

Data Structures & Algorithms in Kotlin
Irina Galata & Matei Suica

Copyright ©2019 Razeware LLC.

No6ce of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

No6ce of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Data Structures & Algorithms in Kotlin

raywenderlich.com 2

About the Authors
Irina Galata is an author of this book. She is a software engineer
in Linz, Austria, working at Runtastic. She passionate about
programming and exploring new technologies. You can follow her
on twitter @igalata13.

Matei Suica is an author of this book. He is a software developer
that dreams about changing the world with his work. From his
small office in Romania, Matei is trying to create an App that will
help millions. When the laptop lid closes, he likes to go to the gym
and read. You can find him on Twitter or LinkedIn: @mateisuica.

About the Editors
Bruno Lemgruber is the technical editor of this book. He is an iOS
and Android developer who enjoys being challenged and working
on projects that requires him to work outside his comfort and
knowledge set, as he continues to learn new languages and
development techniques. Nowadays, he works in a bank from Brazil
(@SICOOB_oficial) in the iOS team. He loves to drink craft beer
when he has a free time! You can follow him on twitter
@brunoteixeiralc.

Márton Braun is a technical editor of this book. He is a Kotlin
enthusiast since the 1.0 of the language, and an aspiring writer,
speaker, educator. He's working as an Android developer and
teaches Kotlin and Android in university courses. Creator of the
MaterialDrawerKt and Krate libraries. He occasionally gets
addicted to StackOverflow, where he's one of the top contributors
under the Kotlin tag.

Data Structures & Algorithms in Kotlin

raywenderlich.com 3

Tammy Coron is an editor of this book. Tammy is an independent
creative professional and the host of Roundabout: Creative Chaos.
She’s also a Development Editor at The Pragmatic Bookshelf, a Sr.
Editor at Razeware, and a content contributor at Creative Bloq,
Lynda.com, iMore, and raywenderlich.com.

Massimo Carli is the final pass editor of this book. Massimo has
been working with Java since 1995 when he co-founded the first
Italian magazine about this technology http://www.mokabyte.it.
After many years creating Java desktop and enterprise application,
he started to work in the mobile world. In 2001 he wrote his first
book about J2ME. After many J2ME and Blackberry applications,
Massimo then started to work with Android in 2008. The same year
he wrote the first Italian book about Android, a best seller on
Amazon.it. That was the first of a series of 10 books about Android
and Kotlin. Massimo worked at Yahoo and Facebook and he's
actually Senior Mobile Engineer at Spotify. He's a musical theatre
lover and a supporter of the soccer team S.P.A.L.

Data Structures & Algorithms in Kotlin

raywenderlich.com 4

About the Contributors
We'd like to acknowledge the work of the authors of Data Structures & Algorithms in
Swift, the content of which served as the basis for this book.

• Vincent Ngo
• Kelvin Lau
We’d also like to acknowledge the efforts of the following contributors to the Swift
Algorithm Club GitHub repo (https://github.com/raywenderlich/swift-algorithm-
club), upon whose work portions of this book are based.
• Matthijs Hollemans, the original creator of the Swift Algorithm Club.
We’d also like to thank the following for their contributions to the repo:
• Donald Pinckney, Graph https://github.com/donald-pinckney
• Christian Encarnacion, Trie and Radix Sort https://github.com/Thukor
• Kevin Randrup, Heap https://github.com/kevinrandrup
• Paulo Tanaka, Depth First Search https://github.com/paulot
• Nicolas Ameghino, BST https://github.com/nameghino
• Mike Taghavi, AVL Tree
• Chris Pilcher, Breadth First Search

About the Ar6st
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Data Structures & Algorithms in Kotlin

raywenderlich.com 5

Table of Contents: Overview
Book License 14...
Who This Book Is For 15..
What You Need 16..
Book Source Code & Forums 17..
About the Cover 19...

Sec6on I: Introduc6on to Data Structures &
Algorithms 20...

Chapter 1: Kotlin & Kotlin Standard Library 21..................
Chapter 2: Complexity 39...

Sec6on II: Elementary Data Structures 52......................
Chapter 3: Linked List 53...
Chapter 4: Stack Data Structures 85....................................
Chapter 5: Queues 94..

Sec6on III: Trees 125..
Chapter 6: Trees 127..
Chapter 7: Binary Trees 140...
Chapter 8: Binary Search Trees 152......................................
Chapter 9: AVL Trees 173..
Chapter 10: Tries 191...
Chapter 11: Binary Search 204..
Chapter 12: The Heap Data Structure 213.........................

Data Structures & Algorithms in Kotlin

raywenderlich.com 6

Chapter 13: Priority Queues 238..

Sec6on IV: Sor6ng Algorithms 251..................................
Chapter 14: O(n²) SorZng Algorithms 253..........................
Chapter 15: Merge Sort 268...
Chapter 16: Radix Sort 279..
Chapter 17: Heap Sort 289...
Chapter 18: Quicksort 298...

Sec6on V: Graphs 316...
Chapter 19: Graphs 318..
Chapter 20: Breadth-First Search 344.................................
Chapter 21: Depth-First Search 355....................................
Chapter 22: Dijkstra’s Algorithm 368...................................
Chapter 23: Prim’s Algorithm 387...

Conclusion 403...

Data Structures & Algorithms in Kotlin

raywenderlich.com 7

Table of Contents: Extended
Book License 14.
Who This Book Is For 15.
What You Need 16.
Book Source Code & Forums 17.
About the Cover 19.

Sec6on I: Introduc6on to Data Structures &
Algorithms 20.
Chapter 1: Kotlin & Kotlin Standard Library 21.

IntroducZon to Kotlin 22.
The Kotlin Standard Library 30.
Key points 38.

Chapter 2: Complexity 39.
Time complexity 40.
Other Zme complexiZes 47.
Comparing Zme complexity 47.
Space complexity 48.
Key points 51.

Sec6on II: Elementary Data Structures 52.
Chapter 3: Linked List 53.

Node 54.
LinkedList 55.
Adding values to the list 56.
Removing values from the list 61.
Kotlin collecZon interfaces 66.
Becoming a Kotlin mutable collecZon 67.

Data Structures & Algorithms in Kotlin

raywenderlich.com 8

Challenges 76.
Key points 84.

Chapter 4: Stack Data Structures 85.
Stack operaZons 86.
ImplementaZon 87.
push and pop operaZons 87.
Challenges 91.
Key points 93.

Chapter 5: Queues 94.
Common operaZons 95.
Example of a queue 96.
List-based implementaZon 97.
Doubly linked list implementaZon 100.
Ring buffer implementaZon 104.
Double-stack implementaZon 108.
Challenges 115.
Key points 124.

Sec6on III: Trees 125.
Chapter 6: Trees 127.

Terminology 128.
ImplementaZon 129.
Traversal algorithms 131.
Challenges 137.
Key points 139.

Chapter 7: Binary Trees 140.
ImplementaZon 141.
Traversal algorithms 143.
Challenges 147.
Key points 151.

Data Structures & Algorithms in Kotlin

raywenderlich.com 9

Chapter 8: Binary Search Trees 152.
Case study: array vs. BST 153.
ImplementaZon 157.
Challenges 168.
Key points 172.

Chapter 9: AVL Trees 173.
Understanding balance 174.
ImplementaZon 175.
Challenges 187.
Key points 190.

Chapter 10: Tries 191.
Example 192.
ImplementaZon 194.
Challenges 202.
Key points 203.

Chapter 11: Binary Search 204.
Example 205.
ImplementaZon 206.
Challenges 208.
Key points 212.

Chapter 12: The Heap Data Structure 213.
What is a heap? 214.
The heap property 214.
Heap applicaZons 215.
Common heap operaZons 216.
SorZng and comparing 216.
How do you represent a heap? 218.
InserZng into a heap 220.
Removing from a heap 223.
Removing from an arbitrary index 227.

Data Structures & Algorithms in Kotlin

raywenderlich.com 10

Searching for an element in a heap 228.
Heapify an array 229.
TesZng 231.
Challenges 233.
Key points 237.

Chapter 13: Priority Queues 238.
ApplicaZons 239.
Common operaZons 239.
ImplementaZon 240.
Challenges 245.
Key points 250.

Sec6on IV: Sor6ng Algorithms 251.
Chapter 14: O(n²) SorZng Algorithms 253.

Bubble sort 254.
SelecZon sort 257.
InserZon sort 260.
GeneralizaZon 262.
Challenges 264.
Key points 267.

Chapter 15: Merge Sort 268.
ImplementaZon 270.
Performance 274.
Challenges 275.
Key points 278.

Chapter 16: Radix Sort 279.
Example 280.
ImplementaZon 281.
Challenges 284.
Key points 288.

Data Structures & Algorithms in Kotlin

raywenderlich.com 11

Chapter 17: Heap Sort 289.
Gehng started 290.
Example 290.
ImplementaZon 293.
Performance 295.
Challenges 296.
Key points 297.

Chapter 18: Quicksort 298.
Example 299.
ParZZoning strategies 300.
Effects of a bad pivot choice 307.
Challenges 313.
Key points 315.

Sec6on V: Graphs 316.
Chapter 19: Graphs 318.

Weighted graphs 319.
Common operaZons 321.
Defining a vertex 323.
Defining an edge 323.
Adjacency list 324.
ImplementaZon 325.
Adjacency matrix 331.
ImplementaZon 332.
Graph analysis 338.
Challenges 340.
Key points 343.

Chapter 20: Breadth-First Search 344.
Example 345.
ImplementaZon 348.
Performance 349.

Data Structures & Algorithms in Kotlin

raywenderlich.com 12

Challenges 350.
Key points 354.

Chapter 21: Depth-First Search 355.
DFS example 356.
ImplementaZon 360.
Performance 362.
Challenges 363.
Key points 367.

Chapter 22: Dijkstra’s Algorithm 368.
Example 369.
ImplementaZon 377.
Trying out your code 382.
Performance 383.
Challenges 384.
Key points 386.

Chapter 23: Prim’s Algorithm 387.
Example 389.
ImplementaZon 393.
TesZng your code 397.
Performance 398.
Challenges 399.
Key points 402.

Conclusion 403.

Data Structures & Algorithms in Kotlin

raywenderlich.com 13

LBook License

By purchasing Data Structures & Algorithms in Kotlin, you have the following license:

• You are allowed to use and/or modify the source code in Data Structures &
Algorithms in Kotlin in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Data Structures & Algorithms in Kotlin in as many apps as you want, but must
include this attribution line somewhere inside your app: “Artwork/images/designs:
from Data Structures & Algorithms in Kotlin, available at www.raywenderlich.com”.

• The source code included in Data Structures & Algorithms in Kotlin is for your
personal use only. You are NOT allowed to distribute or sell the source code in
Data Structures & Algorithms in Kotlin without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 14

WWho This Book Is For

This book is for developers who are comfortable with Kotlin and want to ace
whiteboard interviews, improve the performance of their code, and ensure their apps
will perform well at scale.

If you’re looking for more background on the Kotlin language, we recommend our
book, Kotlin Apprentice, which goes into depth on the Kotlin language itself:

• https://store.raywenderlich.com/products/kotlin-apprentice

If you want to learn more about Android app development in Kotlin, we recommend
working through our classic book, Kotlin Apprentice:

• https://store.raywenderlich.com/products/kotlin-apprentice

raywenderlich.com 15

WWhat You Need

To follow along with this book, you need:

• IntelliJ IDEA Community Edition 2019.1.x: Available at https://
www.jetbrains.com/idea/. This is the environment in which you’ll develop most of
the sample code in this book.

• Kotlin playground: You can also use the Kotlin Playground available at the Kotlin
home page at https://play.kotlinlang.org.

raywenderlich.com 16

BBook Source Code &
Forums

If you bought the digital edi6on
The digital edition of this book comes with the source code for the starter and
completed projects for each chapter. These resources are included with the digital
edition you downloaded from store.raywenderlich.com.

If you bought the print version
You can get the source code for the print edition of the book here:

www.raywenderlich.com/store/data-structures-and-algorithms-in-kotlin-source-
code/

Forums
We’ve also set up an official forum for the book at forums.raywenderlich.com. This is
a great place to ask questions about the book or to submit any errors you may find.

Digital book edi6ons
We have a digital edition of this book available in both ePUB and PDF, which can be
handy if you want a soft copy to take with you, or you want to quickly search for a
specific term within the book.

Buying the digital edition version of the book also has a few extra benefits: free
updates each time we update the book, access to older versions of the book, and you
can download the digital editions from anywhere, at anytime.

raywenderlich.com 17

Visit our Data Structures & Algorithms in Kotlin store page here:

• https://store.raywenderlich.com/products/data-structures-and-algorithms-in-
kotlin.

And if you purchased the print version of this book, you’re eligible to upgrade to the
digital editions at a significant discount! Simply email support@razeware.com with
your receipt for the physical copy and we’ll get you set up with the discounted digital
edition version of the book.

Data Structures & Algorithms in Kotlin Book Source Code & Forums

raywenderlich.com 18

AAbout the Cover

Weaver birds are known for their intricate and sophisticated spherical nests, widely
considered some of the most elegant animal-built structures in the world. Not only
are these complex nests 100% waterproof, humans have never figured out how to
reproduce these structures on their own.

Weaver birds rely on their elegant weaving techniques to build robust structures, just
as you rely on elegant data structures and algorithms to create robust code. After
reading Data Structures & Algorithms in Kotlin, you’ll be able to weave structures
and algorithms into your code to make your apps more performant and robust.
Waterproof? Well, that’s a different story!

raywenderlich.com 19

Sec6on I: Introduc6on to Data
Structures & Algorithms

The chapters in this short but important section explain what’s built into the Kotlin
Standard Library and how you use it in building your apps. You’ll learn why one
algorithm may be better suited than another. You’ll also learn what the Big-O
notation is and how you can continue to answer the question: “Can we do better?”

Specifically, you’ll learn:

• Chapter 1: Kotlin & Kotlin Standard Library: The Kotlin Standard Library refers
to the framework that defines the core elements of the Kotlin language. Inside the
Kotlin Standard Library, you’ll find a variety of tools and data types to help build
your Kotlin apps, including data structures.

• Chapter 2: Complexity: Answering the question, “Does it scale?” is all about
understanding the complexity of an algorithm. The Big-O notation is the primary
tool that you’ll use to think about algorithmic performance in the abstract and
independent hardware or language. This chapter will prepare you to think in these
terms.

These fundamentals will set you on your way; before you know it, you’ll be ready for
the more advanced topics that follow.

raywenderlich.com 20

1Chapter 1: Kotlin & Kotlin
Standard Library
By Matei Șuică

Kotlin is a modern, multi-paradigm, programming language developed by JetBrains.
It first appeared in 2011 and slowly evolved into one of the coolest languages
available today.

One of the reasons developers love Kotlin so much is because it makes app
development easier by providing a significant amount of out-of-the-box classes and
utilities. Kotlin’s classes and utilities are wrapped inside the Kotlin Standard
Library, which contains the core components of the Kotlin language. Inside this
library, you’ll find a variety of tools and data types to help build your apps.

Before you start building your own custom data structures, it’s essential to know
about the primary data structures that the Kotlin Standard Library already provides.

In this chapter, you’ll start by learning a few things about Kotlin like variables, data
types, optionals, conditionals, loops and functions. You’ll then focus on two specific
data structures, List and Map, both of which are included with the Kotlin Standard
Library. You’ll end this chapter with a discussion about mutability in the context of
these two data structures.

raywenderlich.com 21

Introduc6on to Kotlin
To understand data structures and algorithms in Kotlin, you first need to understand
the main features of the language. But don’t worry: There’s nothing overly
complicated about Kotlin, especially if you have experience with other modern
programming languages. However, regardless of your experience, there are a few
things you need to know before diving deep into the details of data structures:

• How to declare variables and functions.

• How to create custom data types.

• How to manipulate data in loops and decision-making structures.

Once you get comfortable with the basics, you can move on to something a little
more complicated: Generics. You can find most of the code of this chapter in the
provided projects.

Ready to get started?

Variables and data types
A variable is a way to store information. Typically, a variable has a name and a data
type. Variables can also have modifiers that add extra options or restrictions to it.

In Kotlin, there are two types of variables, val and var:

val name = "Bill Clinton"
var country = "Romania"

The difference between val and var is that variables declared with val cannot be
reassigned:

name = "Matei Suica" // compile error
country = "Pakistan" // Ok

Since name was defined with val its value cannot be changed from "Bill Clinton", but
since country was defined with var, its value can be updated.

With regard to data types: The Kotlin compiler can sometimes determine the data
type of the variable. When it does, it’s referred to as type inference, which most
modern programming languages have.

The variables in the previous example are of type String. This is clear to the
compiler because they were initialized when they were declared. Since nothing was

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 22

misleading about them, you did not have to declare the data type. However, this may
not always be the case. For example, you can declare a variable that references a
number but initializes it later:

var score: Int

In this example, since no initial value is set, its type cannot be inferred and so you
must explicitly set the data type for score.

There are several data types in Kotlin that are already defined for you. The Kotlin
Standard Library includes more than are covered here, but the basic types are:

• Numbers: Double, Float, Long, Int, Short, Byte.

• Characters: Char, String.

• Other: Boolean, Array.

As you work through this book, you’ll encounter most of these data types. However,
at this point, you don’t need to study their specifics, only acknowledge their
existence. Later, you’ll create complex structures to store these kinds of data types.

Op6onals and null-safety
Many programming languages, including Kotlin, have the concept of a null value.
You can assign null to a variable whenever you want to signal that an object has no
value.

For example, if you have a variable that can hold a Car but you’ve not yet created a
Car object, the variable can hold a null:

var car: Car? = null

Upon object creation, you could easily reassign the variable:

car = Car("Mercedes-Benz")

The problem with the presence of null is that you might try to use it. Assuming that
Car contains a drive() method, you might decide to try something like this:

car.drive()

When you have a value assigned, like car = Car("Mercedes-Benz"), you won’t
have an issue; however, if you try to do this with a null value, the program will
crash. This is where the infamous NPE, Null-Pointer Exception, was born.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 23

To prevent an NPE, Kotlin has a neat system baked into the language. Noticed the ?
after the Car data type in the first declaration? That question mark changes the
variable type to an optional. An optional tells the compiler that your object could
contain a null value. This small detail triggers a chain reaction in the code.

For example, with an Optional, you cannot use:

car.drive()

Instead, you need to use the safe-call operator ?.:

car?.drive()

Using a safe-call operator means that this function will only execute if the object is
not null.

To assign values to variables that hold null values, you can use ?:, which is also
known as the Elvis operator:

val immutableCar: Car = car ?: Car("Porche")

This code does a lot in a single line:

1. Creates a variable immutableCar that cannot be reassigned.

2. The immutableCar is not an Optional now. You can be sure that there’s a real car
that you can drive() in that variable.

3. The immutableCar can be either the same as the car or a Porche if the car is
null (not a real car).

These language features are nice, but there are cases where you don’t want to play by
the rules.

You know that your variable is not a null — even though it’s an Optional — and you
need to tell the compiler to use the value that it holds. For this, Kotlin has the not-
null assertion operator !!. You can use it instead of the safe-call operator:

car!!.drive()

This calls drive() on the non-null value that the car holds; if, however, it holds a
null, it’ll throw an NPE. Therefore, you should think twice before using it. That
could be why the JetBrains team made this operator a double-bang: Think! Twice!

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 24

Condi6onal statements
Programs in Kotlin execute linearly; in other words, one line at a time. While this is
easy to follow and clean, it’s not very useful. There are a lot of situations where
making a decision or repeating a step can come in handy. Kotlin has structures that
resolve both of these problems in a concise fashion.

For decision making, Kotlin has two constructs, if-else and when. Unlike other
languages, there’s no ternary operator in Kotlin; you have to use if-else to get the
same result. Here’s an example:

val a = 5
val b = 12
var max = -1

if (a > b) {
 max = a
} else {
 max = b
}

println(max) // prints 12

The code above makes a decision based on the condition inside the brackets.

If a > b is true, the first block of code is executed, and max takes the value of a. If
the condition is false, then max takes the value of b.

In the structure, the else part is optional. You might want only to do something if
the condition is true but not when it’s false. Instead of leaving the else block
empty, you can omit it.

when is much like a series of if-else that can handle many cases:

val groupSize = 3

when (groupSize) {
 1 -> println("Single")
 2 -> println("Pair")
 3 -> { // Note the block
 println("Trio")
 }
 else -> println("This is either nobody or a big crowd")
}

In this example, the when structure makes a decision based on the value of
groupSize. It has some particular cases like 1, 2 or 3, and then an else clause that
handles everything that isn’t specified above.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 25

For the when structure, the else can be optional if the compiler determines that you
already handled all of the possible values. You won’t dig into those right now
because you need to learn more language features first.

Loops
There are two types of loops in Kotlin, for and while. Although you can do just fine
only using while, in some situations, using for is easier and more elegant.

Let’s start with the elegant one:

for (i in 1..3) {
 println(i)
}

for can iterate over any iterable collection of data. In this example, 1..3 creates an
IntRange that holds the numbers from 1 to 3. The i variable takes each value, one at
a time, and goes into the code block with it. In the block, println() is executed and
the value of i goes into the standard output.

Here’s a more generic example:

for (item in collection) println(item)

This prints all of the items in the collection.

The second type of loop is the while loop, which executes the same block of code as
long as its condition remains true:

var x = 10
while (x > 0) {
 x--
}

This code starts with x having the value of 10 and since 10 is greater than 0, it
executes the code inside the block. There, x decreases by 1, becoming 9. Then, the
loop goes back to the condition: “Is 9 greater than 0?”. This continues until
eventually x gets to 0 and the condition becomes false.

There is a variation of while known as do-while. The do-while loop first executes
the code and then checks for the condition to continue. This ensures that the block
of code is executed at least once:

var x = 10
do {

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 26

 x--
} while (x > 0)

One thing to notice with while loops is that you can easily create an infinite loop. If
you do, your program will get stuck and eventually die in a pitiful
StackOverflowException or something similar:

var x = 10
while (x > 0) {
 x++
}
println("The light at the end of the tunnel!")

This time, x gets incremented instead of decremented: 10, 11, 12, 13, and so on. It
never gets less than or equal to 0, so the while loop has no reason to stop. In other
words, you’ll never get to see the light at the end of the tunnel.

Func6ons
Functions are an important part of any programming language, especially in Kotlin
as it’s a multi-paradigm programming language. Kotlin has a lot of functional
programming features, so it treats functions with the respect they deserve!

In general, programming is based on small units of code that can be abstracted and
reused. Functions are the smallest units of code that you can easily reuse. Here’s an
example of a function:

fun max(a: Int, b: Int): Int {
 return if (a > b) a else b
}

This is a simple function that compares two numbers and determines which is
higher.

Functions are declared using the fun keyword, followed by the name of the function.
By naming functions, you can then call them using their name, as you’ll see
momentarily.

Functions can also have a list of parameters. Each parameter has a name that you
can use in the code block; parameters also include their data type. This function has
two parameters, a and b; however, functions can also have more parameters or no
parameters at all.

After a colon :, there’s another data type; this is the function’s return value data
type. In other words, the result of this function will have that data type. A function

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 27

cannot have more than one return type; however, it’s possible for it to have no
return type at all. In that case, the function executes its block, usually handling some
smaller or commonly shared operation.

Lastly, there’s the function’s code block. Because this function has a return type, it
also needs to return a value. In this case, it returns either a or b, and since both are
Ints, the return type is also Int.

Here’s an example of a function that has no return type:

fun printMax(c: Int, d: Int) {
 val maxValue = max(c, d)
 println(maxValue)
}

Again, because this function does not declare a return type, there’s no need for a
return keyword. So what’s the point of this function if it contains no return value?

Well, if you look closely, you’ll see that this function calls max by its name, and
passes in two parameters, c and d (which max renames to a and b). From there,
printMax takes the result of max, stores it into a variable named maxValue and prints
it the console.

Note: This chapter does not cover higher-order functions and lambdas as
these concepts are more complex. You will, however, touch on them in later
chapters.

Generics
Generics are a great way to abstract your code whenever you can manipulate
multiple data types in the same way.

Consider a class that emulates a box. A class is simply a collection of data and
functions that are logically grouped to perform a set of specific tasks. When creating
a class, think about how you might use it. In this case, with a box, you:

• Put something in it.

• Grab something out of it.

• Check if the box is empty.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 28

Here’s some code that can perform these tasks:

class Box {
 var content: Any? = null

 fun put(content: Any?) {
 this.content = content
 }

 fun retrieve(): Any? {
 return content
 }

 fun isEmpty(): Boolean {
 return content == null
 }
}

This is a simple class that can store a value via put(), can retrieve a value via
retrieve(), and can check if the box is empty via the isEmpty() method.

Since you want the box to store different kids of objects, the type is set to Any since
the Any class is the superclass of all objects in Kotlin.

This could work, but there’s one drawback: Once you put something into the box,
you lose the knowledge of the object’s type since you had to use the Any type to story
any kind of object.

To get a more specialized box, you could replace Any with the data type you need; for
example, a Cat or a Radio. But you’d need to create a different type of Box for every
type of object you’d want to store, i.e. you’d have to create CatBox and RadioBox
separately.

Generics are an excellent way to keep the code abstract and let the objects specialize
once instantiated. To abstract Box, you can write it like this:

class Box<T> {
 var content: T? = null

 fun put(content: T?) {
 this.content = content
 }

 fun retrieve(): T? {
 return content
 }

 fun isEmpty(): Boolean {
 return content == null

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 29

 }
}

Now, to benefit from a specialized box for this generic, you need to instantiate it:

val box = Box<Int>()
box.put(4)

val boolBox = Box<Boolean>()
boolBox.put(true)
boolBox.isEmpty()

Your box can handle any data type you want, and you’ll be sure that whatever you
put in it, has the same data type when you remove it from the box.

You can also apply generics at a function level, and there can be restrictions applied
to the kind of data types the generic will accept. In Kotlin, there’s a way to say “I
want all functions to return this generic data type” or “I want only the input
parameters to be this generic type”.

There’s a lot to learn about Generics, and you’ll need to research it as you progress
with your data structures and algorithms. But for now, you’ll start with two of the
most common generic data structures that are already provided by the Kotlin
Standard Library.

The Kotlin Standard Library
With the Kotlin Standard Library you can get away without using any third-party
libraries for most things. It contains useful classes and functions for text
manipulation, math, streams, multithreading, annotations, collections and more.

There are many things to mention, but this book can’t cover everything now, so keep
your focus on the parts of the library that will help you with the algorithms.

Here are a few things to consider:

Package kotlin
This package contains many helpful higher-order functions. It also contains the
definition of the most basic classes, exceptions and annotations. In this package,
you’ll find Any, Array, Int, ClassCastException and Deprecated to name a few.
The most interesting things are the scoping functions defined in this package.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 30

let
The let function helps you with null-checks and creates a new local scope to safely
perform operations. Here’s an example:

fun printCar(car: Car?) {
 val isCoupe = car?.let {
 (it.doors <= 2)
 }

 if (isCoupe == true) {
 println("Coupes are awesome")
 }
}

Inside let, it is the unwrapped value of car. Since you’re using the safe-call
operator ?., the code block won’t run if car is null. That’s how the compiler can
unwrap it without complaining. As you might notice, let can return anything. In
this case, it returns a Boolean telling you if the printed car was a coupé.

let uses the instance of the class as this inside the block, and the target object as
it. This is helpful in a lot of situations. There are other functions that have a
different approach.

run
run is similar to let, but it’s more focused on the target object — the one you’re
using to call the function. Inside the block, run passes the target object as this and
isolates the block from the outer scope.

fun printCar2(car: Car?) {
 val isCoupe = car?.run {
 (this.doors <= 2)
 }

 if (isCoupe == true) {
 println("Coupes are awesome")
 }
}

This is the same example, but now you’re isolated inside run. The return value can
still be anything.

These two functions are “transformational” functions. They’re called
"transformational" because the object they return can be different from the object
you call the function on. This is not the case with the following “mutating”
functions.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 31

also
If you try to replace run with also, you’ll get compile errors. Unlike with let or run
which return a transformation, the also function returns the original object.

Now, don’t get tricked into thinking that original means that it’s unmodified. It’s just
the same object. also uses it to refer to the object inside of the block and has access
to the outer scope using this.

fun printCar3(car: Car?) {
 car?.also {
 it.doors = 4
 }.let {
 if (it?.doors != null && it.doors <= 2) {
 println("Coupes are awesome")
 }
 }
}

Since also returns the same car object, you can use it to mutate the object and then
chain other calls to it. In this example, the check to see if the car is a coupe is within
a let block, but since it was modified to have 4 doors within also, it won’t print
"Coupes are awesome"

apply
By now, you should be able to guess how apply works. It’s an also that is isolated
like a run. It returns the same object as the target, and it uses this inside the block:

fun printCar4(car: Car?) {
 car?.apply {
 doors = 4
 }.let {
 if (it?.doors != null && it.doors <= 2) {
 println("Coupes are awesome")
 }
 }
}

Again, the car has been updated to have 4 doors so it also won’t print "Coupes are
awesome"

These functions will come in handy from time to time, especially if you want to write
clean and concise code.

There’s one more function defined in Standard.kt that you’ll see a lot. It’s not the
most useful one, but it’s very common.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 32

TODO
The JetBrains team decided to define TODO inside the Standard Kotlin Library to
prevent one of the centuries-old habit of software developers: forgetting about
TODOs.

Have a look at the definition of TODO:

public inline fun TODO(): Nothing = throw NotImplementedError()

TODO() throws an error when the code reaches one of these TODOs. This is a clever
trick to prevent forgetting that you still have to write something. You’ll see this
every time IntelliJ generates a piece of code for you to implement. Just don’t forget
about it!

List
The second important package in the Kotlin Standard Library is kotlin.collections.
You’ll use it a lot in the following chapters and even more in real-life programming.
For this introduction, you’ll focus only on two basic collections, List and Map.

A List is a general-purpose, generic container for storing an ordered collection of
elements; it’s used commonly in many types of Kotlin programs.

You can create a List by using a helper function from the Kotlin Standard Library
named listOf(). For example:

val places = listOf("Paris", "London", "Bucharest")

Note: Kotlin defines lists using interfaces. Each of these interface layers more
capabilities on the list. For example, a List is an Iterable, which means that
you can iterate through it at least once.

It’s also a Collection, which means it can be traversed multiple times, non-
destructively, and it can be accessed using a subscript operator [].

For List, the positional access function get() guarantees access efficiency
and it’s the same as using the subscript operator.

Because Kotlin differentiates between mutable and immutable data structures, you’ll
want to create a MutableList to talk about all the operations lists have.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 33

You’ll learn more about mutability in Kotlin later in this chapter, but for now, just
add another layer on top of your list, and create it like this:

val mutablePlaces = mutableListOf("Paris", "London",
"Bucharest")

The Kotlin List is known as a generic collection because it can work with any type.
In fact, most of the Kotlin standard library is built with generic code. Unlike the Java
Collections that lose information about the type of collection, Kotlin’s List is
invariant. This means you cannot assign a List<String> to a List<Any>. Kotlin
knows that these are different types of lists.

As with any data structure, there are certain notable traits of which you should be
aware. The first of these is the notion of order.

Order
Elements in a list are explicitly ordered. Using the above places list as an example,
Paris appears before London.

All of the elements in a list have a corresponding zero-based, integer index. For
example, places from the above example has three indices, one corresponding to
each element, starting with 0.

You can retrieve the value of an element in the list by writing the following:

places[0] // Paris
places[1] // London
places[2] // Bucharest

The order should not be taken for granted. Some data structures, such as Map, have a
weaker concept of the order or no order at all. You can end up with a different order
when you try to access elements out of different collections.

Random-access
Random-access is a trait that data structures can claim if they can handle element
retrieval in a constant amount of time.

For example, getting "London" from places takes constant time. This means that
there’s no performance difference in accessing the first element, the 3rd element or
any other element of the list. Again, this performance should not be taken for
granted. Other data structures such as Linked Lists and Trees do not have
constant time access.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 34

For linked lists, the further the element is, the longer it takes to access it. You’ll learn
more about the complexity of the operations in the next chapter.

List performance
Aside from being a random-access collection, there are other areas of performance
that are of interest on how well or poorly does the data structure fare when the
amount of data it contains needs to grow. For lists, this varies on two factors.

Inser6on loca6on
The first factor is one in which you choose to insert the new element inside the list.
The most efficient scenario for adding an element to a list is to append it at the end
of the list:

mutablePlaces.add("Budapest")
println(mutablePlaces) // prints [Paris, London, Bucharest,
Budapest]

Inserting "Budapest" using add() places the string at the end of the list. This is a
constant-time operation, meaning the time it takes to perform this operation stays
the same no matter how large the list becomes.

However, there may come a time that you need to insert an element in a particular
location, such as in the middle of the list. To help illustrate, consider the following
analogy. You’re standing in line for the movies. Someone new comes along to join
the lineup. If they just go to the end of the line, nobody will even notice the
newcomer. But, if the newcomer tried to insert himself into the middle of the line, he
would have to convince half the lineup to shuffle back to make room. And if he were
terribly rude, he may try to insert himself at the head of the line. This is the worst-
case scenario because every single person in the lineup would need to shuffle back to
make room for this new person in front!

This is exactly how lists work. Inserting new elements from anywhere aside from the
end will force elements to shift back to make room for the new element:

mutablePlaces.add(0, "Kiev")
// [Kiev, Paris, London, Bucharest, Budapest]

To be precise, every element must shift back by one index. If we consider the number
of items in the list to be n, this would take n steps. The time for this operation grows
as the number of elements in the list grows. If the number of elements in the list
doubles, the time required for this add operation will also double.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 35

If inserting elements in front of a collection is a common operation for your
program, you may want to consider a different data structure to hold your data.

Capacity
The second factor that determines the speed of insertion is the list’s capacity.

Underneath the hood, Kotlin lists are allocated with a predetermined amount of
space for its elements. If you try to add new elements to a list that is already at
maximum capacity, the List must restructure itself to make more room for more
elements.

This is done by copying all the current elements of the list in a new and bigger
container in memory. However, this comes at a cost. Each element of the list has to
be accessed and copied. This means that any insertion, even at the end, could take n
steps to complete if a copy is made.

Note: Standard Library employs a strategy that minimizes the times this
copying needs to occur. Each time it runs out of storage and needs to copy, it
doubles the capacity.

Map
A Map is another generic collection that holds key-value pairs. For example, here’s a
map containing a user’s name and a score:

val scores = mutableMapOf("Eric" to 9, "Mark" to 12, "Wayne" to
1)

There’s no restriction on what type of object the Key is, but you should know that a
Map uses the hashCode() function to store the data. Usually, the Key is one of the
standard library data types which have the hashCode() function implemented. But if
you want to use your own data type, you need to implement the function yourself.

It’s not difficult to override hashCode(), you just have to investigate a little bit what
are the most common strategies to get the best result out of the Map.

You can add a new entry to the map with the following syntax:

scores["Andrew"] = 0

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 36

This creates a new key-value pair in the map:

{Eric=9, Mark=12, Wayne=1, Andrew=0}

Maps are unordered, so you can’t guarantee where new entries will be put. This is
because maps put data into different buckets, depending on the result that the
hashCode() function returns. The data in each bucket is ordered, but the general
order of the data in the map is unpredictable.

It is possible to traverse through the key-values of a map multiple times as the
Collection protocol affords. This order, while not defined, will be the same until the
collection is changed.

The lack of explicit ordering disadvantage comes with some redeeming traits.

Unlike the list, maps don’t need to worry about elements shifting around. Inserting
into a map always takes a constant amount of time.

Note: Lookup operations also take a constant amount of time, which is
significantly faster than finding a particular element in a list which requires a
walk from the beginning of the list to the insertion point.

Mutable vs. immutable
As you’ve seen throughout the chapter, there’s a distinction between mutable and
immutable data structures in Kotlin.

When referring to the concept of a List, it’s usually referring to the Kotlin’s
MutableList. Unlike List, MutableList also has functions for adding and removing
elements. Kotlin doesn’t allow a List to be changed in any way.

To change a data structure, you must express this intent by using the Mutable
version of that data structure. These data structures have functions for adding and
removing elements.

So why would you ever use the immutable version? For safety.

Whenever you need to pass your data structure as a parameter, and you want to be
sure that the function doesn’t produce a side effect, you should use an immutable
collection as the parameter.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 37

Consider this code:

fun noSideEffectList(names: List<String>) {
 println(names)
}

fun sideEffectList(names: MutableList<String>) {
 names.add("Joker")
}

fun mutableVsImmutable() {
 val people = mutableListOf("Brian", "Stanley", "Ringo")
 noSideEffectList(people) // [Brian, Stanley, Ringo]
 sideEffectList(people) // Adds a Joker to the list
 noSideEffectList(people) // [Brian, Stanley, Ringo, Joker]
}

The sideEffectList function adds a Joker to it. These kind of side-effects are
usually the ones generating bugs. Avoiding them by using a List instead of a
MutableList is preferred.

Key points
• Every data structure has advantages and disadvantages. Knowing them is key to

writing performant software.

• Functions such as add(Int, Any) for List have performance characteristics that
can cripple performance when used haphazardly. If you find yourself needing to
use add(Int, Any) frequently with indices near the beginning of the list, you may
want to consider using a different data structure such as the Linked List.

• Map trades the ability to maintain the order of its elements for fast insertion and
searching.

Data Structures & Algorithms in Kotlin Chapter 1: Kotlin & Kotlin Standard Library

raywenderlich.com 38

2Chapter 2: Complexity
By Matei Șuică

How well will it scale?

This question is always asked sooner or later in the software development cycle and
comes in several flavors.

From an architectural perspective, scalability refers to how flexible your app is as
your features are increasing. From a database perspective, scalability is about the
capability of a database to handle an increasing amount of data and users. For a web
server, being scalable can mean that it can serve a high number of users accessing it
at the same time. Regardless of what the question actually means, you need to study
it and come up with a response as soon as possible. This way, you can avoid big
problems down the line.

For algorithms, scalability refers to how the algorithm performs in terms of
execution time and memory usage as the input size increases. With a small amount
of data, any algorithm may still feel fast. However, as the amount of data increases,
an expensive algorithm can become crippling.

So how bad can it get? Estimating this is an important skill for you to know.

In this chapter, you’ll learn about the Big O notation for the different levels of
scalability in two dimensions:

• Execution time.

• Memory usage.

raywenderlich.com 39

Time complexity
With small amounts of data, even the most expensive algorithm can seem fast due to
the speed of modern hardware. However, as data increases, the cost of an expensive
algorithm becomes increasingly apparent.

Time complexity is a measure of the time required to run an algorithm as the input
size increases. In this section, you’ll go through the most common time complexities
and learn how to identify them.

Constant 6me
A constant time algorithm is one that has the same running time regardless of the
size of the input. Consider the following:

fun checkFirst(names: List<String>) {
 if (names.firstOrNull() != null) {
 println(names.first())
 } else {
 println("no names")
 }
}

The size of names does not affect the running time of this function. Whether names
has 10 items or 10 million items, this function only checks the first element of the
list.

Here’s a visualization of this time complexity in a plot between time versus data size:

Constant time

As input data increases, the amount of time the algorithm takes does not change.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 40

For brevity, programmers use a notation known as Big O notation to represent
various magnitudes of time complexity. The Big O notation for constant time is O(1).
It’s one unit of time, regardless of the input. This time doesn’t need to be small,
though. The algorithm can still be slow, but it’s equally slow all of the time. :]

Linear Time
Consider the following snippet of code:

fun printNames(names: List<String>) {
 for (name in names) {
 println(name)
 }
}

This function prints all the names in a String list. As the input list increases in size,
the number of iterations is increased by the same amount.

This behavior is known as linear time complexity:

Linear time

Linear time complexity is usually the easiest to understand. As the amount of data
increases, the running time increases by the same amount. That’s why you have the
straight linear graph illustrated above. The Big O notation for linear time is O(n).

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 41

Note: What about a function that has two loops over all of the data and a calls
six different O(1) methods? Is it O(2n + 6) ?

Time complexity only gives a high-level shape of the performance. Loops that
happen a set number of times are not part of the calculation. You’ll need to
abstract everything and consider only the most important thing that affects
performance. All constants are dropped in the final Big O notation. In other
words, O(2n + 6) is surprisingly equal to O(n).

Quadra6c 6me
More commonly referred to as n squared, this time complexity refers to an
algorithm that takes time proportional to the square of the input size.

Consider the following code:

fun multiplicationBoard(size: Int) {
 for (number in 1..size) {
 print(" | ")
 for (otherNumber in 1..size) {
 print("$number x $otherNumber = ${number * otherNumber} |
")
 }
 println()
 }
}

If you call this function using a small number, like 2, you’ll get the following output:

 | 1 x 1 = 1 | 1 x 2 = 2 |
 | 2 x 1 = 2 | 2 x 2 = 4 |

This time, the function prints all of the products of the numbers that are less than or
equal to the input, starting with 1.

If the input is 10, it’ll print the full multiplication board of 10 × 10. That’s 100 print
statements. If you increase the input size by one, it’ll print the product of 11
numbers with 11 numbers, resulting in 121 print statements.

Unlike the previous function, which operates in linear time, the n squared algorithm
can quickly run out of control as the data size increases. Imagine printing the results
for multiplicationBoard(100_000)!

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 42

Here’s a graph illustrating this behavior:

Quadratic time

As the size of the input data increases, the amount of time it takes for the algorithm
to run increases drastically. Thus, n squared algorithms don’t perform well at scale.

The Big O notation for quadratic time is O(n^2).

Note: No matter how inefficiently a linear time O(n) algorithm is written, for a
sufficiently large n, the linear time algorithm will always execute faster than a
super optimized quadratic algorithm.

Although not a central concern of this book, optimizing for absolute efficiency
can be crucial.

Companies put millions of dollars of R&D into reducing the slope of those
constants that Big O notation ignores. For example, a GPU optimized version
of an algorithm might run 100× faster than the naive CPU version while
remaining O(n).

Logarithmic 6me
So far, you’ve learned about the linear and quadratic time complexities wherein each
element of the input is inspected at least once. However, there are scenarios in which
only a subset of the input needs to be inspected, leading to a faster runtime.

Algorithms that belong to this category of time complexity are ones that can
leverage some shortcuts by making some assumptions about the input data. For
instance, if you had a sorted list of integers, what is the quickest way to find if a
particular value exists?

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 43

A possible solution would be to inspect the array from start to finish to check every
element before reaching a conclusion. Since you’re inspecting each of the elements
once, that would be a O(n) algorithm.

Linear time is fairly good, but you can do better. Since the input array is sorted,
there’s an optimization that you can make. Consider the following code:

val numbers = listOf(1, 3, 56, 66, 68, 80, 99, 105, 450)

fun linearContains(value: Int, numbers: List<Int>): Boolean {
 for (element in numbers) {
 if (element == value) {
 return true
 }
 }
 return false
}

If you were checking if the number 451 existed in the list, this algorithm would have
to iterate from the beginning to end, making a total of nine inspections for the nine
values in the list. However, since the list is sorted, you can, right off the bat, drop half
of the comparisons necessary by checking the middle value:

fun pseudoBinaryContains(value: Int, numbers: List<Int>):
Boolean {
 if (numbers.isEmpty()) return false

 val middleIndex = numbers.size / 2

 if (value <= numbers[middleIndex]) {
 for (index in 0..middleIndex) {
 if (numbers[index] == value) {
 return true
 }
 }
 } else {
 for (index in middleIndex until numbers.size) {
 if (numbers[index] == value) {
 return true
 }
 }
 }
 return false
}

The above function makes a small but meaningful optimization wherein it only
checks half of the list to come up with a conclusion.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 44

The algorithm first checks the middle value to see how it compares with the desired
value. If the middle value is bigger than the desired value, the algorithm won’t
bother looking at the values on the right half of the list; since the list is sorted,
values to the right of the middle value can only get bigger.

In the other case, if the middle value is smaller than the desired value, the algorithm
won’t look at the left side of the list. This optimization cuts the number of
comparisons by half.

What if you could do this optimization repeatedly throughout this method? You’ll
find out in Chapter 11, “Binary Search”.

An algorithm that can repeatedly drop half of the required comparisons will have
logarithmic time complexity. Here’s a graph illustrating how a logarithmic time
algorithm would behave as input data increases:

Logarithmic time

As input data increases, the time it takes to execute the algorithm increases at a
slower rate. If you look closely, you may notice that the graph seems to exhibit
asymptotic behavior. This can be explained by considering the impact of halving the
number of comparisons you need to do.

When you have an input size of 100, halving the comparisons means you save 50
comparisons. If the input size was 10,000, halving the comparisons means you save
5,000 comparisons.

You’ll need just a few more halvings, and your input data will be around 50 again.
The more data you have, the more the halving effect scales.

Algorithms in this category are few but are extremely powerful in situations that
allow for it. The Big O notation for logarithmic time complexity is O(log n).

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 45

Note: Is it log base 2, log base 10, or the natural log?

In the above example, log base 2 applies. However, since Big O notation only
concerns itself with the shape of the performance, the actual base doesn’t
matter. The more input data you can drop after each pass, the faster the
algorithm will be.

Quasilinear 6me
Another common time complexity you’ll encounter is quasilinear time. Algorithms
in this category perform worse than linear time but dramatically better than
quadratic time. They are among the most common algorithms you’ll deal with.

An example of a quasilinear time algorithm is Kotlin’s sort method.

The Big-O notation for quasilinear time complexity is O(n log n) which is a
multiplication of linear and logarithmic time. So quasilinear fits between logarithmic
and linear time. It’s a magnitude worse than linear time but still better than many of
the other complexities that you’ll see next. Here’s the graph:

Quasilinear time

The quasilinear time complexity shares a similar curve with quadratic time. The key
difference is that quasilinear complexity is more resilient to large data sets.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 46

Other 6me complexi6es
The five complexities you’ve encountered are the ones that you’ll encounter in this
book. Other time complexities do exist, but are far less common and tackle more
complex problems that are not discussed in this book. These time complexities
include polynomial time, exponential time, factorial time and more.

It’s important to note that time complexity is a high-level overview of performance,
and it doesn’t judge the speed of the algorithm beyond the general ranking scheme.
This means that two algorithms can have the same time complexity, but one may
still be much faster than the other. For small data sets, time complexity may not be
an accurate measure of actual speed.

For instance, quadratic algorithms such as insertion sort can be faster than
quasilinear algorithms, such as mergesort, if the data set is small. This is because the
insertion sort does not need to allocate extra memory to perform the algorithm,
while mergesort needs to allocate multiple arrays.

Note: For small data sets, the memory allocation can be expensive relative to
the number of elements the algorithm needs to touch.

Comparing 6me complexity
Suppose you wrote the following code that finds the sum of numbers from 1 to n.

fun sumFromOne(n: Int): Int {
 var result = 0
 for (i in 1..n) {
 result += i
 }
 return result
}

If you try to call the function with sumFromOne(10000), the code loops 10,000 times
and returns 50005000. It’s O(n) and will take a moment to run as it counts through
the loop and prints results.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 47

This can also be written using reduce:

fun sumFromOne(n: Int): Int {
 return (1..n).reduce { sum, element -> sum + element }
}

The time complexity of the version that uses reduce is also O(n) since it essentially
performs the same logic. It continuously adds each element to the sum and returns
the total sum.

Finally, you can write:

fun sumFromOne(n: Int): Int {
 return n * (n + 1) / 2
}

This version of the function uses a trick that a famous mathematician, Fredrick
Gauss, noticed while he was still in elementary school. The sum of a series of
numbers starting from 1 up to n can be computed using simple arithmetic. This final
version of the algorithm is O(1) is and tough to beat. A constant time algorithm is
always preferred over a linear or logarithmic time algorithm since the time it takes to
run will not change regardless of how large n gets.

Space complexity
The time complexity of an algorithm isn't the only performance metric against which
algorithms are ranked. Another important metric is its space complexity, which is a
measure of the amount of memory it uses.

Consider the following code:

fun printSorted(numbers: List<Int>) {
 val sorted = numbers.sorted()
 for (element in sorted) {
 println(element)
 }
}

The above function creates a sorted copy of the list and prints it. To calculate the
space complexity, you analyze the amount of memory the function allocates.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 48

Since numbers.sorted() produces a new list with the same size of numbers, the
space complexity of printSorted is O(n). While this function is simple and elegant,
there may be some situations in which you want to allocate as little memory as
possible.

You could rewrite the above function like this:

fun printSorted(numbers: List<Int>) {
 // 1
 if (numbers.isEmpty()) return

 // 2
 var currentCount = 0
 var minValue = Int.MIN_VALUE

 // 3
 for (value in numbers) {
 if (value == minValue) {
 println(value)
 currentCount += 1
 }
 }

 while (currentCount < numbers.size) {
 // 4
 var currentValue = numbers.max()!!

 for (value in numbers) {
 if (value < currentValue && value > minValue) {
 currentValue = value
 }
 }

 // 5
 for (value in numbers) {
 if (value == currentValue) {
 println(value)
 currentCount += 1
 }
 }

 // 6
 minValue = currentValue
 }
}

Woah, that’s a lot of code for something you’ve previously done in a couple of lines!
But this implementation respects space constraints.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 49

The overall goal is to iterate through the array multiple times, printing the next
smallest value for each iteration.

Here’s what this algorithm is doing:

1. Check for the case if the list is empty. If it is, there’s nothing to print.

2. currentCount keeps track of the number of print statements made. minValue
stores the last printed value.

3. The algorithm begins by printing all values matching the minValue and updates
the currentCount according to the number of print statements made.

4. Using the while loop, the algorithm finds the lowest value bigger than minValue
and stores it in currentValue.

5. The algorithm then prints all values of currentValue inside the array while
updating currentCount.

6. minValue is set to currentValue, so the next iteration will try to find the next
minimum value.

The above algorithm only allocates memory for a few variables. Since the amount of
memory allocated is constant and does not depend on the size of the list, the space
complexity is O(1).

This is in contrast with the previous function, which allocates an entire list to create
the sorted representation of the source array. The tradeoff here is that you sacrifice
time and code readability to use as little memory is possible.

Note: While today’s devices have a lot of space to store information, there was
a time when everything an algorithm needed to store was bound to just a
couple of KB.

Algorithms could be designed to take a longer time to finish but the memory
constraint was a physical one, and it could not be broken.

Nowadays, the available memory is huge but so is the data you are handling,
so algorithms still need to take space complexity into account.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 50

Key points
• Time complexity is a measure of the time required to run an algorithm as the

input size increases.

• Space complexity is a measure of the resources required for the algorithm to
manipulate the input data.

• Big O notation is used to represent the general form of time and space complexity.

• Time and space complexity are high-level measures of scalability. They don’t
measure the actual speed of the algorithm itself.

• For small data sets, time complexity is usually irrelevant. A quasilinear algorithm
can be slower than a linear algorithm.

Data Structures & Algorithms in Kotlin Chapter 2: Complexity

raywenderlich.com 51

Sec6on II: Elementary Data
Structures

This section looks at a few important data structures that form the basis of more
advanced algorithms covered in future sections.

• Chapter 3: Linked List: A linked list is a collection of values arranged in a linear,
unidirectional sequence. A linked list has several theoretical advantages over
contiguous storage options such as the array, including constant time insertion
and removal from the front of the list, and other reliable performance
characteristics.

• Chapter 4: Stack Data Structures: The stack data structure is identical in
concept to a physical stack of objects. When you add an item to a stack, you place
it on top of the stack. When you remove an item from a stack, you always remove
the topmost item. Stacks are useful, and also exceedingly simple. The main goal of
building a stack is to enforce how you access your data.

• Chapter 5: Queues: Lines are everywhere, whether you’re lining up to buy tickets
to your favorite movie or waiting for a printer machine to print out your
documents. These real-life scenarios mimic the queue data structure. Queues use
first in, first out ordering. In other words, the first element that was enqueued will
be the first to get dequeued. Queues are handy when you need to maintain the
order of your elements to process later.

Continuing to study the fundamentals will strengthen your base knowledge.

raywenderlich.com 52

3Chapter 3: Linked List
By Matei Șuică

A linked list is a collection of values arranged in a linear, unidirectional sequence. A
linked list has several theoretical advantages over contiguous storage options such
as the Kotlin Array or ArrayList:

• Constant time insertion and removal from the front of the list.

• Reliable performance characteristics.

A linked list

As the diagram suggests, a linked list is a chain of nodes. Nodes have two
responsibilities:

1. Hold a value.

2. Hold a reference to the next node. The absence of a reference to the next node,
null, marks the end of the list.

A node holding the value 12

raywenderlich.com 53

In this chapter, you’ll implement a linked list and learn about the common
operations associated with it. You’ll also learn about the time complexity of each
operation. Open the starter project for this chapter so that you can dive right into
the code.

Node
Create a new Kotlin file in src and name it Node.kt. Add the following to the file:

data class Node<T>(var value: T, var next: Node<T>? = null) {
 override fun toString(): String {
 return if (next != null) {
 "$value -> ${next.toString()}"
 } else {
 "$value"
 }
 }
}

Navigate to the Main.kt file and add the following inside main():

fun main() {
 "creating and linking nodes" example {
 val node1 = Node(value = 1)
 val node2 = Node(value = 2)
 val node3 = Node(value = 3)

 node1.next = node2
 node2.next = node3

 println(node1)
 }
}

You’ve just created three nodes and connected them:

A linked list containing values 1, 2, and 3

Once you run Main.kt, you’ll see the following output in the console:

---Example of creating and linking nodes---
1 -> 2 -> 3

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 54

As far as practicality goes, this method of building lists is far from ideal. You can
easily see that building long lists in this way is impractical. A common way to
alleviate this problem is to build a LinkedList that manages the Node objects. You’ll
do just that!

LinkedList
In src, create a new file and name it LinkedList.kt. Add the following to the file:

class LinkedList<T> {

 private var head: Node<T>? = null
 private var tail: Node<T>? = null
 private var size = 0

 fun isEmpty(): Boolean {
 return size == 0
 }

 override fun toString(): String {
 if (isEmpty()) {
 return "Empty list"
 } else {
 return head.toString()
 }
 }
}

A linked list has the concept of a head and tail, which refers to the first and last
nodes of the list respectively:

The head and tail of the list

You’ll also keep track of the size of the linked list in the size property. This might
not seem useful yet, but it will come in handy later.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 55

Adding values to the list
Next, you’re going to provide an interface to manage the Node objects. You’ll first
take care of adding values. There are three ways to add values to a linked list, each
having their own unique performance characteristics:

1. push: Adds a value at the front of the list.

2. append: Adds a value at the end of the list.

3. insert: Adds a value after a particular node of the list.

You’ll implement each of these in turn and analyze their performance
characteristics.

push opera6ons
Adding a value at the front of the list is known as a push operation. This is also
known as head-first insertion. The code for it is deliciously simple.

Add the following method to LinkedList:

fun push(value: T) {
 head = Node(value = value, next = head)
 if (tail == null) {
 tail = head
 }
 size++
}

In the case in which you’re pushing into an empty list, the new node is both the head
and tail of the list. Since the list now has a new node, you increment the value of
size.

In Main.kt, add the following in main():

"push" example {
 val list = LinkedList<Int>()
 list.push(3)
 list.push(2)
 list.push(1)

 println(list)
}

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 56

Your console output will show this:

---Example of push---
1 -> 2 -> 3

This is pretty cool, but you can do even better. You’ll use the fluent interface
pattern to chain multiple push calls. Go back to push() and add LinkedList<T> as
its return type. Then, add a return this line at the end to return the list that you’ve
just pushed an element into.

The method will now look like this:

fun push(value: T): LinkedList<T> {
 head = Node(value = value, next = head)
 if (tail == null) {
 tail = head
 }
 size++
 return this
}

In main(), you can now rewrite the previous example, making use of push()’s return
value:

"fluent interface push" example {
 val list = LinkedList<Int>()
 list.push(3).push(2).push(1)
 println(list)
}

That’s more like it! Now that you can add multiple elements to the start of the list
with ease.

append opera6ons
The next operation you’ll look at is append. This adds a value at the end of the list,
which is known as tail-end insertion.

In LinkedList.kt, add the following code just below push():

fun append(value: T) {
 // 1
 if (isEmpty()) {
 push(value)
 return
 }
 // 2

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 57

 tail?.next = Node(value = value)

 // 3
 tail = tail?.next
 size++
}

This code is relatively straightforward:

1. Like before, if the list is empty, you’ll need to update both head and tail to the
new node. Since append on an empty list is functionally identical to push, you
invoke push to do the work for you.

2. In all other cases, you create a new node after the current tail node. tail will
never be null here because you’ve already handled the case where the list is
empty in the if statement.

3. Since this is tail-end insertion, your new node is also the tail of the list.

Go back to Main.kt and write the following at the bottom of main():

"append" example {
 val list = LinkedList<Int>()
 list.append(1)
 list.append(2)
 list.append(3)

 println(list)
}

You’ll see the following output in the console:

---Example of append---
1 -> 2 -> 3

You can use the trick you learned for push() to get a fluid interface here too. It’s up
to you if you’ve liked it or not but imagine how you could chain pushes and appends
in a world of endless possibilities. Or just have some fun with it. :]

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 58

insert opera6ons
The third and final operation for adding values is insert(afterNode: Node<T>).
This operation inserts a value at a particular place in the list and requires two steps:

1. Finding a particular node in the list.

2. Inserting the new node after that node.

First, you’ll implement the code to find the node where you want to insert your
value.

In LinkedList.kt, add the following code just below append:

fun nodeAt(index: Int): Node<T>? {
 // 1
 var currentNode = head
 var currentIndex = 0

 // 2
 while (currentNode != null && currentIndex < index) {
 currentNode = currentNode.next
 currentIndex++
 }

 return currentNode
}

nodeAt() tries to retrieve a node in the list based on the given index. Since you can
only access the nodes of the list from the head node, you’ll have to make iterative
traversals. Here’s the play-by-play:

1. You create a new reference to head and keep track of the current number of
traversals.

2. Using a while loop, you move the reference down the list until you reach the
desired index. Empty lists or out-of-bounds indexes will result in a null return
value.

Now, you need to insert the new node.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 59

Add the following method just below nodeAt():

fun insert(value: T, afterNode: Node<T>): Node<T> {
 // 1
 if (tail == afterNode) {
 append(value)
 return tail!!
 }
 // 2
 val newNode = Node(value = value, next = afterNode.next)
 // 3
 afterNode.next = newNode
 size++
 return newNode
}

Here’s what you’ve done:

1. In the case where this method is called with the tail node, you call the
functionally equivalent append method. This takes care of updating tail.

2. Otherwise, you create a new node and link its next property to the next node of
the list.

3. You reassign the next value of the specified node to link it to the new node that
you just created.

To test things, go back to Main.kt and add the following to the bottom of main():

"inserting at a particular index" example {
 val list = LinkedList<Int>()
 list.push(3)
 list.push(2)
 list.push(1)

 println("Before inserting: $list")
 var middleNode = list.nodeAt(1)!!
 for (i in 1..3) {
 middleNode = list.insert(-1 * i, middleNode)
 }
 println("After inserting: $list")
}

You’ll see the following output:

---Example of inserting at a particular index---
Before inserting: 1 -> 2 -> 3
After inserting: 1 -> 2 -> -1 -> -2 -> -3 -> 3

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 60

Performance analysis
Whew! You made good progress so far. To recap, you’ve implemented the three
operations that add values to a linked list and a method to find a node at a particular
index.

Next, you’ll focus on the opposite action: removal operations.

Removing values from the list
There are three primary operations for removing nodes:

1. pop: Removes the value at the front of the list.

2. removeLast: Removes the value at the end of the list.

3. removeAfter: Removes a value anywhere in the list.

You’ll implement all three and analyze their performance characteristics.

pop opera6ons
Removing a value at the front of the list is often referred to as pop. This operation is
almost as simple as push(), so dive right in.

Add the following method to LinkedList:

fun pop(): T? {
 if (!isEmpty()) size--
 val result = head?.value
 head = head?.next

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 61

 if (isEmpty()) {
 tail = null
 }

 return result
}

pop() returns the value that was removed from the list. This value is optional since
it’s possible that the list is empty.

By moving the head down a node, you’ve effectively removed the first node of the
list. The garbage collector will remove the old node from memory once the method
finishes since there will be no more references attached to it. If the list becomes
empty, you set tail to null as well.

To test, go to Main.kt and add the following code at the bottom inside main():

"pop" example {
 val list = LinkedList<Int>()
 list.push(3)
 list.push(2)
 list.push(1)

 println("Before popping list: $list")
 val poppedValue = list.pop()
 println("After popping list: $list")
 println("Popped value: $poppedValue")
}

You’ll see the following output:

---Example of pop---
Before popping list: 1 -> 2 -> 3
After popping list: 2 -> 3
Popped value: 1

removeLast opera6ons
Removing the last node of the list is somewhat inconvenient.

Although you have a reference to the tail node, you can’t chop it off without having
a reference to the node before it. Thus, you need to traverse the whole list to find the
node before the last.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 62

Add the following code just below pop():

fun removeLast(): T? {
 // 1
 val head = head ?: return null
 // 2
 if (head.next == null) return pop()
 // 3
 size--

 // 4
 var prev = head
 var current = head

 var next = current.next
 while (next != null) {
 prev = current
 current = next
 next = current.next
 }
 // 5
 prev.next = null
 tail = prev
 return current.value
}

Here’s what’s happening:

1. If head is null, there’s nothing to remove, so you return null.

2. If the list only consists of one node, removeLast is functionally equivalent to
pop. Since pop will handle updating the head and tail references, you can
delegate this work to the pop function.

3. At this point, you know that you’ll be removing a node, so you update the size of
the list accordingly.

4. You keep searching for the next node until current.next is null. This signifies
that current is the last node of the list.

5. Since current is the last node, you disconnect it using the prev.next reference.
You also make sure to update the tail reference.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 63

Go back to Main.kt, and in main(), add the following to the bottom:

"removing the last node" example {
 val list = LinkedList<Int>()
 list.push(3)
 list.push(2)
 list.push(1)

 println("Before removing last node: $list")
 val removedValue = list.removeLast()

 println("After removing last node: $list")
 println("Removed value: $removedValue")
}

You’ll see the following at the bottom of the console:

---Example of removing the last node---
Before removing last node: 1 -> 2 -> 3
After removing last node: 1 -> 2
Removed value: 3

removeLast() requires you to traverse down the list. This makes for an O(n)
operation, which is relatively expensive.

Remove opera6ons
The final remove operation is removing a node at a particular point in the list. This is
achieved much like insert(). You’ll first find the node immediately before the node
you wish to remove and then unlink it.

Removing the middle node

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 64

Navigate back to LinkedList.kt and add the following method below removeLast():

fun removeAfter(node: Node<T>): T? {
 val result = node.next?.value

 if (node.next == tail) {
 tail = node
 }

 if (node.next != null) {
 size--
 }

 node.next = node.next?.next
 return result
}

Special care needs to be taken if the removed node is the tail node since the tail
reference will need to be updated.

Now, add the following example to main() to test removeAfter(). You know the
drill:

"removing a node after a particular node" example {
 val list = LinkedList<Int>()
 list.push(3)
 list.push(2)
 list.push(1)

 println("Before removing at particular index: $list")
 val index = 1
 val node = list.nodeAt(index - 1)!!
 val removedValue = list.removeAfter(node)

 println("After removing at index $index: $list")
 println("Removed value: $removedValue")
}

You’ll see the following output in the console:

---Example of removing a node after a particular node---
Before removing at particular index: 1 -> 2 -> 3
After removing at index 1: 1 -> 3
Removed value: 2

Try adding more elements and play around with the value of the index. Similar to
insert(), the time complexity of this operation is O(1), but it requires you to have a
reference to a particular node beforehand.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 65

Performance analysis
You’ve hit another checkpoint. To recap, you’ve implemented the three operations
that remove values from a linked list:

At this point, you’ve defined an interface for a linked list that most programmers
around the world can relate to. However, there’s work to be done to adorn the Kotlin
semantics. In the next half of the chapter, you’ll focus on making the interface better
by bringing it closer to idiomatic Kotlin.

Kotlin collec6on interfaces
The Kotlin Standard Library has a set of interfaces that help define what’s expected
of a particular type. Each of these interfaces provides certain guarantees on
characteristics and performance. Of these set of interfaces, four are referred to as
collection interfaces.

Here’s a small sample of what each interface represents:

• Tier 1, Iterable: An iterable type provides sequential access to its elements via an
Iterator.

• Tier 2, Collection: A collection type is an iterable type that provides additional
functionality, allowing you to check if the collection contains a particular element
or a collection of elements.

• Tier 3, MutableIterable: Provides a MutableIterator, which allows items to be
removed from the given collection.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 66

• Tier 4, MutableCollection: Unlike a simple Collection, a MutableCollection
interface provides methods to alter the collection. For example, you can add and
remove elements, and even clear the entire collection.

There’s more to be said for each of these. You’ll learn more about each of them when
you need to conform to them.

A linked list can get to the tier 4 of the collection interfaces. Since a linked list is a
chain of nodes, adopting the Iterable interface makes sense. And because you’ve
already implemented adding elements and removing them, it’s pretty clear we can go
all the way to the MutableCollection interface.

Becoming a Kotlin mutable collec6on
In this section, you’ll look into implementing the MutableCollection interface. A
mutable collection type is a finite sequence and provides nondestructive sequential
access but also allows you to modify the collection.

Itera6ng through elements
Reaching Tier 1 means implementing Iterable in the LinkedList. To make things
easier, first make reading the size available outside the class. Modify the size
property in LinkedList.kt, so that the property itself is public, but its setter remains
private:

var size = 0
 private set

Then, add the Iterable interface to the class definition. The definition will now
look like:

class LinkedList<T> : Iterable<T> {
 ...
}

This means that you’re now required to add the following method to fulfill the
Iterable interface:

override fun iterator(): Iterator<T> {
 return LinkedListIterator(this)
}

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 67

Right now, the compiler complains because it doesn’t know what a
LinkedListIterator is. Create a class named LinkedListIterator and make it
implement the Iterator interface:

class LinkedListIterator<T> : Iterator<T> {
 override fun next(): T {
 TODO("not implemented")
 }
 override fun hasNext(): Boolean {
 TODO("not implemented")
 }
}

To iterate through the linked list, you need to have a reference to the list. Add this
parameter to the constructor:

class LinkedListIterator<T>(
 private val list: LinkedList<T>
) : Iterator<T> {
 ...
}

You can now start implementing the required methods, starting with the easier one,
hasNext(). This method indicates whether your Iterable still has values to read.
You’ll need to keep track of the position that the iterator has in the collection, so
create an index field:

private var index = 0

Then, you can easily check if the position you’re at is less than the total number of
nodes:

override fun hasNext(): Boolean {
 return index < list.size
}

For next(), the one that reads the values of the nodes, you can use another property
to help you out. You’ll want to keep track of the last node, so you can easily find the
next one:

private var lastNode: Node<T>? = null

The next() function looks like:

override fun next(): T {
 // 1

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 68

 if (index >= list.size) throw IndexOutOfBoundsException()
 // 2
 lastNode = if (index == 0) {
 list.nodeAt(0)
 } else {
 lastNode?.next
 }
 // 3
 index++
 return lastNode!!.value
}

Here are the crucial bits of this function, step-by-step:

1. You check that there are still elements to return. If there aren’t, you throw an
exception. This should never be the case if clients use the Iterator correctly,
always checking with hasNext() before trying to read a value from it with
next().

2. If this is the first iteration, there is no lastNode set, so you take the first node of
the list. After the first iteration, you can get the next property of the last node to
find the next one.

3. Since the lastNode property was updated, you need to update the index too.
You’ve now gone through one more iteration, so the index increments.

Now that you’ve implemented Iterator, you can do some really cool things. For
example, you can iterate your linked list with a regular Kotlin for loop and print the
double of each element in a list.

Add this to main():

"printing doubles" example {
 val list = LinkedList<Int>()
 list.push(3)
 list.push(2)
 list.push(1)
 println(list)

 for (item in list) {
 println("Double: ${item * 2}")
 }
}

The output you’ll get is:

---Example of printing doubles---
1 -> 2 -> 3

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 69

Double: 2
Double: 4
Double: 6

Cool, huh? A for loop helps you a lot but there are still things to implement if you
want to have a fully featured MutableCollection.

Becoming a collec6on
Being a Collection requires more than just being an Iterable class. Change the
definition of your LinkedList to implement Collection:

class LinkedList<T> : Iterable<T>, Collection<T> {
 ...
}

Of course, you could now remove Iterable because a Collection is an Iterable
anyway. You may also leave it there so that you can see the progress you’re making.

The compiler will start complaining about the methods you need to implement. Here
are some quick wins: You already have isEmpty() and size, so you can add the
override keyword in front of them.

override var size = 0
 private set

override fun isEmpty(): Boolean {
 return size == 0
}

You still need to implement two more methods, but the good news is that you can
use one to implement the other easily:

override fun contains(element: T): Boolean {
 TODO("not implemented")
}

override fun containsAll(elements: Collection<T>): Boolean {
 TODO("not implemented")
}

Since you can now iterate through the list with for, the implementation of contains
is straightforward:

override fun contains(element: T): Boolean {
 for (item in this) {

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 70

 if (item == element) return true
 }
 return false
}

This method iterates through all elements of the list if needed, so it has a complexity
of O(n).

The second method is similar; it just works with a collection of elements.

override fun containsAll(elements: Collection<T>): Boolean {
 for (searched in elements) {
 if (!contains(searched)) return false
 }
 return true
}

As you’d probably guess, this is an inefficient method, it’s O(n^2). But if the
Collection interface requires it, you need to provide it.

Muta6ng while itera6ng
To get to the 3rd tier, you need to make LinkedList a MutableIterable. If you add
this interface to the list that LinkedList implements, you’ll see the compiler
complain again because iterator() doesn’t return a MutableIterator. This time,
start the other way around. Make LinkedListIterator implement the
MutableIterator<T> interface:

class LinkedListIterator<T>(
 private val list: LinkedList<T>
) : Iterator<T>, MutableIterator<T> {
 ...
}

Again, MutableIterator is a broader interface than Iterator, so you can remove
Iterator from the list of implemented interfaces.

You’ll need to add the remove() method to comply with the new interface you’ve
added:

override fun remove() {
 // 1
 if (index == 1) {
 list.pop()
 } else {
 // 2

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 71

 val prevNode = list.nodeAt(index - 2) ?: return
 // 3
 list.removeAfter(prevNode)
 lastNode = prevNode
 }
 index--
}

Here’s a breakdown of how this code uses the methods LinkedList already has:

1. The simplest case is when you’re at the beginning of the list. Using pop() will do
the trick.

2. If the iterator is somewhere inside the list, it needs to find the previous node.
That’s the only way to remove items from a linked list.

3. The iterator needs to step back so that next() returns the correct method the
next time. This means reassigning the lastNode and decreasing the index.

Now, go to LinkedList.kt and add MutableIterable to the class definition:

class LinkedList<T>: Iterable<T>, Collection<T>,
MutableIterable<T> {
 ...
}

Modify iterator() to return a MutableIterator, which LinkedListIterator
implements:

override fun iterator(): MutableIterator<T> {
 return LinkedListIterator(this)
}

Final step: Mutable collec6on
You’ve already completed the hardest steps, so this last step shouldn’t be too bad.
First, add the MutableCollection interface to the definition of LinkedList:

class LinkedList<T>: Iterable<T>, Collection<T>,
MutableIterable<T>, MutableCollection<T> {
 ...
}

This will make you add six more methods:

override fun add(element: T): Boolean {
 TODO("not implemented")

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 72

}

override fun addAll(elements: Collection<T>): Boolean {
 TODO("not implemented")
}

override fun clear() {
 TODO("not implemented")
}

override fun remove(element: T): Boolean {
 TODO("not implemented")
}

override fun removeAll(elements: Collection<T>): Boolean {
 TODO("not implemented")
}

override fun retainAll(elements: Collection<T>): Boolean {
 TODO("not implemented")
}

Three of them are relatively simple to implement. add(), addAll() and clear() are
almost one-liners:

override fun add(element: T): Boolean {
 append(element)
 return true
}

override fun addAll(elements: Collection<T>): Boolean {
 for (element in elements) {
 append(element)
 }
 return true
}

override fun clear() {
 head = null
 tail = null
 size = 0
}

Since the LinkedList doesn’t have a fixed size, add() and addAll() are always
successful and need to return true. For the removal of elements, you’ll use a
different approach for iterating through your MutableIterable linked list. This way,
you can benefit from your MutableIterator:

override fun remove(element: T): Boolean {
 // 1

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 73

 val iterator = iterator()
 // 2
 while (iterator.hasNext()) {
 val item = iterator.next()
 // 3
 if (item == element) {
 iterator.remove()
 return true
 }
 }
 // 4
 return false
}

This method is a little complex, so here’s the step-by-step walkthrough:

1. Get an iterator that will help you iterate through the collection.

2. Create a loop that checks if there are any elements left, and gets the next one.

3. Check if the current element is the one you’re looking for, and if it is, remove it.

4. Return a boolean that signals if an element has been removed.

With removeAll(), you can make use of remove():

override fun removeAll(elements: Collection<T>): Boolean {
 var result = false
 for (item in elements) {
 result = remove(item) || result
 }
 return result
}

The return value of removeAll is true if any elements were removed.

The last method to implement is retainAll(), which should remove any elements
in the list besides the ones passed in as the parameter. You’ll need to approach this
the other way around. Iterate through your list once and remove any element that is
not in the parameter. Luckily, the parameter of retainAll is also a collection, so you
can use all of the methods you implemented yourself, like contains:

override fun retainAll(elements: Collection<T>): Boolean {
 var result = false
 val iterator = this.iterator()
 while (iterator.hasNext()) {
 val item = iterator.next()
 if (!elements.contains(item)) {
 iterator.remove()

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 74

 result = true
 }
 }
 return result
}

Congrats! You finished the implementation, so it’s time for some testing. Go back
into Main.kt and add these at the end of main():

"removing elements" example {
 val list: MutableCollection<Int> = LinkedList()
 list.add(3)
 list.add(2)
 list.add(1)

 println(list)
 list.remove(1)
 println(list)
}

"retaining elements" example {
 val list: MutableCollection<Int> = LinkedList()
 list.add(3)
 list.add(2)
 list.add(1)
 list.add(4)
 list.add(5)

 println(list)
 list.retainAll(listOf(3, 4, 5))
 println(list)
}

"remove all elements" example {
 val list: MutableCollection<Int> = LinkedList()
 list.add(3)
 list.add(2)
 list.add(1)
 list.add(4)
 list.add(5)

 println(list)
 list.removeAll(listOf(3, 4, 5))
 println(list)
}

As you’ll see momentarily, your first challenge in this chapter is to check the output
of each example to make sure it’s correct. You’ll also see the rest of the challenges
after a quick summary.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 75

Challenges
In these challenges, you’ll work through five common scenarios for the linked list.
These problems are relatively easy compared to most challenges, and they will serve
to solidify your knowledge of data structures. You'll find the solutions to the
challenges at the end of this chapter.

Challenge 1: Reverse a linked list
Create an extension function that prints out the elements of a linked list in reverse
order. Given a linked list, print the nodes in reverse order. For example:

1 -> 2 -> 3

// should print out the following:
3
2
1

Solu6on 1
A straightforward way to solve this problem is to use recursion. Since recursion
allows you to build a call stack, you need to call the print statements as the call
stack unwinds.

Your first task is to define an extension function for LinkedList. Add the following
helper function to your solution file:

fun <T> LinkedList<T>.printInReverse() {
 this.nodeAt(0)?.printInReverse()
}

This function forwards the call to the recursive function that traverses the list, node
by node. To traverse the list, add this extension function for Node:

fun <T> Node<T>.printInReverse() {
 this.next?.printInReverse()
}

As you'd expect, this function calls itself on the next node. The terminating
condition is somewhat hidden in the null-safety operator. If the value of next is
null, the function stops because there’s no next node on which to call
printInReverse(). You’re almost done; the next step is printing the nodes.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 76

Prin6ng
Where you add the print statement will determine whether you print the list in
reverse order or not. Update the function to the following:

fun <T> Node<T>.printInReverse() {
 this.next?.printInReverse()
 // 1
 if (this.next != null) {
 print(" -> ")
 }
 // 2
 print(this.value.toString())
}

Any code that comes after the recursive call is called only after the base case triggers
(i.e., after the recursive function hits the end of the list).

1. First, you check if you’ve reached the end of the list. That’s the beginning of the
reverse printing, and you’ll not add an arrow there. The arrows start with the
second element of the reverse output. This is just for pretty formatting.

2. As the recursive statements unravel, the node data gets printed.

Test it out!
Write the following at the bottom of main():

"print in reverse" example {
 val list = LinkedList<Int>()
 list.add(3)
 list.add(2)
 list.add(1)
 list.add(4)
 list.add(5)

 println(list)
 list.printInReverse()
}

You’ll see the following output:

---Example of print in reverse---
3 -> 2 -> 1 -> 4 -> 5
5 -> 4 -> 1 -> 2 -> 3

The time complexity of this algorithm is O(n) since you have to traverse each node
of the list.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 77

Challenge 2: The item in the middle
Given a linked list, find the middle node of the list. For example:

1 -> 2 -> 3 -> 4
// middle is 3

1 -> 2 -> 3
// middle is 2

Solu6on 2
One solution is to have two references traverse down the nodes of the list where one
is twice as fast as the other. Once the faster reference reaches the end, the slower
reference will be in the middle. Write the following function:

fun <T> LinkedList<T>.getMiddle(): Node<T>? {
 var slow = this.nodeAt(0)
 var fast = this.nodeAt(0)

 while (fast != null) {
 fast = fast.next
 if (fast != null) {
 fast = fast.next
 slow = slow?.next
 }
 }

 return slow
}

In the while declaration, you bind the next node to fast. If there’s a next node, you
update fast to the next node of fast, effectively traversing down the list twice. slow
is updated only once. This is also known as the runner technique.

Try it out!
Write the following at the bottom of Main.kt:

"print middle" example {
 val list = LinkedList<Int>()
 list.add(3)
 list.add(2)
 list.add(1)
 list.add(4)
 list.add(5)

 println(list)

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 78

 println(list.getMiddle()?.value)
}

You’ll see the following output:

---Example of print middle---
3 -> 2 -> 1 -> 4 -> 5
1

The time complexity of this algorithm is O(n) since you traversed the list in a single
pass. The runner technique helps solve a variety of problems associated with the
linked list.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 79

Challenge 3: Reverse a linked list
To reverse a list is to manipulate the nodes so that the nodes of the list are linked in
the opposite direction. For example:

// before
1 -> 2 -> 3

// after
3 -> 2 -> 1

Solu6on 3
To reverse a linked list, you need to visit each node and update the next reference to
point in the other direction. This can be a tricky task since you’ll need to manage
multiple references to multiple nodes. To do this, you would also need access to the
head and tail of your liked list. Since you’re implementing an extension function,
you won’t have access to these variables. Luckily, there’s a simpler solution that has
a small drawback discussed later.

You can easily reverse a list by using a recursive function that goes to the end of the
list and then starts copying the nodes when it returns, in a new linked list. Here’s
how this function would look like:

private fun <T> addInReverse(list: LinkedList<T>, node: Node<T>)
{
 // 1
 val next = node.next
 if (next != null) {
 // 2
 addInReverse(list, next)
 }
 // 3
 list.append(node.value)
}

The following explains how this function works:

1. Get the next node of the list, starting from the one you’ve received as a
parameter.

2. If there’s a following node, recursively call the same function; however, now the
starting node is the one after the current node.

3. When you reach the end, start adding the nodes in the reverse order.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 80

O(n) time complexity, short and sweet! The only drawback is that you need a new
list, which means that the space complexity is also O(n).

To use this helper function conveniently on a LinkedList, add this extension
function:

fun <T> LinkedList<T>.reversed(): LinkedList<T> {
 val result = LinkedList<T>()
 val head = this.nodeAt(0)
 if (head != null) {
 addInReverse(result, head)
 }
 return result
}

This extension creates a new LinkedList and fills it with nodes by calling
addInReverse(), passing in the first node of the current list.

Try it out!
Test reversed() by writing the following at the bottom of main():

"reverse list" example {
 val list = LinkedList<Int>()
 list.add(3)
 list.add(2)
 list.add(1)
 list.add(4)
 list.add(5)

 println("Original: $list")
 println("Reversed: ${list.reversed()}")
}

You’ll see the following output:

---Example of reverse list---
Original: 3 -> 2 -> 1 -> 4 -> 5
Reversed: 5 -> 4 -> 1 -> 2 -> 3

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 81

Challenge 4: Merging two linked lists
Create a function that takes two sorted linked lists and merges them into a single
sorted linked list

Your goal is to return a new linked list that contains the nodes from two lists in
sorted order. You may assume they are both sorted in ascending order. For example:

// list1
1 -> 4 -> 10 -> 11

// list2
-1 -> 2 -> 3 -> 6

// merged list
-1 -> 1 -> 2 -> 3 -> 4 -> 6 -> 10 -> 11

Solu6on 4
The solution to this problem is to continuously pluck nodes from the two sorted lists
and add them to a new list. Since the two lists are sorted, you can compare the next
node of both lists to see which one should be the next one to add to the new list.

Se[ng up
You’ll begin by checking the cases where one or both of the lists are empty. Create
the following mergeSorted extension function:

fun <T : Comparable<T>> LinkedList<T>.mergeSorted(
 otherList: LinkedList<T>
): LinkedList<T> {
 if (this.isEmpty()) return otherList
 if (otherList.isEmpty()) return this

 val result = LinkedList<T>()

 return result
}

If one is empty, you return the other. You also introduce a new reference to hold a
new LinkedList. The strategy is to merge the nodes in this and otherList into
result in sorted order.

Next, you need to write a helper function that adds the current node to the result list
and returns the next node. You’ll use this function in your algorithm multiple times,
so it’s useful to have it extracted:

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 82

private fun <T : Comparable<T>> append(
 result: LinkedList<T>,
 node: Node<T>
): Node<T>? {
 result.append(node.value)
 return node.next
}

Merging
Add the following to mergeSorted immediately below the declaration for result
and right above return result:

// 1
var left = nodeAt(0)
var right = otherList.nodeAt(0)
// 2
while (left != null && right != null) {
 // 3
 if (left.value < right.value) {
 left = append(result, left)
 } else {
 right = append(result, right)
 }
}

Here’s how it works:

1. You start with the first node of each list.

2. The while loop continues until one of the lists reaches its end.

3. You compare the first nodes left and right to append to the result.

Since this loop depends on both left and right, it will terminate even if there are
nodes left in either list.

Finally, add the following below the newly added code, and above return result, to
handle the remaining nodes:

while (left != null) {
 left = append(result, left)
}

while (right != null) {
 right = append(result, right)
}

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 83

Try it out!
Write the following at the bottom of main():

"merge lists" example {
 val list = LinkedList<Int>()
 list.add(1)
 list.add(2)
 list.add(3)
 list.add(4)
 list.add(5)

 val other = LinkedList<Int>()
 other.add(-1)
 other.add(0)
 other.add(2)
 other.add(2)
 other.add(7)

 println("Left: $list")
 println("Right: $other")
 println("Merged: ${list.mergeSorted(other)}")
}

You’ll see the following output:

---Example of merge lists---
Left: 1 -> 2 -> 3 -> 4 -> 5
Right: -1 -> 0 -> 2 -> 2 -> 7
Merged: -1 -> 0 -> 1 -> 2 -> 2 -> 2 -> 3 -> 4 -> 5 -> 7

This algorithm has a time complexity of O(m + n), where m is the # of nodes in the
first list, and n is the # of nodes in the second list.

Key points
• Linked lists are linear and unidirectional. As soon as you move a reference from

one node to another, you can’t go back.

• Linked lists have a O(1) time complexity for head-first insertions. Arrays have O(n)
time complexity for head-first insertions.

• Conforming to Kotlin collection interfaces, such as Iterable and Collection,
offers a host of helpful methods for a reasonably small amount of requirements.

Data Structures & Algorithms in Kotlin Chapter 3: Linked List

raywenderlich.com 84

4Chapter 4: Stack Data
Structures
By Matei Șuică

Stacks are everywhere. Some common examples of things you might stack:

• Pancakes.

• Books.

• Paper.

• Cash, especially cash. :]

The stack data structure is identical, in concept, to a physical stack of objects. When
you add an item to a stack, you place it on top of the stack. When you remove an
item from a stack, you always remove the top-most item.

Good news: A stack of pancakes. Bad news: You may only eat the top-most pancake.

raywenderlich.com 85

Stack opera6ons
Stacks are useful, and also exceedingly simple. The main goal of building a stack is to
enforce how you access your data. If you had a tough time with the linked list
concepts, you’ll be glad to know that stacks are comparatively trivial.

There are only two essential operations for a stack:

• push: Adding an element to the top of the stack.

• pop: Removing the top element of the stack.

This means that you can only add or remove elements from one side of the data
structure.In computer science, a stack is known as the LIFO (last-in first-out) data
structure. Elements that are pushed in last are the first ones to be popped out.

If you want this in code, open then the started project, create the Stack.kt file into
the stack package, and write the following code:

interface Stack<Element> {

 fun push(element: Element)

 fun pop(): Element?
}

Note: The previous Stack interface is different from the Stack class provided
by Kotlin (or Java) which extends the Vector class and provides methods we
don't need here.

Stacks are used prominently in all disciplines of programming, such as:

• Android uses the fragment stack to push and pop fragments into and out of an
Activity.

• Memory allocation uses stacks at the architectural level. Memory for local
variables is also managed using a stack.

• Search and conquer algorithms, such as finding a path out of a maze, use stacks to
facilitate backtracking.

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 86

Implementa6on
You can implement your Stack interface in different ways and choosing the right
storage type is important. The ArrayList is an obvious choice since it offers
constant time insertions and deletions at one end via add and removeAt with the last
index as a parameter. Usage of these two operations will facilitate the LIFO nature of
stacks.

In the same Stack.kt file you can then start your implementation with the following
code:

class Stack<T : Any>() {
 private val storage = arrayListOf<T>()

 override fun toString() = buildString {
 appendln("----top----")
 storage.asReversed().forEach {
 appendln("$it")
 }
 appendln("-----------")
 }
}

You defines a private property of type ArrayList for the data and you override the
toString method in order to display its content for debug purposes. With this code,
you'll get some errors because of the missing implementation of the push and pop
operations but you're going to fix this soon.

push and pop opera6ons
Add the following two operations to your Stack:

override fun push(element: Element) {
 storage.add(element)
}

override fun pop(): Element? {
 if (storage.size == 0) {
 return null
 }
 return storage.removeAt(storage.size - 1)
}

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 87

In the the push method you just append the value passed as parameter to the end of
the ArrayList using it's add method. In the pop method you simply return null if the
storage is empty or you remove and return the last element you'have inserter.

It's time to see it working. Open Main.kt and write this code into the main():

"using a stack" example {
 val stack = StackImpl<Int>().apply {
 push(1)
 push(2)
 push(3)
 push(4)
 }
 print(stack)
 val poppedElement = stack.pop()
 if (poppedElement != null) {
 println("Popped: $poppedElement")
 }
 print(stack)
}

You’ll see the following output:

---Example of using a stack---
----top----
4
3
2
1

Popped: 4
----top----
3
2
1

push and pop both have an O(1) time complexity.

Non-essen6al opera6ons
Next, you’ll add some nice-to-have operations that make stacks easier to use.

In Stack.kt, add the following code to the Stack interface :

fun peek(): Element?

val count: Int
 get

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 88

val isEmpty: Boolean
 get() = count == 0

peek is an operation that’s often attributed to the stack interface. The idea of peek is
to look at the top element of the stack without mutating its contents. The count
property returns the number of element into the Stack and it's used to implement
the isEmpty property.

You now need to add the implementation to the StackImpl class with this code:

override fun peek(): Element? {
 return storage.lastOrNull()
}

override val count: Int
 get() = storage.size

This allows you to have a cleaner code changing the implementation of the pop
method like this:

override fun pop(): Element? {
 if (isEmpty) {
 return null
 }
 return storage.removeAt(count - 1)
}

Less is more
You may have wondered if you could adopt the Kotlin collection interfaces for the
stack. A stack’s purpose is to limit the number of ways to access your data, and
adopting interfaces such as Iterable would go against this goal by exposing all of
the elements via iterators. In this case, less is more!

You might want to take an existing list and convert it to a stack so that the access
order is guaranteed. Of course, it would be possible to loop through the array
elements and push each element. However, you can write a static factory method
that directly adds these elements to the Stack implementation.

Add the following code to StackImpl class

 companion object {
 fun <Element> create(items: Iterable<Element>):
Stack<Element> {
 val stack = StackImpl<Element>()
 for (item in items) {

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 89

 stack.push(item)
 }
 return stack
 }
 }

Now, add this example to the main() function:

"initializing a stack from a list" example {
 val list = listOf("A", "B", "C", "D")
 val stack = StackImpl.create(list)
 print(stack)
 println("Popped: ${stack.pop()}")
}

This code creates a stack of strings and pops the top element "D". Notice that the
Kotlin compiler can type infer the element type from the list so you can use Stack
instead of the more verbose Stack<String>.

You can go a step further and make your stack initializable by listing its elements,
similar to listOf() and other standard library collection factory functions. Add this
to Stack.kt, outside the Stack class definition:

fun <Element> stackOf(vararg elements: Element): Stack<Element>
{
 return StackImpl.create(elements.asList())
}

Now, go back to main() and add:

"initializing a stack from an array literal" example {
 val stack = stackOf(1.0, 2.0, 3.0, 4.0)
 print(stack)
 println("Popped: ${stack.pop()}")
}

This creates a stack of Doubles and pops the top value 4.0. Again, type inference
saves you from having to specify the generic type argument of the stackOf function
call.

Stacks are crucial to problems that search trees and graphs. Imagine finding your way
through a maze. Each time you come to a decision point of left, right or straight, you
can push all possible decisions onto your stack. When you hit a dead end, backtrack
by popping from the stack and continuing until you escape or hit another dead end.

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 90

Challenges
A stack is a simple data structure with a surprisingly large amount of applications.
Complete the following challenges to see what it can do.

Challenge 1: Reverse a LinkedList
Given a linked list, print the nodes in reverse order. You should not use recursion to
solve this problem.

Solu6on 1
One of the prime use cases for stacks is to facilitate backtracking. If you push a
sequence of values into the stack, sequentially popping the stack will give you the
values in reverse order:

fun <T> LinkedList<T>.printInReverse() {
 val stack = StackImpl<T>()

 for (node in this) {
 stack.push(node)
 }

 var node = stack.pop()
 while (node != null) {
 println(node)
 node = stack.pop()
 }
}

Here’s how it works:

1. Copy the content of the list into a stack, carefully putting the nodes on top of
each other.

2. Remove and print the nodes from the stack one by one, starting from the top.

The time complexity of pushing the nodes into the stack is O(n). The time
complexity of popping the stack to print the values is also O(n). Overall, the time
complexity of this algorithm is O(n).

Since you’re allocating a container (the stack) inside the function, you also incur an
O(n) space complexity cost.

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 91

Challenge 2: The parentheses valida6on
Check for balanced parentheses. Given a string, check if there are (and) characters,
and return true if the parentheses in the string are balanced. For example:

// 1
h((e))llo(world)() // balanced parentheses

// 2
(hello world // unbalanced parentheses

Solu6on 2
To check if there are balanced parentheses in the string, you need to go through each
character of the string. When you encounter an opening parenthesis, you’ll push that
into a stack. Vice versa, if you encounter a closing parenthesis, you should pop the
stack.

Here’s the code:

fun String.checkParentheses(): Boolean {
 val stack = StackImpl<Char>()

 for (character in this) {
 when (character) {
 '(' -> stack.push(character)
 ')' -> if (stack.isEmpty) {
 return false
 } else {
 stack.pop()
 }
 }
 }
 return stack.isEmpty
}

Here’s how it works:

1. Create a new stack and start going through your string, character by character.

2. Push every opening parenthesis into the stack.

3. Pop one item from the stack for every closing parenthesis, but if you’re out of
items on the stack, your string is already imbalanced, so you can immediately
return from the function.

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 92

4. In the end, a balanced string is one that has popped all of the opening
parentheses it’s pushed (and not a single item more). That would leave the stack
empty because you popped all the parentheses you pushed before.

The time complexity of this algorithm is O(n), where n is the number of characters in
the string. This algorithm also incurs an O(n) space complexity cost due to the usage
of the Stack data structure.

Key points
• Despite its simplicity, the stack is a key data structure for many problems.

• The only two essential operations for the stack are the push method for adding
elements and the pop method for removing elements.

Data Structures & Algorithms in Kotlin Chapter 4: Stack Data Structures

raywenderlich.com 93

5Chapter 5: Queues
By Matei Șuică

We’re all familiar with waiting in line. Whether you’re in line to buy tickets to your
favorite movie or waiting for a printer to print a file, these real-life scenarios mimic
the queue data structure.

Queues use FIFO or first in, first out ordering, meaning the first element that was
added will always be the first one removed. Queues are handy when you need to
maintain the order of your elements to process later.

In this chapter, you’ll learn all of the common operations of a queue, go over the
various ways to implement a queue and look at the time complexity of each
approach.

raywenderlich.com 94

Common opera6ons
First, establish an interface for queues. In the base package, create a file named
Queue.kt and add the following code defining the Queue interface.

interface Queue<T> {

 fun enqueue(element: T): Boolean

 fun dequeue(): T?

 val count: Int
 get

 val isEmpty: Boolean
 get() = count == 0

 fun peek(): T?
}

This will be your starting point. From now on, everything you implement will obey
the contract of this interface, which describes the core operations for a queue.

The core operations for a queue are:

• enqueue: Inserts an element at the back of the queue and returns true if the
operation is successful.

• dequeue: Removes the element at the front of the queue and returns it.

• isEmpty: Checks if the queue is empty using the count property

• peek: Returns the element at the front of the queue without removing it.

Notice that the queue only cares about removal from the front and insertion at the
back. You don’t need to know what the contents are in between. If you did, you’d
presumably use an array instead of a Queue.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 95

Example of a queue
The easiest way to understand how a queue works is to look at a working example.
Imagine a group of people waiting in line for a movie ticket.

This queue currently holds Ray, Brian, Sam and Mic. Once Ray receives his ticket, he
moves out of the line. When you call dequeue(), Ray is removed from the front of the
queue.

Calling peek() returns Brian since he’s now at the front of the line.

Now comes Vicki, who just joined the line to buy a ticket. When you call
enqueue("Vicki"), Vicki gets added to the back of the queue.

In the following sections, you’ll learn to create a queue in four different ways:

• Using an array based list

• Using a doubly linked list

• Using a ring buffer

• Using two stacks

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 96

List-based implementa6on
The Kotlin standard library comes with a core set of highly optimized data structures
that you can use to build higher-level abstractions. One of these is the ArrayList, a
data structure that stores a contiguous, ordered list of elements. In this section,
you’ll use an ArrayList to create a queue.

A simple Kotlin `ArrayList` can be used to model the queue.

Open the starter project. In the list package, create a file named ArrayListQueue.kt
and add the following:

class ArrayListQueue<T> : Queue<T> {

 private val list = arrayListOf<T>()
}

Here, you defined a generic ArrayListQueue class that implements the Queue
interface. Note that the interface implementation uses the same generic type T for
the elements it stores.

Next, you’ll complete the implementation of ArrayListQueue to fulfill the Queue
contract.

Leveraging ArrayList
Add the following code to ArrayListQueue:

override val count: Int
 get() = list.size

override fun peek(): T? = list.getOrNull(0)

Using the features of ArrayList, you get the following for free:

1. Get the size of the queue using the same property of the list.

2. Return the element at the front of the queue, if there is any.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 97

These operations are all O(1).

Enqueue
Adding an element to the back of the queue is easy. You simply add the element to
the end of the ArrayList. Add the following:

override fun enqueue(element: T): Boolean {
 list.add(element)
 return true
}

Regardless of the size of the list, enqueueing an element is an O(1) operation. This is
because the list has empty space at the back.

In the example above, notice that once you add Mic, the list has two empty spaces.

After adding multiple elements, the internal array of the ArrayList will eventually
be full. When you want to use more than the allocated space, the array must resize to
make additional room.

Resizing is an O(n) operation. Resizing requires the list to allocate new memory and
copy all existing data over to the new list. Since this doesn’t happen very often
(thanks to doubling the size each time), the complexity still works out to be an
amortized O(1).

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 98

Dequeue
Removing an item from the front requires a bit more work. Add the following:

override fun dequeue(): T? =
 if (isEmpty) null else list.removeAt(0)

If the queue is empty, dequeue() simply returns null. If not, it removes the element
from the front of the list and returns it.

Removing an element from the front of the queue is an O(n) operation. To dequeue,
you remove the element from the beginning of the list. This is always a linear time
operation because it requires all of the remaining elements in the list to be shifted in
memory.

Debug and test
For debugging purposes, you’ll have your queue override toString(). Add the
following at the bottom of the class:

override fun toString(): String = list.toString()

It’s time to try out the queue that you just implemented. In Main.kt, add the
following to the bottom of main():

"Queue with ArrayList" example {
 val queue = ArrayListQueue<String>().apply {
 enqueue("Ray")
 enqueue("Brian")
 enqueue("Eric")
 }
 println(queue)
 queue.dequeue()
 println(queue)
 println("Next up: ${queue.peek()}")
}

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 99

This code puts Ray, Brian and Eric in the queue. It then removes Ray and peeks at
Brian, but it doesn’t remove him.

Strengths and weaknesses
Here’s a summary of the algorithmic and storage complexity of the ArrayList-based
queue implementation. Most of the operations are constant time except for
dequeue(), which takes linear time. Storage space is also linear.

You’ve seen how easy it is to implement a list-based queue by leveraging a Kotlin
ArrayList. Enqueue is very fast, thanks to an O(1) append operation.

There are some shortcomings to the implementation. Removing an item from the
front of the queue can be inefficient, as removal causes all elements to shift up by
one. This makes a difference for very large queues. Once the list gets full, it has to
resize and may have unused space. This could increase your memory footprint over
time. Is it possible to address these shortcomings? Let’s look at a linked list-based
implementation and compare it to an ArrayListQueue.

Doubly linked list implementa6on
Create a new file named LinkedListQueue.kt in the linkedlist package. In this
package, you’ll notice a DoublyLinkedList class. You should already be familiar
with linked lists from Chapter 3, “Linked Lists”. A doubly linked list is simply a linked
list in which nodes also contain a reference to the previous node.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 100

Start by adding a generic LinkedListQueue to the same package, with the following
content:

class LinkedListQueue<T> : Queue<T> {

 private val list = DoublyLinkedList<T>()

 private var size = 0

 override val count: Int
 get() = size
}

This implementation is similar to ArrayListQueue, but instead of an ArrayList,
you create a DoublyLinkedList.

Next, you’ll start implementing the Queue interface starting from the count property
that the DoublyLinkedList doesn't provide.

Enqueue
To add an element to the back of the queue, add the following:

override fun enqueue(element: T): Boolean {
 list.append(element)
 size++
 return true
}

Behind the scenes, the doubly linked list will update its tail node’s previous and next
references to the new node. You also increment the size. This is an O(1) operation.

Dequeue
To remove an element from the queue, add the following:

override fun dequeue(): T? {
 val firstNode = list.first ?: return null

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 101

 size--
 return list.remove(firstNode)
}

This code checks to see if the first element of the queue exists. If it doesn’t, it returns
null. Otherwise, it removes and returns the element at the front of the queue. In this
case it also decrement the size.

Removing from the front of the list is also an O(1) operation. Compared to the
ArrayList implementation, you didn’t have to shift elements one by one. Instead, in
the diagram above, you simply update the next and previous pointers between the
first two nodes of the linked list.

Checking the state of a queue
Similar to the ArrayList based implementation, you can implement peek() using
the properties of the DoublyLinkedList.Add the following:

override fun peek(): T? = list.first?.value

Debug and test
For debugging purposes, add the following at the bottom of the class:

override fun toString(): String = list.toString()

This leverages the DoublyLinkedList’s existing implementation for toString().

That’s all there is to implementing a queue using a linked list. In Main.kt, you can
try the following example:

"Queue with Doubly Linked List" example {
 val queue = LinkedListQueue<String>().apply {
 enqueue("Ray")
 enqueue("Brian")
 enqueue("Eric")
 }

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 102

 println(queue)
 queue.dequeue()
 println(queue)
 println("Next up: ${queue.peek()}")
}

This test code yields the same results as your ArrayListQueue implementation.

Strengths and weaknesses
Time to summarize the algorithmic and storage complexity of the implementation
based on a doubly linked list.

One of the main problems with ArrayListQueue is that dequeuing an item takes
linear time. With the linked list implementation, you reduced it to a constant
operation, O(1). All you needed to do was update the node’s previous and next
pointers.

The main weakness with LinkedListQueue is not apparent from the table. Despite
O(1) performance, it suffers from high overhead. Each element has to have extra
storage for the forward and back reference. Moreover, every time you create a new
element, it requires a relatively expensive dynamic allocation. By contrast,
ArrayListQueue does bulk allocation, which is faster.

Can you eliminate allocation overhead and preserve O(1) dequeues? If you don’t
have to worry about your queue ever growing beyond a fixed size, you can use a
different approach like the ring buffer. For example, you might have a game of
Monopoly with five players. You can use a queue based on a ring buffer to keep track
of whose turn is coming up next. You’ll take a look at a ring buffer implementation
next.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 103

Ring buffer implementa6on
A ring buffer, also known as a circular buffer, is a fixed-size array. This data
structure strategically wraps around to the beginning when there are no more items
to remove at the end.

Going over a simple example of how a queue can be implemented using a ring buffer:

You first create a ring buffer that has a fixed size of 4. The ring buffer has two
“pointers” that keep track of two things:

1. The read pointer keeps track of the front of the queue.

2. The write pointer keeps track of the next available slot so that you can override
existing elements that have already been read.

Enqueue an item:

Each time that you add an item to the queue, the write pointer increments by one.
Add a few more elements:

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 104

Notice that the write pointer moved two more spots and is ahead of the read
pointer. This means that the queue is not empty.

Next, dequeue two items:

Dequeuing is the equivalent of reading a ring buffer. Notice how the read pointer
moved twice.

Now, enqueue one more item to fill up the queue:

Since the write pointer reached the end, it simply wraps around to the starting index
again.

Finally, dequeue the two remaining items:

The read pointer wraps to the beginning, as well.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 105

As a final observation, notice that whenever the read and write pointers are at the
same index, that means the queue is empty.

Now that you have a better understanding of how ring buffers make a queue, you’re
ready to implement one!

Go to the ringbuffer package and create a file named RingBufferQueue.kt. You’ll
notice a RingBuffer class inside this package, which you can look at to understand
its internal mechanics.

In RingBufferQueue.kt, add the following:

class RingBufferQueue<T>(size: Int) : Queue<T> {

 private val ringBuffer: RingBuffer<T> = RingBuffer(size)

 override val count: Int
 get() = ringBuffer.count

 override fun peek(): T? = ringBuffer.first
}

Here, you define a generic RingBufferQueue. Note that you must include a size
parameter since the ring buffer has a fixed size.

To implement the Queue interface, you also need to implement peek() and the
count property using the same from the RingBuffer class. Once you provide the
count property, the isEmpty property is already defined in the Queue interface.
Instead of exposing ringBuffer, you provide these helpers to access the front of the
queue and to check if the queue is empty. Both of these are O(1) operations.

Enqueue
Next, add the following method at the end of the RingBufferQueue class:

override fun enqueue(element: T): Boolean =
 ringBuffer.write(element)

To append an element to the queue, you call write() on the ringBuffer. This
increments the write pointer by one.

Since the queue has a fixed size, you must now return true or false to indicate
whether the element has been successfully added. enqueue() is still an O(1)
operation.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 106

Dequeue
To remove an item from the front of the queue, add the following:

override fun dequeue(): T? =
 if (isEmpty) null else ringBuffer.read()

This code checks if the queue is empty and, if so, returns null. If not, it returns an
item from the front of the buffer. Behind the scenes, the ring buffer increments the
read pointer by one.

Debug and test
To easily see the contents of your buffer during debugging, add the following to
RingBufferQueue:

override fun toString(): String = ringBuffer.toString()

This code creates a string representation of the queue by delegating to the
underlying ring buffer.

That’s all there is to it. Test your ring buffer-based queue by adding the following at
the bottom of Main.kt, inside main():

"Queue with Ring Buffer" example {
 val queue = RingBufferQueue<String>(10).apply {
 enqueue("Ray")
 enqueue("Brian")
 enqueue("Eric")
 }
 println(queue)
 queue.dequeue()
 println(queue)
 println("Next up: ${queue.peek()}")
}

This test code works like the previous examples dequeuing Ray and peeking at Brian.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 107

Strengths and weaknesses
How does the ring-buffer implementation compare? Let’s look at a summary of the
algorithmic and storage complexity.

The ring-buffer-based queue has the same time complexity for enqueue and dequeue
as the linked-list implementation. The only difference is the space complexity. The
ring buffer has a fixed size, which means that enqueue can fail.

So far, you’ve seen three implementations: an array, a doubly linked-list and a ring-
buffer.

Although they appear to be eminently useful, you’ll next look at a queue
implemented using two stacks. You’ll see how its spatial locality is far superior to the
linked list. It also doesn’t need a fixed size like a ring buffer.

Double-stack implementa6on
Go to the doublestack package and start by adding a StackQueue.kt containing:

class StackQueue<T> : Queue<T> {
 private val leftStack = StackImpl<T>()
 private val rightStack = StackImpl<T>()
}

The idea behind using two stacks is simple. Whenever you enqueue an element, it
goes in the right stack.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 108

When you need to dequeue an element, you reverse the right stack and place it in the
left stack so that you can retrieve the elements using FIFO order.

Leveraging the stacks
Implement the common features of a queue, starting with the following:

override val isEmpty: Boolean
 get() = leftStack.isEmpty && rightStack.isEmpty

To check if the queue is empty, simply check that both the left and right stack are
empty. This means that there are no elements left to dequeue, and no new elements
have been enqueued.

As you already know, there will be a time when you need to transfer the elements
from the right stack into the left stack. That needs to happen whenever the left stack
is empty. Add the following helper method:

private fun transferElements() {
 var nextElement = rightStack.pop()
 while (nextElement != null) {
 leftStack.push(nextElement)
 nextElement = rightStack.pop()
 }
}

With this code, you pop elements from the right stack and push them into the left
stack. You already know from the previous chapter that stacks work in a LIFO way
(last in, first out). You’ll get them in reversed order without any additional work.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 109

Next, add the following:

override fun peek(): T? {
 if (leftStack.isEmpty) {
 transferElements()
 }
 return leftStack.peek()
}

You know that peeking looks at the top element. If the left stack is not empty, the
element on top of this stack is at the front of the queue.

If the left stack is empty, you use transferElements(). That way,
leftStack.peek() will always return the correct element or null. isEmpty() is still
an O(1) operation, while peek() is O(n).

While this peek() implementation might seem expensive, it’s amortized to O(1)
because each element in the queue only has to be moved from the right stack to the
left stack once. If you have a lot of elements in the right stack, calling peek() will be
O(n) for just that one call when it has to move all of those elements. Any further calls
will be O(1) again.

Note: You could also make peak() operations precisely O(1) for all calls if you
implemented a method in Stack that let you look at the very bottom of the
right stack. That’s where the first item of the queue is if they’re not all in the
left stack, which is what peek() should return in that case.

Enqueue
Next, add the method below:

override fun enqueue(element: T): Boolean {
 rightStack.push(element)
 return true
}

Recall that the right stack is used to enqueue elements.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 110

Previously, from implementing Stack, you know that pushing an element onto it is
an O(1) operation.

Dequeue
Removing an item from a two-stack-based implementation is as tricky as peeking.
Add the following method:

override fun dequeue(): T? {
 if (leftStack.isEmpty) { // 1
 transferElements() // 2
 }
 return leftStack.pop() // 3
}

Here’s how it works:

1. Check to see if the left stack is empty.

2. If the left stack is empty, you need to transfer the elements from the right stack
in reversed order.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 111

3. Remove the top element from the left stack.

Remember, you only transfer the elements in the right stack when the left stack is
empty. This makes dequeue() an amortized O(1) operation, just like peek().

Debug and test
To see your results, add the following to StackQueue:

override fun toString(): String {
 return "Left stack: \n$leftStack \n Right stack:
\n$rightStack"
}

Here, you print the contents of the two stacks that represent your queue.

To try out the double-stack implementation, add the following to main():

"Queue with Double Stack" example {
 val queue = StackQueue<String>().apply {
 enqueue("Ray")
 enqueue("Brian")
 enqueue("Eric")
 }
 println(queue)
 queue.dequeue()
 println(queue)
 println("Next up: ${queue.peek()}")
}

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 112

Similar to the previous examples, this code enqueues Ray, Brian and Eric, dequeues
Ray and then peeks at Brian. Note how Eric and Brian ended up in the left stack and
in reverse order as the result of the dequeue operation.

Strengths and weaknesses
Here’s a summary of the algorithmic and storage complexity of your two-stack-based
implementation.

Compared to the list-based implementation, by leveraging two stacks, you were able
to transform dequeue() into an amortized O(1) operation.

Moreover, your two-stack implementation is fully dynamic and doesn’t have the
fixed size restriction that your ring-buffer-based queue implementation has.

Finally, it beats the linked list in terms of spatial locality. This is because list
elements are next to each other in memory blocks. So a large number of elements
will be loaded in a cache on first access.

Compare the two images on the following page; one has elements in a contiguous
array, the other has elements scattered all over memory:

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 113

Elements in a contiguous array.

Elements in a linked list, scattered all over memory.

In a linked list, elements aren’t in contiguous blocks of memory. This could lead to
more cache misses, which will increase access time.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 114

Challenges
Think you have a handle on queues? In this section, you’ll explore five different
problems related to queues. This serves to solidify your fundamental knowledge of
data structures in general.

Challenge 1: Explain differences
Explain the difference between a stack and a queue. Provide two real-life examples
for each data structure.

Solu6on 1
Queues have a behavior of first in, first out. What comes in first must come out first.
Items in the queue are inserted from the rear and removed from the front.

Queue Examples:

1. Line in a movie theatre: You would hate for people to cut the line at the movie
theatre when buying tickets!

2. Printer: Multiple people could print documents from a printer, in a similar first-
come-first-serve manner.

Stacks have a behavior of last-in-first-out. Items on the stack are inserted at the top
and removed from the top.

Stack Examples:

1. Stack of plates: Placing plates on top of each other, and removing the top plate
every time you use a plate. Isn’t this easier than grabbing the one at the bottom?

2. Undo functionality: Imagine typing words on a keyboard. Most of the times, you
would use undo for the last operation.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 115

Challenge 2: What's the order?
Given the following queue:

Provide step-by-step diagrams showing how the following series of commands
affects the queue:

enqueue("R")
enqueue("O")
dequeue()
enqueue("C")
dequeue()
dequeue()
enqueue("K")
}

Do this for the following queue implementations:

1. ArrayList

2. Linked list

3. Ring buffer

4. Double stack

Assume that the list and ring buffer have an initial size of 5.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 116

Solu6on 2

ArrayList
Keep in mind that whenever the underlying array is full, and you try to add a new
element, a new array will be created with twice the capacity with existing elements
being copied over.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 117

Linked list

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 118

Ring buffer

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 119

Double stack

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 120

Challenge 3: Monopoly
Imagine you’re playing a game of Monopoly with your friends. The problem is that
everyone always forgets whose turn it is! Create a Monopoly organizer that tells you
whose turn it is. A great option is to create an extension function for Queue that
always returns the next player. Here's how the definition could look:

fun <T> Queue<T>.nextPlayer(): T?

Solu6on 3
Creating a board game manager is straightforward. Your primary concern is whose
turn it is. A queue data structure is a perfect choice to take care of game turns.

fun <T> Queue<T>.nextPlayer(): T? {
 // 1
 val person = this.dequeue() ?: return null
 // 2
 this.enqueue(person)
 // 3
 return person
}

Here’s how this works:

1. Get the next player by calling dequeue. If the queue is empty, return null, as the
game has probably ended anyway.

2. enqueue the same person, this puts the player at the end of the queue.

3. Return the next player.

The time complexity depends on the queue implementation you select. For the
array-based queue, it’s overall _O(n) time complexity. dequeue takes _O(n) time
because it has to shift the elements to the left every time you remove the first
element.

Testing it out:

"Boardgame manager with Queue" example {
 val queue = ArrayListQueue<String>().apply {
 enqueue("Vincent")
 enqueue("Remel")
 enqueue("Lukiih")
 enqueue("Allison")
 }
 println(queue)

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 121

 println("===== boardgame =======")
 queue.nextPlayer()
 println(queue)
 queue.nextPlayer()
 println(queue)
 queue.nextPlayer()
 println(queue)
 queue.nextPlayer()
 println(queue)
}

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 122

Challenge 4: Reverse data
Implement a method to reverse the contents of a queue using an extension function.

Hint: The Stack data structure has been included in the project.

fun <T> Queue<T>.reverse()

Solu6on 4
A queue uses first in, first out whereas a stack uses last in, first out. You can use a
stack to help reverse the contents of a queue. By inserting all of the contents of the
queue into a stack, you basically reverse the order once you pop every element off
the stack.

fun <T> Queue<T>.reverse() {
 // 1
 val aux = StackImpl<T>()

 // 2
 var next = this.dequeue()
 while (next != null) {
 aux.push(next)
 next = this.dequeue()
 }

 // 3
 next = aux.pop()
 while (next != null) {
 this.enqueue(next)
 next = aux.pop()
 }
}

For this solution, you added an extension function for any Queue implementation. It
works the following way:

1. Create a stack.

2. dequeue all of the elements in the queue onto the stack.

3. pop all of the elements off the stack and insert them into the queue.

4. Return your reversed queue.

The time complexity is overall O(n). You loop through the elements twice. Once for

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 123

removing the elements off the queue, and once for removing the elements off the
stack.

Testing it out:

"Reverse queue" example {
 val queue = ArrayListQueue<String>().apply {
 enqueue("1")
 enqueue("21")
 enqueue("18")
 enqueue("42")
 }
 println("before: $queue")
 queue.reverse()
 println("after: $queue")
}

Key points
• Queue takes a FIFO strategy, an element added first must also be removed first.

• Enqueue inserts an element to the back of the queue.

• Dequeue removes the element at the front of the queue.

• Elements in an array are laid out in contiguous memory blocks, whereas elements
in a linked list are more scattered with potential for cache misses.

• A ring buffer based queue implementation is useful for queues with a fixed size.

• Compared to other data structures, leveraging two stacks improves the dequeue()
time complexity to an amortized O(1) operation.

• The double-stack implementation beats linked list in terms of spatial locality.

Data Structures & Algorithms in Kotlin Chapter 5: Queues

raywenderlich.com 124

Sec6on III: Trees

Trees are another way to organize information, introducing the concept of children
and parents. You’ll look of the most common tree types and see how they can be
used to solve specific computational problems.

The tree structures you’ll learn about in this section include:

• Chapter 6: Trees: The tree is a data structure of profound importance. It’s used to
tackle many recurring challenges in software development such as representing
hierarchical relationships, managing sorted data and facilitating fast lookup
operations. There are many types of trees, and they come in various shapes and
sizes.

• Chapter 7: Binary Trees: In the previous chapter, you looked at a basic tree
where each node can have many children. A binary tree is a tree where each node
has at most two children, often referred to as the left and right children. Binary
trees serve as the basis for many tree structures and algorithms. In this chapter,
you’ll build a binary tree and learn about the three most important tree traversal
algorithms.

• Chapter 8: Binary Search Trees: A binary search tree facilitates fast lookup,
addition and removal operations. Each operation has an average time complexity
of O(log n), which is considerably faster than linear data structures such as arrays
and linked lists.

• Chapter 9: AVL Trees: In the previous chapter, you learned about the O(log n)
performance characteristics of the binary search tree. However, you also learned
that unbalanced trees can deteriorate the performance of the tree, all the way
down to O(n). In 1962, Georgy Adelson-Velsky and Evgenii Landis came up with
the first self-balancing binary search tree: the AVL Tree.

• Chapter 10: Tries. The trie (pronounced as “try”) is a tree that specializes in
storing data that can be represented as a collection, such as English words. The
benefits of a trie are best illustrated by looking at it in the context of prefix
matching, which is what you’ll do in this chapter.

raywenderlich.com 125

• Chapter 11: Binary Search: Binary search is one of the most efficient searching
algorithms with a time complexity of O(log n). This is comparable with searching
for an element inside a balanced binary search tree. To perform a binary search,
the collection must be able to perform index manipulation in constant time and
must be sorted.

• Chapter 12: The Heap Data Structure: A heap is a complete binary tree, also
known as a binary heap, that can be constructed using an array. Heaps come in two
flavors: Max heaps and Min heaps. Have you seen the movie Toy Story with the
claw machine and the squeaky little green aliens? Imagine that the claw machine
is operating on your heap structure and will always pick the minimum or
maximum value depending on the flavor of heap.

• Chapter 13: Priority Queues: Queues are lists that maintain the order of
elements using first in, first out (FIFO) ordering. A priority queue is another
version of a queue that, instead of using FIFO ordering, dequeues elements in
priority order. A priority queue is especially useful when you need to identify the
maximum or minimum value given a list of elements.

Trees are a useful way to organize information when performance is critical. Adding
them to your toolbelt will undoubtedly prove to be useful throughout your career.

Data Structures & Algorithms in Kotlin Section III: Trees

raywenderlich.com 126

6Chapter 6: Trees
By Irina Galata

A tree

The tree is a data structure of profound importance. It’s used to tackle many
recurring challenges in software development, such as:

• Representing hierarchical relationships.

• Managing sorted data.

• Facilitating fast lookup operations.

There are many types of trees, and they come in various shapes and sizes. In this
chapter, you’ll learn the basics of using and implementing a tree.

raywenderlich.com 127

Terminology
There are many terms associated with trees, so it makes sense to get familiar with a
few of them before starting.

Node
Like the linked list, trees are made up of nodes.

Node

Each node encapsulates some data and keeps track of its children.

Parent and child
Trees are viewed starting from the top and branching toward the bottom — just like a
real tree, only upside-down.

Every node, except for the first one, is connected to a single node above, which is
referred to as a parent node. The nodes directly below and connected to the parent
node are known as child nodes. In a tree, every child has exactly one parent. That’s
what makes a tree, well, a tree.

Parent and child

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 128

Root
The topmost node in the tree is called the root of the tree. It’s the only node that has
no parent:

Root

Leaf
A node that has no children is called a leaf:

Leaf

You’ll run into more terms later, but this should be enough to start coding trees.

Implementa6on
To get started, open the starter project for this chapter.

A tree is made up of nodes, so your first task is to create a TreeNode class.

Create a new file named TreeNode.kt and add the following:

class TreeNode<T>(val value: T) {
 private val children: MutableList<TreeNode<T>> =

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 129

mutableListOf()
}

Each node is responsible for a value and holds references to all of its children using
a mutable list.

Next, add the following method inside TreeNode:

fun add(child: TreeNode<T>) = children.add(child)

This method adds a child node to a node.

Time to give it a whirl. Go to the main() in the Main.kt file and add the following:

fun main() {
 val hot = TreeNode("Hot")
 val cold = TreeNode("Cold")

 val beverages = TreeNode("Beverages").run {
 add(hot)
 add(cold)
 }
}

Hierarchical structures are natural candidates for tree structures. That being the
case, you define three different nodes and organize them into a logical hierarchy.
This arrangement corresponds to the following structure:

A small tree

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 130

Traversal algorithms
Iterating through linear collections such as arrays or lists is straightforward. Linear
collections have a clear start and end:

Traversing arrays or lists

Iterating through trees is a bit more complicated:

Traversing trees

Should nodes on the left have precedence? How should the depth of a node relate to
its precedence? Your traversal strategy depends on the problem you’re trying to
solve.

There are multiple strategies for different trees and different problems. In all of
these ways you can visit the node and use the information into them. This is way you
add this definition into the TreeNode.kt file outside of the TreeNode class
definition.

typealias Visitor<T> = (TreeNode<T>) -> Unit

In the next section, you’ll look at depth-first traversal.

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 131

Depth-first traversal
Depth-first traversal starts at the root node and explores the tree as far as possible
along each branch before reaching a leaf and then backtracking.

Add the following inside TreeNode:

fun forEachDepthFirst(visit: Visitor<T>) {
 visit(this)
 children.forEach {
 it.forEachDepthFirst(visit)
 }
}

This simple code uses recursion to process the next node.

You could use your own stack if you didn’t want your implementation to be
recursive. However, the recursive solution is more simple and elegant to code.

To test the recursive depth-first traversal function you just wrote, it’s helpful to add
more nodes to the tree. Go back to the playground page and add the following in
Main.kt:

fun makeBeverageTree(): TreeNode<String> {
 val tree = TreeNode("Beverages")

 val hot = TreeNode("hot")
 val cold = TreeNode("cold")

 val tea = TreeNode("tea")
 val coffee = TreeNode("coffee")
 val chocolate = TreeNode("cocoa")

 val blackTea = TreeNode("black")
 val greenTea = TreeNode("green")
 val chaiTea = TreeNode("chai")

 val soda = TreeNode("soda")
 val milk = TreeNode("milk")

 val gingerAle = TreeNode("ginger ale")
 val bitterLemon = TreeNode("bitter lemon")

 tree.add(hot)
 tree.add(cold)

 hot.add(tea)
 hot.add(coffee)
 hot.add(chocolate)

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 132

 cold.add(soda)
 cold.add(milk)

 tea.add(blackTea)
 tea.add(greenTea)
 tea.add(chaiTea)

 soda.add(gingerAle)
 soda.add(bitterLemon)

 return tree
}

This function creates the following tree:

A big tree

Next, replace the code in main() with the following:

fun main() {
 val tree = makeBeverageTree()
 tree.forEachDepthFirst { println(it.value) }
}

This code produces the following output that illustrates the order the depth-first
traversal visits each node:

Beverages
hot
tea
black
green
chai
coffee
cocoa

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 133

cold
soda
ginger ale
bitter lemon
milk

In the next section, you’ll look at level-order traversal.

Level-order traversal
Level-order traversal is a technique that visits each node of the tree based on the
depth of the nodes. Starting at the root, every node on a level is visited before going
to a lower level.

Add the following inside TreeNode:

fun forEachLevelOrder(visit: Visitor<T>) {
 visit(this)
 val queue = Queue<TreeNode<T>>()
 children.forEach { queue.enqueue(it) }

 var node = queue.dequeue()
 while (node != null) {
 visit(node)
 node.children.forEach { queue.enqueue(it) }
 node = queue.dequeue()
 }
}

forEachLevelOrder visits each of the nodes in level-order:

Level-order traversal

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 134

Note how you use a queue to ensure that nodes are visited in the right level-order.
You start visiting the current node and putting all its children into the queue. Then
you start consuming the queue until it's empty. Every time you visit a node, you also
put all it's children into the queue. This ensure that all node at the same level are
visited one after the other.

Open Main.kt and add the following:

fun main() {
 val tree = makeBeverageTree()
 tree.forEachLevelOrder { println(it.value) }
}

In the console, you’ll see the following output:

beverages
hot
cold
tea
coffee
cocoa
soda
milk
black
green
chai
ginger ale
bitter lemon

Search
You already have a method that iterates through the nodes, so building a search
algorithm won’t take long.

Add the following inside TreeNode:

fun search(value: T): TreeNode<T>? {
 var result: TreeNode<T>? = null

 forEachLevelOrder {
 if (it.value == value) {
 result = it
 }
 }

 return result
}

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 135

To test your code, go back to main(). To save some time, copy the previous example
and modify it to test the search method:

fun main() {
 val tree = makeBeverageTree()
 tree.search("ginger ale")?.let {
 println("Found node: ${it.value}")
 }

 tree.search("WKD Blue")?.let {
 println(it.value)
 } ?: println("Couldn't find WKD Blue")
}

You’ll see the following console output:

Found node: ginger ale
Couldn't find WKD Blue

Here, you used your level-order traversal algorithm. Since it visits all nodes, if there
are multiple matches, the last match wins. This means that you’ll get different
objects back depending on what traversal you use.

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 136

Challenges

Challenge 1: Tree challenge
Print the values in a tree in an order based on their level. Nodes belonging to the
same level should be printed on the same line. For example, consider the following
tree:

Your algorithm should output the following in the console:

15
1 17 20
1 5 0 2 5 7

Hint: Consider using a Queue included for you in the starter project.

Solu6on 1
A straightforward way to print the nodes in level-order is to leverage the level-order
traversal using a Queue data structure. The tricky bit is determining when a newline
should occur.

Here’s the solution:

fun printEachLevel() {
 // 1
 val queue = ArrayListQueue<TreeNode<T>>()
 var nodesLeftInCurrentLevel = 0

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 137

 queue.enqueue(this)
 // 2
 while (queue.isEmpty.not()) {
 // 3
 nodesLeftInCurrentLevel = queue.count

 // 4
 while (nodesLeftInCurrentLevel > 0) {
 val node = queue.dequeue()
 node?.let {
 print("${node.value} ")
 node.children.forEach { queue.enqueue(it) }
 nodesLeftInCurrentLevel--
 } ?: break
 }

 // 5
 println()
 }
}

And here’s how it works:

1. You begin by initializing a Queue data structure to facilitate the level-order
traversal. You also create nodesLeftInCurrentLevel to keep track of the
number of nodes you’ll need to work on before you print a new line.

2. Your level-order traversal continues until your queue is empty.

3. Inside the first while loop, you begin by setting nodesLeftInCurrentLevel to
the current elements in the queue.

4. Using another while loop, you dequeue the first nodesLeftInCurrentLevel
number of elements from the queue. Every element you dequeue is printed
without establishing a new line. You also enqueue all the children of the node.

5. At this point, you generate the new line using println(). In the next iteration,
nodesLeftInCurrentLevel is updated with the count of the queue, representing
the number of children from the previous iteration.

This algorithm has a time complexity of O(n). Since you initialize the Queue data
structure as an intermediary container, this algorithm also uses O(n) space.

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 138

Key points
• Trees share some similarities to linked lists. However, a tree node can link to

infinitely many nodes, whereas linked-list nodes may only link to one other node.

• Get comfortable with the tree terminology such as parent, child, leaf and root.
Many of these terms are common and are used to help explain other tree
structures.

• Traversals, such as depth-first and level-order traversals, aren’t specific to only
the general type of tree. They work on other types of trees as well, although their
implementation is slightly different based on how the tree is structured.

• Trees are a fundamental data structure with different implementations. Some of
these will be part of the next chapters.

Data Structures & Algorithms in Kotlin Chapter 6: Trees

raywenderlich.com 139

7Chapter 7: Binary Trees
By Irina Galata

In the previous chapter, you looked at a basic tree in which each node can have many
children. A binary tree is a tree in which each node has at most two children, often
referred to as the left and right children:

Binary Tree

Binary trees serve as the basis for many tree structures and algorithms. In this
chapter, you’ll build a binary tree and learn about the three most important tree
traversal algorithms.

raywenderlich.com 140

Implementa6on
Open the starter project for this chapter. Create a new file and name it
BinaryNode.kt. You also define the Visitor<T> typealias. Add the following inside
this file:

typealias Visitor<T> = (T) -> Unit

class BinaryNode<T>(val value: T) {

 var leftChild: BinaryNode<T>? = null
 var rightChild: BinaryNode<T>? = null

}

In main() in the Main.kt file, add the following:

fun main() {
 val zero = BinaryNode(0)
 val one = BinaryNode(1)
 val five = BinaryNode(5)
 val seven = BinaryNode(7)
 val eight = BinaryNode(8)
 val nine = BinaryNode(9)

 seven.leftChild = one
 one.leftChild = zero
 one.rightChild = five
 seven.rightChild = nine
 nine.leftChild = eight

 val tree = seven
}

This defines the following tree by executing the closure:

Example Binary Tree

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 141

Building a diagram
Building a mental model of a data structure can be quite helpful in learning how it
works. To that end, you’ll implement a reusable algorithm that helps visualize a
binary tree in the console.

Note: This algorithm is based on an implementation by Károly Lőrentey in his
book Optimizing Collections, available from https://www.objc.io/books/
optimizing-collections/.

Add the following to the bottom of BinaryNode.kt:

override fun toString() = diagram(this)

private fun diagram(node: BinaryNode<T>?,
 top: String = "",
 root: String = "",
 bottom: String = ""): String {
 return node?.let {
 if (node.leftChild == null && node.rightChild == null) {
 "$root${node.value}\n"
 } else {
 diagram(node.rightChild, "$top ", "$top┌──", "$top│ ") +
 root + "${node.value}\n" + diagram(node.leftChild,
"$bottom│ ", "$bottom└──", "$bottom ")
 }
 } ?: "${root}null\n"
}

This method recursively creates a string representing the binary tree.

To try it out, open main.kt and add the following:

println(tree)

You’ll see the following console output:

 ┌──null
┌──9
│ └──8
7
│ ┌──5
└──1
 └──0

You’ll use this diagram for other binary trees in this book.

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 142

Traversal algorithms
Previously, you looked at a level-order traversal of a tree. With a few tweaks, you can
make this algorithm work for binary trees as well. However, instead of re-
implementing level-order traversal, you’ll look at three traversal algorithms for
binary trees: in-order, pre-order and post-order traversals.

In-order traversal
In-order traversal visits the nodes of a binary tree in the following order, starting
from the root node:

• If the current node has a left child, recursively visit this child first.

• Then visit the node itself.

• If the current node has a right child, recursively visit this child.

Here’s what an in-order traversal looks like for your example tree:

0, 1, 5, 7, 8, 9

You may have noticed that this prints the example tree in ascending order. If the tree
nodes are structured in a certain way, in-order traversal visits them in ascending
order. You’ll learn more about binary search trees in the next chapter.

Open BinaryNode.kt and add the following code to the bottom of the file:

fun traverseInOrder(visit: Visitor<T>) {
 leftChild?.traverseInOrder(visit)
 visit(value)

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 143

 rightChild?.traverseInOrder(visit)
}

Following the rules laid out above, you first traverse to the left-most node before
visiting the value. You then traverse to the right-most node.

To test this, go to main(), and add the following at the bottom:

tree.traverseInOrder { println(it) }

You should see the following in the console:

0
1
5
7
8
9

Pre-order traversal
Pre-order traversal visits the nodes of a binary tree in the following order:

• Visits the current node first.

• Recursively visits the left and right child.

Pre-order traversal

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 144

Write the following immediately below the in-order traversal method:

fun traversePreOrder(visit: Visitor<T>) {
 visit(value)
 leftChild?.traversePreOrder(visit)
 rightChild?.traversePreOrder(visit)
}

Test it out with the following code in the main method:

tree.traversePreOrder { println(it) }

You’ll see the following output in the console:

7
1
0
5
9
8

Post-order traversal
Post-order traversal always visits the nodes of a binary tree in the following order:

• Recursively visits the left and right child.

• Only visits the current node after the left and right child have been visited
recursively.

Post-order traversal

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 145

In other words, given any node, you’ll visit its children before visiting itself. An
interesting consequence of this is that the root node is always visited last.

Inside BinaryNode.kt, add the following below traversePreOrder:

fun traversePostOrder(visit: Visitor<T>) {
 leftChild?.traversePostOrder(visit)
 rightChild?.traversePostOrder(visit)
 visit(value)
}

Navigate back to main() and add the following to try it out:

tree.traversePostOrder { println(it) }

You’ll see the following in the console:

0
5
1
8
9
7

Each one of these traversal algorithms has both a time and space complexity of O(n).

While this version of the binary tree isn’t too exciting, you saw that you can use in-
order traversal to visit the nodes in ascending order. Binary trees can enforce this
behavior by adhering to some rules during insertion.

In the next chapter, you’ll look at a binary tree with stricter semantics: the binary
search tree.

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 146

Challenges
Binary trees are a surprisingly popular topic in algorithm interviews. Questions on
the binary tree not only require a good foundation of how traversals work, but can
also test your understanding of recursive backtracking. The challenges presented
here offer an opportunity to put into practice what you’ve learned so far.

Open the starter project to begin these challenges.

Challenge 1: The height of the tree
Given a binary tree, find the height of the tree. The height of the binary tree is
determined by the distance between the root and the furthest leaf. The height of a
binary tree with a single node is zero since the single node is both the root and the
furthest leaf.

Solu6on 1
A recursive approach for finding the height of a binary tree is as follows:

fun height(node: BinaryNode<T>? = this): Int {
 return node?.let { 1 + max(height(node.leftChild),
 height(node.rightChild)) } ?: -1
}

You recursively call the height function. For every node you visit, you add one to the
height of the highest child. If the node is null, you return -1.

This algorithm has a time complexity of O(n) since you need to traverse through all
of the nodes. This algorithm incurs a space cost of O(n) since you need to make the
same n recursive calls to the call stack.

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 147

Challenge 2: Serializa6on of a Binary Tree
A common task in software development is serializing an object into another data
type. This process is known as serialization, and it allows custom types to be used in
systems that only support a closed set of data types.

An example of serialization is JSON. Your task is to devise a way to serialize a binary
tree into a list, and a way to deserialize the list back into the same binary tree.

To clarify this problem, consider the following binary tree:

A particular algorithm may output the serialization as [15, 10, 5, null, null,
12, null, null, 25, 17, null, null, null]. The deserialization process
should transform the list back into the same binary tree. Note that there are many
ways to perform serialization. You may choose any way you wish.

Solu6on 2
There are many ways to serialize or deserialize a binary tree. Your first task when
encountering this question is to decide on the traversal strategy.

For this solution, you’ll explore how to solve this challenge by choosing the pre-
order traversal strategy.

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 148

Traversal
Write the following code to BinaryNode.kt:

fun traversePreOrderWithNull(visit: Visitor<T>) {
 visit(value)
 leftChild?.traversePreOrderWithNull(visit) ?: visit(null)
 rightChild?.traversePreOrderWithNull(visit) ?: visit(null)
}

This is the pre-order traversal function. As the code suggests, pre-order traversal
traverses each node and visit the node before traversing the children.

It’s critical to point out that you’ll need to also visit the null nodes since it’s
important to record those for serialization and deserialization.

As with all traversal functions, this algorithm goes through every element of the tree
once, so it has a time complexity of O(n).

Serializa6on
For serialization, you traverse the tree and store the values into an array. The
elements of the array have type T? since you need to keep track of the null nodes.
Add the following code to BinaryNode.kt:

fun serialize(node: BinaryNode<T> = this): MutableList<T?> {
 val list = mutableListOf<T?>()
 node.traversePreOrderWithNull { list.add(it) }
 return list
}

serialize returns a new array containing the values of the tree in pre-order.

The time complexity of the serialization step is O(n). Because you’re creating a new
list, this also incurs an O(n) space cost.

Deserializa6on
In the serialization process, you performed a pre-order traversal and assembled the
values into an array. The deserialization process is to take each value of the array
and reassemble it back to the tree.

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 149

Your goal is to iterate through the array and reassemble the tree in pre-order format.
Write the following at the bottom of your playground page:

fun deserialize(list: MutableList<T?>): BinaryNode<T?>? {
 // 1
 val rootValue = list.removeAt(list.size - 1) ?: return null

 // 2
 val root = BinaryNode<T?>(rootValue)

 root.leftChild = deserialize(list)
 root.rightChild = deserialize(list)

 return root
}

Here’s how the code works:

1. This is the base case. If removeAt returns null, there are no more elements in
the array, thus you’ll end recursion here.

2. You reassemble the tree by creating a node from the current value and
recursively calling deserialize to assign nodes to the left and right children.
Notice this is very similar to the pre-order traversal, except, in this case, you’re
building nodes rather than extracting their values.

Your algorithm is now ready for testing. Write the following at the bottom of main():

println(tree)
val array = tree.serialize()
println(tree.deserialize(array))

You’ll see the following in your console:

┌──null
┌──9
│ └──8
7
│ ┌──5
└──1
└──0

┌──null
┌──9
│ └──8
7
│ ┌──5
└──1
└──0

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 150

Your deserialized tree mirrors the sample tree in the provided playground. This is the
behavior you want.

However, as mention earlier, the time complexity of this function isn’t desirable.
Because you’re calling removeAt as many times as there are elements in the array,
this algorithm has an O(n²) time complexity. There’s an easy way to remedy that.

Write the following function just after the deserialize function you created earlier:

fun deserializeOptimized(list: MutableList<T?>): BinaryNode<T>?
{
 return deserialize(list.asReversed())
}

This is a function that first reverses the array before calling the previous
deserialize function. In the other deserialize function, find the removeAt(0)
call and change it to list.removeAt(list.size - 1):

val rootValue = list.removeAt(list.size - 1) ?: return null

This small change has a big effect on performance. removeAt(0) is an O(n)
operation because, after every removal, every element after the removed element
must shift left to take up the missing space. In contrast, list.removeAt(list.size
- 1) is an O(1) operation.

Finally, find and update the call of deserialize to use the new function that
reverses the array:

println(tree.deserializeOptimized(array))

You’ll see the same tree before and after the deserialization process. The time
complexity for this solution is now O(n) because you created a new reversed list and
chose a recursive solution.

Key points
• The binary tree is the foundation to some of the most important tree structures.

The binary search tree and AVL tree are binary trees that impose restrictions on
the insertion/deletion behaviors.

• In-order, pre-order and post-order traversals aren’t just important only for the
binary tree; if you’re processing data in any tree, you’ll interface with these
traversals regularly.

Data Structures & Algorithms in Kotlin Chapter 7: Binary Trees

raywenderlich.com 151

8Chapter 8: Binary Search
Trees
By Irina Galata

A binary search tree, or BST, is a data structure that facilitates fast lookup, insert
and removal operations. Consider the following decision tree where picking a side
forfeits all of the possibilities of the other side, cutting the problem in half.

raywenderlich.com 152

Once you make a decision and choose a branch, there’s no looking back. You keep
going until you make a final decision at a leaf node. Binary trees let you do the same
thing. Specifically, a binary search tree imposes two rules on the binary tree you saw
in the previous chapter:

• The value of a left child must be less than the value of its parent.

• Consequently, the value of a right child must be greater than or equal to the value
of its parent.

Binary search trees use this property to save you from performing unnecessary
checking. As a result, lookup, insert and removal have an average time complexity of
O(log n), which is considerably faster than linear data structures such as arrays and
linked lists.

In this chapter, you’ll learn about the benefits of the BST relative to an array and
implement the data structure from scratch.

Case study: array vs. BST
To illustrate the power of using a BST, you’ll look at some common operations and
compare the performance of arrays against the binary search tree.

Consider the following two collections:

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 153

Lookup
There’s only one way to do element lookups for an unsorted array. You need to check
every element in the array from the start.

Searching for 105

That’s why contains is an O(n) operation.

This is not the case for binary search trees.

Searching for 105

Every time the search algorithm visits a node in the BST, it can safely make these two
assumptions:

• If the search value is less than the current value, it must be in the left subtree.

• If the search value is greater than the current value, it must be in the right
subtree.

By leveraging the rules of the BST, you can avoid unnecessary checks and cut the
search space in half every time you make a decision. That’s why element lookup in a
BST is an O(log n) operation.

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 154

Inser6on
The performance benefits for the insertion operation follow a similar story. Assume
you want to insert 0 into a collection.

Inserting 0 in sorted order

Inserting values into an array is like butting into an existing line: Everyone in the
line behind your chosen spot needs to make space for you by shuffling back. In the
above example, zero is inserted at the front of the array, causing all of the other
elements to shift backward by one position. Inserting into an array has a time
complexity of O(n).

Insertion into a binary search tree is much more comforting.

By leveraging the rules for the BST, you only needed to make three hops to find the
location for the insertion, and you didn’t have to shuffle all of the elements around.
Inserting elements in a BST is, again, an O(log n) operation.

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 155

Removal
Similar to insertion, removing an element from an array also triggers a shuffling of
elements.

Removing 25 from the array

This behavior also plays nicely with the line analogy. If you leave the middle of the
line, everyone behind you needs to shuffle forward to take up the empty space.

Here’s what removing a value from a BST looks like:

Nice and easy! There are complications to manage when the node you’re removing
has children, but you’ll look into that later. Even with those complications, removing
an element from a BST is still an O(log n) operation.

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 156

Binary search trees drastically reduce the number of steps for add, remove and
lookup operations. Now that you have a grasp of the benefits of using a binary search
tree, you can move on to the actual implementation.

Implementa6on
Open the starter project for this chapter. In it, you’ll find the BinaryNode class you
created in the previous chapter. Create a new file named BinarySearchTree.kt and
add the following to it:

class BinarySearchTree<T: Comparable<T>>() {

 var root: BinaryNode<T>? = null

 override fun toString() = root?.toString() ?: "empty tree"

}

By definition, binary search trees can only hold values that are Comparable.

Next, you’ll look at the insert method.

Inser6ng elements
Following the rules of the BST, nodes of the left child must contain values less than
the current node, whereas nodes of the right child must contain values greater than
or equal to the current node. You’ll implement insert while respecting these rules.

Add the following to BinarySearchTree:

fun insert(value: T) {
 root = insert(root, value)
}

private fun insert(
 node: BinaryNode<T>?,
 value: T
): BinaryNode<T> {
 // 1
 node ?: return BinaryNode(value)
 // 2
 if (value < node.value) {
 node.leftChild = insert(node.leftChild, value)
 } else {
 node.rightChild = insert(node.rightChild, value)
 }

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 157

 // 3
 return node
}

The first insert is exposed to users, while the second will be used as a private helper
method:

1. This is a recursive method, so it requires a base case for terminating recursion. If
the current node is null, you’ve found the insertion point and return the new
BinaryNode.

2. This if statement controls which way the next insert call should traverse. If the
new value is less than the current value, you call insert on the left child. If the
new value is greater than or equal to the current value, you call insert on the
right child.

3. Return the current node. This makes assignments of the form node =
insert(node, value) possible as insert will either create node (if it was null)
or return node (if it was not null).

Go back to main() and add the following at the bottom:

"building a BST" example {
 val bst = BinarySearchTree<Int>()
 (0..4).forEach {
 bst.insert(it)
 }
 println(bst)
}

You’ll see the following output:

---Example of building a BST---
 ┌──4
 ┌──3
 │ └──null
 ┌──2
 │ └──null
┌──1
│ └──null
0
└──null

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 158

That tree looks a bit unbalanced, but it does follow the rules. However, this tree
layout has undesirable consequences. When working with trees, you always want to
achieve a balanced format.

An unbalanced tree affects performance. If you insert 5 into the unbalanced tree you
created, it becomes an O(n) operation.

You can create structures known as self-balancing trees that use clever techniques to
maintain a balanced structure, but we’ll save those details for the next chapter. For
now, you’ll simply build a sample tree with a bit of care to keep it from becoming
unbalanced.

Add the following variable at the start of main():

val exampleTree = BinarySearchTree<Int>().apply {
 insert(3)
 insert(1)

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 159

 insert(4)
 insert(0)
 insert(2)
 insert(5)
}

Then, update the previous example with this code:

"building a BST" example {
 println(exampleTree)
}

You’ll see the following in the console:

---Example of building a BST---
 ┌──5
┌──4
│ └──null
3
│ ┌──2
└──1
 └──0

Much nicer!

Finding elements
Finding an element in a BST requires you to traverse through its nodes. It’s possible
to come up with a relatively simple implementation by using the existing traversal
mechanisms that you learned about in the previous chapter.

Add the following to the bottom of BinarySearchTree:

fun contains(value: T): Boolean {
 root ?: return false

 var found = false
 root?.traverseInOrder {
 if (value == it) {
 found = true
 }
 }

 return found
}

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 160

Next, go back to main() to test this out:

"finding a node" example {
 if (exampleTree.contains(5)) {
 println("Found 5!")
 } else {
 println("Couldn't find 5")
 }
}

You’ll see the following in the console:

---Example of finding a node---
Found 5!

In-order traversal has a time complexity of O(n), thus this implementation of
contains has the same time complexity as an exhaustive search through an
unsorted array. However, you can do better!

Op6mizing contains
You can rely on the rules of the BST to avoid needless comparisons. Inside
BinarySearchTree.kt, update contains to the following:

fun contains(value: T): Boolean {
 // 1
 var current = root

 // 2
 while (current != null) {
 // 3
 if (current.value == value) {
 return true
 }

 // 4
 current = if (value < current.value) {
 current.leftChild
 } else {
 current.rightChild
 }
 }

 return false
}

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 161

Here’s how it works:

1. Start by setting current to the root node.

2. While current is not null, check the current node’s value.

3. If the value is equal to what you’re trying to find, return true.

4. Otherwise, decide whether you’re going to check the left or right child.

This implementation of contains is an O(log n) operation in a balanced binary
search tree.

Removing elements
Removing elements is a little more tricky, as there are a few different scenarios you
need to handle.

Case 1: Leaf node
Removing a leaf node is straightforward; simply detach the leaf node.

Removing 2

For non-leaf nodes, however, there are extra steps you must take.

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 162

Case 2: Nodes with one child
When removing nodes with one child, you need to reconnect that one child with the
rest of the tree.

Removing 4, which has 1 child

Case 3: Nodes with two children
Nodes with two children are a bit more complicated, so a more complex example tree
will serve better to illustrate how to handle this situation. Assume that you have the
following tree and that you want to remove the value 25:

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 163

Simply deleting the node presents a dilemma.

You have two child nodes (12 and 37) to reconnect, but the parent node only has
space for one child. To solve this problem, you’ll implement a clever workaround by
performing a swap.

When removing a node with two children, replace the node you removed with the
smallest node in its right subtree. Based on the rules of the BST, this is the leftmost
node of the right subtree:

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 164

It’s important to note that this produces a valid binary search tree. Because the new
node was the smallest node in the right subtree, all of the nodes in the right subtree
will still be greater than or equal to the new node. And because the new node came
from the right subtree, all of the nodes in the left subtree will be less than the new
node.

After performing the swap, you can simply remove the value you copied, which is
just a leaf node.

This will take care of removing nodes with two children.

Implementa6on
Add the following code to BinaryNode.kt:

val min: BinaryNode<T>?
 get() = leftChild?.min ?: this

This recursive min property in BinaryNode will help you find the minimum node in a
subtree.

Open BinarySearchTree.kt to implement remove. Add the following code at the
bottom of the class:

fun remove(value: T) {
 root = remove(root, value)
}

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 165

private fun remove(
 node: BinaryNode<T>?,
 value: T
): BinaryNode<T>? {
 node ?: return null

 when {
 value == node.value -> {
 // more to come
 }
 value < node.value -> node.leftChild =
remove(node.leftChild, value)
 else -> node.rightChild = remove(node.rightChild, value)
 }
 return node
}

This should look familiar to you. You’re using the same recursive setup with a private
helper method as you did for insert. The different removal cases are handled in the
value == node.value branch:

// 1
if (node.leftChild == null && node.rightChild == null) {
 return null
}
// 2
if (node.leftChild == null) {
 return node.rightChild
}
// 3
if (node.rightChild == null) {
 return node.leftChild
}
// 4
node.rightChild?.min?.value?.let {
 node.value = it
}

node.rightChild = remove(node.rightChild, node.value)

Here’s what’s happening:

1. In the case in which the node is a leaf node, you simply return null, thereby
removing the current node.

2. If the node has no left child, you return node.rightChild to reconnect the right
subtree.

3. If the node has no right child, you return node.leftChild to reconnect the left
subtree.

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 166

4. This is the case in which the node to be removed has both a left and right child.
You replace the node’s value with the smallest value from the right subtree. You
then call remove on the right child to remove this swapped value.

Go back to main() and test remove by writing the following:

"removing a node" example {
 println("Tree before removal:")
 println(exampleTree)
 exampleTree.remove(3)
 println("Tree after removing root:")
 println(exampleTree)
}

You’ll see the following output in the console:

---Example of removing a node---
Tree before removal:
 ┌──5
┌──4
│ └──null
3
│ ┌──2
└──1
 └──0

Tree after removing root:
┌──5
4
│ ┌──2
└──1
 └──0

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 167

Challenges
Think you have searching of binary trees down cold? Try out these three challenges
to lock down the concepts.

Challenge 1 : Is it a BST?
Create a function that checks if a binary tree is a binary search tree.

Solu6on 1
A binary search tree is a tree where every left child is less than or equal to its parent,
and every right child is greater than its parent. An algorithm that verifies whether a
tree is a binary search tree involves going through all the nodes and checking for this
property.

Write the following in BinaryNode.kt in the BinaryNode class:

val isBinarySearchTree: Boolean
 get() = isBST(this, min = null, max = null)

// 1
private fun isBST(tree: BinaryNode<T>?, min: T?, max: T?):
Boolean {
 // 2
 tree ?: return true

 // 3
 if (min != null && tree.value <= min) {
 return false
 } else if (max != null && tree.value > max) {
 return false
 }

 // 4
 return isBST(tree.leftChild, min, tree.value) &&
isBST(tree.rightChild, tree.value, max)
}

Here’s how it works:

1. isBST is responsible for recursively traversing through the tree and checking for
the BST property. It needs to keep track of progress via a reference to a
BinaryNode and also keep track of the min and max values to verify the BST
property.

2. This is the base case. If tree is null, then there are no nodes to inspect. A null

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 168

node is a binary search tree, so you’ll return true in that case.

3. This is essentially a bounds check. If the current value exceeds the bounds of the
min and max values, the current node does not respect the binary search tree
rules.

4. This line contains the recursive calls. When traversing through the left children,
the current value is passed in as the max value. This is because nodes in the left
side cannot be greater than the parent. Vice versa, when traversing to the right,
the min value is updated to the current value. Nodes in the right side must be
greater than the parent. If any of the recursive calls evaluate false, the false
value will propagate to the top.

The time complexity of this solution is O(n) since you need to traverse through the
entire tree once. There is also a O(n) space cost since you’re making n recursive calls.

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 169

Challenge 2 : Equality between BSTs
Override equals() to check whether two binary search trees are equal.

Solu6on 2
Overriding equals() is relatively straightforward. For two binary trees to be equal,
both trees must have the same elements in the same order. This is how the solution
looks:

// 1
override fun equals(other: Any?): Boolean {
 // 2
 return if (other != null && other is BinaryNode<*>) {
 this.value == other.value &&
 this.leftChild == other.leftChild &&
 this.rightChild == other.rightChild
 } else {
 false
 }
}

Here’s an explanation of the code:

1. equals recursively checks two nodes and their descendants for equality.

2. Here, you check the value of the left and right nodes for equality. You also
recursively check the left children and the right children for equality.

Inside BinaryNode.kt, update the BinaryNode class declaration to make T type
comparable:

class BinaryNode<T: Comparable<T>>(var value: T)

The time complexity of this function is O(n). The space complexity of this function is
O(n).

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 170

Challenge 3 : BSTs with same elements?
Create a method that checks if the current tree contains all of the elements of
another tree.

Solu6on 3
Your goal is to create a method that checks if the current tree contains all of the
elements of another tree. In other words, the values in the current tree must be a
superset of the values in the other tree. The solution looks like this:

fun contains(subtree: BinarySearchTree<T>): Boolean {
 // 1
 val set = mutableSetOf<T>()
 root?.traverseInOrder {
 set.add(it)
 }

 // 2
 var isEqual = true
 subtree.root?.traverseInOrder {
 isEqual = isEqual && set.contains(it)
 }
 return isEqual
}

Here’s how it works:

1. Inside contains, you begin by inserting all of the elements of the current tree
into a set.

2. isEqual will store the result. For every element in the subtree, you check if the
value is contained in the set. If at any point set.contains(it) evaluates to
false, you’ll make sure isEqual stays false even if subsequent elements
evaluate to true by assigning isEqual && list.contains(it) to itself.

The time complexity for this algorithm is O(n). The space complexity for this
algorithm is O(n).

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 171

Key points
• The binary search tree is a powerful data structure for holding sorted data.

• Average performance for insert, remove and contains in a BST is O(log n).

• Performance will degrade to O(n) as the tree becomes unbalanced. This is
undesirable, so you’ll learn about a self-balancing binary search tree known as the
AVL tree in the next chapter.

Data Structures & Algorithms in Kotlin Chapter 8: Binary Search Trees

raywenderlich.com 172

9Chapter 9: AVL Trees
By Irina Galata

In the previous chapter, you learned about the O(log n) performance characteristics
of the binary search tree. However, you also learned that unbalanced trees could
deteriorate the performance of the tree, all the way down to O(n).

In 1962, Georgy Adelson-Velsky and Evgenii Landis came up with the first self-
balancing binary search tree: the AVL tree. In this chapter, you’ll dig deeper into how
the balance of a binary search tree can impact performance and implement the AVL
tree from scratch.

raywenderlich.com 173

Understanding balance
A balanced tree is the key to optimizing the performance of the binary search tree.
There are three main states of balance. You’ll look at each one.

Perfect balance
The ideal form of a binary search tree is the perfectly balanced state. In technical
terms, this means every level of the tree is filled with nodes from top to bottom.

A perfectly balanced tree

Not only is the tree perfectly symmetrical, but the nodes at the bottom level are also
completely filled. Note that perfect balanced trees can just have a specific number of
nodes. For instance 1, 3 or 7 are possible number of nodes because they can fill 1, 2
or 3 levels respectively. This is the requirement for being perfectly balanced.

“Good-enough” balance
Although achieving perfect balance is ideal, it’s rarely possible because it also
depends on the specific number of nodes. A tree with 2, 4, 5 or 6 cannot be perfectly
balanced since the last level of the tree will not be filled.

A balanced tree

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 174

Because of this, a different definition exists. A balanced tree must have all its levels
filled, except for the bottom one. In most cases of binary trees, this is the best you
can do.

Unbalanced
Finally, there’s the unbalanced state. Binary search trees in this state suffer from
various levels of performance loss depending on the degree of imbalance.

Some unbalanced trees

Keeping the tree balanced gives the find, insert and remove operations an O(log n)
time complexity. AVL trees maintain balance by adjusting the structure of the tree
when the tree becomes unbalanced. You’ll learn how this works as you progress
through the chapter.

Implementa6on
Inside the starter project for this chapter is an implementation of the binary search
tree as created in the previous chapter. The only difference is that all references to
the binary search tree have been renamed to AVL tree.

Binary search trees and AVL trees share much of the same implementation; in fact,
all that you’ll add is the balancing component. Open the starter project to begin.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 175

Measuring balance
To keep a binary tree balanced, you need a way to measure the balance of the tree.
The AVL tree achieves this with a height property in each node. In tree-speak, the
height of a node is the longest distance from the current node to a leaf node:

Nodes marked with heights

With the starter project for this chapter open the AVLNode.kt file, add the following
property to the AVLNode class:

var height = 0

You’ll use the relative heights of a node’s children to determine whether a particular
node is balanced.

The height of the left and right children of each node must differ at most by 1. This is
known as the balance factor.

Write the following immediately below the height property of AVLNode:

var height = 0

val leftHeight: Int
 get() = leftChild?.height ?: -1

val rightHeight: Int
 get() = rightChild?.height ?: -1

val balanceFactor: Int
 get() = leftHeight - rightHeight

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 176

The balanceFactor computes the height difference of the left and right child. If a
particular child is null, its height is considered to be -1.

Here’s an example of an AVL tree:

AVL tree with balance factors and heights

This is a balanced tree — all levels except the bottom one are filled. The blue
numbers represent the height of each node, while the green numbers represent the
balanceFactor.

Here’s an updated diagram with 40 inserted:

Unbalanced tree

Inserting 40 into the tree turns it into an unbalanced tree. Notice how the
balanceFactor changes. A balanceFactor of 2 or -2 is an indication of an
unbalanced tree.

Although more than one node may have a bad balancing factor, you only need to
perform the balancing procedure on the bottom-most node containing the invalid
balance factor: the node containing 25.

That’s where rotations come in.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 177

Rota6ons
The procedures used to balance a binary search tree are known as rotations. There
are four rotations in total, one for each way that a tree can become unbalanced.
These are known as left rotation, left-right rotation, right rotation and right-left
rotation.

Leh rota6on
You can solve the imbalance caused by inserting 40 into the tree using a left
rotation. A generic left rotation of node X looks like this:

Left rotation applied on node X

Before going into specifics, there are two takeaways from this before-and-after
comparison:

• In-order traversal for these nodes remains the same.

• The depth of the tree is reduced by one level after the rotation.

Add the following method to AVLTree:

private fun leftRotate(node: AVLNode<T>): AVLNode<T> {
 // 1
 val pivot = node.rightChild!!
 // 2
 node.rightChild = pivot.leftChild
 // 3
 pivot.leftChild = node
 // 4
 node.height = max(node.leftHeight, node.rightHeight) + 1
 pivot.height = max(pivot.leftHeight, pivot.rightHeight) + 1

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 178

 // 5
 return pivot
}

Here are the steps needed to perform a left rotation:

1. The right child is chosen as the pivot. This node replaces the rotated node as the
root of the subtree (it moves up a level).

2. The node to be rotated becomes the left child of the pivot (it moves down a
level). This means that the current left child of the pivot must be moved
elsewhere.

In the generic example shown in the earlier image, this is node b. Because b is
smaller than y but greater than x, it can replace y as the right child of x. So you
update the rotated node’s rightChild to the pivot’s leftChild.

3. The pivot’s leftChild can now be set to the rotated node.

4. You update the heights of the rotated node and the pivot.

5. Finally, you return the pivot so that it can replace the rotated node in the tree.

Here are the before-and-after effects of the left rotation of 25 from the previous
example:

Right rota6on
Right rotation is the symmetrical opposite of left rotation. When a series of left
children is causing an imbalance, it’s time for a right rotation.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 179

A generic right rotation of node X looks like this:

Right rotation applied on node X

To implement this, add the following code just after leftRotate():

private fun rightRotate(node: AVLNode<T>): AVLNode<T> {
 val pivot = node.leftChild!!
 node.leftChild = pivot.rightChild
 pivot.rightChild = node
 node.height = max(node.leftHeight, node.rightHeight) + 1
 pivot.height = max(pivot.leftHeight, pivot.rightHeight) + 1
 return pivot
}

This is nearly identical to the implementation of leftRotate(), except the
references to the left and right children have been swapped.

Right-leh rota6on
You may have noticed that the left and right rotations balance nodes that are all left
children or all right children. Consider the case in which 36 is inserted into the
original example tree.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 180

The right-left rotation:

Inserted 36 as left child of 37

Doing a left rotation, in this case, won’t result in a balanced tree. The way to handle
cases like this is to perform a right rotation on the right child before doing the left
rotation. Here’s what the procedure looks like:

The right-left rotation

1. You apply a right rotation to 37.

2. Now that nodes 25, 36 and 37 are all right children, you can apply a left rotation
to balance the tree.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 181

Add the following code immediately after rightRotate():

private fun rightLeftRotate(node: AVLNode<T>): AVLNode<T> {
 val rightChild = node.rightChild ?: return node
 node.rightChild = rightRotate(rightChild)
 return leftRotate(node)
}

Don’t worry just yet about when this is called. You’ll get to that in a second. You first
need to handle the last case, left-right rotation.

Leh-right rota6on
Left-right rotation is the symmetrical opposite of the right-left rotation. Here’s an
example:

The left-right rotation

1. You apply a left rotation to node 10.

2. Now that nodes 25, 15 and 10 are all left children, you can apply a right rotation
to balance the tree.

Add the following code immediately after rightLeftRotate():

private fun leftRightRotate(node: AVLNode<T>): AVLNode<T> {
 val leftChild = node.leftChild ?: return node
 node.leftChild = rightRotate(leftChild)
 return rightRotate(node)
}

That’s it for rotations. Next, you’ll figure out when to apply these rotations at the
correct location.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 182

Balance
The next task is to design a method that uses balanceFactor to decide whether a
node requires balancing or not. Write the following method below
leftRightRotate():

private fun balanced(node: AVLNode<T>): AVLNode<T> {
 return when (node.balanceFactor) {
 2 -> {
 }
 -2 -> {
 }
 else -> node
 }
}

There are three cases to consider.

1. A balanceFactor of 2 suggests that the left child is heavier (that is, contains
more nodes) than the right child. This means that you want to use either right or
left-right rotations.

2. A balanceFactor of -2 suggests that the right child is heavier than the left child.
This means that you want to use either left or right-left rotations.

3. The default case suggests that the particular node is balanced. There’s nothing to
do here except to return the node.

You can use the sign of the balanceFactor to determine if a single or double
rotation is required:

Right rotate, or left right rotate?

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 183

Update the balanced function to the following:

private fun balanced(node: AVLNode<T>): AVLNode<T> {
 return when (node.balanceFactor) {
 2 -> {
 if (node.leftChild?.balanceFactor == -1) {
 leftRightRotate(node)
 } else {
 rightRotate(node)
 }
 }
 -2 -> {
 if (node.rightChild?.balanceFactor == 1) {
 rightLeftRotate(node)
 } else {
 leftRotate(node)
 }
 }
 else -> node
 }
}

balanced() inspects the balanceFactor to determine the proper course of action.
All that’s left is to call balanced() at the proper spot.

Revisi6ng inser6on
You’ve already done the majority of the work. The remainder is fairly
straightforward. Update insert() to the following:

private fun insert(node: AVLNode<T>?, value: T): AVLNode<T>? {
 node ?: return AVLNode(value)
 if (value < node.value) {
 node.leftChild = insert(node.leftChild, value)
 } else {
 node.rightChild = insert(node.rightChild, value)
 }
 val balancedNode = balanced(node)
 balancedNode?.height = max(balancedNode?.leftHeight ?: 0,
balancedNode?.rightHeight ?: 0) + 1
 return balancedNode
}

Instead of returning the node directly after inserting, you pass it into balanced().
This ensures every node in the call stack is checked for balancing issues. You also
update the node’s height.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 184

Time to test it. Go to Main.kt and add the following to main():

"repeated insertions in sequence" example {
 val tree = AVLTree<Int>()

 (0..14).forEach {
 tree.insert(it)
 }

 print(tree)
}

You’ll see the following output in the console:

---Example of repeated insertions in sequence---
 ┌──14
 ┌──13
 │ └──12
┌──11
│ │ ┌──10
│ └──9
│ └──8
7
│ ┌──6
│ ┌──5
│ │ └──4
└──3
 │ ┌──2
 └──1
 └──0

Take a moment to appreciate the uniform spread of the nodes. If the rotations
weren’t applied, this would have become a long, unbalanced chain of right children.

Revisi6ng remove
Retrofitting the remove operation for self-balancing is just as easy as fixing insert. In
AVLTree, find remove and replace the final return statement with the following:

val balancedNode = balanced(node)
balancedNode.height = max(
 balancedNode.leftHeight,
 balancedNode.rightHeight
) + 1
return balancedNode

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 185

Go back to main() in Main.kt and add the following code:

val tree = AVLTree<Int>()
tree.insert(15)
tree.insert(10)
tree.insert(16)
tree.insert(18)
print(tree)
tree.remove(10)
print(tree)

You’ll see the following console output:

---Example of removing a value---
 ┌──18
┌──16
│ └──null
15
└──10

┌──18
16
└──15

Removing 10 caused a left rotation on 15. Feel free to try out a few more test cases of
your own.

Whew! The AVL tree is the culmination of your search for the ultimate binary search
tree. The self-balancing property guarantees that the insert and remove operations
function at optimal performance with an O(log n) time complexity.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 186

Challenges
Here are three challenges that revolve around AVL trees. Solve these to make sure
you understand the concepts.

Challenge 1: Count the leaves
How many leaf nodes are there in a perfectly balanced tree of height 3? What about
a perfectly balanced tree of height h?

Solu6on 1
A perfectly balanced tree is a tree where all of the leaves are at the same level, and
that level is completely filled:

Recall that a tree with only a root node has a height of zero. Thus, the tree in the
example above has a height of two. You can extrapolate that a tree with a height of
three would have eight leaf nodes.

Since each node has two children, the number of leaf nodes doubles as the height
increases. Therefore, you can calculate the number of leaf nodes using a simple
equation:

fun leafNodes(height: Int): Int {
 return 2.0.pow(height).toInt()
}

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 187

Challenge 2: Count the nodes
How many nodes are there in a perfectly balanced tree of height 3? What about a
perfectly balanced tree of height h?

Solu6on 2
Since the tree is perfectly balanced, you can calculate the number of nodes in a
perfectly balanced tree of height three using the following:

fun nodes(height: Int): Int {
 var totalNodes = 0
 (0..height).forEach { currentHeight ->
 totalNodes += 2.0.pow(currentHeight).toInt()
 }
 return totalNodes
}

Although this certainly gives you the correct answer, there’s a faster way. If you
examine the results of a sequence of height inputs, you’ll realize that the total
number of nodes is one less than the number of leaf nodes of the next level.

The previous solution is O(height) but here’s a faster version of this in O(1):

fun nodes(height: Int): Int {
 return 2.0.pow(height + 1).toInt() - 1
}

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 188

Challenge 3: Some refactoring
Since there are many variants of binary trees, it makes sense to group shared
functionality in an abstract class. The traversal methods are a good candidate.

Create a TraversableBinaryNode abstract class that provides a default
implementation of the traversal methods so that concrete subclasses get these
methods for free. Have AVLNode extend this class.

Solu6on 3
First, create the following abstract class:

abstract class TraversableBinaryNode<Self :
 TraversableBinaryNode<Self, T>, T>(var value: T) {

 var leftChild: Self? = null
 var rightChild: Self? = null

 fun traverseInOrder(visit: Visitor<T>) {
 leftChild?.traverseInOrder(visit)
 visit(value)
 rightChild?.traverseInOrder(visit)
 }

 fun traversePreOrder(visit: Visitor<T>) {
 visit(value)
 leftChild?.traversePreOrder(visit)
 rightChild?.traversePreOrder(visit)
 }

 fun traversePostOrder(visit: Visitor<T>) {
 leftChild?.traversePostOrder(visit)
 rightChild?.traversePostOrder(visit)
 visit(value)
 }
}

Finally, add the following at the bottom of main():

"using TraversableBinaryNode" example {
 val tree = AVLTree<Int>()
 (0..14).forEach {
 tree.insert(it)
 }
 println(tree)
 tree.root?.traverseInOrder { println(it) }
}

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 189

You’ll see the following results in the console:

---Example of using TraversableBinaryNode---
 ┌──14
 ┌──13
 │ └──12
┌──11
│ │ ┌──10
│ └──9
│ └──8
7
│ ┌──6
│ ┌──5
│ │ └──4
└──3
 │ ┌──2
 └──1
 └──0

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Key points
• A self-balancing tree avoids performance degradation by performing a balancing

procedure whenever you add or remove elements in the tree.

• AVL trees preserve balance by readjusting parts of the tree when the tree is no
longer balanced.

Data Structures & Algorithms in Kotlin Chapter 9: AVL Trees

raywenderlich.com 190

10Chapter 10: Tries
By Irina Galata

The trie (pronounced try) is a tree that specializes in storing data that can be
represented as a collection, such as English words:

A trie containing the words CAT, CUT, CUTE, TO, and B

Each character in a string is mapped to a node. The last node in each string is marked
as a terminating node (a dot in the image above). The benefits of a trie are best
illustrated by looking at it in the context of prefix matching.

In this chapter, you’ll first compare the performance of the trie to the array. You’ll
then implement the trie from scratch.

raywenderlich.com 191

Example
You are given a collection of strings. How would you build a component that handles
prefix matching? Here’s one way:

class EnglishDictionary {

 private val words: ArrayList<String> = ...

 fun words(prefix: String) = words.filter
{ it.startsWith(prefix) }

}

words() goes through the collection of strings and returns the strings that match
the prefix.

If the number of elements in the words array is small, this is a reasonable strategy.
But if you’re dealing with more than a few thousand words, the time it takes to go
through the words array will be unacceptable. The time complexity of words() is
O(k*n), where k is the longest string in the collection, and n is the number of words
you need to check.

Imagine the number of words Google needs to parse

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 192

The trie data structure has excellent performance characteristics for this type of
problem; like a tree with nodes that support multiple children, each node can
represent a single character.

You form a word by tracing the collection of characters from the root to a node with
a special indicator — a terminator — represented by a black dot. An interesting
characteristic of the trie is that multiple words can share the same characters.

To illustrate the performance benefits of the trie, consider the following example in
which you need to find the words with the prefix CU.

First, you travel to the node containing C. This quickly excludes other branches of
the trie from the search operation:

Next, you need to find the words that have the next letter, U. You traverse to the U
node:

Since that’s the end of your prefix, the trie returns all collections formed by the
chain of nodes from the U node. In this case, the words CUT and CUTE are returned.
Imagine if this trie contained hundreds of thousands of words.

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 193

The number of comparisons you can avoid by employing a trie is substantial.

Implementa6on
Open up the starter project for this chapter.

TrieNode
You’ll begin by creating the node for the trie. Create a new file named TrieNode.kt.
Add the following to the file:

class TrieNode<Key>(var key: Key?, var parent: TrieNode<Key>?) {

 val children: HashMap<Key, TrieNode<Key>> = HashMap()

 var isTerminating = false

}

This interface is slightly different compared to the other nodes you’ve encountered:

1. key holds the data for the node. This is optional because the root node of the trie
has no key.

2. A TrieNode holds a reference to its parent. This reference simplifies remove()
later on.

3. In binary search trees, nodes have a left and right child. In a trie, a node needs to
hold multiple different elements. You’ve declared a children map to help with
that.

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 194

4. As discussed earlier, isTerminating acts as an indicator for the end of a
collection.

Trie
Next, you’ll create the trie itself, which will manage the nodes. Create a new file
named Trie.kt. Add the following to the file:

class Trie<Key> {

 private val root = TrieNode<Key>(key = null, parent = null)

}

The Trie class can store collections containing Keys.

Next, you’ll implement four operations for the trie: insert, contains, remove and a
prefix match.

Insert
Tries work with lists of the Key type. The trie takes the list and represents it as a
series of nodes in which each node maps to an element in the list.

Add the following method to Trie:

fun insert(list: List<Key>) {
 // 1
 var current = root

 // 2
 list.forEach { element ->
 if (current.children[element] == null) {
 current.children[element] = TrieNode(element, current)
 }
 current = current.children[element]!!
 }

 // 3
 current.isTerminating = true
}

Here’s what’s going on:

1. current keeps track of your traversal progress, which starts with the root node.

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 195

2. A trie stores each element of a list in separate nodes. For each element of the list,
you first check if the node currently exists in the children map. If it doesn’t, you
create a new node. During each loop, you move current to the next node.

3. After iterating through the for loop, current should be referencing the node
representing the end of the list. You mark that node as the terminating node.

The time complexity for this algorithm is O(k), where k is the number of elements in
the list you’re trying to insert. This is because you need to traverse through or create
each node that represents each element of the new list.

Contains
contains is similar to insert. Add the following method to Trie:

fun contains(list: List<Key>): Boolean {
 var current = root

 list.forEach { element ->
 val child = current.children[element] ?: return false
 current = child
 }

 return current.isTerminating
}

Here, you traverse the trie in a way similar to insert. You check every element of the
list to see if it’s in the tree. When you reach the last element of the list, it must be a
terminating element. If not, the list wasn’t added to the tree and what you’ve found
is merely a subset of a larger list.

The time complexity of contains is O(k), where k is the number of elements in the
list that you’re looking for. This is because you need to traverse through k nodes to
find out whether or not the list is in the trie.

To test insert and contains, navigate to main() and add the following code:

"insert and contains" example {
 val trie = Trie<Char>()
 trie.insert("cute".toList())
 if (trie.contains("cute".toList())) {
 println("cute is in the trie")
 }
}

String is not a collection type in Kotlin, but you can easily convert it to a list of
characters using the toList extension.

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 196

After running main(), you’ll see the following console output:

---Example of insert and contains---
cute is in the trie

You can make storing Strings in a trie more convenient by adding some extensions.
Create a file named Extensions.kt, and add the following:

fun Trie<Char>.insert(string: String) {
 insert(string.toList())
}

fun Trie<Char>.contains(string: String): Boolean {
 return contains(string.toList())
}

These extension functions are only applicable to tries that store lists of characters.
They hide the extra toList() calls you need to pass in a String, allowing you to
simplify the previous code example to this:

"insert and contains" example {
 val trie = Trie<Char>()
 trie.insert("cute")
 if (trie.contains("cute")) {
 println("cute is in the trie")
 }
}

Remove
Removing a node in the trie is a bit more tricky. You need to be particularly careful
when removing each node since nodes can be shared between multiple different
collections. Write the following method immediately below contains:

fun remove(collection: CollectionType) {
 // 1
 var current = root

 collection.forEach {
 val child = current.children[it] ?: return
 current = child
 }

 if (!current.isTerminating) return

 // 2
 current.isTerminating = false

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 197

 // 3
 val parent = current.parent
 while (current.children.isEmpty() && !current.isTerminating) {
 parent?.let {
 it.children[current.key] = null
 current = it
 }
 }
}

Here’s how it works:

1. This part should look familiar, as it’s basically the implementation of contains.
You use it here to check if the collection is part of the trie and to point current
to the last node of the collection.

2. You set isTerminating to false so that the current node can be removed by the
loop in the next step.

3. This is the tricky part. Since nodes can be shared, you don’t want to carelessly
remove elements that belong to another collection. If there are no other children
in the current node, it means that other collections do not depend on the current
node.

You also check to see if the current node is a terminating node. If it is, then it
belongs to another collection. As long as current satisfies these conditions, you
continually backtrack through the parent property and remove the nodes.

The time complexity of this algorithm is O(k), where k represents the number of
elements of the collection that you’re trying to remove.

Sticking to strings, it’s time to add another extension in Extensions.kt:

fun Trie<Char>.remove(string: String) {
 remove(string.toList())
}

Go back to main() and add the following to the bottom:

"remove" example {
 val trie = Trie<Char>()

 trie.insert("cut")
 trie.insert("cute")

 println("\n*** Before removing ***")
 assert(trie.contains("cut"))
 println("\"cut\" is in the trie")

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 198

 assert(trie.contains("cute"))
 println("\"cute\" is in the trie")

 println("\n*** After removing cut ***")
 trie.remove("cut")
 assert(!trie.contains("cut"))
 assert(trie.contains("cute"))
 println("\"cute\" is still in the trie")
}

You’ll see the following output in the console:

---Example of: remove---

*** Before removing ***
"cut" is in the trie
"cute" is in the trie

*** After removing cut ***
"cute" is still in the trie

Prefix matching
The most iconic algorithm for the trie is the prefix-matching algorithm. Write the
following at the bottom of Trie:

fun collections(prefix: List<Key>): List<List<Key>> {
 // 1
 var current = root

 prefix.forEach { element ->
 val child = current.children[element] ?: return emptyList()
 current = child
 }

 // 2
 return collections(prefix, current)
}

Here’s how it works:

1. You start by verifying that the trie contains the prefix. If not, you return an empty
list.

2. After you’ve found the node that marks the end of the prefix, you call a recursive
helper method to find all of the sequences after the current node.

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 199

Next, add the code for the helper method:

private fun collections(prefix: List<Key>, node:
TrieNode<Key>?): List<List<Key>> {
 // 1
 val results = mutableListOf<List<Key>>()

 if (node?.isTerminating == true) {
 results.add(prefix)
 }

 // 2
 node?.children?.forEach { (key, node) ->
 results.addAll(collections(prefix + key, node))
 }

 return results
}

This code works like so:

1. You create a MutableList to hold the results. If the current node is a terminating
node, you add the corresponding prefix to the results.

2. Next, you need to check the current node’s children. For every child node, you
recursively call collections() to seek out other terminating nodes.

collection() has a time complexity of O(k*m), where k represents the longest
collection matching the prefix and m represents the number of collections that
match the prefix.

Recall that arrays have a time complexity of O(k*n), where n is the number of
elements in the collection.

For large sets of data in which each collection is uniformly distributed, tries have far
better performance as compared to using arrays for prefix matching.

Time to take the method for a spin. Add a handy extension first, in Extensions.kt:

fun Trie<Char>.collections(prefix: String): List<String> {
 return collections(prefix.toList()).map
{ it.joinToString(separator = "") }
}

This extension maps the input string into a list of characters, and then maps the lists
in the result of the collections() call back to strings. Neat!

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 200

Navigate back to main() and add the following:

"prefix matching" example {
 val trie = Trie<Char>().apply {
 insert("car")
 insert("card")
 insert("care")
 insert("cared")
 insert("cars")
 insert("carbs")
 insert("carapace")
 insert("cargo")
 }

 println("\nCollections starting with \"car\"")
 val prefixedWithCar = trie.collections("car")
 println(prefixedWithCar)

 println("\nCollections starting with \"care\"")
 val prefixedWithCare = trie.collections("care")
 println(prefixedWithCare)
}

You’ll see the following output in the console:

---Example of prefix matching---

Collections starting with "car"
[car, carapace, carbs, cars, card, care, cared, cargo]

Collections starting with "care"
[care, cared]

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 201

Challenges

Challenge 1: Adding more features
The current implementation of the trie is missing some notable operations. Your
task for this challenge is to augment the current implementation of the trie by
adding the following:

1. A lists property that returns all of the lists in the trie.

2. A count property that tells you how many lists are currently in the trie.

3. An isEmpty property that returns true if the trie is empty, false otherwise.

Solu6on 1
For this solution, you’ll implement lists as a computed property. It’ll be backed by
a private property named storedLists.

Inside Trie.kt, add the following new properties:

private val storedLists: MutableSet<List<Key>> = mutableSetOf()

val lists: List<List<Key>>
 get() = storedLists.toList()

storedLists is a set of the lists currently contained by the trie. Reading the lists
property returns a list of these tries, which is created from the privately maintained
set.

Next, inside insert(), find the line current.isTerminating = true and add the
following immediately below it:

storedLists.add(list)

In remove(), find the line current.isTerminating = false and add the following
immediately above that line:

storedLists.remove(list)

Adding the count and isEmpty properties is straightforward now that you’re keeping
track of the lists:

val count: Int

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 202

 get() = storedLists.count()

val isEmpty: Boolean
 get() = storedLists.isEmpty()

Key points
• Tries provide great performance metrics in regards to prefix matching.

• Tries are relatively memory efficient since individual nodes can be shared between
many different values. For example, “car”, “carbs”, and “care” can share the first
three letters of the word.

Data Structures & Algorithms in Kotlin Chapter 10: Tries

raywenderlich.com 203

11Chapter 11: Binary Search
Irina Galata

Binary search is one of the most efficient searching algorithms with a time
complexity of O(log n). This is comparable with searching for an element inside a
balanced binary search tree.

Two conditions need to be met before you can use binary search:

• The collection must be able to perform index manipulation in constant time.
Kotlin collections that can do this include the Array and the ArrayList.

• The collection must be sorted.

raywenderlich.com 204

Example
The benefits of binary search are best illustrated by comparing it with linear search.
The ArrayList type uses linear search to implement its indexOf() method. This
means that it traverses through the entire collection or until it finds the element.

Linear search for the value 31.

Binary search handles things differently by taking advantage of the fact that the
collection is already sorted.

Here’s an example of applying binary search to find the value 31:

Binary search for the value 31.

Instead of eight steps to find 31, it only takes three. Here’s how it works:

Step 1: Find middle index
The first step is to find the middle index of the collection, like so:

Step 2: Check the element at the middle index
The next step is to check the element stored at the middle index. If it matches the
value you’re looking for, you return the index. Otherwise, you’ll continue to Step 3.

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 205

Step 3: Recursively call binary Search
The final step is to recursively call binary search. However, this time, you’ll only
consider the elements exclusively to the left or right of the middle index, depending
on the value you’re searching for. If the value you’re searching for is less than the
middle value, you search the left subsequence. If it’s greater than the middle value,
you search the right subsequence.

Each step effectively removes half of the comparisons you would otherwise need to
perform.

In the example where you’re looking for the value 31 (which is greater than the
middle element 22), you apply binary search on the right subsequence.

You continue these three steps until you can no longer split the collection into left
and right halves, or until you find the value inside the collection.

Binary search achieves an O(log n) time complexity this way.

Implementa6on
Open the starter project for this chapter. Create a new file named BinarySearch.kt.
Add the following to the file:

// 1
fun <T : Comparable<T>> ArrayList<T>.binarySearch(
 value: T,
 range: IntRange = indices // 2
): Int? {
 // more to come
}

Things are fairly simple, so far:

1. You want binarySearch to be available on any ArrayList, so you define it as a
generic extension function.

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 206

2. Binary search is recursive, so you need to be able to pass in a range to search. The
parameter range is made optional by giving it a default value; this lets you start
the search without having to specify a range. In this case, the indices property
of ArrayList is used, which covers all valid indexes of the collection.

Next, implement binarySearch:

// 1
if (range.first > range.last) {
 return null
}

// 2
val size = range.last - range.first + 1
val middle = range.first + size / 2

return when {
 // 3
 this[middle] == value -> middle
 // 4
 this[middle] > value -> binarySearch(value, range.first until
middle)
 else -> binarySearch(value, (middle + 1)..range.last)
}

Here are the steps:

1. First, you check if the range contains at least one element. If it doesn’t, the
search has failed and you return null.

2. Now that you’re sure you have elements in the range, you find the middle index
in the range.

3. You then compare the value at this index with the value you’re searching for. If
they match, you return the middle index.

4. If not, you recursively search either the left or right half of the collection,
excluding the middle item in both cases.

That wraps up the implementation of binary search. Go back to main() to test it out:

"binary search" example {
 val array = arrayListOf(1, 5, 15, 17, 19, 22, 24, 31, 105,
150)

 val search31 = array.indexOf(31)
 val binarySearch31 = array.binarySearch(31)

 println("indexOf(): $search31")

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 207

 println("binarySearch(): $binarySearch31")
}

You’ll see the following output in the console:

---Example of binary search---
indexOf(): 7
binarySearch(): 7

This represents the index of the value you’re looking for.

Binary search is a powerful algorithm to learn, and it comes up often in
programming interviews. Whenever you read something along the lines of “Given a
sorted array...”, consider using the binary search algorithm. Also, if you’re given a
problem that looks like it’s going to be O(n²) to search, consider doing some upfront
sorting. With upfront sorting, you can use binary searching to reduce complexity to
the cost of the sort at O(n log n).

Challenges

Challenge 1: Find the range
Write a function that searches a sorted ArrayList and finds the range of indices for
a particular element. For example:

val array = arrayListOf(1, 2, 3, 3, 3, 4, 5, 5)
val indices = array.findIndices(3)
println(indices)

findIndices should return the range 2..4, since those are the start and end indices
for the value 3.

Solu6on 1
An unoptimized but elegant solution is quite simple:

fun <T : Comparable<T>> ArrayList<T>.findIndices(
 value: T
): IntRange? {
 val startIndex = indexOf(value)
 val endIndex = lastIndexOf(value)

 if (startIndex == -1 || endIndex == -1) {

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 208

 return null
 }

 return startIndex..endIndex
}

The time complexity of this solution is O(n), which may not seem to be a cause for
concern. However, you can optimize the solution to an O(_log n) time complexity
solution.

Binary search is an algorithm that identifies values in a sorted collection, so keep
that in mind whenever the problem promises a sorted collection. The binary search
you implemented in the theory chapter is not powerful enough to reason whether
the index is a start or end index. You’ll modify that binary search to accommodate
for this new rule.

Write the following in BinarySearch.kt:

fun <T : Comparable<T>> ArrayList<T>.findIndices(
 value: T
): IntRange? {
 val startIndex = startIndex(value, 0..size) ?: return null
 val endIndex = endIndex(value, 0..size) ?: return null

 return startIndex until endIndex
}

private fun <T : Comparable<T>> ArrayList<T>.startIndex(
 value: T,
 range: IntRange
): Int? {
 // more to come
}

private fun <T : Comparable<T>> ArrayList<T>.endIndex(
 value: T,
 range: IntRange
): Int? {
 // more to come
}

This time, findIndices will use specialized binary searches. startIndex and
endIndex will be the ones that do the heavy lifting with a customized binary search.
You’ll modify binary search so that it also inspects whether the adjacent value —
depending on whether you’re looking for the start or end index — is different from
the current value.

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 209

Update the startIndex function to the following:

private fun <T : Comparable<T>> ArrayList<T>.startIndex(
 value: T,
 range: IntRange
): Int? {
 // 1
 val middleIndex = range.start + (range.last - range.start + 1)
/ 2

 // 2
 if (middleIndex == 0 || middleIndex == size - 1) {
 return if (this[middleIndex] == value) {
 middleIndex
 } else {
 null
 }
 }

 // 3
 return if (this[middleIndex] == value) {
 if (this[middleIndex - 1] != value) {
 middleIndex
 } else {
 startIndex(value, range.start until middleIndex)
 }
 } else if (value < this[middleIndex]) {
 startIndex(value, range.start until middleIndex)
 } else {
 startIndex(value, (middleIndex + 1)..range.last)
 }
}

Here’s what you do with this code:

1. You start by calculating the middle value of the indices contained in range.

2. This is the base case of this recursive function. If the middle index is the first or
last accessible index of the array, you don’t need to call binary search any further.
You’ll determine whether or not the current index is a valid bound for the given
value.

3. Here, you check the value at the index and make your recursive calls. If the value
at middleIndex is equal to the value you’re given, you check to see if the
predecessor is also the same value. If it isn’t, you know that you’ve found the
starting bound. Otherwise, you’ll continue by recursively calling startIndex.

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 210

The endIndex method is similar. Update the endIndex implementation to the
following:

private fun <T : Comparable<T>> ArrayList<T>.endIndex(
 value: T,
 range: IntRange
): Int? {
 val middleIndex = range.start + (range.last - range.start + 1)
/ 2

 if (middleIndex == 0 || middleIndex == size - 1) {
 return if (this[middleIndex] == value) {
 middleIndex + 1
 } else {
 null
 }
 }

 return if (this[middleIndex] == value) {
 if (this[middleIndex + 1] != value) {
 middleIndex + 1
 } else {
 endIndex(value, (middleIndex + 1)..range.last)
 }
 } else if (value < this[middleIndex]) {
 endIndex(value, range.start until middleIndex)
 } else {
 endIndex(value, (middleIndex + 1)..range.last)
 }
}

Test your solution by writing the following in main():

"binary search for a range" example {
 val array = arrayListOf(1, 2, 3, 3, 3, 4, 5, 5)
 val indices = array.findIndices(3)
 println(indices)
}

You’ll see the following output in the console:

---Example of binary search for a range---
2..4

This improves the time complexity from the previous O(n) to O(log n).

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 211

Key points
• Binary search is only a valid algorithm on sorted collections.

• Sometimes, it may be beneficial to sort a collection just to leverage the binary
search capability for looking up elements.

• The indexOf method of arrays uses linear search, which has an O(n) time
complexity. Binary search has an O(log n) time complexity, which scales much
better for large data sets.

Data Structures & Algorithms in Kotlin Chapter 11: Binary Search

raywenderlich.com 212

12Chapter 12: The Heap
Data Structure
By Irina Galata

Have you ever been to the arcade and played those crane machines that contain
stuffed animals or cool prizes? These machines make it extremely difficult to win.
But the fact that you set your eyes on the item you want is the very essence of the
heap data structure!

Have you seen the movie Toy Story with the claw and the little green squeaky aliens?
Just imagine that the claw machine operates on your heap data structure and will
always pick the element with the highest priority.

In this chapter, you’ll focus on creating a heap, and you’ll see how convenient it is to
fetch the minimum and maximum element of a collection.

raywenderlich.com 213

What is a heap?
A heap is a complete binary tree data structure also known as a binary heap that
you can construct using an array.

Note: Don’t confuse these heaps with memory heaps. The term heap is
sometimes confusingly used in computer science to refer to a pool of memory.
Memory heaps are a different concept and are not what you’re studying here.

Heaps come in two flavors:

1. Maxheap, in which elements with a higher value have a higher priority.

2. Minheap, in which elements with a lower value have a higher priority.

Note: It's important to say that the concept of heap is valid for every type of
object that can be compared to others of the same type. In this chapter you'll
see mostly Ints but the same concepts are true for all Comparable types or, as
you'll see later, if a Comparator is provided .

A heap has an important characteristic that must always be satisfied. This is known
as the heap invariant or heap property.

The heap property

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 214

In a maxheap, parent nodes must always contain a value that is greater than or equal
to the value in its children. The root node will always contain the highest value.

In a minheap, parent nodes must always contain a value that is less than or equal to
the value in its children. The root node will always contain the lowest value.

Another important property of a heap is that it’s a complete binary tree. This means
that every level must be filled, except for the last level. It’s like a video game wherein
you can’t go to the next level until you have completed the current one.

Heap applica6ons
Some useful applications of a heap include:

• Calculating the minimum or maximum element of a collection.

• Heap sort.

• Implementing a priority queue.

• Supporting graph algorithms, like Prim’s or Dijkstra’s, with a priority queue.

Note: You’ll learn about each of these concepts in later chapters.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 215

Common heap opera6ons
Open the empty starter project for this chapter. Start by defining the following basic
Collection type:

interface Collection<Element> {
 val count: Int
 get

 val isEmpty: Boolean
 get() = count == 0

 fun insert(element: Element)

 fun remove(): Element?

 fun remove(index: Int): Element?
}

Here you have a generic Collection interface with the basic property count which
returns the number of elements and the boolean property isEmpty which just tests if
the count is 0. It also contains the classical operations of inserting and
deletion.Given that you can define the Heap interface like this.

interface Heap<Element> : Collection<Element> {

 fun peek(): Element?
}

The peek operation is a generalization of methods returning the min or the max
depending on the implementation. Because of this you can usually find the same
operation with name extract-min or extract-max.

Sor6ng and comparing
The heap properties imply there must be a way to compare each element and so a
way to test if an element A is greater, smaller or equals than the element B. In Kotlin,
as well as in Java, this can be achieved in 2 different ways:

• Element implements the Comparable<Element> interface

• You can provide a Comparator<Element> implementation

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 216

Implementing the Comparable<Element> interface, a type Element can only provide
a single way of comparing instances of itself with others of the same type. If you use
a Comparator<Element> you can choose different way of sorting simply using
different Comparator implementations. In both cases you need to abstract the way
you compare different instances. Because of this you can define the abstract class
which contains the definition of the compare method you'll implement in different
ways depending on the 2 different approaches. This method returns a negative
integer, zero, or a positive integer as the first argument is less than, equal to, or
greater than the second.

abstract class AbstractHeap<Element>() : Heap<Element> {

 abstract fun compare(a: Element, b: Element): Int
}

In case of Comparable types you can define a Heap implementation like the
following where the Element type implements Comparable<Element> and compare
method invokes the related compareTo method.

class ComparableHeapImpl<Element : Comparable<Element>>() :
AbstractHeap<Element>() {

 override fun compare(a: Element, b: Element): Int =
a.compareTo(b)
}

In case you want to use a Comparator<Element> you can implement a Heap like this
where the compare method delegates to the Comparator<Element> you pass as
parameter.

class ComparatorHeapImpl<Element>(
 private val comparator: Comparator<Element>
) : AbstractHeap<Element>() {

 override fun compare(a: Element, b: Element): Int =
 comparator.compare(a, b)
}

In the previous code, you'll see some errors because of the missing implementation
of the peek operation along with the operations from the Collection interface, but
you'll fix everything very soon. Anyway, depending on the Comparator<Element> or
the Comparable<Element> implementation you can create different minheaps and
maxheaps. Before this you need some theory.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 217

How do you represent a heap?
Trees hold nodes that store references to their children. In the case of a binary tree,
these are references to a left and a right child.

Heaps are indeed binary trees, but you can represent them with a simple array. This
seems like an unusual way to build a tree, but one of the benefits of this heap
implementation is efficient time and space complexity, as the elements in the
heap are all stored together in memory.

You’ll see later on that swapping elements plays a big part in heap operations. This
is also easier to do with an array than with a binary tree data structure.

It’s time to look at how you can represent heaps using an array. Take the following
binary heap:

To represent the heap above as an array, you would simply iterate through each
element level-by-level from left to right.

Your traversal would look something like this:

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 218

As you go up a level, you’ll have twice as many nodes than in the level before.

It’s now easy to access any node in the heap. You can compare this to how you’d
access elements in an array: Instead of traversing down the left or right branch, you
can simply access the node in your array using simple formulas.

Given a node at a zero-based index i:

• You can find the left child of this node at index 2i + 1.

• You can find the right child of this node at index 2i + 2.

You might want to obtain the parent of a node. You can solve for i in this case. Given
a child node at index i, you can find this child’s parent node at index (i - 1) / 2.
Just remember this is an operation between Ints which returns an Int;in other
languages you can call it the floor operation.

Note: Traversing down an actual binary tree to get the left and right child of a
node is an O(log n) operation. In a random-access data structure, such as an
array, that same operation is just O(1).

Next, use your new knowledge to add some properties and convenience methods to
the AbstractHeap class:

var elements: ArrayList<Element> = ArrayList<Element>()

override val count: Int

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 219

 get() = elements.size

override fun peek(): Element? = elements.first()

private fun leftChildIndex(index: Int) = (2 * index) + 1

private fun rightChildIndex(index: Int) = (2 * index) + 2

private fun parentIndex(index: Int) = (index - 1) / 2

Now that you have a better understanding of how you can represent a heap using an
array, you’ll look at some important operations of a heap.

Inser6ng into a heap
Suppose you insert a value of 7 to the heap below:

First, you add the value to the end of the heap:

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 220

Next, you must check the max heap’s property. In order to do this you have to sift up
since the node that you just inserted might have a higher priority than its parents. It
does so by comparing the current node with its parent and swapping them if needed.

Your heap has now satisfied the max heap property.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 221

Implementa6on of insert
Add the following code to AbstractHeap:

override fun insert(element: Element) {
 elements.add(element) // 1
 siftUp(count - 1) // 2
}

private fun siftUp(index: Int) {
 var child = index
 var parent = parentIndex(child)
 while (child > 0 && compare(elements[child], elements[parent])
> 0) {
 Collections.swap(elements, child, parent)
 child = parent
 parent = parentIndex(child)
 }
}

As you can see, the implementation is rather straightforward:

1. insert appends the element to the array and then performs a sift up.

2. siftUp swaps the current node with its parent, as long as that node has a higher
priority than its parent.

Complexity: The overall complexity of insert() is O(log n). Appending an
element in an array takes only O(1), while sifting up elements in a heap takes
O(log n).

That’s all there is to inserting an element in a heap but how can you remove an
element?

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 222

Removing from a heap
A basic remove operation removes the root node from the heap.

Take the following max heap:

A remove operation will remove the maximum value at the root node. To do so, you
must first swap the root node with the last element in the heap.

Once you’ve swapped the two elements, you can remove the last element and store
its value so you can return it later.

Now, you must check the max heap’s integrity. But first, ask yourself, “Is it still a max
heap?”

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 223

Remember: The rule for a max heap is that the value of every parent node must be
larger than or equal to the values of its children. Since the heap no longer follows
this rule, you must perform a sift down.

To perform a sift down, start from the current value 3 and check its left and right
child. If one of the children has a value that is greater than the current value, you
swap it with the parent. If both children have greater values, you swap the parent
with the greater child value.

You have to continue to sift down until the node’s value is not larger than the values
of its children.

Once you reach the end, you’re done, and the max heap’s property has been restored.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 224

Implementa6on of remove
Add the following code to AbstractHeap:

override fun remove(): Element? {
 if (isEmpty) return null // 1

 Collections.swap(elements, 0, count - 1) // 2
 val item = elements.removeAt(count - 1) // 3
 siftDown(0) // 4
 return item
}

Here’s how this method works:

1. Check to see if the heap is empty. If it is, return null.

2. Swap the root with the last element in the heap.

3. Remove the last element (the maximum or minimum value) and return it.

4. The heap may not be a maxheap or minheap anymore, so you must perform a sift
down to make sure it conforms to the rules.

To see how to sift down nodes, add the following method after remove():

private fun siftDown(index: Int) {
 var parent = index // 1
 while (true) { // 2
 val left = leftChildIndex(parent) //3
 val right = rightChildIndex(parent)
 var candidate = parent // 4
 if (left < count &&
 compare(elements[left], elements[candidate]) > 0) {
 candidate = left //5
 }
 if (right < count &&
 compare(elements[right], elements[candidate]) > 0) {
 candidate = right // 6
 }
 if (candidate == parent) {
 return // 7
 }
 Collections.swap(elements, parent, candidate) // 8
 parent = candidate
 }
}

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 225

siftDown() accepts, as parameter, the index of the element to consider as the
parent node to swap with one of the children until it finds the right position. Here’s
how the method works:

1. Store the parent index.

2. Continue sifting until you return.

3. Get the parent’s left and right child index.

4. candidate is used to keep track of which index to swap with the parent.

5. If there’s a left child, and it has a higher priority than its parent, make it the
candidate.

6. If there’s a right child, and it has an even greater priority, it will become the
candidate instead.

7. If candidate is still parent, you have reached the end, and no more sifting is
required.

8. Swap candidate with parent and set it as the new parent to continue sifting.

Complexity: The overall complexity of remove() is O(log n). Swapping
elements in an array takes only O(1), while sifting down elements in a heap
takes O(log n) time.

Now that you know how to remove from the top of the heap, it’s time to learn how to
add to a heap.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 226

Removing from an arbitrary index
Add the following method to AbstractHeap removing all the previous errors:

override fun remove(index: Int): Element? {
 if (index >= count) return null // 1

 return if (index == count - 1) {
 elements.removeAt(count - 1) // 2
 } else {
 Collections.swap(elements, index, count - 1) // 3
 val item = elements.removeAt(count - 1) // 4
 siftDown(index) // 5
 siftUp(index)
 item
 }
}

To remove any element from the heap, you need an index. Let’s go over how this
works:

1. Check to see if the index is within the bounds of the array. If not, return null.

2. If you’re removing the last element in the heap, you don’t need to do anything
special. Simply remove and return the element.

3. If you’re not removing the last element, first swap the element with the last
element.

4. Then, return and remove the last element.

5. Finally, perform both a sift down and a sift up to adjust the heap.

So, why do you have to perform a sift down and a sift up?

Shifting up case

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 227

Assume that you’re trying to remove 5. You swap 5 with the last element, which is 8.
You now need to perform a sift up to satisfy the max heap property.

Shifting down case

Now, assume that you’re trying to remove 7. You swap 7 with the last element, which
is 1. You now need to perform a sift down to satisfy the max heap property.

Complexity: Removing an arbitrary element from a heap is an O(log n)
operation.

But how do you find the index of the element you want to delete?

Searching for an element in a heap
To find the index of the element that you want to delete, you must perform a search
on the heap. Unfortunately, heaps are not designed for fast searches.

With a binary search tree, you can perform a search in O(log n) time, but since heaps
are built using an array, and the node ordering in an array is different, you can’t even
perform a binary search.

Complexity: To search for an element in a heap is, in the worst-case, an O(n)
operation, since you may have to check every element in the array:

private fun index(element: Element, i: Int): Int? {
 if (i >= count) {
 return null // 1

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 228

 }
 if (sort(element, elements[i])) {
 return null // 2
 }
 if (element == elements[i]) {
 return i // 3
 }
 val leftChildIndex = index(element, leftChildIndex(i))
 if (leftChildIndex != null) return leftChildIndex // 4

 val rightChildIndex = index(element, rightChildIndex(i))
 if (rightChildIndex != null) return rightChildIndex // 5

 return null // 6
}

Here’s how this implementation works:

1. If the index is greater than or equal to the number of elements in the array, the
search failed. Return null.

2. Check to see if the element that you’re looking for has higher priority than the
current element at index i. If it does, the element you’re looking for cannot
possibly be lower in the heap.

3. If the element is equal to the element at index i, return i.

4. Recursively search for the element starting from the left child of i.

5. Recursively search for the element starting from the right child of i.

6. If both searches failed, the search failed. Return null.

Note: Although searching takes O(n) time, you have made an effort to
optimize searching by taking advantage of the heap’s property and checking
the priority of the element when searching.

Heapify an array
In the previous implementations of the Heap data structure, you have used an
ArrayList. Other implementation could use an Array setting a max dimension for
it. Making an existing array following the heap properties is an operation usually
called heapify.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 229

In order to implement this function add this code to AbstractHeap.

protected fun heapify(values: ArrayList<Element>) {
 elements = values
 if (!elements.isEmpty()) {
 (count / 2 downTo 0).forEach {
 siftDown(it)
 }
 }
}

If a non-empty array is provided, you use this as the elements for the heap. To satisfy
the heap’s property, you loop through the array backward, starting from the first
non-leaf node, and sift down all parent nodes.

You loop through only half of the elements because there’s no point in sifting down
leaf nodes, only parent nodes.

With this method you can add this code to ComparableHeapImpl:

companion object {
 fun <Element : Comparable<Element>> create(
 elements: ArrayList<Element>
): Heap<Element> {
 val heap = ComparableHeapImpl<Element>()
 heap.heapify(elements)
 return heap
 }
}

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 230

...and this code to ComparatorHeapImpl

companion object {
 fun <Element> create(
 elements: ArrayList<Element>,
 comparator: Comparator<Element>
): Heap<Element> {
 val heap = ComparatorHeapImpl(comparator)
 heap.heapify(elements)
 return heap
 }
}

This code allows you to define a static factory method and create a Heap
implementation starting from a given array and test your implementations.

Tes6ng
You now have all the necessary tools to create and test a Heap. You can start using
this code in order to create a max-heap of Comparable objects represented by Int
values.

fun main() {
 val array = arrayListOf(1, 12, 3, 4, 1, 6, 8, 7) // 1
 val priorityQueue = ComparableHeapImpl.create(array) // 2
 while (!priorityQueue.isEmpty) { // 3
 println(priorityQueue.remove())
 }
}

In the previous code you:

1. create an ArrayList of Ints

2. using the array in order to create a ComparableHeapImpl

3. remove and print the max value until the Heap is empty

Notice that the elements are removed largest to smallest, and the following numbers
are printed to the console:

12
8
7
6
4
3

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 231

1
1

If you want to create a min-heap you can replace the previous code in main() with
the following:

fun main() {
 val array = arrayListOf(1, 12, 3, 4, 1, 6, 8, 7) // 1
 val inverseComparator = object : Comparator<Int> { // 2
 override fun compare(o1: Int, o2: Int): Int =
o2.compareTo(o1)
 }
 val minHeap = ComparatorHeapImpl.create(array,
inverseComparator) // 3
 while (!minHeap.isEmpty) { // 4
 println(minHeap.remove())
 }
}

In this case you:

1. create an ArrayList of Ints

2. create an implementation of the Comparator<Int> which implements the
inverse order for Int

3. using the array and the comparator in order to create a ComparatorHeapImpl

4. remove and print the value with highest priority (whose value this time is the
lowest) until the Heap is empty

Running this code you'll get the the following output:

1
1
3
4
6
7
8
12

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 232

Challenges

Challenge 1: Find the nth smallest value
Write a function to find the nth smallest integer in an unsorted array. For example:

val integers = arrayListOf(3, 10, 18, 5, 21, 100)

If n = 3, the result should be 10.

Solu6on 1
There are many ways to solve for the nth smallest integer in an unsorted array. For
example, you could choose a sorting algorithm you learned in this chapter, sort the
array, and grab the element at the nth index.

Here’s how you would obtain the nth smallest element using a minheap:

fun getNthSmallestElement(n: Element): Element? {
 var current = 1 // 1
 while (!isEmpty) { // 2
 val element = remove() // 3
 if (current == n) { // 4
 return element
 }
 current += 1 // 5
 }
 return null // 6
}

Here’s how it works:

1. current tracks the nth smallest element.

2. As long as the heap is not empty, continue to remove elements.

3. Remove the root element from the heap.

4. Check to see if you reached the nth smallest element. If so, return the element.

5. If not, increment current.

6. Return null if the heap is empty.

Building a heap takes O(n). Every element removal from the heap takes O(log n).
Keep in mind that you’re also doing this n times. The overall time complexity is O(n
log n).

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 233

Challenge 2: The min heap visualiza6on
Given the following array list, visually construct a minheap. Provide a step-by-step
diagram of how the minheap is constructed.

arrayListOf(3, 10, 18, 5, 21, 100)

Solu6on 2

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 234

Challenge 3: Heap merge
Write a method that combines two heaps.

Solu6on 3
Add this as an additional function for your AbstractHeap class after defining the
same operation on the Heap interface:

override fun merge(heap: AbstractHeap<Element>) {
 elements.addAll(heap.elements)
 buildHeap()
}

private fun buildHeap() {
 if (!elements.isEmpty()) {
 (count / 2 downTo 0).forEach {
 siftDown(it)
 }
 }
}

To merge two heaps, you first combine both arrays which takes O(m), where m is the
length of the heap you are merging.

Building the heap takes O(n). Overall the algorithm runs in O(n).

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 235

Challenge 4: Min heap check
Write a function to check if a given array is a minheap.

Solu6on 4
To check if the given array is a minheap, you only need to go through the parent
nodes of the binary heap. To satisfy the minheap, every parent node must be less
than or equal to its left and right child node.

Here’s how you can determine if an array is a minheap:

override fun isMinHeap(): Boolean {
 if (isEmpty) return true // 1
 (count / 2 - 1 downTo 0).forEach {
 // 2
 val left = leftChildIndex(it) // 3
 val right = rightChildIndex(it)
 if (left < count &&
 compare(elements[left], elements[it]) < 0) { // 4
 return false
 }
 if (right < count
 && compare(elements[right], elements[it]) < 0) { // 5
 return false
 }
 }
 return true // 6
}

Here’s how it works:

1. If the array is empty, it’s a minheap.

2. Go through all of the parent nodes in the array in reverse order.

3. Get the left and right child index.

4. Check to see if the left element is less than the parent.

5. Check to see if the right element is less than the parent.

6. If every parent-child relationship satisfies the minheap property, return true.

The time complexity of this solution is O(n). This is because you still have to go
through every element in the array.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 236

Key points
• Here’s a summary of the algorithmic complexity of the heap operations you

implemented in this chapter:

Heap operation time complexity

• The heap data structure is good for maintaining the highest or lowest priority
element.

• Every time you insert or remove items from the heap, you must check to see if it
satisfies the rules of the priority.

Data Structures & Algorithms in Kotlin Chapter 12: The Heap Data Structure

raywenderlich.com 237

13Chapter 13: Priority
Queues
By Irina Galata

Queues are lists that maintain the order of elements using first in, first out (FIFO)
ordering. A priority queue is another version of a queue. However, instead of using
FIFO ordering, elements are dequeued in priority order.

A priority queue can have either a:

• Max-priority: The element at the front is always the largest.

• Min-priority: The element at the front is always the smallest.

A priority queue is especially useful when you need to identify the maximum or
minimum value within a list of elements.

In this chapter, you’ll learn the benefits of a priority queue and build one by
leveraging the existing queue and heap data structures that you studied in previous
chapters.

raywenderlich.com 238

Applica6ons
Some useful applications of a priority queue include:

• Dijkstra’s algorithm: Uses a priority queue to calculate the minimum cost.

• A* pathfinding algorithm: Uses a priority queue to track the unexplored routes
that will produce the path with the shortest length.

• Heap sort: Many heap sorts use a priority queue.

• Huffman coding: Useful for building a compression tree. A min-priority queue is
used to repeatedly find two nodes with the smallest frequency that don’t yet have
a parent node.

Priority queues have many more applications and practical uses; the list above
represents only a handful.

Common opera6ons
In Chapter 5, “Queues”, you established the following interface for queues:

interface Queue<T> {

 fun enqueue(element: T): Boolean

 fun dequeue(): T?

 val count: Int
 get

 val isEmpty: Boolean
 get() = count == 0

 fun peek(): T?
}

A priority queue has the same operations as a normal queue, so only the
implementation will be different.

The priority queue will implement the Queue interface and the common operations:

• enqueue: Inserts an element into the queue. Returns true if the operation is
successful.

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 239

• dequeue: Removes the element with the highest priority and returns it. Returns
null if the queue is empty.

• count: Property for the number of items in the queue.

• isEmpty: Checks if the queue is empty. The implementation just checks if the
count property is 0.

• peek: Returns the element with the highest priority without removing it. Returns
null if the queue is empty.

You’re ready to look at different ways to implement a priority queue.

Implementa6on
You can create a priority queue in the following ways:

1. Sorted array: This is useful to obtain the maximum or minimum value of an
element in O(1) time. However, insertion is slow and requires O(n) because you
have to search the right position for every element you insert.

2. Balanced binary search tree: This is useful in creating a double-ended priority
queue, which features getting both the minimum and maximum value in O(log n)
time. Insertion is better than a sorted array, also in O(log n).

3. Heap: This is a natural choice for a priority queue. A heap is more efficient than
a sorted array because a heap only needs to be partially sorted. All heap
operations are O(log n) except extracting the min value from a min priority heap
is a lightning-fast O(1). Likewise, extracting the max value from a max priority
heap is also O(1).

Next, you’ll look at how to use a heap to create a priority queue.

To get started, open the starter project. Inside, you’ll notice the following files:

1. Heap.kt: The heap data structure (from the previous chapter) that you’ll use to
implement the priority queue.

2. Queue.kt: Contains the interface that defines a queue.

Add the following abstract class:

// 1
abstract class AbstractPriorityQueue<T> : Queue<T> {

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 240

 // 2
 abstract val heap: Heap<T>
 get

 // more to come ...
}

Here’s a closer look at the code:

1. AbstractPriorityQueue implements the Queue interface and is generic in the
type T. It’s an abstract class because you want to manage comparison using either
Comparable<T> objects or an external Comparator<T> implementation.

2. You’re going to use a Heap<T>, so you need an abstract property that the specific
implementation will define.

To implement the Queue interface, add the following to AbstractPriorityQueue:

 // 1
 override fun enqueue(element: T): Boolean {
 heap.insert(element)
 return true
 }

 // 2
 override fun dequeue() = heap.remove()

 // 3
 override val count: Int
 get() = heap.count

 // 4
 override fun peek() = heap.peek()

The heap is a perfect candidate for a priority queue. To implement the operations of
a priority queue, you need to call various methods of a heap.

1. By calling enqueue(), you add the element into the heap using insert(), which
guarantees to arrange data internally so that the one with the highest priority is
ready to extract. The overall complexity of enqueue() is the same as insert():
O(log n).

2. By calling dequeue(), you remove the root element from the heap using
remove(). The Heap guarantees to get the one with the highest priority. The
overall complexity of dequeue() is the same as remove(): O(log n) .

3. count uses the same property of the heap.

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 241

4. peek() delegates to the same method of the heap.

Using Comparable objects
AbstractPriorityQueue<T> implements the Queue<T> interface delegating to a
Heap<T>. You can implement this using either Comparable<T> objects or a
Comparator<T>. In this example, you’ll use the former.

Add the following code to PriorityQueue.kt.

class ComparablePriorityQueueImpl<T : Comparable<T>> :
 AbstractPriorityQueue<T>() {

 override val heap = ComparableHeapImpl<T>()
}

Here, you implement heap using a ComparableHeapImpl<T> object. The
ComparablePriorityQueueImpl<T> needs an object that implements the
Comparable<T> interface.

To test this implementation, add the following code to Main.kt:

"max priority queue" example {
 // 1
 val priorityQueue = ComparablePriorityQueueImpl<Int>()
 // 2
 arrayListOf(1, 12, 3, 4, 1, 6, 8, 7).forEach {
 priorityQueue.enqueue(it)
 }
 // 3
 while (!priorityQueue.isEmpty) {
 println(priorityQueue.dequeue())
 }
}

In this example, you:

1. Create a ComparablePriorityQueueImpl<Int> using Int as generic type value
which is Comparable<Int>.

2. Enqueue the value from an unsorted array into the priority queue.

3. Dequeue all of the values from the priority queue.

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 242

When you run the code, notice the elements are removed largest to smallest. The
following is printed to the console:

---Example of max priority queue---
12
8
7
6
4
3
1
1

Using Comparator objects
Providing different Comparator<T> interface implementations allows you to choose
the priority criteria.

Add the following code to PriorityQueue.kt.

class ComparatorPriorityQueueImpl<T>(
 private val comparator: Comparator<T>
) : AbstractPriorityQueue<T>() {

 override val heap = ComparatorHeapImpl(comparator)
}

Here, the only difference is the value provided to heap, which is now a
ComparatorHeapImpl<T> and needs a Comparator<T> that you provide as a
constructor parameter.

To test this implementation, add the following code to main() inside Main.kt:

"min priority queue" example {
 // 1
 val stringLengthComparator = object : Comparator<String> {
 override fun compare(o1: String?, o2: String?): Int {
 val length1 = o1?.length ?: -1
 val length2 = o2?.length ?: -1
 return length1 - length2
 }
 }
 // 2
 val priorityQueue =
ComparatorPriorityQueueImpl(stringLengthComparator)
 // 3
 arrayListOf("one", "two", "three", "forty", "five", "six",
"seven", "eight", "nine").forEach {

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 243

 priorityQueue.enqueue(it)
 }
 // 4
 while (!priorityQueue.isEmpty) {
 println(priorityQueue.dequeue())
 }
}

In this example, you:

1. Create a Comparator<String> implementation that compares String based on
the length from the longest to the shortest.

2. Create a ComparatorPriorityQueueImpl using the previous comparator in the
constructor.

3. Enqueue value from an unsorted array as String into the priority queue.

4. Dequeue all the values from the priority queue.

When you run the code, you’ll see this output where the String objects are sorted
from the longest to the shortest.

---Example of min priority queue---
forty
three
eight
seven
nine
five
two
one
six

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 244

Challenges

Challenge 1: Construc6ng ArrayList priority
queues
You learned to use a heap to construct a priority queue by implementing the Queue
interface. Now, construct a priority queue using an ArrayList:

interface Queue<T> {

 fun enqueue(element: T): Boolean

 fun dequeue(): T?

 val count: Int
 get

 val isEmpty: Boolean
 get() = count == 0

 fun peek(): T?
}

Solu6on 1
Recall that a priority queue dequeues element in priority order. It could either be a
min or max priority queue. To make an array-based priority queue, you need to
implement the Queue interface. Instead of using a heap, you can use an array list.

First, add the following code to PriorityQueueArray.kt:

// 1
abstract class AbstractPriorityQueueArrayList<T> : Queue<T> {

 // 2
 protected val elements = ArrayList<T>()

 // 3
 abstract fun sort()

 // more to come ...
}

Here, you:

1. Define the AbstractPriorityQueueArrayList<T> abstract class implementing

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 245

the Queue<T> interface.

2. Define the elements property of type ArrayList<T> as protected so it can be
accessed by the classes extending this.

3. The sort abstract function is the one you’re going to implement in different
ways depending on the usage of Comparable<T> objects or a Comparator<T>.

With this code, some of the Queue<T> operations come for free, so add the following
code:

override val count: Int
 get() = elements.size

override fun peek() = elements.firstOrNull()

Here, you’re assuming that the ArrayList<T> is always sorted, and if it’s not empty,
it always contains the element with the highest priority in position 0. This
assumption allows you to implement the dequeue operation using this code:

override fun dequeue() =
 if (isEmpty) null else elements.removeAt(0)

It’s important to know how the dequeue operation is O(n) because the removal of an
item in position 0 requires the shift of all of the other elements. A possible
optimization, which you can try as exercise, is to put the element with the highest
priority in the last position so that you don’t have to shift any elements but instead
reduce the size by 1.

Next, add the enqueue method. This is the one responsible for the sorting:

override fun enqueue(element: T): Boolean {
 // 1
 elements.add(element)
 // 2
 sort()
 // 3
 return true
}

To enqueue an element into an array-based priority queue, this code does the
following:

1. Appends the element in the ArrayList.

2. Sorts the elements into the ArrayList using the sort function.

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 246

3. Returns true because the element was inserted with success.

The overall time complexity here is the complexity of the sort implementation,
because the add operation of the ArrayList is O(1).

Before implementing sort(), add this code so you can print the priority queue in a
nice format:

override fun toString() = elements.toString()

You can now provide different realizations for the
AbstractPriorityQueueArrayList<T> class and the sort operation.

To manage Comparable<T> objects, add the following code:

class ComparablePriorityQueueArrayList<T : Comparable<T>> :
AbstractPriorityQueueArrayList<T>() {
 override fun sort() {
 Collections.sort(elements)
 }
}

Here, you implement sort() using the same method of the Collections class. The
complexity, in this case, is O(n log n); it’s the same if you want to use a
Comparator<T>, which you can do using the following code:

class ComparatorPriorityQueueArrayList<T>(
 private val comparator: Comparator<T>
) : AbstractPriorityQueueArrayList<T>() {
 override fun sort() {
 Collections.sort(elements, comparator)
 }
}

Can you do better? Sure! If you always insert the new item in the right position, you
have to shift all of the other elements — and this can be done in O(n). You can now
write this implementation for Comparable<T> objects:

class CustomPriorityQueueArrayList<T : Comparable<T>> :
AbstractPriorityQueueArrayList<T>() {
 override fun sort() {
 var index = count - 2
 while (index >= 0 &&
 elements[index + 1].compareTo(elements[index]) > 0) {
 swap(index, index + 1)
 index--;
 }
 }

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 247

 private fun swap(i: Int, j: Int) {
 val tmp = elements[i]
 elements[i] = elements[j]
 elements[j] = tmp
 }
}

This is an O(n) operation since you have to shift the existing elements to the left by
one until you find the right position.

Congratulations, you now have an array-based priority queue.

To test the priority queue, add the following code to main():

"max priority array list based queue" example {
 val priorityQueue = CustomPriorityQueueArrayList<Int>()
 arrayListOf(1, 12, 3, 4, 1, 6, 8, 7).forEach {
 priorityQueue.enqueue(it)
 }
 priorityQueue.enqueue(5)
 priorityQueue.enqueue(0)
 priorityQueue.enqueue(10)
 while (!priorityQueue.isEmpty) {
 println(priorityQueue.dequeue())
 }
}

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 248

Challenge 2: Sor6ng
Your favorite concert was sold out. Fortunately, there’s a waitlist for people who still
want to go. However, the ticket sales will first prioritize someone with a military
background, followed by seniority.

Write a sort function that returns the list of people on the waitlist by the
appropriate priority. Person is provided below and should be put inside Person.kt:

data class Person(
 val name: String,
 val age: Int,
 val isMilitary: Boolean)

Solu6on 2
Given a list of people on the waitlist, you would like to prioritize the people in the
following order:

1. Military background.

2. Seniority, by age.

The best solution for this problem is to put the previous logic into a
Comparator<Person> implementation and then use the proper priority queue
implementation. In this way, you can give Person objects different priority providing
different Comparator<Person> implementations.

Add this code to Person.kt:

object MilitaryPersonComparator : Comparator<Person> {
 override fun compare(o1: Person, o2: Person): Int {
 if (o1.isMilitary && !o2.isMilitary) {
 return 1
 } else if (!o1.isMilitary && o2.isMilitary) {
 return -1
 } else if (o1.isMilitary && o2.isMilitary) {
 return o1.age.compareTo(o2.age)
 }
 return 0
 }
}

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 249

To test your priority sort function, try a sample data set by adding the following:

 "concert line" example {
 val p1 = Person("Josh", 21, true)
 val p2 = Person("Jake", 22, true)
 val p3 = Person("Clay", 28, false)
 val p4 = Person("Cindy", 28, false)
 val p5 = Person("Sabrina", 30, false)
 val priorityQueue =
ComparatorPriorityQueueImpl(MilitaryPersonComparator)
 arrayListOf(p1, p2, p3, p4, p5).forEach {
 priorityQueue.enqueue(it)
 }
 while (!priorityQueue.isEmpty) {
 println(priorityQueue.dequeue())
 }
 }

Running the previous code, you’ll get this output:

---Example of concert line---
Jake
Josh
Cindy
Clay
Sabrina

Key points
• A priority queue is often used to find the element in priority order.

• The AbstractPriorityQueue<T> implementation creates a layer of abstraction by
focusing on key operations of a queue and leaving out additional functionality
provided by the heap data structure.

• This makes the priority queue’s intent clear and concise. Its only job is to enqueue
and dequeue elements, nothing else.

• The AbstractPriorityQueue<T> implementation is another good example of
Composition over (implementation) inheritance.

Data Structures & Algorithms in Kotlin Chapter 13: Priority Queues

raywenderlich.com 250

Sec6on IV: Sor6ng Algorithms

Putting lists in order is a classical computational problem. Sorting has been studied
since the days of vacuum tubes and perhaps even before that. Although you may
never need to write your own sorting algorithm — thanks to the highly optimized
standard library — studying sorting has many benefits. You’ll be introduced, for
example, to the all-important technique of divide-and-conquer, stability, and best-
and worst-case timing.

The sorting algorithms you’ll cover in this section include:

• Chapter 14: O(n²) Sorting Algorithms: O(n²) time complexity doesn’t have
great performance, but the sorting algorithms in this category are easy to
understand and useful in some scenarios. These algorithms are space-efficient and
only require constant O(1) additional memory space. In this chapter, you’ll look at
the bubble sort, selection sort and insertion sort algorithms.

• Chapter 15: Merge Sort: In this chapter, you’ll study one of the most important
sorting algorithm based on the divide and conquer principle. You’ll learn how to
split an array, sort it recursively and then merge the two parts together.

• Chapter 16: Radix Sort: So far, you’ve been relying on comparisons to determine
the sorting order. In this chapter, you’ll look at a completely different model of
sorting. Radix sort is a non-comparative algorithm for sorting integers in linear
time. There are multiple implementations of radix sort that focus on different
problems. To keep things simple, you’ll focus on sorting base 10 integers while
investigating the least significant digit (LSD) variant of radix sort.

• Chapter 17: Heap Sort: Heap sort is another comparison-based algorithm that
sorts an array in ascending order using a heap. This chapter builds on the heap
concepts presented in Chapter 12, “The Heap Data Structure.” Heap sort takes
advantage of a heap being, by definition, a partially sorted binary tree.

• Chapter 18: Quicksort: Quicksort is another divide-and-conquer technique that
introduces the concept of partitions and a pivot to implement high-performance
sorting. You‘ll see that while it’s extremely fast for some datasets, for others, it can

raywenderlich.com 251

be a bit slow.

Studying sorting may seem a bit academic and disconnected to the real world of app
development, but understanding the tradeoffs for these simple cases will lead you to
a better understanding and let you analyze any algorithm.

Data Structures & Algorithms in Kotlin Section IV: Sorting Algorithms

raywenderlich.com 252

14Chapter 14: O(n²) Sor6ng
Algorithms
By Matei Șuică

O(n²) time complexity is not great performance, but the sorting algorithms in this
category are easy to understand and useful in some scenarios. These algorithms are
space efficient, and they only require constant O(1) additional memory space. For
small data sets, these sorts compare favorably against more complex sorts. It’s
usually not recommended to use O(n²) in production code, but you’ll need to start
somewhere, and these algorithms are a great place to start.

In this chapter, you’ll look at the following sorting algorithms:

• Bubble sort.

• Selection sort.

• Insertion sort.

All of these are comparison-based sorting methods. In other words, they rely on a
comparison method, such as the less than operator, to order elements. You measure
a sorting technique’s general performance by counting the number of times this
comparison gets called.

raywenderlich.com 253

Bubble sort
One of the simplest sorts is the bubble sort. The bubble sort repeatedly compares
adjacent values and swaps them, if needed, to perform the sort. The larger values in
the set will, therefore, bubble up to the end of the collection.

Example
Consider the following hand of cards, and suppose you want to sort them in
ascending order:

A single pass of the bubble sort algorithm consists of the following steps:

• Start at the beginning of the collection. Compare 9 with the next value in the
array, which is 4. Since you’re sorting in ascending order, and 9 is greater than 4,
you need to swap these values. The collection then becomes [4, 9, 10, 3].

• Move to the next index in the collection. You’re now comparing 9 and 10. These
are in order, so there’s nothing to do.

• Move to the next index in the collection. Compare 10 and 3. You need to swap
these values. The collection then becomes [4, 9, 3, 10].

• You’ll stop there as it’s pointless to move to the next position because there’s
nothing left to sort.

A single pass of the algorithm seldom results in a complete ordering. You can see for
yourself that the cards above are not yet completely sorted. 9 is greater than 3, but
the 3 of diamonds still comes before the 9 of diamonds. It will, however, cause the
largest value (10) to bubble up to the end of the collection.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 254

Subsequent passes through the collection does the same for 9 and 4 respectively.
Here’s an illustration of the passes. You can see that after each pass, the collection
has fewer cards in the wrong position.

The sort is only complete when you can perform a full pass over the collection
without having to swap any values. At worst, this will require n-1 passes, where n is
the count of members in the collection. For the cards example, you had four cards, so
you needed three passes to make sure everything’s in order.

Implementa6on
To get started, open the starter project for this chapter. Because you already know
that you’ll need to do a lot of swapping, the first thing you need to do is write an
extension for ArrayList to swap elements.

Open Utils.kt and add:

fun <T> ArrayList<T>.swapAt(first: Int, second: Int) {
 val aux = this[first]
 this[first] = this[second]
 this[second] = aux
}

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 255

With this useful addition, start working on the bubbleSort() extension.

Since ArrayList is mutable, you’re free to swap its elements. In src ▸ bubblesort,
create a new file named BubbleSort.kt. Add the following function:

fun <T : Comparable<T>> ArrayList<T>.bubbleSort(showPasses:
Boolean = false) {
 // 1
 if (this.size < 2) return
 // 2
 for (end in (1 until this.size).reversed()) {
 var swapped = false
 // 3
 for (current in 0 until end) {
 if (this[current] > this[current + 1]) {
 // 4
 this.swapAt(current, current + 1)
 swapped = true
 }
 }
 // 5
 if(showPasses) println(this)
 // 6
 if (!swapped) return
 }
}

Here’s how it works:

1. There’s no need to sort the collection when it has less than two elements. One
element is sorted by itself; zero elements don’t require an order.

2. A single-pass will bubble the largest value to the end of the collection. Every pass
needs to compare one less value than in the previous pass, so you shorten the
array by one with each pass.

3. This loop performs a single pass starting from the first element and going up
until the last element not already sorted. It compares every element with the
adjacent value.

4. Next, the algorithm swaps the values if needed and marks this in swapped. This is
important later because it’ll allow you to exit the sort as early as you can detect
the list is sorted.

5. This prints out how the list looks after each pass. This step has nothing to do
with the sorting algorithm, but it will help you visualize how it works. You can
remove it (and the function parameter) after you understand the sorting
algorithm.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 256

6. If no values were swapped this pass, the collection is assumed sorted, and you
can exit early.

Try it out. Open Main.kt and write the following inside main():

"bubble sort" example {
 val list = arrayListOf(9, 4, 10, 3)
 println("Original: $list")
 list.bubbleSort(true)
 println("Bubble sorted: $list")
}

Since you used the showPasses trick, you’ll see the following output:

---Example of bubble sort---
Original: [9, 4, 10, 3]
[4, 9, 3, 10]
[4, 3, 9, 10]
[3, 4, 9, 10]
Bubble sorted: [3, 4, 9, 10]

Bubble sort has a best time complexity of O(n) if it’s already sorted, and a worst and
average time complexity of O(n²), making it one of the least appealing sorts.

Selec6on sort
Selection sort follows the basic idea of bubble sort but improves upon this
algorithm by reducing the number of swapAt operations. Selection sort only swaps at
the end of each pass. You’ll see how that works in the following implementation.

Example
Assume you have the following hand of cards:

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 257

During each pass, selection sort finds the lowest unsorted value and swaps it into
place:

1. 3 is found as the lowest value, so it’s swapped with 9.

2. The next lowest value is 4, and it’s already in the right place.

3. Finally, 9 is swapped with 10.

Implementa6on
In src ▸ selectionsort, create a new file named SelectionSort.kt. Since you added
the swapAt() extension for the bubble sort, you’ll leverage it here too.

Note: If you didn’t already add swapAt(), go back and copy it into Utils.kt.

After you confirm that you can swap list elements, write the following inside the file:

fun <T : Comparable<T>> ArrayList<T>.selectionSort(showPasses:
Boolean = false) {

 if (this.size < 2) return
 // 1
 for (current in 0 until (this.size - 1)) {
 var lowest = current
 // 2
 for (other in (current + 1) until this.size) {
 if (this[lowest] > this[other]) {
 lowest = other
 }

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 258

 }
 // 3
 if (lowest != current) {
 this.swapAt(lowest, current)
 }
 // 4
 if(showPasses) println(this)
 }
}

Here’s what’s going on:

1. You perform a pass for every element in the collection, except for the last one.
There’s no need to include the last element because if all other elements are in
their correct order, the last one will be as well.

2. In every pass, you go through the remainder of the collection to find the element
with the lowest value.

3. If that element is not the current element, swap them.

4. This optional step shows you how the list looks after each step when you call the
function with showPasses set to true. You can remove this and the parameter
once you understand the algorithm.

Try it out. Go back to the main playground page and add the following:

"selection sort" example {
 val list = arrayListOf(9, 4, 10, 3)
 println("Original: $list")
 list.selectionSort(true)
 println("Bubble sorted: $list")
}

You’ll see the following output in your console:

---Example of selection sort---
Original: [9, 4, 10, 3]
[3, 4, 10, 9]
[3, 4, 10, 9]
[3, 4, 9, 10]
Bubble sorted: [3, 4, 9, 10]

Like bubble sort, selection sort has a worst and average time complexity of O(n²),
which is fairly dismal. Unlike the bubble sort, it also has the best time complexity of
O(n²). Despite this, it performs better than bubble sort because it performs only O(n)
swaps — and the best thing about it is that it’s a simple one to understand.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 259

Inser6on sort
Insertion sort is a more useful algorithm. Like bubble sort and selection sort,
insertion sort has an average time complexity of O(n²), but the performance of
insertion sort can vary. The more the data is already sorted, the less work it needs to
do. Insertion sort has a best time complexity of O(n) if the data is already sorted.

Example
The idea of insertion sort is like how you’d sort a hand of cards. Consider the
following hand:

Insertion sort will iterate once through the cards, from left to right. Each card is
shifted to the left until it reaches its correct position.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 260

1. You can ignore the first card, as there are no previous cards to compare it with.

2. Next, you compare 4 with 9 and shift 4 to the left by swapping positions with 9.

3. 10 doesn’t need to shift, as it’s in the correct position compared to the previous
card.

4. Finally, 3 shifts to the front by comparing and swapping it with 10, 9 and 4,
respectively.

It’s worth pointing out that the best case scenario for insertion sort occurs when the
sequence of values are already in sorted order, and no left shifting is necessary.

Implementa6on
In src ▸ selectionsort of your starter project, create a new file named
InsertionSort.kt. Write the following inside of the file:

fun <T : Comparable<T>> ArrayList<T>.insertionSort(showPasses:
Boolean = false) {
 if (this.size < 2) return
 // 1
 for (current in 1 until this.size) {
 // 2
 for (shifting in (1..current).reversed()) {
 // 3
 if (this[shifting] < this[shifting - 1]) {
 this.swapAt(shifting, shifting - 1)
 } else {
 break
 }
 }
 // 4
 if(showPasses) println(this)
 }
}

Here’s what you did:

1. Insertion sort requires you to iterate from left to right, once. This loop does that.

2. Here, you run backward from the current index so you can shift left as needed.

3. Keep shifting the element left as long as necessary. As soon as the element is in
position, break the inner loop and start with the next element.

4. This is the same trick you used with the other sort algorithms; it shows you the
passes. Remember that this is not part of the sorting algorithm.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 261

Head back to main() in Main.kt and write the following at the bottom:

"insertion sort" example {
 val list = arrayListOf(9, 4, 10, 3)
 println("Original: $list")
 list.insertionSort(true)
 println("Bubble sorted: $list")
}

You’ll see the following console output:

---Example of insertion sort---
Original: [9, 4, 10, 3]
[4, 9, 10, 3]
[4, 9, 10, 3]
[3, 4, 9, 10]
Bubble sorted: [3, 4, 9, 10]

Insertion sort is one of the fastest sorting algorithms when some of the data is
already sorted, but this isn’t true for all sorting algorithms. In practice, a lot of data
collections will already be mostly — if not entirely — sorted, and an insertion sort
will perform quite well in those scenarios.

Generaliza6on
In this section, you’ll generalize these sorting algorithms for list types other than
ArrayList. Exactly which list types won’t matter, as long as they’re mutable since
you need to be able to swap elements. The changes are small and simple but
important. You always want your algorithms to be as generic as possible.

You’ll go through the code in the exact order you’ve written it, starting with Utils.kt.

Open the file and swap the swapAt() definition with this one:

fun <T> MutableList<T>.swapAt(first: Int, second: Int)

Head back to BubbleSort.swift and update the function definition to the following:

fun <T : Comparable<T>> MutableList<T>.bubbleSort(showPasses:
Boolean = false)

Are you starting to see a pattern here?

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 262

Because you didn’t use any Array specific methods in the algorithm, you can change
the ArrayList usages with MutableList. Do the same with the selection sort, in
SelectionSort.kt:

fun <T : Comparable<T>> MutableList<T>.selectionSort(showPasses:
Boolean = false)

Finally, deal with the insertion sort. Open InsertionSort.kt and replace the
extension function definition with this one:

fun <T : Comparable<T>> MutableList<T>.insertionSort(showPasses:
Boolean = false)

Notice that you don’t need to change the examples in Main.kt. That’s because the
ArrayList is a MutableList. Since your algorithms are now generic, they can
handle any implementation of the MutableList.

Generalization won’t always be so easy, but it’s something you need to do. You want
your algorithm to work with as many data structures as possible. With a bit of
practice, generalizing these algorithms becomes a fairly mechanical process.

In the next chapters, you’ll take a look at sorting algorithms that perform better than
O(n²). Up next is a sorting algorithm that uses a classical algorithm approach known
as divide and conquer — merge sort!

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 263

Challenges

Challenge 1: To the leh, to the leh
Given a list of Comparable elements, bring all instances of a given value in the list to
the right side of the array.

Solu6on 1
The trick to this problem is to find the elements that need to be moved and shift
everything else to the left. Then, return to the position where the element was
before, and continue searching from there.

fun<T: Comparable<T>> MutableList<T>.rightAlign(element: T) {
 // 1
 if(this.size < 2) return
 // 2
 var searchIndex = this.size - 2
 while(searchIndex >= 0) {
 // 3
 if(this[searchIndex] == element) {
 // 4
 var moveIndex = searchIndex
 while(moveIndex < this.size - 1 &&
 this[moveIndex + 1] != element) {
 swapAt(moveIndex, moveIndex + 1)
 moveIndex++
 }
 }
 // 5
 searchIndex--
 }
}

Here’s a breakdown of this moderately complicated function:

1. If there are less than two elements in the list, there’s nothing to do.

2. You leave the last element alone and start from the previous one. Then, you go to
the left (decreasing the index), until you reach the beginning of the list when the
searchIndex is 0.

3. You’re looking for elements that are equal to the one in the function parameter.

4. Whenever you find one, you start shifting it to the right until you reach another
element equal to it or the end of the list. Remember, you already implemented
swapAt(); don’t forget to increment moveIndex.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 264

5. After you’re done with that element, move searchIndex to the left again by
decrementing it.

The tricky part here is to understand what sort of capabilities you need. Since you
need to make changes to the underlying storage, this function is only available to
MutableList types.

To complete this algorithm efficiently, you need backward index traversal, which is
why you can’t use any generic MutableCollection.

Finally, you also need the elements to be Comparable to target the appropriate
values.

The time complexity of this solution is O(n).

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 265

Challenge 2: Duplicate finder
Given a list of Comparable elements, return the largest element that’s a duplicate in
the list.

Solu6on 2
Finding the biggest duplicated element is rather straightforward. To make it even
easier, you can sort the list with one of the methods you’ve already implemented.

fun<T: Comparable<T>> MutableList<T>.biggestDuplicate(): T? {
 // 1
 this.selectionSort()
 // 2
 for(i in (1 until this.size).reversed()) {
 // 3
 if(this[i] == this[i - 1]) {
 return this[i]
 }
 }
 return null
}

Here’s the solution in three steps:

1. You first sort the list.

2. Start going through it from right to left since you know that the biggest elements
are on the right, neatly sorted.

3. The first one that’s repeated is your solution.

In the end, if you’ve gone through all of the elements and none of them are repeated,
you can return null and call it a day.

The time complexity of this solution is O(n²) because you’ve used sorting.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 266

Challenge 3: Manual reverse
Reverse a list of elements by hand. Do not rely on reverse or reversed; you need to
create your own.

Solu6on 3
Reversing a collection is also quite straightforward. Using the double reference
approach, you start swapping elements from the start and end of the collection,
making your way to the middle.

Once you’ve hit the middle, you’re done swapping, and the collection is reversed.

fun<T: Comparable<T>> MutableList<T>.rev() {

 var left = 0
 var right = this.size - 1

 while (left < right) {
 swapAt(left, right)
 left++
 right--
 }
}

For this solution, you need MutableList since you need to mutate the collection to
reverse.

The time complexity of this solution is O(n).

Key points
• n² algorithms often have a terrible reputation, but some of these algorithms

usually have some redeeming points. insertionSort can sort in O(n) time if the
collection is already in sorted order and gradually scales down to O(n²).

• insertionSort is one of the best sorts in situations wherein you know ahead of
time that your data is in sorted order.

• Design your algorithms to be as generic as possible without hurting the
performance.

Data Structures & Algorithms in Kotlin Chapter 14: O(n²) Sorting Algorithms

raywenderlich.com 267

15Chapter 15: Merge Sort
By Matei Șuică

Merge sort is one of the most efficient sorting algorithms. With a time complexity of
O(n log n), it’s one of the fastest of all general-purpose sorting algorithms. The idea
behind merge sort is divide and conquer — to break a big problem into several
smaller, easier-to-solve problems, and then combine those solutions into a final
result. The merge sort mantra is to split first and merge after.

raywenderlich.com 268

As an example, assume that you’re given a pile of unsorted playing cards:

The merge sort algorithm works as follows:

1. Split the pile in half, which gives you two unsorted piles:

2. Keep splitting the resulting piles until you can’t split them anymore. In the end,
you’ll have one card in each pile. Because a single card is always sorted, you now
have a bunch of sorted piles:

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 269

3. Merge the piles in the reverse order in which you split them. During each merge,
put the contents in sorted order. This is easy because each pile has already been
sorted. You know that the smallest cards in any pile are on the left side:

In this chapter, you’ll implement merge sort from scratch.

Implementa6on
The Merge sort consists of two main steps: split and merge. To implement them,
open the starter project and start editing the MergeSort.kt file into the mergesort
package.

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 270

Split
In the MergeSort.kt file copy the following code:

fun <T : Comparable<T>> List<T>.mergeSort(): List<T> {
 if (this.size < 2) return this
 val middle = this.size / 2
 val left = this.subList(0, middle)
 val right = this.subList(middle, this.size)
 // ... more to come
}

When it comes to sorting algorithms, any list that’s shorter than two elements is
already sorted. That’s why the first if is your best chance to exit fast and finish with
the sorting.

You then split the list into halves. Splitting once isn’t enough — you have to keep
splitting recursively until you can’t split anymore, which is when each subdivision
contains only a single element.

To do this, update mergeSort as follows:

fun <T : Comparable<T>> List<T>.mergeSort(): List<T> {
 // 1
 if (this.size < 2) return this
 val middle = this.size / 2

 // 2
 val left = this.subList(0, middle).mergeSort()
 val right = this.subList(middle, this.size).mergeSort()

 // ... still more to come
}

Here are the key elements of the code as it looks right now:

1. Recursion needs a base case, which you can also think of as an “exit condition”.
In this case, the base case is when the list only has one element. Your previous
quick win is now the cornerstone of the algorithm.

2. You’re calling mergeSort on each of the sub-lists. This recursion continues to try
to split the lists into smaller lists until the “exit condition” is fulfilled. In your
case, it will split until the lists contain only one element.

There’s still more work to do before your code will compile. Now that you’ve
accomplished the splitting part, it’s time to focus on merging.

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 271

Merge
Your final step is to merge the left and right lists. To keep things clean, you’ll
create a separate merge function to handle this.

The sole responsibility of the merge function is to take in two sorted lists and
combine them while retaining the sort order. Add the following immediately below
mergeSort:

private fun <T : Comparable<T>> merge(left: List<T>, right:
List<T>): List<T> {
 // 1
 var leftIndex = 0
 var rightIndex = 0
 // 2
 val result = mutableListOf<T>()
 // 3
 while (leftIndex < left.size && rightIndex < right.size) {
 val leftElement = left[leftIndex]
 val rightElement = right[rightIndex]
 // 4
 if (leftElement < rightElement) {
 result.add(leftElement)
 leftIndex += 1
 } else if (leftElement > rightElement) {
 result.add(rightElement)
 rightIndex += 1
 } else {
 result.add(leftElement)
 leftIndex += 1
 result.add(rightElement)
 rightIndex += 1
 }
 }
 // 5
 if (leftIndex < left.size) {
 result.addAll(left.subList(leftIndex, left.size))
 }
 if (rightIndex < right.size) {
 result.addAll(right.subList(rightIndex, right.size))
 }
 return result
}

Here’s what’s going on:

1. The leftIndex and rightIndex variables track your progress as you parse
through the two lists.

2. The result list will house the combined lists.

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 272

3. Starting from the beginning, you compare the elements in the left and right
lists sequentially. When you reach the end of either list, there’s nothing else to
compare.

4. The smaller of the two elements goes into the result list. If the elements are
equal, they can both be added.

5. The first loop guarantees that either left or right is empty. Since both lists are
sorted, this ensures that the leftover elements are greater than or equal to the
ones currently in result. In this scenario, you can add the rest of the elements
without comparison.

Finishing up
Complete mergeSort by calling merge. Because you call mergeSort recursively, the
algorithm will split and sort both halves before merging them.

fun <T : Comparable<T>> List<T>.mergeSort(): List<T> {
 if (this.size < 2) return this
 val middle = this.size / 2
 val left = this.subList(0, middle).mergeSort()
 val right = this.subList(middle, this.size).mergeSort()

 return merge(left, right)
}

This is the final version of the merge sort algorithm. Here’s a summary of the key
procedures of merge sort:

1. The strategy of merge sort is to divide and conquer so that you solve many small
problems instead of one big problem.

2. It has two core responsibilities: a method to divide the initial list recursively, as
well as a method to merge two lists.

3. The merging function should take two sorted lists and produce a single sorted
list.

Finally, it’s time to see this in action. Head back to Main.kt and test your merge sort.

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 273

Add the following code in main():

"merge sort" example {
 val list = listOf(7, 2, 6, 3, 9)
 println("Original: $list")
 val result = list.mergeSort()
 println("Merge sorted: $result")
}

This outputs:

---Example of merge sort---
Original: [7, 2, 6, 3, 9]
Merge sorted: [2, 3, 6, 7, 9]

Performance
The best, worst and average time complexity of merge sort is O(n log n), which isn’t
too bad. If you’re struggling to understand where n log n comes from, think about
how the recursion works:

• As you recurse, you split a single list into two smaller lists. This means a list of size
2 will need one level of recursion, a list of size 4 will need two levels, a list of size 8
will need three levels, and so on. If you had a list of 1,024 elements, it would take
10 levels of recursively splitting in two to get down to 1024 single element lists. In
general, if you have a list of size n, the number of levels is log2(n).

• A single recursion level will merge n elements. It doesn’t matter if there are many
small merges or one large one; the number of elements merged will still be n at
each level. This means the cost of a single recursion is O(n).

This brings the total cost to O(log n) × O(n) = O(n log n).

The previous chapter’s sort algorithms were in-place and used swapAt to move
elements around. Merge sort, by contrast, allocates additional memory to do its
work. How much? There are log2(n) levels of recursion, and at each level, n elements
are used. That makes the total O(n log n) in space complexity. Merge sort is one of
the hallmark sorting algorithms. It’s relatively simple to understand, and serves as a
great introduction to how to divide and conquer algorithms work. Merge sort is O(n
log n), and this implementation requires O(n log n) of space. If you’re clever with
your bookkeeping, you can reduce the memory required to O(n) by discarding the
memory that is not actively being used.

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 274

Challenges

Challenge 1: Iterables merge
Write a function that takes two sorted iterables and merges them into a single
iterable. Here’s the function signature to start:

fun <T : Comparable<T>> merge(
 first: Iterable<T>,
 second: Iterable<T>
): Iterable<T>

Solu6on 1
The tricky part of this challenge is the limited capabilities of Iterable. Traditional
implementations of this algorithm rely on the abilities of List types to keep track of
indices.

Since Iterable types have no notion of indices, you’ll make use of their iterator. The
Iterator in Kotlin has a slight inconvenience that you need to fix first. If there are
no more elements in the iterable and you try to get the next one using next(), you’ll
get a NoSuchElementException. To make it friendlier for your algorithm, write the
following extension function first:

private fun <T> Iterator<T>.nextOrNull(): T? {
 return if (this.hasNext()) this.next() else null
}

You can now use nextOrNull() to safely get the next element. If the returned value
is null, this means there’s no next element, and the iterable is over. This will be
important later on.

Now, for merge(). Add the following code to your file:

fun <T : Comparable<T>> merge(
 first: Iterable<T>,
 second: Iterable<T>
): Iterable<T> {

 // 1
 val result = mutableListOf<T>()
 val firstIterator = first.iterator()
 val secondIterator = second.iterator()

 // 2

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 275

 if (!firstIterator.hasNext()) return second
 if (!secondIterator.hasNext()) return first

 // 3
 var firstEl = firstIterator.nextOrNull()
 var secondEl = secondIterator.nextOrNull()

 // 4
 while (firstEl != null && secondEl != null) {
 // more to come
 }
}

Setting up the algorithm involves the following steps:

1. Create a new container to store the merged iterable. It could be any class that
implements Iterable but a MutableList is an easy to use choice, so go with
that one. Then, grab the iterators of the first and second iterable. Iterators
sequentially dispense values of the iterable via next(), but you’ll use your own
extension nextOrNull().

2. Create two variables that are initialized as the first and second iterator’s first
value.

3. If one of the iterators didn’t have a first value, it means the iterable it came from
was empty, and you’re done sorting. Simply return the other iterable.

4. This first while loop is where all of the comparisons are made to get the
resulting iterable ordered. It only works while you still have values in both
iterables.

Using the iterators, you’ll decide which element should be appended into the result
list by comparing the first and second next values. Write the following inside the
while loop:

when {
 // 1
 firstEl < secondEl -> {
 result.add(firstEl)
 firstEl = firstIterator.nextOrNull()
 }
 // 2
 secondEl < firstEl -> {
 result.add(secondEl)
 secondEl = secondIterator.nextOrNull()
 }
 // 3
 else -> {

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 276

 result.add(firstEl)
 result.add(secondEl)
 firstEl = firstIterator.nextOrNull()
 secondEl = secondIterator.nextOrNull()
 }
}

This is the main component of the merging algorithm. There are three situations
possible, as you can see in the when statement:

1. If the first value is less than the second, you’ll append the first value in result
and seed the next value to be compared with by invoking nextOrNull() on the
first iterator.

2. If the second value is less than the first, you’ll do the opposite. You seed the next
value to be compared by invoking nextOrNull() on the second iterator.

3. If they’re equal, you append both the first and second values and seed both
next values.

This will continue until one of the iterators runs out of elements to dispense. In that
scenario, the iterator with elements left only has elements that are equal to or
greater than the current values in result.

To add the rest of those values, write the following at the end of merge():

while (firstEl != null) {
 result.add(firstEl)
 firstEl = firstIterator.nextOrNull()
}
while (secondEl != null) {
 result.add(secondEl)
 secondEl = secondIterator.nextOrNull()
}

return result

Confirm that this function works by writing the following in Main.kt:

"merge iterables" example {
 val list1 = listOf(1, 2, 3, 4, 5, 6, 7, 8)
 val list2 = listOf(1, 3, 4, 5, 5, 6, 7, 7)

 val result = merge(list1, list2)
 println("Merge sorted: $result")
}

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 277

You’ll see the following console output:

---Example of merge iterables---
Merge sorted: [1, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 8]

Key points
• Merge sort is in the category of the divide and conquer algorithms.

• There are many implementations of merge sort, and you can have different
performance characteristics depending on the implementation.

• To do a comparison, in this chapter you sorted objects implementing the
Comparable<T> interface but the same can be done providing a different
implementation of Comparator<T>.

Data Structures & Algorithms in Kotlin Chapter 15: Merge Sort

raywenderlich.com 278

16Chapter 16: Radix Sort
Matei Șuică

So far, you’ve been relying on comparisons to determine the sorting order. In this
chapter, you’ll look at a completely different model of sorting known as radix sort.

Radix sort is a non-comparative algorithm for sorting integers in linear time. There
are many implementations of radix sort that focus on different problems. To keep
things simple, you’ll focus on sorting base 10 integers while investigating the least
significant digit (LSD) variant of radix sort.

raywenderlich.com 279

Example
To show how radix sort works, you’ll sort the following list:

var list = arrayListOf(88, 410, 1772, 20)

Radix sort relies on the positional notation of integers, as shown here:

First, the list is divided into buckets based on the value of the least significant digit,
the ones digit.

These buckets are then emptied in order, resulting in the following partially sorted
list:

list = arrayListOf(410, 20, 1772, 88)

Next, repeat this procedure for the tens digit:

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 280

The relative order of the elements didn’t change this time, but you’ve still got more
digits to inspect.

The next digit to consider is the hundreds digit:

Note: For values that have no hundreds position or any other position, the
digit is assumed to be zero.

Reassembling the list based on these buckets gives the following:

list = arrayListOf(20, 88, 410, 1772)

Finally, you need to consider the thousands digit:

Reassembling the list from these buckets leads to the final sorted list:

list = arrayListOf(20, 88, 410, 1772)

When many numbers end up in the same bucket, their relative ordering doesn’t
change. For example, in the zero bucket for the hundreds position, 20 comes before
88. This is because the previous step put 20 in a lower bucket than 80, so 20 ended up
before 88 in the list.

Implementa6on
Open the starter project for this chapter. In src ▸ radixsort, create a new file named
RadixSort.kt.

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 281

Add the following to the file:

fun MutableList<Int>.radixSort() {
 // ...
}

Here, you’ve added radixSort() to MutableList of integers via an extension
function. Start implementing radixSort() using the following:

fun MutableList<Int>.radixSort() {
 // 1
 val base = 10
 // 2
 var done = false
 var digits = 1
 while (!done) {
 // ...
 }
}

This bit is straightforward:

1. You’re sorting base 10 integers in this instance. Since you’ll use this value many
times in the algorithm, you store it in a constant base.

2. You declare two variables to track your progress. Radix sort works in many
passes, so done serves as a flag that determines whether the sort is complete. The
digits variable keeps track of the current digit you’re looking at.

Next, you’ll write the logic that sorts each element into buckets.

Bucket sort
Write the following inside the while loop:

// 1
val buckets = arrayListOf<MutableList<Int>>().apply {
 for(i in 0..9) {
 this.add(arrayListOf())
 }
}
// 2
this.forEach {
 number ->
 val remainingPart = number / digits
 val digit = remainingPart % base
 buckets[digit].add(number)
}

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 282

// 3
digits *= base

this.clear()
this.addAll(buckets.flatten())

Here’s how it works:

1. You instantiate the buckets using a two-dimensional list. Because you’re using
base 10, you need ten buckets.

2. You place each number in the correct bucket.

3. You update digits to the next digit you want to inspect and update the list using
the contents of buckets. flatten() flattens the two-dimensional list to a one-
dimensional list, as if you’re emptying the buckets into the list.

When do you stop?
Your while loop currently runs forever, so you’ll need a terminating condition
somewhere. You’ll do that as follows:

1. At the beginning of the while loop, add done = true.

2. Inside the closure of forEach, add the following:

if (remainingPart > 0) {
 done = false
}

Since forEach iterates over all of the integers, as long as one of the integers still has
unsorted digits, you’ll need to continue sorting.

With that, you’ve learned about your first non-comparative sorting algorithm. Head
back to Main.kt and add the following to test your code, inside main() :

"radix sort" example {
 val list = arrayListOf(88, 410, 1772, 20)
 println("Original: $list")
 list.radixSort()
 println("Radix sorted: $list")
}

You’ll see the following console output:

---Example of radix sort---
Original: [88, 410, 1772, 20]

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 283

Radix sorted: [20, 88, 410, 1772]

Radix sort is one of the fastest sorting algorithms. The average time complexity of
radix sort is O(k × n), where k is the number of significant digits of the largest
number, and n is the number of integers in the list.

Radix sort works best when k is constant, which occurs when all numbers in the list
have the same count of significant digits. Its time complexity then becomes O(n).
Radix sort also incurs an O(n) space complexity, as you need space to store each
bucket.

Challenges

Challenge 1: Most significant sort
The implementation discussed in the chapter used a least significant digit radix sort.
Your task is to implement a most significant digit (MSD) radix sort.

This sorting behavior is called lexicographical sorting and is also used for String
sorting.

For example:

var list = arrayListOf(500, 1345, 13, 459, 44, 999)
list.lexicographicalSort()
println(list) // outputs [13, 1345, 44, 459, 500, 999]

Solu6on 1
MSD radix sort is closely related to LSD radix sort, in that both use bucket sort. The
difference is that MSD radix sort needs to curate subsequent passes of the bucket
sort carefully. In LSD radix sort, bucket sort ran repeatedly using the whole list for
every pass. In MSD radix sort, you run bucket sort with the entire list only once.
Subsequent passes will sort each bucket recursively.

You’ll implement MSD radix sort piece-by-piece, starting with the components on
which it depends.

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 284

Digits
Add the following inside Challenge1.kt:

fun Int.digits(): Int {
 var count = 0
 var num = this
 while (num != 0) {
 count += 1
 num /= 10
 }
 return count
}

fun Int.digit(atPosition: Int): Int? {
 if(atPosition > digits()) return null
 var num = this
 val correctedPosition = (atPosition + 1).toDouble()
 while (num / (pow(10.0, correctedPosition).toInt()) != 0) {
 num /= 10
 }
 return num % 10
}

digits is a computed property that returns the number of digits that the Int has.
For example, the value of 1024 has four digits.

digit(atPosition:) returns the digit at a given position. Like lists, the leftmost
position is zero. Thus, the digit for position zero of the value 1024 is 1. The digit for
position three is 4. Since there are only four digits, the digit for position five will
return null.

The implementation of digit() works by repeatedly chopping a digit off the end of
the number, until the requested digit is at the end. It’s then extracted using the
remainder operator.

Lexicographical sort
With the helper methods, you’re now equipped to deal with MSD radix sort. Write the
following at the bottom of the file:

fun MutableList<Int>.lexicographicalSort() {
 this.clear()
 this.addAll(msdRadixSorted(this, 0))
}

private fun msdRadixSorted(list: MutableList<Int>, position:
Int): MutableList<Int> {
}

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 285

lexicographicalSort() is the user-facing API for MSD radix sort.
msdRadixSorted() is the meat of the algorithm and will be used to recursively apply
MSD radix sort to the list.

Update msdRadixSorted() to the following:

private fun msdRadixSorted(list: MutableList<Int>, position:
Int): MutableList<Int> {
 // 1
 val buckets = arrayListOf<MutableList<Int>>().apply {
 for(i in 0..9) {
 this.add(arrayListOf())
 }
 }
 // 2
 val priorityBucket = arrayListOf<Int>()
 // 3
 list.forEach { number ->
 val digit = number.digit(position)
 if(digit == null) {
 priorityBucket.add(number)
 return@forEach
 }
 buckets[digit].add(number)
 }
}

Here’s how it works:

1. Similar to LSD radix sort, you instantiate a two-dimensional list for the buckets.

2. The priorityBucket is a special bucket that stores values with fewer digits than
the current position. Values that go in the priorityBucket are sorted first.

3. For every number in the list, you find the digit of the current position and place
the number in the appropriate bucket.

Next, you need to recursively apply MSD radix sort for each of the individual buckets.
Write the following at the end of msdRadixSorted():

priorityBucket.addAll(
buckets.reduce { result, bucket ->
 if (bucket.isEmpty()) return@reduce result
 result.addAll(msdRadixSorted(bucket, position + 1))
 result
})

return priorityBucket

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 286

This statement calls reduce(into:) to collect the results of the recursive sorts and
appends them to the priorityBucket. That way, the elements in the
priorityBucket always go first. You’re almost done!

Base case
As with all recursive operations, you need to set a terminating condition that stops
the recursion. Recursion should halt if the current position you’re inspecting is
greater than the number of significant digits of the largest value inside the list.

At the bottom of the file, write the following:

private fun MutableList<Int>.maxDigits(): Int {
 return this.max()?.digits() ?: 0
}

Next, add the following at the top of msdRadixSorted:

if(position > list.maxDigits()) return list

This ensures that if the position is equal or greater than the list’s maxDigits, you’ll
terminate the recursion.

Take it out for a spin! Add the following to Main.kt so you can test the code:

"MSD radix sort" example {
 val list= (0..10).map { (Math.random() *
10000).toInt() }.toMutableList()
 println("Original: $list")
 list.lexicographicalSort()
 println("Radix sorted: $list")
}

You should see a list of random numbers like this:

---Example of MSD radix sort---
Original: [448, 3168, 6217, 7117, 1256, 3887, 3900, 3444, 4976,
6891, 4682]
Radix sorted: [1256, 3168, 3444, 3887, 3900, 448, 4682, 4976,
6217, 6891, 7117]

Since the numbers are random, you won’t get an identical list. The important thing
to note is the lexicographical ordering of the values.

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 287

Key points
• Radix sort is a non-comparative sort that doesn’t rely on comparing two values.

Instead, it leverages bucket sort, which is like a sieve for filtering values. A helpful
analogy is how some of the vending machines accept coins — the coins are
distinguished by size.

• This chapter covered the least significant digit radix sort. Another way to
implement radix sort is the most significant digit form. This form sorts by
prioritizing the most significant digits over the lesser ones and is best illustrated
by the sorting behavior of the String type.

Data Structures & Algorithms in Kotlin Chapter 16: Radix Sort

raywenderlich.com 288

17Chapter 17: Heap Sort
Matei Șuică

Heapsort is another comparison-based algorithm that sorts an array in ascending
order using a heap. This chapter builds on the heap concepts presented in Chapter
12, "Heap Data Structure."

Heapsort takes advantage of a heap being, by definition, a partially sorted binary tree
with the following qualities:

1. In a max heap, all parent nodes are larger than their children.

2. In a min heap, all parent nodes are smaller than their children.

The diagram below shows a heap with parent node values underlined:

raywenderlich.com 289

Ge[ng started
Open up the starter project. This project already contains an implementation of a
heap. Your goal is to extend Heap so it can also sort. Before you get started, let’s look
at a visual example of how heap sort works.

Example
For any given unsorted array, to sort from lowest to highest, heap sort must first
convert this array into a heap:

This conversion is done by sifting down all the parent nodes so that they end up in
the right spot. The resulting heap is:

This corresponds with the following array:

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 290

Because the time complexity of a single sift-down operation is O(log n), the total
time complexity of building a heap is O(n log n).

Let’s look at how to sort this array in ascending order.

Because the largest element in a max heap is always at the root, you start by
swapping the first element at index 0 with the last element at index n - 1. As a result
of this swap, the last element of the array is in the correct spot, but the heap is now
invalidated. The next step is, thus, to sift down the new root node 5 until it lands in
its correct position.

Note that you exclude the last element of the heap as you no longer consider it part
of the heap, but of the sorted array.

As a result of sifting down 5, the second largest element 21 becomes the new root.
You can now repeat the previous steps, swapping 21 with the last element 6,
shrinking the heap and sifting down 6.

Starting to see a pattern? Heap sort is very straightforward. As you swap the first and
last elements, the larger elements make their way to the back of the array in the
correct order. You simply repeat the swapping and sifting steps until you reach a
heap of size 1.

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 291

The array is then fully sorted.

Note: This sorting process is very similar to selection sort from Chapter 14.

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 292

Implementa6on
Next, you’ll implement this sorting algorithm. The actual implementation is simple.
You'll be performing the sort on an Array and reusing the algorithms already
implemented in Heap in the form of extension functions. You'll reorder the elements
using heapify(). After that, the heavy lifting will be done by a siftDown() method.

First, create a new file in the heapsort package, called HeapSort.kt. You might
remember that the siftDown() method in Heap needs to determine the index of the
left and right children of an element at a given index. You will start by copying the
functions that do just that, as top level functions in this new file:

private fun leftChildIndex(index: Int) = (2 * index) + 1

private fun rightChildIndex(index: Int) = (2 * index) + 2

After that, you will copy the siftDown() method from Heap, and transform it into an
extension function for Array<T>. Since this extension function can work with all
kinds of T elements, you'll also need to add a Comparator<T> to the parameters of
the function. The transformed siftDown() function will look like this:

fun <T> Array<T>.siftDown(
 index: Int,
 upTo: Int,
 comparator: Comparator<T>
) {
 var parent = index
 while (true) {
 val left = leftChildIndex(parent)
 val right = rightChildIndex(parent)
 var candidate = parent
 if (left < upTo &&
 comparator.compare(this[left], this[candidate]) > 0
) {
 candidate = left
 }
 if (right < upTo &&
 comparator.compare(this[right], this[candidate]) > 0
) {
 candidate = right
 }
 if (candidate == parent) {
 return
 }
 this.swapAt(parent, candidate)
 parent = candidate
 }
}

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 293

The differences between this function and the method that the Heap has is that you
operate on this array instead of elements, and that your compare() calls are
addressed to the comparator you get as a parameter. The algorithm itself remains
the same, so if you can't wrap your head around this, you can take a look at the Heap
Data Structure chapter again, which explains this function in detail.

Next, you'll need a heapify() function. As with siftDown(), it will be an extension
function very similar to the one in Heap. This one will also have a Comparator<T>
parameter, as it will have to call siftDown(). Copy this into HeapSort.kt:

fun <T> Array<T>.heapify(comparator: Comparator<T>) {
 if (this.isNotEmpty()) {
 (this.size / 2 downTo 0).forEach {
 this.siftDown(it, this.size, comparator)
 }
 }
}

The final step is to implement the actual sorting. This is simple enough, here's how:

fun <T> Array<T>.heapSort(comparator: Comparator<T>) {
 this.heapify(comparator)
 for (index in this.indices.reversed()) { // 1
 this.swapAt(0, index) // 2
 siftDown(0, index, comparator) // 3
 }
}

Here’s what’s going on:

1. You reorder the elements so that the array looks like a Heap.

2. You loop through the array, starting from the last element.

3. You swap the first element and the last element. This moves the largest unsorted
element to its correct spot.

4. Because the heap is now invalid, you must sift down the new root node. As a
result, the next largest element will become the new root.

Note that, in order to support heap sort, you’ve added an additional parameter upTo
to the siftDown() method. This way, the sift down only uses the unsorted part of
the array, which shrinks with every iteration of the loop.

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 294

Finally, give your new method a try. Add this to the main() function in Main.kt:

"Heap sort" example {
 val array = arrayOf(6, 12, 2, 26, 8, 18, 21, 9, 5)
 array.heapSort(ascending)
 print(array.joinToString())
}

This should print:

---Example of Heap sort---
2, 5, 6, 8, 9, 12, 18, 21, 26

Performance
Even though you get the benefit of in-memory sorting, the performance of heap sort
is O(n log n) for its best, worse and average cases. This is because you have to
traverse the whole array once and, every time you swap elements, you must perform
a sift down, which is an O(log n) operation.

Heap sort is also not a stable sort because it depends on how the elements are laid
out and put into the heap. If you were heap sorting a deck of cards by their rank, for
example, you might see their suite change order with respect to the original deck.

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 295

Challenges

Challenge 1: Fewest comparisons
When performing a heap sort in ascending order, which of these starting arrays
requires the fewest comparisons?

• [1,2,3,4,5]

• [5,4,3,2,1]

Solu6on 1
When sorting elements in ascending order using heap sort, you first need a max
heap. What you really need to look at is the number of comparisons that happen
when constructing the max heap.

[5,4,3,2,1] will yield the fewest number of comparisons, since it’s already a max
heap and no swaps take place.

When building a max heap, you only look at the parent nodes. In this case there are
two parent nodes, with two comparisons.

[1,2,3,4,5] will yield the most number of comparisons. There are two parent
nodes, but you have to perform three comparisons:

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 296

Challenge 2: Descending sort
The current example of heap sort sorts the elements in ascending order. How would
you sort in descending order?

Solu6on 2
This is a simple one as well. You just need to swap the ascending comparator with a
descending one when you create the SortingHeap. Looking at how ascending is
defined, you can easily come up with a descending:

val descending = Comparator { first: Int, second: Int ->
 when {
 first < second -> 1
 first > second -> -1
 else -> 0
 }
}

If you haven't already noticed, you just need to change the signs for -1 and 1. That's
it! Now you can create another example in Main.kt to see how it works:

"Heap sort descending" example {
 val array = arrayListOf(6, 12, 2, 26, 8, 18, 21, 9, 5)
 array.heapSort(descending)
 print(array)
}

The result is a descending sorted list:

---Example of Heap sort descending---
26, 21, 18, 12, 9, 8, 6, 5, 2

Key points
• Heap sort leverages the max-heap data structure to sort elements in an array.

• Heap sort sorts its elements by following a simple pattern: swap the first and last
element, perform a sift-down, decrease the array size by one; then repeat.

• The performance of heap sort is O(n log n) for its best, worse and average cases.

Data Structures & Algorithms in Kotlin Chapter 17: Heap Sort

raywenderlich.com 297

18Chapter 18: Quicksort
By Matei Șuică

In the preceding chapters, you learned to sort a list using comparison-based sorting
algorithms, such as merge sort and heap sort.

Quicksort is another comparison-based sorting algorithm. Much like merge sort, it
uses the same strategy of divide and conquer. One important feature of quicksort is
choosing a pivot point. The pivot divides the list into three partitions:

[elements < pivot | pivot | elements > pivot]

In this chapter, you’ll implement quicksort and look at various partitioning
strategies to get the most out of this sorting algorithm.

raywenderlich.com 298

Example
Open the starter project. Inside QuicksortNaive.kt, you’ll see a naive
implementation of quicksort:

fun<T: Comparable<T>> List<T>.quicksortNaive(): List<T> {
 if (this.size < 2) return this // 1

 val pivot = this[this.size / 2] // 2
 val less = this.filter { it < pivot } // 3
 val equal = this.filter { it == pivot }
 val greater = this.filter { it > pivot }
 return less.quicksortNaive() + equal +
greater.quicksortNaive() // 4
}

This implementation recursively filters the list into three partitions. Here’s how it
works:

1. There must be more than one element in the list. If not, the list is considered
sorted.

2. Pick the middle element of the list as your pivot.

3. Using the pivot, split the original list into three partitions. Elements less than,
equal to or greater than the pivot go into different buckets.

4. Recursively sort the partitions and then combine them.

Now, it’s time to visualize the code above. Given the unsorted list below:

[12, 0, 3, 9, 2, 18, 8, 27, 1, 5, 8, -1, 21]
 *

Your partition strategy in this implementation is to always select the middle
element as the pivot. In this case, the element is 8. Partitioning the list using this
pivot results in the following partitions:

less: [0, 3, 2, 1, 5, -1]
equal: [8, 8]
greater: [12, 9, 18, 27, 21]

Notice that the three partitions aren’t completely sorted yet. Quicksort will
recursively divide these partitions into even smaller ones. The recursion will only
halt when all partitions have either zero or one element.

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 299

Here’s an overview of all the partitioning steps:

Each level corresponds with a recursive call to quicksort. Once recursion stops, the
leafs are combined again, resulting in a fully sorted list:

[-1, 1, 2, 3, 5, 8, 8, 9, 12, 18, 21, 27]

While this naive implementation is easy to understand, it raises some issues and
questions:

• Calling filter three times on the same list is not efficient?

• Creating a new list for every partition isn’t space-efficient. Could you possibly sort
in place?

• Is picking the middle element the best pivot strategy? What pivot strategy should
you adopt?

Par66oning strategies
In this section, you’ll look at partitioning strategies and ways to make this quicksort
implementation more efficient. The first partitioning algorithm you’ll look at is
Lomuto’s algorithm.

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 300

Lomuto’s par66oning
Lomuto’s partitioning algorithm always chooses the last element as the pivot. Time
to look at how this works in code.

In your project, create a file named QuicksortLomuto.kt and add the following
function declaration:

fun<T: Comparable<T>> MutableList<T>.partitionLomuto(
 low: Int,
 high: Int): Int {
}

This function takes three arguments:

• list is the list you are partitioning.

• low and high set the range within the list you’ll partition. This range will get
smaller and smaller with every recursion.

The function returns the index of the pivot.

Now, implement the function as follows:

val pivot = this[high] // 1

var i = low // 2
for (j in low until high) { // 3
 if (this[j] <= pivot) { // 4
 this.swapAt(i, j) // 5
 i += 1
 }
}
this.swapAt(i, high) // 6
return i // 7

Here’s what this code does:

1. Set the pivot. Lomuto always chooses the last element as the pivot.

2. The variable i indicates how many elements are less than the pivot. Whenever
you encounter an element that is less than the pivot, you swap it with the
element at index i and increase i.

3. Loop through all the elements from low to high, but not including high since it’s
the pivot.

4. Check to see if the current element is less than or equal to the pivot.

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 301

5. If it is, swap it with the element at index i and increase i.

6. Once done with the loop, swap the element at i with the pivot. The pivot always
sits between the less and greater partitions.

7. Return the index of the pivot.

While this algorithm loops through the list, it divides the list into four regions:

1. this.subList(low, i) contains all elements <= pivot.

2. this.subList(i, j) contains all elements > pivot.

3. this.subList(j, high) are elements you have not compared yet.

4. this[high] is the pivot element.

[values <= pivot | values > pivot | not compared yet | pivot]
 low i-1 i j-1 j high-1 high

Step-by-step
Looking at a few steps of the algorithm will help you get a better understanding of
how it works.

Given the unsorted list below:

[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]

First, the last element 8 is selected as the pivot:

 0 1 2 3 4 5 6 7 8 9 10 11 12
[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, | 8]
 low high
 i
 j

Then, the first element 12 is compared to the pivot. It’s not smaller than the pivot,
so the algorithm continues to the next element:

 0 1 2 3 4 5 6 7 8 9 10 11 12
[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, | 8]
 low high
 i
 j

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 302

The second element 0 is smaller than the pivot, so it’s swapped with the element
currently at index i (12) and i is increased:

 0 1 2 3 4 5 6 7 8 9 10 11 12
[0, 12, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, | 8]
 low high
 i
 j

The third element 3 is again smaller than the pivot, so another swap occurs:

 0 1 2 3 4 5 6 7 8 9 10 11 12
[0, 3, 12, 9, 2, 21, 18, 27, 1, 5, 8, -1, | 8]
 low high
 i
 j

These steps continue until all but the pivot element have been compared. The
resulting list is:

 0 1 2 3 4 5 6 7 8 9 10 11 12
[0, 3, 2, 1, 5, 8, -1, 27, 9, 12, 21, 18, | 8]
 low high
 i

Finally, the pivot element is swapped with the element currently at index i:

 0 1 2 3 4 5 6 7 8 9 10 11 12
[0, 3, 2, 1, 5, 8, -1 | 8 | 9, 12, 21, 18, | 27]
 low high
 i

Lomuto’s partitioning is now complete. Notice how the pivot is between the two
regions of elements less than or equal to the pivot and elements greater than the
pivot.

In the naive implementation of quicksort, you created three new lists and filtered the
unsorted lists three times. Lomuto’s algorithm performs the partitioning in place.
That’s much more efficient!

With your partitioning algorithm in place, you can now implement quicksort adding
the following to your QuicksortLomuto.kt file:

fun<T: Comparable<T>> MutableList<T>.quicksortLomuto(low: Int,
high: Int) {
 if (low < high) {
 val pivot = this.partitionLomuto(low, high)

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 303

 this.quicksortLomuto(low, pivot - 1)
 this.quicksortLomuto(pivot + 1, high)
 }
}

Here, you apply Lomuto’s algorithm to partition the list into two regions. You then
recursively sort these regions. Recursion ends once a region has less than two
elements.

You can try Lomuto’s quicksort by adding the following to your Main.kt file, inside
the main() function:

"Lomuto quicksort" example {
 val list = arrayListOf(12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8,
-1, 8)
 println("Original: $list")
 list.quicksortLomuto(0, list.size - 1)
 println("Sorted: $list")
}

Hoare’s par66oning
Hoare’s partitioning algorithm always chooses the first element as the pivot. So, how
does this work in code?

In your project, create a file named QuicksortHoare.kt and add the following
function:

fun<T: Comparable<T>> MutableList<T>.partitionHoare(low: Int,
high: Int): Int {
 val pivot = this[low] // 1
 var i = low - 1 // 2
 var j = high + 1
 while (true) {
 do { // 3
 j -= 1
 } while (this[j] > pivot)
 do { // 4
 i += 1
 } while (this[i] < pivot)
 if (i < j) { // 5
 this.swapAt(i, j)
 } else {
 return j // 6
 }
 }
}

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 304

Here’s how it works:

1. Select the first element as the pivot.

2. Indexes i and j define two regions. Every index before i will be less than or
equal to the pivot. Every index after j will be greater than or equal to the
pivot.

3. Decrease j until it reaches an element that is not greater than the pivot.

4. Increase i until it reaches an element that is not less than the pivot.

5. If i and j have not overlapped, swap the elements.

6. Return the index that separates both regions.

Note: The index returned from the partition does not necessarily have to be
the index of the pivot element.

Step-by-step
Given the unsorted list below:

[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]

First, 12 is set as the pivot. Then i and j will start running through the list, looking
for elements that are not less than (in the case of i) or greater than (in the case of j)
the pivot. i will stop at element 12 and j will stop at element 8:

[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]
 p
 i j

These elements are then swapped:

[8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
 i j

i and j now continue moving, this time stopping at 21 and -1:

[8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
 i j

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 305

Which are then swapped:

[8, 0, 3, 9, 2, -1, 18, 27, 1, 5, 8, 21, 12]
 i j

Next, 18 and 8 are swapped, followed by 27 and 5.

After this swap the list and indices are as follows:

[8, 0, 3, 9, 2, -1, 8, 5, 1, 27, 18, 21, 12]
 i j

The next time you move i and j, they will overlap:

[8, 0, 3, 9, 2, -1, 8, 5, 1, 27, 18, 21, 12]
 j i

Hoare’s algorithm is now complete, and index j is returned as the separation
between the two regions.

There are far fewer swaps here compared to Lomuto’s algorithm. Isn’t that nice?

You can now implement a quicksortHoare function:

fun<T: Comparable<T>> MutableList<T>.quicksortHoare(low: Int,
high: Int) {
 if (low < high) {
 val p = this.partitionHoare(low, high)
 this.quicksortHoare(low, p)
 this.quicksortHoare(p + 1, high)
 }
}

Try it out by adding the following in your Main.kt:

"Hoare quicksort" example {
 val list = arrayListOf(12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8,
-1, 8)
 println("Original: $list")
 list.quicksortHoare(0, list.size - 1)
 println("Sorted: $list")
}

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 306

Effects of a bad pivot choice
The most important part of implementing quicksort is choosing the right
partitioning strategy.

You’ve looked at three different partitioning strategies:

1. Choosing the middle element as a pivot.

2. Lomuto, or choosing the last element as a pivot.

3. Hoare, or choosing the first element as a pivot.

What are the implications of choosing a bad pivot?

Starting with the following unsorted list:

[8, 7, 6, 5, 4, 3, 2, 1]

If you use Lomuto’s algorithm, the pivot will be the last element, 1. This results in
the following partitions:

less: []
equal: [1]
greater: [8, 7, 6, 5, 4, 3, 2]

An ideal pivot would split the elements evenly between the less than and greater
than partitions. Choosing the first or last element of an already sorted list as a pivot
makes quicksort perform much like insertion sort, which results in a worst-case
performance of O(n²). One way to address this problem is by using the median of
three pivot selection strategy. Here, you find the median of the first, middle and last
element in the list, and use that as a pivot. This prevents you from picking the
highest or lowest element in the list.

Create a new file named QuicksortMedian.kt and add the following function:

fun<T: Comparable<T>> MutableList<T>.medianOfThree(low: Int,
high: Int): Int {
 val center = (low + high) / 2
 if (this[low] > this[center]) {
 this.swapAt(low, center)
 }
 if (this[low] > this[high]) {
 this.swapAt(low, high)
 }
 if (this[center] > this[high]) {
 this.swapAt(center, high)

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 307

 }
 return center
}

Here, you find the median of this[low], this[center] and this[high] by sorting
them. The median will end up at index center, which is what the function returns.

Next, you’ll implement a variant of Quicksort using this median of three:

fun<T: Comparable<T>> MutableList<T>.quickSortMedian(low: Int,
high: Int) {
 if (low < high) {
 val pivotIndex = medianOfThree(low, high)
 this.swapAt(pivotIndex, high)
 val pivot = partitionLomuto(low, high)
 this.quicksortLomuto(low, pivot - 1)
 this.quicksortLomuto(pivot + 1, high)
 }
}

This is a variation on quicksortLomuto that adds a median of three as a first step.

Try this by adding the following in your playground:

"Median of three quicksort" example {
 val list = arrayListOf(12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8,
-1, 8)
 println("Original: $list")
 list.quickSortMedian(0, list.size - 1)
 println("Sorted: $list")
}

This is definitely an improvement, but can you do better?

Dutch na6onal flag par66oning
A problem with Lomuto’s and Hoare’s algorithms is that they don’t handle duplicates
really well. With Lomuto’s algorithm, duplicates end up in the less than partition and
aren’t grouped together. With Hoare’s algorithm, the situation is even worse as
duplicates can be all over the place.

A solution to organize duplicate elements is using Dutch national flag
partitioning. This technique is named after the Dutch flag, which has three bands of
colors: red, white and blue. This is similar to how you create three partitions. Dutch
national flag partitioning is a good technique to use if you have a lot of duplicate
elements.

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 308

Create a file named QuicksortDutchFlag.kt and add the following function:

fun<T: Comparable<T>> MutableList<T>.partitionDutchFlag(low:
Int, high: Int, pivotIndex: Int): Pair<Int, Int> {
 val pivot = this[pivotIndex]
 var smaller = low // 1
 var equal = low // 2
 var larger = high // 3
 while (equal <= larger) { // 4
 if (this[equal] < pivot) {
 this.swapAt(smaller, equal)
 smaller += 1
 equal += 1
 } else if (this[equal] == pivot) {
 equal += 1
 } else {
 this.swapAt(equal, larger)
 larger -= 1
 }
 }
 return Pair(smaller, larger) // 5
}

You’ll adopt the same strategy as Lomuto’s partition by choosing the last element as
the pivotIndex. Here’s how it works:

1. Whenever you encounter an element that is less than the pivot, move it to index
smaller. This means that all elements that come before this index are less than
the pivot.

2. Index equal points to the next element to compare. Elements that are equal to
the pivot are skipped, which means that all elements between smaller and
equal are equal to the pivot.

3. Whenever you encounter an element that is greater than the pivot, move it to
index larger. This means that all elements that come after this index are greater
than the pivot.

4. The main loop compares elements and swaps them if needed. This continues
until index equal moves past index larger, meaning all elements have been
moved to their correct partition.

5. The algorithm returns indices smaller and larger. These point to the first and
last elements of the middle partition.

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 309

Step-by-step
Looking at an example using the unsorted list below:

[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]

Since this algorithm is independent of a pivot selection strategy, you’ll adopt lomuto
and pick the last element 8.

Note: I challenge you to try a different strategy, such as median of three.

Next, you set up the indices smaller, equal and larger:

[12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 8]
 s
 e
 l

The first element to be compared is 12. Since it’s larger than the pivot, it’s swapped
with the element at index larger and this index is decremented.

Note that index equal is not incremented so the element that was swapped in (8) is
compared next:

[8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
 s
 e
 l

Remember that the pivot you selected is still 8. 8 is equal to the pivot, so you
increment equal:

[8, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
 s
 e
 l

0 is smaller than the pivot, so you swap the elements at equal and smaller and
increase both pointers:

[0, 8, 3, 9, 2, 21, 18, 27, 1, 5, 8, -1, 12]
 s
 e
 l

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 310

And so on.

Note how smaller, equal and larger partition the list:

• Elements in this.subList(low, smaller) are smaller than the pivot.

• Elements in this.subList(smaller, equal) are equal to the pivot.

• Elements in this.subList(larger, high) are larger than the pivot.

• Elements in this.subList(equal, larger + 1) haven’t been compared yet.

To understand how and when the algorithm ends, let’s continue from the second-to-
last step:

[0, 3, -1, 2, 5, 8, 8, 27, 1, 18, 21, 9, 12]
 s
 e
 l

Here, 27 is being compared. It’s greater than the pivot, so its swapped with 1 and
index larger is decremented:

[0, 3, -1, 2, 5, 8, 8, 1, 27, 18, 21, 9, 12]
 s
 e
 l

Even though equal is now equal to larger, the algorithm isn’t complete.

The element currently at equal hasn’t been compared yet. It’s smaller than the
pivot, so it’s swapped with 8 and both indices smaller and equal are incremented:

[0, 3, -1, 2, 5, 1, 8, 8, 27, 18, 21, 9, 12]
 s
 e
 l

Indices smaller and larger now point to the first and last elements of the middle
partition. By returning them, the function clearly marks the boundaries of the three
partitions.

You’re now ready to implement a new version of quicksort using Dutch national flag
partitioning:

fun<T: Comparable<T>> MutableList<T>.quicksortDutchFlag(low:
Int, high: Int) {
 if (low < high) {

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 311

 val middle = partitionDutchFlag(low, high, high)
 this.quicksortDutchFlag(low, middle.first - 1)
 this.quicksortDutchFlag(middle.second + 1, high)
 }
}

Notice how recursion uses the middleFirst and middleLast indices to determine
the partitions that need to be sorted recursively. Because the elements equal to the
pivot are grouped together, they can be excluded from the recursion.

Try out your new quicksort by adding the following in your Main.kt:

"Dutch flag quicksort" example {
 val list = arrayListOf(12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8,
-1, 8)
 println("Original: $list")
 list.quicksortDutchFlag(0, list.size - 1)
 println("Sorted: $list")
}

That’s it!

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 312

Challenges

Challenge 1: Using recursion
In this chapter, you learned how to implement quicksort recursively. Your challenge
is to implement it iteratively. Choose any partition strategy you learned in this
chapter.

Solu6on 1
You implemented quicksort recursively, which means you know what quicksort is all
about. So, how you might do it iteratively? This solution uses Lomuto’s partition
strategy.

This function takes in a list and the range between low and high. You’re going to
leverage the stack to store pairs of start and end values.

fun<T: Comparable<T>>
MutableList<T>.quicksortIterativeLomuto(low: Int, high: Int) {
 val stack = Stack<Int>() // 1
 stack.push(low) // 2
 stack.push(high)

 while (!stack.isEmpty) { // 3
 // 4
 val end = stack.pop() ?: continue
 val start = stack.pop() ?: continue
 val p = this.partitionLomuto(start, end) // 5
 if ((p - 1) > start) { // 6
 stack.push(start)
 stack.push(p - 1)
 }
 if ((p + 1) < end) { // 7
 stack.push(p + 1)
 stack.push(end)
 }
 }
}

Here’s how the solution works:

1. Create a stack that stores indices.

2. Push the starting low and high boundaries on the stack to initiate the algorithm.

3. As long as the stack is not empty, quicksort is not complete.

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 313

4. Get the pair of start and end indices from the stack.

5. Perform Lomuto’s partitioning with the current start and end index. Recall that
Lomuto picks the last element as the pivot, and splits the partitions into three
parts: elements that are less than the pivot, the pivot, and finally elements that
are greater than the pivot.

6. Once the partitioning is complete, check and add the lower bound’s start and
end indices to later partition the lower half.

7. Similarly, check and add the upper bound’s start and end indices to later
partition the upper half.

You’re simply using the stack to store a pair of start and end indices to perform the
partitions.

Now, check to see if your iterative version of quicksort works:

"Iterative lomuto quicksort" example {
 val list = arrayListOf(12, 0, 3, 9, 2, 21, 18, 27, 1, 5, 8,
-1, 8)
 println("Original: $list")
 list.quicksortIterativeLomuto(0, list.size - 1)
 println("Sorted: $list")
}

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 314

Challenge 2: Provide an explana6on
Explain when and why you would use merge sort over quicksort.

Solu6on 2
• Merge sort is preferable over quicksort when you need stability. Merge sort is a

stable sort and guarantees O(n log n). This is not the case with quicksort, which
isn’t stable and can perform as bad as O(n²).

• Merge sort works better for larger data structures or data structures where
elements are scattered throughout memory. Quicksort works best when elements
are stored in a contiguous block.

Key points
• The naive partitioning creates a new list on every filter function; this is inefficient.

All other strategies sort in place.

• Lomuto’s partitioning chooses the last element as the pivot.

• Hoare’s partitioning chooses the first element as its pivot.

• An ideal pivot would split the elements evenly between partitions.

• Choosing a bad pivot can cause quicksort to perform in O(n²).

• Median of three finds the pivot by taking the median of the first, middle and last
element.

• Dutch national flag partitioning strategy helps to organize duplicate elements in
a more efficient way.

Data Structures & Algorithms in Kotlin Chapter 18: Quicksort

raywenderlich.com 315

Sec6on V: Graphs

Graphs are an extremely useful data structure that can be used to model a wide range
of things: webpages on the internet, the migration patterns of birds, protons in the
nucleus of an atom. This section gets you thinking deeply (and broadly) about how to
use graphs and graph algorithms to solve real-world problems. The chapters that
follow will give the foundation you need to understand graph data structures. Like
previous sections, every other chapter will serve as a Challenge chapter so you can
practice what you’ve learned.

The graph-related topics covered include:

• Chapter 19: Graphs: What do social networks have in common with booking
cheap flights around the world? You can represent both of these real-world models
as graphs. A graph is a data structure that captures relationships between objects.
It’s made up of vertices connected by edges. In a weighted graph, every edge has a
weight associated with it that represents the cost of using this edge. This lets you
choose the cheapest or shortest path between two vertices.

• Chapter 20: Breadth-First Search: In the previous chapter, you explored how
graphs can be used to capture relationships between objects. Several algorithms
exist to traverse or search through a graph’s vertices. One such algorithm is the
breadth-first-search algorithm, which you can use to solve a wide variety of
problems, including generating a minimum spanning tree, finding potential paths
between vertices and finding the shortest path between two vertices.

• Chapter 21: Depth-First Search: In the previous chapter, you looked at breadth-
first-search, where you had to explore every neighbor of a vertex before going to
the next level. In this chapter, you’ll look at depth-first search, which has
applications for topological sorting, detecting cycles, pathfinding in maze puzzles
and finding connected components in a sparse graph.

• Chapter 22: Dijkstra’s Algorithm: Have you ever used the Google or Apple Maps
app to find the shortest or fastest from one place to another? Dijkstra’s algorithm
is particularly useful in GPS networks to help find the shortest path between two

raywenderlich.com 316

places. Dijkstra’s algorithm is a greedy algorithm that constructs a solution step-
by-step and picks the most optimal path at every step.

• Chapter 23: Prim’s Algorithm: In previous chapters, you looked at depth-first
and breadth-first search algorithms. These algorithms form spanning trees. In this
chapter, you’ll look at Prim’s algorithm, a greedy algorithm used to construct a
minimum spanning tree. A minimum spanning tree is a spanning tree with
weighted edges where the total weight of all edges is minimized. You’ll learn how
to implement a greedy algorithm to construct a solution step-by-step and pick the
most optimal path at every step.

After completing this section, you’ll have powerful tools at your disposal to model
and solve important real-life problems using graphs.

Data Structures & Algorithms in Kotlin Section V: Graphs

raywenderlich.com 317

19Chapter 19: Graphs
By Irina Galata

What do social networks have in common with booking cheap flights around the
world? You can represent both of these real-world models as graphs!

A graph is a data structure that captures relationships between objects. It’s made up
of vertices connected by edges. In the graph below, the vertices are represented by
circles, and the edges are the lines that connect them.

raywenderlich.com 318

Weighted graphs
In a weighted graph, every edge has a weight associated with it that represents the
cost of using this edge. This lets you choose the cheapest or shortest path between
two vertices.

Take the airline industry as an example, and think of a network with varying flight
paths:

In this example, the vertices represent a state or country, while the edges represent a
route from one place to another. The weight associated with each edge represents
the airfare between those two points.

Using this network, you can determine the cheapest flights from San Francisco to
Singapore for all those budget-minded digital nomads out there.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 319

Directed graphs
As well as assigning a weight to an edge, your graphs can also have direction.
Directed graphs are more restrictive to traverse, as an edge may only permit traversal
in one direction.

The diagram below represents a directed graph.

A directed graph

You can tell a lot from this diagram:

• There is a flight from Hong Kong to Tokyo.

• There is no direct flight from San Francisco to Tokyo.

• You can buy a roundtrip ticket between Singapore and Tokyo.

• There is no way to get from Tokyo to San Francisco.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 320

Undirected graphs
You can think of an undirected graph as a directed graph where all of the edges are
bi-directional.

In an undirected graph:

• Two connected vertices have edges going back and forth.

• The weight of an edge applies to both directions.

An undirected graph

Common opera6ons
It’s time to establish an interface for graphs.

Open the starter project for this chapter. Create a new file named Graph.kt and add
the following inside the file:

interface Graph<T> {

 fun createVertex(data: T): Vertex<T>

 fun addDirectedEdge(source: Vertex<T>,
 destination: Vertex<T>,
 weight: Double?)

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 321

 fun addUndirectedEdge(source: Vertex<T>,
 destination: Vertex<T>,
 weight: Double?)

 fun add(edge: EdgeType,
 source: Vertex<T>,
 destination: Vertex<T>,
 weight: Double?)

 fun edges(source: Vertex<T>): ArrayList<Edge<T>>

 fun weight(source: Vertex<T>,
 destination: Vertex<T>): Double?

}

enum class EdgeType {
 DIRECTED,
 UNDIRECTED
}

This interface describes the common operations for a graph:

• createVertex(): Creates a vertex and adds it to the graph.

• addDirectedEdge(): Adds a directed edge between two vertices.

• addUndirectedEdge(): Adds an undirected (or bi-directional) edge between two
vertices.

• add(): Uses EdgeType to add either a directed or undirected edge between two
vertices.

• edges(): Returns a list of outgoing edges from a specific vertex.

• weight(): Returns the weight of the edge between two vertices.

In the following sections, you’ll implement this interface in two ways:

• Using an adjacency list.

• Using an adjacency matrix.

Before you can do that, you must first build types to represent vertices and edges.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 322

Defining a vertex

A collection of vertices — not yet a graph

Create a new file named Vertex.kt and add the following inside the file:

data class Vertex<T>(val index: Int, val data: T)

Here, you’ve defined a generic Vertex class. A vertex has a unique index within its
graph and holds a piece of data.

You defined Vertex as a data class because it will be used as a key in a Map later, and
a data class gives you equals() and hashCode() implementations, without having
to write them yourself.

Defining an edge
To connect two vertices, there must be an edge between them.

Edges added to the collection of vertices

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 323

Create a new file named Edge.kt and add the following inside the file:

data class Edge<T>(
 val source: Vertex<T>,
 val destination: Vertex<T>,
 val weight: Double? = null
)

An Edge connects two vertices and has an optional weight.

Adjacency list
The first graph implementation that you’ll learn uses an adjacency list. For every
vertex in the graph, the graph stores a list of outgoing edges.

Take as an example the following network:

The adjacency list below describes the network of flights depicted above:

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 324

There’s a lot you can learn from this adjacency list:

1. Singapore’s vertex has two outgoing edges. There’s a flight from Singapore to
Tokyo and Hong Kong.

2. Detroit has the smallest number of outgoing traffic.

3. Tokyo is the busiest airport, with the most outgoing flights.

In the next section, you’ll create an adjacency list by storing a map of arrays. Each
key in the map is a vertex, and in every vertex, the map holds a corresponding array
of edges.

Implementa6on
Create a new file named AdjacencyList.kt and add the following:

class AdjacencyList<T> : Graph<T> {

 private val adjacencies: HashMap<Vertex<T>,
ArrayList<Edge<T>>> = HashMap()

 // more to come ...
}

Here, you’ve defined an AdjacencyList that uses a map to store the edges.

You’ve already implemented the Graph interface but still need to implement its
requirements. That’s what you’ll do in the following sections.

Crea6ng a vertex
Add the following method to AdjacencyList:

override fun createVertex(data: T): Vertex<T> {
 val vertex = Vertex(adjacencies.count(), data)
 adjacencies[vertex] = ArrayList()
 return vertex
}

Here, you create a new vertex and return it. In the adjacency list, you store an empty
list of edges for this new vertex.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 325

Crea6ng a directed edge
Recall that there are directed and undirected graphs.

Start by implementing the addDirectedEdge requirement. Add the following
method:

override fun addDirectedEdge(source: Vertex<T>, destination:
Vertex<T>, weight: Double?) {
 val edge = Edge(source, destination, weight)
 adjacencies[source]?.add(edge)
}

This method creates a new edge and stores it in the adjacency list.

Crea6ng an undirected edge
You just created a method to add a directed edge between two vertices. How would
you create an undirected edge between two vertices?

Remember that an undirected graph can be viewed as a bidirectional graph. Every
edge in an undirected graph can be traversed in both directions. This is why you’ll
implement addUndirectedEdge() on top of addDirectedEdge(). Because this
implementation is reusable, you’ll add it as a default implementation in Graph.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 326

In Graph.kt, update addUndirectedEdge():

fun addUndirectedEdge(source: Vertex<T>, destination: Vertex<T>,
weight: Double?) {
 addDirectedEdge(source, destination, weight)
 addDirectedEdge(destination, source, weight)
}

Adding an undirected edge is the same as adding two directed edges.

Now that you’ve implemented both addDirectedEdge() and
addUndirectedEdge(), you can implement add() by delegating to one of these
methods. Update the add() method of Graph as well:

fun add(edge: EdgeType, source: Vertex<T>, destination:
Vertex<T>, weight: Double?) {
 when (edge) {
 EdgeType.DIRECTED -> addDirectedEdge(source, destination,
weight)
 EdgeType.UNDIRECTED -> addUndirectedEdge(source,
destination, weight)
 }
}

add() is a convenient helper method that creates either a directed or undirected
edge. This is where interfaces with default methods can become very powerful.
Anyone that implements the Graph interface only needs to implement
addDirectedEdge() in order to get addUndirectedEdge() and add() for free.

Retrieving the outgoing edges from a vertex
Back in AdjacencyList.kt, continue your work on implementing Graph by adding the
following method:

override fun edges(source: Vertex<T>) =
 adjacencies[source] ?: arrayListOf()

This is a straightforward implementation: You either return the stored edges or an
empty list if the source vertex is unknown.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 327

Retrieving the weight of an edge
How much is the flight from Singapore to Tokyo?

Add the following immediately after edges():

override fun weight(source: Vertex<T>, destination: Vertex<T>):
Double? {
 return edges(source).firstOrNull { it.destination ==
destination }?.weight
}

Here, you find the first edge from source to destination; if there is one, you return
its weight.

Visualizing the adjacency list
Add the following extension to AdjacencyList so that you can print a nice
description of your graph:

override fun toString(): String {
 return buildString { // 1
 adjacencies.forEach { (vertex, edges) -> // 2
 val edgeString = edges.joinToString
{ it.destination.data.toString() } // 3
 append("${vertex.data} ---> [$edgeString]\n") // 4
 }
 }
}

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 328

Here’s what’s going on in the previous code:

1. You'll be assembling the result using buildString(), which places you inside the
scope of a StringBuilder, and returns whatever you've built.

2. You loop through every key-value pair in adjacencies.

3. For every vertex, you create a string representation of all its outgoing edges.
joinToString() gives you a neat, comma-separated list of the items.

4. Finally, for every vertex, you append both the vertex itself and its outgoing edges
to the StringBuilder that buildString() provides you with.

You’ve finally completed your first graph. You’re ready to try it out by building a
network.

Building a network
Let’s go back to the flights example and construct a network of flights with the
prices as weights.

Within main(), add the following code:

val graph = AdjacencyList<String>()

val singapore = graph.createVertex("Singapore")
val tokyo = graph.createVertex("Tokyo")
val hongKong = graph.createVertex("Hong Kong")
val detroit = graph.createVertex("Detroit")
val sanFrancisco = graph.createVertex("San Francisco")

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 329

val washingtonDC = graph.createVertex("Washington DC")
val austinTexas = graph.createVertex("Austin Texas")
val seattle = graph.createVertex("Seattle")

graph.add(EdgeType.UNDIRECTED, singapore, hongKong, 300.0)
graph.add(EdgeType.UNDIRECTED, singapore, tokyo, 500.0)
graph.add(EdgeType.UNDIRECTED, hongKong, tokyo, 250.0)
graph.add(EdgeType.UNDIRECTED, tokyo, detroit, 450.0)
graph.add(EdgeType.UNDIRECTED, tokyo, washingtonDC, 300.0)
graph.add(EdgeType.UNDIRECTED, hongKong, sanFrancisco, 600.0)
graph.add(EdgeType.UNDIRECTED, detroit, austinTexas, 50.0)
graph.add(EdgeType.UNDIRECTED, austinTexas, washingtonDC, 292.0)
graph.add(EdgeType.UNDIRECTED, sanFrancisco, washingtonDC,
337.0)
graph.add(EdgeType.UNDIRECTED, washingtonDC, seattle, 277.0)
graph.add(EdgeType.UNDIRECTED, sanFrancisco, seattle, 218.0)
graph.add(EdgeType.UNDIRECTED, austinTexas, sanFrancisco, 297.0)

println(graph)

You’ll get the following output in your console:

Detroit ---> [Tokyo, Austin, Texas]
Hong Kong ---> [Singapore, Tokyo, San Francisco]
Singapore ---> [Hong Kong, Tokyo]
Washington, DC ---> [Tokyo, Austin, Texas, San Francisco,
Seattle]
Tokyo ---> [Singapore, Hong Kong, Detroit, Washington, DC]
San Francisco ---> [Hong Kong, Washington, DC, Seattle, Austin,
Texas]
Austin, Texas ---> [Detroit, Washington, DC, San Francisco]
Seattle ---> [Washington, DC, San Francisco]

Pretty cool, huh? This shows a visual description of an adjacency list. You can clearly
see all of the outbound flights from any place.

You can also obtain other useful information such as:

• How much is a flight from Singapore to Tokyo?

println(graph.weight(singapore, tokyo))

• What are all the outgoing flights from San Francisco?

println("San Francisco Outgoing Flights:")
println("--------------------------------")
graph.edges(sanFrancisco).forEach { edge ->
 println("from: ${edge.source.data} to: $
{edge.destination.data}")
}

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 330

You have just created a graph using an adjacency list, wherein you used a map to
store the outgoing edges for every vertex. Let’s take a look at a different approach to
how to store vertices and edges.

Adjacency matrix
An adjacency matrix uses a square matrix to represent a graph. This matrix is a
two-dimensional array wherein the value of matrix[row][column] is the weight of
the edge between the vertices at row and column.

Below is an example of a directed graph that depicts a flight network traveling to
different places. The weight represents the cost of the airfare.

The following adjacency matrix describes the network for the flights depicted above.

Edges that don’t exist have a weight of 0.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 331

Compared to an adjacency list, this matrix is a little more challenging to read.

Using the array of vertices on the left, you can learn a lot from the matrix. For
example:

• [0][1] is 300, so there is a flight from Singapore to Hong Kong for $300.

• [2][1] is 0, so there is no flight from Tokyo to Hong Kong.

• [1][2] is 250, so there is a flight from Hong Kong to Tokyo for $250.

• [2][2] is 0, so there is no flight from Tokyo to Tokyo!

Note: There’s a pink line in the middle of the matrix. When the row and
column are equal, this represents an edge between a vertex and itself, which is
not allowed.

Implementa6on
Create a new file named AdjacencyMatrix.kt and add the following to it:

class AdjacencyMatrix<T> : Graph<T> {

 private val vertices = arrayListOf<Vertex<T>>()
 private val weights = arrayListOf<ArrayList<Double?>>()

 // more to come ...
}

Here, you’ve defined an AdjacencyMatrix that contains an array of vertices and an
adjacency matrix to keep track of the edges and their weights.

Just as before, you’ve already declared the implementation of Graph but still need to
implement the requirements.

Crea6ng a Vertex
Add the following method to AdjacencyMatrix:

override fun createVertex(data: T): Vertex<T> {
 val vertex = Vertex(vertices.count(), data)
 vertices.add(vertex) // 1
 weights.forEach {

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 332

 it.add(null) // 2
 }
 weights.add(arrayListOf()) // 3
 return vertex
}
override fun createVertex(data: T): Vertex<T> {
 val vertex = Vertex(vertices.count(), data)
 vertices.add(vertex) // 1
 weights.forEach {
 it.add(null) // 2
 }
 val row = ArrayList<Double?>(vertices.count())
 repeat(vertices.count()) {
 row.add(null)
 }
 weights.add(row) // 3
 return vertex
}

To create a vertex in an adjacency matrix, you:

1. Add a new vertex to the array.

2. Append a null weight to every row in the matrix, as none of the current vertices
have an edge to the new vertex.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 333

3. Add a new row to the matrix. This row holds the outgoing edges for the new
vertex. You put a null value in this row for each vertex that your graph stores.

Crea6ng edges
Creating edges is as simple as filling in the matrix. Add the following method:

override fun addDirectedEdge(
 source: Vertex<T>,
 destination: Vertex<T>,
 weight: Double?
) {
 weights[source.index][destination.index] = weight
}

Remember that addUndirectedEdge() and add() have a default implementation in
the interface, so this is all you need to do.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 334

Retrieving the outgoing edges from a vertex
Add the following method:

override fun edges(source: Vertex<T>): ArrayList<Edge<T>> {
 val edges = arrayListOf<Edge<T>>()
 (0 until weights.size).forEach { column ->
 val weight = weights[source.index][column]
 if (weight != null) {
 edges.add(Edge(source, vertices[column], weight))
 }
 }
 return edges
}

To retrieve the outgoing edges for a vertex, you search the row for this vertex in the
matrix for weights that are not null.

Every non-null weight corresponds with an outgoing edge. The destination is the
vertex that corresponds with the column in which the weight was found.

Retrieving the weight of an edge
It’s easy to get the weight of an edge; simply look up the value in the adjacency
matrix. Add this method:

override fun weight(
 source: Vertex<T>,
 destination: Vertex<T>
): Double? {
 return weights[source.index][destination.index]
}

Visualize an adjacency matrix
Finally, add the following extension so you can print a nice, readable description of
your graph:

override fun toString(): String {
 // 1
 val verticesDescription = vertices.joinToString("\n") { "$
{it.index}: ${it.data}" }

 // 2
 val grid = arrayListOf<String>()
 weights.forEach {

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 335

 var row = ""
 (0 until weights.size).forEach { columnIndex ->
 if (columnIndex >= it.size) {
 row += "ø\t\t"
 } else {
 row += it[columnIndex]?.let { "$it\t" } ?: "ø\t\t"
 }
 }
 grid.add(row)
 }
 val edgesDescription = grid.joinToString("\n")
 // 3
 return "$verticesDescription\n\n$edgesDescription"
}

override fun toString(): String {
 // 1
 val verticesDescription = vertices
 .joinToString(separator = "\n") { "${it.index}: $
{it.data}" }

 // 2
 val grid = weights.map { row ->
 buildString {
 (0 until weights.size).forEach { columnIndex ->
 val value = row[columnIndex]
 if (value != null) {
 append("$value\t")
 } else {
 append("ø\t\t")
 }
 }
 }
 }
 val edgesDescription = grid.joinToString("\n")

 // 3
 return "$verticesDescription\n\n$edgesDescription"
}

Here are the steps:

1. You first create a list of the vertices.

2. Then, you build up a grid of weights, row by row.

3. Finally, you join both descriptions together and return them.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 336

Building a network
You’ll reuse the same example from AdjacencyList:

Go to main() and replace:

val graph = AdjacencyList<String>()

With:

val graph = AdjacencyMatrix<String>()

AdjacencyMatrix and AdjacencyList have the same interface, so the rest of the
code stays the same.

You’ll get the following output in your console:

0: Singapore
1: Tokyo
2: Hong Kong
3: Detroit
4: San Francisco
5: Washington DC
6: Austin Texas
7: Seattle

ø 500.0 300.0 ø ø ø ø ø
500.0 ø 250.0 450.0 ø 300.0 ø ø
300.0 250.0 ø ø 600.0 ø ø ø
ø 450.0 ø ø ø ø 50.0 ø
ø ø 600.0 ø ø 337.0 297.0

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 337

218.0
ø 300.0 ø ø 337.0 ø 292.0
277.0
ø ø ø 50.0 297.0 292.0 ø ø
ø ø ø ø 218.0 277.0 ø ø

San Francisco Outgoing Flights:

from: San Francisco to: Hong Kong
from: San Francisco to: Washington, DC
from: San Francisco to: Austin, Texas
from: San Francisco to: Seattle

In terms of visual beauty, an adjacency list is a lot easier to follow and trace than an
adjacency matrix. Next, you’ll analyze the common operations of these two
approaches and see how they perform.

Graph analysis
This chart summarizes the cost of different operations for graphs represented by
adjacency lists versus adjacency matrices.

V represents vertices, and E represents edges.

An adjacency list takes less storage space than an adjacency matrix. An adjacency list
simply stores the number of vertices and edges needed. As for an adjacency matrix,
recall that the number of rows and columns is equal to the number of vertices. This
explains the quadratic space complexity of O(V²).

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 338

Adding a vertex is efficient in an adjacency list: Simply create a vertex and set its
key-value pair in the map. It’s amortized as O(1). When adding a vertex to an
adjacency matrix, you’re required to add a column to every row and create a new row
for the new vertex. This is at least O(V), and if you choose to represent your matrix
with a contiguous block of memory, it can be O(V²).

Adding an edge is efficient in both data structures, as they are both constant time.
The adjacency list appends to the array of outgoing edges. The adjacency matrix sets
the value in the two-dimensional array.

Adjacency list loses out when trying to find a particular edge or weight. To find an
edge in an adjacency list, you must obtain the list of outgoing edges and loop
through every edge to find a matching destination. This happens in O(V) time. With
an adjacency matrix, finding an edge or weight is a constant time access to retrieve
the value from the two-dimensional array.

Which data structure should you choose to construct your graph?

If there are few edges in your graph, it’s considered a sparse graph, and an adjacency
list would be a good fit. An adjacency matrix would be a bad choice for a sparse
graph, because a lot of memory will be wasted since there aren’t many edges.

If your graph has lots of edges, it’s considered a dense graph, and an adjacency
matrix would be a better fit as you’d be able to access your weights and edges far
more quickly.

• Adjacency matrix uses a square matrix to represent a graph.

• Adjacency list is generally good for sparse graphs, when your graph has the least
amount of edges.

• Adjacency matrix is generally suitable for dense graphs, when your graph has lots
of edges.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 339

Challenges

Challenge 1: Find the distance between 2
ver6ces
Write a method to count the number of paths between two vertices in a directed
graph. The example graph below has 5 paths from A to E:

Solu6on 1
The goal is to write a function that finds the number of paths between two vertices
in a graph. One solution is to perform a depth-first traversal and keep track of the
visited vertices.

fun numberOfPaths(
 source: Vertex<T>,
 destination: Vertex<T>
): Int {
 val numberOfPaths = Ref(0) // 1
 val visited: MutableSet<Vertex<Element>> = mutableSetOf() // 2
 paths(source, destination, visited, numberOfPaths) // 3
 return numberOfPaths.value
}

And to create a Ref class to pass the Int value by reference:

data class Ref<T>(var value: T)

Here, you do the following:

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 340

1. numberOfPaths keeps track of the number of paths found between the source
and destination.

2. visited is an ArrayList that keeps track of all the vertices visited.

3. paths is a recursive helper function that takes in four parameters. The first two
parameters are the source and destination vertices. visited tracks the
vertices visited, and numberOfPaths tracks the number of paths found. These last
two parameters are modified within paths.

Add the following immediately after numberOfPaths():

fun numberOfPaths(source: Vertex,destination: Vertex)

fun paths(
 source: Vertex<T>,
 destination: Vertex<T>,
 visited: MutableSet<Vertex<T>>,
 pathCount: Ref<Int>
) {
 visited.add(source) // 1
 if (source == destination) { // 2
 pathCount.value += 1
 } else {
 val neighbors = edges(source) // 3
 neighbors.forEach { edge ->
 // 4
 if (edge.destination !in visited) {
 paths(edge.destination, destination, visited, pathCount)
 }
 }
 }
 // 5
 visited.remove(source)
}

To get the paths from the source to destination:

1. Initiate the algorithm by marking the source vertex as visited.

2. Check to see if the source is the destination. If it is, you have found a path, so
increment the count by one.

3. If the destination has not be found, get all of the edges adjacent to the source
vertex.

4. For every edge, if it has not been visited before, recursively traverse the
neighboring vertices to find a path to the destination vertex.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 341

5. Remove the source vertex from the visited list so that you can continue to find
other paths to that node.

You’re doing a depth-first graph traversal. You recursively dive down one path until
you reach the destination, and back-track by popping off the stack. The time-
complexity is O(V + E).

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 342

Challenge 2: The small world
Vincent has three friends: Chesley, Ruiz and Patrick. Ruiz has friends as well: Ray,
Sun and a mutual friend of Vincent’s. Patrick is friends with Cole and Kerry. Cole is
friends with Ruiz and Vincent. Create an adjacency list that represents this
friendship graph. Which mutual friend do Ruiz and Vincent share?

Solu6on 2

val graph = AdjacencyList<String>()

val vincent = graph.createVertex("vincent")
val chesley = graph.createVertex("chesley")
val ruiz = graph.createVertex("ruiz")
val patrick = graph.createVertex("patrick")
val ray = graph.createVertex("ray")
val sun = graph.createVertex("sun")
val cole = graph.createVertex("cole")
val kerry = graph.createVertex("kerry")

graph.add(EdgeType.UNDIRECTED, vincent, chesley, 0.0)
graph.add(EdgeType.UNDIRECTED, vincent, ruiz, 0.0)
graph.add(EdgeType.UNDIRECTED, vincent, patrick, 0.0)
graph.add(EdgeType.UNDIRECTED, ruiz, ray, 0.0)
graph.add(EdgeType.UNDIRECTED, ruiz, sun, 0.0)
graph.add(EdgeType.UNDIRECTED, patrick, cole, 0.0)
graph.add(EdgeType.UNDIRECTED, patrick, kerry, 0.0)
graph.add(EdgeType.UNDIRECTED, cole, ruiz, 0.0)
graph.add(EdgeType.UNDIRECTED, cole, vincent, 0.0)

println(graph)
println("Ruiz and Vincent both share a friend name Cole")

Key points
• You can represent real-world relationships through vertices and edges.

• Think of vertices as objects and edges as the relationship between the objects.

• Weighted graphs associate a weight with every edge.

• Directed graphs have edges that traverse in one direction.

• Undirected graphs have edges that point both ways.

• Adjacency list stores a list of outgoing edges for every vertex.

Data Structures & Algorithms in Kotlin Chapter 19: Graphs

raywenderlich.com 343

20Chapter 20: Breadth-First
Search
By Irina Galata

In the previous chapter, you explored how you can use graphs to capture
relationships between objects. Remember that objects are vertices, and the
relationships between them are represented by edges.

Several algorithms exist to traverse or search through a graph’s vertices. One such
algorithm is the breadth-first search (BFS) algorithm.

You can use BFS to solve a wide variety of problems:

1. Generating a minimum-spanning tree.

2. Finding potential paths between vertices.

3. Finding the shortest path between two vertices.

raywenderlich.com 344

Example
BFS starts by selecting any vertex in a graph. The algorithm then explores all
neighbors of this vertex before traversing the neighbors of said neighbors and so
forth. As the name suggests, this algorithm takes a breadth-first approach because
it doesn't visit the children until all the siblings are visited.

To get a better idea of how things work, you’ll look at a BFS example using the
following undirected graph:

Note: Highlighted vertices represent vertices that have been visited.

To keep track of which vertices to visit next, you can use a queue. The first in, first
out approach of the queue guarantees that all of a vertex’s neighbors are visited
before you traverse one level deeper.

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 345

1. To begin, pick a source vertex to start from. In this example, you choose A, which
is added to the queue.

2. As long as the queue is not empty, you can dequeue and visit the next vertex, in
this case, A. Next, you need to add all A’s neighboring vertices [B, D, C] to the
queue.

Note: You only add a vertex to the queue when it has not yet been visited and
is not already in the queue.

3. The queue is not empty, so you need to dequeue and visit the next vertex, which
is B. You then need to add B’s neighbor E to the queue. A is already visited, so it
doesn’t get added. The queue now has [D, C, E].

4. The next vertex to be dequeued is D. D does not have any neighbors that aren’t
visited. The queue now has [C, E].

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 346

5. Next, you need to dequeue C and add its neighbors [F, G] to the queue. The
queue now has [E, F, G].

Note that you have now visited all of A’s neighbors, and BFS moves on to the second
level of neighbors.

6. You need to dequeue E and add H to the queue. The queue now has [F, G, H].
Note that you don’t add B or F to the queue because B is already visited and F is
already in the queue.

7. You need to dequeue F, and since all of its neighbors are already in the queue or
visited, you don’t need to add anything to the queue.

8. Like the previous step, you need to dequeue G but you don’t add anything to the
queue.

9. Finally, you need to dequeue H. The breadth-first search is complete since the
queue is now empty.

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 347

10. When exploring the vertices, you can construct a tree-like structure, showing the
vertices at each level: First the vertex you started from, then its neighbors, then
its neighbors’ neighbors and so on.

Implementa6on
Open the starter playground for this chapter. This playground contains an
implementation of a graph that was built in the previous chapter. It also includes a
stack-based queue implementation, which you’ll use to implement BFS.

In your starter project, you’ll notice Graph.kt. Add the following method to the
Graph class:

fun breadthFirstSearch(source: Vertex<T>): ArrayList<Vertex<T>>
{
 val queue = QueueStack<Vertex<T>>()
 val enqueued = ArrayList<Vertex<T>>()
 val visited = ArrayList<Vertex<T>>()

 // more to come ...

 return visited
}

Here, you defined the method breadthFirstSearch() which takes in a starting
vertex. It uses three data structures:

1. queue: Keeps track of the neighboring vertices to visit next.

2. enqueued: Remembers which vertices have been enqueued, so you don’t enqueue
the same vertex twice.

3. visited: An array list that stores the order in which the vertices were explored.

Next, complete the method by replacing the comment with:

queue.enqueue(source) // 1
enqueued.add(source)

while (true) {
 val vertex = queue.dequeue() ?: break // 2

 visited.add(vertex) // 3

 val neighborEdges = edges(vertex) // 4
 neighborEdges.forEach {

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 348

 if (!enqueued.contains(it.destination)) { // 5
 queue.enqueue(it.destination)
 enqueued.add(it.destination)
 }
 }
}

Here’s what’s going on:

1. You initiate the BFS algorithm by first enqueuing the source vertex.

2. You continue to dequeue a vertex from the queue until the queue is empty.

3. Every time you dequeue a vertex from the queue, you add it to the list of visited
vertices.

4. You then find all edges that start from the current vertex and iterate over them.

5. For each edge, you check to see if its destination vertex has been enqueued
before, and if not, you add it to the code.

That’s all there is to implementing BFS. It’s time to give this algorithm a spin. Add
the following code to the main method in the Main.kt file:

val vertices = graph.breadthFirstSearch(a)
 vertices.forEach {
 println(it.data)
}

Take note of the order of the explored vertices using BFS:

A
B
C
D
E
F
G
H

One thing to keep in mind with neighboring vertices is that the order in which you
visit them is determined by how you construct your graph. You could have added an
edge between A and C before adding one between A and B. In this case, the output
would list C before B.

Performance

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 349

When traversing a graph using BFS, each vertex is enqueued once. This has a time
complexity of O(V). During this traversal, you also visit all of the edges. The time it
takes to visit all edges is O(E). This means that the overall time complexity for
breadth-first search is O(V + E).

The space complexity of BFS is O(V) since you have to store the vertices in three
separate structures: queue, enqueued and visited.

Challenges

Challenge 1: How many nodes?
For the following undirected graph, list the maximum number of items ever in the
queue. Assume that the starting vertex is A.

Solu6on 1
The maximum number of items ever in the queue is 3.

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 350

Challenge 2: What about recursion?
In this chapter, you went over an iterative implementation of breadth-first search.
Now, write a recursive implementation.

Solu6on 2
In this chapter, you learned how to implement the algorithm iteratively. Let’s look at
how you would implement it recursively.

fun bfs(source: Vertex<T>): ArrayList<Vertex<T>> {
 val queue = QueueStack<Vertex<T>>() // 1
 val enqueued = arrayListOf<Vertex<T>>() // 2
 val visited = arrayListOf<Vertex<T>>() // 3

 queue.enqueue(source) // 4
 enqueued.add(source)

 bfs(queue, enqueued, visited) // 5

 return visited // 6
}

bfs takes in the source vertex to start traversing from:

1. queue keeps track of the neighboring vertices to visit next.

2. enqueued remembers which vertices have been added to the queue.

3. visited is a list that stores the order in which the vertices were explored.

4. Initiate the algorithm by inserting the source vertex.

5. Perform bfs recursively on the graph by calling a helper function.

6. Return the vertices visited in order.

The helper function looks like this:

private fun bfs(queue: QueueStack<Vertex<T>>, enqueued:
ArrayList<Vertex<T>>, visited: ArrayList<Vertex<T>>) {
 val vertex = queue.dequeue() ?: return // 1

 visited.add(vertex) // 2

 val neighborEdges = edges(vertex) // 3
 neighborEdges.forEach {
 if (!enqueued.contains(it.destination)) { // 4
 queue.enqueue(it.destination)

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 351

 enqueued.add(it.destination)
 }
 }

 bfs(queue, enqueued, visited) // 5
}

Here’s how it works:

1. We start from the first node we dequeue from the queue of all verteces. Then we
recursively continue to dequeue a vertex from the queue till it’s empty.

2. Mark the vertex as visited.

3. For every neighboring edge from the current vertex.

4. Check to see if the adjacent vertices have been visited before inserting into the
queue.

5. Recursively perform bfs until the queue is empty.

The overall time complexity for breadth-first search is O(V + E).

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 352

Challenge 3: Detect disconnects
Add a method to Graph to detect if a graph is disconnected. An example of a
disconnected graph is shown below:

Solu6on 3
To solve this challenge, add the property allVertices to the Graph abstract class:

abstract val allVertices: ArrayList<Vertex<T>>

Then, implement this property in AdjacencyMatrix and AdjacencyList
respectively:

override val allVertices: ArrayList<Vertex<T>>
 get() = vertices

override val allVertices: ArrayList<Vertex<T>>
 get() = ArrayList(adjacencies.keys)

A graph is said to be disconnected if no path exists between two nodes.

fun isDisconnected(): Boolean {
 val firstVertex = allVertices.firstOrNull() ?: return false //
1

 val visited = breadthFirstSearch(firstVertex) // 2
 allVertices.forEach { // 3
 if (!visited.contains(it)) return true
 }

 return false
}

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 353

Here’s how it works:

1. If there are no vertices, treat the graph as connected.

2. Perform a breadth-first search starting from the first vertex. This will return all
the visited nodes.

3. Go through every vertex in the graph and check to see if it has been visited
before.

The graph is considered disconnected if a vertex is missing in the visited list.

Key points
• Breadth-first search (BFS) is an algorithm for traversing or searching a graph.

• BFS explores all of the current vertex’s neighbors before traversing the next level
of vertices.

• It’s generally good to use this algorithm when your graph structure has a lot of
neighboring vertices or when you need to find out every possible outcome.

• The queue data structure is used to prioritize traversing a vertex’s neighboring
edges before diving down a level deeper.

Data Structures & Algorithms in Kotlin Chapter 20: Breadth-First Search

raywenderlich.com 354

21Chapter 21: Depth-First
Search
By Irina Galata

In the previous chapter, you looked at breadth-first search (BFS) in which you had to
explore every neighbor of a vertex before going to the next level. In this chapter,
you’ll look at depth-first search (DFS), another algorithm for traversing or
searching a graph.

There are many applications for DFS:

• Topological sorting.

• Detecting a cycle.

• Pathfinding, such as in maze puzzles.

• Finding connected components in a sparse graph.

To perform a DFS, you start with a given source vertex and attempt to explore a
branch as far as possible until you reach the end. At this point, you’d backtrack
(move a step back) and explore the next available branch until you find what you’re
looking for or until you’ve visited all the vertices.

raywenderlich.com 355

DFS example
The example graph below is the same as the previous chapter.

Using the same graph helps you to see the difference between BFS and DFS.

You’ll use a stack to keep track of the levels you move through. The stack’s LIFO
approach helps with backtracking. Every push on the stack means that you move one
level deeper. When you reach a dead end, you can pop to return to a previous level.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 356

1. As in the previous chapter, you choose A as a starting vertex and add it to the
stack.

2. As long as the stack is not empty, you visit the top vertex on the stack and push
the first neighboring vertex that you haven’t yet visited. In this case, you visit A
and push B.

Recall from the previous chapter that the order in which you add edges influences
the result of a search. In this case, the first edge added to A was an edge to B, so B is
pushed first.

3. You visit B and push E because you already visited A.

4. You visit E and push F.

Note that, every time you push on the stack, you advance farther down a branch.
Instead of visiting every adjacent vertex, you continue down a path until you reach
the end and then backtrack.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 357

5. You visit F and push G.

6. You visit G and push C.

7. The next vertex to visit is C. It has neighbors [A, F, G], but you already visited
these. You reached a dead end, so it’s time to backtrack by popping C off the
stack.

8. This brings you back to G. It has neighbors [F, C], but you also already visited
these. Another dead end, pop G.

9. F also has no unvisited neighbors remaining, so pop F.

10. Now, you’re back at E. Its neighbor H is still unvisited, so you push H on the stack.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 358

11. Visiting H results in another dead end, so pop H.

12. E also doesn’t have any available neighbors, so pop it.

13. The same is true for B, so pop B.

14. This brings you back to A, whose neighbor D still needs a visit, so you push D on
the stack.

15. Visiting D results in another dead end, so pop D.

16. You’re back at A, but this time, there are no available neighbors to push, so you
pop A. The stack is now empty, and the DFS is complete.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 359

When exploring the vertices, you can construct a tree-like structure, showing the
branches you’ve visited. You can see how deep DFS went when compared to BFS.

Implementa6on
Open the starter project for this chapter. This project contains an implementation of
a graph, as well as a stack that you’ll use to implement DFS.

Look at Main.kt, and you’ll see a pre-built sample graph. This is the graph you’ll be
working with.

To implement DFS, add the following inside Graph:

fun depthFirstSearch(source: Vertex<T>): ArrayList<Vertex<T>> {
 val stack = StackImpl<Vertex<T>>()
 val visited = arrayListOf<Vertex<T>>()
 val pushed = mutableSetOf<Vertex<T>>()

 stack.push(source)
 pushed.add(source)
 visited.add(source)

 // more to come ...

 return visited
}

With this code you define depthFirstSearch(), a new method that takes in a
starting vertex and returns a list of vertices in the order they were visited. It uses
three data structures:

1. stack: Used to store your path through the graph.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 360

2. pushed: Remembers which vertices were already pushed so that you don’t visit
the same vertex twice. It's a MutableSet to ensure fast O(1) lookup.

3. visited: A list that stores the order in which the vertices were visited.

In the first step you insert the vertex passed as parameter to the three data
structures. You do this because this is the first to be visited and it's the starting point
in order to navigate the neighbors.

Next, complete the method by replacing the comment with:

outer@ while (true) {
 if (stack.isEmpty) break

 val vertex = stack.peek()!! // 1
 val neighbors = edges(vertex) // 2

 if (neighbors.isEmpty()) { // 3
 stack.pop()
 continue
 }

 for (i in 0 until neighbors.size) { // 4
 val destination = neighbors[i].destination
 if (destination !in pushed) {
 stack.push(destination)
 pushed.add(destination)
 visited.add(destination)
 continue@outer // 5
 }
 }
 stack.pop() // 6
}

Here’s what’s going on:

1. You continue to check the top of the stack for a vertex until the stack is empty.
You’ve labeled this loop outer so that you have a way to continue to the next
vertex, even within nested loops.

2. You find all the neighboring edges for the current vertex.

3. If there are no edges, you pop the vertex off the stack and continue to the next
one.

4. Here, you loop through every edge connected to the current vertex and check to
see if the neighboring vertex has been seen. If not, you push it onto the stack and
add it to the visited list.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 361

It may seem a bit premature to mark this vertex as visited — you haven’t popped it
yet — but since vertices are visited in the order in which they are added to the stack,
it results in the correct order.

5. Now that you’ve found a neighbor to visit, you continue the outer loop and move
to the newly pushed neighbor.

6. If the current vertex did not have any unvisited neighbors, you know that you
reached a dead end and can pop it off the stack.

Once the stack is empty, the DFS algorithm is complete. All you have to do is return
the visited vertices in the order you visited them.

To test your code, add the following to main():

val vertices = graph.depthFirstSearch(a)
vertices.forEach {
 println(it.data)
}

If you run the main() in the Main.kt file, you'll see the following output for the
order of the visited nodes using a DFS:

A
B
E
H
F
C
G
D

Performance
DFS visits every vertex at least once. This has a time complexity of O(V).

When traversing a graph in DFS, you have to check all neighboring vertices to find
one that’s available to visit. The time complexity of this is O(E) because in the worst
case, you have to visit every edge in the graph.

Overall, the time complexity for depth-first search is O(V + E).

The space complexity of depth-first search is O(V) because you have to store vertices
in three separate data structures: stack, pushed and visited.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 362

Challenges

Challenge 1: Depth First Search
For each of the following two examples, which traversal (depth-first or breadth-first)
is better for discovering if a path exists between the two nodes? Explain why.

• Path from A to F.

• Path from A to G.

Solu6on 1
• Path from A to F: Use depth-first, because the path you’re looking for is deeper in

the graph.

• Path from A to G: Use breadth-first, because the path you’re looking for is near the
root.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 363

Challenge 2: Depth First Search
In this chapter, you went over an iterative implementation of depth-first search.
Write a recursive implementation.

Solu6on 2
Let's look at how you can implement DFS recursively.

fun depthFirstSearchRecursive(start: Vertex<T>):
ArrayList<Vertex<T>> {
 val visited = arrayListOf<Vertex<T>>() // 1
 val pushed = mutableSetOf<Vertex<T>>() // 2

 depthFirstSearch(start, visited, pushed) // 3

 return visited
}

Here’s what’s happening:

1. visited keeps track of the vertices visited in order.

2. pushed keeps tracks of which vertices have been visited.

3. Perform depth-first search recursively by calling a helper function.

The helper function looks like this:

fun depthFirstSearch(
 source: Vertex<T>,
 visited: ArrayList<Vertex<T>>,
 pushed: MutableSet<Vertex<T>>
) {
 pushed.add(source) // 1
 visited.add(source)

 val neighbors = edges(source)
 neighbors.forEach { // 2
 if (it.destination !in pushed) {
 depthFirstSearch(it.destination, visited, pushed) // 3
 }
 }
}

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 364

Here’s how it works:

1. Insert the source vertex into the queue, and mark it as visited.

2. For every neighboring edge...

3. As long as the adjacent vertex has not been visited yet, continue to dive deeper
down the branch recursively.

Overall, the time complexity for depth-first search is O(V + E).

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 365

Challenge 3: Depth First Search Challenge
Add a method to Graph to detect if a directed graph has a cycle.

Solu6on 3
A graph is said to have a cycle when there’s a path of edges and vertices leading back
to the same source.

fun hasCycle(source: Vertex<T>): Boolean {
 val pushed = arrayListOf<Vertex<T>>() // 1
 return hasCycle(source, pushed) // 2
}

Here’s how it works:

1. pushed is used to keep track of all the vertices visited.

2. Recursively check to see if there’s a cycle in the graph by calling a helper
function.

The helper function looks like this:

fun hasCycle(source: Vertex<T>, pushed: MutableSet<Vertex<T>>):
Boolean {
 pushed.add(source) // 1

 val neighbors = edges(source) // 2
 neighbors.forEach {
 if (it.destination !in pushed && hasCycle(it.destination,
pushed)) { // 3
 return true
 } else if (it.destination in pushed) { // 4
 return true
 }
 }

 pushed.remove(source) // 5
 return false // 6
}

And it works like this:

1. To initiate the algorithm, first, insert the source vertex.

2. For every neighboring edge...

3. If the adjacent vertex has not been visited before, recursively dive deeper down a
branch to check for a cycle.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 366

4. If the adjacent vertex has been visited before, you’ve found a cycle.

5. Remove the source vertex so that you can continue to find other paths with a
potential cycle.

6. No cycle has been found.

You’re essentially performing a depth-first graph traversal by recursively diving
down one path until you find a cycle. You’re backtracking by popping off the stack to
find another path. The time-complexity is O(V + E).

Key points
• Depth-first search (DFS) is another algorithm to traverse or search a graph.

• DFS explores a branch as far as possible until it reaches the end.

• Leverage a stack data structure to keep track of how deep you are in the graph.
Only pop off the stack when you reach a dead end.

Data Structures & Algorithms in Kotlin Chapter 21: Depth-First Search

raywenderlich.com 367

22Chapter 22: Dijkstra’s
Algorithm
By Irina Galata

Have you ever used the Google or Apple Maps app to find the shortest distance or
fastest time from one place to another? Dijkstra’s algorithm is particularly useful
in GPS networks to help find the shortest path between two places.

Dijkstra’s algorithm is a greedy algorithm. A greedy algorithm constructs a solution
step-by-step, and it picks the most optimal path at every step. In particular,
Dijkstra’s algorithm finds the shortest paths between vertices in either directed or
undirected graphs. Given a vertex in a graph, the algorithm will find all shortest
paths from the starting vertex.

Some other applications of Dijkstra’s algorithm include:

1. Communicable disease transmission: Discover where biological diseases are
spreading the fastest.

2. Telephone networks: Routing calls to highest-bandwidth paths available in the
network.

3. Mapping: Finding the shortest and fastest paths for travelers.

raywenderlich.com 368

Example
All the graphs you've looked at thus far have been undirected graphs. Let’s change it
up a little and work with a directed graph! Imagine the directed graph below
represents a GPS network:

The vertices represent physical locations, and the edges between the vertices
represent one way paths of a given cost between locations.

First pass
In Dijkstra’s algorithm, you first choose a starting vertex, since the algorithm needs
a starting point to find a path to the rest of the nodes in the graph. Assume the
starting vertex you pick is vertex A.

From vertex A, look at all outgoing edges. In this case, you've three edges:

• A to B, has a cost of 8.

• A to F, has a cost of 9.

• A to G, has a cost of 1.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 369

The remainder of the vertices will be marked as nil, since there is no direct path to
them from A.

As you work through this example, the table on the right of the graph will represent
a history or record of Dijkstra’s algorithm at each stage. Each pass of the algorithm
will add a row to the table. The last row in the table will be the final output of the
algorithm.

Second pass

In the next cycle, Dijkstra’s algorithm looks at the lowest-cost path you've thus far.
A to G has the smallest cost of 1, and is also the shortest path to get to G. This's
marked with a dark fill in the output table.

Now, from the lowest-cost path, vertex G, look at all the outgoing edges. There's
only one edge from G to C, and its total cost is 4. This is because the cost from A to G
to C is 1 + 3 = 4.

Every value in the output table has two parts: the total cost to reach that vertex, and
the last neighbor on the path to that vertex. For example, the value 4 G in the
column for vertex C means that the cost to reach C is 4, and the path to C goes
through G. A value of nil indicates that no path has been discovered to that vertex.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 370

Third pass

In the next cycle, you look at the next-lowest cost. According to the table, the path to
C has the smallest cost, so the search will continue from C. You fill column C because
you’ve found the shortest path to get to C.

Look at all of C’s outgoing edges:

• C to E has a total cost of 4 + 1 = 5.

• C to B has a total cost of 4 + 3 = 7.

You’ve found a lower-cost path to B, so you replace the previous value for B.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 371

Fourth pass

Now, in the next cycle, ask yourself what is the next-lowest cost path? According to
the table, C to E has the smallest total cost of 5, so the search will continue from E.

You fill column E because you’ve found the shortest path. Vertex E has the following
outgoing edges:

• E to C has a total cost of 5 + 8 = 13. Since you've found the shortest path to C
already, disregard this path.

• E to D has a total cost of 5 + 2 = 7.

• E to B has a total cost of 5 + 1 = 6. According to the table, the current shortest
path to B has a total cost of 7. You update the shortest path from E to B, since it
has a smaller cost of 6.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 372

Fihh pass

Next, you continue the search from B.

B has these outgoing edges:

• B to E has a total cost of 6 + 1 = 7, but you’ve already found the shortest path to E,
so disregard this path.

• B to F has a total cost of 6 + 3 = 9. From the table, you can tell that the current
path to F from A also has a cost of 9. You can disregard this path since it isn’t any
shorter.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 373

Sixth pass

In the next cycle, you continue the search from D.

However D has no outgoing edges, so it’s a dead end. You simply record that you’ve
found the shortest path to D and move on.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 374

Seventh pass

F is next up.

F has one outgoing edge to A with a total cost of 9 + 2 = 11. You can disregard this
edge since A is the starting vertex.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 375

Eighth pass
You've covered every vertex except for H. H has two outgoing edges to G and F.
However, there's no path from A to H. This is why the whole column for H is nil.

This completes Dijkstra’s algorithm, since all the vertices have been visited!

You can now check the final row for the shortest paths and their costs. For example,
the output tells you the cost to get to D is 7. To find the path, you simply backtrack.
Each column records the previous vertex the current vertex is connected to. You
should get from D to E to C to G and finally back to A. Let’s look at how you can
build this in code.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 376

Implementa6on
Open up the starter playground for this chapter. This playground comes with an
adjacency list graph and a priority queue, which you'll use to implement Dijkstra’s
algorithm.

The priority queue is used to store vertices that have not been visited. It’s a min-
priority queue so that, every time you dequeue a vertex, it gives you vertex with the
current tentative shortest path.

Create a new file named Dijkstra.kt and add the following inside the file:

class Dijkstra<T>(private val graph: AdjacencyList<T>){
// to be continued ...
}

Next, add the following class bellow the Dijkstra class:

class Visit<T>(val type: VisitType, val edge: Edge<T>? = null)

enum class VisitType {
 START, // 1
 EDGE // 2
}

Here, you defined an enum named Visit. This keeps track of two states:

1. The vertex is the starting vertex.

2. The vertex has an associated edge that leads to a path back to the starting vertex.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 377

Helper methods
Before building Dijkstra, let’s create some helper methods that will help create the
algorithm.

Tracing back to the start

You need a mechanism to keep track of the total weight from the current vertex back
to the start vertex. To do this, you'll keep track of a map named paths that stores a
Visit state for every vertex.

Add the following method to class Dijkstra:

private fun route(destination: Vertex<T>, paths:
HashMap<Vertex<T>, Visit<T>>): ArrayList<Edge<T>> {
 var vertex = destination // 1
 val path = arrayListOf<Edge<T>>() // 2

 loop@ while (true) {
 val visit = paths[vertex] ?: break

 when(visit.type) {
 VisitType.EDGE -> visit.edge?.let { // 3
 path.add(it) // 4
 vertex = it.source // 5
 }
 VisitType.START -> break@loop // 6
 }
 }

 return path
}

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 378

This method takes in the destination vertex along with a dictionary of existing
paths, and it constructs a path that leads to the destination vertex. Going over the
code:

1. Start at the destination vertex.

2. Create a list of edges to store the path.

3. As long as you've not reached the start case, continue to extract the next edge.

4. Add this edge to the path.

5. Set the current vertex to the edge’s source vertex. This moves you closer to the
start vertex.

6. Once the while loop reaches the start case, you've completed the path and
return it.

Calcula6ng total distance

Once you've the ability to construct a path from the destination back to the start
vertex, you need a way to calculate the total weight for that path.

Add the following method to class Dijkstra:

private fun distance(destination: Vertex<T>, paths:
HashMap<Vertex<T>, Visit<T>>): Double {
 val path = route(destination, paths) // 1
 return path.sumByDouble { it.weight ?: 0.0 }
}

This method takes in the destination vertex and a dictionary of existing paths, and
it returns the total weight. Going over the code:

1. Construct the path to the destination vertex.

2. sumByDouble sums the weights of all the edges.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 379

Now that you've established your helper methods, let’s implement Dijkstra’s
algorithm.

Genera6ng the shortest paths
After the distance method, add the following:

fun shortestPath(start: Vertex<T>): HashMap<Vertex<T>, Visit<T>>
{
 val paths: HashMap<Vertex<T>, Visit<T>> = HashMap()
 paths[start] = Visit(VisitType.START) // 1

 // 2
 val distanceComparator = Comparator<Vertex<T>>({ first, second
->
 (distance(second, paths) - distance(first, paths)).toInt()
 })
 // 3
 val priorityQueue =
ComparatorPriorityQueueImpl(distanceComparator)
 // 4
 priorityQueue.enqueue(start)

 // to be continued ...
}

This method takes in a start vertex and returns a dictionary of all the paths. Within
the method you:

1. Define paths and initialize it with the start vertex.

2. Create a Comparator which uses distances between vertices for sorting

3. Use the previous Comparator and create a min-priority queue to store the
vertices that must be visited.

4. Enqueue the start vertex as the first vertex to visit.

Complete your implementation of shortestPath with:

while (true) {
 val vertex = priorityQueue.dequeue() ?: break // 1
 val edges = graph.edges(vertex) // 2

 edges.forEach {
 val weight = it.weight ?: return@forEach // 3

 if (paths[it.destination] == null
 || distance(vertex, paths) + weight <

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 380

distance(it.destination, paths)) { //4
 paths[it.destination] = Visit(VisitType.EDGE, it)
 priorityQueue.enqueue(it.destination)
 }
 }
}

return paths

Going over the code:

1. You continue Dijkstra’s algorithm to find the shortest paths until you’ve visited
all the vertices have been visited. This happens once the priority queue is empty.

2. For the current vertex, you go through all its neighboring edges.

3. You make sure the edge has a weight. If not, you move on to the next edge.

4. If the destination vertex has not been visited before or you’ve found a cheaper
path, you update the path and add the neighboring vertex to the priority queue.

Once all the vertices have been visited, and the priority queue is empty, you return
the map of shortest paths back to the start vertex.

Finding a specific path
Add the following method to class Dijkstra:

fun shortestPath(destination: Vertex<T>, paths:
HashMap<Vertex<T>,
 Visit<T>>): ArrayList<Edge<T>> {
 return route(destination, paths)
}

This simply takes the destination vertex and the map of shortest and returns the
path to the destination vertex.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 381

Trying out your code

Navigate to the main() function, and you'll notice the graph above has been already
constructed using an adjacency list. Time to see Dijkstra’s algorithm in action.

Add the following code to the main() function:

val dijkstra = Dijkstra(graph)
val pathsFromA = dijkstra.shortestPath(a) // 1
val path = dijkstra.shortestPath(d, pathsFromA) // 2
path.forEach { // 3
 println("${it.source.data} --|${it.weight ?: 0.0}|--> + " +
 "${it.destination.data}")
}

Here, you simply create an instance of Dijkstra by passing in the graph network
and do the following:

1. Calculate the shortest paths to all the vertices from the start vertex A.

2. Get the shortest path to D.

3. Print this path.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 382

This outputs:

E --|2.0|--> D
C --|1.0|--> E
G --|3.0|--> C
A --|1.0|--> G

Performance
In Dijkstra’s algorithm, you constructed your graph using an adjacency list. You used
a min-priority queue to store vertices and extract the vertex with the minimum path.
This has an overall performance of O(log V). This's because the heap operations of
extracting the minimum element or inserting an element both take O(log V).

If you recall from the breadth-first search chapter, it takes O(V + E) to traverse all the
vertices and edges. Dijkstra’s algorithm is somewhat similar to breadth-first search,
because you have to explore all neighboring edges. This time, instead of going down
to the next level, you use a min-priority queue to select a single vertex with the
shortest distance to traverse down. That means it is O(1 + E) or simply O(E). So,
combining the traversal with operations on the min-priority queue, it takes O(E log
V) to perform Dijkstra’s algorithm.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 383

Challenges

Challenge 1: Running Dijkstra’s
Given the following graph, step through Dijkstra’s algorithm to produce the shortest
path to every other vertex starting from vertex A. Provide the final table of the paths
as shown in the previous chapter.

Solu6on 1

• Path to B: A - (1) - B

• Path to C: A - (1) - B - (8) - C

• Path to D: A - (1) - B - (9) - D

• Path to E: A - (1) - B - (8) - C - (2) - E

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 384

Challenge 2: Collect Dijkstra’s data
Add a method to class Dijkstra that returns a dictionary of all the shortest paths to
all vertices given a starting vertex. Here’s the method signature to get you started:

fun getAllShortestPath(source: Vertex<T>): HashMap<Vertex<T>,
Visit<T>> {
 val paths = HashMap<Vertex<T>, Visit<T>>()

 // Implement solution here ...

 return paths
}

Solu6on 2
This function is part of Dijkstra.kt. To get the shortest paths from the source vertex
to every other vertex in the graph, do the following:

fun getAllShortestPath(source: Vertex<T>): HashMap<Vertex<T>,
ArrayList<Edge<T>>> {
 val paths = HashMap<Vertex<T>, ArrayList<Edge<T>>>() // 1
 val pathsFromSource = shortestPath(source) // 2

 graph.vertices.forEach { // 3
 val path = shortestPath(it, pathsFromSource)
 paths[it] = path
 }

 return paths // 4
}

1. The map stores the path to every vertex from the source vertex.

2. Perform Dijkstra's algorithm to find all the paths from the source vertex.

3. For every vertex in the graph, generate the list of edges between the source
vertex to every vertex in the graph.

4. Return the map of paths.

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 385

Key points
• Dijkstra's algorithm finds a path to the rest of the nodes given a starting vertex.

• This algorithm is useful for finding the shortest paths between different
endpoints.

• Visit state is used to track the edges back to the start vertex.

• The priority queue data structure helps to always return the vertex with the
shortest path.

• Hence, it is a greedy algorithm!

Data Structures & Algorithms in Kotlin Chapter 22: Dijkstra’s Algorithm

raywenderlich.com 386

23Chapter 23: Prim’s
Algorithm
By Irina Galata

In previous chapters, you’ve looked at depth-first and breadth-first search
algorithms. These algorithms form spanning trees.

A spanning tree is a subgraph of an undirected graph, containing all of the graph’s
vertices, connected with the fewest number of edges. A spanning tree cannot contain
a cycle and cannot be disconnected.

raywenderlich.com 387

Here’s an example of some spanning trees:

From this undirected graph that forms a triangle, you can generate three different
spanning trees in which you require only two edges to connect all vertices.

In this chapter, you will look at Prim’s algorithm, a greedy algorithm used to
construct a minimum spanning tree. A greedy algorithm constructs a solution
step-by-step and picks the most optimal path at every step.

A minimum spanning tree is a spanning tree with weighted edges in which the total
weight of all edges is minimized. For example, you might want to find the cheapest
way to lay out a network of water pipes.

Here’s an example of a minimum spanning tree for a weighted undirected graph:

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 388

Notice that only the third subgraph forms a minimum spanning tree, since it has the
minimum total cost of 3.

Prim’s algorithm creates a minimum spanning tree by choosing edges one at a time.
It’s greedy because, every time you pick an edge, you pick the smallest weighted edge
that connects a pair of vertices.

There are six steps to finding a minimum spanning tree with Prim’s algorithm:

Example
Imagine the graph below represents a network of airports. The vertices are the
airports, and the edges between them represent the cost of fuel to fly an airplane
from one airport to the next.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 389

Let’s start working through the example:

1. Choose any vertex in the graph. Let's assume you chose vertex 2.

2. This vertex has edges with weights [6, 5, 3]. A greedy algorithm chooses the
smallest-weighted edge.

3. Choose the edge that has a weight of 3 and is connected to vertex 5.

1. The explored vertices are {2, 5}.

2. Choose the next shortest edge from the explored vertices. The edges are [6, 5, 6,
6]. You choose the edge with weight 5, which is connected to vertex 3.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 390

3. Notice that the edge between vertex 5 and vertex 3 can be removed since both
are already part of the spanning tree.

1. The explored vertices are {2, 3, 5}.

2. The next potential edges are [6, 1, 5, 4, 6]. You choose the edge with weight 1,
which is connected to vertex 1.

3. The edge between vertex 2 and vertex 1 can be removed.

1. The explored vertices are {2, 3, 5, 1}.

2. Choose the next shortest edge from the explored vertices. The edges are [5, 5, 4,
6]. You choose the edge with weight 4, which is connected to vertex 6.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 391

3. The edge between vertex 5 and vertex 6 can be removed.

1. The explored vertices are {2, 5, 3, 1, 6}.

2. Choose the next shortest edge from the explored vertices. The edges are [5, 5, 2].
You choose the edge with weight 2, which is connected to vertex 4.

3. The edges [5, 5] connected to vertex 4 from vertex 1 and vertex 3 can be
removed.

Note: If all edges have the same weight, you can pick any one of them.

This is the minimum spanning tree from our example produced from Prim’s
algorithm.

Next, let’s see how to build this in code.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 392

Implementa6on
Open up the starter project for this chapter. This project comes with an adjacency
list graph and a priority queue, which you will use to implement Prim’s algorithm.

The priority queue is used to store the edges of the explored vertices. It’s a min-
priority queue so that every time you dequeue an edge, it gives you the edge with the
smallest weight.

Start by defining an object called Prim. Create it in the Prim.kt file:

object Prim

Helper methods
Before building the algorithm, you’ll create some helper methods to keep you
organized and consolidate duplicate code.

Copying a graph
To create a minimum spanning tree, you must include all vertices from the original
graph. Open up AdjacencyList.kt and add the following to class AdjacencyList:

val vertices: Set<Vertex<T>>
 get() = adjacencies.keys

This property returns the set of vertices that your AdjacencyList is currently
storing.

Next, add the following method:

fun copyVertices(graph: AdjacencyList<T>) {
 graph.vertices.forEach {
 adjacencies[it] = arrayListOf()
 }
}

This copies all of a graph’s vertices into a new graph.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 393

Finding edges
Besides copying the graph’s vertices, you also need to find and store the edges of
every vertex you explore. Open up Prim.kt and add the following to Prim:

private fun <T> addAvailableEdges(
 vertex: Vertex<T>,
 graph: Graph<T>,
 visited: Set<Vertex<T>>,
 priorityQueue: AbstractPriorityQueue<Edge<T>>
) {
 graph.edges(vertex).forEach { edge -> // 1
 if (edge.destination !in visited) { // 2
 priorityQueue.enqueue(edge) // 3
 }
 }
}

This method takes in four parameters:

1. The current vertex.

2. The graph, wherein the current vertex is stored.

3. The vertices that have already been visited.

4. The priority queue to add all potential edges.

Within the function, you do the following:

1. Look at every edge adjacent to the current vertex.

2. Check to see if the destination vertex has already been visited.

3. If it has not been visited, you add the edge to the priority queue.

Now that we have established our helper methods, let’s implement Prim’s algorithm.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 394

Producing a minimum spanning tree
Add the following method to Prim:

fun <T> produceMinimumSpanningTree(
 graph: AdjacencyList<T>
): Pair<Double, AdjacencyList<T>> { // 1
 var cost = 0.0 // 2
 val mst = AdjacencyList<T>() // 3
 val visited = mutableSetOf<Vertex<T>>() // 4
 val comparator = Comparator<Edge<T>> { first, second -> // 5
 val firstWeight = first.weight ?: 0.0
 val secondWeight = second.weight ?: 0.0
 (secondWeight - firstWeight).roundToInt()
 }
 val priorityQueue = ComparatorPriorityQueueImpl(comparator) //
6

 // to be continued
}

Here’s what you have so far:

1. produceMinimumSpanningTree takes an undirected graph and returns a
minimum spanning tree and its cost.

2. cost keeps track of the total weight of the edges in the minimum spanning tree.

3. This is a graph that will become your minimum spanning tree.

4. visited stores all vertices that have already been visited.

5. You create the Comparator<Edge<T>> to use for the priority queue.

6. This is a min-priority queue to store edges.

Next, continue implementing produceMinimumSpanningTree with the following:

mst.copyVertices(graph) // 1

val start = graph.vertices.firstOrNull() ?: return Pair(cost,
mst) // 2

visited.add(start) // 3
addAvailableEdges(start, graph, visited, priorityQueue) // 4

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 395

This code initiates the algorithm:

1. Copy all the vertices from the original graph to the minimum spanning tree.

2. Get the starting vertex from the graph.

3. Mark the starting vertex as visited.

4. Add all potential edges from the start vertex into the priority queue.

Finally, complete produceMinimumSpanningTree with:

while (true) {
 val smallestEdge = priorityQueue.dequeue() ?: break // 1
 val vertex = smallestEdge.destination // 2
 if (visited.contains(vertex)) continue // 3

 visited.add(vertex) // 4
 cost += smallestEdge.weight ?: 0.0 // 5

 mst.add(EdgeType.UNDIRECTED, smallestEdge.source,
smallestEdge.destination, smallestEdge.weight) // 6

 addAvailableEdges(vertex, graph, visited, priorityQueue) // 7
}

return Pair(cost, mst) // 8

Going over the code:

1. Continue Prim’s algorithm until the queue of edges is empty.

2. Get the destination vertex.

3. If this vertex has been visited, restart the loop and get the next smallest edge.

4. Mark the destination vertex as visited.

5. Add the edge’s weight to the total cost.

6. Add the smallest edge into the minimum spanning tree you are constructing.

7. Add the available edges from the current vertex.

8. Once the priorityQueue is empty, return the minimum cost, and minimum
spanning tree.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 396

Tes6ng your code
Navigate to the main() function, and you’ll see the graph on the next page has been
already constructed using an adjacency list.

It's time to see Prim’s algorithm in action. Add the following code:

val (cost, mst) = Prim.produceMinimumSpanningTree(graph)
println("cost: $cost")
println("mst:")
println(mst)

This constructs a graph from the example section. You’ll see the following output:

cost: 15.0
mst:
3 ---> [1, 6, 2]
4 ---> [6]
1 ---> [3]
5 ---> [2]
2 ---> [3, 5]
6 ---> [3, 4]

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 397

Performance
In the algorithm above, you maintain three data structures:

1. An adjacency list graph to build a minimum spanning tree. Adding vertices and
edges to an adjacency list is O(1) .

2. A Set to store all vertices you have visited. Adding a vertex to the set and
checking if the set contains a vertex also have a time complexity of O(1).

3. A min-priority queue to store edges as you explore more vertices. The priority
queue is built on top of a heap and insertion takes O(log E).

The worst-case time complexity of Prim’s algorithm is O(E log E). This is because,
each time you dequeue the smallest edge from the priority queue, you have to
traverse all the edges of the destination vertex (O(E)) and insert the edge into the
priority queue (O(logE)).

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 398

Challenges

Challenge 1: Discover the edge weight
Given the graph and minimum spanning tree below, what can you say about the
value of x?

Solu6on 1
The value of x is no more than 5.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 399

Challenge 2: One step at the 6me
Given the graph below, step through Prim’s algorithm to produce a minimum
spanning tree, and provide the total cost. Start at vertex B. If two edges share the
same weight, prioritize them alphabetically.

Solu6on 2

Edges [A:2, D:8, C:6, E:2]
Edges part of MST: [A:2]
Explored [A, B]

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 400

Edges [D:8, C:6, E:2, D:3, C:21]
Edges part of MST: [A:2, E:2]
Explored [A, B, E]

Edges [D:8, C:6, D:3, C:21, D:12, C:4]
Edges part of MST: [A:2, E:2, D:3]
Explored [A, B, E, D]

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 401

Edges [C:6, C:21, C:4]
Edges part of MST: [A:2, E:2, D:3, C:4]
Explored [A, B, E, D, C]

Edges [A:2, E:2, D:3, C:4]
Explored [A, B, E, D, C]
Total Cost: 11

Key points
• You can leverage three different data structures: Priority queue, set, and adjacency

lists to construct Prim's algorithm.

• Prim's algorithm is a greedy algorithm that constructs a minimum spanning
tree.

• A spanning tree is a subgraph of an undirected graph that contains all the vertices
with the fewest number of edges.

Data Structures & Algorithms in Kotlin Chapter 23: Prim’s Algorithm

raywenderlich.com 402

CConclusion

We hope that by reading this book, you learned a lot about data structures and
algorithms in Kotlin. We also hope that you had some fun in the process! Knowing
when and why to apply data structures and algorithms goes beyond acing that
whiteboard interview. With the knowledge you’ve gained here, you can easily and
efficiently solve many data manipulation or graph analysis issues put in front of you.

If you have any questions or comments about this book and the material within its
pages, please stop by our forums at http://forums.raywenderlich.com and look for
the particular forum category for this book.

Thank you for purchasing this book. Your continued support is what makes the
tutorials, books, videos, conferences and other things we do at raywenderlich.com
possible, and we truly appreciate it.

Wishing you all the best in your continued algorithmic adventures,

The Data Structures & Algorithms in Kotlin Team

raywenderlich.com 403

	Book License
	Who This Book Is For
	What You Need
	Book Source Code & Forums
	About the Cover
	Chapter 1: Kotlin & Kotlin Standard Library
	Introduction to Kotlin
	The Kotlin Standard Library
	Key points

	Chapter 2: Complexity
	Time complexity
	Other time complexities
	Comparing time complexity
	Space complexity
	Key points

	Chapter 3: Linked List
	Node
	LinkedList
	Adding values to the list
	Removing values from the list
	Kotlin collection interfaces
	Becoming a Kotlin mutable collection
	Challenges
	Key points

	Chapter 4: Stack Data Structures
	Stack operations
	Implementation
	push and pop operations
	Challenges
	Key points

	Chapter 5: Queues
	Common operations
	Example of a queue
	List-based implementation
	Doubly linked list implementation
	Ring buffer implementation
	Double-stack implementation
	Challenges
	Key points

	Chapter 6: Trees
	Terminology
	Implementation
	Traversal algorithms
	Challenges
	Key points

	Chapter 7: Binary Trees
	Implementation
	Traversal algorithms
	Challenges
	Key points

	Chapter 8: Binary Search Trees
	Case study: array vs. BST
	Implementation
	Challenges
	Key points

	Chapter 9: AVL Trees
	Understanding balance
	Implementation
	Challenges
	Key points

	Chapter 10: Tries
	Example
	Implementation
	Challenges
	Key points

	Chapter 11: Binary Search
	Example
	Implementation
	Challenges
	Key points

	Chapter 12: The Heap Data Structure
	What is a heap?
	The heap property
	Heap applications
	Common heap operations
	Sorting and comparing
	How do you represent a heap?
	Inserting into a heap
	Removing from a heap
	Removing from an arbitrary index
	Searching for an element in a heap
	Heapify an array
	Testing
	Challenges
	Key points

	Chapter 13: Priority Queues
	Applications
	Common operations
	Implementation
	Challenges
	Key points

	Chapter 14: O(n²) Sorting Algorithms
	Bubble sort
	Selection sort
	Insertion sort
	Generalization
	Challenges
	Key points

	Chapter 15: Merge Sort
	Implementation
	Performance
	Challenges
	Key points

	Chapter 16: Radix Sort
	Example
	Implementation
	Challenges
	Key points

	Chapter 17: Heap Sort
	Getting started
	Example
	Implementation
	Performance
	Challenges
	Key points

	Chapter 18: Quicksort
	Example
	Partitioning strategies
	Effects of a bad pivot choice
	Challenges
	Key points

	Chapter 19: Graphs
	Weighted graphs
	Common operations
	Defining a vertex
	Defining an edge
	Adjacency list
	Implementation
	Adjacency matrix
	Implementation
	Graph analysis
	Challenges
	Key points

	Chapter 20: Breadth-First Search
	Example
	Implementation
	Performance
	Challenges
	Key points

	Chapter 21: Depth-First Search
	DFS example
	Implementation
	Performance
	Challenges
	Key points

	Chapter 22: Dijkstra’s Algorithm
	Example
	Implementation
	Trying out your code
	Performance
	Challenges
	Key points

	Chapter 23: Prim’s Algorithm
	Example
	Implementation
	Testing your code
	Performance
	Challenges
	Key points

	Conclusion

