoted by σ =
Sig(sk,M).

• Vrfy is a verification algorithm, it takes as input pk, M , and σ , and outputs a bit
of {0, 1}, where if the output is 1, it means that σ is valid under sk and M; if the
output is 0, it means that σ is invalid under sk and M .

The security of signature schemes requires that given a fixed pk generated by the
signer, it is computationally infeasible to forge a valid signature σ ∗ on a message
M∗, where M was not previously signed by the singer. This is also captured by
a security notion of existentially unforgeable under an adaptive chosen-message
attack, which is the direct analogue of the security notion for MAC.

In reality, to enable a sufficiently long message can be signed in one task, we
always utilize the hash-and-sign paradigm, where given a message M ∈ {0, 1}∗,
the signer first computes its hash value h(M) as the digest, then signs the digest.
Note that due to the collision resistance of h, such a paradigm would not impact the
security.

2.1 Data Authentication 15

Currently, some variants of the digital signature scheme are proposed with
different features for different application scenarios. Now, we introduce three of
them that would be used in subsequent chapters of this monograph.

Group Signature It is a specific type of signature algorithms [6, 7], where a group
of signers and a group manager are involved in the system. It has the following
properties:

• Only signers in the group can sign a message;
• Anyone can verify the validity of a group signature but cannot learn which singer

in the group signs it;
• If necessary, the signature can be “opened” with the aid of the group manager

such that the real identity of the signer in the group who generates the signature
can be retrieved.

The group signature is typically used in such a scenario: in a laboratory, a
specially crafted device (e.g., a dedicated printer) can only be used by a specific
group of users (e.g., the faculties in the laboratory). Due to resource limitations,
the number of service requests made by each user in the group submitted to the
device should be securely recorded. This can be achieved by employing a signature
scheme, where each request made by a user is related to a signature signed by the
user. However, to protect the users’ privacy, i.e., protecting the information about
who accesses the device and how many times a user requests service from the device
from other users, the signature should not reveal any information about the signer’s
identity. In addition, there is also a need to learn the information about the service
requests for each user if necessary. Note that traditional signature schemes cannot
satisfy the above requirements, but the group signature can be employed to address
all these problems.

Ring Signature Different from the group signature, a ring signature scheme only
involves a group of users without the group manager. As a consequence, the identity
of a user who generates a signature would not be revealed. The ring signature is
typically used in electronic auction systems and electronic voting systems. In an
electronic auction system, with the employment of the ring signature, an auctioneer
is able to determine the winning bid without leaking losing bids, which preserves
the privacy of bidders against leakage. Similarly, in an electronic voting system,
by adopting the ring signature, the “dealer” can calculate the voting results without
knowing the choice of each voter.

Blind Signature A blind signature scheme enables a receiver to obtain a signature
on a message from a signer, where both the message and the resulting signature
remain unknown to the signer. The blind signature is typically used in digital
cryptocurrencies. With the adoption of the blind signature, the bank is able to
authorize a transaction conducted by a user but does not know anything about the
transaction.

16 2 Basic Techniques for Data Security

2.2 Data Confidentiality

Data confidentiality is another important goal of modern cryptography, which
ensures that the data contents cannot be learned by any entity who is not authorized.
Data confidentiality is achieved by utilizing encryption schemes that keep the
plaintext generated by one entity hidden from an eavesdropper who can intercept
the communication channel and observe the ciphertext.

Generally, encryption schemes can be classified into two types: symmetric-key
encryption and public-key encryption, which will be elaborated in the following
sections.

2.2.1 Symmetric-Key Encryption

In the setting of symmetric-key encryption, two entities (e.g., Alice and Bob) share a
key and leverage this key when they want to communicate with each other secretly.
Specifically, Alice and Bob share a key k for subsequent communications. Alice
first generates a message M and encrypts M using k to obtain a ciphertext C. Then
Alice sends C to Bob. Upon receiving C, Bob decrypts it using k and recovers the
original message M .

In such an application, both Alice and Bob use the same key to convert the
message (i.e., plaintext) into a ciphertext and back. In other words, both entities
hold the same key that is used for encryption and decryption.

Formally, a symmetric-key encryption scheme consists of three algorithms:
KeyGen, E, and D, such that:

• KeyGen is a key-generation algorithm, it outputs a key k selected according to
some distribution.

• E is an encryption algorithm, it takes as input k and a message M and outputs
a ciphertext C. In this monograph, the encryption of M using k is denoted by
E(k,M).

• D is a decryption algorithm, it takes as input k and C, and outputs M or ⊥, where
⊥ means that the decryption fails. In this monograph, the decryption of C using
k is denoted by D(k,C).

The most basic security notion for symmetric-key encryption is the security
against a ciphertext-only attack, where an adversary only gets a single ciphertext.
This notion is motivated by the primary goal of encryption schemes that keeps the
plaintext generated by one entity hidden from an eavesdropper who can intercept the
communication channel. Ideally, we always desire that a symmetric-key encryption
is able to ensure that the adversary cannot learn any partial information about the
plaintext from the ciphertext. This requirement is captured by the notion of semantic
security and can be defined by such an indistinguishability game: given two plaintext
M0 and M1 with the same size, and one of their ciphertext Cb, (b ∈ {0, 1}), the
adversary cannot know the underlying plaintext of Cb.

2.2 Data Confidentiality 17

However, the above security notion is somewhat weak, since it only considers the
case that the adversary passively eavesdrops on a single ciphertext sent between two
honest entities. As such, two stringer security notions are proposed. The first one is
chosen-plaintext attacks (short for CPA) and the second one is the chosen-ciphertext
attacks (short for CCA).

In reality, it is common that Alice sends multiple ciphertexts that are generated
using the same key to Bob. In this case, the security against a ciphertext-only
attack cannot be suitable, since the adversary might be able to eavesdrop all these
ciphertexts with additional information to break the confidentiality of ciphertexts.
The security against such an adversary is captured by the notion of CPA. Intuitively,
CPA security refers to the fact that it is secure against the adversary who can know
the ciphertexts of some messages that are chosen by himself.

CCA is the strongest security notion, in which the adversary has the ability not
only to get the ciphertexts of messages that are chosen by himself, but also to get
the messages (i.e., plaintexts) of ciphertexts that are chosen by himself.

2.2.2 Public-Key Encryption

We notice that in a symmetric-key encryption, Alice and Bob have to agree on a
secret key before they communicate. Public-key encryption does not require this
key agreement process, i.e., it addresses the key-distribution problem that exists in
the symmetric-key encryption. Specifically, in a public-key encryption, there are
also two entities: a sender (say Bob) and a receiver (say Alice). Alice generates a
pair of keys (sk, pk), where sk is called a private key (or secret key) and pk is called
a public key. Similar to the digital signature, given sk, it is easy to compute pk, but
given pk, it is infeasible to compute sk. Alice publishes pk and lets everyone who
wants to send messages know pk. When Bob wants to send a message M to Alice,
he encrypts M using pk to obtain the ciphertext C, and sends C to Alice. Upon
receiving C, Alice is able to decrypt it using sk to obtain M .

Formally, a public-key encryption consists of three algorithms: KeyGen, Enc,
and Dec, such that:

• KeyGen is a key-generation algorithm, it takes as input the security parameter �

and outputs a pair of keys (sk, pk) as described above.
• Enc is an encryption algorithm, it takes as input pk and a message M and outputs

a ciphertext C. In this monograph, the encryption of M using pk is denoted by
Enc(pk,M).

• Dec is a decryption algorithm, it takes as input sk and C, and outputs M or ⊥,
where ⊥ means that the decryption fails. In this monograph, the decryption of C

using sk is denoted by Dec(sk, C).

The security notions of public-key encryption follow those of symmetric-key
encryption, including CPA security and CCA security. The basic ideas of these
notions are the same with a slight difference, due to the different cryptosystems.

18 2 Basic Techniques for Data Security

2.3 Threshold Cryptography

A threshold cryptosystem enables multiple entities to perform certain cryptographic
operations (e.g., signing a message, decrypting a ciphertext, and computing a shared
secret) in a threshold way, such that at least the threshold number of them can
efficiently accomplish the operations but less than the threshold number of them
cannot.

The first threshold cryptosystem is the Shamir’s secret sharing scheme [8]. It
considers such a problem: a dealer has a secret s and wants to share s among some
set of n users U1, U2, and Un by providing each one of them with a secret share;
It also wishes that any t of them can pool their secret shares and reconstruct s,
but coalition of less than t users would obtain nothing about s from their collective
shares. A secret sharing scheme that satisfies the above requirement is called a (t, n)-
threshold secret sharing scheme.

Based on the Shamir’s secret sharing scheme, several cryptographic schemes can
be constructed to achieve cryptographic operations in a threshold way. For example,
we can construct a threshold signature scheme to generate a signature if and only if
more than the threshold number of signers agrees on it [9]. This can be utilized in
an electronic voting system and group communications.

However, the Shamir’s secret sharing scheme also suffers from two problems.
First, its security relies on the security and reliability of the dealer. The dealer
generates the secret and distributes it to all users. If the dealer is compromised,
the secret would be leaked. At this point, the dealer becomes the single point of
failure in the system. Second, once the secret is shared among all users, the secret
share of each user would not be changed, which is vulnerable to a sophisticated
adversary (or a mobile adversary) who can perpetually attempt to break into these
users and corrupt their secret shares one by one. It is feasible and practical for such
the adversary to recover the secret given enough time. Therefore, for long-lived
secrets, protection provided by the Shamir’s secret sharing could be insufficient.

To address the first problem described above, a verifiable secret sharing scheme
is proposed [10]. To address the second problem, a proactive secret sharing scheme
is proposed [11, 12]. We will elaborate on these schemes in the following chapters.

2.4 Public-Key Cryptosystems

In previous sections, we have introduced several public-key cryptographic primi-
tives, such as public-key encryption and digital signature. We notice that a primary
requirement of them is that the public keys should be securely distributed. However,
this is non-trivial to be achieved, especially in large-scale networks. The key
problem to ensure the trustworthiness of public keys is to authenticate public
keys. From the perspective of methods that authenticate public keys, public-key
cryptosystems can mainly be classified into three categories: the ones are based

2.4 Public-Key Cryptosystems 19

on the public key infrastructure (PKI), the ones are based on users’ identities, and
the ones are based on certificateless cryptography, which will be elaborated in the
following.

2.4.1 PKI-Based Public-Key Cryptosystems

The key technique of PKI-based public-key cryptosystem is the digital certificate.
Essentially, a certificate is a signature binding an entity to some public key. To
ensure the trustworthiness of the certificate, in such a cryptosystem, a trusted
Certificate Authority (short for CA) is employed to issue certificates. At a high
level, in a PKI-based public-key cryptosystem, the public-key distribution can be
described as the following example.

We assume that there are three entities: Alice, Bob, and CA, where Alice wants to
publish her public key pkAlice to others including Bob. CA has generated a key-pair
(skCA, pkCA) for issuing certificates. After generating (skAlice, pkAlice) (skAlice is
the secret/private key of Alice), Alice requests a certificate from CA by sending
pkAlice to CA. Upon receiving pkAlice, CA computes the signature σCA→Alice

whose underlying message is CaAlice = “Alice’s public key is pkAlice.” We call
CertAlice = {σCA→Alice, CaAlice} a certificate for Alice’s key issued by CA.

Anytime Bob holds pkAlice and needs to verify its trustworthiness, he can request
CertAlice from Alice, and verifies the validity of CertAlice. The process that CA
verifies the validity of pkAlice and Alice chooses a trusted CA relies on a PKI
which enables the widespread distribution of public keys. In reality, a certificate
includes more data fields than that in the above example and different PKI models
are proposed for different application scenarios. Here we would not introduce them
in detail, but readers can refer to the references mentioned in Sect. 2.7.

Despite the advantages of the PKI-based public-key cryptosystem, it also suffers
from critical problems in terms of security and efficiency. Specifically, in such
the cryptosystem, Bob needs to manage the Alice’s certificate for subsequent
communications, this causes the certificate management problem to Bob, especially
when Bob needs to communicate with a large number of entities. The certificate
management problem includes certificate revocation, certificate storage, certificate
distribution, and certificate verification, which is inefficient and cumbersome in
practice and also faces security problems.

2.4.2 Identity-Based Public-Key Cryptosystems

To avoid the certificate management problem, an identity-based cryptosystem (short
for IBC) is proposed [13, 14], where an entity (say Bob) does not need to maintain
and verify the certificate of a target entity (say Alice).

20 2 Basic Techniques for Data Security

In IBC, the public key of Alice is her identity (e.g., her name, email address,
and identity number) which is publicly known and verifiable, and might be human-
memorisable. Therefore, it is easy to verify the validity of Alice’s public key for
Bob without the assistance of CA.

To achieve the above requirement, a trusted entity, called private key generator
(Short for PKG), is employed to generate the private key for each user in the system.
PKG holds a master secret key msk and publish the corresponding public key and
generates skAlice using msk and the Alice’s identity IDAlice.

However, IBC has an inherent disadvantage, i.e., the key escrow problem. Note
that in IBC, each user’s private key is generated by PKG, obliviously, this private
key is not only known to the user herself/himself, but also known to PKG. As a
consequence, IBC cannot ensure true non-repudiation in the way that PKI can, and
is also vulnerable to compromised PKG.

2.4.3 Certificateless Public-Key Cryptosystems

To address the certificate management problem existing in PKI-based cryptosys-
tems and the key escrow problem existing in IBC, a paradigm of certificateless
cryptosystem is proposed [15]. In such a cryptosystem, an independent entity,
called key-generation center (short for KGC), is employed to free from the use of
certificates and the key escrow problem.

The certificateless cryptosystem is intermediate between the PKI-based cryp-
tosystem and IBC. In a certificateless cryptosystem, a user’s private key consists
of two parts. The first part is computed by KGC using the user’s identity and a
master secret key, and the second part is generated by the user herself/himself.

Compared with the PKI-based cryptosystems and IBC, generally, in certifi-
cateless cryptosystems, the cryptographic algorithms are always less efficient.
Therefore, we cannot say that which one of these three types of cryptosystems is
“best,” it depends on the target application scenarios.

2.5 Blockchain

From the perspective of technique, a blockchain is a linear collection of data
elements, where each data element is called a block. All blocks are linked to form
a chain which is secured using a cryptographic hash function and is maintained by
a group of participants. Each block typically contains a hash pointer as a link to a
previous block, a timestamp, and transaction data. Only if a transaction’s validity
is verified by a majority of the participants, it can be recorded into the block.
Generally, blockchains can be classified into two types: private blockchain and
public blockchain. For a private blockchain (including the consortium blockchain),
the participants who perform the verification are authorized by the blockchain

2.5 Blockchain 21

managers or are the managers themselves. For a public blockchain, anyone in
the network can become the participant to perform the verification without any
limitation.

Public blockchains serve as a key component in decentralized cryptocurrencies,
e.g., Bitcoin [16] and Ethereum [17]. Essentially, in these cryptocurrencies, the
blockchain is leveraged to record a public ledger to keep track of the ownership
of each underlying value token. A transaction can be considered as a function that
changes the ownership of specific tokens and updates the ledger. The participants
who maintain the blockchain and add new blocks containing transactions are called
miners. The security of blockchains ensures that only valid transactions can be
recorded. Consensus algorithms play a key role in blockchain systems. Currently,
public blockchain systems can be based on multiple consensus algorithms, e.g.,
proof of work (PoW) [16], proof-of-stake (PoS) [18], proof-of-space [19], etc. In the
remainder of this monograph, we only use public blockchains (especially Ethereum
[17]) to enhance data integrity. Generally, the security level a public blockchain
can achieve is related to lots of factors, but it can be reflected by the market
capitalization. The higher market capitalization a public blockchain has, the higher
costs that an adversary breaks the security are.

A simplified Ethereum blockchain is illustrated in Fig. 2.1. A block consists of
two parts of data. The first one is called the block header which is used to compute
the hash value of the block. It includes the following data fields:

• Hash value of the last block. It serves as a pointer to the previous block, such that
all blocks form a chain.

• Nonce. It is a solution of the PoW puzzles. The miner, who is the first one that
finds a valid nonce, can determine and publish this block.

• Timestamp. It is a physical time that indicates when the corresponding block was
created.

• Merkle root. It is the root value of a Merkle hash tree computed from all
transactions in the current block.

The second one is called the transaction data, which includes all transactions in
the current block. A graphical transaction in Ethereum is depicted in “Transaction”
of Fig. 2.1.

The ledger of Ethereum can be thought of as a state transition system, where
there is a “state” consisting of the ownership status of all existing Ethers (which are
the value token of the Ethereum blockchain) and a “state transition function” that
takes a state and a transaction as input, and outputs a new state which is the result.
When a new block is added into the chain, all transactions recorded in the block
should be verified first, and then miners compute a valid nonce such that the hash
value of the block is less than or equal to a value provided by the Ethereum system.
This process is a proof of work and is well known as “Mining.” Here, we only
introduce the PoW-based Ethereum, other versions of Ethereum that are based on
PoS or other consensus algorithms would not be used in this monograph and would
not be introduced here. The first miner who finds the nonce broadcasts the block of
transactions together with this nonce. Other miners can verify that the nonce is a

22 2 Basic Techniques for Data Security

F
ig

.2
.1

Si
m

pl
ifi

ed
E

th
er

eu
m

bl
oc

kc
ha

in

2.5 Blockchain 23

valid solution, and hence add the new block to their blockchain. Once the block is
added to the chain, all the corresponding state information has been updated.

In Ethereum, the state is made up of objects called “account.” In general, there
are two types of accounts in Ethereum: externally owned accounts and contract
accounts.

Externally owned accounts are controlled by secret keys and can conduct a
transaction.

Contract accounts are controlled by their contract code, and each smart contract
corresponds to a contract account. After the contract is deployed and contained
by the Ethereum blockchain, one can send message to the contract account (i.e.,
transferring Ethers from an account to the contract account) to trigger the execution
of the smart contract, where the data included in the “data field” can be set to be the
input of the contract.

For the transaction between two external owned accounts, i.e., the payer transfers
Ethers from her/his account to the payee’s account, if the transaction is recorded into
the blockchain, the balances of these two accounts are updated. We notice that the
transactions between two external accounts in Ethereum also include a “data” field.
The payer can set the data field to be any binary data she/he selects when she/he
generates the transaction.

There are three fundamental properties in the Ethereum blockchain as well as
existing secure blockchain systems [18, 20–22]:

• ϕ-chain consistency. Blockchains of any two honest miners at any point in time
during the mining execution can differ only in the last ϕ blocks, this is shown in
Fig. 2.2.

• (ι, ϕ)-chain quality. For an honest miner’s blockchain, the fraction of blocks
mined by honest miners in any sequence of ϕ or more successive blocks is at
least ι. In other words, the probability that any ϕ successive blocks in a secure
PoW-based blockchain are generated by an adversarial miner whose hashrate is
less than 51% of the network’s mining hashrate can be negligible, as shown in
Fig. 2.2. In Ethereum, ϕ ≥ 12.

Fig. 2.2 Illustration of ϕ-chain consistency

24 2 Basic Techniques for Data Security

• Chain growth. The number of blocks that are added to the blockchain during any
given time interval is deterministic. In other words, the blockchain height can be
trusted to steadily increase with respect to either short or long term.

With the above fundamental properties as well as the inherent characteristics
of PoW-based consensus algorithm, we derive two properties from the Ethereum
blockchain as follows [23–26], which will be utilized in subsequent sections.

• Unpredicted hash value. The hash value (denoted by Blockhash in Fig. 2.1) of
each block on the chain only can be determined after a valid nonce is computed
and verified by all miners. Once the block is appended to the chain, its hash value
is deterministic and would never be changed. This means that given a time t , if t

is a past time, the hash value of the latest block that has appeared since t in the
blockchain is deterministic, and can be extracted efficiently; if t is a future time,
the hash value is computationally unpredictable. We stress that the fact that the
hash value of blocks generated in the future cannot be predicted does not mean
that the hash value cannot be biased by an adversary who has infinite budget.
Since the adversary can incentivize a miner who first mines a block to throw the
newly mined block away and continue to mine if the hash value of the block does
not meet the adversary’s requirement [27]. We also notice that other PoW-based
on-chain currencies, such as Bitcoin, also have this feature [28, 29].

• Time-sensitive data state. For a transaction with a string T i as its Data value,
if a block including this transaction is accepted by a majority of miners and is
chained to the blockchain, the string T i is then time-stamped. It means that T i is
generated no later than the time that the block is chained to the blockchain. Thus
T i is time-sensitive.

2.6 Trusted Execution Environments

Most smartphones support system-wide trusted execution environments (short for
TEEs), such as ARM TrustZone (http://www.arm.com). Such devices have two
processors: an application processor and a baseband processor.

The application processor runs the mobile operating system (e.g., Android) and
the applications on top of it. The application processor also runs a small layer of
software called trusted operation system (short for OS) and the trusted applications
on top of it. Consequently, the application processor supports two execution states:
normal world and secure world, and only one state is active at a time. A trusted
application can be executed in the secure world, only if it is certified by the device
manufacturer.

The baseband processor runs the baseband operating system and handles cellular
communications and mediates communications between the application processor
and the subscriber identity module (short for SIM).

The architecture of a mobile device with the TrustZone system is described in
Fig. 2.3, where we omit peripherals such as GPS, Bluetooth, etc. The smartphone

http://www.arm.com

References 25

Fig. 2.3 The architecture of TrustZone-enabled smartphones

manufacturer embeds a device-specific key-pair in each smartphone, and also
certifies each smartphone. Each smartphone has a device certificate, which contains
an immutable device identifier (e.g., International Mobile Equipment Identity,
IMEI) and the public key of the smartphone. The secret key embedded in the device
is only accessible by applications that run in the secure world [30, 31].

2.7 Summary and Further Reading

In this chapter, we have introduced basic theorems, cryptographic primitives, and
techniques for the protection of data security, which serves as the preliminary
knowledge for the subsequent chapters.

In this chapter, all theorems, cryptographic primitives, and techniques are only
briefly introduced. Readers are advised to related references for more technical
details. Specifically, in [32], Menezes provides a survey on the bilinear pairing.
The security definition for MAC is adapted by Bellare et al. [2]from the security
definition for digital signatures provided by Goldwasser et al. [33]. The signature
scheme utilized in the subsequent chapters is the BLS signature [34, 35], it is very
easy to be understood. The pros and cons of PKI-based cryptosystems are detailed
in [36, 37]. A comprehensive survey on the blockchain can be found in [38, 39]. An
introduction of TEEs is provided in [40].

References

1. Katz J, Lindell Y (2014) Introduction to modern cryptography. CRC Press, New York
2. Bellare M, Kilian J, Rogaway P (2000) The security of the cipher block chaining message

authentication code. J Comput Syst Sci 61(3):362–399

26 2 Basic Techniques for Data Security

3. Carter JL, Wegman MN (1979) Universal classes of hash functions. J Comput Syst Sci
18(2):143–154

4. Damgård IB (1989) A design principle for hash functions. In: International conference on the
theory and application of cryptology, pp 416–427

5. Stinson DR (2005) Cryptography: theory and practice. Chapman and Hall/CRC, London
6. Chaum D, Heyst EV (1991) Group signatures. In: Workshop on the theory and application of

cryptographic techniques, pp 257–265
7. Camenisch J, Stadler M (1997) Efficient group signature schemes for large groups. In: Annual

cryptology conference, pp 410–424
8. Shamir A (1979) How to share a secret. Commun ACM 22(11), pp 612–613
9. Zhang K (1997) Threshold proxy signature schemes. In: International workshop on information

security. Springer, Berlin, pp 282–290
10. Chor B, Goldwasser S, Micali S, Awerbuch B (1985) Verifiable secret sharing and achieving

simultaneity in the presence of faults. In: IEEE annual symposium on foundations of computer
science, pp 383–395

11. Herzberg A, Jarecki S, Krawczyk H, Yung M (1995) Proactive secret sharing or: how to cope
with perpetual leakage. In: Annual cryptology conference, pp 339–352

12. Zhang Y, Xu C, Li H, Yang K, Cheng N, Shen X (2020) PROTECT: efficient password-based
threshold single-sign-on authentication for mobile users against perpetual leakage. IEEE Trans
Mob Comput. https://doi.org/10.1109/TMC.2020.2975792

13. Shamir A (1984) Identity-based cryptosystems and signature schemes. In: Workshop on the
theory and application of cryptographic techniques, pp 47–53

14. Boneh D, Franklin M (2001) Identity-based encryption from the weil pairing. In: Annual
cryptology conference, pp 213–229

15. Al-Riyami SS, Paterson KG (2003) Certificateless public key cryptography. In: International
conference on the theory and application of cryptology and information security, pp 452–473

16. Nakamoto S, Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
17. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum

Project Yellow Pap 151:1–32
18. Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: a provably secure proof-of-

stake blockchain protocol. In: Annual cryptology conference, pp 357–388
19. Dziembowski S, Faust S, Kolmogorov V, Pietrzak K (2015) Proofs of space. In: Annual

cryptology conference, pp 585–605
20. Garay J, Kiayias A, Leonardos N (2015) The bitcoin backbone protocol: analysis and

applications. In: International conference on the theory and applications of cryptographic
techniques, pp 281–310

21. Kiayias A, Panagiotakos G (2015) Speed-security tradeoffs in blockchain protocols. IACR
Cryptol ePrint Archive 2015:1–19

22. Badertscher C, Maurer U, Tschudi D, Zikas V (2017) Bitcoin as a transaction ledger: a
composable treatment. In: Annual cryptology conference, pp 324–356

23. Zhang Y, Xu C, Lin X, Shen X (2019) Blockchain-based public integrity verification for cloud
storage against procrastinating auditors. IEEE Trans Cloud Comput. https://doi.org/10.1109/
TCC.2019.2908400

24. Zhang Y, Xu C, Ni J, Li H, Shen X (2019) Blockchain-assisted public-key encryption with
keyword search against keyword guessing attacks for cloud storage. IEEE Trans Cloud
Comput. https://doi.org/10.1109/TCC.2019.2923222

25. Zhang Y, Xu C, Cheng N, Li H, Yang H, Shen X (2019) Chronos+: an accurate blockchain-
based time-stamping scheme for cloud storage. IEEE Trans Serv Comput. https://doi.org/10.
1109/TSC.2019.2947476

26. Zhang Y, Xu C, Li H, Yang H, She X (2019) Chronos: secure and accurate time-stamping
scheme for digital files via blockchain. In: IEEE international conference on communications,
pp 1–6

27. Pierrot C, Wesolowski B (2018) Malleability of the blockchain’s entropy. Cryptography
Commun 10(1):211–233

https://doi.org/10.1109/TMC.2020.2975792
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2923222
https://doi.org/10.1109/TSC.2019.2947476
https://doi.org/10.1109/TSC.2019.2947476

References 27

28. Armknecht F, Bohli J, Karame GO, Liu Z, Reuter CA (2014) Outsourced proofs of retrievabil-
ity. In: ACM conference on computer and communications security, pp 831–843

29. Zhang Y, Xu C, Yu S, Li H, Zhang X (2015) SCLPV: secure certificateless public verification
for cloud-based cyber-physical-social systems against malicious auditors. IEEE Trans Comput
Soc Syst 2(4):159–170

30. Kostiainen K, E R, Ekberg J, Asokan N (2011) Old, new, borrowed, blue—a perspective
on the evolution of mobile platform security architectures. In: ACM conference on data and
application security and privacy, pp 13–24

31. Zhang Y, Xu C, Li H, Yang K, Zhou J, Lin X (2018) HealthDep: an efficient and secure
deduplication scheme for cloud-assisted eHealth systems. IEEE Trans Ind Inf 14(9):4101–4112

32. Menezes A (2009) An introduction to pairing-based cryptography. Recent Trends Cryptogra-
phy 477:47–65

33. Goldwasser S, Micali S, Rivest RL (1988) A digital signature scheme secure against adaptive
chosen-message attacks. SIAM J Comput 17(2):281–308

34. Boneh D, Lynn B, Shacham H (2001) Short signatures from the weil pairing. In: International
conference on the theory and application of cryptology and information security, pp 514–532

35. Boneh D, Lynn B, Shacham H (2004) Short signatures from the weil pairing. J Cryptol
17(4):297–319

36. Gutmann P (2002) PKI: it’s not dead, just resting. Computer 35(8):41–49
37. Adams C, Lloyd S (2003) Understanding PKI: concepts, standards, and deployment consider-

ations. Addison-Wesley Professional, New York
38. Tschorsch F, Scheuermann B (2016) Bitcoin and beyond: a technical survey on decentralized

digital currencies. IEEE Commun Surv Tutorials 18(3):2084–2123
39. Conti M, Kumar S, Lal C, Ruj S (2018) A survey on security and privacy issues of bitcoin.

IEEE Commun Surv Tutorials 20(4):3416–3452
40. Sabt M, Achemlal M, Bouabdallah A (2015) Trusted execution environment: what it is, and

what it is not. In: IEEE international conference on trust, security and privacy in computing
and communications, vol 1, pp 57–64

Chapter 3
Cloud Storage Reliability

This chapter introduces the data integrity verification technique for cloud storage
systems. First, the basic paradigms and principles of the data integrity verification
technique are presented. Then, a comprehensive survey on the data integrity
verification technique is provided, where existing data integrity verification schemes
are introduced, and their pros and cons are analyzed. Finally, the latest advances in
the data integrity verification technique are studied.

3.1 Data Integrity

Cloud storage services provide users an efficient and flexible way to manage their
data such that users are free from heavy local storage costs. In a cloud storage
system, the storage service is provided by a cloud server which is subject to a cloud
service provider, where users outsource their data to cloud servers and access their
data remotely.

Although users enjoy great benefits from these services, data outsourcing has also
incurred critical threats towards data integrity. Unlike traditional data management
paradigm, where users store their data locally, users would not physically own their
data once having outsourced the data to the cloud server. As such, the integrity
of outsourced data is being put at risk in reality. Specifically, although cloud
service providers put their efforts into enhancing the reliability of their storage
infrastructures in terms of hardware, software, and devices, they still suffer from the
broad range of both internal and external threats towards the integrity of outsourced
data. On the one hand, the cloud service provider may always conceal incidents
of data corruption for a good reputation. A typical incident1 appeared recently is
that QCloud completely lost a part of the outsourced data from a business user due

1http://www.xinhuanet.com/finance/2018-08/13/c_129931885.htm.

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_3&domain=pdf
http://www.xinhuanet.com/finance/2018-08/13/c_129931885.htm
https://doi.org/10.1007/978-981-15-4374-6_3

30 3 Cloud Storage Reliability

to a series of maloperations made by employees working at the service provider,
which causes more than 10 million dollars loss (evaluated by the business user).
In addition, a cloud service provider who is greedy for profit may delete a part of
outsourced data that is never accessed by users to reduce the storage costs. On the
other hand, an external adversary motivated by financial or political reward may be
interested in distorting the outsourced data but attempt to convince the users that
their data are still maintained intact.

As a consequence, data integrity becomes the fundamental factor that affects
the reliability of cloud storage systems. If the integrity of outsourced data cannot
be guaranteed, the cloud service provider fails to ensure the normal archiving
service, let along provides other services (such as data deduplication, retrieval, and
investigations) based on the outsourced data.

The most effective way to ensure the integrity of outsourced data is the data
integrity verification technique, where the integrity of outsourced data is verified
periodically. Once the data corruption occurs, users would be informed as soon as
possible, stop using the outsourced data at once, and recover the corrupted data with
the aid of the cloud server.

In this chapter, we introduce the data integrity verification technique for cloud
storage systems.

3.2 Proofs of Storage: Definition and Criteria

The concept of proofs of storage is to construct a storage auditing mechanism to
allow data owners to verify that their data remains intact on an untrusted server,
which reassures them that their data are correct and indeed available. To construct
secure and practical proof-of-storage systems, two cryptographic primitives were
proposed at the same time. The first one is proofs of retrievability (PoR) [1] and
the second one is provable data possession (PDP) [2]. Both PoR and PDP are built
on a challenge-response model: the verifier challenges the storage server to the data
integrity, and the storage server responds with a proof. Once the proof is verified,
the verifier considers that the data are well maintained. Juels et al. [1] first define the
security model of proofs of storage: in a secure proof-of-storage system, if a storage
server can pass the verification, a special extractor algorithm is able to extract the
outsourced data with interacting with the server. The difference between PoR and
PDP would be discussed later.

Existing PoR/PDP-based proof-of-storage schemes can be mainly classified into
two categories: private verification and public verification. The main difference
between these two categories of verification schemes is that who verifies the data
integrity. In a private verification scheme, the verification is performed by the data
owner herself/himself, which can be constructed on symmetric-key cryptosystems.
In a public verification scheme, the verification is performed by an independent
entity (who is called third-party auditor, short for TPA), and the scheme is
constructed on public-key cryptosystems.

3.2 Proofs of Storage: Definition and Criteria 31

Data flow

Data integrity Verification

Fig. 3.1 System model of private verification

3.2.1 Threat Models

Generally, as shown in Fig. 3.1, there are two entities in a private verification
scheme: users and cloud server.

Users are data owners, they outsource their data to the cloud server, access the
outsourced data as needed, and periodically verify the data integrity. After data
outsourcing, the user will periodically interact with the cloud server to verify data
integrity.

The cloud server is subject to the cloud service provider, and provides cloud
storage services. It has not only significant storage space, but also a massive amount
of computing power.

The procedure of private verification is straightforward: a user generates his/her
data, processes the data using some algorithms to support the data integrity
verification, and outsources processed data to the cloud server. The cloud server
well maintains the outsourced data and periodically proves the data integrity to the
user.

Integrating private verification into cloud storage systems surely guarantees the
integrity of outsourced data, but it also suffers from the following problems.

First, the private verification paradigm relies on users themselves to periodically
execute the integrity verification, which requires users to keep online to interact with
the cloud server for the verification. As a consequence, users have to bear heavy
communication burden to handle verification tasks.

Second, the usage of cloud storage services for users is further complicated
and the overhead of using cloud storage services is increased. From the users’
perspective, it is best to leverage cloud storage services in a black-box way with
minimal overhead and simplest operations, such that the users can retrieve the
outsourced data without performing too many additional operations.

Third, a cloud server needs to serve multiple users in reality, and would be
confronted with heavy costs if it periodically proves the integrity of different parts
of data to corresponding users. Actually, it is more advantageous for the cloud server
to only entertain verification requests from a single designated entity.

Last but not least, data verification results not only reflect the corresponding
states of integrity for the outsourced data, but also serve as the most important
criterion that is used to evaluate the quality of the cloud storage service. In private

32 3 Cloud Storage Reliability

Data flow

Data integrity verification

Verification log
If the verification succeeds

……
If the verification fails

Time Result

Fig. 3.2 System model of public verification

verification schemes, collecting the verification results from different users also
incurs additional and heavy costs.

To address the above problems, a public verification paradigm has been proposed
[2]. The idea is to employ an external and independent auditor, who has expertise
and capabilities that users do not, to verify the data integrity on behalf of users.

Generally, there are three entities in a public verification scheme, as shown in
Fig. 3.2. Compared with its private counterpart, a third-party auditor is employed to
periodically interact with the cloud server for the data integrity verification.

The procedure of public verification is more complex than that of private veri-
fication: the user generates his/her data, processes the data using some algorithms
to support the data integrity verification, and outsources processed data to the cloud
server. After data outsourcing, the user sets a verification period (i.e., the frequency
at which the auditor performs the verification). Then the auditor interacts with the
cloud server to verify the outsourced data integrity at the corresponding time. In
practice, the auditor generates a verification report containing all verification results.
If in any period the verification result is “Reject,” it means that the data may be
corrupted, and the auditor needs to inform the user at once. Otherwise, the auditor
generates a verification log and stores the log into the report. The user is able to
access this verification report as needed.

According to the procedure of public verification, we can observe that in public
verification schemes, from the user’s perspective, if the outsourced data is corrupted,
the longest delay within which she/he needs to find the data corruption should be
the verification period.

3.2 Proofs of Storage: Definition and Criteria 33

3.2.2 Security Criteria

Both private and public verification schemes should be evaluated by criteria in terms
of practicality and security. The criteria can be divided into two parts: system criteria
and crypto criteria.

System criteria include:

• Efficiency. A proof-of-storage scheme should be as efficient as possible in terms
of communication and computation overhead. An auditor (in private proof-of-
storage schemes, the data owner serves as the auditor) can verify the data integrity
without downloading the entire data set.

• Boundless verification. The auditor is able to verify the data integrity without
prior bounds on the number of verification interactions.

• Stateless auditor. The auditor should be stateless and should not need to maintain
and update state during verification.

Crypto criteria include:

• Soundness. Any time a storage server passes the auditor’s verification, it must
possess the specified data intact.

• Resistance against external adversaries. A proof-of-storage scheme should resist
a common type of attack, where an external, active, and online adversary
modifies the outsourced data and tampers with the interaction messages between
the cloud server and auditor to pass the verification.

In regards to public verification schemes, there are some additional requirements
in terms of efficiency and security.

• The auditor, who has the system (public) parameter, is able to verify the data
integrity without the data owner’s participation. This requirement is a basis of
public verification schemes, since if each verification requires the data owner’s
participation, the data owner can leverage private verification schemes to verify
the data integrity.

• The auditor cannot impersonate the user to generate and outsource valid data,
even if it colludes with the cloud server. This requirement is very important in
reality. If the auditor can impersonate the user, i.e., the auditor has the user’s
secret key to process the data, the user cannot further control the auditor. As a
consequence, the auditor can delegate the verification to others without the user’s
permission. Furthermore, if the user attempts to employ another auditor, she/he
needs to download the entire data set, re-process the data using a new secret key,
and outsource the processed data to the cloud server. This introduces heavy costs
in terms of communication and computation on both cloud server and user sides.

34 3 Cloud Storage Reliability

3.3 Proofs of Storage for Cloud Storage Systems

Early systems that implement proofs of storage were proposed in literature [3–5],
where these works consider the scenario that data are stored on an untrusted server
and the integrity of data should be checked. We stress that these prior works focus
on the system that users’ data are stored on a remote storage server which can be
considered as a nascent stage of cloud storage systems.

We briefly review these prior works and give an analysis in terms of security and
efficiency.

Let M be the data stored on a server S and V be the verifier to check the
data integrity. Since S are vulnerable to attacks, the trustworthiness of integrity
verification results on the data reported by S is arguable; downloading the entire
data set from S would cause prohibitive communication costs.

In [3], the authors propose a remote integrity checking scheme enabling a verifier
to check the data integrity in a challenge-response way: V periodically generates a
random element R as a challenge, and sends R to S; S generates the hash value
prf = h(R||M) as the corresponding proof and sends prf to V ; V verifies the
data integrity by checking the validity of prf . To verify the validity of prf , V
has to pre-compute all possible prf and maintain them locally. To free V from
maintaining large number of pre-computed proofs, the challenges are generated
using the hashchain, as shown in Fig. 3.3: the last challenge R|�| is randomly chosen
from Zp and kept securely; For i = 1, 2, . . . , |�| − 1, Ri = h(Ri+1). With R|�|, V
can compute all other challenges for verification, but given Ri , it is computationally
infeasible to compute Ri+1, due to the preimage resistance of hash function h.

Y. Deswarte et al. [3] also propose an alternative scheme based on Diffie–
Hellman key exchange protocol [6]. Specifically, the data M is represented by an
integer, N is the RSA modulus which is the product of two distinct odd primes p and
q , φ(N) = (p−1)(q −1) is the Euler function. V randomly chooses a ∈ [2, N −2]
and pre-computes Pre = aM (mod N). a is published. When V verifies the data
integrity, it randomly chooses r ∈ [2, N − 2], computes A = ar (mod N) as a
challenge, and sends A to S. S computes B = AM (mod N) as the proof and sends
B to V . V verifies the integrity of M by verifying whether Prer (mod N) = B

holds, if it holds, the data is well maintained.
Although the schemes proposed by Y. Deswarte et al. [3] provide the data

integrity assurance, they are also confronted with some efficiency issues. In particu-

Fig. 3.3 The generation challenge in [3]

3.3 Proofs of Storage for Cloud Storage Systems 35

lar, the basic scheme constructed on the hash function cannot achieve the boundless
verification described in Sect. 3.2.2. It means that the data owner needs to download
the entire data set and re-generate the hash values for data integrity verification,
which introduce heavy costs in terms of communication and computation. The
improved scheme constructed on Diffie–Hellman key exchange protocol achieves
the boundless verification. However, in this scheme, the data is represented by an
integer that is less than the RSA modulus N . If |N | = 1024 bits, the data size
|M| < 1024 bits. If the size of M is large, the data owner needs to split M into
multiple blocks, e.g., M = {M1,M2, . . . ,Mn}, such that the size of each block is
less than 1024 bits. The data owner then pre-computes a verification value Prei

for each block Mi, i = 1, 2, . . . , n. For a verification task, S has to compute n

proofs and send them to V to prove the data integrity, this introduces prohibitive
costs in terms of storage, communication, and computation. Subsequent schemes
[4, 5] are constructed on signature schemes to free from pre-computing values used
for verification, which improves efficiency. However, in these schemes, the proof
generated by S includes one signature per each block. This makes the size of the
proof linearly increases with the number of blocks. In addition, in the above schemes
[3–5], to prove the data integrity, S needs to access all the data blocks (we assume
the data consists of n blocks as described above) to compute the proof, this also
causes the expensiveness in input/output (I/O). Furthermore, all these schemes are
in the absence of a theoretical treatment and there is no precise indication of what
proof-of-storage systems do or do not accomplish.

In CCS’07, two systematic works on proof-of-storage were proposed by Ateniese
et al. [2] and Juels et al. [1], separately. We next briefly introduce them one by one
and analyze their cons and pros.

In [1], Juels et al. first define a cryptographic primitive called proofs of
retrievability (PoRs). A PoR scheme enables S to produce a concise proof that
V can retrieve the object data M . The authors define the formal security model
of PoRs. Intuitively, the security of PoRs ensures that S cannot “cheat” V , where
“cheat” means that S does not store the target data M but convinces V that M

can be retrieved. Juels et al. also propose a sentinel-based PoR scheme. In the
scheme M is processed as follows. First, the data owner (i.e., V) processes M

using an error correcting code algorithm such that M = {Mi}(i = 1, . . . , n) and
V can retrieve M if she/he has any t blocks of {M1, . . . ,Mn}. Then, V encrypts
M using a symmetric-key encryption with a random key k: C = E(k,M) =
{E(k,M1), E(k,M2), . . . , E(k,Mn)} = {C1, C2, . . . , Cn}. V computes a set of s

sentinels {a1, a2, . . . , as}, where for j = 1, 2, . . . , s, aj is a random string with
the same size of each sentinel. V randomly inserts these sentinels into {C1, . . . , Cn}
to yield Ĉ, records the positions of all sentinels, and outsources Ĉ to S. When V
verifies the integrity of Ĉ, she/he randomly selects a subset of a1, a2, . . . , as , sets
the indexes (i.e., positions) of these sentinels in Ĉ as the challenge, and sends the
challenge to S. If S sends the corresponding sentinels to V . If and only if all the
sentinels received from S are valid, the retrievability of Ĉ is ensured.

The sentinel-based PoR scheme [1] also suffers from some issues. First, it
cannot achieve the boundless verification, which causes heavy costs in terms of

36 3 Cloud Storage Reliability

communication and computation as discussed before. Second, it cannot support
public verification, i.e., V is the data owner and cannot be delegated by other
data owners. Actually, if a data owner delegates the verification to an independent
auditor, the auditor is able to impersonate the user to generate the valid data Ĉ.

In [2], Ateniese et al. propose a cryptographic primitive called provable data
possession (PDP). A PDP scheme allows a user that has outsourced data on
an untrusted server to verify that the server possesses the original data without
retrieving it. Ateniese et al. construct a PDP scheme on homomorphic verifiable tags
(HVTs) that are derived from RSA-based homomorphic signatures [7]. In this work,
the concept of sampling verification is proposed to improve the efficiency, which
also serves as a general principle for subsequent verification schemes. Sampling
verification refers to a strategy that V only chooses a random subset of all data
blocks (e.g., sample 300 blocks from 10,000 ones) and verifies the integrity of
the sampled blocks. If the verification passes, the integrity of the entire data set
is ensured. Due to the homomorphism of HVTs, V can checks multiple data
blocks simultaneously without retrieving them. Specifically, M is first split into
n blocks M = {Mi}(i = 1, . . . , n). For each block Mi , V computes a HVT as
σi = (h(i||name) · gMi)d (mod N), where name ∈ ZN is the name of M , g is a
generator of QRN (which is the set of quadratic residues modulo N), sk = (e, d, v)

is secret key, and pk = (N, g) is the corresponding public key. V outsources
M̂ = {M1,M2, . . . ,Mn, σ1, σ2, . . . , σn} to S. To prove the integrity of M̂ , S only
needs to send a proof σ = ∏

i∈I σ
vi

i (and auxiliary information) to V , where I is the
set of challenged blocks’ indexes and vi is random value used to ensure the freshness
of the proof. V can verify the integrity of M̂ by verifying σ without downloading
the corresponding blocks from S.

In [2], the proposed PDP scheme is the first one that supports public verification,
where an auditor who has the public parameters (name, pk, n) can verify the
integrity of M̂ on behalf of V . On the other hand, the proposed PDP scheme is
constructed on the RSA cryptosystem. To achieve 80-bit security, the RSA modulus
N should be at least 2048 bits, which causes substantial storage costs to store HVTs.
Here, we stress that HVTs is essentially a signature on a data block, but generating
HVTs cannot leverage the hash-and-sign paradigm, because if HVT is computed
from the hash value of the block, S, who only stores the hash value of the block
rather the block itself, can pass the V’s verification. As a consequence, the size of
each block relies on the security parameter and would be restricted to a small size,
and for the data M , if the size of each block is reduced, the number of data blocks
increases, which increases the number of HVTs and thereby increases storage costs.

The main difference between PoR and PDP is the notion of security that they
achieve. Specifically, the security of PoR ensures two fundamental properties in a
proof-of-storage system [8].

• Authenticated storage. V can verify that data fetched from S are correct, where
correctness is equivalent to authenticity and freshness.

• Retrievability. V can ensure that the specified data can be fully retrieved.

3.3 Proofs of Storage for Cloud Storage Systems 37

PDP only focuses on verifying the integrity of the data and does not focus on data
retrievability. In the PDP scheme, if S has lost a small number of data blocks, it can
pass the V’s verification with significant probability. Particularly, in the sampling
verification mechanism proposed by Ateniese et al. [2], if ρ fraction of data is
corrupted, then randomly (uniformly) sampling c blocks would reach the detection
probability Pdetec = 1 − (1 − ρ)c. If ρ = 0.1%, Pdetec = 0.2593, which means
that if the total number of data blocks is 10,000 and 10 blocks are corrupted, S can
passes V’s verification with probability more than 75%.

From the perspective of technique, the only difference between PoR and PDP
is the use of erasure coding. In PoR, the data owner first uses an erasure coding
algorithm (e.g., Reed-Solomon codes [9]) to process the data M and gets M =
{M1,M2, . . . ,Mn}, such that any s(s < n) blocks of {M1,M2, . . . ,Mn} can retrieve
M . Recall the above example, if the total number of data blocks is 10,000 and 10
blocks are corrupted, although the detection probability in a PoR scheme is still less
than 26%, the original data M can be retrieved under a reasonable choice of s (e.g.,
s/n = 90%). By comparison, in this case, M protected by the PDP scheme cannot
be retrieved.

In ASIACRYPT’08, Shacham et al. [10, 11] propose two compact PoR schemes
with full proofs of security against adversaries in the security model proposed by
Juels et al. [1], where the first PoR scheme only supports private verification, and
the second one supports public verification. Both the schemes achieve the system
criteria proposed in Sect. 3.2.2 and are provably secure. The private verification is
based on HVTs derived from pseudorandom function F(·). Specifically, the data M

is split into n blocks using the erasure code as M = {M1,M2, . . . ,Mn}. The HVT
for data block Mi is σi = F(k, i)+αMi , where α and k are secret keys. We assume
that Q is the set {(i, vi)} of challenge index-coefficient pairs, the corresponding
proof is {σ,μ}, in which σ = ∑

(i,vi)∈Q viσi and μ = ∑
(i,vi)∈Q viMi . The data

owner checks the following equation to verify the data integrity:

σ
?= α · μ +

∑

(i,vi)∈Q

vi · F(k, i).

For the public verification scheme in [10, 11] (hereinafter, this scheme is called
SWP), the HVTs are built on the BLS signature [12]. Compared with its RSA
counterpart, the BLS-based HVT is considerably shorter. We briefly introduce SWP
as follows. Let e : G × G → GT be a computable bilinear map. The data owner’s
private key is α ∈ Zp, the corresponding public key is v = αP ∈ G, where P is
the generator of G. The data owner applies the erasure code on M to split it to n

blocks, and further split each block into s sectors, i.e., M = {Mij }1≤i≤n,1≤j≤s. the
data owner randomly chooses s random elements u1, . . . , us ∈ G, the HVT for the
i-th block is

σi = α ·
⎛

⎝H(i||name) +
s∑

j=1

Mijuj

⎞

⎠ ,

38 3 Cloud Storage Reliability

where name ∈ Zp is the name of M , H : {0, 1}∗ → G is a secure hash function. Let
Q = {(i, vi)} be the challenging information as described before, the corresponding
proof generated be S is {σ,μj }j=1,2,...,s , where σ = ∑

(i,vi)∈Q viσi and μj =∑
(i,vi)∈Q viMij . The verification equation becomes:

e(σ, P)
?= e

⎛

⎝
∑

(i,vi)∈Q

viH(i||name) +
s∑

j=1

μjuj , v

⎞

⎠ .

A third-party auditor, who holds the public key and the data name, can verify
the data integrity without the data owner’s participation. In SWP, each block is split
into multiple sectors to balance the tradeoff between storage and communication:
each sector is an element of Zp and there is one HVT per block, which reduces the
storage costs to (1 + 1/s)×; while the proof is one aggregated block and HVT, and
is (1+s)× as long as an authenticator. Therefore, the larger s, the less storage costs,
and the higher communication costs.

Since the public verification paradigm is more expressive than its private
counterpart, subsequent works mainly focus on constructing public verification of
data integrity schemes for cloud storage systems with different characteristics. On a
very high level, most of the public verification schemes share essentially the same
common structure as SWP proposed by Shacham et al. [10, 11]. These schemes can
be mainly classified into three types.

3.3.1 Proofs of Storage for Dynamic Data

In cloud storage systems, outsourced data might be updated by the data owner in
reality, this requires proof-of-storage schemes supporting dynamic data operations
(e.g., addition, deletion, and updation) [13]. Generally, there are two types of data
integrity verification schemes. The first one is based on PDP, and the second one is
based on PoR. In the following, we will introduce these two types of schemes one
by one and discuss their differences in detail.

3.3.1.1 PDP-Based Integrity Verification of Dynamic Data

Most PDP-based proof-of-storage schemes [14–17] that support data dynamic
operations share essentially the same common structure: initially, the data owner
generates an HVT for each data block and records the abstract information of each
block as well as its HVT using an authenticated data structure, e.g., hash table, hash
chain, hash tree, etc. After outsourcing the data to the cloud server, the data owner
also sends the recorded abstract information to the auditor. At any point in time,
the data owner performs an operation (e.g., addition, deletion, and updation) on the

3.3 Proofs of Storage for Cloud Storage Systems 39

outsourced data, she/he sends the details of the operation to the auditor, and the
auditor updates the recorded abstract information for subsequent verifications.

3.3.1.2 PoR-Based Integrity Verification of Dynamic Data

Constructing a proof-of-storage scheme on PoR to support dynamic operations
on outsourced data is more challenging than that on PDP. We give an example
to illustrate the challenge of performing the dynamic operations in a PoR-based
proof-of-storage scheme. Let M

′
be the data that the data owner wants to out-

source. Originally, M
′ = {M ′

1,M
′
2, . . . ,M

′
n

′ }. Let Σ denote an erasure coding

algorithm such that M = Σ(M
′
) = {M1,M2, . . . ,Mn} and any n/2 blocks from

{M1,M2, . . . ,Mn} can be used to recover M . The data owner outsources M and the
corresponding HVTs to the cloud server. If the data owner wants to modify even
a block of M , e.g., Mi for i ∈ [1, n], she/he needs to change at least half of the
blocks in M outsourced on the cloud server, which requires heavy communication
and computation costs.

Intuitively, addressing the above problem is very straightforward: the data owner
can split the original data M

′
into multiple blocks as M

′ = {M ′
1,M

′
2, . . . ,M

′
n}

and further split each data block, i.e., M
′
i for i = 1, 2, . . . , n, using erasure

coding algorithm as Mi = Σ(M
′
i) = {Mi1,Mi2, . . . ,Mis}. Finally, the data owner

concatenates these blocks to form M = {M1,M2, . . . ,Mn}, computes an HVT
for each block, and outsources M as well as the corresponding HVTs to the cloud
server. The data integrity verification is the same as before: the auditor (i.e., verifier)
randomly chooses c blocks from all n · s blocks of M and verifies the integrity of
these c blocks. Now, if the data owner wants to read/write to any data block of M ,
he only needs to read/write to the s relevant coded blocks on the cloud server, which
reduces the communication and computation costs significantly.

We assume that λ denotes the size of M
′
, we introduce a parameter k called

block size, which is computed by k = λ/n and determines the complexity of
reads/updates. c determines the complexity of verification. The above scheme
can be secure under the security definition of PoR (i.e., achieving authenticated
storage and retrievability), only if k and c are both set to Ω(

√
λ). This still incurs

high communication and computation costs. If both k and c are set to be small
(e.g., k, s = o(

√
λ)), the scheme cannot achieve retrievability. In particular, when

k, s = o(
√

λ), the server can delete a single Mi = {Mi1,Mi2, . . . ,Mis} from M

entirely, but can pass the auditor’s verification with a high probability. However, the
data block Mi is totally lost and cannot be retrieved. As a consequence, the scheme
cannot guarantee retrievability.

To achieve provable security under the PoR model and high efficiency simulta-
neously, the data owner in the above scheme needs to make the data “unintelligible”
to the cloud server, such that the cloud server cannot identify the locations within
M that correspond to a single data block. Note that pseudorandomly permute the
locations of each data blocks cannot achieve the above requirement, since after the

40 3 Cloud Storage Reliability

data owner performs an operation on a block of M that has been pseudorandomly
permuted, the cloud server can exactly identify the corresponding block from M .
To address this problem, the data owner can utilize an oblivious way to outsource
and access data, such that she/he can outsource the data to the cloud server and
access the outsourced data without leaking access patterns to the server. Here, access
patterns include the identity, index, and other information of accessed data block,
the frequency of the data owner accessing the same data block, and the sequence of
accessing multiple data blocks. Existing schemes [8, 18, 19] utilize oblivious RAM
(short for ORAM) [20] and its variants to implement the oblivious storage.

3.3.2 Enhancement of Security

This type of works can be further classified into two parts.

3.3.2.1 Privacy-Preserving Public Verification

In a public verification of data integrity scheme, a delegated auditor is employed
to verify the integrity of outsourced data on behalf of the data owner. During the
verification, the auditor is able to extract the data content from the proofs generated
by the storage server. For instance, in SWP, the proof is {σ,μ} (hereinafter, for the
sake of brevity, the number of sectors s = 1 by default, i.e., M = {Mi}1≤i≤n, σi =
α·(H(i||name)+Miu), and u ∈ G is a public parameter), where σ = ∑

(i,vi)∈Q viσi

and μ = ∑
(i,vi)∈Q viMi . Since i and vi are generated by the auditor, if the auditor

has lots of μ under different Q = {(i, vi)}, it can compute Mi for some i ∈ Q.
However, from the perspective of protecting users’ privacy, the users, who rely

on the auditor just for ensuring the integrity of outsourced data, do not want the
employed security mechanism that introduces new threats towards the outsourced
data. Therefore, protecting data contents against the auditor and other external
adversaries (who may eavesdrop on the interactions between the storage server and
the auditor) should be considered in constructing proof-of-storage systems.

To address the above problem, the notion of privacy-preserving public verifica-
tion is proposed [21]. A privacy-preserving public verification scheme enables a
third-party auditor to verify the integrity of data outsourced to a remote server (i.e.,
cloud server) without extracting the data contents.

Obliviously, privacy-preserving public verification schemes can be directly
derived from existing PoR/PDP-based scheme by adopting symmetric encryption
algorithms (e.g., AES): the user encrypts her/his data before outsourcing. Since
PoR and PDP themselves do not require data confidentiality, and the symmetric
encryption can serve as an independent component to be integrated into existing
PoR and PDP schemes to protect data contents against both the cloud server and
the auditor. However, such the encryption-based privacy-preserving scheme could

3.3 Proofs of Storage for Cloud Storage Systems 41

be an overkill for unencrypted/public data (e.g., outsourced libraries and scientific
data sets) [2, 22].

Another way to construct privacy-preserving public verification schemes is to
let the cloud server blind the proof using a random mask, which guarantees that
the auditor cannot extract any knowledge about the data content from the proof
generated by the cloud server. The first privacy-preserving public verification
scheme using the random masking technique is proposed by Wang et al. [21, 22].

After the Wang et al.’s scheme, protection data content against auditors has been
considered as a fundamental property for public verification schemes, and most
privacy-preserving public verification schemes are based on the random masking
technique [23, 24]. It is worth discussing the relationship between the random
masking technique and symmetric encryption in constructing privacy-preserving
public verification schemes. As discussed in [21, 22], public verification based on
the random masking technique to protect data content against auditors is more
efficient than that based on symmetric encryption. In the nascent stage of cloud
storage services, only a few interfaces that support simple operations, such as
data outsourcing and access, are provided to cloud users. At that time, data are
always outsourced in the plaintext form, and the public verification technique can be
employed in a stand-alone fashion to ensure data integrity. Nonetheless, in today’s
cloud storage services, protection data content against anyone who does not own
the data is an inherent requirement for users, which also serves as one of the most
important selling points in reality. This is further intensified by the incidents of
outsourced data leakage occurred in recent years.2 Consequently, in current cloud
storage systems, users’ data are always encrypted before outsourcing and are stored
in the ciphertext form on the cloud server, and the public verification, encryption
as well as other security mechanisms are often integrated to protect the overall
security of a cloud storage system (how to integrate multiple security mechanisms
into one system to achieves multiple security goals is one of our objectives in this
monograph).

3.3.2.2 Resistance Against External Adversaries

The threat model in [2, 10, 11] does not consider external adversaries. We first show
how an external adversary A invalidates SWP [10, 11] as follows.

We assume the data M = {Mi}i∈[1,n] is stored on the cloud server CS. A first
intrudes into CS, modifies each data block Mi to M̂i = Mi + Li for i ∈ [1, n],
and records Li, i ∈ [1, n]. In the data verification phase, A eavesdrops on the
challenging message Q = {(i, vi)}. In the proving phase, CS computes the proof
information ˆPrf as: μ̂ = ∑

(i,vi)∈Q

viM̂i , σ = ∑

(i,vi)∈Q

viσi , ˆPrf = {μ̂, σ }. Then

2https://en.wikipedia.org/wiki/List_of_data_breaches.

https://en.wikipedia.org/wiki/List_of_data_breaches

42 3 Cloud Storage Reliability

S sends ˆPrf to the auditor. A intercepts ˆPrf and computes3: γ = ∑

(i,vi)∈Q

viLi ,

μ = μ̂ − γ , Prf = {μ, σ }. Finally, A sends Prf to the auditor. In this way, A
tampers with the outsourced data and deceives the auditor successfully.

Such an external adversary can invalidate lots of public verification schemes [25,
26]. A straightforward way to thwart the adversary is to establish a secure channel
between the cloud server and the auditor such that the external can neither obtain the
challenge Q nor tamper with the proof information. However, establishing a secure
channel between the cloud server and the auditor is a costly operation.

To address the problem, Xu et al. [27] propose a public verification scheme based
on the random masking technique. Specifically, the HVT of Mi is the same as SWP,
i.e., σi = α(H(i||name)+Miu). The proof information is prf = {σ,μ,R}, where
μ is blinded by a random r ∈ Zp as μ = r−1(

∑
(i,vi)∈Q viMi + h(R)) and R =

r · u ∈ G. The verification equation is

e(σ, P) = e

⎛

⎝
∑

(i,vi)∈Q

viH(i||name) + μR + (−h(R))u, v

⎞

⎠ .

Now, if A launches the above attack to invalidate the scheme, he has to compute
μ = μ̂ − r−1 ∑

(i,vi)∈Q Livi . Since r is a random element and is unknown to A,
it is computationally infeasible to compute μ. Therefore, the proposed scheme is
secure against external adversaries. Furthermore, with the leverage of the random
masking technique, the scheme also protects the data content against the auditor,
i.e., it achieves privacy-preserving public verification.

3.3.3 Constructing Public Verification on Different
Cryptosystems

As discussed before, PoR/PDP-based public verification schemes are based on
homomorphic verifiable tags which are essentially homomorphic signatures (no
matter what the hard problem the algebraic structure they are built on). To verify the
data integrity of outsourced data, the auditor needs to maintain the users’ certificates
to choose the correct public keys. As a consequence, the security of the above public
verification schemes relies on the security of Public Key Infrastructure (PKI).

In traditional PKI, a user’s certificate is issued by a Certificate Authority
(CA), which binds the user’s public/private key to her/his identity. Despite the
wide development of PKI in constructing public-key cryptosystems, it also suffers
from some security and efficiency issues. One of the most fundamental issues is
the certificate management. Particularly, certificate management, which includes

3In fact, γ can be pre-computed after obtaining Q.

3.3 Proofs of Storage for Cloud Storage Systems 43

certificate revocation, storage, distribution, and verification, is very cumbersome
and even confronted with threats in practice. For example. an issued certificate can
be valid if and only if the corresponding root certificate is trustworthy. Whereas,
since the root certificate is signed by CA itself, “verifying” the trustworthiness of the
root certificate is not easy in practice. In most cases, users only accept the given root
certificate without further verification. Furthermore, once an issued certificate needs
to be revoked or re-issued (i.e., re-distribution), the revocation information should
be broadcast to all users in the system, and the certificate should be invalid from now
on. However, this is not an easy task when the system has a large number of users.
To make matters worse, in actually public-key cryptosystems, multiple CAs are
introduced to the different requirements, which makes the certificate management
more complex than the case of single CA.

To address the certificate management problem, some researchers [28, 29]
construct HVTs on identity-based cryptosystems [30] to propose identity-based
public verification scheme, where a Private Key Generator (PKG) is employed to
utilize a system-wide master key and the user’s identity to generate her/his privacy
key. Consequently, the auditor, who only holds the system parameters and the user’s
identity, is able to verify the integrity of outsourced data on behalf of the user
without maintaining the user’s certificate.

Identity-based public verification schemes inevitably inherit security issues from
identity-based public-key cryptography (ID-PKC). The most fundamental one is the
key escrow problem [31]. In particular, in ID-PKC, a user’s private key is generated
by PKG. It means that both PKG and the user have the user’s private key. Thus, the
identity-based public verification cannot provide true non-repudiation in the way
that the PKI-based one can.

To address the key escrow problem, subsequent public verification schemes
[32–34] are based on certificateless cryptography [31]. In a certificateless public
verification scheme, the user’s secret key consists of two parts: the first one is a
secret key randomly chosen by the user herself/himself, the second one is called
partial private key that is generated by a Key Generation Center (KGC) who holds
a system-wide master key. As a result, the security of public verification can be
ensured even if KGC is compromised.

3.3.4 Other Works

In addition to the above works, some other public verification schemes are proposed
to enrich the functionalities of proof-of-storage systems. For instance, some public
verification schemes focus on supporting data sharing [35, 36] for cloud storage
systems, where the data are owned by a set of users and different users can outsource
their data to the cloud server and share the data with other users. In this scenario,
new privacy issues are introduced. Since the outsourced data are generated by
multiple users, users’ identity privacy could be leaked to the auditor during the
verification. The auditor can exactly learn the identity of the generator on each data

44 3 Cloud Storage Reliability

block. By utilizing this information, the auditor is able to extract significant (private)
information on the users, such as the group membership, the most valuable data
block, and the roles of different users in the group. To address this problem, HVTs
in the public verification scheme can be constructed by the ring signature [37] and
group signature [38], which protect the signers’ identities against the auditor.

Another line of work focuses on constructing public verification schemes to
be compatible with other cryptographic building blocks to enhance cloud storage
services in terms of reliability, functionality, and efficiency. In the following
chapters, we will introduce these works in detail.

3.4 Latest Advances in Proofs of Storage

In this section, we introduce the latest advances in public verification schemes.

3.4.1 Proofs of Storage Based on Indistinguishability
Obfuscation

Indistinguishability obfuscation (iO) is an important cryptographic primitive to
make computer programs “unintelligible” while preserving their functionality.
Recent works [39, 40] have shown great potentials for enhancing cloud storage
services in terms of security and privacy and for ensuring the data security from
iO. With the definition of iO, we can prove that given an obfuscated program,
the secrets embedded in it (i.e., the constants of the original program) cannot be
extracted by adversaries.

As discussed before, the PDP/PoR-based public verification schemes are based
on HVTs, and the auditor can verify the data integrity by checking the HVTs.
This introduces heavy computational costs on both the data owner and the auditor.
Specifically, the data owner needs to compute an HVT for each data block to enable
the auditor to verify the data integrity on behalf of her/him. The computation costs
on the data owner side linearly increase with the size of the data to be outsourced.
For example, in SWP, if the security level is chosen to be 80 bits, a data M with
the size of only 1 MB has more than 52,000 blocks (each block is not further
split into sectors). In this case, the computational delay to compute the HVTs is
more than 1 min for the data owner who equips a laptop with a macOS system,
an Intel Core i7 CPU, and 16 GB DDR3 of RAM. Moreover, the auditor also
bears heavy computation costs to verify the data integrity since the data integrity
verification essentially requires the auditors to verify multiple signatures. For an
auditor equipping the above laptop, if the number of challenged data is set to 300,
the verification delay would be 0.38 s. Note that the auditor would serve lots of users

3.4 Latest Advances in Proofs of Storage 45

Fig. 3.4 Verification Program of Private PoR

in cloud storage systems, and this delay would be prohibitively long if the number
of users is huge, e.g., more than 6 min for 1000 users.

More recently, some researchers [41, 42] investigate how to use iO to improve
the efficiency of public verification schemes.

In [41], the authors utilize iO to construct a private PoR scheme supporting
public verification. Recall that traditional private PoR [10] cannot support public
verification since one cannot verify the data integrity without the secret key used to
compute HVTs. If the auditor is given this secret key, it can impersonate the user
to generate and outsource valid data. However, since private PoR is constructed on
symmetric-key cryptosystems, it is highly lightweight on the data owner side. The
key technique of [41] is that the data owner generates a verification program V P

(as shown in Fig. 3.4) of private PoR scheme, where the secret key used to generate
HVTs is embedded into the program as the constant. The data owner obfuscates
V P using iO and sends the obfuscated program to a third-party auditor. Due to the
security and functionality of iO, the auditor can verify the data integrity without
extracting the secret. To ensure security, the PRF used in Fig. 3.4 is a puncturable
PRF [43].

By doing so, the data owner in [41] only needs to perform symmetric-key opera-
tions to outsource the data, which reduces the computational costs significantly.

Another line of work focuses on improving the efficiency on the auditor side from
iO. Particularly, in [42], the authors propose a public verification scheme called
EPVDI for cloud storage services using iO to reduce the computation overhead on
the auditor’s side to a MAC tag computation. The key idea behind EPVDI is to
delegate the heavy computation operations (originally performed by the auditor) to
the cloud server. To this end, the auditor first determines the challenged blocks from
the entire data set, and the cloud server verifies the integrity of the challenged blocks.
Only if the verification succeeds, the cloud server generates a commitment on the
challenged data, and sends the commitment to the auditor. The auditor only needs
to verify the validity of the commitment to check data integrity. The commitment is

46 3 Cloud Storage Reliability

Fig. 3.5 Verification program of EPVDI

constructed on the message authentication code (MAC) technique, such that the
auditor can complete the verification efficiently. The main challenge here is to
resist the malicious cloud server which generates a fake commitment to deceive the
auditor. To protect the scheme against the malicious cloud server, the data integrity
verification and commitment generation executed by the cloud server are integrated
into a program as a verification program V P , and this program is obfuscated by
using iO. The cloud server is only given the obfuscated program such that if and
only if it well maintains the data, it can output a valid commitment.

EPVDI is based on SWP. In the setup phase, the data owner generates the
verification program V P as shown in Fig. 3.5 (we would not split each block
into sectors for the sake of brevity), where τ is a data tag to authenticate the
trustworthiness of the public parameter and name is the data identity.

The data owner then obfuscates V P using iO. She/he sends the obfuscated
program to the cloud server and securely sends the PRF key k to the auditor. When
the auditor verifies the data integrity, it generates the challenging message Q and
sends Q to the cloud server. With Q, the cloud server computes the corresponding
proof information μ and σ and executes the obfuscated program. If and only if the
proof information is valid, it can output a MAC tag. Once the cloud server computes
the MAC tag, it sends the tag to the auditor. With the PRF k, the auditor can verify
the validity of the tag efficiently, even if it only equips a lightweight device [44].

We have to accept for the time being that existing obfuscation candidates are
inefficient to generate, due to their impractical polynomial-time constructions.
However, iO has been envisioned as one of the most important cryptographic
primitives. Lots of researchers devote themselves to making iO practical, and it is
plausible that iO with reasonable performance will be realized in the not too distant

3.4 Latest Advances in Proofs of Storage 47

future. Therefore, it is promising to leverage iO to enhance cloud storage services
in terms of security, efficiency, and functionality.

3.4.2 Proofs of Storage Based on Blockchain

We first review the public verification scheme and analyze their vulnerability
against dishonest auditors, which motivates the researchers to construct new public
verification schemes on blockchains.

The key idea of the public verification technique (i.e., PDP/PoR) is that the
user (i.e., data owner) splits the data into multiple blocks, computes a signature
for each one, and outsources the data blocks as well as corresponding signatures to
the cloud server. When the auditor verifies the data integrity, it chooses a random
subset of all data blocks (e.g., sample 300 blocks from 10,000 ones) and sends the
sampled blocks’ indexes (as a challenging message) to the cloud server. The cloud
server responds with the corresponding proof, the auditor checks the integrity of
challenged blocks by verifying the validity of the proof. If the verification succeeds,
the integrity of the entire data set is ensured.

In public verification schemes, after data outsourcing, the user sets a verification
period (i.e., the frequency at which the auditor performs the verification). Then the
auditor verifies the outsourced data integrity at the corresponding time. In reality,
the auditor generates a verification report containing multiple verification results
(corresponding to multiple periods, we call these periods an epoch). If, in any
period, the verification result is “Reject,” it means that the data may be corrupted,
and the auditor needs to inform the user at once. Otherwise, the auditor generates a
verification log and provides the user with the log at the end of each epoch. Since
the auditor is able to verify the data integrity without the user’s participation, the
user can assign the auditor to perform the verification with any period as needed.
In other words, from the user’s perspective, if the outsourced data is corrupted, the
longest delay within which she/he needs to find the data corruption should be the
verification period.

3.4.2.1 On the Vulnerability of Existing Public Verification Schemes
Against Dishonest Auditors

All public verification schemes we have introduced so far bear an assumption that
the auditor is honest and reliable. This means that the auditor would honestly follow
the prescribed schemes, and performs the verification reliably. Note that some
works [15, 22, 23] assume that auditors are honest but curious, however, from the
perspective of data integrity verification, there is no difference between these two
assumptions, since the auditors would not deviate from the prescribed schemes.

These schemes cannot resist dishonest auditors. Dishonest auditors can be
divided into two types: the first one is called a malicious auditor, the second one is

48 3 Cloud Storage Reliability

called a procrastinating auditor. We will analyze how they invalidate these schemes
in the following.

For the malicious auditor, the most trivial attack it can launch is that it always
generates a good integrity report without verifying the data integrity to avoid the
verification burden. In such a way, the auditor is virtually non-existent. In addition,
a malicious auditor may generate a bias verification result to deceive the users for
profits. For example, the auditor colludes with the cloud server and always creates
bias challenging messages such that only the data blocks which are well maintained
are verified, which could conceal the data corruption.

The procrastinating auditor may procrastinate on the scheduled verification
to invalidate the public verification schemes. Specifically, assuming the agreed
verification period in the public verification scheme is 1 day, and an epoch is
1 month (i.e., 30 days), this means that the auditor checks the outsourced data
integrity one time per day, and the user checks the auditor’s log file recording
the verification results one time per month. Normally, the auditor would perform
the verification every day and generate a verification report every 30 days. For a
procrastinating auditor, it would not perform the verification on the first 29 days
and would perform the verification 30 times on the last day, where the challenging
messages in each verification of the first 29 days can be regenerated in the 30th day.
As such, the verification report only reflects the most recent (the 30th day’s) state
of integrity for the outsourced data. The reason why the auditor procrastinates on
the scheduled verification is straightforward: when the data corruption occurs, the
cloud server may collude with the auditor, where it asks the auditor for halting the
scheduled verification and gains much more time to retrieval the outsourced data for
a good reputation. This deviates from the public verification’s original target: if the
outsourced data are corrupted, the data owner is able to find it within 1 day (i.e., one
verification period).

3.4.2.2 Blockchain-Based Public Verification Against Dishonest Auditors

To resist the malicious auditor who only generates a good integrity report without
verifying the data integrity, a straightforward solution is to require the user to audit
the auditor at the end of each epoch. The auditor’s behavior can be reflected by
the challenging messages it generated and the proof information it received in
each verification task. Due to the security of the public verification schemes, it is
computationally infeasible for the auditor to forge proof information that could be
valid under any challenging messages selected by it.

However, such a strategy cannot resist malicious auditors who collude with
the cloud server and only checks the data blocks that are well maintained on the
cloud server. To resist such the malicious auditor, in addition to audit the auditor,
the data owner should also check the randomness of challenged blocks in each
verification. However, ensuring the randomness of challenged blocks in public
verification schemes is very challenging due to the following reasons. First, it is
insecure to require the data owner to pre-generate the challenging messages at the

3.4 Latest Advances in Proofs of Storage 49

beginning of each epoch, since the auditor who colludes with the cloud server can
leak all challenging messages to the cloud server such that the cloud server either can
delete the blocks that would not be verified in subsequent verifications or can pre-
generate all corresponding proofs to enable the auditor to pass the user’s auditing.
Second, the interactive generation of challenging messages among the auditor and
the cloud server would also suffer from the collusion attacks. Furthermore, to allow
the user to audit the auditor’s behavior, the randomness used to generate challenging
messages should be publicly verifiable after it is generated. The requirement on the
randomness “seed” in public verification is akin to those in a lottery where players
guess a target number and a banker periodically publish a winning number; If a
player’s number is equal to the winning number, the player is the lottery winner.
This seed should be time-dependent, i.e., given a determinate time t , if t is a future
time, the seed generated in t is unpredictable; If t is a past time, the seed generated
in t can be easily verifiable and is resistant to modification.

Such a time-dependent random seed can be derived from public blockchain
systems. A straightforward way to obtain the seed is to use the hash value of block
that is latest confirmed on the blockchain. However, the security of such a way
is too weak. Specifically, if the outsourced data are corrupted, and the indexes of
corrupted data form a set CR. The target of the cloud server who compromises the
auditor is to conceal the data corruption by sampling biased challenging messages.
The cloud server knows the next time when the challenging message would be
generated. When the time gets close, the cloud server can incentivize the miners
who mine a new block to throw the newly mined block away and continue to mine
if the challenging message derived from the hash value of the block (denoted by
Blt) covers the corrupted data blocks, i.e., the indexes of blocks to be verified exist
in CR. Essentially, the malicious cloud server can launch the above attack since the
entropy of the challenging message derived from the hash value of a single block on
the blockchain is low.

To address the above problem, the existing scheme [45] derives the challenging
messages from ϕ successive blocks that are the latest ones confirmed on the
Ethereum blockchain, where ϕ denotes the number of blocks deep used to confirm
a transaction. By doing so, the security of the challenging messages is based on the
(ι, ϕ)-chain quality of secure blockchains.

The above mechanism is still vulnerable to procrastinating auditors. To resist
the procrastinating auditor, a trivial solution is to let the user audit the auditor’s
behaviors in a random time interval. Whereas, before the user audits the correctness
of the auditor’s behaviors, she/he needs to interact with the auditor to obtain the log
file that records the challenging message and proof information in each verification
task. This sufficiently gives rise to forge the challenging messages for the auditor
and cloud server, since it is easy to re-compute the challenging messages and the
corresponding proofs given access to the blockchain. As such, a procrastinating
auditor is able to pass the user’s auditing by colluding with the cloud server.
Another trivial solution is to introduce a trusted service provider (short for TSP)
who provides a time-stamping service [46]. After each verification, the auditor
is required to request the time-stamping service on the challenging message and

50 3 Cloud Storage Reliability

proof from TSP. This makes the verification performed by the auditor time-sensitive
and allows the user to check the timeliness of each verification, which thwarts the
procrastinating auditor. Nevertheless, the security of such mechanisms relies on the
security and reliability of TSP, and TSP here becomes a single point of failure.
Furthermore, TSP has to bear heavy communication and computation burden in the
case of multiple users and auditors. As such, how to resist the procrastinating auditor
without introducing any trusted entity is a very challenging problem.

The blockchain now becomes a panacea for public verification to resist dishonest
auditors [45]. To resist the procrastinating auditor, the key idea is to use a public
blockchain and integrate the challenging message and proof information generated
during each verification into a transaction on the blockchain. After that, the user is
able to verify the time when the auditor performs the verification by checking the
generation time of the transaction. The security of such mechanism is based on the
ϕ-chain consistency of secure blockchains.

This yields the final blockchain-based public verification scheme that resists
both malicious and procrastinating auditors. The scheme is shown in Fig. 3.6. The
scheme consists of two phases. In the first phase, the auditor verifies the integrity
of outsourced data on behalf of the user. In the second phase, the user audits the
auditor’s behavior.

Specifically, in the first phase, the verification period is determined by the
user. For a point in time when the data integrity should be verified, the auditor
first extracts the hash values of ϕ successive blocks that are the latest ones
confirmed on the public blockchain, and these hash values are denoted by
{Blt−ϕ+1, Blt−ϕ+2, . . . , Blt }, where t is the height of the latest confirmed block
(i.e., the current height of the blockchain). Then the auditor generates a challenging
message on {Blt−ϕ+1, Blt−ϕ+2, . . . , Blt }, and sends the challenging message to the
cloud server. Upon receiving the challenging message, the cloud server computes

Fig. 3.6 Blockchain-based public verification scheme

3.5 Summary and Further Reading 51

the corresponding proof. The auditor checks the validity of the proof to verify data
integrity. If the checking fails, the auditor informs the user that the data may be
corrupted; Otherwise, the auditor sets {Blt−ϕ+1, Blt−ϕ+2, . . . , Blt } and the proof
as a log entry, stores the entry to a log file, and creates a transaction that transfers
0 deposit from its account to the user’s account,4 wherein the data field is set to
the hash value of the entry. Ideally, this transaction would be recorded to the block
whose height is t + ϕ + 1.

In the second phase, the user audits the auditor’s behavior in a much longer
period compared with the verification period. We first show how is a single entry
(without loss of generality, {Blt−ϕ+1, Blt−ϕ+2, . . . , Blt } and the corresponding
proof) in the log file audited by the user. The user first determines the verifica-
tion time that the auditor should verify the data integrity. Then she/he obtains
{Blt−ϕ+1, Blt−ϕ+2, . . . , Blt } from the public blockchain according to the agreed
verification time, and extracts the hash value of the entry from the transaction.
Next, she/he regenerates the challenging message on {Blt−ϕ+1, Blt−ϕ+2, . . . , Blt },
and checks the validity of the corresponding proof by using the challenging
message generated by herself/himself. If the checking passes, it means that the
auditor performs the verification correctly. Due to the homomorphism of HVTs
utilized in the underlying public verification scheme, multiple entries can be audited
simultaneously, and the auditing costs can be amortized over these entries to reduce
the computational costs.

3.5 Summary and Further Reading

In this chapter, we have introduced the data integrity verification technique for
cloud storage systems. We have provided a comprehensive overview of existing data
integrity verification schemes and analyzed their pros and cons, and also conducted
a comparison between them. Finally, we have introduced the latest advances in data
integrity verification technique for cloud storage systems.

There are also some survey papers to introduce the data integrity verification
technique from different aspects, such as [47, 48]. Data integrity is one of the most
important factors affecting the reliability of cloud storage systems. Based on the data
integrity verification technique, some mechanisms are also proposed to enhance the
reliability of cloud storage services. We refer the reader to papers [49, 50] for further
details.

4Most of public blockchains can allow a payer to conduct a transaction wherein the transaction
value is 0.

52 3 Cloud Storage Reliability

References

1. Juels A, Kaliski BS Jr (2007) Pors: proofs of retrievability for large files. In: ACM conference
on computer and communications security, pp 583–597

2. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, Song D (2007) Provable
data possession at untrusted stores. In: ACM conference on computer and communications
security, pp 598–609

3. Deswarte Y, Quisquater J-J, Saïdane A (2003) Remote integrity checking. In: Working
conference on integrity and internal control in information systems, pp 1–11

4. Filho DG, Barreto P (2006) Demonstrating data possession and uncheatable data transfer.
Cryptol ePrint Archive. Report 2006/150, 1–9

5. Schwarz T, Miller E (2006) Store, forget, and check: using algebraic signatures to check
remotely administered storage. In: IEEE international conference on distributed computing
systems, pp 1–10

6. Diffie W, Hellman M (1976) New directions in cryptography. IEEE Trans Inf Theory
22(6):644–654

7. Johnson R, Molnar D, Song D, Wagner D (2002) Homomorphic signature schemes. In:
Cryptographers’ track at the RSA conference, pp 244–262

8. Shi E, Stefanov E, Papamanthou C (2013) Practical dynamic proofs of retrievability. In: ACM
conference on computer and communications security, pp 325–336

9. Reed IS, Solomon G (1960) Polynomial codes over certain finite fields. J Soc Indust Appl Math
8(2):300–304

10. Shacham H, Waters B (2008) Compact proofs of retrievability. In: International conference on
the theory and application of cryptology and information security, pp 90–107

11. Shacham H, Waters B (2013) Compact proofs of retrievability. J Cryptol 26(3):442–483
12. Boneh D, Lynn B, Shacham H (2001) Short signatures from the weil pairing. In: International

conference on the theory and application of cryptology and information security, pp 514–532
13. Ateniese G, Pietro RD, Mancini LV, Tsudik G (2008) Scalable and efficient provable data

possession. In: International conference on security and privacy in communication networks,
pp 1–9

14. Erway CC, Küpçü A, Papamanthou C, Tamassia R (2015) Dynamic provable data possession.
ACM Trans Inf Syst Secur 17(4):15

15. Yang K, Jia X (2013) An efficient and secure dynamic auditing protocol for data storage in
cloud computing. IEEE Trans Parallel Distributed Syst 24(9): 1717–1726

16. Yang A, Xu J, Weng J, Zhou J, Wong DS (2018) Lightweight and privacy-preserving
delegatable proofs of storage with data dynamics in cloud storage. IEEE Trans Cloud Comput.
https://doi.org/10.1109/TCC.2018.2851256

17. Wang Q, Wang C, Li J, Ren K, Lou W (2009) Enabling public verifiability and data dynamics
for storage security in cloud computing. In: European symposium on research in computer
security, pp 355–370

18. Cash D, Küpçü A, Wichs D (2013) Dynamic proofs of retrievability via oblivious ram. In:
International conference on the theory and applications of cryptographic techniques, pp 279–
295

19. Cash D, Küpçü A, Wichs D (2017) Dynamic proofs of retrievability via oblivious ram. J
Cryptol 30(1):22–57

20. Pinkas B, Reinman T (2010) Oblivious ram revisited. In: Annual cryptology conference, pp
502–519

21. Wang C, Wang Q, Ren K, Lou W (2010) Privacy-preserving public auditing for data storage
security in cloud computing. In: IEEE international conference on computer communications,
pp 1–9

22. Wang C, Chow SS, Wang Q, Ren K, Lou W (2013) Privacy-preserving public auditing for
secure cloud storage. IEEE Trans Comput 62(2):362–375

https://doi.org/10.1109/TCC.2018.2851256

References 53

23. Worku S, Xu C, Zhao J, He X (2014) Secure and efficient privacy-preserving public auditing
scheme for cloud storage. Comput Elect Eng 40(5):1703–1713

24. Li J, Zhang L, Liu JK, Qian H, Dong Z (2016) Privacy-preserving public auditing protocol for
low-performance end devices in cloud. IEEE Trans Inf Forensics Secur 11(11):2572–2583

25. Ni J, Yu Y, Mu Y, Xia Q (2013) On the security of an efficient dynamic auditing protocol in
cloud storage. IEEE Trans Parallel Distrib Syst 25(10):2760–2761

26. Zhang Y, Xu C, Zhao J, Zhang X, Wen J (2015) Cryptanalysis of an integrity checking scheme
for cloud data sharing. J Inf Secur Appl 23:68–73

27. Xu C, Zhang Y, Yu Y, Zhang X, Wen J (2014) An efficient provable secure public auditing
scheme for cloud storage. KSII Trans Int Inf Syst 8(11):4226–4241

28. Wang H, Wu Q, Qin B, Domingo-Ferrer J (2013) Identity-based remote data possession
checking in public clouds. IET Inf Secur 8(2):114–121

29. Zhao J, Xu C, Li F, Zhang W (2013) Identity-based public verification with privacy-preserving
for data storage security in cloud computing IEICE Trans Fundamen Electron Commun
Comput Sci 96(12):2709–2716

30. Boneh D, Franklin M (2001) Identity-based encryption from the weil pairing. In: Annual
cryptology conference, pp 213–229

31. Al-Riyami SS, Paterson KG (2003) Certificateless public key cryptography. In: International
conference on the theory and application of cryptology and information security, pp 452–473

32. Wang B, Li B, Li H, Li F (2013) Certificateless public auditing for data integrity in the cloud.
In: IEEE conference on communications and network security, pp 136–144

33. Zhang Y, Xu C, Yu S, Li H, Zhang X (2015) SCLPV: secure certificateless public verification
for cloud-based cyber-physical-social systems against malicious auditors. IEEE Trans Comput
Soc Syst 2(4):159–170

34. He D, Zeadally S, Wu L (2018) Certificateless public auditing scheme for cloud-assisted
wireless body area networks. IEEE Syst J 12(1):64–73

35. Wang B, Li B, Li H (2014) Oruta: privacy-preserving public auditing for shared data in the
cloud. IEEE Trans Cloud Comput 2(1):43–56

36. Wang B, Li B, Li H (2015) Panda: public auditing for shared data with efficient user revocation
in the cloud. IEEE Trans Serv Comput 8(1):92–106

37. Rivest RL, Shamir A, Tauman Y (2001) How to leak a secret. In: International conference on
the theory and application of cryptology and information security, pp 552–565

38. Camenisch J, Stadler M (1997) Efficient group signature schemes for large groups. In: Annual
cryptology conference, pp 410–424

39. Sahai A, Waters B (2014) How to use indistinguishability obfuscation: deniable encryption,
and more. In: ACM symposium on theory of computing, pp 475–484

40. Boneh D, Gupta D, Mironov I, Sahai A (2015) Hosting services on an untrusted cloud. In:
International conference on the theory and applications of cryptographic techniques, pp 404–
436

41. Guan C, Ren K, Zhang F, Kerschbaum F, Yu J (2015) Symmetric-key based proofs of
retrievability supporting public verification. In: European symposium on research in computer
security, pp 203–223

42. Zhang Y, Xu C, Liang X, Li H, Mu Y, Zhang X (2017) Efficient public verification of data
integrity for cloud storage systems from indistinguishability obfuscation. IEEE Trans Inf
Forensics Secur 12(3):676–688

43. Boneh D, Waters B (2013) Constrained pseudorandom functions and their applications. In:
International Conference on the theory and application of cryptology and information security,
pp 280–300

44. Zhang Y, Xu C, Li H, Yang K, Cheng N, Shen X (2020) PROTECT: efficient password-based
threshold single-sign-on authentication for mobile users against perpetual leakage. IEEE Trans
Mob Comput. https://doi.org/10.1109/TMC.2020.2975792

45. Zhang Y, Xu C, Lin X, Shen X (2019) Blockchain-based public integrity verification for cloud
storage against procrastinating auditors. IEEE Trans Cloud Comput, 1–15. https://doi.org/10.
1109/TCC.2019.2908400

https://doi.org/10.1109/TMC.2020.2975792
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2908400

54 3 Cloud Storage Reliability

46. Haber S, Stornetta WS (1990) How to time-stamp a digital document. In: Annual cryptology
conference, pp 437–455

47. Sookhak M, Gani A, Talebian H, Akhunzada A, Khan SU, Buyya R, Zomaya AY (2015)
Remote data auditing in cloud computing environments: a survey, taxonomy, and open issues.
ACM Comput Surv 47(4):1–34

48. Wang C, Ren K, Lou W, Li J (2010) Toward publicly auditable secure cloud data storage
services. IEEE Netw 24(4):19–24

49. Armknecht F, Barman L, Bohli J-M, Karame GO (2016) Mirror: enabling proofs of data
replication and retrievability in the cloud. In: USENIX security symposium, pp 1051–1068

50. Curtmola R, Khan O, Burns R, Ateniese G (2008) MR-PDP: multiple-replica provable data
possession. In: IEEE international conference on distributed computing systems, pp 411–420

Chapter 4
Secure Deduplication

This chapter introduces the secure data deduplication technique for cloud storage
systems. First, the basic paradigms, principles, and classification of the secure
data deduplication technique are presented. Then, the secure deduplication over
outsourced data (which are in the plaintext form) is reviewed, where the threats and
countermeasures are introduced and analyzed. Next, the secure deduplication over
outsourced encrypted data is introduced, and a comprehensive survey on encrypted
deduplication systems is provided. Finally, the latest advances in the secure
encrypted data deduplication technique are studied, which shows the potentials and
benefits of applying the encrypted deduplication technique to eHealth systems.

4.1 Deduplication Classification

With the significant development of cloud storage, people are increasingly out-
sourcing their data to cloud servers, which enables them to efficiently manage their
data without deploying infrastructures and maintaining local devices. Commercial
cloud service providers always perform data deduplication across their users to save
storage space, where a service provider checks duplicated data, only stores a single
copy of duplicated data, and provides links to that copy instead of storing other
copies, as shown in Fig. 4.1. According to the investigation from recent literature
[1, 2], such a deduplication strategy can reduce storage costs by more than 65% in
electronic health (eHealth) systems and 90% in backup systems.

From the perspective of the form of target data, deduplication schemes can be
divided into two types:

• Deduplication over plaintext data. Users outsource their data in the plaintext form
and the cloud server performs data deduplication over plaintexts.

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_4

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_4&domain=pdf
https://doi.org/10.1007/978-981-15-4374-6_4

56 4 Secure Deduplication

Fig. 4.1 Illustration of deduplication in cloud storage

• Deduplication over encrypted data. Users encrypt their data and outsource the
ciphertexts to the cloud server. The cloud server performs data deduplication
over ciphertexts.

From the perspective of deduplication granularity, deduplication schemes can be
divided into two types:

• File-level deduplication. The data redundancy is exploited on the file level, only
one instance of the data is outsourced, and subsequent copies are replaced with a
pointer that points to the instance.

• Block-level deduplication. The data is split into multiple blocks, and the cloud
server performs deduplication over all blocks. Compared with file-level dedupli-
cation, utilizing block-level deduplication can achieve a higher “deduplication
ratio,” but requires more computational costs.

From the perspective of deduplication architecture, deduplication schemes can
be divided into two types:

• Server-side deduplication. Data deduplication is only performed by the cloud
server and users are unaware of deduplication that might occur. Such a dedupli-
cation strategy can only reduce storage costs.

• User-side deduplication. Data deduplication is performed by the cloud server
in cooperation with users. Specifically, when a user wants to outsource a file
M , she/he first interacts with the cloud server to check whether M has been
outsourced before. If M has been outsourced previously, the user does not need to
upload M to the cloud server. The cloud server labels the user with the “owner”
of M . Subsequently, M can be accessed by the user. Since users do not need
to upload duplicated data to the cloud server, such a deduplication strategy can
reduce the storage costs and the communication costs simultaneously.

Despite the great benefits brought by data deduplication, it also introduces
new threats towards the security of cloud storage systems. In this chapter, we

4.2 Secure Deduplication: Threats and Countermeasures 57

first introduce the deduplication technique for cloud storage systems from the
perspective of security, then introduce the state-of-the-art research on encrypted data
deduplication.

4.2 Secure Deduplication: Threats and Countermeasures

In the nascent stage of cloud storage services, data are outsourced to the cloud server
in plaintext form. It is easy to check duplicate data across its users for the cloud
service provider. In this case, the cloud service provider mainly utilizes the user-
side deduplication to save both communication and storage costs.

Specifically, for an outsourced file M , the cloud server computes tM = h(M) as
a fingerprint to support efficient deduplication. For a subsequent user who wants
to outsource a file M

′
, she/he first sends h(M

′
) to the cloud server. Then, the

cloud server checks whether h(M
′
) = tM holds, if yes, it means that M

′
has been

outsourced before. As such, the user does not need to upload M
′
to the cloud server.

She/he is labeled with the owner of M
′

and deletes M
′

in her/his local storage.
Despite large amounts of savings in terms of communication costs and storage

space, critical security concerns in data deduplication have been raised seriously. In
the above deduplication scheme, an adversary can utilize the deduplication services
to construct an unintended content distribution network (CDN). Particularly, the
adversary can outsource M to the cloud server and broadcast the deduplication
fingerprint tM to everyone who wishes to obtain M . Subsequently, a user who does
not own M can request M from the cloud server. This attack can contribute to piracy
and copy infringing behavior, since it is easy to be launched and hard to be traced
in reality. Furthermore, note that the cloud storage is an on-demand service, in the
above attack, when the size of M is large, the adversary is able to launch the attack
to share the data to others without bearing additional costs. More critical, if the
adversary is able to temporarily compromise the cloud server (or he colludes with
a malicious insider working at the service provider), he can obtain all deduplication
fingerprints of outsourced files and access these files from the cloud server, which
violates the profits of both the cloud server and the users.

By using the attack discussed above, the adversary essentially uses the dedupli-
cation service itself as a converted channel to transfer some information without
payment and being detected. The success of the attack is based on the fact that
if a user has a file’s fingerprint, she/he is considered as an owner of the file.
This assumption is too strong such that the adversary can easily impersonate an
“owner” to access the data that he does not actually own. To resist the attack,
a straightforward solution is to stop user-side deduplication. However, it makes
savings on communication costs impossible.

58 4 Secure Deduplication

4.2.1 Proofs of Ownership

To thwart the attack, when the cloud server receives the fingerprint tM of M from
a user U , it could not directly label U with the owner of M . It should verify
that U actually possesses M . As such, a proof mechanism is required to enable
U to prove her/his ownership of M . Such the proof mechanism is called Proof of
Ownership (POW), (hereinafter, to avoid misunderstanding and equivocation, Proof
of Ownership is abbreviated to POW, while Proof of Work is abbreviated to PoW)
and is first proposed by Halevi et al. [3].

Essentially, POW is an independent component that is integrated into the
deduplicated cloud storage system to enable a user who claims herself/himself is
the owner of data M to prove her/his ownership to the cloud server. The “claim” is
achieved by providing the correct fingerprint, and resistance against the above attack
is ensured by POW. The security of POW guarantees that if a user does not possess
M (even if she/he loses one bit), she/he cannot pass the server’s verification.

Recall the PoR/PDP-based proof of storage schemes introduced in the previous
chapter, it seems that a secure proof of storage scheme can be utilized directly to
construct a POW scheme via a role reversal: the user in POW becomes the prover
in the proof of storage scheme and the cloud server in POW becomes the auditor in
the proof of storage scheme. However, such a conversation is impractical due to the
following reason.

In PoR/PDP-based proof of storage schemes, a pre-processing step is required to
utilizing some secrets to process the data, which enables the auditor to verify the
data integrity after data outsourcing with resistance against cheating from the cloud
server. Whereas, in POW, users need to prove the cloud server their ownership of
some data which have been outsourced before. If the first user who uploads a file M

to the cloud server processes M using a secret sk, the subsequent users who want to
outsource M to the cloud server cannot prove their ownership of M , since they do
not know sk.

In the remainder of this subsection, we will overview the first POW scheme [3]
and elaborate on its construction.

A user U and a cloud server CS are involved in the POW scheme. Notice
that traditional hash-based user-side deduplication over outsourced data suffers
from malicious content distribution, since the hash value of the file serves as
the fingerprint of the file to represent the “proxy” of the file’s ownership. A
straightforward way to construct POW scheme is to use application-specific hash
function and salt: the fingerprint of the file M is tM = h̄(IDCS ||salt||M), where
salt is selected by CS for all files, and h̄ is a secure hash function that would not
be used by other applications. However, the above mechanism does not address the
problem that a large file is represented by a short string. Although one attack can be
resisted, there could be others that are more tricky to cause the vulnerability.

4.2 Secure Deduplication: Threats and Countermeasures 59

To resolve the above problem, a challenge-response mechanism is introduced
to verify the ownership of M for U . Specifically, we assume that M has been
outsourced to CS, when U proves her/his ownership of M , CS first randomly selects
a nonce nonce and sends nonce to U ; U computes tM = h(nonce||M) as the proof
her/his ownership of M; CS verifies the ownership by checking the validity of tM .
Such a challenge-response mechanism ensures that if a user can pass the cloud
server’s verification, she/he must possess the data intact. Despite the high-level
security guarantee that the above challenge-response mechanism can achieve, it is
confronted with an efficiency problem. Note that to verify the user’s ownership, the
cloud server has to retrieve the entire data from its secondary storage, it introduces
considerable costs, especially when there is a large number of data items and users.

With the above efficiency problem, a practical POW scheme should achieve the
following efficiency objective: the cloud server should only store a piece of short
information computed from the data itself for the ownership verification; The proof
of ownership of the data should be much shorter than the data size. This efficiency
objective is important in practice, since it ensures that the user and the cloud server
are able to execute the POW scheme with high efficiency.

An efficient POW scheme can be directly derived from the Merkle hash
tree (short for MHT): a file M is first split into multiple blocks as M =
{M1,M2, . . . ,Mn}; Each block is hashed to be a leaf of MHT, such that all blocks
form the MHT and the cloud server CS can obtain the root of MHT. When a
user U wants to prove her/his ownership of M , CS asks U to provide paths to c

random leaves; With the proof information received from U , CS is easy to verify
the ownership using the outsourced data. By doing so, both U and CS only need
to perform hash operations to generate and verify the proof of ownership, which is
highly efficient. However, the security of such a mechanism is arguable. Actually, in
the above mechanism, if an adversary only has a ρ fraction of M , he can pass CS’s
verification with a probability Pr < ρc. Specifically, if ρ = 95%, the adversary can
pass CS’s verification with the probability of 0.6.

To address the problem, the erasure code can be used: M is first processed by
using the erasure code to obtain M

′
; M

′
is split into multiple blocks to form the

MHT, which is the same as before. By the way, the adversary, who does not have M

(even he loses a single block of M), cannot obtain M
′
. Nonetheless, processing M

using erasure code is inefficient, especially when the size of M is large. Furthermore,
if M stored on the user side does not fit in memory, the user needs to perform a
large number of disk-seeking operations. Hence, for a practical POW scheme, the
costs in terms of computation and storage should be reduced significantly while
retaining the security. In [3], this is achieved by three phases: reducing, mixing,
and authenticating by MHT. Specifically, in the reducing phase, M (assuming M

consists of n blocks and each block has x bits) is first mapped to a y bits buffer,
where each block is XORed to a constant number of random locations in the buffer;
in the mixing phase, a Feistel-like structure is introduced to diffuse the reduced data
(which is stored in the buffer); finally, an MHT is built on the reduced and mixed
file for proving the ownership.

60 4 Secure Deduplication

Following the POW scheme proposed in [3], some POW schemes are presented
to enhance the functionality. In the subsequent work, researchers focus on designing
secure POW schemes for encrypted data, which we will introduce in Sect. 4.4.

4.2.2 Randomized Deduplication

We now introduce a more tricky attack towards the deduplication scheme. Compared
with the cloud server, the devices (e.g., laptops and mobile phones) that users equip
are more vulnerable to be compromised in reality. If an adversary can temporarily
compromise a user’s device, he can utilize the deduplication service as an oracle
to obtain some incentive information about the user. Particularly, the adversary
first installs some malicious software on the target user’s device. The software first
generates two random long binary strings r0 and r1. At some point in time, the user
may generate some files locally and outsources a part of these files to the cloud
server. The software monitors the generated files, if a predetermined file M occurs,
it outsources r1 to the cloud server, if M does not occur, it outsources r0 to the
cloud server. The adversary can extract the existence of M by outsourcing both
r0 and r1 to the cloud server and checking which one is duplicated. By doing so,
the deduplication service is leveraged as an oracle to respond to the adversary, and
sensitive information can be leaked. Such an attack is well scalable, which enables
the adversary to launch more expressive attacks than the above one.

To resist such an information leakage, a paradigm of randomized deduplication
is proposed: the cloud server keeps an independent random threshold for every
file. The threshold is selected uniformly at random in a range [2, x], where x is a
parameter that might be public. When the upload number of the file is less than the
threshold, the cloud server would only perform server-side deduplication; When the
number achieves the threshold, user-side deduplication is triggered, and the cloud
server performs deduplication over the outsourced data. Note that the threshold is
randomly chosen and is unknown to the user, the adversary cannot directly leverage
the user-side deduplication service to extract information on the victim’s device
from the cloud server.

4.3 Message-Locked Encryption

The deduplication technique plays an important role in commercial cloud storage
services, due to the large savings on storage costs. However, from the perspective
of data owners, the content of outsourced data should not be leaked for security
reasons. Therefore, the privacy protection of the data content against anyone who
does not own the data should be guaranteed. Actually, such a guarantee has become
one of the most important selling points for current cloud storage systems. To this

4.3 Message-Locked Encryption 61

end, the data are always encrypted by using conventional encryption algorithms
before outsourcing.

Generally, if users encrypt their data using conventional encryption schemes,
deduplication is impeded. Specifically, if a user U1 wants to outsource a file M to the
cloud server CS, she/he first encrypts M using a symmetric encryption algorithm E

with a random key k1 as C1 = E(k1,M), and outsources C1 to CS. Subsequently,
when another user (say U2) wants to outsource the same file to CS, she/he would
upload C2 = E(k2,M) to CS, where k2 is randomly chosen by U2. Due to the
following reasons, deduplication is impeded.

First, since different users would choose different encryption keys, and thereby
output different ciphertexts for the same file, the cloud server cannot detect that the
file underlying the two ciphertexts is the same. Second, even though the cloud server
can so detect, either U1 or U2 cannot decrypt the ciphertext outsourced to the cloud
server using the key stored locally.

Message-locked encryption (MLE) is a special type of symmetric encryption,
in which the MLE key (i.e., the encryption and decryption key) is derived from
the plaintext itself. As the name indicates, in an MLE scheme, the message is
locked under itself. This guarantees that different users output the same ciphertext
for the same plaintext, and enables the cloud server to perform deduplication over
encrypted data. MLE serves the key component in encrypted deduplication cloud
storage systems.

4.3.1 Overview

An MLE scheme generally consists of four algorithms, as shown in Fig. 4.2.
Particularly, an MLE scheme MLE = {MLEKey,Enc,Dec, T ag} is a four-
tuple of probabilistic-time algorithms (for the sake of brevity, we omit the public
parameter generation algorithm hereinafter), where MLEKey is the key generation
algorithm which takes the public parameter PP and a message M as inputs and
outputs an MLE key k; Enc is an encryption algorithm which takes PP , M , and k as
inputs and outputs the ciphertext C; Dec is a decryption algorithm which takes PP ,
k, and C as inputs and outputs M (if decryption succeeds) or ⊥ (if decryption fails);
T ag is a tag generation algorithm which takes PP and C as inputs and outputs a
tag τ (i.e., deduplication fingerprint) that supports checking duplicate data.

Fig. 4.2 General description of MLE

62 4 Secure Deduplication

Theoretically, any encryption algorithm that supports deduplication across multi-
ple users can be subsumed into MLE. However, MLE is used to reduce storage costs
from deduplication, and thereby several practical considerations should be taken.

First, an MLE key that is generated in MLEKey should be much shorter than
the message. Notice that a trivial construction of an MLE scheme is that the message
is encrypted under itself, i.e., k = M . However, this scheme is of no use for
deduplication since each owner of M should store the entire data as the MLE key
and no storage savings are achieved.

Second, MLEKey can be executed by the data owner without interacting with
other users who also own M . In reality, requiring a user to interact with other
users for data outsourcing not only changes the user’s interaction pattern, but also
introduces additional communication costs, which is cumbersome and impractical.
In most cases, users expect to utilize the cloud storage service in a black-box way
with minimal monetary costs.

With the above considerations, there are generally four types of MLE schemes.
The first one is called convergent encryption (short for CE), which is first

proposed by Douceur et al. [4] and shown in Fig. 4.3. In CE, the MLE key is just
the hash value of the message and the tag is the hash value of the ciphertext, i.e.,
k = h(M), τ = h(C), where h : {0, 1}∗ → Zp is a secure hash function.

In a CE scheme, generating the tag (i.e., the deduplication fingerprint) requires
the cloud server to access the entire ciphertext C, which is inefficient. To improve
efficiency, a variant of CE called HCE1 is proposed. Specifically, as shown in
Fig. 4.4, HCE1 sets the tag as τ = h(k) and C = E(k,M)||τ . By doing so, the
cloud server only needs to use the hash value of MLE key k received from the user
as the tag, which improves the performance significantly.

Despite the performance improvement, HCE1 suffers from duplicate faking
attacks. Specifically, assume an adversary A has a file MA and user U has a file M .
Both of them encrypt their data using HCE1. A outsources not an honest encryption
of MA but a maliciously generated ciphertext CA such that, when U attempts to

Fig. 4.3 Description of CE

Fig. 4.4 Description of HCE1

4.3 Message-Locked Encryption 63

outsource M , the cloud server sees that the tag (i.e., deduplication fingerprint) τA
of CA is equal to the tag τ of C (which is the ciphertext of M). The cloud server
thus only stores CA and deletes C. However, when U subsequently downloads the
ciphertext from the cloud server and decrypts it, she/he only obtains MA rather
than M , which means that the data has been corrupted. Resistance against duplicate
faking attacks is related to a security notion of tag consistency (short for TC). TC
asks that it should be hard to generate a pair of plaintext and ciphertext (M,C) such
that Tag(C) = T ag(Enc(MLEKey(M),M)) but Dec(MLEKey(M),C) is a string
different from M .

To resist duplicate faking attacks, a variant of HCE1, called HCE2, is proposed.
In HCE2, an additional mechanism, called guarded decryption, is integrated into
HCE1: After U downloads C from the cloud server, she/he decrypts the ciphertext
to obtain a file M

′
, recomputes the tag using M

′
, and checks whether the recomputed

tag is equal to the one embedded in the ciphertext. If the checking fails, U returns ⊥
and rejects the ciphertext.

Note that in cloud storage systems, once a user outsources her/his data to the
cloud server, she/he would delete the data in the local storage. Consequently, in
HCE2, if the adversary launches the duplication faking attack, the outsourced data
of subsequent users would be substituted, and the original data (i.e., the correct data)
might not be recovered, even if the duplication faking attack can be detected. To
mitigate this problem, a variant of HCE2, called randomized convergent encryption
(RCE), has been proposed.

As shown in Fig. 4.5, in RCE, the first user who uploads the data M randomly
chooses an encryption key L and computes k that is the hash value of M . L is
utilized to encrypt M . k is used to compute the tag τ and is used to be the encryption
key to encrypt L. With M , anyone is able to compute the tag, which enables the
cloud server to check duplicate data. Subsequent users, who have proven their
ownership of M , can download C2 from the cloud server and decrypt it using the
newly computed k to obtain L, and encrypt locally stored M using L and sends the
hash value of the ciphertext to the cloud server. With the hash value of the ciphertext,
the cloud server can check whether C1 is the actual ciphertext of M . RCE is an
elegant design thwarting duplication faking attacks and can be directly utilized to
construct a secure cloud storage system with user-side deduplication.

Fig. 4.5 Description of RCE

64 4 Secure Deduplication

We stress that RCE is confronted with the information leakage problem intro-
duced in Sect. 4.2.2, and the randomized deduplication strategy can be integrated
directly to address the problem.

MLE serves as the key component cloud storage systems to ensure the confi-
dentiality of outsourced data and reduce the storage costs via deduplication. In
the following sections of this chapter, we will focus on introducing cloud storage
systems with encrypted deduplication.

4.3.2 Threat Models of Encrypted Deduplication Storage
Systems

We first introduce the system model of encrypted deduplication storage systems.
Two entities are involved in the system: users and a cloud server. The system model
is similar to that shown in Fig. 4.1, with one difference that the data are outsourced
to the cloud server in the ciphertext form.

Users. The users are data owners and outsource files to the same storage server.
They never communicate directly, but they desire to reduce the storage costs from
deduplication. For the purpose of privacy protection, the contents of files should
not be leaked to anyone who does not own the data. Therefore, the files should be
encrypted before outsourcing.

Cloud server. The cloud server is subject to the cloud storage service provider
and provides storage services for users. It checks the duplicate file across its users,
stores only a single copy of the duplicate file to reduce the storage costs.

Two types of adversaries are considered in the threat model.
The first one is a malicious but rational cloud server. The goal of the malicious

cloud server is to violate the users’ privacy by extracting the contents of outsourced
files. To this end, the malicious cloud server might launch various attacks. On the
other hand, the cloud server is also a rational party [5]: it would not launch attacks
if its profits cannot be increased.

The second one is the malicious user. Notice that in a cloud storage system,
anyone can become a valid user by registering with the cloud server. Therefore, any
adversary can first become a valid user in the system to increase his advantage that
compromises the security of the system. Different from the malicious cloud server
which only targets at breaking the confidentiality of outsourced data, a malicious
user may launch different attacks to achieve different goals. We stress that the
attacks towards plaintext deduplication services introduced in Sects. 4.2.1 and 4.2.2
can also be utilized to break the security of encrypted deduplication services.

4.4 Encrypted Deduplication Systems 65

4.3.3 Security Definition

As described in Sect. 4.3.1, MLE schemes essentially protect the data using the data
itself. As such, MLE schemes cannot achieve semantic-security-style privacy in the
spirit of [6]. Actually, if the target data M is drawn from a data space S of size |S|,
given the ciphertext C of M produced using an MLE scheme, M can be recovered
by an adversary who only tests O(|S|) times.

To measure the security of MLE schemes, new security notions are defined by
Bellare et al. [7], where the best possible privacy that MLE schemes can achieve
is investigated. In particular, four different security notions are proposed, and we
elaborate on them in the following.

The first one is called privacy against chosen-distribution attacks (short for
PRV-CDA). It indicates that ciphertexts of two unpredictable messages should
be indistinguishable. The second one is PRV$-CDA, which is stronger than
PRV-CDA. PRV$-CDA indicates that the ciphertext of an unpredictable message
should be indistinguishable from a (same-length) random string. The above two
security notions are formalized to protect the confidentiality of data protected
by MLE. The third notion is called tag consistency (short for TC), which has
been discussed before. It indicates that it should be hard to generate a pair of
plaintext and ciphertext (M,C) such that T ag(C) = Tag(Enc(MLEKey(M),M))

but Dec(MLEKey(M),C) is a string different from M . The fourth one is a stronger
version of TC, short for STC, which indicates that it should be hard to generate a pair
of plaintext and ciphertext (M,C) such that Tag(C) = Tag(Enc(MLEKey(M),M))

but Dec(MLEKey(M),C) = ⊥. STC ensures that an adversary cannot erase an
honest user’s data that would be outsourced to the cloud server.

4.4 Encrypted Deduplication Systems

The problem of deduplication over encrypted data (hereinafter, it is also called
encrypted deduplication) is first defined by Douceur et al. [4]. In this work, the
authors propose an elegant encryption scheme called convergent encryption (CE)
to support encrypted deduplication. A CE scheme is constructed on a deterministic
symmetric encryption algorithm (e.g., AES with CTR mode), but the encryption key
is the hash value of the data to be encrypted rather than a randomly chosen value.
By doing so, different users would produce the same ciphertext for the same data.

Following CE, many variants of CE are proposed and integrated into practical
storage systems to support encrypted deduplication. These encrypted deduplication
systems can be mainly divided into two parts: the first line of the work targets at
enhancing the security, and another line of the work aims to take practical concerns
into consideration to present expressive encrypted deduplication schemes for cloud
storage systems.

66 4 Secure Deduplication

4.4.1 Enhancement of Security

The security notions introduced in Sect. 4.3.3 essentially bear a common assumption
that the data to be encrypted is unpredictable, i.e., the data has a high min-entropy.
However, in reality, outsourced data are often predictable. For example, most
outsourced data are well-formatted, and the format is always publicly known. As
a consequence, an adversary, who has sufficient contextual information and wants
to break the confidentiality of the data, just needs to “guess” a small part of the
data. In this case, the success of the “brute-force” attack is not as hard as we might
think. In addition, some data, e.g., very short documents, are inherently low-entropy.
In reality, an adversary (e.g., a malicious cloud server) can encrypt all plaintext
candidates by using MLE and identify the matched ciphertext to recover the content
of target data M protected by MLE. Therefore, security against brute-force attacks
should be considered in practice.

The vulnerability of MLE-based deduplication systems against brute-force
attacks is first pointed out by Bellare et al. [8], who also propose a server-
aided encrypted deduplication scheme, namely DupLESS, to mitigate such attacks.
Specifically, an independent key server that holds a server-side secret key is
introduced to assist users in generating MLE keys using the server-side secret. Users
request an MLE key for each file to be outsourced from the key server. Furthermore,
the interaction between the user and the key server is oblivious such that the user
can generate the MLE key with the aid of the key server without leaking any
information, which protects the data information against the key server and resists
the brute-force attacks launched by the key server. The key technique to achieve this
is an oblivious pseudorandom function (short for OPRF).

In [8], the authors attempt to design an easily deployed deduplication scheme
that resists brute-force attacks and works transparently with existing cloud storage
systems. To this end, DupLESS is designed to be compatible with any variant of
MLE (i.e., any variant of MLE can be integrated into DupLESS to serve as the
underlying encryption scheme) and also supports both server-side deduplication and
user-side deduplication. In this section, we take CE as the underlying encryption
scheme to show how DupLESS (as well as subsequent schemes) works for the sake
of brevity.

In DupLESS, three entities are involved: users, the cloud server CS, and the
key server KS. DupLESS is constructed on the RSA cryptosystem [9], and we
assume the RSA exponent e and the RSA module N are determined with the
security parameter �. With e and N , the secret key d can be computed as ed ≡ 1
(mod φ(N)), where φ denotes the Euler’s totient function.

Each time a user U wants to encrypt her/his data M , she/he first blinds M

as M
′ = r · H(M)e (mod N), where r ∈ ZN is randomly chosen by U and

H : {0, 1}∗ → ZN is a secure hash function. Then, U sends M
′

to CS. Upon
receiving M

′
, CS computes σ

′
M = M

′d (mod N) and sends σ
′
M to U , where d is

the server-side secret. After receiving σ
′
M , U removes the blinding by calculating

σM = σ
′
M · r−1. To encrypt M , the encryption key here is k = h(F (σM,M)), where

4.4 Encrypted Deduplication Systems 67

h : ZN → Key.Space, Key.Space is the key space of the underlying symmetric-
key encryption scheme E(), and F is a pseudorandom function. Now, U can encrypt
M as C = E(k,M) and outsources C to CS.

The server-aided MLE utilized in DupLESS supports deduplication over
encrypted data, since the MLE key is derived from the data itself and the server-
side secret, and the server-side secret would not be changed for different users.
Therefore, CS is able to check duplicated data across all its users. On the other
hand, since the MLE key is computed on two secrets (i.e., the one is the data, and
another one is the server-side secret), as long as the key server remains inaccessible
to attackers (e.g., the malicious cloud server), the security against brute-force attacks
is achieved.

DupLESS is the first encrypted deduplication system with resistance against
brute-force attacks, which provides a new framework and method to ensure the
security of low-entropy data protected by MLE. However, it also remains some
problems.

The first one is that the formal security treatment on the server-aided MLE is
lacked. From DupLESS, we have no precise indication of what the server-aided
MLE does or does not accomplish, and cannot clearly treat what precisely is the
underlying security goal. To capture the security of MLE under brute-force attacks,
a variant of PRV-CDA, which is called D-IND$-CPA, is proposed [10]. D-IND$-
CPA refers to the security property that the ciphertext of a message (we would not
require the message to be unpredictable here) is indistinguishable from a (same-
length) random string.

The second one is that DupLESS actually bears a strong assumption that the
key server is honest and reliable. Once the key server is compromised, i.e., the
server-side secret is leaked, the security against brute-force attacks is broken. As
a result, the key server becomes the single point of failure in the system, and
DupLESS suffers from the single-point-of-failure problem. To address the single-
point-of-failure problem, an effective way is to distribute the generation of MLE
keys from the single key server to multiple ones using a threshold protocol [11].
Such a mechanism is first proposed by Duan [10] and is further enhanced in [2, 12].
We would give the technical details later and only review these works briefly to
make it easy to understand. The main differences between the Duan’s scheme [10]
and those in [2, 12] are twofold as follows.

On the one hand, the Duan’s scheme [10] relies on a trusted dealer to generate
and distribute the server-side secret among all key servers, and the trusted dealer
becomes a new single point of failure in the system. In contrast, the server-
side secret in [2, 12] is generated by all key servers in a distributed way, which
completely addresses the single-point-of-failure problem.

On the other hand, the Duan’s scheme [10], following DupLESS, is constructed
on the RSA cryptosystem [9], while the schemes in [2, 12] are built on the BLS
cryptosystem [13, 14]. Compared with its RSA counterpart, the BLS signature is
considerably shorter and more efficient on the key servers. In reality, key servers
would serve multiple users simultaneously, and hence improving the key servers’
computational efficiency could be economical and favorable.

68 4 Secure Deduplication

As discussed before, the above mechanism, i.e., generating MLE keys by
multiple key servers using a threshold protocol, surely makes performing brute-
force attacks harder, since even if one or more (less than the threshold number of)
key servers are compromised, the adversary who launches brute-force attacks cannot
recover the data content. However, such a servers-aided MLE does not resolve the
fundamental issue of trusting a specific group of key servers during the lifetime of
protected data. Actually, it is feasible and practical for a sophisticated adversary to
corrupt these key servers given enough time. Hence, for long-lived data, protection
provided by servers-aided MLE could be insufficient [15, 16].

A straightforward way to remedy this problem is to periodically replace key
servers by some new ones and let the new key servers re-share a new server-
side secret. However, it makes the deduplication on the same file protected under
different server-side secrets impossible.

In [17], the authors present an encrypted data deduplication scheme for cloud
storage systems against compromised key servers and realize it in a system called
DECKS. The security protection of DECKS is periodically renewed to free from
the reliance on a specific group of key servers in a long period of time. Particularly,
time in DECKS is divided into fixed intervals of predetermined length called
epochs. In different epochs, the key servers are changed such that an adversary who
compromises some key servers in the previous epoch cannot help in attacking in the
current epoch. To ensure the deduplication on files outsourced in different epochs,
a handoff mechanism is employed, where the server-side secret is transferred from
some key servers that are not compromised in the current epoch to all key servers in
the next epoch.

DECKS goes one step beyond the schemes in [2, 12], but its basic scheme
(excluding the handoff mechanism) is the same as those of [2, 12]. With the
introduction to DECKS, readers are easy to learn how the schemes in [2, 12] work.
We provide the technical details of DECKS in the following.

DECKS consists of four algorithms: Setup, MLEKeyGen, Deduplication, and
Proactivization (DECKS and the schemes in [2, 12] essentially share the same
algorithms of Setup, MLEKeyGen, Deduplication). We assume that there are
multiple users U = {U1,U2, . . .} (there is no upper bound of the number of users),
n key servers {K1,K2, . . . ,Kn}, and a cloud server CS in DECKS.

Setup
• With �, public parameters {p, P , G, GT , e, H , h, h̄, E(·), Enc(·), Sig(·), t , n, ρ}

are determined, where e : G × G → GT is the bilinear pairing, P is a generator
of G, H : {0, 1}∗ → G, h : G → {0, 1}�, h̄ : {0, 1}∗ → Zp are secure hash
functions, E(k, F) is a symmetric encryption algorithm (CTR[AES]) to encrypt
F using k, Enc(epk, F) is a secure public-key encryption algorithm to encrypt
F using epk, Sig(ssk, F) is a secure signature algorithm [13] to sign F using
ssk, ρ is the upper bound of MLE key requests made by a user in an epoch, t is
a threshold, and n is the number of key servers.

• Each Ki (i ∈ [1, n]) has a signing key pair (sski, spki) and a public-key
encryption key pair (eski, epki). Ki selects a nonce Ni , ai,0 ∈ Z∗

p, and a

4.4 Encrypted Deduplication Systems 69

(t − 1)-degree polynomial fi(x) ∈ Zp, s.t. fi(0) = ai,0, where fi(x) =
ai,0 + ai,1x + · · · + ai,t−1x

t−1. Ki publishes Ni .
• Ki generates a session identity SID(0) = {(K1, N1), (K2, N2), . . . , (Kn,Nn)},

computes ai,0P and ai,γ P for γ = 1, 2, . . . , t − 1, and calculates fi(j) for
j = 1, 2, . . . , n; j �= i.

• For γ = 1, 2, . . . , t − 1 and j = 1, 2, . . . , n; j �= i, Ki computes

θi = {SID(0), ai,0P, {ai,γ P }, {Enc(epkj , fi(j))}},
Φi = Sig(sski , θi).

Ki publishes {θi,Φi}.
• For j = 1, 2, . . . , n; j �= i, Ki obtains {θj ,Φj }, accepts it if SID(0) and Φj are

valid, and decrypts Enc(epki, fj (i)) to get fj (i). Ki checks fj (i) by verifying

fj (i)P
?=

t−1∑

γ=0

iγ · aj,γ P .

If the checking fails, Ki rejects fj (i).
• Ki computes its secret share si = ∑n

j=1 fj (i), the corresponding public share
Qi = siP . The server-side secret is s = ∑n

i=1 ai,0 shared among all key servers,
the public key Q = sP = ∑n

i=1 ai,0P .
• For ε = 1, 2, . . . ,m, Ki maintains ρε to count up how many times Uε requests

MLE keys in current epoch.

MLEKeyGen Without loss of generality, we assume that Uε(ε ∈ U) is the first
user who outsources a file M . For the subsequent users, they derive the MLE key on
M as Uε does. Uε computes the MLE key on M as follows.

• Uε randomly selects r ∈ Z∗
p, computes M

′ = rH(M), and sends F
′

to Ki for
i = 1, 2, . . . , n.

• Ki verifies ρε ≤ ρ and aborts if the verification fails. Then, it computes a
signature σi = siM

′
, sets ρε + +, and sends σi to Uε .

• After receiving σi , Uε checks its validity by verifying

e(σi, P)
?= e(M

′
,Qi).

If the checking fails, Uε rejects σi . After receiving t valid signatures
{σi1 , σi2 , . . . , σit } (we assume that the indexes of these signatures form a set
T = {i1, i2, . . . , it } with an ascending order and |T | = t), Uε computes

wik =
∏

i1≤η≤it
η∈T ,η �=ik

η

η − ik

σ = r−1
t∑

k=1

wikσik .

70 4 Secure Deduplication

Uε checks whether e(σ, P) = e(H(M),Q) holds, she/he rejects σ if the
checking fails.

• Uε computes MLE key mkM = h(σ).

Deduplication With mkM , Uε encrypts M as CM = E(mkM,F) and outsources
CM to CS.

For CS, some methods can be utilized to check duplicates. One of the most
efficient ways is to check the hash value of the ciphertext. Specifically, CS computes
τM = h̄(CM) and maintains {CM, τM } locally. For a subsequent user who uploads

a ciphertext C
′
, CS verifies h̄(C

′
)

?= τM . If the verification passes, CS performs
deduplication; Otherwise, CS maintains C

′
locally.

Proactivization At the end of an epoch, the key servers are replaced by n new
key servers. For the sake of brevity, we assume that the key servers in the χ-
th epoch form a committee K(χ) = {K(χ)

1 ,K(χ)
2 , . . . ,K(χ)

n } and the new key
servers in the next epoch, i.e., the (χ + 1)-th epoch, form a committee K(χ+1) =
{K(χ+1)

1 ,K(χ+1)
2 , . . . ,K(χ+1)

n }, where the secret share of K(χ)
i (i = 1, 2, . . . , n) is

denoted by s
(χ)
i . The replacement is achieved by a handoff process where the server-

side secret s is redistributed among K(χ+1). This process is shown in the following
(unless specified otherwise hereinafter, k = 1, 2, . . . , t and j = 1, 2, . . . , n).

• t honest and reliable key servers {K(χ)
i1

,K(χ)
i2

, . . . ,K(χ)
it

} are selected. Their

indexes form a set T (χ) = {i1, . . . , it }.
• K(χ)

ik
generates a nonce N

(χ)
ik

and publishes it. K(χ+1)
j generates a nonce N

(χ+1)
j

and publishes it.
• K(χ)

ik
randomly chooses bik,1, bik,2, . . . , bik ,t−1 ∈ Zp and generates

g
(χ)
ik

(x) = s
(χ)
ik

+ bik,1x + bik,2x
2 + · · · + bik,t−1x

t−1. (4.1)

• K(χ)
ik

generates a session identity

SID(χ) = {{(K(χ)
ik

, N
(χ)
ik

)}, {(K(χ+1)
j , N

(χ+1)
j)}},

computes bik,1P , bik,2P , . . ., bik,t−1P , s
(χ)
ik ,j

= g
(χ)
ik

(j).

• K(χ)
ik

computes

θ
(χ)
ik

=
{

SID(χ), {bik,γ P }γ=1,...,t−1,
{
Enc

(
epk

(χ+1)
j , s

(χ)
ik ,j

)}}
,

Φ
(χ)
ik

= Sig
(
ssk

(χ)
ik

, θ
(χ)
ik

)
.

K(χ)
ik

publishes {θ(χ)
ik

, Φ
(χ)
ik

}. Here, Q
(χ)
ik

= s
(χ)
ik

P is the public share and has
been published.

4.4 Encrypted Deduplication Systems 71

• K(χ+1)
j obtains {θ(χ)

ik
, Φ

(χ)
ik

}, accepts it if SID(χ) and Φ
(χ)
ik

are valid, and decrypts

Enc(epk
(χ+1)
j , s

(χ)
ik ,j

) to get s
(χ)
ik ,j

.

• K(χ+1)
j computes the Lagrange coefficients wik = ∏

i1≤η≤it

η∈T (χ),η �=ik

η
η−ik

, and verifies

s
(χ)
ik ,j

P
?= s

(χ)
ik

P +
t−1∑

γ=1

jγ · bik,γ P, (4.2)

Q
?=

t∑

k=1

wikQ
(χ)
ik

. (4.3)

If the verification fails, K(χ+1)
j aborts; Otherwise, it sends an “Accept” message

to other key servers.
• After receiving “Accept” messages from all other key servers, K(χ+1)

j computes

its secret share s
(χ+1)
j as

s
(χ+1)
j =

t∑

k=1

wik s
(χ)
ik ,j

. (4.4)

The corresponding public share is Q
(χ+1)
j = s

(χ+1)
j P .

The server-side secret s would not be changed after Proactivization, which
ensures that deduplication can work on data outsourced in different epochs. The
proof is provided as follows. For the sake of brevity, we assume that the selected
honest key servers are {K(χ)

1 ,K(χ)
2 , . . . ,K(χ)

t }, where K(χ)
k ’s secret share is s

(χ)
k .

Note that s has the form:

s =
t∑

k=1

wks
(χ)
k =

t∑

ζ=1

w
′
ζ s

(χ+1)
ζ , (4.5)

where both wk and w
′
ζ are Lagrange coefficients. if s

(χ)
k and s

(χ+1)
ζ are valid, then

s =
t∑

k=1

wks
(χ)
k

=
t∑

k=1

⎛

⎝wk

t∑

ζ=1

w
′
ζ s

(χ)
k,ζ

⎞

⎠

72 4 Secure Deduplication

=
t∑

ζ=1

t∑

k=1

w
′
ζ wks

(χ)
k,ζ

=
t∑

ζ=1

w
′
ζ s

(χ+1)
ζ .

DECKS also supports that committees in different epochs would intersect,
although the above description only shows the case of disjoint committees. Fur-
thermore, the total number of key servers n and the threshold number t can also be
changed in different epochs to satisfy different levels of security. This is achieved
by choosing a corresponding degree of the polynomial in Eq. (4.1).

Another work [18] to resolve the fundamental issue of trusting the key server(s)
is somewhat straightforward: as the employment of key server(s) would cause the
trust issue, the users who have outsourced a file M assist the subsequent users
who attempt to upload the same file in encrypting M . In [18], if a user U wants
to outsource M using MLE and M has been outsourced by other users U, i.e.,
deduplication would occur, U would interact with a subset of users of U to encrypt
M . If U is a brute-force adversary, he only obtains a random key to encrypt M , and
if U is honest, she/he will compute an MLE key from the interaction, which enables
her/him to benefit from deduplication. However, the scheme in [18] bears a strong
assumption that a number of users in U should keep online when U outsources M .
This actually requires users in U to perform too many operations to use their data
and to enjoy the deduplication service.

Another line of work focusing on enhancing the security of encrypted dedupli-
cation schemes is to consider a special type of data protected by MLE. In the above
discussion, we only introduce two types of data to be encrypted: the one has a high
min-entropy which inherently resists brute-force attacks, and the other one has a low
min-entropy which inherently vulnerable to brute-force attacks. However, in reality,
a special type of data called lock-dependent message exists, where the plaintext
distributions that may depend on the public parameters of the schemes. Examples
of the lock-dependent message including those that the tags generated using MLE
share a particular property, such as that they all start with a zero bit, or that the first
bit of the tag reveals the first bit of the message. With such a property, the adversary
is able to extract additional information from the ciphertext protected under the four
types of MLE introduced before to violate the privacy of data owners. However,
all the MLE schemes [19, 20] that well protects lock-dependent message against
adversaries incurs prohibitive costs on deduplication, since heavy cryptographic
operations, e.g., zero-knowledge proofs, are leveraged.

All above schemes do not explicitly target at resistance against other attacks
introduced in Sect. 4.2, such as traffic analysis [21], side-channel attacks [22],
and leakage of the hashed plaintext [23], that may be utilized by adversaries to
violate users’ privacy and cloud server’s security. However, these schemes are well
compatible with orthogonal techniques [2, 3] to thwart these attacks.

4.4 Encrypted Deduplication Systems 73

It is worth stress that POW also serves an important component in encrypted
deduplication. Recall that the primary motivation of introducing POW is to resist
adversaries who do not own the data but attempt to “steal” the data from the
cloud server leveraging the deduplication service. However, with the use of MLE,
encrypted deduplication schemes are inherently resistant to such a stealing attack.
This does not mean that POW is useless and would not be needed in encrypted
deduplication systems. As a matter of fact, the attacks that utilize the deduplication
service to construct an unintended content distribution network still work in
encrypted deduplication systems, and even they are harder to be detected compared
with those in the case of plaintext. With the construction of MLE, designing POW
schemes for encrypted deduplication is not so challenging. Such a POW scheme
can be directly derived from the public verification scheme proposed by Shacham
et al. [24, 25] via a role reversal with the modification that the secret key utilized
to compute σi is the hash value of the data block mi , rather than a randomly
chosen one. Encrypted deduplication systems with the integration of POW have
been investigated by different researchers.

4.4.2 Practical Concern

The encrypted deduplication schemes we have studied so far just consider the data
protected by MLE as an element in Zp. Although some of them consider that the
data are low-entropy, the inherent characteristics of target data and storage systems
are not considered. With the integration of these inherent characteristics, additional
features can be achieved.

The first work that considers the inherent characteristics of target data and storage
systems is proposed by Stanek et al. [26, 27]. In this work, data to be protected by
MLE are generally divided into two categories according to the popularity. The one
is called popular data, which means that the number of users who outsource the
data is more than a threshold (this threshold depends on the underlying system);
The other one is called unpopular data, which means that the number of users
who outsource the data is less than the threshold. The key observation of [26, 27]
is that different data requires different levels of security protection. For example,
data shared by lots of users, e.g., a popular song or video, arguably requires less
protection than individual documents which might be only owned by the data
owners themselves. As such, deduplication should only occur when the data are
popular. With this observation, there is a state for each outsourced file to indicate
its popularity. This state is dynamically updated with data outsourcing. To enable
the encrypted deduplication with “fine-grained security-to-efficiency tradeoff,” two
trusted entities are introduced as follows:

• Identity provider (IdP): IdP is introduced to identify users when a user joins,
which protects the system from Sybil attacks.

74 4 Secure Deduplication

• Index repository service (IRS): IRS is introduced to provide secure indexation
for unpopular files.

In reality, an adversary may control multiple users. The goal of the adversary
inherits that in encrypted deduplication schemes introduced before, i.e., breaking
the confidentiality of outsourced data. Let nA be the upper bound of the number of
users that can be controlled by the adversary, and plim be a system-wide popularity
limit that represents the smallest number of distinct and legitimate users that need
to upload a given file M for that file to be declared popular. The threshold used to
decide the popularity t should be set to be t ≥ plim + nA, which ensures both the
security and efficiency.

The data M in [26, 27] is protected by a two-layer encryption algorithm: The
inner layer is obtained through MLE that generates identical ciphertext at each
invocation; The outer layer is obtained through a semantically secure encryption
algorithm. To design such a two-layer encryption algorithm, a cryptosystem, called
the convergent threshold cryptosystem, is introduced. The threshold and message-
locked nature of the convergent threshold cryptosystem make it suitable for the
secure deduplication scheme. Specifically, the number of users who outsource M is
recorded by IRS; Once this number is less than t (i.e., M is an unpopular data), M is
protected by two-layer encryption which is semantically secure; Once this number
achieves t (i.e., M become popular data), the outer layer of encryption is decrypted,
and M is just protected by MLE, which supports encrypted deduplication.

The work in [26, 27] has demonstrated that designing encrypted deduplication
schemes with the integration of the inherent characteristics of target data and storage
systems is very promising and may significantly enhance the systems in terms of
security, efficiency, and functionality.

One of the most important motivations to employ cloud storage services is to
manage big data that has a large volume. However, the encrypted deduplication
schemes introduced so far suffer from either low efficiency or low space savings for
large files in cloud storage systems.

Particularly, in the above schemes, when an entity, say Alice, outsources a large
file M to the cloud server CS, where M is protected by MLE. Subsequently, another
entity, say Bob, wants to outsource the same file M to CS using the same MLE
scheme. CS would perform deduplication and only store a single copy of the
ciphertext of M , denoted by C locally. Later, Bob may only append some new data
to M and outsources the updated file (denoted by M

′
) to CS. Since M is modified

to M
′
, the ciphertext C is also changed to C

′
. CS needs to maintain both C and C

′

locally, which is very cumbersome and costly.
To address the above problem, block-level deduplication can be utilized. M is

first split into multiple blocks M = {M1,M2, . . . ,Mn}, and each block Mi is
encrypted using MLE. As a result, if Bob wants to update M , CS only needs
to additionally maintain the newly generated blocks, which achieves high space
savings.

The above block-level deduplication scheme is directly extended from existing
MLE schemes. However, it is confronted with the key management problem: each

4.4 Encrypted Deduplication Systems 75

block corresponds to an MLE key, and both Alice and Bob need to store all these
MLE keys locally. When the number of blocks is large, maintaining these MLE keys
is a heavy burden for Alice and Bob. A trivial solution is to encrypt all blocks’ MLE
keys using a master key and outsource these ciphertexts together with the encrypted
data to CS. Whereas, this causes a significant extension on the storage costs.

To address this problem, Chen et al. propose a dual-level user-side encrypted
deduplication scheme, called BL-MLE [28]. The key technique underlying BL-
MLE is threefold: Each block is further split into multiple sectors which reduces the
number of blocks’ MLE keys significantly (This is essentially the same as those in
public data integrity verification schemes discussed in Sect. 3.3); Each block MLE
key is encapsulated into the block identifier which is used to identify the redundant
blocks; The master key is derived from the entire data M and is protected under
public-key cryptosystem. In addition, BL-MLE employs the user-side deduplication
strategy, where POW is also leveraged to ensure security.

Based on Chen et al.’s work, a variant of MLE is formalized as updatable
block-level MLE (UMLE) [29, 30]. The security is formally defined, and schemes
with high efficiency are proposed. However, we stress that UMLE is only used
to perform deduplication over large files. Compared with MLE, UMLE achieves
higher space savings but sacrifices the computational efficiency and makes the
system more complex. Furthermore, in reality, the block size should be carefully
selected; Otherwise, it may fail to check the duplicate blocks.

Another line of work [31, 32] targets at designing transparent deduplication
schemes. The motivation of these works is that encrypted deduplication schemes
surely increase the profitability of the cloud service provider, but do not enable users
to directly benefit from the savings of deduplication over their data. The service
charge of using cloud storage service is calculated by the volume of the outsourced
data, without consideration of the deduplication level (i.e., how many users that
outsource the same data to the cloud server) of the data. The deduplication level for
one data file is formalized as the “deduplication pattern.”

To address the above problem, a straightforward solution is to require the cloud
server to periodically release the deduplication pattern for each outsourced file.
However, the cloud service provider may forge a deduplication pattern and only
release this forged one to users for profits. For example, if the service charge of
outsourcing a data file M is 100 dollars. When the number of users that outsource M

to the cloud server is 100, the deduplication pattern of M is 100, and each user only
needs to pay the cloud service provider 1 dollar for the data outsourcing. To gain
more service charge, the cloud service provider may claim a forge deduplication
pattern of 50, and now each user needs to pay the cloud service provider 2 dollars.
After that, the cloud service provider can gain additional 100 dollars from users.

To resist such a misbehaved cloud service provider, existing schemes [31, 32]
introduce an independent entity, called a gateway, to periodically verify the dedupli-
cation pattern of each file. To improve verification efficiency, the gateway leverages
a sampling verification strategy that randomly chooses a subset of all outsourced
data to verify the deduplication pattern of the data in the subset. To resist the
collusion between the gateway and the cloud server to forge deduplication pattern,

76 4 Secure Deduplication

the key technique used here is to utilize a public blockchain to construct a time-
dependent random source to ensure the randomness of the subset while ensuring
the public verifiability, which follows the idea introduced in Sect. 3.4.2.2. The proof
of deduplication pattern is based on the cryptographic accumulators [33–35] which
can be used to verify whether a given element belongs to a set.

4.4.3 Other Works

In addition to the above works, the literature features some proposals for integrating
encrypted deduplication and public verification (e.g., [36, 37]) in cloud storage
systems. Actually, proofs of storage, MLE and proofs of ownership can be integrated
into one system to ensure the confidentiality and integrity of outsourced data while
achieving space savings from deduplication. Moreover, the idea of designing secure
encrypted data deduplication schemes can also be used in other systems-security
applications. In particular, a notion of “public-key encryption with keyword search”
is proposed in [38] for the problem of retrieving target data using a keyword from
the entire data set protected under a public-key encryption scheme, which will be
introduced in the next chapter.

4.5 When Secure Deduplication Meets eHealth: A Case
Study

Compared with traditional paper-based systems, electronic health (eHealth) systems
provide a more efficient, less error-prone, and more flexible service for both doctors
and patients. As such, eHealth systems have replaced paper-based medical systems
in recent years and become a central hub of hospital systems. For example, in China,
if a hospital’s eHealth system is not qualified to provide services, consultation fees
of any patient visiting the hospital cannot be reimbursed.

In fact, eHealth systems are data-intensive [39]. Typically, eHealth systems allow
doctors to generate and access their patients’ electronic medical records (EMRs),
such as prescriptions. With a numerous EMRs in eHealth systems’ generation,
medical institutions (e.g., clinics and hospitals) who store large data sets locally
incur substantial hardware, software, and personnel costs involved in deploying and
maintaining applications in practice [40]. Furthermore, the local EMRs store makes
no contribution to the judgment and dispute resolution in medical malpractice. At
this point, outsourcing EMRs to cloud servers is a practical choice.

Generally, the storage server needs to store the outsourced EMRs for a prolonged
period of time to satisfy several government regulations or hospital requirements on
EMRs archiving, while the volume of EMRs generated from eHealth systems grows
over time, which causes the sustained growth in the costs of store EMRs. Actually,

4.5 When Secure Deduplication Meets eHealth: A Case Study 77

the storage costs can be reduced significantly after deduplication, where the storage
server checks duplicate EMRs and deletes the redundant ones. According to our
analysis, performing deduplication of EMRs can save the storage costs by more
than 65% in cloud-assisted eHealth systems, which will be elaborated in Sect. 4.5.3.
However, from the perspective of data owners, including both medical institutions
and patients, the content of EMRs should not be leaked for security reasons [41].
Therefore, the privacy protection of the EMRs’ content against anyone who does
not own the EMRs should be guaranteed. This can be achieved by conventional
encryption, but it makes deduplication impossible.

MLE is a cryptographic primitive that supports encrypted data deduplication.
In cloud-assisted eHealth systems, when consulting a doctor, the patient delegates
his/her doctor to generate EMRs, the doctor encrypts the generated EMRs by using
MLE, outsources the ciphertexts to the cloud storage, and sends the MLE keys to the
patient [42]. The storage server checks duplicate (encrypted) EMRs and stores only
a single copy of them to reduce the storage costs. However, EMRs are inherently
low entropy. For example, a list of most existing antibiotics can be found in [43],
the list only involves about 100 items. Actually, most EMR candidates can be
enumerated quickly by adversaries. This problem is further exacerbated by the fact
that an adversary has sufficient contextual information (e.g., patients’ symptoms).
As a consequence, the outsourced EMRs protected by MLE is vulnerable to brute-
force ciphertext recovery.

Although server(s)-aided encrypted deduplication schemes can be employed to
mitigate the brute-force attack, two problems still exist.

• As discussed before, the patients need to delegate his/her doctor to generate
EMRs, and are required to store MLE keys locally, therefore, how to make secure
delegation and maintain MLE keys well on the patient side should be considered;

• As the number of EMR items is enormous, checking duplicate EMRs requires
the storage server to scan the entire EMR set and check the EMR items one by
one. Consequently, employing existing schemes to check duplicate EMRs incurs
a considerable delay and becomes a bottleneck in applications.

To address the above problems, HealthDep, a secure and efficient encrypted
deduplication scheme for cloud-based eHealth systems, is proposed in [2]. In this
section, we study HealthDep and explore the potentials of integrating the encrypted
deduplication technique into eHealth systems.

4.5.1 Cloud-Based eHealth Systems

A model of the cloud-based eHealth system is shown in Fig. 4.6. There are five
different entities in it: patients, hospital, doctor, key servers, and storage server.

The hospital involves multiple departments, such as Cardiology, Gastroenterol-
ogy, Orthopedics, and so on. Each doctor attaches herself/himself to a department.
Each patient has a smartphone with system-wide Trusted Execution Environments

78 4 Secure Deduplication

Fig. 4.6 System model of HealthDep

(TEEs) (e.g., ARM TrustZone [44]). Generally, the patients, hospital, and doctor are
cloud clients; the storage server is the cloud server and is subject to cloud service
providers.

The procedure when a patient consults a doctor in the eHealth system is described
as follows. First, the patient registers with a hospital, and the hospital determines
that the patient is subject to which department. Then the hospital designates a doctor
for diagnosing, and the patient makes an appointment with the hospital to obtain the
diagnosing information (e.g., time and place). At the corresponding time, the patient
delegates to the doctor and is diagnosed and treated. Then the doctor generates
the EMRs for the patient, performs a server-aided MLE to encrypt the EHRs, and
outsources the ciphertexts to the storage server. Finally, the storage server checks
duplicate EMRs across all the patients and stores only a single copy of redundant
EMRs.

4.5.2 Adversary Model and Security Goals

In the adversary model, threats from two different angles are considered: internal
adversaries and external adversaries. We also assume that both internal and external
adversaries are able to access the outsourced data.

Internal Adversaries
• Compromised key servers. The adversary may control the key servers, extract

the secrets from them, and record their interactive message to retrieve the EHRs
from the ciphertexts generated by the doctor. Here, we assume the cost of

4.5 When Secure Deduplication Meets eHealth: A Case Study 79

compromising a threshold number of key servers is higher than the value of the
EHRs that it protects.

• Rational storage server. The storage server is a rational entity. By rational, the
storage server will only deviate from the scheme if such a strategy increases
their profit in the system. Furthermore, the storage server (including malicious
insiders working at the cloud service provider) always attempts to violate the
confidentiality of the outsourced EHRs to retrieve the patients’ privacy.

• Semi-trusted doctor. The doctor is an honest entity during the diagnosing period.
However, the doctor may perform two attacks:

1. Outsourcing forged EMRs. After the diagnosing period, the doctor may
outsource forged EMRs to the storage server to conceal his mistake in medical
malpractice.

2. Violating the confidentiality of the EMRs outsourced by other doctors. The
only way to do this is that the doctor performs online brute-force attacks,
where he requests the MLE keys of EMRs’ candidates from the key servers,
and then performs brute-force ciphertext recovery.

External Adversaries
• Hardware adversaries. The hardware adversary is the strongest adversary whose

target is to break the security of the patient’s device. We assume that the hardware
adversary cannot physically access the patients’ device.

• Online adversaries. Such an adversary can control the communications between
the storage server and other entities. He is able to eavesdrop on the interaction
messages between the storage server and the doctor, and tamper with them.
Moreover, the active adversaries also can impersonate the doctor to forge EMRs
and outsource them.

Since EHRs are inherently low-entropy, all the above adversaries can predicate
them. HealthDep does not consider denial-of-service attacks. The hospital has a
secure space to store secrets.

4.5.3 Analysis of EMRs in Actual eHealth Systems

We first analyze the inherent characteristics of EMRs from actual eHealth systems.
We show three prescriptions in Figs. 4.7, 4.8, and 4.9, where Rp., Sig, po, qd,

bid, and qn come from Latin and denote “get the medicine,” “the usage and dosage,”
“oral,” “four times a day ,” “twice a day,” and “every night,” respectively.

Figure 4.7 shows the prescription of a patient who is diagnosed with coronary
heart disease and stable angina pectoris. Figure 4.8 shows the prescription of
another patient who is diagnosed with hypertension. These two prescriptions are
generated by the same doctor from the Department of Cardiology. We can see
that although these two patients are diagnosed with different diseases, the common
medicines with the same usage and dosage are used, that is, “Aspirin Enteric-coated

80 4 Secure Deduplication

Fig. 4.7 The prescription of
patient with coronary heart
disease

Tablets,” “Metoprolol Tartrate Tablets,” and “Nifedipine Sustained-release Tablets.”
By comparison, Fig. 4.9 shows the prescription of a patient, who is diagnosed with
gastric ulcer, and the prescription is generated by a doctor from the Department of
Gastroenterology. There is no same medicine between the prescription described
in Fig. 4.9 and those described in Figs. 4.7 and 4.8, since these prescriptions are
generated by different doctors from different departments. Furthermore, each item
should be coded before storing it. In China, each medicine corresponds with a YP
code formulated by the National Health and Family Planning Commission of the
People’s Republic of China. We would omit the coding processing hereinafter.

From the above three figures, we also observe that a portion of EMRs would
be duplicated, which are contained within the blue rectangle, while a portion of
them (contained within the red rectangle) would not. For example, each prescription
is first divided into multiple blocks before encrypting, as Fig. 4.10 shows (since
the prescription ID, and the doctor’s ID and signature do not require encryption,
and are not highlighted in the figure). Actually, different patients would not have
the same prescription ID and patient information. Therefore, to further improve the
efficiency that checks duplicate EMRs, the storage server only needs to perform
deduplication on m1 ∼ m4 shown in Fig. 4.10. Furthermore, the patient information
and the clinical diagnosis are the most sensitive information, and these two parts

4.5 When Secure Deduplication Meets eHealth: A Case Study 81

Fig. 4.8 The prescription of
patient with hypertension

(m0 in Fig. 4.10) should be protected by a symmetric-key encryption with semantic
security.

We first perform deduplication on 200 prescriptions from an actual eHealth sys-
tem. These prescriptions are selected randomly from 10,000 prescriptions generated
by doctors from the Department of Cardiology during 2013–2017. We show the
results in Table 4.1, which demonstrates that performing deduplication can save
storage costs by more than 50% in this case. We further analyze more prescriptions
and observe that performing deduplication is able to save the storage costs about
66% in the case of 500 prescriptions and more.

4.5.4 Study of HealthDep

Since a patient always consults a doctor without heavy luggage, it is impractical
to require patients to be well equipped in eHealth systems [45]. As most persons
already have equipped with smartphones, deployment of the mobile device to
make delegation and store MLE keys is practical. To ensure the security, the key
technique used in HealthDep is system-wide TEEs [46], such as ARM TrustZone
[44]. Prior to making an appointment with the hospital and see a doctor, assuming

82 4 Secure Deduplication

Fig. 4.9 The prescription of
patient with gastric ulcer

Fig. 4.10 Example of
processing prescription

that each patient has already installed two applications provided by the hospital
on his device: a companion application running in the normal world and a trusted
application running in the secure world. HealthDep also assumes that each patient
has completed registration, that is, the hospital has stored the device certificate of the

4.5 When Secure Deduplication Meets eHealth: A Case Study 83

Table 4.1 Savings of storage
costs after deduplication

Prescriptions number 100 150 200 500

Savings of storage costs 38.8% 43.3% 50.06% 66%

patient’s smartphone. HealthDep makes use of the International Mobile Equipment
Identity (IMEI) of the patient’s device as the identity, since the IMEI is written by
the device manufacturer and stored in a read-only memory on the device. This binds
the patient to his/her device TEE.

Each patient first obtains a treatment key from the hospital and seals the treatment
key in the secure world of his/her smartphone TEE. All the subsequent interactive
messages between the patient and the hospital are protected under the treatment
key. The patient first makes an appointment with the hospital and receives his/her
diagnosing information. At the treatment time, the patient delegates to the doctor,
and the doctor generates the EMRs. Next, the doctor divides the EMRs into two
parts: the one involves the individual information, such as patient information and
clinical diagnosis, which is the most sensitive data; the other one involves the
medical records, such as medicines and their usage and dosage, which would be
duplicate and can be deduplicated to reduce the storage costs. Then the doctor
encrypts the first part (e.g., the content contained within the red rectangle described
in Fig. 4.7) by using conventional encryption (e.g., AES), encrypts the later part
(e.g., the content contained within the blue rectangle shown in Fig. 4.7) by using the
server-aided MLE, outsources the ciphertexts as well as some auxiliary information
corresponding himself/herself to the storage server, and sends the keys to the patient.
The storage server first checks the validity of the patient’s delegation to authenticate
the doctor. If the checking passes, it accepts the outsourced ciphertext. Finally,
the storage server determines whether performing deduplication by the auxiliary
information and performs deduplication on the ciphertexts protected under the
server-aided MLE. In actual eHealth systems, the size of EMRs’ first part is always
small, and therefore can be represented by one data block. HealthDep assumes that
the first block is the data that would not be duplicated.

To enable HealthDep to resist offline brute-force ciphertext recovery without the
assumption that the key server is fully trusted, multiple key servers are introduced
to assist the doctor in generating the MLE keys and HealthDep employs a (t, n)-
threshold blind signature scheme [47] between the doctor and the key servers.
The key observation here is that compromising t key servers is much harder than
compromising a single one, as discussed before.

In HealthDep, to thwart online brute-force attacks, in which attackers (curious
doctors) impersonate a valid doctor to request MLE keys and further violate the
confidentiality of the EMRs, it requires that the key servers limit the number of MLE
keys request for each doctor in an epoch, as [8] does. A bound ρ is pre-defined at the
initialization phase; Each key server keeps track of the total number of the queries
made by each doctor and stops responding after ρ is reached.

In practice, each patient’s treatment key can be considered as a long-term one.
Thus, to improve efficiency, HealthDep supports that each patient needs to perform

84 4 Secure Deduplication

the registration only once when he/she first visits the hospital in person and reuses
the treatment key.

In actual eHealth systems, for a specific department, the number of common
medicines is determined. Therefore, when obtaining a new MLE key from the
key servers, the doctor is able to maintain this MLE key well and reuse it in
the subsequent treatments. This can reduce the communication and computation
overhead at the expense of slight storage costs.

HealthDep also can be used to a scenario where multiple medicine institutions
outsource their patients’ EMRs to the same cloud storage, since our observation still
holds in this condition.

HealthDep is the first secure and efficient encrypted EMRs deduplication scheme
for cloud-based eHealth systems. It not only integrates the inherent characteristics
of EMRs to improve the efficiency of performing deduplication, but also employs
servers-aided MLE to enhance the security.

It has demonstrated the promising of applying advanced encrypted deduplication
techniques in reality, and also serves as a key reference to inspire subsequent
researchers to design secure and efficient cryptographic schemes to enhancing the
cloud storage systems in terms of security, efficiency, and functionality.

4.6 Summary and Further Reading

In this chapter, we have introduced the data deduplication technique for cloud
storage systems. We have provided a comprehensive overview of existing data
deduplication schemes and analyzed their pros and cons, and also conducted a
comparison between them. Finally, we have studied the latest advances in encrypted
deduplication techniques and discussed their potentials to enhance cloud storage
services.

There are also some survey papers to introduce the data deduplication technique
from different aspects, such as [1, 48]. There is also a survey paper [49] to only
focus on the secure deduplication technique.

References

1. Meyer DT, Bolosky WJ (2012) A study of practical deduplication. ACM Trans Storage 7(4):1–
20

2. Zhang Y, Xu C, Li H, Yang K, Zhou J, Lin X (2018) HealthDep: an efficient and secure
deduplication scheme for cloud-assisted eHealth systems. IEEE Trans Ind Inf 14(9):4101–4112

3. Halevi S, Harnik D, Pinkas B, Shulman-Peleg A (2011) Proofs of ownership in remote storage
systems. In: ACM conference on computer and communications security, pp 491–500

4. Douceur JR, Adya A, Bolosky WJ, Simon D, Theimer M (2002) Reclaiming space from
duplicate files in a serverless distributed file system. In: International conference on distributed
computing systems, pp 617–624.

References 85

5. Zhang Y, Xu C, Lin X, Shen X (2019) Blockchain-based public integrity verification for cloud
storage against procrastinating auditors. IEEE Trans Cloud Comput. https://doi.org/10.1109/
TCC.2019.2908400

6. Bellare M, Desai A, Jokipii E, Rogaway P (1997) A concrete security treatment of symmetric
encryption. In: IEEE annual symposium on foundations of computer science, pp 394–403

7. Bellare M, Keelveedhi S, Ristenpart T (2013) Message-locked encryption and secure dedupli-
cation. In: International conference on the theory and applications of cryptographic techniques,
pp 296–312

8. Bellare M, Keelveedhi S, Ristenpart T (2013) DupLESS: server-aided encryption for dedupli-
cated storage. In: USENIX security symposium, pp 179–194

9. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-
key cryptosystems. Commun ACM 21(2):120–126

10. Duan Y (2014) Distributed key generation for encrypted deduplication achieving the strongest
privacy. In: ACM workshop on cloud computing security, pp 57–68

11. Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613
12. Miao M, Wang J, Li H, Chen X (2015) Secure multi-server-aided data deduplication in cloud

computing. Pervasive Mob Comput 24:129–137
13. Boneh D, Lynn B, Shacham H (2001) Short signatures from the weil pairing. In: International

conference on the theory and application of cryptology and information security, pp 514–532
14. Boneh D, Lynn B, Shacham H (2004) Short signatures from the weil pairing. J Cryptol

17(4):297–319
15. Wong TM, Wang C, Wing JM (2002) Verifiable secret redistribution for archive systems. In:

IEEE international security in storage workshop, pp 94–105
16. Zhang Y, Xu C, Li H, Yang K, Cheng N, Shen X (2020) PROTECT: efficient password-based

threshold single-sign-on authentication for mobile users against perpetual leakage. IEEE Trans
Mob Comput. https://doi.org/10.1109/TMC.2020.2975792

17. Zhang Y, Xu C, Cheng N, Shen X (2019) Secure encrypted data deduplication for cloud storage
against compromised key servers. In: IEEE global communications conference, pp 1–6

18. Liu J, Asokan N, Pinkas B (2015) Secure deduplication of encrypted data without additional
independent servers. In: ACM conference on computer and communications security, pp 874–
885

19. Abadi M, Boneh D, Mironov I, Raghunathan A, Segev G (2013) Message-locked encryption
for lock-dependent messages. In: Annual cryptology conference, pp 374–391

20. Bellare M, Keelveedhi S (2015) Interactive message-locked encryption and secure deduplica-
tion. In: IACR international workshop on public key cryptography, pp 516–538

21. Islam MS, Kuzu M, Kantarcioglu M (2012) Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: Network and distributed system security
symposium, pp 1–15

22. Harnik D, Pinkas B, Shulman-Peleg A (2010) Side channels in cloud services: deduplication
in cloud storage. IEEE Security Privacy 8(6):40–47

23. Li S, Xu C, Zhang Y (2019) CSED: client-side encrypted deduplication scheme based on
proofs of ownership for cloud storage. J Inf Secur Appl 46:250–258

24. Shacham H, Waters B (2008) Compact proofs of retrievability. In: International conference on
the theory and application of cryptology and information security, pp 90–107

25. Shacham H, Waters B (2013) Compact proofs of retrievability. J Cryptol 26(3):442–483
26. Stanek J, Sorniotti A, Androulaki E, Kencl L (2014) A secure data deduplication scheme for

cloud storage. In: International conference on financial cryptography and data security, pp 99–
118

27. Stanek J, Kencl L (2016) Enhanced secure thresholded data deduplication scheme for cloud
storage. IEEE Trans Dependable Secure Comput 15(4):694–707. https://doi.org/10.1109/
TDSC.2016.2603501

28. Chen R, Mu Y, Yang G, Guo F (2015) BL-MLE: block-level message-locked encryption for
secure large file deduplication. IEEE Trans Inf Forensics Secur 10(12):2643–2652

https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TMC.2020.2975792
https://doi.org/10.1109/TDSC.2016.2603501
https://doi.org/10.1109/TDSC.2016.2603501

86 4 Secure Deduplication

29. Zhao Y, Chow SSM (2019) Updatable block-level message-locked encryption. IEEE Trans
Dependable Secure Comput. https://doi.org/10.1109/TDSC.2019.2922403

30. Kandele S, Paul S (2018) Message-locked encryption with file update. In: International
conference on applied cryptography and network security, pp 678–695

31. Armknecht F, Bohli J, Karame GO, Youssef F (2014) Transparent data deduplication in the
cloud. In: ACM conference on computer and communications security, pp 831–843

32. Leontiadis I, Curtmola R (2018) Secure storage with replication and transparent deduplication.
In: ACM conference on data and application security and privacy, pp 13–23

33. Baric N, Pfitzmann B (1997) Collision-free accumulators and fail-stop signature schemes
without trees. In: International conference on the theory and applications of cryptographic
techniques, pp 480–494

34. Camenisch J, Lysyanskaya A (2002) Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Annual cryptology conference, pp 61–76

35. Kate A, Zaverucha GM, Goldberg I (2010) Constant-size commitments to polynomials and
their applications. In: International conference on the theory and application of cryptology and
information security, pp.177–194

36. Li J, Li J, Xie D, Cai Z (2016) Secure auditing and deduplicating data in cloud. IEEE Trans
Comput 65(8):2386–2396

37. Liu X, Sun W, Lou W, Pei Q, Zhang Y (2017) One-tag checker: message-locked integrity
auditing on encrypted cloud deduplication storage. In: IEEE conference on computer commu-
nications, pp 1–9

38. Boneh D, Crescenzo GD, Ostrovsky R, Persiano G (2004) Public key encryption with keyword
search. In: International conference on the theory and applications of cryptographic techniques,
pp 506–522

39. Casola V, Castiglione A, Choo KR, Esposito C (2016) Healthcare-related data in the cloud:
challenges and opportunities. IEEE Cloud Comput 3(6):10–14

40. Sun J, Fang Y (2010) Cross-domain data sharing in distributed electronic health record
systems. IEEE Trans Parallel Distrib Syst 21(6):754–764

41. Liang X, Li X, Shen Q, Lu R, Lin X, Shen X, Zhuang W (2012) Exploiting prediction to
enable secure and reliable routing in wireless body area networks. In: International conference
on computer communications, pp 388–396

42. Wang Y, Wu Q, Qin B, Shi W, Deng RH, Hu J (2017) Identity-based data outsourcing with
comprehensive auditing in clouds. IEEE Trans Inf Forensics Secur 12(14):940–952

43. List of antibiotics. https://en.wikipedia.org/wiki/List_of_antibiotics
44. ARM, Building a secure system using TrustZone technology. http://www.arm.com
45. Lin H, Shao J, Zhang C, Fang Y (2013) CAM: cloud-assisted privacy preserving mobile health

monitoring. IEEE Trans Inf Forensics Secur 8(6):985–997
46. Ekberg J, Kostiainen K, Asokan N (2013) Trusted execution environments on mobile devices.

In: ACM conference on computer and communications security, pp 1497–1498
47. Vo DL, Zhang F, Kim K (2003) A new threshold blind signature scheme from pairings. In:

IEICE symposium on cryptography and information security
48. Xia W, Jiang H, Feng D, Douglis F, Shilane P, Hua Y, Fu M, Zhang Y, Zhou Y (2018)

A comprehensive study of the past, present, and future of data deduplication. Proc IEEE
104(9):1681–1710

49. Shin Y, Koo D, Hur J (2017) A survey of secure data deduplication schemes for cloud storage
systems. ACM Comput Surv 49(4):1–38

https://doi.org/10.1109/TDSC.2019.2922403
https://en.wikipedia.org/wiki/List_of_antibiotics
http://www.arm.com

Chapter 5
Secure Keyword Search

This chapter introduces searchable encryption (SE), a cryptographic primitive
supporting search over encrypted data using keywords. SE plays an important role
in current cloud storage systems. It enables users to retrieve target data from their
entire data set in an efficient way without leakage of the data contents. In the
following sections, the motivation of SE and its classification are first reviewed.
Then, a comprehensive survey on each class of SE is provided. Finally, the latest
advances in SE is studied.

5.1 Keyword Search Over Encrypted Data

Data confidentiality is one of the most important requirements in cloud storage
systems, which protects the contents of outsourced data against anyone who does not
own the data. To achieve data confidentiality, data owners always encrypt their data
before outsourcing, and the cloud server only maintains the ciphertexts. This can
be achieved by leveraging conventional encryption schemes, but it makes efficient
searches over ciphertext by keyword impossible. Particularly, after a data owner
U generates a data set M , U first encrypts M using an encryption scheme (both
the symmetric-key encryption and public-key encryption can be used) and obtains
the ciphertext C, and outsources C to the cloud server. Subsequently, when U
only needs to retrieve some segments of M , she/he has to download C from the
cloud server, decrypt C to obtain M , and retrieve the target segments from M . This
introduces prohibitive costs in terms of communication and computation.

Keywords firmly remain the most prevalent mechanism for searching data that
are outsourced remotely in the plaintext form. A user can conclude some keywords
for each data file and subsequently identify the target file using the corresponding
keywords. However, such a keyword searching mechanism cannot be directly

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_5&domain=pdf
https://doi.org/10.1007/978-981-15-4374-6_5

88 5 Secure Keyword Search

integrated into the above encrypted data outsourcing system to support searching
over ciphertexts, since it will introduce new vulnerabilities and considerable costs.

Specifically, assuming the outsourced data set is M = {M1,M2, . . . ,Mn}},
each of Mi(i ∈ [1, n]) contains some keyword wi . For i = 1, 2, . . . , n, the user
U first encrypts Mi as well as wi and obtains the ciphertexts Ci and ci . Then U
outsources {Ci, ci} to the cloud server. A critical security concern occurs: Note that
for i ∈ [1, n], j ∈ [1, n], i �= j , ci and cj may intersect, the cloud server is easy to
learn which files include the same keyword. Even if the cloud server does not know
the content of keyword, it is enough to violate the user’s privacy from the learned
information. We stress that although this problem can be addressed by utilizing a
randomized encryption algorithm,U needs to securely maintain all random elements
used to encrypt the files and keywords for subsequent searching, which is inefficient
in reality.

Searchable encryption (SE) is a cryptographic primitive supporting search on
encrypted data using keywords. In an SE scheme, both the file and its keywords are
encrypted and outsourced to the cloud server. To search a target file, the user first
takes a keyword and her/his secret key as inputs to obtain a trapdoor, then she/he
sends the trapdoor to the cloud server. With the trapdoor and the outsourced files
and keywords, the cloud server can identify the file containing the corresponding
keyword and send the ciphertext to the user.

The security of SE requires that the leakage information after the user’s searches
should not be more than “search pattern” and “access pattern.” Here, the search
pattern refers to some information extracted from the outcomes of searches (i.e.,
whether searches were for the same word or not), and the access pattern refers to
the identifiers of the documents that contain a keyword. We stress that an inherent
requirement of SE is that any information that can be extracted by adversaries
(e.g., a malicious cloud server) can only be obtained after the user has searched
the relevant files, and if the user does not perform any search operation, nothing
should be leaked.

Generally, SE can be divided into two categories: symmetric-key searchable
encryption (SSE) and public-key searchable encryption (PSE). They are designed
for different scenarios.

SSE is designed for a scenario that a user herself/himself encrypts her/his files
using a symmetric-key encryption scheme, outsources the ciphertext to a cloud
server, and retrieves target file(s) leveraging some keywords and her/his secret key.
It can be extended to the multiple-user case that the data owner can delegate other
users to access and search her/his outsourced files.

PSE is designed for a different scenario that some users (called senders) encrypt
their files using a public-key encryption scheme under a receiver’s public key, and
outsource the ciphertexts to a cloud server; The receiver can retrieve target file(s)
leveraging some keywords and her/his secret key.

In the remainder of this chapter, we will introduce SSE and PSE, respectively,
and study the latest advances in PSE.

5.2 Symmetric-Key Searchable Encryption 89

5.2 Symmetric-Key Searchable Encryption

Pioneers of SE schemes are only related to symmetric-key cryptosystems, and SE
only refers to symmetric-key searchable encryption (SSE) for a long time.

5.2.1 System and Threat Models

The original target scenario of SSE is straightforward: a user U outsources her/his
data to a cloud server CS and wants to access some segments of the outsourced
data from the cloud server, where the segments are related to some keywords (as we
now utilize google for searching). However, U does not want to reveal the contents
of outsourced data and keywords used for searching to others including CS. As
such, the data and keywords should be encrypted before being submitted to CS. To
achieve high efficiency, U needs to leverage symmetric-key encryption algorithms.

The system model of SSE is shown in Fig. 5.1.
The threat model for SSE mainly considers the cloud server as an adversary.

There are two types of threat models to define the misbehaved cloud server. The
first one considers the cloud server as an honest-but-curious entity; The second
one considers the cloud server as a malicious entity. In both the threat models,
the cloud server is assumed to violate the user’s privacy by extracting information
about the user from the outsourced data and the submitted search queries as much as
possible. For a malicious cloud server, it may return incorrect or incomplete data to
the user. We stress that using orthogonal techniques, e.g., data integrity verification
introduced in Chap. 3 and universal arguments [1], can make an SSE with resistance
against honest-but-curious cloud server robust against malicious one. In this chapter,
we restrict our attention to the honest-but-curious cloud server as well.

5.2.2 Survey on Symmetric-Key Searchable Encryption

The problem of searching on encrypted data is first defined by Song et al. [2],
where the basic requirements of such a technique are first pointed out and the first

Fig. 5.1 System model of SSE

90 5 Secure Keyword Search

searchable symmetric-key encryption (SSE) scheme is proposed. In addition to the
confidentiality of outsourced files, an SSE scheme should further ensure that:

• Before searching, the cloud server can learn nothing about the outsourced files;
• After searching by some keyword, the cloud server can only determine with some

probability whether each file contains the submitted keyword without learning
anything else.

Subsequently, the security of SSE is derived from these two requirements and
is characterized as the requirement that nothing can be leaked beyond the search
pattern and access pattern [3, 4].

To satisfy the above requirements, in an SSE scheme, the user should not submit
the ciphertext(s) of the keyword(s) as a search token to the cloud server for searching
files. She/he should compute a so-called trapdoor as the search token and submit
the trapdoor to the cloud server for searching [5]. This trapdoor should have the
following properties:

• The trapdoor can only be computed with the user’s secret key;
• Without valid trapdoors, the cloud server can learn nothing from the outsourced

files.

Song et al. are inspired by stream cipher and propose the first SSE scheme.
However, this scheme requires the cloud server to scan each file in a word-by-word
way for a given keyword, and thus supports a very slow search. The search costs are
linear in |M|, where |M| denotes the length of M .

To improve efficiency significantly, a promising approach is to build up an index
that, for each keyword w of interest, lists the files that contain w. Since in SSE,
the user herself/himself encrypts all files before outsourcing, she/he can organize
the files in an arbitrary way and include additional data structure. It is feasible and
affordable to build the index to allow the user to search on encrypted files with high
efficiency. Such an index-based approach has become an underlying construction of
all SSE schemes.

With the above basic idea of SSE, we introduce subsequent works on SSE from
four different lines of research.

5.2.2.1 Basic SSE and Its Development

Due to the low efficiency of Song et al.’s scheme, Goh proposes the first secure
index-based SSE scheme [5] to improve efficiency from the costs that are linear in
|M| of [2] to those that are linear in #M , where #M denotes the number of files
included in M .

There are two types of methods to construct the index. The first one is to construct
the index by files, as shown in Fig. 5.2; The second one is to construct the index by
keywords, as shown in Fig. 5.3.

The scheme in [5] generates a sub-index (i.e., bloom filter) for each file and its
keywords, which essentially builds a secure index by files. To capture the security

5.2 Symmetric-Key Searchable Encryption 91

Fig. 5.2 Index constructed by files

Fig. 5.3 Index constructed by keywords

of secure-index-based SSE. A security notion of semantic security against adaptive
chosen keyword attack (IND-CKA) is proposed to prove that an adversary cannot
extract a file’s contents from its index, other than what he has extracted from
previous search results or from other channels.

A milestone of SSE is the work of Curtmola et al. [3, 4]. The contributions of
this work are twofold: The first formal and complete security definition of SSE
is provided; The first SSE scheme with search costs that are sublinear in #M is
proposed.

Specifically, in [3, 4], the security notion of IND-CKA is first analyzed, and
its weakness is pointed out. Recall that the security of trapdoors is not explicitly
required in IND-CKA, it causes that IND-CKA fails to guarantee the privacy of
user queries. In [5] and [6], trapdoors are generated in a deterministic way. As
a consequence, an external adversary who eavesdrops the interaction channels
between the user and the cloud server is able to determine whether a search is
repeated, which enables the adversary to violate the user’s search pattern.

To remedy it, Curtmola et al. [3, 4] first formally define four auxiliary notions:
history, access pattern, search pattern, and trace.

• History: It refers to the interaction between the user and the cloud server that is
determined by a file collection and a sequence of keywords that the user wants to
search for and that SSE wants to protect against the adversary.

• Access pattern: It refers to the pointers to (encrypted) files that satisfy the search
query, which has been introduced before.

• Search pattern: It refers to the information that whether a search query is
repeated, which also has been introduced before.

• Trace: It refers to the trace of a history, which consists of exactly the information
SSE has to leak about the history and nothing else. Trace, at lease, should include
the identifiers of the files containing each keyword in the history, and information
describing which trapdoors submitted in the history that correspond to the same
underlying keywords.

92 5 Secure Keyword Search

With the above notions, the security of SSE is formally defined in a simulation-
based way. Intuitively, there are two worlds (i.e., environments) in the security
game: The one is called real world, in which an SSE scheme is executed by
the adversary; The other one is the simulated world (also called ideal world), in
which the information that the SSE scheme cannot protect is directly leaked to the
adversary. If the adversary cannot distinguish interactions between the simulated
world and the real world, it means that the SSE scheme leaks nothing beyond the
search pattern and access pattern.

Two versions of the above security are defined. The first one is non-adaptive,
and the second one is adaptive. The difference between them is whether the user
generates her/his keywords as a function of the outcome of previous searches.
Obliviously, the adaptive security definition is stronger than its non-adaptive
counterpart.

The SSE scheme proposed by Curtmola et al. [3, 4] is based on the secure index
constructed by keywords. It achieves adaptive security and hides everything else
except the search pattern and access pattern. Furthermore, the scheme reduces the
computational costs on the cloud server from those that are linear with the number of
all files to those that are linear with the number of the files containing the querying
keyword.

On the other hand, a limitation to all SSE schemes introduced so far is that they
only support the single-keyword search, i.e., the cloud server is able to identify the
subset of files matching a certain keyword. However, in reality, users may want to
search their files using some combinations of keywords to access the outsourced
files effectively.

It is nontrivial to extend the scheme in [3, 4] to support conjunctive keyword
search (i.e., search on the encrypted data by Boolean combinations of keywords).
We note that two straightforward ways can be applied to extend the scheme in
[3, 4] to support conjunctive keyword search. The first one is to extend the single-
keyword search scheme trivially: Given a combination of some keywords, it can
provide the cloud server with a search capability for each individual keyword in
the combination. For each keyword, the cloud server first retrieves the set of files
matching that keyword, then outputs the intersection of all those sets. The second
one is to require the user to define a meta-keyword for each possible combination
of keywords. The user then associates the newly defined meta-keywords with
her/his files as she/he did for the original keywords. Subsequent searches by any
combination of keywords are the same as those by original keywords.

Whereas, both the above schemes are unsatisfactory. In particular, the first
scheme is flawed, since a lot of information in addition to the search pattern and
access pattern is leaked to the cloud server, and the cloud server can extract which
files contain each individual keyword from the outcomes of the search. With this
additional information, the cloud server might extract the infer information about
the user’s files during multiple searches. The second scheme is inefficient: for a file
containing k keywords, it requires an additional 2k meta-keywords to support for all
possible combinations of keywords. As a result, the cloud server needs to store an
exponential in k blowup in the number of files.

5.2 Symmetric-Key Searchable Encryption 93

To address the above problems, Golle et al. [7] propose the first secure and
efficient SSE scheme supporting the conjunctive keyword search. The key idea is
to add an additional keyword field associated with each file. With this keyword
files, the user is able to know in advance where (in which keyword field) the match
would occur. This enables the user to pre-compute necessary parameters that are
sent to the cloud server, and allows the cloud server to respond to the user’s query of
conjunctive search with relatively high efficiency compared with the above second
scheme. The pre-computed parameters are one-time-only, which ensures that the
cloud server can extract nothing beyond the access pattern and search pattern from
the outsourced files and responses to the user.

The requirements in terms of security and efficiency proposed in [7] have served
as basic criteria for the subsequent SSE schemes that support (both specific and
general) Boolean queries, e.g., the scheme in [8].

5.2.2.2 SSE for Dynamic Data

In reality, after a user outsources her/his files to the cloud server, she/he might
update the outsourced files as needed. Considering the requirements in terms of data
confidentiality and search by keywords, a practical SSE scheme needs to support
dynamic data operations (e.g., addition and deletion). However, all SSE schemes we
have introduced so far either fail to support dynamic operations on the outsourced
files, e.g., the scheme in [2], or incur substantial costs that are linear in all files when
extending them to support dynamic data, e.g., the scheme in [5].

At a high level, all efficient SSE schemes are based on a secure index. The
process of such an index-based SSE scheme is as follows. The user first executes
the encryption algorithm which takes as input an index and a sequence of n files
and outputs an encrypted index and a sequence of n encrypted files. The user then
outsources the encrypted index and files to the cloud server. To search for a keyword
w, the user computes a trapdoor using her/his secret key and sends the trapdoor to
the cloud server. The cloud server takes as input the trapdoor, the encrypted index,
and the encrypted files, identifies the corresponding encrypted files containing w

and responds to the user with the encrypted files.
Extending the index-based SSE schemes, e.g., the one proposed in [3, 4], to

support dynamic data operation suffers from the following problems. First, it faces
an efficiency problem when supporting data additions. Given a new file M

′
that

contains a set of keywords w
′
, the user needs to interact with the cloud server to

append array entries to the corresponding locations in the index constructed by
keywords. We provide a simple example in Fig. 5.4, where we only consider the
case of plaintext, the user wants to add a new file M4 to the outsourced data set,
and M4 contains keywords of w1 and w2. Note that when the outsourced files and
index are encrypted, the updation on the index incurs substantial costs in terms of
communication and computation. The similar problem also exists in the case that
the user wants to delete some outsourced files from the entire data set.

94 5 Secure Keyword Search

Fig. 5.4 Simple example of data addition in SSE

In [9], a secure and efficient SSE supporting dynamic data operations is proposed,
where the search costs on the cloud server side of the scheme are linear in
outsourced files containing the submitted keyword, which is optimal. This scheme
is constructed on the scheme proposed by Curtmola et al. [3, 4], with the integration
of the following key techniques.

• To support efficient file deletion, an additional encrypted data structure called
deletion array is introduced. The deletion array enables the cloud server with a
trapdoor received from the user to recover pointers to some nodes corresponding
to the file to be deleted.

• To support efficient pointer modification, the pointers stored in a node are
encrypted with a homomorphic encryption scheme, such that if the cloud server
receives a ciphertext of an appropriate value from the user, it can modify the
pointer without having to decrypt the node.

• To support efficient file addition, a memory management mechanism (where an
additional space in added into the search array) is employed to keep track of the
free locations in the search array, which allows the cloud server to add new nodes.

Although the SSE scheme in [9] achieves an optimal search efficiency, the
encrypted indexes in the scheme [9] as well as the scheme [3, 4] store files at
random disk locations, it fails to support parallel search. As a result, when the
user submits a frequent-used keyword w (maybe thousands of files contain w), a
significant computational delay is still required.

To address this problem, a parallel and dynamic SSE scheme is proposed by
Kamara et al. [10]. The key technique behind the scheme [10] is to build an
additional hierarchical tree to merge the indexes. This enables the cloud server with
multiple processors to retrieve the target files in a parallel way, which reduces the
computational delay significantly.

Dynamic SSE is an extension of SSE. It also should achieve all security criteria
of SSE introduced in Sect. 5.2.2.1, i.e., in an SSE scheme, nothing can be leaked
to adversaries beyond the search pattern and access pattern. In regards to dynamic
SSE, to achieve the security criteria, it should have the following additional security
properties.

• Forward security. If a user searches for keywords and subsequently adds a new
file containing some of the keywords that are searched before, the cloud server

5.2 Symmetric-Key Searchable Encryption 95

should not learn that the newly added file has a keyword the user searched for in
the past.

• Backward security. If a user asks the cloud server to delete an outsourced file, and
the cloud server removes the target file from its local storage, the cloud server
should not learn that the deleted file has a keyword the user searched for in the
past.

We stress that both the forward security and backward security do not just have
theoretical value.

In reality, even small leakage can be utilized by adversaries to reveal the user’s
queries in both static and dynamic databases. Recent works, e.g., [11, 12], have
demonstrated how adversaries, who extract a small piece of information during
user’s searches, launch attacks to violate the users’ privacy. This problem could
be further exacerbated in dynamic data settings. In dynamic SSE schemes, the
adversary might send new files to a target user, and when the user updates her/his
outsourced files, the newly received files which are generated by the adversary
would be outsourced to the cloud server. By doing so, the adversary is able to
control a part of the outsourced files of a target user, know the contents and the
corresponding keywords of these files, and violate the user’s privacy by obtaining
the query information of the user. Such an attack is called file injection attack, and
Zhang et al. [13] have demonstrated that it works on dynamic SSE schemes which
are not forward-secure.

To achieve forward security, Stefanov et al. [14] propose a practical dynamic SSE
scheme which supports searches, insertions, and deletions, and protects forward
pattern and update pattern from leakage, and achieves search time of O(m log3 n)

and update time of O(k log2 n), where m denotes the number of files matching the
search and k denotes the number of unique keywords contained in the file. However,
the scheme in [14] also incurs the efficiency problem. It requires the user to store
some data, where the storage costs are linear in the number of files to be deleted.
To further improve the efficiency, Bost [15] proposes a dynamic SSE scheme that is
based on the private index to achieve high efficiency in terms of search and update.
The construction of the scheme in [15] is much simpler than that in [14].

We note that the SSE scheme proposed by Kerschbaum et al. [16] also supports
efficient index updation. This scheme does not offer a specific operation for initially
outsourced files, and all files are added incrementally, where initially the user only
encrypts the entire file set and does not need to generate other auxiliary information,
e.g., index. This scheme achieves sublinear search time, and its efficiency is
asymptotically optimal. The basic idea to construct such a dynamic SSE scheme is
to require the cloud server to gradually construct an index from the access pattern.
As such, the cloud server can only generate the index from searches of the user, and
keywords in a newly added file would not be leaked to the cloud server after the file
is outsourced. However, this scheme is confronted with two problems. The first one
is that the search time of a keyword that the user first submits to the cloud server is
slow, since the index is not constructed, and the cloud server needs to scan the entire
file set to retrieve the target data. The second one is that if the index is generated by

96 5 Secure Keyword Search

the cloud server, the forward security cannot be guaranteed since which keywords
have been submitted before is shared with the cloud server when a new file is added
[17].

Prior dynamic SSE scheme with backward security is proposed by Naveed et al.
[18], where the scheme protects the sensitive information about the outsourced files
(e.g., number of outsourced files, the length of individual files, the files’ identifiers
and contents) and the operations performed by the user (e.g., access, addition,
deletion, and updation) from leakage. Subsequently, several dynamic SSE schemes
[19] with backward security are proposed. However, all these schemes incur massive
costs in terms of communication and computation. The main challenge to design a
backward-security dynamic SSE scheme is to ensure that newly submitted queries
should not be tested on deleted files on the cloud server side.

5.2.2.3 Variants of SSE

The SSE schemes we have studied so far are mainly to design specific structures
and schemes for keyword search with trade-offs on security, functionality, and effi-
ciency. There is another line of work on SSE to leverage appropriate cryptographic
primitives to support as many as query functions in database systems. This type of
SSE can be considered as an extension or variant of SSE, and mainly focuses on
applying SSE in reality.

The first work that considers the problem of encrypting structured data in such
a way that it can be efficiently and privately queried is proposed by Chase et al.
[20]. Structured data are widely used in different scenarios, e.g., Bioinformatics,
Chemistry, social networks, relational database, semantic web, etc. Chase et al.
generalize SSE to the setting of arbitrarily-structured data.

An important line of research focuses on extending SSE to support rich query
types. Typical works mainly put effort into the following directions.

Boolean Search As discussed before, the multi-keyword search is a natural demand
for users in reality. In the existing SSE scheme [7], only the conjunctive search
is supported, and it works only for structured attribute-value type databases. It is
desired to extend the scheme to support free text search and to the general Boolean
search to provide a truly practical search capability. Several SSE schemes [8, 21–23]
with support for general Boolean search have been proposed.

Range Search In reality, the user might search her/his files by a way that the
keyword is within a range, e.g., return all records of employees whose salary
within a range of $10,000–15,000. Actually, range searches can be applied to any
ordered set of elements. Order-preserving symmetric encryption (OPE) [24, 25] is a
cryptographic primitive supporting efficient range queries on encrypted data. Order-
revealing encryption (ORE) [26, 27] is a cryptographic primitive for ciphertext
comparisons based on the order relationship of plaintexts without revealing the con-
tents of the underlying plaintexts, which can also be leveraged to support efficient
range queries on encrypted data. ORE provides a stronger security guarantee than
OPE.

5.2 Symmetric-Key Searchable Encryption 97

Fuzzy Search Fuzzy keyword search is a common type of search method, which
greatly enhances system usability by returning the matching files when the user’s
searching inputs exactly match the predefined keywords or the closest possible
matching files based on keyword similarity semantics, when the exact match fails.
Several fuzzy SSE schemes have also been proposed [28, 29].

Ranked Search In reality, ranked searches, which enables the user to find the most
or least relevant information quickly without unnecessary communication costs, are
usually more effective than Boolean search. OPE can also be used to construct an
SSE scheme with the ranked search. Several ranked SSE schemes have also been
proposed [30, 31].

5.2.2.4 Other Works

In Sect. 5.2.1, we have mentioned that two different threat models are proposed to
describe the attacks that the cloud server might launch in SSE. The SSE schemes we
have studied so far only consider the cloud server as an honest-but-curious entity,
i.e., it will honestly execute the prescribed scheme but may perform other attacks
to violate the user’s privacy. There is another line of works that focuses on resisting
the malicious cloud server.

To thwart the malicious cloud server, we should first enumerate potential
attacks that it may perform. Actually, most attacks can be resisted by utilizing
the corresponding countermeasures. For example, to resist repudiation attacks,
digital signature algorithms can be utilized; to protect the outsourced files against
modification, proofs of storage can be leveraged.

However, a common type of attack cannot be addressed by directly integrating
existing mechanisms into SSE, i.e., a malicious adversary might modify search
results for profits. This motivates researchers to propose verifiable SSE.

There are generally two types of verifiable SSE schemes [32]: hash-based
ones and accumulator-based ones. These schemes essentially utilize a proof of
membership to enable the user to verify the correctness and integrity of the files
received from the cloud server. Here, the integrity and correctness refer to the files
that correspond with the desired search result, rather than the contents of outsourced
files.

In modern cryptography, some cryptographic primitives that are proposed before
the problem of search over ciphertext is defined can be utilized to support privacy-
preserving search, although the original motivation of these primitives is not to
address the problem. However, there are some important differences between these
primitives and SSE.

Private Information Retrieval (PIR) In PIR, two entities (the one is a sender
and the other one is a receiver) are involved, where the sender stores a database
M1,M2, . . . ,Mn and the receiver holds an index i ∈ {1, . . . , n}. PIR enables the
receiver to learn Mi from the sender while ensuring that the sender can learn nothing
[33]. PIR supports privacy-preserving search, but the data in PIR are always stored

98 5 Secure Keyword Search

in the plaintext form. The confidentiality of outsourced files cannot be ensured by
utilizing PIR.

Oblivious RAM (ORAM) ORAM is a cryptographic primitive that enables a user
who only stores locally a constant amount of data to outsource n files to the cloud
server and to access the outsourced files while hiding the identities of the files
which are being accessed [34, 35]. ORAM can be utilized directly to support all
functionalities that the basic SSE scheme can provide, and even achieve a stronger
privacy guarantee, since it would leak any information to the cloud server. However,
none of the existing ORAM schemes can achieve high efficiency that an SSE scheme
has, and is too inefficient to be applied in practice.

5.3 Public-Key Searchable Encryption

Considering the following scenario: Alice utilizes a cloud-based email system and
wants to read her email on different devices: laptop, smartphone, etc. The cloud
server (which is subject to an email service provider) is supposed to retrieve emails
by some keywords received from Alice and sends the retrieved emails to the
appropriate device. Note that all emails are generated by other users (e.g., Bob)
and are sent to Alice by outsourcing these emails to the cloud server, such a cloud-
based storage service provides users an efficient way to send their data to others and
a flexible way to access their received data in different devices.

While users (in the remainder of this chapter, the senders and receiver are col-
lectively referred to as “users”) enjoy great benefits from the cloud storage services,
critical security concerns in data outsourcing have been raised seriously. One of
the most important security issues is data confidentiality. From the perspective of
users, contents of outsourced data are very sensitive, and should not be leaked for
preserving privacy. Therefore, senders always encrypt the data before outsourcing.
This can be achieved by utilizing conventional encryption, but it makes efficient
searches over ciphertexts by keyword impossible.

Recall that SSE mainly targets at the scenario that a user encrypts her/his
files, outsources the ciphertexts to a cloud server, and subsequently retrieve target
files by keywords from the cloud server. The above problem cannot be addressed
by employing SSE, which motivates a new cryptographic primitive: public-key
searchable encryption (PSE) [36]. PSE is a variant of SE that addresses the problem
of search over encrypted data under public-key cryptosystems.

5.3 Public-Key Searchable Encryption 99

Fig. 5.5 System model of PSE

5.3.1 System model

The system model of PSE is shown in Fig. 5.5, where three entities are involved.

• Senders: Senders generate files which contain a small number of keywords and
send the files and the keywords to a target receiver securely by encrypting the
files and the selected keywords with the receiver’s public key. The ciphertexts
are outsourced to a cloud server.

• Receiver: The receiver is the data (i.e., encrypted files) owner, she/he receives the
encrypted files from the cloud server, and decrypts them locally. Furthermore,
she/he would search her/his outsourced files by keywords at a later point in time.

• Cloud server: The cloud server is subject to a cloud service provider. It receives
encrypted files and encrypted keywords. Later, it provides the receiver with an
efficient and secure way to search the ciphertexts by keywords and forwards the
target ciphertexts to the receiver.

The process of the PSE is as follows: a sender S first generates a file M that
she/he wants to send it to a receiver R. M contains a small number of keywords
w = {w1, w2, . . . , wn}. Then S encrypts M and w using R’s public key to obtain
the corresponding ciphertexts C and {c1, c2, . . . , cn}. S sends C and {c1, c2, . . . , cn}
to R by outsourcing them to a cloud server CS. When R wishes to search her/his
files by a keyword from CS, she/he first generates a trapdoor on the keyword by
using her/his secret key and sends the trapdoor to CS. Upon receiving the trapdoor,
CS can test whether the ciphertext of a keyword (i.e., each item in w) matches the
trapdoor for data retrieval.

In PSE, the index-based idea [5] can also be utilized to improve the search
efficiency. We note that the original secure index scheme cannot be applicable to
PSE, since the index should be generated and encrypted by the user who generates
and searches files. However, the method [16] that requires the cloud server to
gradually construct an index (which is constructed by keywords) from the access
pattern can be utilized, which allows the cloud server to efficiently search by the
keywords that have been submitted before. In PSE, such an index-based mechanism
can serve as an independent building block to be integrated directly into the system

100 5 Secure Keyword Search

to improve efficiency. Therefore, when introducing PSE, we would not explicitly
show how the matches files are retrieved, but only show how the cloud server
tests the correspondence between a ciphertext and a trapdoor. Actually, with the
knowledge of the correspondence between the ciphertext and the trapdoor, the
corresponding files can be easily retrieved.

5.3.2 Threat Model and Security Definition

In reality, threats towards PSE are mainly from two different angles: an adversarial
cloud server and a malicious sender.

• Adversarial cloud server. The adversarial cloud server attempts to violate the
receiver’s privacy by breaking confidentiality.

• Malicious sender. Any adversary can become a sender to send any file to
the receiver. By doing so, any adversary may control some of the receiver’s
outsourced files.

To achieve the security of PSE under the above threat model, new security
notions should be defined. Note that the basic security requirement for PSE is that
the ciphertext of a keyword does not reveal any information about the underlying
keyword unless the corresponding trapdoor is available. Therefore, the first security
notion for PSE is to capture the security against an active adversary who can get
trapdoors for any keyword he selects. Even under this attack, the adversary should
not have the capability of distinguishing an encryption of a keyword w0 from an
encryption of a keyword w1 for which he did not get the trapdoor. Intuitively, such
a security property guarantees that for an adversary, without the corresponding
trapdoors, the information extracted from an encryption of a keyword should not
be more than that extracted from an encryption of another keyword. This security
property is defined as semantic security against an adaptive chosen keyword attack.

5.3.3 Survey on Public-Key Searchable Encryption

The problem of searching on encrypted data under public-key cryptosystems is
first defined by Boneh et al. [36], where the security notions and schemes are
proposed. Compared with its symmetric-key counterpart (i.e., SSE), PSK has some
advantages, e.g., it is more expressive, and can be easily extended to support
multi-keyword search, and enriched functionalities, such as disjunctive searches,
conjunctive searches, equality searches, range searches, and subset searches. How-
ever, compared with SSE, PSE also has some disadvantages. Particularly, PSE
generally is less efficient, and most existing PSE schemes still focus on text-formed
files, regardless of complex data structures in reality.

The first PSE scheme is proposed by Boneh et al. [36]. This scheme is based
on bilinear pairing (i.e., e : G × G → GT) and is essentially transformed from

5.3 Public-Key Searchable Encryption 101

the identity-based encryption (short for IBE) scheme [37], where the “keyword” in
the PSE scheme is considered as the “identity” in the IBE scheme. Subsequent PSE
schemes essentially share the common system model.

Specifically, in the Boneh et al.’s scheme, the system parameters are
{p,P,G,GT , e,H1,H2}, where e : G × G → GT is a bilinear map, and P

is the generator of G whose order is p, H1 : {0, 1}∗ → G and H2 : GT → {0, 1}lg p

are secure hash functions. The receiver R’s secret key is α which is randomly
chosen from Z∗

p, the corresponding public key is {P,Q = αP }, where P is a
generator of G.

Given a keyword w, the sender S computes the ciphertext as follows. S randomly
chooses χ ∈ Z∗

p, computes τ = e(H1(w), χQ) and Cw = (χP,H2(τ)). Then, S
outsources Cw to the cloud server CS.

Given the keyword w, R computes the trapdoor as tdw = αH1(w) and sends
tdw to CS.

Given a ciphertext Cw = (A,B) = (χP,H2(τ)), if the trapdoor is computed on
w and α, the equation H2(e(tdw,A)) = B holds, which means that the target file
containing w can be retrieved via tdw from the entire ciphertext set.

Following the Boneh et al.’s scheme [36], lots of PSE schemes are proposed with
different features. In the following sections, we introduce existing PSE schemes
from three different angles.

5.3.3.1 Vulnerability of PSE Against Keyword Guessing Attacks and
Countermeasures

Note that due to the randomness of χ , for the same keyword, different senders would
produce different ciphertexts, which ensures that the adversary, i.e., the adversarial
cloud server, cannot know which files contain the same keywords before these files
are searched.

Despite the advantages of PSE, it also suffers from critical threats. In reality,
keywords are always chosen from a small space, and users usually leverage well-
known keywords for the search of files. Since everyone including adversaries can
become a sender in PSE, the ciphertext can be generated by the adversary as
needed. In other words, a fundamental problem with PSE is that the ciphertext
can be computed given only the keyword, but the keyword is the only secret that
is contained in the outsourced ciphertexts and that should be well protected, thus
enabling off-line keyword guessing attacks (KGA): Given a trapdoor, an adversary
(i.e., the adversarial cloud server) enumerates all possible keyword candidates and
encrypts them with the receiver’s public key one by one; He tests the ciphertexts
on the trapdoor, which enables him to identify the ciphertext which matches the
targeted trapdoor and to recover the keyword hidden in the trapdoor to violate the
users’ privacy.

We stress that vulnerability of PSE against off-line KGA on keywords is a major
hindrance towards the broad adoption of PSE, since searched data (e.g., emails with
sensitive keywords) is considered as being highly secret by many individuals and

102 5 Secure Keyword Search

organizations. Existing works [38, 39] have proven the feasibility of KGA on PSE
from both theory and practice.

Existing works on thwarting off-line KGA can be mainly classified into four
categories.

The first one is PSE with an authorized tester to resist off-line KGA. Typical
works including [40, 41]. In this mechanism, testing matching between a ciphertext
and a trapdoor only can be performed by an authority (i.e., authenticated cloud stor-
age server). This protects keywords from KGA performed by outside adversaries.
However, such the mechanism cannot resist malicious cloud storage servers, since
the authenticated server can test whether a ciphertext matches a trapdoor without
any limitation.

The second one is PSE that are constructed on emerging cryptographic primitives
to resist off-line KGA. In [42], Sun et al. present a PSE scheme with resistance
against off-line KGA by using iO. In this scheme, ciphertexts are generated by a
signcryption algorithm, and the cloud server cannot generate a legitimate ciphertext
to test whether it matches a received trapdoor. To ensure security, the keys used to
unsigncryption are embedded into an obfuscated program generated by the receiver.
The obfuscated program is executed by the cloud server for searching files by
keywords. Whereas, current iO constructions require prohibitive costs in terms of
storage and computation to obfuscate programs and execute the obfuscated program,
which makes the scheme presented in [42] inefficient.

The third one is PSE supporting fuzzy keyword search to resist off-line KGA.
Typical works including [43]. In such a mechanism, a keyword is related to an exact
keyword search trapdoor and a fuzzy keyword search trapdoor. A fuzzy keyword
trapdoor corresponds to two or more keywords. The cloud server only has the fuzzy
keyword search trapdoor to retrieve data. As a result, a malicious cloud server would
not learn the exact keyword. Nonetheless, the malicious cloud storage server can still
narrow down the space of the target keyword, and thereby the keyword privacy is not
well protected in such the mechanism. Furthermore, it requires the receiver to filter
out the non-matching ciphertexts received from the cloud server, which incurs heavy
communication and computation costs on the receiver side. Readers may recall SSE
with the fuzzy search, we stress that the target problem of PSE with fuzzy search is
different from that of SSE with fuzzy search. PSE with fuzzy search mainly focuses
on resisting off-line KGA, but SSE with fuzzy search mainly focuses on enriching
the search functionality to provide users a better search service than basic SSE.

The fourth one is PSE that are constructed on new frameworks to resist off-
line KGA. Typical works including [44, 45]. An independent entity is introduced to
help protecting keywords against adversaries. For example, in [44], an independent
key server that holds a server-side secret is employed to assist users in generating
and searching ciphertexts. This mechanism follows the Bellare et al.’s scheme [46]
that resists brute-force attacks for secure deduplication, which we have introduced
in Sect. 3.3.2. Compared with the above three categories of mechanisms, this
mechanism balances the trade-off between efficiency and security and is more
practical. Nevertheless, such a server-aided mechanism also bears a quite strong
assumption that the key server is reliable, and it well maintains its secret over the

5.3 Public-Key Searchable Encryption 103

entire lifetime of the storage server. Furthermore, it is also vulnerable to online
KGA, where the adversary (e.g., the adversarial cloud server) impersonates a valid
sender to access the key server for performing KGA.

5.3.3.2 Constructing PSE on Different Cryptosystems

The PSE schemes we introduce so far are impliedly based on the public-key
infrastructure (PKI), in which a fully trusted certificate authority is employed to
issue the users’ certificates. Thus these schemes inherit the limitations of PKI-
based cryptosystems. Specifically, in a PSE scheme, both the senders and cloud
server have to manage the receiver’s certificate to choose the correct public key
for file searching. As such, the senders and cloud server suffer from the certificate
management problem, which includes certificate revocation, storage, distribution,
and verification. In reality, managing certificates is very costly and cumbersome and
removing the certificate management problem could be economic and favorable for
commercial cloud storage systems.

To address the certificate management problem in PSE, it can be constructed on
certificateless cryptosystems, where a key generation center (KGC) is introduced to
assist the receiver in generating her/his private key. The first certificateless PSE
scheme is proposed by Peng et al. [47]. Subsequently, some certificateless PSE
schemes, such as [48, 49], with enhanced security or other features, are proposed.

Another line of work focuses on designing secure PSE schemes on different
mathematics hard problems or different cryptographic assumptions. All the above
schemes are constructed on bilinear pairing, and their security relies on the hard
problems in cyclic groups that are derived from elliptic curves. However, these hard
problems are believed to be easy to be solved, with the emergence of quantum
computers [50], and thus existing PSE schemes would be threatened. Recent
breakthrough results [51] show that adopting quantum computers in reality would
be possible in the near future, and thus poses the post-quantum secure PSE schemes
more demanding than ever.

To enabling PSE to be secure in the post-quantum era, several lattice-based PSE
schemes are proposed [52–54]. These schemes are constructed on the lattice-based
cryptosystem [55], which is considered to be secure against attacks from quantum
computers.

5.3.3.3 Essential Relationships Between PSE and Other Cryptographic
Primitives

In public-key cryptosystems, in addition to PSE, several cryptographic primitives
can be utilized to achieve searches over encrypted files protected under public-key
encryption schemes. In this section, we discuss the relationships between PSE and
them.

104 5 Secure Keyword Search

Identity-Based Encryption Recall that the Boneth et al.’s PSE scheme [36] is based
on the Boneh–Franklin identity-based encryption (IBE) [37], where the “identity”
in the IBE scheme becomes the “keyword” in the PSE scheme. Readers might
ask whether any IBE scheme can be transformed into a secure PSE scheme. In
the research of IBE, a variant called anonymity IBE is proposed, where an IBE is
anonymous if the receiver’s identity cannot be extracted from a ciphertext. Boneh et
al. have proven that if an IBE scheme satisfies a specific formal notion of anonymity,
then one is able to easily construct a secure PSE scheme from the IBE scheme using
a general method proposed in [36].

Functional Encryption Functional encryption (FE) is a cryptographic primitive [56,
57] that supports restricted private keys that allow a receiver (i.e., the key holder) to
learn a specific function of encrypted files while learning nothing else about the files.
Oblivious, if the specific function is straightforward set to output whether given two
ciphertexts correspond to the same plaintext, a secure PSE is produced. However,
constructing an FE that meets the requirement is very challenging, and the efficiency
of such an FE is low.

Fully Homomorphic Encryption Fully homomorphic encryption (FHE) is also a
cryptographic primitive [58] that enables one to evaluate programs over encrypted
files without decrypting the files. We also note that when the program is set to be
subtraction on two ciphertexts, where the one is outsourced by the sender, and
the other one is provided by the receiver, and the program is executed by the
cloud server. The cloud server returns each result to the receiver, the later decrypts
it and tests whether the decryption is equal to 0, if yes, the underlying file is
satisfactory. However, existing FHE constructions require very high costs in terms
of computation and storage. Thus, the PSE scheme based on FHE is very inefficient.

5.4 Latest Advances in Public-Key Searchable Encryption

Recall Sect. 5.3.3.1, existing PSE schemes with resistance against KGA are
confronted with security and efficiency problems. In this section, we study the
latest advances of PSE that resists KGA and introduce a practical scheme called
SEPSE [59].

5.4.1 Public-Key Searchable Encryption Against Keyword
Guessing Attacks

SEPSE follows the fourth PSE mechanism that resists KGA, i.e., constructing PSE
on a new framework. The key observation of SEPSE is that the server-aided PSE
suffers from

5.4 Latest Advances in Public-Key Searchable Encryption 105

• the single-point-of-failure problem, where the security relies on the reliability
of the key server, if the key server is compromised, the scheme is vulnerable to
off-line KGA,

• and vulnerability to online KGA, where the adversarial cloud server can imper-
sonate a sender to access the key server such that it obtains enough server-derived
keywords to perform off-line KGA.

We note that directly extending the single key server to multiple ones in a thresh-
old way is a natural solution. Whereas, it is still vulnerable to key compromising: an
adversary (e.g., the adversarial cloud server) can perpetually attempt to break into
the target key server over a long period of time (i.e., the entire lifetime of the cloud
server). Once it succeeds, the security of affected keywords cannot be guaranteed.
Furthermore, in the above threshold-based solution, each task only requires t of key
servers’ participation, but if so, the adversary can try different keywords to interact
with different t key servers to obtain a significant number of ciphertexts of keywords
to perform off-line KGA.

To address the above problem, SEPSE leverages a rate-limiting mechanism, and
to further improve the communication efficiency, a blockchain-assisted rate-limiting
mechanism is proposed and integrated into SEPSE.

5.4.1.1 System Model

As shown in Fig. 5.6, five entities are involved in SEPSE.

• Senders: Senders generate files which contain a small number of keywords, and
send the files as well as the keywords to a target receiver securely by encrypting
the files and the selected keywords with the receiver’s public key. The ciphertexts
are outsourced to the storage server.

• Receiver: The receiver is the data (i.e., encrypted data files) owner, she/he
receives the encrypted files from the cloud server, and decrypts them locally.
Furthermore, she/he would search her/his files stored on the cloud server by
keywords at a later point in time.

• Key servers: The key servers are employed to help senders and receivers in
generating the keyword to be encrypted, which is able to resist KGA.

• Cloud server: The cloud server is subject to a cloud service provider. It receives
encrypted data as well as the encrypted keywords. Later, it provides the receiver
with an efficient and secure way to search the ciphertexts by keywords and
forwards the target ciphertexts to the receiver.

• Gateway: The gateway is introduced to help users in forwarding the request of
keyword generation to key servers and assist the key servers in collecting service
charges from the users.

Time in SEPSE is divided into fixed intervals of predetermined length called
epochs. SEPSE needs to be set up only once over the entire lifetime, the servers-side
secret on each key server needs to be updated only once in an epoch, and the senders

106 5 Secure Keyword Search

Fig. 5.6 System model of SEPSE

and receiver can interact with the cloud server for file outsourcing and searching
multiple times in an epoch.

5.4.1.2 Threat Model

In a servers-aided PSE scheme, threats are mainly from four angles: adversarial
cloud server, compromised key server(s), malicious sender, and malicious gate-
way.

• Adversarial storage server. The adversarial cloud server would perform KGA to
break the confidentiality of the outsourced keywords.

• Compromised key server(s). An adversary may compromise the key servers,
where he may break into each key server multiple times, to retrieve the
outsourced keywords. Here, we assume that the number of key servers that can be
compromised by the adversary within one epoch is less than the threshold, a key
server can be compromised until the end of the current epoch, and compromised
key servers are allowed to deviate from the scheme arbitrarily as the adversary
needed. When a new epoch begins, the key servers that are compromised by the
adversary in the previous epoch are “released” by the adversary [60].

• Malicious sender. Any adversary can become a sender to query the servers-
derived keywords and perform KGA to retrieve the outsourced keywords.

• Malicious gateway. The malicious gateway may collude with an online keyword
guessing adversary (will be detailed later) to break the security.

To prove the security of SEPSE under the above threat model, SEPSE follows
the security notions of semantic security against chosen keyword guessing attacks
(SS-CKGA) and indistinguishability against chosen keyword attacks (IND-CKA)
[36, 44].

5.4 Latest Advances in Public-Key Searchable Encryption 107

5.4.1.3 Introduction to SEPSE

To design SEPSE, two challenges should be addressed:

1. How to resist KGA without the single-point-of-failure problem. Since the
keywords are inherently low-entropy, when the receiver searches data from
the storage server by keyword, the storage server can enumerate all possible
keywords and test them one by one to retrieve the target keyword. Although the
existing scheme [44] can resist such attacks, it faces the single-point-of-failure
problem, and its security solely relies on the reliability of the key server.

2. How to periodically renew the secret shares on the key servers. In reality, an
active adversary may break into a subset of key servers multiple times over the
entire lifetime of the storage server. As such, the periodical renewal of secret
share on each key server is an affordable and effective solution to resist the active
adversary.

SEPSE addresses the above first challenge by employing multiple key servers
that jointly assist users in encrypting keywords to resist KGA. The main idea behind
SEPSE is to require these key servers to help users in protecting keyword using a
server-side secret, and to let each user obtain a servers-derived keyword. Then, the
user encrypts each servers-derived keyword as her/he did in the original PSE scheme
[36]. Here, these key servers jointly in a (t, n)-threshold and oblivious way, such
that any t of them are able to assist a user in executing the prescribed protocol, but
any one of them cannot learn any information about the keyword submitted by the
user. Furthermore, the server-side secret is generated and shared among all the key
servers in a distributed way, which frees SEPSE from a trusted dealer.

SEPSE addresses the above second challenge by requiring each key server to
renew its secret share. This is achieved by introducing a “0-sharing” mechanism: at
the end of each epoch, all key servers jointly share a 0, and each of them adds the
secret share of 0 to its current secret share. Since a share of 0 is not equal to 0, the
above 0-sharing mechanism enables each key server to change its secret share. On
the other hand, since the newly shared secret is 0, the above 0-sharing mechanism
does not change the server-side secret shared among all key servers.

There is still a subtle security issue. Since anyone can become a sender in PSE,
an adversary (e.g., the adversarial cloud server) is able to try different keywords
by requesting the corresponding servers-derived keywords. The adversary uses
different identities of senders to perform this online attack,1 and then obtains
all servers-derived keywords. Finally, the adversary can perform off-line KGA to
recover the keywords. We call such attacks online keyword guessing attacks (online
KGA).

To thwart online KGA, SEPSE employs a rate-limiting mechanism: the number
of servers-derived keyword requests made by a user in an epoch is limited by key

1It is easy to detect in reality if the adversary is trying to request servers-derived keywords very
frequently within a short period of time in reality.

108 5 Secure Keyword Search

servers. Specifically, a bound ρ is determined with the security parameter, and key
servers stop responding after the bound ρ is reached. To improve communication
efficiency on the user side, a gateway is utilized to help users in forwarding the
servers-derived keyword queries. The servers-derived keyword request made by a
user is first submitted to the gateway and then is transfers to all key servers by the
gateway.

SEPSE further considers the case that the number of all key servers n is large but
the threshold t is small (compared with n). In this case, submitting the request of
the servers-derived keyword to n key servers incurs heavy communication costs for
users. We stress that requiring the user to submit the servers-derived keywords to
only t key servers is confronted with a malicious gateway or malicious users. Since
the malicious gateway may omit the number of servers-derived keyword queries
made by an adversary and always allows him to request servers-derived keywords,
and a malicious user can select different t key servers for different queries to perform
online KGA.

To resist the malicious gateway and malicious users, the key technique used here
is the public blockchain, e.g., Ethereum [61], where each servers-derived keyword
query made by a user is converted to a transaction on the Ethereum blockchain, and
the total number of keyword queries for a user in each epoch can be verified by
checking the number that the user creates transactions in the epoch. This yields the
blockchain-assisted rate-limiting mechanism which can be proved that breaking the
security by performing online KGA as hard as forking the Ethereum blockchain.
As a result, integrating this mechanism into SEPSE can reduce the communication
overhead significantly while achieving the same security guarantee.

Specifically, a sender S, a set of key servers {KS1,KS2, . . . ,KSn}, a cloud
storage server CS, a receiver R, and a manager of the gateway D are involved in
SEPSE.

Setup
• With the security parameter �, system parameters {p,P,G,GT , e, h,H,H1,H2,

F, ρ, t} are generated, in which e : G × G → GT is a bilinear map, and P is the
generator of G, h : G → Zp, H,H1 : {0, 1}∗ → G, and H2 : GT → {0, 1}lg p

are secure hash functions, F : Zp × {0, 1}∗ → {0, 1}∗ is a pseudorandom
function, ρ is a maximum number that each sender and the receiver can require
the keyword in each epoch, and t is the threshold number.

• For the receiver R, her/his secret key is α randomly choosen from Z∗
p and the

corresponding public key is QR = αP ∈ G.
• For i = {1, 2, . . . , n}, KSi randomly picks ai0 ∈ Z∗

p and a polynomial fi(x) ∈
Zp whose degree is t − 1, s.t. fi(0) = ai0, where fi(x) = ai0 + ai1x + · · · +
ai,t−1x

t−1.
• KSi computes ai0P and aiεP (ε = {1, 2, . . . , t − 1}), and publishes them. KSi

computes fi(j) and sends it to KSj for j = 1, 2, . . . , n; j �= i via a secure
channel.

• KSi extracts fj (i) and checks if by verifying fj (i)P = ∑t−1
γ=0 iγ · ajγ P . If the

checking passes, it accepts fj (i).

5.4 Latest Advances in Public-Key Searchable Encryption 109

• KSi ’s secret share is si = ∑n
γ=1 fγ (i), its public share is Qi = siP . The secret

key shared among {KS1,KS2, . . . ,KSn} is s = ∑n
i=1 ai0, and the corresponding

public key is Q = ∑n
i=1 ai0P .

• The gateway D and KSi maintain a log file to count the number of keywords
requested by S (denoted by ρS) and R (denoted by ρR). Initially, ρS = 0 and
ρR = 0.

PEKS Given a keyword w, S computes the ciphertext as follows.

• S randomly chooses r ∈ Z∗
p, computes w

′ = rH(w).

• S transfers a service charge and sends w
′

to D.
• D checks whether ρS < ρ. If yes, it transfers the corresponding service charge to

KSk for each k ∈ {1, 2, . . . , n}, sets ρS ++, and informs S; otherwise, it rejects.
• S sends w

′
to KSk (k = 1, 2, . . . , n).

• After receiving the service charge, KSk (k = 1, 2, . . . , n) checks whether ρS <

ρ. If yes, it generates a signature σk on w
′

by using the secret share sk as σk =
skw

′
, sets ρS + +, and sends σk to S; Otherwise, it aborts.

• S verifies σk by checking

e(σk, P)
?= e(w

′
,Qk).

If the checking fails, S rejects σk ; Otherwise, S stores σk locally.
• After receiving t valid signatures (these t signatures are denoted by

{σi1 , σi2 , . . . , σit } and their indexes form a set T = {i1, i2, . . . , it }), S computes

σw = r−1
it∑

k=i1

ωkσk, (5.1)

where ωk = ∏

i1≤j≤it
j �=k,j∈T

j
j−k

. S verifies the correctness of σw by checking

e(σw, P)
?= e(H(w),Q).

• S computes sdw = F(h(σw),w) as the servers-derived keyword of w, randomly
chooses χ ∈ Z∗

p, computes τ = e(H1(sdw), χQR) and Csdw = (χP,H2(τ)).
Finally, S sends Csdw to CS.

Trapdoor Given a keyword w, the trapdoor tdw used to retrieve data is generated
by R as follows.

• R interacts with the key servers to generate the servers-derived keyword of w

(i.e., sdw), this process is the same as the one performed by S in PEKS, where
R plays the role of U .

• R computes tdw = αH1(sdw).

Finally, R sends tdw to CS.

110 5 Secure Keyword Search

Test CS takes as input Csdw = (A,B) = (χP,H2(τ)) and tdw, and checks

H2(e(tdw,A))
?= B. If the equation holds, CS outputs True; Otherwise it outputs

False.

KeyRenew For each key server KSi (i ∈ [1, n]), it renews its secret share as
follows.

• KSi randomly selects a polynomial gi(x) over Zp with degree at most t − 1 s.t.
gi(0) = 0, in which gi(x) = bi1x + bi2x

2 + · · · + bi,t−1x
t−1.

• KSi computes biεP, ε = {1, 2, . . . , t − 1} and publishes it. KSi sends gi(j)

(mod p) to KSj for j = 1, 2, . . . , n; j �= i via a secure channel.

• KSi extracts gj (i) and checks gj (i)P
?=

t−1∑

γ=1
iγ bjγ P . If the checking succeeds,

KSi accepts gj (i).
• KSi computes a new secret share s

′
i as

s
′
i = si +

n∑

j=1

gj (i). (5.2)

Note that the secret s has the form s = ∑n
i=1 ai,0 = ∑n

i=1 fi(0). Assume the
renewed secret distributed to all key servers is s

′
, it has the form s

′ = ∑n
i=1 f

′
i (0).

Since f
′
i (x) = fi(x) + gi(x), we have s

′ = ∑n
i=1 f

′
i (0) = ∑n

i=1 fi(0) + gi(0).

Because gi(0) = 0, we further have s
′ = ∑n

i=1 fi(0) = s. Therefore, the renewal
of secret shares would not change the secret s shared among all key servers. This
ensures the proactive security of SEPSE: an adversary who breaks into multiple key
servers cannot break the confidentiality of keywords by performing KGA.

Improvement on the Communication Efficiency With the establishment of SEPSE,
the total number of key servers n may be large while the threshold t may be small.
The rate-limiting mechanism that requires a servers-derived keyword query to be
submitted to all key servers can be tedious and inefficient. We assume that there are
dozens of key servers and only a couple of them need to assist users in generating
servers-derived keywords, e.g., n = 20, t = 2, it is more advantageous for both
users and the gateway to only submit a servers-derived keyword request to t key
servers rather than all of them. However, a malicious sender who compromises
the gateway can request different servers-derived keywords from different t key
servers. If the sender’s request is only submitted to t key servers rather than all of
them, in the extreme case, he can obtain up to �n

t
� · ρ servers-derived keywords

in an epoch,2 which significantly increases the success probability of online KGA.
Therefore, it is necessary to achieve the synchronization on the number of servers-
derived keyword requests made by a user among all key servers without requiring

2� n
t
� denotes the largest integer smaller than n

t
.

5.4 Latest Advances in Public-Key Searchable Encryption 111

the user to submit each request to all key servers. A straightforward method is to
require each key server to broadcast each received request to all others. However,
it requires key servers to interact with each other to generate one servers-derived
keyword and causes a heavy communication burden for them. Actually, it is very
challenging to achieve such the synchronization among all key servers without
introducing substantial communication costs when the gateway is compromised
by an adversary (i.e., a malicious sender). Therefore, a blockchain-assisted rate-
limiting mechanism is proposed and integrated into SEPSE to resist online KGA
with high communication efficiency.

In Setup, the system parameters are the same as those in the basic scheme, with
one difference. The sender S, the receiver R, and the manager of gateway D each
create their own accounts in Ethereum, where their accounts are denoted by AS ,
AR, and AD, respectively. Only D is required to maintain ρS and ρR.

In PEKS, given a keyword w, S generates the servers-derived keyword sdw as
before with the following differences.

• After computing w
′ = rH(w), S randomly picks a subset T of set {1, . . . , n},

in which |T | = t is the threshold. Support the selected key servers are
{KSi1 ,KSi2 , . . . ,KSit }, i.e., T = {i1, i2, . . . , it }. For each k ∈ T , S computes
ωk = ∏

i1≤j≤it
j �=k,j∈T

j
j−k

.

• S creates a transaction shown in Fig. 5.7, where S plays the role of U to transfer
the service charge to D’s account (i.e., the service charge is transferred from
AS to AD), and the selected key servers’ indexes are attached as the transaction
information.

• D checks whether ρS < ρ, if yes, D transfers the corresponding service charge
to KSk for each k ∈ T , sets ρS + +, and informs S; Otherwise, D aborts.

Fig. 5.7 Transactions of transferring service charge in SEPSE

112 5 Secure Keyword Search

• S only sends w
′

to KSi1 , KSi2 , . . ., KSit .
• After receiving the service charge, KSk (k = i1, i2, . . . , it) first obtains the

account information of AS from Ethereum blockchain and obtains ρS by
extracting the number of transactions that AS creates (transferring service charge
from AS to AD). KSk (k = i1, i2, . . . , it) checks whether ρS < ρ. If the
checking fails, it aborts; otherwise, it generates σk on w

′
as σk = skw

′
, and

sends σk to S.

In Trapdoor, given a keyword w, R first generates the servers-derived keyword
sdw with the aid of only t key servers. This process is the same as the one performed
by S described above, where R plays the role of U (i.e., a service charge is
transferred from AR to AD). With sdw , R generates the corresponding trapdoor
tdw as the same as that introduced before.

Test and KeyRenew are the same as those before, for the sake of brevity, we
would not repeat them.

Efficiency Improvement As shown before, the blockchain-assisted rate-limiting
mechanism allows users to only communicate with t of key servers rather than all
of them without sacrificing the security. This is because integrating each servers-
derived keyword query into a transaction on the Ethereum blockchain enables each
key server to obtain the total number of queries made by each user in one epoch
without interacting with the user. It should be stress again that the blockchain-
assisted rate-limiting mechanism is favorable in the case that n is large but t is
small. Since creating a transaction in Ethereum takes slight communication and
computation costs, if n is slight more than t , the communication efficiency on users
cannot be improved significantly.

5.4.2 Remark and Further Discussion

Although SEPSE is constructed on the Boneh et al.’s PSE scheme [36], the
mechanism that keywords are derived from multiple key servers is also well
compatible with other PSE schemes, such as [38, 62], to resist off-line KGA with
retention the characteristics of underlying schemes.

The blockchain-assisted rate-limiting mechanism is built on the Ethereum
blockchain, in which its security relies on the public verifiability property of
Ethereum: the number of transactions created by a user cannot be modified or
forged. It is possible to utilize other public blockchains to construct the rate-limiting
mechanism, since public verifiability is an inherent property of any secure public
blockchain. However, for a public blockchain system, the more participants in it,
the stronger the security guarantee it can provide [63]. As Ethereum is one of the
most well-established and widely used public blockchains in reality, we recommend
using the Ethereum blockchain, which balances the trade-off between security and
efficiency.

5.5 Summary and Further Reading 113

It is worth to mention that the blockchain-assisted rate-limiting mechanism does
not require the key servers, gateway, and users to become a full node in Ethereum,
because a light wallet of Ethereum has been issued, which enables one to create
transactions without downloading the entire Ethereum blockchain. Moreover, the
account information, as well as block content in Ethereum, is being released by
multiple sites, platforms, and supernodes of Ethereum, such as Etherscan. It enables
the key servers to efficiently extract the account information of senders and the
receiver without bearing heavy computation and communication costs.

We also note that the key observation of the success of KGA is that keywords are
always selected from small space, and users usually utilize well-known keywords
for searches of data. In other words, the number of keywords that a user utilizes
would not be too large, and most of the keywords can be predetermined. As such,
a user can request her/his commonly used keywords from key servers when the
keywords are determined. Furthermore, as discussed before, the same keyword
would yield the same servers-derived keyword. Therefore, servers-derived keywords
can be reused subsequently. Therefore, the generation of servers-derived keywords
can be considered as a one-time operation.

Actually, the idea proposed in DECKS [64] and analogous schemes (e.g., [65])
can also be applied to PSE to resist off-line KGA with freeing it from trusting of a
specific group of key servers in a long period of time. We stress that the underlying
threat model of DECKS is different from that of SEPSE, where in the later, a specific
group of key servers is trusted by users during the entire lifetime of the files to be
outsourced and protected.

5.5 Summary and Further Reading

In this chapter, we have introduced the searchable encryption technique for cloud
storage systems. We have provided a comprehensive survey on existing SSE
schemes and PSE schemes, and analyzed their pros and cons, and also conducted a
comparison between them. Finally, we have studied the latest advances of PSE that
resists (off-line and online) KGA and discussed their potentials to enhance cloud
storage services.

There are some survey papers to introduce the searchable encryption technique
from different aspects, e.g., [66–68]. There are also some papers to discuss
the relationships between SE and other cryptographic primitives, e.g., [8, 38].
Furthermore, there are also some works that integrate the SE technique into database
systems and implements prototypes, e.g., [69, 70].

114 5 Secure Keyword Search

References

1. Barak B, Goldreich O (2008) Universal arguments and their applications. SIAM J Comput
38(5):1661–1694

2. Song D, Wagner D, Perrig A (2000) Practical techniques for searches on encrypted data. In:
IEEE symposium on security and privacy, pp 44–55

3. Curtmola R, Garay J, Kamara S, Ostrovsky R (2006) Searchable symmetric encryption:
improved definitions and efficient constructions. In: ACM conference on computer and
communications security, pp 79–88

4. Curtmola R, Garay J, Kamara S, Ostrovsky R (2011) Searchable symmetric encryption:
improved definitions and efficient constructions. J Comput Secur 19(5):895–934

5. Goh E (2003) Secure indexes. Cryptology ePrint Archive, Report 2003/216
6. Chang Y, Mitzenmacher M (2005) Privacy preserving keyword searches on remote encrypted

data. In: International conference on applied cryptography and network security, vol 5, pp
442–455

7. Golle P, Staddon J, Waters B (2004) Secure conjunctive keyword search over encrypted data.
In: International conference on applied cryptography and network security, pp 31–45

8. Cash D, Jarecki S, Jutla C, Krawczyk H, Roşu M, Steiner M (2013) Highly-scalable searchable
symmetric encryption with support for Boolean queries. In: Annual cryptology conference, pp
353–373

9. Kamara S, Papamanthou C, Roeder T (2012) Dynamic searchable symmetric encryption. In:
ACM conference on computer and communications security, pp 965–976

10. Kamara S, Papamanthou C (2013) Parallel and dynamic searchable symmetric encryption. In:
International conference on financial cryptography and data security, pp 258–274

11. Islam MS, Kuzu M, Kantarcioglu M (2012) Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: Network and distributed system security
symposium, pp 1–15

12. Cash D, Grubbs P, Perry J, Ristenpart T (2015) Leakage-abuse attacks against searchable
encryption. In: ACM conference on computer and communications security, pp 668–679

13. Zhang Y, Katz J, Papamanthou C (2016) All your queries are belong to us: the power of file-
injection attacks on searchable encryption. In: USENIX security symposium, pp 707–720

14. Stefanov E, Papamanthou C, Shi E (2014) Practical dynamic searchable encryption with small
leakage. In: Network and distributed system security symposium, pp 1–15

15. Bost R (2016) σ oϕoς : forward secure searchable encryption. In: ACM conference on
computer and communications security, pp 1143–1154

16. Hahn F, Kerschbaum F (2014) Searchable encryption with secure and efficient updates. In:
ACM conference on computer and communications security, pp 310–320

17. Kim SS, Kim M, Lee D, Park JH, Kim W (2017) Forward secure dynamic searchable symmet-
ric encryption with efficient updates. In: ACM conference on computer and communications
security, pp 1449–1463

18. Naveed M, Prabhakaran M, Gunter CA (2014) Dynamic searchable encryption via blind
storage. In: IEEE symposium on security and privacy, pp 639–654

19. Hoang T, Yavuz AA, Guajardo J (2016) Practical and secure dynamic searchable encryption
via oblivious access on distributed data structure. In: Annual conference on computer security
applications, pp 302–313

20. Chase M, Kamara S (2010) Structured encryption and controlled disclosure. In: International
conference on the theory and application of cryptology and information security, pp 577–594

21. Moataz T, Shikfa A (2013) Boolean symmetric searchable encryption. In: ACM SIGSAC
symposium on information, computer and communications security, pp 265–276

22. Faber S, Jarecki S, Krawczyk H, Nguyen Q, Rosu M, Steiner M (2015) Rich queries on
encrypted data: Beyond exact matches. In: European symposium on research in computer
security, pp 123–145

References 115

23. Sun S, Liu JK, Sakzad A, Steinfeld R, Yuen TH (2016) An efficient non-interactive multi-client
searchable encryption with support for Boolean queries. In: European symposium on research
in computer security, pp 154–172

24. Boldyreva A, Chenette N, Lee Y, O’Neill A (2009) Order-preserving symmetric encryption.
In: International conference on the theory and applications of cryptographic techniques, pp
224–241

25. Boldyreva A, Chenette N, O’Neill A (2011) Order-preserving encryption revisited: improved
security analysis and alternative solutions. In: Annual cryptology conference, pp 578–595

26. Chenette N, Lewi K, Weis SA, Wu DJ (2016) Practical order-revealing encryption with limited
leakage. In: International conference on fast software encryption, pp 474–493

27. Boneh D, Lewi K, Raykova M, Sahai A, Zhandry M, Zimmerman J (2015) Semantically
secure order-revealing encryption: multi-input functional encryption without obfuscation. In:
International conference on the theory and applications of cryptographic techniques, pp 563–
594

28. Li J, Wang Q, Wang C, Cao N, Ren K, Lou W (2010) Fuzzy keyword search over encrypted
data in cloud computing. In: IEEE international conference on computer communications, pp
1–5

29. Wang C, Ren K, Yu S, Urs (2012) Achieving usable and privacy-assured similarity search over
outsourced cloud data. In: IEEE international conference on computer communications, pp
451–459

30. Wang C, Cao N, Ren K, Lou W (2011) Enabling secure and efficient ranked keyword search
over outsourced cloud data. IEEE Trans Parallel and Distrib Syst 23(8):1467–1479

31. Wang C, Cao N, Li J, Ren K, Lou W (2010) Secure ranked keyword search over encrypted
cloud data. In: IEEE international conference on distributed computing systems, pp 253–262

32. Bost R, Fouque P, Pointcheval D (2016) Verifiable dynamic symmetric searchable encryption:
optimality and forward security. IACR Cryptol ePrint Archive 2016:62

33. Kushilevitz E, Ostrovsky R (1997) Replication is not needed: Single database,
computationally-private information retrieval. In: IEEE annual symposium on foundations of
computer science, pp 364–373

34. Goldreich O, Ostrovsky R (1996) Software protection and simulation on oblivious rams. J
ACM 43(3):431–473

35. Pinkas BB, Reinman T (2010) Oblivious RAM revisited. In: Annual cryptology conference,
pp 502–519

36. Boneh D, Crescemzo G, Ostrovsky R, Persiano G (2004) Public key encryption with keyword
search. In: International conference on the theory and applications of cryptographic techniques,
pp 506–522

37. Boneh D, Franklin M (2001) Identity-based encryption from the Weil pairing. In: Annual
cryptology conference, pp 213–229

38. Bellare M, Boldyreva A, O’Neill A (2007) Deterministic and efficiently searchable encryption.
In: Annual cryptology conference, pp 535–552

39. Byun J, Rhee H, Park H, Lee D (2006) Off-line keyword guessing attacks on recent keyword
search schemes over encrypted data. In: Workshop on secure data management, pp 75–83

40. Chen Y (2014) SPEKS: secure server-designation public key encryption with keyword search
against keyword guessing attacks. Comput J 58(4):922–933

41. Rhee HS, Park JH, Susilo W, Lee DH (2010) Trapdoor security in a searchable public-key
encryption scheme with a designated tester. J Syst Softw 83(5):763–771

42. Sun L, Xu C, Zhang M, Chen K, Li H (2018) Secure searchable public key encryption against
insider keyword guessing attacks from indistinguishability obfuscation. Sci China Inf Sci
61(3):038106

43. Xu P, Jin H, Wu Q, Wang W (2013) Public-key encryption with fuzzy keyword search: a
provably secure scheme under keyword guessing attack. IEEE Trans Comput 62(11):2266–
2277

44. Chen R, Mu Y, Yang G, Guo F, Huang X, Wang X, Wang Y (2016) Server-aided public key
encryption with keyword search. IEEE Trans Inf Forensics Secur 11(12):2833–2842

116 5 Secure Keyword Search

45. Chen R, Mu Y, Yang G, Guo F, Wang X (2016) Dual-server public-key encryption with
keyword search for secure cloud storage. IEEE Trans Inf Forensics Secur 11(4):789–798

46. Bellare M, Keelveedhi S, Ristenpart T (2013) DupLESS: server-aided encryption for dedupli-
cated storage. In: USENIX security symposium, pp 179–194

47. Peng Y, Cui J, Peng C, Zuobin Y (2014) Certificateless public key encryption with keyword
search. China Commun 11(11):100–113

48. He D, Ma M, Zeadally S, Kumar N, Liang K (2017) Certificateless public key authenti-
cated encryption with keyword search for industrial internet of things. IEEE Trans Ind Inf
14(8):3618–3627

49. Ma M, He D, Kumar N, Choo KR, Chen J (2017) Certificateless searchable public key
encryption scheme for industrial internet of things. IEEE Trans Indust Inf 14(2): 759–767

50. Shor PW (1999) Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Rev 41(2):303–332

51. Ladd TD, Jelezko F, Laflamme R, Nakamura Y Monroe C, O’Brien JL (2010) Quantum
computers. Nature 464(7285):45

52. Zhang X, Xu C, Wang H, Zhang Y, Wang S (2019) FS-PEKS: lattice-based forward secure
public-key encryption with keyword search for cloud-assisted industrial internet of things.
IEEE Trans Dependable Secure Comput. https://doi.org/10.1109/TDSC.2019.2914117

53. Brakerski Z, Perlman R (2016) Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Annual cryptology conference, pp 190–213

54. Behnia R, Ozmen MO, Yavuz AA (2018) Lattice-based public key searchable encryption from
experimental perspectives. IEEE Trans Dependable Secure Comput. https://doi.org/10.1109/
TDSC.2018.2867462

55. Regev O (2006) Lattice-based cryptography. In: Annual cryptology conference, pp 131–141
56. Boneh D, Sahai A, Waters B (2011) Functional encryption: definitions and challenges. In:

Theory of cryptography conference, pp 253–273
57. Lewko A, Okamoto T, Sahai A, Takashima K, Waters B (2010) Fully secure functional encryp-

tion: attribute-based encryption and (hierarchical) inner product encryption. In: International
conference on the theory and applications of cryptographic techniques, pp 62–91

58. Gentry C (2009) Fully homomorphic encryption using ideal lattices. In: Proceedings of the
forty-first annual ACM symposium on theory of computing, pp 169–178

59. Zhang Y, Xu C, Ni J, Li H, Shen X (2019) Blockchain-assisted public-key encryption with
keyword search against keyword guessing attacks for cloud storage. IEEE Trans Cloud
Comput. https://doi.org/10.1109/TCC.2019.2923222

60. Herzberg A, Jarecki S, Krawczyk H, Yung M (1995) Proactive secret sharing or: how to cope
with perpetual leakage. In: Annual cryptology conference, pp 339–352

61. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum
Project Yellow Pap 151:1–32

62. Abdalla M, Bellare M, Catalano D, Kiltz E, Kohno T, Lange T, Malone-Lee J, Neven G, Paillier
P, Shi H (2005) Searchable encryption revisited: consistency properties, relation to anonymous
IBE, and extensions. In: Annual cryptology conference, vol 3621, pp 205–222

63. Zhang Y, Xu C, Lin X, Shen X (2019) Blockchain-based public integrity verification for cloud
storage against procrastinating auditors. IEEE Trans Cloud Comput. https://doi.org/10.1109/
TCC.2019.2908400

64. Zhang Y, Xu C, Cheng N, Shen X (2019) Secure encrypted data deduplication for cloud storage
against compromised key servers. In: IEEE global communications conference, pp 1–6

65. Zhang Y, Xu C, Li H, Yang K, Cheng N, Shen X (2020) PROTECT: efficient password-based
threshold single-sign-on authentication for mobile users against perpetual leakage. IEEE Trans
Mob Comput. https://doi.org/10.1109/TMC.2020.2975792

66. Bösch C, Hartel P, Jonker W, Peter A (2014) A survey of provably secure searchable
encryption. ACM Comput Surv47(2):Article 18

67. Li H, Liu D, Dai Y, Luan TH (2015) Engineering searchable encryption of mobile cloud
networks: when QOE meets QOP. IEEE Wireless Commun 22(4):74–80

https://doi.org/10.1109/TDSC.2019.2914117
https://doi.org/10.1109/TDSC.2018.2867462
https://doi.org/10.1109/TDSC.2018.2867462
https://doi.org/10.1109/TCC.2019.2923222
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TMC.2020.2975792

References 117

68. Ren K, Wang C, Wang Q (2012) Toward secure and effective data utilization in public cloud.
IEEE Netw 26(6):69–74

69. Popa RA, Redfield C, Zeldovich N, Balakrishnan H (2011) CryptDB: protecting confidentiality
with encrypted query processing. In: ACM symposium on operating systems principles, pp 85–
100

70. Schuster F, Costa M, Fournet C, Gkantsidis C, Peinado M, Mainar-Ruiz G, Russinovich M
(2015) VC3: trustworthy data analytics in the cloud using SGX. In: IEEE symposium on
security and privacy, pp 38–54

Chapter 6
Secure Data Provenance

This chapter introduces the secure data provenance technique. We mainly focus
on secure data provenance schemes for cloud storage systems. In the subsequent
sections of this chapter, we first introduce the basic paradigms and principles of
secure data provenance. Then, we give a comprehensive survey on the secure
data provenance schemes. Finally, we review the latest advances in secure data
provenance and introduce how to construct a secure data provenance scheme on
a public blockchain.

6.1 Introduction to Secure Data Provenance

Digital investigations play an important role in any information system. In regards
to cloud storage systems, as users cannot physically control the data once they
outsource the data to the cloud server, data investigations, which clearly and securely
reflect the statement of outsourced data, are essential for the success of cloud
storage.

Data provenance is one of the essential techniques in data investigations. It
records the history of the ownership and process of a file during its lifecycle.
Secure data provenance is an enhanced technique considering the threats towards
the underlying data, which ensures data provenance while protecting the provenance
information from various attacks.

In this section, we introduce the secure data provenance technique, especially
that is designed for cloud storage systems. We first introduce the data provenance
technique and then introduce the secure data provenance technique and analyze their
relationship.

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_6

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_6&domain=pdf
https://doi.org/10.1007/978-981-15-4374-6_6

120 6 Secure Data Provenance

6.1.1 Data Provenance vs. Secure Data Provenance

Data provenance is an important technique in the database. It refers to a record
trail that accounts for the origin of a piece of data (in a database, document, file,
or repository) together with an explanation or description of how and why it got
to the present place [1, 2]. Data provenance can be regarded as the derivation from
a particular source to a specific state of an item, where the explanation of such a
derivation might take different forms or record different information depending on
users’ individual interest [3]. Data provenance can be utilized in various cloud-based
applications to provide their users a transparent, understandable, and investigation-
enabled data management service.

We enumerate some instances of cloud-based services that are enhanced by
integrating the data provenance in the following.

Cloud-Based eHealth Systems Recall Sect. 4.5, in a cloud-based eHealth system,
all EHRs are generated by doctors and outsourced to the cloud server [4]. The
correctness and integrity of outsourced EHRs are being put at risk in reality. This
problem is further exacerbated by the fact that patients’ EHRs always need to be
updated. Therefore, how EHRs are modified and why they should be modified in
such a way are very important, which not only provides significant information
for subsequent diagnoses, but also makes a great contribution to the judgment
and dispute resolution in medical malpractice. With the data provenance technique,
EHRs generated in cloud-based eHealth systems can be traced, which enhances the
functionality and security of the systems significantly.

Cloud-Based Supply Chain Generally, a cloud-based supply chain is a network
between a company and its suppliers to produce and distribute a specific product
to customers, where the data generated in the process are outsourced to the cloud
server and are shared, accessed, and operated via the cloud storage service [5].
The data provenance technique has an oblivious value for a cloud-based supply
chain system, since it enables the company, suppliers, and customers in the system
to check and verify the information related to the product and producing, which
provides a transparent product tracing interface for the entities in the system.

Cloud-Based Data Sharing Systems The data sharing service is one of the most
featured services in cloud storage systems. Typical applications include cloud-based
open source software development systems (e.g., Codeanywhere [6]) and cloud-
based collaboration systems (e.g., Google Doc [7]). In such an application scenario,
a file (e.g., software code, system bug report, and work document) is generated by
a data owner and is outsourced to the cloud server. Subsequently, some authorized
users can access and edit the file. The data provenance technique enables any change
of the file’s statement to be recorded, which not only allows any authorized user
to keep track of what happened to the outsourced file and to learn how the file is
generated, but also supports post investigations on the outsourced file.

6.1 Introduction to Secure Data Provenance 121

Fig. 6.1 Data provenance

Cloud-Based Internet of Things Cloud-based Internet of Things (IoT) has been
widely applied in our daily life. For example, cloud-based smart home systems
are based on IoT and provide residents with a safe, comfortable, and convenient
living environment [8, 9]. In such a system, several IoT devices are deployed, and
data are generated by these devices and outsourced to the cloud server. Devices and
apps might be chained together in long sequences of trigger-action policies to the
point that from an occurrence of some events (e.g., the door is unlocked, or smoke
rises up). However, due to the existence of malicious apps and adversaries, a log
file recording the statements of IoT devices during a long period of time should
be maintained to detect the misbehaviors and to adjust the policies. The log file is
essentially formed by the provenance information about the IoT devices.

At a high level, data provenance for cloud storage systems keeps track of
what happens to a target outsourced data throughout its lifecycle (from creation
to destruction or deletion), such as its ownership and custodial history as well as
how it has been accessed and modified by the authorized users, as shown in Fig. 6.1,
where each record provides sufficient information about how the statement of the
target data is changed between two successive stages.

The data provenance technique also serves as a key component in digital
investigations. For example, in a digital investigation, digital evidences must be
strictly secured and clearly documented about its ownership transfer as well as how
it was handled during its lifecycle. It is not unusual that the defendant challenges
the authenticity of a digital evidence during the trial. It has been proved very useful
to solve crimes by using the data provenance technique. A good example of it is the
BTK killer case [10]. Whenever a Microsoft office document is created, Microsoft
office automatically embeds an author name into the document. In the BTK killer
case, the killer is traced and identified by policemen, due to a document that is
created by the killer and where the killer’s name is embedded.

In reality, the most common types of digital evidence are hard disk images, and
the defendant may question the hard disk image that investigators are working on
and presented in the courtroom is not the same one acquired from the hard disk
found at the crime scene.

In the past decades, many security mechanisms have been developed to ensure
the security and privacy of sensitive or confidential information, as well as achieve
accountability and auditability through data access logging or audit trails [11],
such as logging activities on data creation, modification, and access. Much of
the focus has been on protecting digitally stored information from unauthorized

122 6 Secure Data Provenance

use or modification. However, despite extensive research on information security
and privacy, little attention has been paid to securing provenance information and
providing assurance that a data file is trustworthy. It is worth mentioning that as
the current best of practice, log files are also protected from tampering and illegal
access. For instance, in the banking industry, any activities, such as bank transfers,
can only be recorded by creating a new log, and past logs cannot be modified or
deleted for security reasons. Nevertheless, another important question still needs to
be answered about whether the provenance information can be trusted to make sure
that the corresponding data file is a trusted one after a series of user activities on the
file which have been detailed in the provenance information.

Unlike the traditional file access auditing where file access activities are logged,
provenance information contains the ownership history of data files as well as
activities that occurred on these files by their owners or users. Furthermore, such
information is organized in chronological order during the lifecycles of the data
files, allowing to track accesses and activities of data files. As a result, it not only
improves accountability and reliability [12], but also meets the requirements of
emerging applications, such as maintaining the digital chain of custody in a digital
forensics investigation [13, 14], as well as regulatory compliance requirements and
industry standards, such as the Health Insurance Portability and Accountability Act
(HIPAA) [15].

Actually, provenance information is not useful if it cannot be trusted. It is
inadvisable to trust provenance information without proper protection. Recall the
BTK killer case, although the identity of file creator would be automatically
embedded into the file, this identity can be arbitrarily modified and removed by the
creator. In regarding to the cloud storage service, this problem is further exacerbated
by the fact that data files and the corresponding provenance records are outsourced
to the cloud storage which is essentially untrusted from the perspective of users,
since the data files and the provenance information would not be physically owned
by data owners and are transmitted over an insecure network [16, 17]. Hence, it is
crucial to ensure provenance information security.

The secure data provenance technique [18] focuses on ensuring the security
of provenance information of a target file. Here, the difference between the data
provenance technique and the secure data provenance technique is clear. The former
mainly investigates how to generate provenance information for a target system to
provide sufficient information about the target file. In contrast, the latter mainly
investigates how to secure the generated provenance information for a target system
to protect the provenance information from forgery, modification, substitution, and
deletion.

6.1 Introduction to Secure Data Provenance 123

6.1.2 System and Threat Models

In the secure provenance for cloud storage systems, the system model is different
from that of other data protection schemes for cloud storage systems, which will be
elaborated in the following.

Note that different from traditional data storage systems where the data and
the corresponding provenance information are stored locally on the user side, in
cloud storage systems, data and the corresponding provenance information are
outsourced to a cloud server which is a separate administrative entity and might
be compromised in reality. As a consequence, both the data and the corresponding
provenance information are being put at risk.

Recall that a secure data provenance scheme should be secure against provenance
forgery, modification, substitution, and deletion, the first challenge to design a
secure data provenance scheme is to address the “authentication” problem. Specif-
ically, if a proper authentication mechanism is not employed, it is impossible to
ensure the security of provenance information, since any adversary who colludes
with the cloud server can generate a provenance record to substitute existing ones
arbitrarily. Therefore, delegating and authenticating the qualification of a user to
generate the provenance record should not be performed by the cloud server, due to
the security reasons.

The second challenge to design a secure data provenance scheme is to address
the “privacy” problem. Particularly, each provenance record explicitly describes
the change of statement for a target file. In other words, each provenance record
originally contains the identity of the user who performs operations on the file.
However, this information is sensitive in practice, since if the cloud server can learn
who performs operations on the target file, it may extract more privacy about the
user from the learned information. A straightforward way to address this problem is
to utilize an anonymous mechanism, where each user randomly chooses an element
from Z∗

p as her/his pseudonym such that the cloud server can learn nothing about the
user’s identity from the pseudonym. However, the primary goal of data provenance
is to support data investigations in cloud storage systems. If an adversary launch
attacks to break the security of the data provenance scheme, such a misbehavior
cannot be tracked, and the identity of the adversary cannot be identified, due to
the anonymous mechanism, which deviates from the primary goal of secure data
provenance schemes. As such, a concept of “conditional privacy preservation” is
proposed to meet the privacy requirement in secure data provenance for cloud
storage systems. Conditional privacy preservation refers to a requirement that only
a trusted authority (who is qualified to perform the data investigation) can reveal the
real identities recorded in provenance records, while anyone else cannot.

At a high level, from the above analysis, we can conclude that a secure data
provenance scheme should achieve the following primary goals.

• Security of provenance records. A genuine provenance record is outsourced to
the cloud server and can reflect the corresponding statement of the target data.
Any adversary cannot forge, tamper with, and delete a valid provenance record.

124 6 Secure Data Provenance

• Conditional privacy preservation. To preserve users’ privacy, any adversary
cannot extract the identity information (i.e., who generates the provenance
record) from a genuine provenance record. In addition, when the provenance
records are used in a data investigation where a trusted authority participates in,
the real identities of users who generate the provenance records can be easily
retrieved.

To address the above problem, existing secure provenance schemes [19, 20]
employ an independent identity manager to secure the outsourced provenance
information. In such a paradigm, any operation on the data performed by a user
would correspond with a provenance record and is required to be authorized by
the identity manager. In other words, any user who wants to generate a provenance
record should first be authenticated by the identity manager, and the validity of the
provenance record should be verified by the identity manager. The identity manager
is responsible for all provenance records.

Generally, there are four entities in a secure data provenance scheme: identity
manager, cloud server, users, and auditor, as shown in Fig. 6.2.

• Identity manager. The identity manager is a powerful entity and located at the
top of the cloud storage system. It manages the users and authorizes them to
perform operations on the outsourced file and to generate provenance records. It

Fig. 6.2 System model of secure data provenance

6.2 Survey on Secure Data Provenance 125

also assists users in protecting their identity from leakage, and helps the auditor
retrieving the real identity of users who generate the provenance records.

• Cloud server. The cloud server is subject to the cloud storage service provider
and provides storage services for users. It also provides users with interfaces to
enable them to perform various operations on outsourced data and records the
corresponding provenance information (i.e., how the data is processed and who
performs the operation on the data).

• Users. In a secure data provenance scheme, we consider the multi-user and
single-file case. Specifically, a group of users exists, and these users register
with both the identity manager and the cloud server, these users are delegated
to process a specific file M .

• Auditor. The auditor is subject to an authority. In a data investigation, the auditor
checks the validity of the provenance records.

In a secure data provenance scheme, we consider threats from two different
angles. The one targets at breaking the security of provenance records, and the other
one targets at violating users’ privacy.

Generally, both the auditor and identity manager are honest and trustable. The
data the auditor uses for investigations are publicly verifiable, and their validity can
be easily verified by any participant. Hence, if the auditor misbehaves, anyone is
able to detect it easily. The identity manager is employed to secure the provenance
information. It is responsible for the security of provenance records.

On the other hand, both the users and the cloud server might perform attacks
to break the security of the data provenance scheme. Both the users and the cloud
server attempt to forge and delete valid provenance records for profits; the cloud
server may also violate the users’ privacy by extracting the real identities of users
from the outsourced provenance records.

6.2 Survey on Secure Data Provenance

Data provenance provides sufficient information about target data that what happens
to the data from creation to destruction, e.g., its ownership, custodial history, access
pattern, and modification records. As we are moving into the age of big data where
digital data are explosively generated nowadays, and most data are managed via
the Internet with the aid of cloud storage systems, data provenance becomes pretty
important to information forensics and digital investigations than ever. Once a
dispute arises in outsourced data, provenances serve as the most vital evidence for
post investigations.

Data provenance has been investigated extensively in the past, especially for the
special data field, such as e-science data and geospatial data [1, 3, 21–24].

While most works on data provenance have focused on constructing systems with
rich functionalities and high efficiency, they are also confronted with critical security
issues. Lynch [18] first points out the need for trust and provenance in information

126 6 Secure Data Provenance

retrieval. Hasan et al. [25] first define the problem of secure provenance and argued
that it is of vital importance in practice, in which the main challenges in trustworthy
provenance are identified, a preliminary adversarial model is defined, and the
potential security and privacy issues related to securing provenance information
from the considered adversary are analyzed. Specifically, in the Hasan et al.’s work,
the secure provenance problem is defined as the tasks of guaranteeing the integrity,
confidentiality, and availability of provenance records. The security of secure data
provenance requires that

• unauthorized parties cannot obtain any information from the provenance records
(confidentiality);

• adversaries cannot forge valid provenance records (security of provenance
records);

• authorized auditors can verify the validity of provenance records in terms of
integrity and correctness, without knowing the contents of individual records;

• each user is provided with an option that her/his privacy can be preserved by
masking her/his name in the corresponding provenance record.

However, Hasan et al.’s work focuses on traditional storage systems, and its threat
model and security requirements cannot well suitable for cloud storage systems.

The first secure data provenance scheme for cloud storage systems is proposed
by Lu et al. [19]. In this work, the authors demonstrate that the secure data
provenance technique serves as the essential bread and butter of data investigations
in cloud storage systems, and introduce the formal definition and security notions
of secure data provenance for cloud storage systems. The system model of secure
data provenance for cloud storage systems is also presented in this work, where the
identity manager is first employed to secure the provenance records. To ensure the
security of provenance records in cloud storage systems, Lu et al. construct a secure
data provenance scheme on a group signature scheme. Group signature is a specific
type of signature, where a group of signers and a group manager are involved in the
system. It has the following properties:

• Only signers in the group can sign a message;
• Anyone can verify the validity of a group signature but cannot learn which signer

in the group signs it;
• If necessary, the signature can be “opened” with the aid of the group manager

such that the real identity of the signer in the group who generates the signature
can be retrieved.

It is oblivious that the inherent properties of the group signature can be utilized
to construct secure data provenance schemes in cloud storage systems. The group
signature in Lu et al.’s scheme is based on bilinear pairing such that the size of the
signature is reduced significantly compared with its RSA counterparts.

On the other hand, the Lu et al.’s work only supports the static-user case,
where the qualified users who can perform operations on a target file should be
determined in the phase of system initialization. However, the support of dynamic
user management is an inherent requirement for any practical cloud storage system,

6.3 Blockchain: A Panacea for Secure Data Provenance 127

where the users who can perform operations on the target file can be dynamically
adjusted to meet different requirements in reality.

To address this problem, Chow et al. [20] propose a secure data provenance
scheme for cloud storage systems supporting dynamic user management, where the
users who are qualified to perform operations on a target data form a group, and the
group member can be added and revoked. This makes the secure data provenance
scheme flexible. The key techniques behind the Chow et al.’s scheme are revocable
group signature and dynamic broadcast encryption. Broadcast encryption is a multi-
recipient encryption scheme that enables the encryptor to decide who is allowed
to decrypt the ciphertext. Dynamic broadcast encryption is an enhanced version
of broadcast encryption where the encryptor is able to re-encrypt or update the
ciphertext outsourced to the cloud storage such that the decryption set of outsourced
ciphertexts can be dynamically adjusted. With the integration of revocable group
signature and dynamic broadcast encryption, the secure data provenance scheme
proposed by Chow et al. ensures the security of provenance records and supports
dynamic user management simultaneously.

Following the Lu et al.’s scheme [19] and the Chow et al.’s scheme [20], several
secure data provenance schemes for cloud storage systems are proposed. These
schemes essentially share the same system and threat models, where the identity
manager is employed to secure provenance records. However, such a paradigm is
confronted with a strong assumption that the identity manager is honest and reliable.
Once the identity manager is compromised, the security of these schemes is broken.
Particularly, if the cloud server or a misbehaved user colludes with the identity
manager, the outsourced provenance records can be modified without detection.
In reality, compromising the identity manager is feasible for adversaries, since
an adversary can perpetually incentivize the identity manager to deviate from the
prescribed scheme over a long period of time.

6.3 Blockchain: A Panacea for Secure Data Provenance

It seems that resistance against compromised identity manager cannot be addressed
without introducing any trusted entity, since any provenance record should be
authorized by the identity manager before it is published. However, with the
booming development of the blockchain technology, it has demonstrated that adopt-
ing blockchains in cloud storage systems can enhance data security significantly
[16, 17, 26, 27]. We note that public blockchains can serve as a panacea for secure
data provenance.

Recall that the most prominent manifestation of public blockchains is on-chain
currencies, e.g., Bitcoin [28] and Ethereum [29], which provides a secure way
to conduct transactions without a central authority (i.e., bank). Interestingly, the
immutability of public blockchains can itself be seen as a secure data provenance
problem, where the underlying ledger of a public blockchain essentially maintains
the provenance information about the underlying currency, i.e., it keeps track of the

128 6 Secure Data Provenance

ownership of each underlying value token. Therefore, utilizing a public blockchain
to construct a secure data provenance scheme for cloud storage systems is very
promising.

In this section, we study a blockchain-based secure data provenance scheme for
cloud storage systems, called ESP [30].

6.3.1 Blockchain-Based Secure Data Provenance

The primary motivation of ESP [30] is to address the single-point-of-failure problem
of existing secure data provenance schemes [19, 20]. In these schemes, the security
of outsourced provenance records relies on the security and reliability of the identity
manager.

As discussed before, a secure data provenance scheme goes one step beyond
a data provenance scheme, that is, there is an underlying data provenance model
behind a secure data provenance scheme. Therefore, designing a data provenance
model is a preparatory work for proposing a secure data provenance scheme.

With the analysis of cloud storage systems, a model of data provenance is
formalized, in which the lifecycle of outsourced files is formally formulated. Based
on the data provenance model and with the integration of the public blockchain, an
efficient and secure data provenance scheme, i.e., ESP, for cloud storage systems
is presented. Furthermore, a concept of window of latching (short for WoL) is
proposed to measure the practicality of ESP as well as other secure data provenance
schemes.

6.3.1.1 A Model of Data Provenance

Lifecycle of an Outsourced File and Its Users In defining a data provenance model,
an outsourced file’s lifecycle is first considered. Actually, the lifecycle can be viewed
as a sequence of stages from the file creation to modification, destruction, and
ownership transfer.

Figure 6.3 illustrates the file lifecycle considered in this work. After a file is
created, it may go through many stages due to the file modification or ownership
transfer. Finally, a file may be destructed or securely deleted, becoming unavailable
to its users. Thus, an individual state of a file can be uniquely identified by its content
and owner and can be represented as Sti = H(Mi,Oi), where Sti denotes a state
where a file has been at, Mi denotes the content of the file at the state of Sti , Oi is
the owner of the file at the state of Sti , and H is a secure hash function.

With the file lifecycle, the roles of the users involved in the process of the file
lifecycle should also be analyzed.

During the lifetime of an outsourced file, users can play different roles in it, and
can be generally classified into four types: creator, owner, editor, and viewer.

6.3 Blockchain: A Panacea for Secure Data Provenance 129

Fig. 6.3 File lifecycle

Fig. 6.4 Provenance model

• Creator: a user is the creator of a file, she/he is the first one to outsource the file
to the cloud server.

• Owner: a user is the owner of the outsourced file. By taking ownership of
the file, the user can assign other users access rights or permissions to the
file, including editing (or modifying) and viewing (or reading) the file, and
transferring ownership of the file. By default, the creator of an outsourced file
is also its owner, and file ownership can be transferred to another user by its
current owner.

• Editor: a user has the capability of editing (or modifying) the outsourced file.
• Viewer: a user can only view (or read) the outsourced file.

Files can have many editors and viewers, but only one creator during their
lifetime and one owner at a time. In addition to the four aforementioned types of
users, there also exists an auditor who can verify the validity and trustworthiness of
any provenance information but without any knowledge of the user’s identity who
generates each individual provenance record, which follows existing secure data
provenance schemes [19, 20].

Provenance Model As shown in Fig. 6.4, in the data provenance, provenance
information is organized into a chain in chronological order, where each chain item
represents a provenance record which details how an outsourced file was processed

130 6 Secure Data Provenance

at every stage of its lifecycle. Each provenance record is also associated with a
specific file stage, and a legitimate user (e.g., editors) may perform many operations
on outsourced files. A typical provenance record consists of a specially formatted
data block that contains information related to how an outsourced file is processed
at a time as well as its ownership information, which usually can be classified into
two types:

Essential Provenance Data (EPD) Information related to activities performed on
the outsourced file.

Nonessential Provenance Data (NPD) Security overhead which has been generated
by security mechanisms that are used in a data provenance system to secure
provenance records.

Measure the Practicality of Secure Provenance With the provenance model, we
note that although an outsourced file can be processed by multiple users during its
lifecycle, these users would process the file one by one. In other words, when a user
processes the target file, the file is “locked” for other users, even if these users are
qualified to process the file.

As such, a concept of window of latching (WoL) is introduced to evaluate the
practicality of secure provenance schemes. Actually, window of latching (WoL)
means the time interval between two successive provenance records that are
accepted and published, i.e., it is a period of time when a file is unavailable to other
users. The shorter WoL, the more practical the secure provenance scheme.

6.3.1.2 System and Threat Models

The system model of ESP follows existing schemes [19, 20] as shown in Fig. 6.2,
where a cloud server CS, a group of users U = {U1,U2, . . .}, an identity manager
IM, and a third-party auditor A are involved.

However, different from existing schemes [19, 20], ESP considers a stronger
threat model than them: the identity manager is not fully trusted by others. With
the threat model, ESP mainly considers the following security and privacy threats
against provenance records:

• Unauthorized disclosure. Unauthorized users have access to provenance records.
• Provenance record forgery attack. A malicious user may collude with others

to forge a valid provenance record, which could hinder the examination of
provenance records.

• Provenance record removal attack. A malicious user colludes with others to
remove one or several existing provenance records that have been generated due
to the operations performed on outsourced files.

• Modification attack. Similar to the two above threats, a malicious user may
collude with others to tamper with provenance records by modifying them or
changing their sequences.

6.3 Blockchain: A Panacea for Secure Data Provenance 131

• Repudiation attack. A malicious user may deny that he performed an operation
on an outsourced file.

• Privacy violation. Privacy violation refers to the attack that the identity of a
user who generates a provenance record is leaked out. Recall that in secure
provenance schemes, only conditional privacy preservation should be ensured,
where the identity manager has the ability to reveal the real identity recorded in
a provenance record, while anyone else cannot.

6.3.1.3 Overview of ESP

ESP consists of three parts: system setup, secure provenance generation, and secure
provenance verification.

In the first part, system parameters are generated. The identity manager assigns
a human-memorizable password to each user and maintains a list that records the
assigned passwords and the corresponding identities. With the list, the identity man-
ager is able to authenticate each user securely and efficiently. This authentication
between the identity manager and each user enables the former to control who can
access the outsourced files and can generate provenance records. In ESP, this “access
control” is controlled by the identity manager.

When a user wants to process a target outsourced file, she/he needs to be
authorized by the identity manager at first. Then the identity manager assists the user
in generating a provenance record. This allows the user to prove herself/himself to
the cloud server that she/he is qualified to process the file. The key technique behind
ESP is to integrate each provenance record into a transaction on a public blockchain,
e.g., Ethereum, where the user transfers a service charge to the authenticated server,
which makes the security of a provenance record to be related to the security of a
transaction on Ethereum. As a consequence, the advantage that an adversary breaks
the security of a provenance record is essentially equal to the one that he breaks the
security of the underlying blockchain system.

Note that a straightforward way to integrate provenance records into transactions
of Ethereum is to set the hash value of each provenance record as the data value
of a transaction on Ethereum. However, this causes heavy computational costs for
the auditor, since when the auditor verifies the validity of provenance records,
in addition to verifying the correspondence between the hash values and the
provenance records, the auditor also needs to verify the validity of all provenance
records one by one, which essentially requires the auditor to verify multiple
signatures and is very costly in practice.

To improve efficiency significantly, in ESP, all provenance records are chained
together as a whole with the aid of the Ethereum blockchain, as illustrated in
Fig. 6.5, where the provenance record chain is indicated by dashed gray lines.
Assume that there currently are n provenance records, {P1, P2, . . . , Pn}, in which
each of them stands for a state of the underlying file at the corresponding stage
during its lifecycle as modeled in Sect. 6.3.1.1. They are chained together as follows:
from the second provenance record P2, each record contains a data field that points

132 6 Secure Data Provenance

Fig. 6.5 Ethereum-aided provenance record chain

to a block on the Ethereum blockchain, this block relates to the last provenance
record. Each record is appended to the last one until it reaches the last one of the
current provenance record, Pn, and each record would be signed by the identity
manager. The signature of the last record becomes the tail of the provenance record
chain. In this case, if any existing record is modified or removed, the provenance
record chain is broken. The computational costs to verify provenance records in
ESP mainly depend on the hashing operation along with one signature verification
for the last element or the tail of the provenance record chain, which is very efficient.
As a result, the verification is very fast.

Note that due to the employment of the public blockchain, as long as the identity
manager remains inaccessible to adversaries, ESP guarantees both the security
and privacy preservation. If both the identity manager and cloud storage server
are compromised, ESP retains the security assurance on the provenance records
in existing schemes (i.e., resistance against forgery, removal, modification, and
repudiation on provenance records).

6.3.1.4 Construction of ESP

System Setup With the security parameter �, the system parameters {p, G, GT , P ,
e, E(·), h, H } are determined, where G is an additive group whose generator is P , e :
G × G → GT , G and GT have the same prime order p, E(·) is a secure symmetric
encryption algorithm, h : {0, 1}∗ → Z∗

p, and H : {0, 1}∗ → G. IM randomly
chooses s ∈ Z∗

p, and computes Ppub = sP and k = h(s). IM’s secret keys are
(s, k), the corresponding public key is Ppub. For each Ui ∈ U with an identifier
IDi , she/he registers with IM, where a human-memorizable password pwdi is
generated. After the registration, IM stores (IDi , pwdi) locally for subsequent
authentications.

Secure Provenance Generation
Once a user Ui processes a file outsourced to CS and generates a provenance record
Pj , she/he will request IM to generate provenance a record on the file process.

Phase 1 With the identifier IDi and password pwdi Ui makes mutual authenti-
cation with IM to establish a secure channel. Specifically, Ui randomly selects

6.3 Blockchain: A Panacea for Secure Data Provenance 133

r1, a ∈ Z∗
p, obtains the current timestamp ct , and computes C1, C2, where C1 =

r1P , C2 = Ek(IDi ||pwdi ||aP ||ct), k = r1Ppub. Then, Ui sends (C1, C2) to
IM. After receiving (C1, C2), IM computes k = sC1 = sr1P = r1Ppub, extracts
IDi ||pwdi ||aP ||ct from C2 with k, and verifies the validity of the timestamp ct

to resist the replay attack. IM authenticates Ui by checking the correctness of
(IDi, pwdi). Then, IM randomly chooses b ∈ Z∗

p, computes sk = b(aP) as the
session key, and computes Ui’s pseudonym PIDj = Ek(IDi ||ct||b), C3, and C4,
where C3 = bP , C4 = Esk(IDi ||aP ||bP ||ct||PIDj). Finally, IM sends (C3, C4)

to Ui . With (C3, C4), Ui computes the session key sk = aC3 = abP , extracts
IDi ||aP ||bP ||ct||PIDj from C4 with sk, and authenticates IM and confirms the
correctness of sk by verifying the correctness of IDi ||ct||aP ||bP . Since the session
key sk is shared between Ui and IM, a secure channel between them is established
for secure provenance.

Phase 2 Different roles of Ui require different execution between Ui and IM.

Creator Ui creates a new file
If Ui creates a new file M , i.e., the provenance record Pj is P1 = h(M1||IDi),

where M1 denotes the content of the file at the first state, she/he requests a secure
provenance from IM as follows.

Ui sends P1 to IM via the secure channel. IM extracts PID1 from local stor-
age (i.e., j = 1), and signs P1 and PID1 as σT1 = sH(P1||PID1), and sends σT1 to

Ui . Ui verifies the validity of σT1 by checking e(σT1, P)
?= e(H(P1||PID1), Ppub).

If the verification fails, she/he rejects σT1 . Otherwise, Ui creates a transaction T x1
shown in Fig. 6.6, where Ui transfers service charge to the IM’s account, and the
data field of the transaction is set to h(h(P1||PID1)||σT1). After the transaction
T x1 is recorded into the Ethereum blockchain, Ui sends (P1||PID1||Bl1, σT1) to
CS, and publishes it as the first provenance record.

Editor/viewer Ui edits/views an existing file

Fig. 6.6 The transaction created by the creator

134 6 Secure Data Provenance

Fig. 6.7 The transaction created by the editor/viewer

If Ui edits/views an existing file, without loss of generality, we assume the
underlying file is M whose state at the first stage is M1, i.e., the provenance record
Pj with j ≥ 2 is Pj = h(Mj ||IDi), where Mj denotes the content of the file at the
j -th stage. Ui interacts with IM as follows.

Ui sends (Pj , Blj−1, σTj−1) to IM via the secure channel, where Blj−1 denotes
the hash value of the block that contains the transaction whose data field is
h(h(Pj−1||PIDj−1)||σTj−1). IM checks the validity of Blj−1, if the checking
fails, it rejects Blj−1. IM extracts PIDj from local storage, computes Θ(Pj) =
H(Pj ||PIDj ||Blj−1), signs Θ(Pj) as σTj = s · Θ(Pj), and sends σTj to Ui . Ui

verifies σTj by checking whether e(σTj , P)
?= e(Θ(Pj), Ppub), creates a transaction

T xj shown in Fig. 6.7, where Ui transfers service charge to the IM’s account,
and the data field of the transaction is set to h(h(Pj ||PIDj)||σTj ||Blj−1). After
the block containing the transaction T xj is chained to the Ethereum blockchain,
Ui sends (Pj ||PIDj ||Blj , σTj , Blj−1) to CS, and publishes it as the provenance
record.

Finally, the provenance records of the outsourced file M becomes

(P1||PID1||Bl1, P2||PID2||Bl2, . . . , Pj ||PIDj ||Blj , σTj),

where P1||PID1||Bl1, P2||PID2||Bl2, . . ., Pj ||PIDj ||Blj are essential prove-
nance data (EPD), and σTj is nonessential provenance data (NPD).

Secure Provenance Verification
Given the provenance records

(P1||PID1||Bl1, P2||PID2||Bl2, . . . , Pj ||PIDj ||Blj , σTj),

at this time, the corresponding blockchain has the form shown in Fig. 6.8.
The auditor A checks the correctness of these provenance records as follows.

6.3 Blockchain: A Panacea for Secure Data Provenance 135

Fig. 6.8 The transactions on the blockchain

Fig. 6.9 Implementation of ESP

A verifies whether the number of provenance records is equal to that of
corresponding transactions recorded into the blockchain; it locates the last block Blj
on the Ethereum blockchain, and verifies the validity of the last recorded provenance
record Pj ||PIDj ||Blj ; It computes Θ(Pj) = H(Pj ||Blj−1) and checks whether

e(σTj , P)
?= e(Θ(Pj), Ppub); it extracts the data information from blockchain

according to Bl1, . . . , Blj ; it verifies the integrity of provenance by checking
whether the provenance records match the extracted data. If all these processes
succeed, the provenance records can be accepted.

6.3.2 Implementation Based on Ethereum

We introduce the implementation of ESP, as shown in Fig. 6.9. The implementation
uses JAVA language, and the experiments are conducted on a laptop with a Windows
7 system, an Intel Core 2 i5 CPU and 8 GB DDR3 of RAM. The security level
is chosen to 80 bits, and the hash function h is selected to SHA3-256. The
implementation is described below. For clarity, we prefix calls with IM when they
are made by IM and with U when they are made by U .

Identity Manager (IM). IM executes IM.Com_SessionKey to compute the ses-
sion key between the user and IM and executes IM.Com_Pseudonym to compute
a pseudonym for the user. IM generates a signature on the provenance record and
the pseudonym for the file creator (which is implemented by Sig(Pj||PIDj)); IM
needs to verify the validity of the last provenance record (which is implemented by

136 6 Secure Data Provenance

Fig. 6.10 Log-in interface

Verify σTj−1) and generates a signature on the provenance record, the pseudonym,
and the hash value of the block which records this provenance record on the
blockchain. In the implementation of the system, this process is completed by a
log-in system, as shown in Fig. 6.10.

User U U first computes the session key (by executing U.Com_SessionKey) and
interacts with IM to obtain a pseudonym (implemented by U.Com_Pseudonym).
Then U generates/edits the target file (by Generate.File). These interfaces are
shown in Figs. 6.11 and 6.12.

If U is the creator (i.e., j = 1), she/he computes a provenance record Pj

and sends it to IM. Then she/he verifies the signature received from IM and
creates a transaction in Ethereum where the provenance record is integrated into
the transaction. Finally, she/he sends the provenance record to the cloud server. The
transaction information on the blockchain is shown in Fig. 6.13. After the file is
created, the system has an output as shown in Fig. 6.14.

If the user is the editor (i.e., j > 1), she/he first queries the cloud server for
the necessary information about the last provenance record (i.e., Blj−1 and σj−1).
Then she/he computes the provenance record and sends it as well as the necessary
information received from the cloud server to IM. Finally, she/he verifies the
validity of the signature generated by IM and conducts a transaction as the creator
does.

6.3 Blockchain: A Panacea for Secure Data Provenance 137

Fig. 6.11 Creation of file

Fig. 6.12 Editing the file

6.3.3 Data Provenance and Beyond: Further Discussion

In the above description, ESP does not rely on smart contracts. The information
about each provenance record is set to be the data value of a general transaction on
the Ethereum blockchain. By doing so, each provenance record is integrated into
a transaction on the blockchain. However, a malicious user could collude with the
identity manager to create a new provenance record and a corresponding transaction

138 6 Secure Data Provenance

Fig. 6.13 Transaction information on the blockchain

Fig. 6.14 The output after the file creation

on the blockchain and substitute an existing provenance record with the newly
generated one, which essentially deletes the existing provenance record. To resist
such a substitution attack, when the auditor verifies the validity of provenance
records, it first checks whether the number of the corresponding transactions
matches that of provenance records. If they do not match, it means that one or more
provenance records have been generated but are hidden.

6.4 Summary and Further Reading 139

Another method to resist the substitution attack is to employ a smart contract.
The functionality of the contract is to store the information about each provenance
records to the contract storage. When the auditor verifies the validity of provenance
records, it extracts all data from the contract storage and only utilizes those data that
are uploaded by authorized users (the identities of these users can be known to the
auditor when it performs data investigations).

We stress that both the above methods require that the accounts used to create
the transactions are specially crafted and dedicated, which ensures that the number
of corresponding transactions on the blockchain can be easily extracted.

Furthermore, ESP is based on Ethereum, its practicality is mainly affected by
two factors, the one is WoL, and the other one is the monetary cost to publish a
provenance record.

In Ethereum, a block and its transactions are considered confirmed if at least 12
consecutive blocks are mined following it. The average time that a block is mined is
15 s, and hence a transaction takes averagely 15 s (more details would be provided
in the next chapter) to be chained to the Ethereum blockchain. As such, publishing
a new provenance record takes an average of 3.25 min in ESP, and the time interval
between two successive provenance records only requires around 3.25 min. Another
user may have to wait at least 3.25 min to work on the same file, which means that
ESP’s WoL is around 3.25 min.

Another factor that affects the practicality of ESP is the costs to publish a prove-
nance record. Here, we only consider ESP that is based on general transactions,
rather than the smart contract. As of Jan. 2020, publishing a provenance record
requires a user to pay an average of 1 US cent, which is acceptable to users with
respect to the value of the file that ESP protects.

We also note that the secure data provenance scheme can also be constructed
on other public blockchain systems, e.g., Ouroboros [31] and Thunderella [32], to
reduce WoL and the monetary cost. These blockchain systems are based on proof-
of-stake and thereby are more efficient than those based on proof-of-work, which
would reduce WoL and the monetary cost significantly. However, generally for a
blockchain system, the more participants are in it, the stronger security guarantee
could be achieved. Therefore, constructing ESP on Ethereum would balance the
trade-off between security and efficiency.

6.4 Summary and Further Reading

In this chapter, we have introduced the secure data provenance technique for cloud
storage systems. We have introduced both the data provenance technique and its
enhanced version, i.e., the secure data provenance technique, and provided a com-
parison between them. We have given a comprehensive survey on the secure data
provenance technique. Finally, we have studied the latest secure data provenance
scheme that is constructed on a public blockchain to resist the compromised identity

140 6 Secure Data Provenance

manager and discussed the potentials to construct secure data provenance schemes
on blockchains.

There are some survey papers to introduce the data provenance technique from
different aspects, e.g., [22, 33]. There is also a paper to discuss how to construct a
secure provenance scheme on blockchain [34].

References

1. Simmhan YL, Plale B, Gannon D (2005) A survey of data provenance in e-science. ACM
SIGMOD Rec 34(3):31–36

2. Gupta A (2009) Data provenance. Springer, Boston, pp 608–608. https://doi.org/10.1007/978-
0-387-39940-9_1305

3. Moreau L, Groth P, Miles S, Vazquez-Salceda J, Ibbotson J, Jiang S, Munroe S, Rana O,
Schreiber A, Tan V, Varga L (2008) The provenance of electronic data. Commun ACM
51(4):52–58

4. Zhang Y, Xu C, Li H, Yang K, Zhou J, Lin X (2018) HealthDep: an efficient and secure
deduplication scheme for cloud-assisted eHealth systems.IEEE Trans Ind Inf 14(9):4101–4112

5. Wu Y, Cegielski CG, Hazen BT, Hall DJ (2013) Cloud computing in support of supply chain
information system infrastructure: understanding when to go to the cloud. J Supply Chain
Manag 49(3):25–41

6. Codeanywhere. https://codeanywhere.com
7. Google doc. http://www.google.cn/intl/zh-cn_all/docs/about/
8. Xue J, Xu C, Zhang Y (2018) Private blockchain-based secure access control for smart home

systems. KSII Trans Inter Inf Syst 12(12):6057–6078
9. Zhang Y, Xu C, Li H, Yang K, Cheng N, Shen X (2020) PROTECT: efficient password-based

threshold single-sign-on authentication for mobile users against perpetual leakage. IEEE Trans
Mob Comput. https://doi.org/10.1109/TMC.2020.2975792

10. Btk killer. https://en.wikipedia.org/wiki/Dennis_Rader
11. Audit trails. http://csrc.nist.gov/publications/nistbul/itl97-03.txt
12. Madden BA, Adams IF, Storer MW, Miller EL, Long DD, Kroeger TM (2011) Provenance

based rebuild: using data provenance to improve reliability. UCSC, Technical Report
13. Ashcroft J, Daniels DJ, Hart SV (2011) Forensic examination of digital evidence: a guide for

law enforcement. https://www.ncjrs.gov/txtfiles1/nij/199408.txt
14. Lin X, Chen T, Zhu T, Yang K, Wei F (2018) Automated forensic analysis of mobile

applications on android devices.Digital Investigation 26:59–66
15. Health insurance portability and accountability act. https://en.wikipedia.org/wiki/Health_

Insurance_Portability_and_Account-ability_Act
16. Zhang Y, Xu C, Lin X, Shen X (2019) Blockchain-based public integrity verification for cloud

storage against procrastinating auditors. IEEE Trans Cloud Comput. https://doi.org/10.1109/
TCC.2019.2908400

17. Zhang Y, Xu C, Ni J, Li H, Shen X (2019) Blockchain-assisted public-key encryption with
keyword search against keyword guessing attacks for cloud storage. IEEE Trans Cloud
Comput. https://doi.org/10.1109/TCC.2019.2923222

18. Lynch CA (2001) When documents deceive: trust and provenance as new factors for informa-
tion retrieval in a tangled web. J Assoc Inf Sci Technol52(1):12

19. Lu R, Lin X, Liang X, Shen X (2010) Secure provenance: the essential of bread and butter
of data forensics in cloud computing. In: ACM symposium on information, computer and
communications security, pp 282–292

20. Chow S, Chu C, Huang X, Zhou J, Deng RH (2012) Dynamic secure cloud storage with
provenance. In: Cryptography and security, pp 442–464

https://doi.org/10.1007/978-0-387-39940-9_1305
https://doi.org/10.1007/978-0-387-39940-9_1305
https://codeanywhere.com
http://www.google.cn/intl/zh-cn_all/docs/about/
https://doi.org/10.1109/TMC.2020.2975792
https://en.wikipedia.org/wiki/Dennis_Rader
http://csrc.nist.gov/publications/nistbul/itl97-03.txt
https://www.ncjrs.gov/txtfiles1/nij/199408.txt
https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Account-ability_Act
https://en.wikipedia.org/wiki/Health_Insurance_Portability_and_Account-ability_Act
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2923222

References 141

21. Margo DW, Smogor R (2010) Using provenance to extract semantic file attributes. In:
Conference on theory and practice of provenance

22. Di L, Yue P, Ramapriyan HK, King RL (2013) Geoscience data provenance: an overview. IEEE
Trans Geosci. Remote Sensing 51(11):5065–5072

23. He L, Yue P, Di L, Zhang M, Hu L (2014) Adding geospatial data provenance into SDI—
a service-oriented approach. IEEE J Selected Topics Appl Earth Observations and Remote
Sensing 8(2):926–936

24. Interlandi M, Ekmekji A, Shah , MA Gulzar, Tetali SD, Kim M, Millstein T, Condie T (2017)
Adding data provenance support to apache spark. VLDB J 27(5):1–21

25. Hasan R, Sion R, Winslett M (2007) Introducing secure provenance: problems and challenges.
In: ACM workshop on storage security and survivability, pp 13–18

26. Zhang Y, Xu C, Li H, Yang H, She X (2019) Chronos: secure and accurate time-stamping
scheme for digital files via blockchain. In: IEEE international conference on communications,
pp 1–6

27. Zhang Y, Xu C, Cheng N, Li H, Yang H, Shen X (2019) Chronos+: an accurate blockchain-
based time-stamping scheme for cloud storage. IEEE Trans Serv Comput 13(2):216–229.
https://doi.org/10.1109/TSC.2019.2947476

28. Nakamoto S, Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
29. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum

Project Yellow Paper 151:1–32
30. Zhang Y, Lin X, Xu C (2018) Blockchain-based secure data provenance for cloud storage. In:

International conference on information and communications security, pp 3–19
31. Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: a provably secure proof-of-

stake blockchain protocol. In: Annual cryptology conference, pp 357–388
32. Pass R, Shi E (2018) Thunderella: blockchains with optimistic instant confirmation. In:

International conference on the theory and applications of cryptographic techniques, pp 3–33
33. Wang J, Crawl D, Purawat S, Nguyen M, Altintas I (2015) Big data provenance: challenges,

state of the art and opportunities. In: IEEE international conference on big data, pp 2509–2516
34. Ramachandran A, Kantarcioglu M (2018) Smartprovenance: a distributed, blockchain based

dataprovenance system. In: ACM conference on data and application security and privacy, pp
35–42.

https://doi.org/10.1109/TSC.2019.2947476
https://bitcoin.org/bitcoin.pdf

Chapter 7
Secure Data Time-Stamping

This chapter introduces the secure time-stamping technique and discusses how to
construct a secure time-stamping scheme for cloud storage systems. This chapter
first introduces the traditional secure time-stamping technique that is mainly applied
in traditional data storage systems (where the data are stored locally on the
user side). Then, a comprehensive survey on secure time-stamping schemes is
provided. Finally, the relationship between the secure time-stamping technique and
blockchains is discussed, and the secure time-stamping for cloud storage is studied.

7.1 Introduction to Secure Data Time-Stamping

In data investigations, it is not uncommon to certify when a file was created [1–4].
For instance, there is a need to determine the first inventor for a patentable idea in
intellectual property systems to resolve disputes. This is a universal problem in the
physical world, where time-stamping mechanisms have been widely applied in our
daily life. Typical applications include the paper-based sign-in system that registers
someone’s attendance at a meeting or at an office. This is always completed by using
an “attendance book.”

The dated names are entered one after another in the attendance book, with
no pages left blank. The sequentially numbered, sewn-in pages of the attendance
book make it hard to tamper with the record without leaving telltale signs. If the
attendance book is then stamped on a regular basis by an authority, the security of
the recorded names and recorded dates is further enhanced. If someone challenges
the items recorded to the attendance book, the attendance book serves as the key
evidence to prove the trustworthiness of the recorded items. However, in the above
mechanism, an adversary might back-date or forward-data items. Particularly, the
adversary might erase the name of an existing item with a target date and substitute
the name with another one, which essentially back-date the item; the adversary also

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_7

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_7&domain=pdf
https://doi.org/10.1007/978-981-15-4374-6_7

144 7 Secure Data Time-Stamping

might add a name into a blank space that corresponds to a future date, this essentially
forward-date the item. An affordable way to resist the back-date attack is to use a
tailor-made pen to record each item such that the recorded items cannot be erased;
an effective way to resist the forward-date attack is to require each one, who wants
to add a new item into the attendance book, to check that all spaces related to future
dates are kept empty.

Now we consider the problem of time-stamping files in digital worlds [5]. The
tools used to timestamp items in the physical world also have counterparts in modern
cryptography of the digital world. Specifically, a secure signature algorithm serves
as the “unerasable pen” in the digital world and a time-stamping service provider
(TSP) is introduced to serve users, where TSP plays the role of the attendance book
in the digital world. However, different from time-stamping physical world items,
time-stamping digital files suffers from new threats towards security and privacy.

In this section, we introduce the traditional time-stamping schemes for digital
files.

7.1.1 What Kinds of Data Would Benefit from Secure
Time-Stamping?

We note that the secure time-stamping technique is not a panacea, which means that
not every digital file needs to be protected by secure time-stamped. For example,
for a traditional backup system [6], i.e., a data owner periodically backups her/his
files using a portable storage device. After the files are stored in the portable storage
device, the data owner leaves the device along. In this case, if the user wants to learn
when the backup is performed, a timestamp indicating when the files are stored
to the device can be generated by herself/himself. Note that the timestamp here
would not suffer from back-dating and forward-dating from external adversaries,
and thereby the secure time-stamping technique is not required.

Generally, files that need to be protected by the time-stamping technique are
tamper-unpredictable and should be archived timely. It means that when a file is
created, the file creator (i.e., file owner) cannot establish the necessary knowledge
and motivation to tamper with the timestamp of the file. Meanwhile, the file should
be outsourced and time-stamped timely to archive data for post investigations.
Typically, we introduce two application scenarios in the following, where the secure
time-stamping technique is required.

First, in an intellectual property system [7–9], a file when an inventor first applied
for a patent should be maintained during the lifetime of the patent to determine
the patent term. More crucially, this file also serves as a key evidence to indicate
who is the first inventor of the patent when a dispute arises. However, it is usual
that the defendant argues about the timeliness of the digital evidence during the
trial. The defendant might dispute the creation time of the file, which is admitted
by investigators and utilized for the judgment, is not the actual one in reality. As

7.1 Introduction to Secure Data Time-Stamping 145

a result, the file is confronted with back-dating and forward-dating: an adversary
might back-date the file to forge that he is the first inventor of the patent but actually
is not; an adversary, who is the first inventor if the patent, might forward-date the file
to lengthen the patent term. In such a scenario, the file should be protected by the
secure time-stamping technique to resist back-date and forward-date, which ensures
its trustworthiness.

Second, considering a big company, it includes multiple departments and deals
with a large number of files at a time. To efficiently manage data, there is an inherent
need to archive files in real time. However, after the file creation, at a point in time,
the file is incriminating and serves as a key evidence to incriminate the company
itself in a commercial crime. Here, the company manager or other concerned people
have a strong motivation to back-date and forward-date the file to cover up the crime.
Such files are tamper-unpredictable: when the file is created, the file owner does not
have the motivation to tamper with its timestamp, but at a later point in time, he has.
In such a scenario, the secure time-stamping also has a clear value to support post
investigations.

In addition to the above (traditional) application scenarios, there is also a need to
certify the creation time of files in emerging application scenarios, such as electronic
healthcare systems (eHealth) [10] and non-repudiation systems [11].

7.1.2 System and Threat Models

In a traditional secure time-stamping scheme [5, 12, 13], there are two entities, i.e.,
a set of users and a time-stamping service provider (TSP), as shown in Fig. 7.1.

A user first generates a file M and requests the time-stamping service from TSP
on M . TSP generates a timestamp on M , sends the timestamp to the user, and stores
the timestamp locally. Subsequently, if the time when M is generated needs to be
certified, one is able to check the content of the timestamp and verify the validity of
the timestamp with the aid of TSP.

Fig. 7.1 System model of traditional secure time-stamping

146 7 Secure Data Time-Stamping

In the threat model, malicious users, external adversaries, and compromised TSP
are considered, where both the security of generated timestamps and the users’
privacy face critical threats. As discussed before, a malicious user would attempt
to back-date or forward-date a target file for profits, which essentially breaks the
security of generated timestamps. To this end, the malicious user might collude
with TSP to launch various attacks. Moreover, an external adversary might attempt
to learn the contents of files to be time-stamped to violate the user’s privacy. For
example, in an intellectual property system, the contents of the patent file are very
sensitive before the patent is time-stamped. Therefore, if the adversary is able to
learn the contents of the file before the timestamp of the file is generated, he
can violate the user’s privacy and even steal the user’s thunder. We note that it
is easy to establish a secure channel between a valid user and TSP, and thereby
resistance against eavesdropping performed by external adversaries can be achieved.
In addition, any adversary can become a valid user in the secure time-stamping
system, in the following, we mainly consider malicious users in the threat model,
i.e., if a time-stamping scheme can resist malicious users, it is trivial to resist
external adversaries with a straightforward extension.

7.2 Survey on Secure Time-Stamping

The time-stamping technique plays an important role in protecting digital files,
especially in digital investigations. In time-stamping schemes, a file is time-stamped
once it is created such that it can be time-sensitive. The security of the time-stamping
ensures that anyone (including the file owner) cannot back-date and forward-date the
file.

The problem of time-stamping digital file is first defined by Haber et al. [5],
where the first time-stamping scheme was proposed. In this scheme, a trusted service
provider (TSP) is introduced to provide the time-stamping service for its users.

Actually, employing TSP to securely timestamp files for users is not straightfor-
ward, where challenges in terms of security, privacy, and efficiency should be well
addressed. We elaborate on the secure time-stamping scheme [5], focusing on the
challenges addressed by the scheme.

For a time-stamping scheme, the first problem is that how to “timestamp” the file
M . In digital words, this can be directly done by such a way: the user sends M to
TSP, and TSP generates a message that “TSP received M at the time of t”; it signs
this message using a private key and sends the message as well as the signature to
the user. Here, the message and the corresponding signature serve as the timestamp
of M , which indicates the generation time of M and authorized by TSP.

The first challenge that should be addressed in the above mechanism is to reduce
communication costs. In the above mechanism, to timestamp a file M , the user
needs to send M to TSP. As a consequence, the communication costs to timestamp
M linearly increase with the size of M . Note that only sending a part of M to
TSP cannot ensure the security, since it cannot provide true non-repudiation. To

7.2 Survey on Secure Time-Stamping 147

address this problem, the cryptographic hash function can be utilized: when the
user generates M , she/he computes the hash value of M , i.e., h(M), and sends
h(M) to TSP. The timestamp generated by TSP becomes a message that “TSP
received h(M) at the time of t” and the corresponding signature. Since the hash
function is collision-resistant, adversaries cannot find M

′
such that M

′ �= M

but h(M
′
) = h(M). In addition, the size of outputs of the hash function is a

constant with a small size (e.g., 256 bits). Therefore, with the employment of the
cryptographic hash function, the communication costs between the user and TSP
are reduced significantly. Actually, due to preimage resistance of the cryptographic
hash function, this mechanism also provides privacy preservation of file’s contents
against leakage, even if a malicious user colludes with TSP, he cannot learn the
content of the file to be time-stamped.

However, the above mechanism still suffers from the collusion between a file
owner and TSP. Specifically, after the file M is time-stamped, the file owner may
incentivize TSP to help him in re-time-stamping M , i.e., TSP generates another
message that “TSP received h(M) at the time of t∗,” where t∗ �= t . By doing so, M

can be back-dated or forward-dated as needed, which invalidates the secure time-
stamping scheme. The scheme of [5] resists the collusion between the malicious file
owner and TSP by a technique that multiple time-stamping requests from multiple
users are handled in one system. The key observation behind the scheme in [5] is
that the sequence of users requesting timestamps and the files they submit to TSP
cannot be known in advance. With this observation, Haber et al. utilized a hashchain
to link a sequence of files from different users via the cryptographic hash function.
In particular, we assume that there are n different users U = {U1,U2, . . . ,Un}, each
of them has a file, i.e., for Ui (i ∈ [1, n]), her/his file is Mi , and they request the
time-stamping service from TSP one by one (in ascending order of index). TSP
timestamps these files as follows.

For the first time-stamping request (i.e., the request from U1), the data T SM1

that corresponds to M1 and is submitted to TSP consists of two parts: the first one
is h(M1) which is the hash value of M1 and the second one is IDU1 which is the
identity of U1. U1 sends T SM1 = {IDU1 , h(M1)} to TSP. TSP has a pair of keys
(skT SP , pkT SP), where skT SP is the private key to sign data and pkT SP is the
public key to verify signatures. On receiving T SM1 , TSP generates a timestamp
τ1 = {1, t1, IDU1 , h(M1)} and signs τ1 to get the signature στ1 = Sig(skT SP , τ1),
where t1 is the physical time when TSP receives T SM1 . TSP sends {τ1, στ1} to U1 as
the timestamp of M1. TSP also stores {τ1, στ1} locally.

For the following time-stamping requests (i.e., the requests fromUi , (i ∈ [2, n])),
the data T SMi that corresponds to Mi and is submitted to TSP is similar to T SM1 ,
that is, T SMi = {IDUi

, h(Mi)}. Ui sends T SMi to TSP. Upon receiving T SMi , TSP
generates a timestamp τi = {i, ti , IDUi

, h(Mi), Li} and signs τi to get the signature
στi = Sig(skT SP , τi), where ti is the physical time when TSP receives T SMi and
Li = (ti−1, IDUi−1 , h(Mi−1),H(τi−1)), and H is the cryptographic hash function
that is different from h. TSP sends {τi, στi } to Ui as the timestamp of Mi . TSP also
stores {τi, στi } locally.

148 7 Secure Data Time-Stamping

Fig. 7.2 Linked timestamps

After receiving {τ, στi } for i = 1, 2, . . . , n, Ui checks the validity of στi and ti .
If the checking succeeds, Ui accepts the timestamp.

Note that on the TSP side, all the data corresponding to the files that are from n

users and have been time-stamped, i.e., T SM1, T SM2 , . . . , T SMn , have been linked
as shown in Fig. 7.2, such that if any one of them is changed, all the following data
are invalidated.

When a time-stamped file Mi is later challenged by an auditor A for a data
investigation, A first verifies that {τi, στi } is valid, i.e., the contents of τi are correct
and στi is a valid signature under pkT SP . Then, A checks the trustworthiness of the
timestamp by the aid of the user Ui+1: whether the timestamp of Mi+1 includes the
corresponding information about the timestamp of Mi . If the checking passes but
A still suspects the validity of the timestamp of Mi , A is able to call up user Ui+2
and check the next timestamp in the sequence. This can continue for as long as A
wishes. Likewise, A is able to check the linked timestamps backward from the user
Ui−1.

Following the work proposed by Haber et al. [5], some schemes [12–15] were
proposed. However, these schemes bear strong assumptions that <i> multiple users
should be involved in the system, and <ii> TSP is essentially reliable and honest.
Actually, in the case described above where a big company employs the time-
stamping technique for data archiving and support of data investigations, it is always
desired to utilize a “customized” and “personal” time-stamping service to protect the
files for the big company. As a consequence, the time-stamping schemes [12–15] are
unsatisfactory. Furthermore, in the above schemes, once TSP is compromised, the
generated timestamps can be arbitrarily modified, and the security of these schemes
is broken. Actually, in a multi-user system, the frequency that different users request
the time-stamping service from TSP is variant. If last time-stamped j files are
generated by one user, once the user compromises TSP, these files can be easily
back-dated and forward-dated. As such, TSP becomes a single point of failure in
these systems.

With the digital data being explosively generated in recent years, individuals
and commercial users are increasingly outsourcing their data to cloud servers [16–
20]. Some cloud storage systems also need to certify when outsourced files are

7.3 Secure Time-Stamping and Blockchain 149

generated. For example, in cloud-based intellectual property systems, a file when
an inventor first applied for a patent should be maintained during the lifetime of
the patent to determine the patent term. More crucially, this file also serves as a
key evidence to indicate who is the first inventor of the patent when a dispute arises.
Another example is the cloud-based eHealth system [10]. In such a system, patients’
EHRs are outsourced to a cloud server. The timeliness of patients’ EHRs is very
sensitive, it not only serves as a key reference for subsequent diagnoses, but also
serves as a key evidence for postinvestigations when medical malpractices arise.
However, in both of the above cases, since all files are outsourced to a cloud server
that cannot be fully trusted by users and investigators, it is more challenging to
securely timestamp the files in cloud storage systems than that in traditional storage
systems.

Considering cloud storage systems, the above time-stamping schemes surely
can securely timestamp outsourced files. Whereas, in addition to the above two
problems, there are also two problems that should be addressed:

• In cloud storage systems, users are provided a transparent and efficient storage
management service. Different users are not required to know the existence
of each other. Moreover, the overhead of using cloud storage services should
be minimized as much as possible, which means that a user should not be
responsible for the security and trustworthiness of others’ files, and users should
not provide any service to each other. However, the above time-stamping schemes
require at least one user to assist another one in ensuring the security and
trustworthiness of the corresponding timestamp.

• With the deployment of TSP, users using the cloud storage service have to change
their interaction pattern: since TSP is a trusted entity that is independent of the
cloud service provider, the users have to interact with both TSP and cloud server
to secure their files in data outsourcing. As a result, users need to bear not only
an additional communication overhead but also extra costs to employ TSP.

Data outsourcing makes the assurance of files’ timeliness more challenging than
ever, and hence requires a new time-stamping mechanism for outsourced files. In
Sect. 7.3.2, we study a case to show how to securely and efficiently timestamp
outsourced files in cloud storage systems.

7.3 Secure Time-Stamping and Blockchain

Recently, blockchains have been envisioned as a powerful tool to enhance data
security in both traditional storage systems and cloud storage systems. As a matter
of fact, the relationship between the time-stamping technique and the blockchain is
very strong. In this section, we first review this relationship and introduce how a
blockchain system is derived from a time-stamping scheme. Then, we study how a
secure time-stamping scheme is constructed on a blockchain system.

150 7 Secure Data Time-Stamping

7.3.1 Distributed Cryptocurrencies from Secure
Time-Stamping

We have briefly introduced the blockchain in Sect. 2.5. From the perspective of
technique, a blockchain consists of two core components, the one is the underlying
data structure, and the other one is the underlying consensus algorithm.

The blockchain is a technique derived from Bitcoin [21] which is the first
distributed cryptocurrency system and is the most prominent manifestation of the
blockchain. In any currency system (no matter whether it is designed for the digital
world), the transactions in it should be time-sensitive to ensure security. Without a
time-stamping mechanism, a currency system cannot resist an adversary who double
spends coins (which we consider as the underlying value token).

In our physical world, all transactions are authorized by a central authority, i.e.,
a bank, and the ledger which accounts for the ownership of coins is maintained
by the authority. With the authorization, the bank also timestamps each transaction
with an accurate physical authorization time. Here, the bank plays the role of TSP
in secure time-stamping schemes described before. The early attempts to build
digital currencies, such as [22, 23], also follow the paradigm of the currency in
the physical world. They also employ a central authority to manage transactions
and maintain the ledger. Since the authority is trust with respect to the security,
the secure time-stamping schemes presented in [5, 12] are not required, and the
authority can straightforward generate and record all timestamps of transactions.
However, centralized digital currencies have an oblivious disadvantage that the
central authority knows “everything.” It can learn any transaction detail from the
authorized transactions and maintained ledger if it wants, and the users’ privacy
cannot be protected.

To completely eliminate the central authority, the transaction must be authorized
in a distributed way, and the ledger also must be distributed. However, resistance
against the adversary who double spends coins is much more challenging than ever.
Since copying digital data is very easy, the adversary can issue two transactions in
parallel, transferring the same coin to different recipients. Interestingly, resistance
against the double-spending attack and assurance of the immutability of conducted
transactions can themselves be seen as a time-stamping problem. With this observa-
tion, Bitcoin is constructed on a time-stamping server.

Specifically, Bitcoin eliminates the central bank is very pragmatic: in a sense,
everyone is the bank, and every participant keeps a copy of the record (i.e.,
transactions and the ledger) which would traditionally be maintained by the central
bank. Each participant maintains the record in the way as TSP does in secure time-
stamping schemes [5]. Bitcoin utilizes a paradigm of “coin-based” transaction to
conduct transactions, where the transaction is described in the way that a coin with
a unique identifier is transferred from the payer’s address to the payee’s address.
By doing so, each coin is spent in order of time: all transactions related to a bitcoin
form a chain on the Bitcoin blockchain such that the bitcoin cannot be transferred
to different payees simultaneously. Furthermore, from the perspective of technique,

7.3 Secure Time-Stamping and Blockchain 151

a blockchain is composed of multiple data elements, in which each data element is
called a block. All blocks form a chain, where the security is guaranteed by utilizing
a cryptographic hash function. Each block typically contains a hash pointer as a link
to a previous block, a timestamp, and transaction data. This essentially timestamps
all blocks in the way proposed by Haber et al. [5].

The above “time-stamping” paradigm has been applied in most existing public
blockchain systems, e.g., Ethereum [24], Ouroboros [25], including proof-of-work-
based ones and proof-of-stake-based ones. Both Bitcoin (the first public blockchain
system) and Ethereum (the most widely used public blockchain system) have
considered verifying the validity of the timestamp in each block as a part of verifying
the validity of the block. However, both of them do not require each miner to
verify that the timestamp is an accurate value that is the current physical time
when the miner receives the corresponding block, since this requires a precise time
synchronization among all miners, which would introduce considerable costs in
terms of communication and computation. Instead, briefly speaking, they require
the miner to check whether the timestamp of the received block is no earlier than
that of its antecedent block.

With the above discussion, we can say that the blockchain, e.g., Bitcoin,
Ethereum, in a sense, is derived from the secure time-stamping scheme [5] and
leverages the hashchain of [5] as the underlying data structure.

7.3.2 Secure Time-Stamping from Blockchain

In the previous section, we have discussed the relationship between the blockchain
and the secure time-stamping technique and also introduced how a blockchain is
derived from a secure time-stamping scheme. However, as we analyzed before,
existing time-stamping schemes also suffer from some problems such that they are
unsatisfactory for protecting outsourced files in cloud storage systems. Actually,
on the contrary, a secure time-stamping scheme can be derived from a secure
blockchain system. In this section, we study a system, called Chronos+ [26, 27],
to show how to construct a secure time-stamping scheme on the blockchain.

7.3.2.1 Overview of Chronos+

We first provide an overview of Chronos+, focusing on the challenges addressed by
it.

Recall that traditional secure time-stamping schemes [5, 12] are confronted with
the single-point-of-failure problem and are cumbersome for cloud storage systems.
All these problems can be addressed by employing the blockchain.

There are two lines of work to construct blockchain-based secure time-stamping
schemes.

152 7 Secure Data Time-Stamping

On the one hand, Coleman [28] proposes the scheme of universal hash time. The
key idea behind it is to enable all files from different users to form an authenticated
data structure (e.g., hashchain and Merkle hash tree) with the aid of a public
blockchain (e.g., Bitcoin). The timeliness of these files in the data structure is
reflected in the chronological order. By doing so, one can determine that a file
was generated no earlier than the previous one and no later than the subsequent
one. The same idea has also been proposed by Landerreche et al. [29], where the
cryptographic time-stamping through sequential work is presented.

However, this line of the work, including [28–30] still unsatisfactory due to the
following reasons. First, the timestamp of a file depends on other files in the system,
which cannot accurately reveal the physical time when the file was created. Second,
these schemes are designed for traditional storage systems, and if they are applied
in the cloud storage systems, they also face the same problems as traditional time-
stamping schemes do.

On the other hand, a secure time-stamping scheme can be derived from the
public blockchain (e.g., the scheme presented by Gipp et al. [31]) and current
blockchain-based storage schemes (e.g., Blockstack [32] Catena [33], and ESP
[34]). Specifically, with the employment of the blockchain, the cloud server can
provide users with both the storage and secure time-stamping services. This scheme
is shown in Fig. 7.3, and is detailed as follows.

There are three different entities, users, a log server, and an authenticated auditor.
The log server is subject to the cloud service provider and provides both the data
outsourcing service and secure time-stamping service. The authenticated auditor
outputs the physical creation time of a given file. When a file is created by a user, it
is outsourced to the log server. Then, the file is integrated into a transaction on the
Bitcoin blockchain, where the log server uses the “OP-RETURN” outputs to store
the digest of the file in Bitcoin. After the transaction is recorded into a block on the
blockchain, the file has been time-stamped. The block’s timestamp that indicates the
physical time when the block was appended to the blockchain can serve as the file’s

Fig. 7.3 A plain blockchain-based time-stamping scheme for cloud storage systems

7.3 Secure Time-Stamping and Blockchain 153

timestamp to show that the file was generated earlier than this point in time. As such,
when the auditor checks the timestamp of a file, it only extracts the timestamp of
the corresponding block from the Bitcoin blockchain and outputs this physical time
as the creation time of the file. Since the blockchain is resistant to modification,
anyone cannot back-date/forward-date the time-stamped file. Furthermore, in the
scheme, different users are independent, and they are not aware of each other when
they outsource files to the log server.

However, in the above scheme, the accuracy of the timestamp cannot be
guaranteed, which causes an unacceptable time error. The time error is mainly
caused by the following reasons.

• The block’s timestamp on the Bitcoin blockchain faces up to 2-h errors.
• A transaction needs to wait to be lumped into a block with a considerably long

delay (about 1 h and more in extreme cases).

Therefore, the first challenge to design a secure and practical blockchain-based
time-stamping scheme is to improve the accuracy of timestamps of outsourced files,
which requires an alternative method to extract files’ timestamps. The key technique
behind Chronos+ is to adopt the blockchains’ property of chain growth to build
a “clock” outputting the time that each block was appended to the blockchain. In
particular, chain growth formalizes blockchains’ property that a blockchain’s height
will steadily increase in respect of both short and long terms. This allows us to
accurately derive the physical time when a block was chained to the blockchain
from the block’s height on the blockchain. Such the height-derived timestamp
removes the time errors in the block’s timestamp. On the other hand, to significantly
reduce the considerably long delay caused by uploading the transaction to the
Bitcoin blockchain, Chronos+ is built on Ethereum, because the handling capacity of
Ethereum is much stronger than that of Bitcoin. This reduces the delay of uploading
transactions dramatically.

The above schemes essentially share the same paradigm: the file’s timestamp
is only related to the time when the block containing the information about the
file is chained to the blockchain. Whereas, such a timestamp only indicates that
the file was created earlier than the time when the block was appended. This
would be insufficient for protecting time-sensitive data in reality. Consider such an
adversary: a malicious user, who colludes with the time-stamping service provider
(i.e., the log server), can launch an attack of “stealing the thunder” by changing
the ownership of a target file. Such an adversary is called a malicious competitor.
More details, the malicious competitor is a valid user in the system. He targets at
a specific group of users in the system to “steal the thunder.” For instance, in a
cloud-based intellectual property system, when a user uploads a patent to the log
server, a malicious competitor can intercept and tamper with the patent to change
the ownership of the patent. This problem is further exacerbated by the fact that the
malicious competitor can incentivize the log server to perform the above attack. Due
to the existence of the malicious competitor, it is very important to certify the earliest
creation time of the outsourced file. A trivial method to prove the earliest creation
time of a file is to let the user embed the creation time in the file before sending it

154 7 Secure Data Time-Stamping

to the log server. Nevertheless, this requires a precise time synchronization among
all users, and all log servers (data investigations are always performed on multiple
systems), and would introduce heavy communication and computation costs.

Chronos+ resolves this deadlock by utilizing (ι, ϕ)-chain quality of blockchains.
Instead of requiring the user to embed physical time in the file to prove the earliest
creation time, the user only embeds a time-dependent random seed in the file for
this purpose. The time-dependent random seed is unpredictable, unforgeable, and
publicly verifiable, which proves that the seed was generated no earlier than a
point in time. Note that the hash values of ϕ-successive blocks on the blockchain
can actually serve as such a time-dependent random seed. With the integration of
the hash values of ϕ-successive blocks that are latest confirmed on the Ethereum
blockchain, Chronos+ allows users to prove that the file was generated no earlier
than the physical time that the last block of ϕ-successive ones was appended to
the blockchain. Again, this physical time is also derived from the block’s height to
ensure its accuracy. Consequently, the file’s timestamp in Chronos+ is a time interval
denoted by [ts1, ts2], where ts1 is extracted from the height of the last block in
ϕ-successive ones that are latest confirmed on the Ethereum blockchain when the
file was created, and ts2 is extracted from the height of the block containing the
information about the file.

We stress that the scheme introduced so far is still vulnerable to the malicious
competitor. We assume that the malicious competitor targets at a specific user for
stealing her/his file. To this end, the malicious competitor intercepts the file sent
from the user, compromises the user’s network, changes the ownership of the file
(e.g., changing the author information), and sends the modified file to the log server.
As a result, the malicious competitor can steal the user’s thunder. Notice that such an
attack cannot be resisted by encrypting the file on the user side before outsourcing,
since the contents of files (e.g., patents) protected by time-stamping schemes should
always be publicly verifiable, and the malicious competitor may incentivize the log
server to perform the attack.

Chronos+ addresses this issue by leveraging an elaborate mechanism of “unlock
on delivery.” Particularly, the user encrypts the file (using a symmetric-key encryp-
tion algorithm) and sends the ciphertext to the log server. The log server timestamps
the ciphertext as described before. After the timestamp is generated, the user
sends the encryption/decryption key to the log server. The log server then decrypts
the ciphertext and stores the file as well as the encryption/decryption key and
the timestamp locally. The “stealing the thunder” attack no longer works, since
the malicious competitor cannot change the ownership of the file without the
encryption/decryption key, even if he colludes with the log server.

There is still a subtle security problem: A malicious user may collude with the
log server to perform equivocation attacks to modify an existing timestamp of a
specific file that generated by himself, as shown in Fig. 7.4. Specifically, after a
file M is time-stamped, the log server has maintained the ciphertext of M , the
corresponding decryption key, and the timestamp of M that includes the information
about the block containing M on the Ethereum blockchain. However, the file
owner can incentivize the log server to “re-timestamp” the file and substitute the

7.3 Secure Time-Stamping and Blockchain 155

Fig. 7.4 Equivocation about the timestamp of the file M

newly generated timestamp for the existing one. As such, the malicious user can
equivocate on the timestamp of the target file. It is cumbersome to detect such an
attack in practice, since it requires the auditor to maintain the entire blockchain
and scan it to ensure the non-equivocation. In Catena [33], resistance against the
equivocation attack is achieved by adopting a non-membership proof which is
constructed on the Bitcoin’s UTXO mechanism. However, such a strategy cannot
work in Chronos+, since Ethereum does not employ the UTXO mechanism as the
underlying transaction management mechanism.

To ensure the non-equivocation, Chronos+ utilizes a new non-membership proof
on the Ethereum blockchain. The accounts used to create the transactions in
Chronos+ are specially crafted and dedicated, which enables the authenticated
auditor to verify whether the number of transactions created by the account matches
the number of files that have been time-stamped. This number can be easily
extracted from the “nonce” field of the account in Ethereum. Such a mechanism
has been utilized in the secure data provenance scheme introduced in Sect. 6.3.1.3.

7.3.2.2 Construction of Chronos+

Chronos+ consists of four algorithms: Setup, Outsource, TimeStamp, and Check-
Stamp. There are three entities in Chronos+: a user U , a log server LS, and an
authenticated auditor A. The process of Chronos+ is illustrated in Fig. 7.5, and
described in the following. For the sake of brevity, we would not provide the details
of some algorithms, e.g., encrypting/decrypting a file and computing a signature.

Setup With the security parameter, the system parameters {h,ALS , AU , E/D,

Sig} are determined, where h is a cryptographic hash function, ALS is the LS’s
account and AU is the U’s account on the Ethereum blockchain, E/D is a symmetric
encryption/decryption algorithm (e.g., AES), and Sig is a secure digital signature
algorithm. U randomly chooses skU as the secret key and computes pkU as the
corresponding public key. U also chooses kU ∈ Zp as an encryption/decryption key
for E/D.

Outsource U generates a new file M and outsources it to LS as follows.

• U generates M and encrypts it using kU as:

C = E(kU ,M).

156 7 Secure Data Time-Stamping

Fig. 7.5 Chronos+

• Based on the current time, U acquires the hash values of ϕ-consecutive blocks
that are latest confirmed on the Ethereum blockchain. The hash values of these
blocks are denoted by Blt−ϕ+1, Blt−ϕ+2, . . ., Blt , respectively, where t is
the height of the block that is latest confirmed on the blockchain, and it is
recommended to choose ϕ ≥ 12 for Ethereum.

• U generates a signature σ = Sig(skU , C||Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt).
• U sends Ĉ = {C,Blt−ϕ+1, Blt−ϕ+2, . . . , Blt , σ } to LS.
• Upon receiving Ĉ, LS verifies whether the block corresponding to Blt is

the latest one that is confirmed on the blockchain. (In practice, the block
corresponding to Blt may be not the latest one due to the delay caused by
communication. However, this delay would not be long, and the block can be
accepted if it is one of the latest ones that is confirmed on the blockchain. For the
sake of brevity, we do not consider the delay in this section.) If the verification
fails, LS rejects Ĉ; otherwise, LS verifies the validity of σ . If σ is valid, LS
accepts Ĉ; otherwise, LS rejects Ĉ.

TimeStamp LS timestamps Ĉ as follows.

• LS computes a digest of Ĉ as

δ = h(Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt ||C||σ).

• LS generates a transaction shown in Fig. 7.5, where LS transfers 0 Ether
from its account ALS to U’s account AU and sets δ on the data value of the
transaction. LS then uploads the transaction to the Ethereum blockchain. Ideally,
this transaction would be recorded in the block with the height t + ϕ + 1.

7.3 Secure Time-Stamping and Blockchain 157

• Once the transaction is accepted and confirmed by the Ethereum blockchain, U
sends kU to LS.

• LS decrypts C by computing

M = D(kU , C).

If the decryption fails, LS aborts; otherwise, LS locally stores

{Blt−ϕ+1, . . . , Blt , t + ϕ + 1,M, kU , σ }.

CheckStamp Given {Blt−ϕ+1, . . . , Blt , t + ϕ + 1,M, kU , σ }, A is able to check
the creation time of M as follows:

• A acquires the information of ALS and AU from the Ethereum blockchain,
extracts the number of transactions from ALS to AU based on the nonce value
of ALS , and checks whether the number of transactions matches the number of
files generated by U and time-stamped by ALS . If the checking fails, A aborts.

• A computes C = E(kU ,M) and verifies the validity of σ . If the verification fails,
A aborts.

• Based on the block height t + ϕ + 1, A locates the block and extracts δ′ from the
corresponding transaction and verifies the following equation:

h(Blt−ϕ+1||Blt−ϕ+2|| · · · ||Blt ||C||σ) = δ′.

If the verification fails, A aborts.
• A computes

ts1 = τ + ρ · t, (7.1)

ts2 = τ + ρ · (t + ϕ + 1), (7.2)

where τ is 2015-07-30, 03:26:13 PM +UTC (i.e., the time the genesis block of
Ethereum was created) and ρ is the average time that a new block is mined from
the day of 2015-07-30 to the day the block is appended to the blockchain in
Ethereum. We will provide the details on setting ρ later.

• A outputs [ts1, ts2] as a timestamp of M , which indicates that M was generated
during [ts1, ts2].

Support for Batch Time-Stamping In practice, a log server needs to serve multiple
users concurrently, i.e., it needs to handle multiple time-stamping requests on
different files from different users at a time. The individual time-stamping of these
files for the log server and users could be tedious, inefficient, and inaccurate.
Given n time-stamping tasks on n distinct files from n different file owners, it is
more advantageous for the log server to batch these tasks together and timestamp
these files at one time. Actually, Chronos+ can be extended to support batch time-
stamping, which is described in the following.

158 7 Secure Data Time-Stamping

We assume that there are n users {U1,U2, . . . ,Un}.
Setup The system parameters {h,ALS_send, ALS_receive, E/D, Sig} are deter-
mined with the security parameter, where ALS_send and ALS_receive are two
accounts of LS on the Ethereum blockchain, and other parameters are the same
as the ones described before. For i = 1, 2, . . . , n, Ui generates {skUi

, pkUi
} and kUi

as the same as the basic scheme.

Outsource For i = 1, 2, . . . , n, Ui generates a new file and outsources it to LS as
follows.

• Ui generates a new file Mi and encrypts it as

Ci = E(kUi
,Mi).

• Based on the current time, Ui acquires Blt−ϕ+1, Blt−ϕ+2, . . . , Blt from the
Ethereum blockchain, generates a signature σi = Sig(skUi

, Ci ||Blt−ϕ+1

||Blt−ϕ+2|| · · · ||Blt), and sends Ĉi = {Ci , Blt−ϕ+1, Blt−ϕ+2, . . ., Blt , sigmai}
to LS.

• Upon receiving Ĉi , LS checks the validity of Blt−ϕ+1, Blt−ϕ+2, . . . , Blt .
In the batch time-stamping, n files from n users who choose the same
Blt−ϕ+1, Blt−ϕ+2, . . . , Blt are time-stamped simultaneously. Then LS verifies
the validity of σi . If σi is of the correct form, LS accepts Ĉi .

TimeStamp On receiving Ĉ1, Ĉ2, . . ., Ĉn, LS timestamps them as follows.

• LS computes

δ = h(Blt−ϕ+1|| · · · ||Blt)||h(C1||σ1)|| · · · ||h(Cn||σn).

• LS generates a transaction Tx1 shown in Fig. 7.6, where 0 Ether is transferred
from ALS_send to ALS_receive, and δ is set to the data value of Tx1.

Fig. 7.6 Transaction in the batch time-stamping scheme

7.3 Secure Time-Stamping and Blockchain 159

Table 7.1 Data stored on LS Blt−ϕ+1, Blt−ϕ+2, . . . , Blt t + ϕ + 1

F1 kU1 σ1

· · · · · · · · ·
Fn kUn

σn

• LS uploads the transaction to the Ethereum blockchain. Ideally, this transaction
would be recorded in the block whose height is t + ϕ + 1.

• Once the transaction is accepted and confirmed by the blockchain, LS sends the
information of the corresponding block to all users.

• For i = 1, 2, . . . , n, Ui verifies that h(Ci ||σi) has been recorded into the
Ethereum blockchain. If the verification passes, Ui sends kUi

to LS.
• LS decrypts Ci by computing Mi = D(kUi

, Ci), and locally stores the data
which is shown in Table 7.1.

CheckStamp This algorithm is the same as that in the basic scheme, it is not
repeated here for the sake of brevity.

7.3.2.3 Accuracy of Height-Derived Timestamps

We denote the average time block mining on the Ethereum blockchain by Block-
Time. Figure 7.7 shows BlockTime (The data are collected from Etherscan,

0 150 300 450 600 750 900 1050 1200 1350
4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Bl
oc

kT
im

e
(s

)

The number of days after the day the first block was generated

 BlockTime on the day
 BlockTime before the day
 Ideal setting

Fig. 7.7 BlockTime of Ethereum

160 7 Secure Data Time-Stamping

https://etherscan.io), where the blue dash line indicates BlockTime of system setting
(i.e., 15s), the red line indicates BlockTime on the x-th day after the day of τ (i.e.,
the genesis block was created, 2015-07-30 +UTC), and the black dot line indicates
BlockTime from the day of τ to the x-th day after τ (x is the corresponding value
of the X-axis). As shown in Fig 7.7, BlockTime in Ethereum is larger than the
pre-set one, due to the network delay, the fluctuation of network hashing power,
and so on. Therefore, if we set ρ = 15 in Eqs. (7.1) and (7.2), the height-derived
timestamp is still not accurate. However, although BlockTime is not equal to 15 s,
the chain growth property is not broken, since BlockTime in Ethereum still falls into
a small range of time with respect to both short or long term, even if BlockTime is
fluctuating on a single day. We assume that ρx is the average BlockTime from τ to
the x-th day after the day of τ . In Eqs. (7.1) and (7.2), ρ should be set to ρx when
the block was appended to the blockchain on the x-th day after 2015-07-30 +UTC.
We can compute ρx as

ρx =

x∑

j=1
ρ̂x

x + 1
, (7.3)

where ρ̂x denotes the BlockTime on the x-th day after the day of τ (shown by
the red line in Fig. 7.7). We stress that BlockTime on each day is very important
for the Ethereum. Multiple supernodes and full nodes have maintained and released
Ethereum’s BlockTime on each day in real time. Therefore, ρ̂x can be easily derived
from the Ethereum blockchain. To ensure the accuracy of height-derived timestamp,
ρx should be periodically adjusted due to the fluctuation of BlockTime in Ethereum.
For example, when x = 1146, i.e., the day is 2018-09-16, ρx = 15.72s. When
x = 1322, i.e., the day is 2019-03-13, ρx = 15.65704769s.

Another factor that affects the accuracy of files’ timestamps is the range of the
time interval, i.e., the range of [ts1, ts2] denoted by RT S . In Chronos+, for the x-th
day after the day of τ , RT S = ϕρ̂x . For the recommended ϕ = 12, RT S in Chronos+

is around 3 min. Although RT S varies with BlockTime, it would not be too large in
practice, due to chain growth property of the blockchain.

7.3.2.4 Simulation on Ethereum

Actually, the criterion to evaluate the practicality of the blockchain-based secure
data provenance scheme, i.e., window of latching (WoL, defined in Sect. 6.3.1.1),
can be modified to obtain a criterion that evaluates the practicality of a blockchain-
based secure time-stamping scheme. There is also a counterpart of WoL in the latter
case, called window of time-stamping (short for WoT). WoT is a time interval from
the time that a request on a file’s timestamp is made to the time that the timestamp
is securely recorded. Obliviously, the longer WoT, the larger the time errors in the
timestamp and the longer the latency period that a user has to bear for time-stamping
a file. Hence, the shorter WoT is, the more practical a time-stamping scheme is.

https://etherscan.io

7.3 Secure Time-Stamping and Blockchain 161

Fig. 7.8 Illustration of WoT

Regarding to Chronos+, its WoT consists of three time intervals, as shown in
Fig. 7.8. The first one is the time to process the file M , which is denoted by ti1; the
second one is the time to record the transaction to the blockchain (denoted by ti2);
the third one is the time to confirm the transaction (denoted by ti3).

ti1 consists of two parts: the one is that the user encrypts M and generates the
signature; the other one is that the log server verifies the validity of the signature,
computes the digest of M , generates the transaction, and decrypts the ciphertext.
In reality, when Chronos+ utilizes the BLS signature as the underlying signature
algorithm, the AES as the underlying encryption/decryption algorithm, and both the
user and the log server equip with a not-so-powerful device (e.g., a MacBook Pro
with macOS, an Intel Core i7 CPU, and 16 GB DDR3 of RAM), ti1 is less than
30 ms. ti1 would be further reduced in reality, since the cloud server equips with the
device that is much more powerful than that the experiment is tested on. Anyway,
this delay is very trivial in reality and would not become the main factor in impacting
WoT.

ti2 and ti3 refer to the latency that the log server ensures that the file is
successfully time-stamped. Specifically, ti2 is the latency that the transaction created
by the log server can be recorded to the Ethereum blockchain, and ti3 is the latency
that the transaction is confirmed after it is recorded to the Ethereum blockchain. We
have conducted experiments to evaluate ti1, ti2, and WoT of Chronos+. Specifically,
we use MyEtherWallet as the wallet App (https://www.myetherwallet.com/) to
conduct transactions on the Ethereum blockchain. The time-stamped message is
the identity of the paper of [27], i.e., “TSCSI-2019-03-0116 Chronos+.” We have
created 15 transactions to evaluate the “time the transaction to complete” (i.e., t2),
“time to confirm the transaction” (i.e., t3), and WoT. In Ethereum, the time the
transaction to complete depends on two factors: how much transaction fees set
by the transaction creator (i.e., the log server in Chronos+) and how congested
the Ethereum network is. In reality, the wallet App provides users three options
of transaction fees, i.e., “Slow/Economy,” “Standard/Regular,” and “Fast.” In the
simulation, we choose the option of “Standard/Regular” by default. The transaction
information is shown in Table 7.2.

https://www.myetherwallet.com/

162 7 Secure Data Time-Stamping

Table 7.2 Transaction information

Index Block height Transaction hash

1 8401901 0xfea484efdd3a0b741780c69f1206451ea1e0f1fe5391b58e2ccd5b0503498084

2 8402086 0x3a834dc5506704b453eede3d728d95ccd243f33f73aebc74af8646cc7d356dde

3 8402117 0x5d8f12bb32cadd8be52a57664a928e4903a23c28a3a684db994c4b894e75ad57

4 8402233 0xe00e13b3821328256265986bf1c6119cb5b030b1f87dad7359bb4f6916636e50

5 8402252 0x75e6a03512d978812463758fd89495f6f70f487fb2ee8488858929d28ff572d7

6 8402260 0x40a0ec8cf3642a0cbdae6fb3c158fd4499fb411cde557f78ca3eff6824e74980

7 8402401 0xd7feb9c8451deb67196648d2e24eb1fab34d7c1dbba30236100c7ccc600154ec

8 8402414 0x4759e671c792f680c44f98879ac78e75687f15aa5f67e2479f987d8bb6b12869

9 8402421 0x8e814b284023ffbf11811cff62442e57c19de6757ef55f804960133457b74539

10 8402502 0xe8daceec22ba60523462a8698751dfed7e687c301fa5b0dce30a9913e2eb98be

11 8403493 0x5a3c2de954f290834832edba7c0b3c9ed21e0b2ba5d0c689494c1f7a98f20ded

12 8403501 0xb879e919a2aefb2d3ff1f7fdea0596db310c4652e0d5ac1b55936954036cc4da

13 8403512 0x9662700301afaf64a443e70f117d26cf67c5533ba232f99bb946f5996d759a96

14 8403525 0x8c63ff9b76900c246eea66a4f1fb1b17116f03dd228ff6d17c4bd24e272dfa55

15 8404338 0xfff6b5674ff59a6ae5f6567cdff7cd36d1ab76941dc042c2bec579bb8ba73ee9

Fig. 7.9 Transaction details

We take the first transaction as an example, as shown in Fig. 7.9, if we select
“view Input As UTF-8,” we can see that the data value of this transaction is “TSCSI-
2019-03-0116 Chronos+.” Transactions’ details can be searched by the transaction
hash value from Etherscan (https://etherscan.io/blocks).

https://etherscan.io/blocks

7.3 Secure Time-Stamping and Blockchain 163

510150
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

D
el

ay
 (s

ec
on

d)

The index of the transaction

Time the transaction to complete
Time to confirm the transaction
 WoT

Fig. 7.10 Evaluation results

The evaluation results are depicted in Fig. 7.10. According to the evaluation
results, we can observe that although WoT is fluctuant, it would not be very high.
Generally, it would not exceed 300 s, i.e., 5 min, due to the difficulty adjustment
mechanism of Ethereum.

The transaction fees in the experiments are very low, it only takes within 0.1
US dollar to conduct a transaction (in most of the cases, the “Standard/Regular”
transaction fees would not be more than 0.05 dollar).

The monetary costs and WoT of Chronos+ can be reduced by utilizing other
blockchain systems (e.g., Ouroboros [25] and Thunderella [35] which are based
on the proof-of-stake), since their transaction fees are less than that of Ethereum
and their throughput capacity is stronger than Ethereum. However, the costs that an
adversary breaks the security of these blockchains are much lower than those that
the adversary breaks the security of Ethereum, because the market capitalization
of Ethereum is much larger than them. There are too many factors affecting
the security of blockchains, analyzing these factors is out of the scope of this
monograph. Generally, the larger market capitalization a public blockchain has, the
more participants including miners and users are in it (vice versa), and the higher
costs an adversary breaks its security.

164 7 Secure Data Time-Stamping

7.4 Summary and Further Reading

In this chapter, we have introduced the secure time-stamping technique. We have
reviewed the traditional secure time-stamping schemes and introduced its basic
idea and advantages. Then we have analyzed why these schemes are unsatisfactory
when they protect outsourced files in cloud storage systems. We also have discussed
the relationship between the secure time-stamping technique and blockchains and
described how the Bitcoin blockchain is derived from the secure time-stamping
technique. Finally, we have studied a blockchain-based secure time-stamping
scheme for cloud storage systems.

There are some applications that provide secure time-stamping services, such as
Tierion and Factom (https://tierion.com/; https://www.factom.com/). Readers may
refer to their homepages for more information. However, these applications still
suffer from some problems that exist in other time-stamping schemes and have been
pointed out in this chapter. Furthermore, the data investigation technique plays a
very important role in cloud storage systems, both the secure data provenance tech-
nique and the secure time-stamping technique are parts of it. In this monograph, we
only introduce these two techniques. A comprehensive survey on data investigations
from different aspects can be found in [36–39].

References

1. Schneier B, Kelsey J (1998) Cryptographic support for secure logs on untrusted machines. In:
USENIX security symposium, vol 98, pp 53–62

2. Schneier B, Kelsey J (1999) Secure audit logs to support computer forensics. ACM Trans Inf
Syst Secur 2(2):159–176

3. Crosby SA, Wallach DS (2009) Efficient data structures for tamper-evident logging. In:
USENIX security symposium, pp 317–334

4. Pavlou KE, Snodgrass RT (2008) Forensic analysis of database tampering. ACM Trans
Database Syst 33(4):1–47

5. Haber S, Stornetta, WS (1990) How to time-stamp a digital document. In: Annual cryptology
conference, pp 437–455

6. Tolia N, Harkes J, Kozuch M, Satyanarayanan M (2004) Integrating portable and distributed
storage. In: USENIX conference on file and storage technologies, vol 4, pp 227–238

7. Yang D, Yang D (2003) Intellectual property and doing business in China. Pergamon,
Amsterdam

8. Dinwoodie GB (2001) The architecture of the international intellectual property system. Chi.-
Kent L Rev 77:993

9. Adelsbach A, Pfitzmann B, Sadeghi A (1999) Proving ownership of digital content. In:
International workshop on information hiding, pp 117–133

10. Zhang Y, Xu C, Li H, Yang K, Zhou J, Lin X (2018) HealthDep: an efficient and secure dedupli-
cation scheme for cloud-assisted eHealth systems. IEEE Trans Industrial Inf 14(9):4101–4112

11. Zhou J, Lam K (1999) Securing digital signatures for non-repudiation. Comput Commun
22(8):710–716

12. Bayer D, Haber S, Stornetta WS (1992) Improving the efficiency and reliability of digital
time-stamping. In: Sequences II: methods in communication, security, and computer science,
pp 329–334

https://tierion.com/
https://www.factom.com/

References 165

13. Buldas A, Lipmaa H, Schoenmakers B (2000) Optimally efficient accountable time-stamping.
In: International workshop on public key cryptography, pp 293–305

14. Buldas A, Laud P, Lipmaa H, Villemson J (1998) Time-stamping with binary linking schemes.
In: Annual cryptology conference, pp 486–501

15. Lipmaa H (1999) Secure and efficient time-stamping systems. Tartu University Press, Tartu
16. Zhang Y, Xu C, Lin X, Shen X (2019) Blockchain-based public integrity verification for cloud

storage against procrastinating auditors. IEEE Trans Cloud Comput. https://doi.org/10.1109/
TCC.2019.2908400

17. Zhang Y, Xu C, Ni J, Li H, Shen X (2019) Blockchain-assisted public-key encryption with
keyword search against keyword guessing attacks for cloud storage. IEEE Trans Cloud
Comput. https://doi.org/10.1109/TCC.2019.2923222

18. Zhang Y, Xu C, Liang X, Li H, Mu Y, Zhang X (2017) Efficient public verification of data
integrity for cloud storage systems from indistinguishability obfuscation. IEEE Trans Inf
Forensics Secur 12(3):676–688

19. Zhang Y, Xu C, Yu S, Li H, Zhang X (2015) SCLPV: secure certificateless public verification
for cloud-based cyber-physical-social systems against malicious auditors. IEEE Trans Comput
Soc Syst 2(4):159–170

20. Zhang Y, Xu C, Li H, Yang K, Cheng N, Shen X (2020) PROTECT: efficient password-based
threshold single-sign-on authentication for mobile users against perpetual leakage. IEEE Trans
Mob Comput. https://doi.org/10.1109/TMC.2020.2975792

21. Nakamoto S, Bitcoin: a peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf
22. Chaum D (1983) Blind signatures for untraceable payments. In: Annual cryptology conference,

pp 199–203
23. Law L, Sabett S, Solinas J (1996) How to make a mint: the cryptography of anonymous

electronic cash. Am UL Rev 46:1131
24. Wood G (2014) Ethereum: a secure decentralised generalised transaction ledger. Ethereum

Project Yellow Pap 151:1–32
25. Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: a provably secure proof-of-

stake blockchain protocol. In: Annual cryptology conference, pp 357–388
26. Zhang Y, Xu C, Li H, Yang H, She X (2019) Chronos: secure and accurate time-stamping

scheme for digital files via blockchain. In: IEEE international conference on communications,
pp 1–6

27. Zhang Y, Xu C, Cheng N, Li H, Yang H, Shen X (2019) Chronos+: an accurate blockchain-
based time-stamping scheme for cloud storage. IEEE Trans Serv Comput. https://doi.org/10.
1109/TSC.2019.2947476

28. Coleman J, Universal hash time. https://www.youtube.com/watch?v=phXohYF0xGo
29. Landerreche E, Schaffner C, Stevens M (2018) Cryptographic timestamping through sequential

work. CWI, Amsterdam. Technical Report
30. Cao S, Zhang G, Liu P, Zhang X, Neri F (2019) Cloud-assisted secure eHealth systems for

tamper-proofing EHR via blockchain. Inf Sci 485:427–440
31. Gipp B, Meuschke N, Gernandt A (2015) Decentralized trusted timestamping using the crypto

currency bitcoin. arXiv preprint:1502.04015
32. Ali M, Nelson J, Shea R, Freedman MJ (2016) Blockstack: a global naming and storage system

secured by blockchains. In: USENIX annual technical conference, pp 181–194
33. Tomescu A, Devadas S (2017) Catena: efficient non-equivocation via bitcoin. In: IEEE

symposium on security and privacy, pp 393–409
34. Zhang Y, Lin X, Xu C (2018) Blockchain-based secure data provenance for cloud storage. In:

International conference on information and communications security, pp 3–19
35. Pass R, Shi E (2018) Thunderella: blockchains with optimistic instant confirmation. In:

International conference on the theory and applications of cryptographic techniques, pp 3–33
36. Quick D, Choo KR (2014) Google drive: forensic analysis of data remnants. J Netw Comput

Appl 40:179–193

https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2908400
https://doi.org/10.1109/TCC.2019.2923222
https://doi.org/10.1109/TMC.2020.2975792
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/TSC.2019.2947476
https://doi.org/10.1109/TSC.2019.2947476
https://www.youtube.com/watch?v=phXohYF0xGo

166 7 Secure Data Time-Stamping

37. Martini B, Choo KR (2014) Cloud forensic technical challenges and solutions: a snapshot.
IEEE Cloud Comput 1(4):20–25

38. Quick D, Martini B, Choo KR (2013) Cloud storage forensics. Syngress. https://books.google.
com.hk/books?hl=zh-CN&lr=&id=_Q4rAQAAQBAJ&oi=fnd&pg=PP1&dq=cloud+storage+
forensics&ots=2ci2TBOmRu&sig=xV6lF9WMu7gW72xiHYa2iW76os4&redir_esc=y#v=
onepage&q=cloud%20storage%20forensics&f=false

39. Pietro RD, Lombardi F (2018) Virtualization technologies and cloud security: advantages,
issues, and perspectives. In: From database to cyber security. Springer, Berlin, pp 166–185

https://books.google.com.hk/books?hl=zh-CN&lr=&id=_Q4rAQAAQBAJ&oi=fnd&pg=PP1&dq=cloud+storage+forensics&ots=2ci2TBOmRu&sig=xV6lF9WMu7gW72xiHYa2iW76os4&redir_esc=y#v=onepage&q=cloud%20storage%20forensics&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=_Q4rAQAAQBAJ&oi=fnd&pg=PP1&dq=cloud+storage+forensics&ots=2ci2TBOmRu&sig=xV6lF9WMu7gW72xiHYa2iW76os4&redir_esc=y#v=onepage&q=cloud%20storage%20forensics&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=_Q4rAQAAQBAJ&oi=fnd&pg=PP1&dq=cloud+storage+forensics&ots=2ci2TBOmRu&sig=xV6lF9WMu7gW72xiHYa2iW76os4&redir_esc=y#v=onepage&q=cloud%20storage%20forensics&f=false
https://books.google.com.hk/books?hl=zh-CN&lr=&id=_Q4rAQAAQBAJ&oi=fnd&pg=PP1&dq=cloud+storage+forensics&ots=2ci2TBOmRu&sig=xV6lF9WMu7gW72xiHYa2iW76os4&redir_esc=y#v=onepage&q=cloud%20storage%20forensics&f=false

Chapter 8
Summary and Future Research
Directions

In this chapter, we summarize the monograph and discuss several potential research
directions for future work.

8.1 Summary

In this monograph, we have explored data security in cloud storage systems. Based
on the surveys, analyses, and discussion provided throughout this monograph, we
present the following highlights.

• We have introduced the cloud storage architecture and general applications. We
have also pointed out general threats towards data security and general data
security requirements in cloud storage systems. Furthermore, we have introduced
some emerging cloud-based applications associated with challenging security
issues, e.g., cloud-based eHealth systems, cloud-based data sharing systems, and
cloud-based IoT.

• We have introduced some fundamental theorems, cryptographic primitives,
building blocks, and techniques, which serve as the preliminary knowledge for
understanding the remainder of this monograph.

• Data integrity is the fundamental factor affecting the reliability of cloud storage
systems. We have analyzed the potential attacks towards the integrity of out-
sourced data and have provided a comprehensive survey on proofs of storage
schemes to show how to ensure data integrity in cloud storage systems. Moreover,
we also have introduced the latest advances in the proof-of-storage technique
from two aspects. First, we have introduced how to utilize an emerging and
powerful cryptographic primitive, i.e., indistinguishability obfuscation (iO), to
construct a proof-of-storage scheme to improve efficiency significantly. Second,
we have analyzed existing public proof-of-storage schemes and pointed out
that they are vulnerable to a dishonest auditor who might collude with the

© Springer Nature Singapore Pte Ltd. 2020
Y. Zhang et al., Data Security in Cloud Storage, Wireless Networks,
https://doi.org/10.1007/978-981-15-4374-6_8

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4374-6_8&domain=pdf
https://doi.org/10.1007/978-981-15-4374-6_8

168 8 Summary and Future Research Directions

cloud server to deceive users by generating biased challenging messages or/and
procrastinating on the scheduled data verification. We have also introduced how
to thwart the dishonest auditor by adopting the public blockchain (e.g., Ethereum)
and studied a concrete, i.e., a blockchain-based public proof-of-storage scheme
against malicious and procrastinating auditors.

• Secure deduplication is an important technique in cloud storage systems. It
enables the cloud service provider to reduce storage costs dramatically by
performing deduplication among all its users. We have introduced secure dedu-
plication techniques and provided a comprehensive survey on this topic. In
addition, we have also discussed potentials that cloud-based eHealth systems
benefit from the secure deduplication technique and analyzed new threats
and challenges towards data security in cloud-based eHealth systems when
employing the secure deduplication technique. With the integration of the trust
execution environment, the observation derived from actual EHRs, and the latest
advances in secure deduplication, we have introduced how to construct a secure
and efficient deduplication scheme for cloud-based eHealth systems.

• Searchable encryption (SE) is a cryptographic primitive that enables users to
retrieve target data from their entire outsourced data set by keywords without
leakage of the data contents. SE can be mainly categorized into two types:
symmetric-key searchable encryption (SSE) and public-key searchable encryp-
tion (PSE). First, we have introduced SSE and provided a comprehensive survey
on it. Then, we have also introduced PSE and made a comprehensive survey
of it. We have analyzed that vulnerability of PSE against off-line keyword
guessing attacks (KGA) on keywords becomes a major hindrance towards the
broad adoption of PSE but existing PSE schemes with resistance KGA have
their limitations and are unsatisfactory and have introduced a multi-server-aided
PSE that thwarts KGA in a secure way. In addition, we also have introduced
a blockchain-based rate-limiting mechanism and demonstrated that the multi-
server-aided PSE with the integration of this rate-limiting mechanism is able to
resist online KGA in an efficient way.

• Secure data provenance is the essential of bread and butter of data investigations
in cloud storage systems. It securely keeps track of what happens to outsourced
data. We have introduced the data provenance and secure data provenance and
provided a comparison between them, which has highlighted the difference
between them. Then, we have given a comprehensive survey on the secure data
provenance and analyzed the pros and cons of existing schemes. Furthermore, we
have demonstrated that the blockchain is a panacea for secure data provenance
and utilizing the blockchain can enhance the security of secure data provenance
significantly. Finally, we have introduced how to construct a secure data prove-
nance scheme on the public blockchain to resist the malicious identity manager.

• Cryptographic time-stamping is the most important way to certify when a file
was created in digital investigations. We have analyzed the secure time-stamping
technique and concluded the inherent characteristics of data that would benefit
from the secure time-stamping technique. We have made a comprehensive survey
of the secure time-stamping technique, pointed out that the security of existing

8.2 Future Work 169

schemes relies on the reliability of the time-stamping service provider, and
elaborated on why existing schemes are inefficient to protect outsourced data
in cloud storage systems. Then, we have discussed the relationship between
the secure time-stamping technique and the public blockchain. Finally, we have
introduced how to build a blockchain-based secure and accurate time-stamping
scheme for cloud storage systems.

8.2 Future Work

In this monograph, we have introduced data security issues and techniques in cloud
storage systems from five different research topics. However, there are still some
problems in the above research topics, which remains open research issues that
should be further investigated.

8.2.1 Secure Data Integrity Verification from Smart Contract

We notice that the public data integrity verification scheme that resists malicious and
procrastinating auditors are constructed on the public blockchain (e.g., Ethereum).
Actually, the vulnerability of public verification schemes against malicious and
procrastinating auditors can be addressed by an alternative paradigm: Instead of
employing the third-party auditor, the data verification algorithm originally executed
by the auditor and a deposit mechanism are encapsulated in a smart contract on the
Ethereum blockchain.

Specifically, after the user successfully outsources the data to the cloud server,
the smart contract is also deployed to the Ethereum blockchain. The functionality
of the smart contract is as follows: The cloud server initially deposits some Ethers
to the smart contract; at each time when data integrity should be verified, the cloud
server generates the challenging message based on the latest confirmed ϕ-successive
blocks, computes the corresponding proof, and triggers the smart contract with
taking the latest confirmed ϕ-successive blocks and the proof as inputs; the smart
contract verifies the validity of the proof, if the verification succeeds, it refund some
Ethers (less than the deposited ones, and this number depends on the system setting)
to the cloud server; otherwise, the smart contract sends the deposited Ethers to the
user as the punishment and compensation.

Note that if the verification performed by the smart contract fails, it means that
the outsourced data might be corrupted. Since this paradigm does not employ the
third-party auditor, it surely frees from the malicious and procrastinating auditor.
Furthermore, by doing so, the public verification scheme frees from the costs to
employ the auditor. The security of this paradigm relies on the security of Ethereum
(if the smart contract does not have any bug). Therefore, as long as Ethereum
remains secure, the cloud server cannot hide the data corruption.

170 8 Summary and Future Research Directions

However, there are still two challenges to be addressed. First, in Ethereum
smart contracts, it is challenging to verify the validity of the “latest confirmed ϕ-
successive blocks,” i.e., whether these blocks are truly the latest confirmed ones.
Second, the Ethereum smart contract is in its nascent stages, and it only supports
a few cryptographic operations. However, in the smart contract described above,
some complex cryptographic operations, such as group operation in an additive
group, multiplication in an additive group, bilinear pairing, need to be executed. It
is plausible that the above challenges can be addressed by the next generation smart
contract or emerging public blockchain systems, which remains an open problem.

8.2.2 Combination of Encrypted Deduplication and
Symmetric-key Searchable Encryption

Today’s cloud storage service is very different from that in the nascent stage.
Currently, a commercial cloud storage service provider always attempts to provide
users with multiple functionalities in one system. For example, the service provider
would provide users with an assurance of data confidentiality. Meanwhile, it
also provides users with an efficient data outsourcing service by performing data
deduplication and efficient data access by supporting the keyword search. This
requires the cloud service provider to integrate the encrypted data deduplication
and the symmetric-key searchable encryption (SSE) into one system.

However, there are also some challenges to be addressed. First, the security
and privacy model for such a system should be re-defined, rather than integrating
each one of the two techniques into one straightforward. We notice that to ensure
the functionality of encrypted deduplication, it is inevitable to allow the cloud
server to know whether two users have the same file and which file is owned
by a specific group of users. On the other hand, the security of SSE requires
that it would leak nothing about the outsourced files before any keyword search
request is submitted and it would leak nothing beyond the search pattern and access
pattern after one or more keyword search requests are submitted. It seems that
straightforward integrating MLE and SSE into one system fails to meet the security
of SSE. Worse still, it might introduce new threats towards the data security and
users’ privacy, since the adversary (i.e., the adversarial cloud server) might extract
more information about outsourced data than that from each separate one.

Moreover, in the scheme, the keywords of each file should be individually
encrypted by each user, and different users surely generate different secure indexes
for the same file, which also causes the key management problem to the user (since
the files and keywords are encrypted using different keys) and data management to
the cloud server (the data stored on the cloud server in a very complex form).

Therefore, how to design a cloud storage system that supports encrypted
deduplication and keyword search simultaneously is still an open problem and needs
to be further explored.

8.2 Future Work 171

8.2.3 Secure Provenance Under Complex Models

The blockchain-based secure data provenance scheme, i.e., ESP, mainly focuses on
how to resist the malicious identity manager. The underlying data provenance model
is somewhat simple. It only supports that multiple users process a target file one by
one. However, this model is not suitable for systems that a file is edited by multiple
users concurrently, e.g., Google Docs. Applying the blockchain-based secure data
provenance scheme in these systems, whereas when some users concurrently edit a
file, it could lead to a fork on the provenance record chain.

Therefore, it is desired to construct a blockchain-based secure data provenance
scheme on a complex data provenance model while remaining all characteristics
of ESP (i.e., resistance against malicious identity manager and efficient provenance
verification), which supports secure data investigations in the cloud storage systems
with different paradigms of data management.

8.2.4 Securely Time-stamping Operations in the Digital World

The secure time-stamping schemes we introduced in this monograph only target
at protecting digital data in the digital world. However, in cloud storage systems,
in addition to the digital data, some operations performed by users should also be
time-stamped for post investigations.

In Sect. 3.4.2, we have studied the blockchain-based public data integrity ver-
ification scheme against procrastinating auditors. This scheme is actually a prior
work on time-stamping operations in the digital world and surely has significant
value for not only the research topic of data integrity verification, but also for the
research topic of secure time-stamping. In this prior work, the key challenge to
transfer a secure time-stamping scheme for digital files to that for operations is to
securely transfer an operation to a file in the digital world. In the above scheme,
this is achieved by two techniques: the one is the blockchain-based time-dependent
random seed, and the other one is the digital signature.

Nevertheless, since copying digital files and re-generating signatures are trivial
for the adversary who originally generates the signatures, it is still unclear that
the above mechanism can be utilized in other application scenarios to timestamp
users’ operations. Constructing a general framework of time-stamping operations
in the digital world, defining its security model, formulating its threat model, and
providing a concrete are very challenging but important in the research area of data
investigations, which also is worth to be investigated.

	Preface
	Contents
	Acronyms
	1 Introduction
	1.1 An Overview of Cloud Storage
	1.1.1 Cloud Storage Architecture
	1.1.2 Cloud Storage Applications
	1.1.2.1 Electronic Healthcare
	1.1.2.2 Data Sharing
	1.1.2.3 IoT

	1.2 Data Security in Cloud Storage
	1.3 Organization of the Monograph
	References

	2 Basic Techniques for Data Security
	2.1 Data Authentication
	2.1.1 Message Authentication Code
	2.1.2 Hash Function
	2.1.3 Digital Signature

	2.2 Data Confidentiality
	2.2.1 Symmetric-Key Encryption
	2.2.2 Public-Key Encryption

	2.3 Threshold Cryptography
	2.4 Public-Key Cryptosystems
	2.4.1 PKI-Based Public-Key Cryptosystems
	2.4.2 Identity-Based Public-Key Cryptosystems
	2.4.3 Certificateless Public-Key Cryptosystems

	2.5 Blockchain
	2.6 Trusted Execution Environments
	2.7 Summary and Further Reading
	References

	3 Cloud Storage Reliability
	3.1 Data Integrity
	3.2 Proofs of Storage: Definition and Criteria
	3.2.1 Threat Models
	3.2.2 Security Criteria

	3.3 Proofs of Storage for Cloud Storage Systems
	3.3.1 Proofs of Storage for Dynamic Data
	3.3.1.1 PDP-Based Integrity Verification of Dynamic Data
	3.3.1.2 PoR-Based Integrity Verification of Dynamic Data

	3.3.2 Enhancement of Security
	3.3.2.1 Privacy-Preserving Public Verification
	3.3.2.2 Resistance Against External Adversaries

	3.3.3 Constructing Public Verification on Different Cryptosystems
	3.3.4 Other Works

	3.4 Latest Advances in Proofs of Storage
	3.4.1 Proofs of Storage Based on Indistinguishability Obfuscation
	3.4.2 Proofs of Storage Based on Blockchain
	3.4.2.1 On the Vulnerability of Existing Public Verification Schemes Against Dishonest Auditors
	3.4.2.2 Blockchain-Based Public Verification Against Dishonest Auditors

	3.5 Summary and Further Reading
	References

	4 Secure Deduplication
	4.1 Deduplication Classification
	4.2 Secure Deduplication: Threats and Countermeasures
	4.2.1 Proofs of Ownership
	4.2.2 Randomized Deduplication

	4.3 Message-Locked Encryption
	4.3.1 Overview
	4.3.2 Threat Models of Encrypted Deduplication Storage Systems
	4.3.3 Security Definition

	4.4 Encrypted Deduplication Systems
	4.4.1 Enhancement of Security
	4.4.2 Practical Concern
	4.4.3 Other Works

	4.5 When Secure Deduplication Meets eHealth: A Case Study
	4.5.1 Cloud-Based eHealth Systems
	4.5.2 Adversary Model and Security Goals
	4.5.3 Analysis of EMRs in Actual eHealth Systems
	4.5.4 Study of HealthDep

	4.6 Summary and Further Reading
	References

	5 Secure Keyword Search
	5.1 Keyword Search Over Encrypted Data
	5.2 Symmetric-Key Searchable Encryption
	5.2.1 System and Threat Models
	5.2.2 Survey on Symmetric-Key Searchable Encryption
	5.2.2.1 Basic SSE and Its Development
	5.2.2.2 SSE for Dynamic Data
	5.2.2.3 Variants of SSE
	5.2.2.4 Other Works

	5.3 Public-Key Searchable Encryption
	5.3.1 System model
	5.3.2 Threat Model and Security Definition
	5.3.3 Survey on Public-Key Searchable Encryption
	5.3.3.1 Vulnerability of PSE Against Keyword Guessing Attacks and Countermeasures
	5.3.3.2 Constructing PSE on Different Cryptosystems
	5.3.3.3 Essential Relationships Between PSE and Other Cryptographic Primitives

	5.4 Latest Advances in Public-Key Searchable Encryption
	5.4.1 Public-Key Searchable Encryption Against Keyword Guessing Attacks
	5.4.1.1 System Model
	5.4.1.2 Threat Model
	5.4.1.3 Introduction to SEPSE

	5.4.2 Remark and Further Discussion

	5.5 Summary and Further Reading
	References

	6 Secure Data Provenance
	6.1 Introduction to Secure Data Provenance
	6.1.1 Data Provenance vs. Secure Data Provenance
	6.1.2 System and Threat Models

	6.2 Survey on Secure Data Provenance
	6.3 Blockchain: A Panacea for Secure Data Provenance
	6.3.1 Blockchain-Based Secure Data Provenance
	6.3.1.1 A Model of Data Provenance
	6.3.1.2 System and Threat Models
	6.3.1.3 Overview of ESP
	6.3.1.4 Construction of ESP

	6.3.2 Implementation Based on Ethereum
	6.3.3 Data Provenance and Beyond: Further Discussion

	6.4 Summary and Further Reading
	References

	7 Secure Data Time-Stamping
	7.1 Introduction to Secure Data Time-Stamping
	7.1.1 What Kinds of Data Would Benefit from Secure Time-Stamping?
	7.1.2 System and Threat Models

	7.2 Survey on Secure Time-Stamping
	7.3 Secure Time-Stamping and Blockchain
	7.3.1 Distributed Cryptocurrencies from Secure Time-Stamping
	7.3.2 Secure Time-Stamping from Blockchain
	7.3.2.1 Overview of Chronos+
	7.3.2.2 Construction of Chronos+
	7.3.2.3 Accuracy of Height-Derived Timestamps
	7.3.2.4 Simulation on Ethereum

	7.4 Summary and Further Reading
	References

	8 Summary and Future Research Directions
	8.1 Summary
	8.2 Future Work
	8.2.1 Secure Data Integrity Verification from Smart Contract
	8.2.2 Combination of Encrypted Deduplication and Symmetric-key Searchable Encryption
	8.2.3 Secure Provenance Under Complex Models
	8.2.4 Securely Time-stamping Operations in the Digital World

