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Preface

We have been teaching students ‘How to prepare for Coding Interviews’
for many years now.

A Data Structure problem like reverse a linked list or add operation
getMinimum () to a Stack or implement a thread safe Queue are relatively
easy to solve, because there are theoretical reference to start in
such problems. The most difficult category of problems asked in
coding competitions or interview of companies like Google, Amazon,
Facebook, Microsoft etc. fall under the umbrella of Dynamic Programming
©P).

Most DP problems do not require understanding of complex
data structure or programming design, they just need right strategy
and methodical approach.

A solution is first visualized in the mind before it takes formal
shape of an Algorithm that finally translates into a computer
program. DP problems are not easy to visualize and hence not easy to
solve.

‘The best way to visualize a DP problem is using recursion because DP
problems demonstrates optimal substructure behavior. Recursion gives
the right solution but usually takes exponential time. This unreasonably
high time is taken because it solves subproblems multiple times.

DP is a bottom-up approach to problem solving where
one subproblem is solved only once. In most cases this approach is
counter-intuitive. It may require a change in the way we approach a
problem. Even experienced coders struggle to solve DP problems.

This book is written with an intention that if a teacher reads it, he will
make dynamic programming very interesting to his students. If this book is
in the hands of a developer, he will feel super confident in
answering algorithm questions in interviews, and anyone who read it will
get a robust tool to approach problems asked in coding competitions.

Being a good coder is not about learning programming languages, it
is about mastering the art of problem solving.

Code in this book is written in C language, If you have never
written any program in C language, then we suggest you to read first few
chapters of C from any good book and try writing some basic
programs in C language.
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How to Read this Book

We have discussed only simple problems in first six chapters. The idea is
to explain concepts and not let the reader lost in complexity of
questions. More questions are discussed in last three chapters with
last chapter completely dedicated to practice questions.

If you have the luxury of time, then we strongly recommend you
to read this book from cover to cover.

If you do not have time, then, how you read this book depends
on how good you ate in coding and how comfortable you are with
recursion.

If you are good at forming logic and can write reasonably complex
progtams of Binary Tree and Linked List comfortably, then you may
choose to skip the first chapter. I think the below logic may help you
find a starting point
IF (one day left for Interview)

IF (champion of DP)

READ Chapter 8,9
ELSE IF (Good @ Programming)
READ Chapter 3, 4, 5, 6, 7.
ELSE
Pray to God, Start from Chapter 1.
ELSE IF (more than one week left for interview)
IF (champion of DP)
READ Chapter 2, 7, 8, 9
ELSE IF (Student OR Researcher)
READ complete book
ELSE IF (Reading to learn DP)
READ complete Book



Recursion

int main () {
printf ("Cannot stop till I die");
main();

}

Most computer concepts have their origin in Mathematics, Recursion is no
exception. If you have studied mathematics at high school level, then you
must have come across equations like.

Z( . " n + ¥(n-1) 0 “n + Sum(n-1) ;..
n)-<

| 1 Jitnt st

. is a symbol for summation. It is read as “Sumz of first n numbers is equal
o n plus Sum of first (n-1) numbers. When n becomes 1, Sum(1) has a fixed value,
1.” n, in this case is positive integer.

In plain words, Sum is defined in terms of Sum itself. This is called
Recursion.

In computer programming, “when a function calls itself either directly or
indirectly it is called a Recursive Function and the process is called Recursion.”

Typically the function performs some part of the task and rest is
delegated to the recursive call of the same function, hence, there are
multiple instances of same function each performing some part of the
overall task. Function stops calling itself when a terminating condition is
reached.



Recursion is a problem solving technique, where solution of
a larger problem is defined in terms of smaller instances of
itself.

Points to note in recursion are the following:

1. Recursion always have a terminating condition (else it will be
infinite recursion). In Sum function, the condition, if n=1, then,
stop recursion and return 1, is the terminating condition.

2. Recursive function performs some part of task and delegate
rest of it to the recursive call. In above example, the function
performs addition of n with the return value of the Sum(n-1)
but delegate the computation of Sum (n-1) to recursive call.

Writing recursive code is not as difficult as it may appeat, in fact, in
most cases it is relatively simpler because we are not solving the complete
problem. Recussive function code is a two-step process

1. Visualize the recursion by defining larger solution in terms of

smaller solutions of the exact same type (with narrow
parameters), and,

2. Add a terminating condition.
Example 1.1 translate the logic of calculating sum of first n positive
integers to C language program.

Example 1.1: C language function to compute sum of first n
positive numbets:
int sum(unsigned int n){

if (n == 1)
return 1;
else

return n + sum(n-1);

Code: 1.1

‘This code has an issue, If someone call it for n=0, then it will behave
in an undefined manner.



As a good coding practice, we must check our program against
boundary values of input parameters. If we call the function as
sum (0) ;

then, it will skip our terminating condition (n == 1) and enter into the
recursion calling itself for n = -1, and this will make the result undefined!.

We should be able to catch this issue while self-reviewing our code
and should be able to correct it:

int sum(unsigned int n){
// First terminating condition
if(n == 0)
return 0;

// Second terminating condition
if(n == 1)
return 1;

return n + sum(n-1);

Code: 1.2

We have just skipped the else part, because we ate returning from the
terminating conditions.

Code 1.2 may be written in a more compact form as shown below
int sum(int n) {
return (n==0)? 0: ((n==1)? 1: (n+sum(n-1)));
Code: 1.3

Which of the two codes should we prefer to write?

! In C language, conversion from signed to unsigned is not defined for negative numbers.
For example, the value of y in the below code is not defined:

int x = -1;

unsigned int y = x;

‘When Sum is called for n=0. Then, it will skip the terminating condition and call the
function recursively forn = -1.



Some coders, have an undue bias in favour of writing compact codes,
this is especially true during the interview. Either they think that such code
impress the interviewer, ot they may just be in the habit of writing such
code. Thumb rule for good code is,

“when there is a choice between simple and obfuscated code, go for the simpler one,
unless the other has performance or memory advantage.”

This rule is not just for interview, its generic. The code that we write is
read by many people in the team, the simpler it is the better it is. One extra
advantage of writing simple code during the intetview is that, it provide us
some space to correct mistakes there itself, because it leaves more white
space on the paper.

The rule is just for spacing of code and choosing between two
statements doing exactly same wotk. In no way a check should be omitted
in favor of simplicity or clarity or extra space on the paper.

Never miss the terminating condition, else the function may fall into infinite
recursion.

It is not mandatoty to write a recursive function to compute sum of n
numbers. It can be done using a loop without making any recursive call, as
demonstrated in Code 1.4

Non-recursive code to compute sum of first n numbers
int sum(int n){
int sum = 0;
for (int i=1; i<=n; i++)
sum += i;
return sum;

Code: 1.4
Question 1.1: Factorial function is defined recursively for all non-negative
integers as:
Fact(n) = n * Fact(n-1) if n>1

=1 if n=1
Write both recussive and non-recursive function that accepts an
unsigned int n and return factorial of n%

2 Example7.1 in Chapter 7 gives the solution to this question.



Question 1.2: Given an array, arr, of integers, write a recursive function
that add sum of all the previous numbets to each index of the array. For
example, if input array is

[ e

Then, your function should update the array to

‘1‘3[5‘10‘15‘21‘

Example 1.2: Recursion to compute n® power of a number x* is defined
as below:

Function for above recursion is:
int power (int x, int n)({

if (0 == n)

return 1;
else if (1 == x)

return x;
else

return x * power(x, n-1);

Code: 1.5
Recursive function in Code 1.5 accept two parameters. One of them
remains fixed, and other changes and terminates the recursion, Terminating
condition for this recursion is defined as
IF (n EQUALS 0) THEN return 1

But we have used two terminating conditions,

IF (n EQUALS 0) THEN return 1
IF (x EQUALS 1) THEN return x

This is to avoid unnecessary function calls when x is 1. In next chapter
we will learn that every function call is an overhead, both in terms of time
and memoty.



The four things that we should focus on while writing a function (in
this order) are:

1. It should serve the purpose. For every possible parameter the function
must always return expected results. It should not be ambiguous for
any input.

2. 'The time taken by function to execute should be minimized.

3. 'The extra memory this function consumes should be minimized.

4. Function should be easy to understand. Ideally the code should be
self-explanatory to an extent that it does not even require any
documentation (comments).

At no point during coding or while in the interview do we really care
about how many lines of codes does particular function runs into as long as
length of code is justified (we are not writing duplicate piece of code).

In next chapter, we will learn that a recursive solution takes more time
and more memory than the corresponding iterative (non-recursive)
solution. In Example 1.1, both iterative and recursive solutions ate equally
casy to code?. In such situations we should always go for non-recursive
solution.

¢ INTERVIEW TIP

If both recursive and non-recursive (iterative) solutions are equally easy and take almost
equal time 1o code, then always write the iterative solution. It takes less time and less
memory to execute.

The advantage of recursion is that, sometimes, a solution that
otherwise is very complex to comprehend, can be very easily visualized
recursively. We just need to solve the problem for base case and leave rest
of the problem to be solved by recursion. Consider Example 1.3 below:

Example 1.3: Tower of Hanoi

Tower of Hanoi is a Mathematical Game. There are 3 pegs (Rods),
Source, Destination and Extra marked as S, D and E respectively,
and there are n discs, each of different size, which can be inserted into any
of these three pegs.

3 Recursion is just replacing a loop in the iterative solution.



All discs are initially inserted into Source peg in decreasing order
(smallest at the top) as shown in Picture 1.1 (for n=4).

D E
Picture: 1.1

wv

We have to move all the discs from Source peg (S) to Destination
peg (D). The final state should be as shown in Picture 1.2

Picture: 1.2

Thete ate 2 resttictions:

1. Only one disc can be moved at a time.
2. Atany point in the process we should never place a larger disc on
top of a smaller disc.

Write a function that accept charactets representing three rods (S, D

& E) and the number of discs (n), and print the movement of discs
between pegs such that all discs are moved from the initial state (inside S)
to the final state (inside D). Signature of the function is
/* s, d, e represents three pegs

* (source, destination and extra).

* n is number of discs (All initially in s)*/
void towerOfHanoi (char s, char d, char e, int n)

This may appear to be a complex problem to solve otherwise, but if
we think recursively, then the problem can be solved in three simple steps

Step-1: Move n-1 discs from S to E using D

Let us assume that somehow n-1 discs are moved from S to E, and we
have used D as the third peg (extra). This problem is similar to the original
problem (of moving n discs from S to D using E).



After this step, the state of pegs and discs is as shown in the picture 1.3

S D E
Picture: 1.3

Step-2: Move the n’th disc from S to D
Move Disc No. n from S to D. This is a single step of execution.
Step-3: Move n-1 discs from E to D using $

This problem is again of the same nature as step-1. Here we are
moving n-1 discs from E to D using peg-S as extra.

If we carefully notice, Step-1 and Step-3, being problems of the same
type, are recursive calls to the same function. Code 1.6 is the recursive
function for Tower of Hanoi:
void towerOfHanoi (char s, char d, char e, int n){

// TERMINATING CONDITION
if(n <= 0)
return;
towerOfHanoi (s, e, d, n-1);
printf ("Move Disk-%d FROM %d TO %d”, n, s, d);
towerOfHanoi (e, d, s, n-1);

Code: 1.6

The terminating condition here is when there is no disk (n==0) .
Notice that we have put the condition as less-than or equal to, to handle
cases when n is negative, alternatively, we can change signature of function
to receive unsigned int in place of int.

If we call this function for 3 discs (n=3) like below
towerOfHanoi('s', 'd', 'e', 3);:



The output is

Move Disk-1 FROM s TO d
Move Disk-2 FROM s TO e
Move Disk-1 FROM d TO e
Move Disk-3 FROM s TO d
Move Disk-1 FROM e TO s
Move Disk-2 FROM e TO d
Move Disk-1 FROM s TO d

Now we can appreciate, how helpful recursion can be even if it takes
more time and more memoty to execute.

Head Recursion and Tail Recursion

A Recursive function typically perform some task and call itself. If the call is
made before the function performs its own task, then it is called Head-
Recursion (Recursion is performed at the head of the function body). If tecursive call
is made at the end, then it is Tail-Recursion.

In Code 1.1, function sum(3), call function sum(2) first and then
petform the add operation* (return value from sum (2) added with 3). This
makes function sum, a head-recursive function.

To see the difference, consider Code 1.7 having two recutsive
functions to traverse a link list:
A recursive function is head-recursive if recursive call is
made before it performs its own task. tail-recursion is when
recursive call is made at end of the function (after it
performs its own tasks).

/* Head Recursion.
* First traverse rest of the list, then
* print value at current Node. */

4Tip: In C language the order of e valuation of operands for plus operator (+) is
not defined. It means that in the below statement:
x = funl() + fun2();

x will be sum of return values of two functions but, whether funl is called first or
fun2 is not defined in the language. This has to be defined by the compiler.



void traversel (Node* head) {
if (head != NULL) {
traversel (head->next) ;
printf(“%d”, head->data);

}

/* Tail Recursion.
* First traverse rest of the list, then
* print value at current Node. */

void traverse2 (Node* head) {
if (head != NULL) {
printf (“%$d”, head->data);
traverse2 (head->next) ;

Code: 1.7
If below linked list is passed as input to the two functions in Code 1.7:

ENE= o RS o NS RN

Then, traversel function prints the list in backward order and
traverse2 prints it in forward order.

Output of traversel:

4321
Output of traverse2: 1 2 3 4
A tail recursion is very easy to re-write in form of a loop. So there
should ideally be no reason to write a tail recutsion in code unless we are

writing it to demonstrate recursion itself.

Head and tail recursion are just given here as concepts. Most of the
times (esp. in case of dynamic programming problems) recursion is more
complex and may not be simple head or tail recursion. Consider one of the
most rampant examples of recursion, in-order traversals of a Binary Tree.

In in-order traversal, we first traverse left subtree in in-order, then
traverse (eg. print) the root and finally traverse the right subtree in in-order
as shown in Picture 1.4.



Clearly the in-order function is defined in terms of in-order of left and
right subtrees, hence recursion.

Algorithm: o
1. Traverse Root

2. Traverse Left SubTree i1n PreOrder
3. Traverse Right SubTree in PreOrder o e

omA“;a:zch () (F) (e)

Picture: 1.4

If we take structure of the Node as below:
Struct Nodef{
Node *left; // Pointer to Left subtree
int data;
Node *right; // Pointer to Right subtree
bi

Then code of in-order traversal is as shown in Code 1.8 below:
/* Print In-Order traversal of the tree */
void inOrder (node* r){
if (r == NULL)
return;

inOrder (r->left) ;
printf (“%d ”, r->data);
inOrder (r->right);

Code: 1.8

In the above code, recursion cannot be termed as either head or tail
recursion.

The terminating condition that we have taken in Code 1.8 is when root
is NULL. It will have extra function calls for leaf nodes, because function is
called for left and right subtree even when both are NULL. A better solution
is to check that a subtree is not NULL befote calling the function for that
subtree.

/* Print In-Order traversal of the tree */
void inOrder (node* r) {



if (r == NULL)
return;

if (r->left != NULL)
inOrder (r->left) ;

printf (“%d “, r->data);

if (r->right != NULL)
inOrder (r->right) ;

Code: 1.9

It may look like small improvement, but it will reduce our number of
function calls to almost half, because in a binary tree the number of null
pointers is always greater than the number of valid pointers. In Code 1.8,
we are making one function call for each pointer (null or non-null). But in
code 1.9, the function calls are against non-null pointers only. Hence the
total number of function calls in Code 1.9 is almost half as compared to
function calls made in code 1.8.

Consider the below binary tree
There are 8 null pointers, 6 as children of leaf
o nodes and right child of E and left child of C.

o o If we consider root also as one pointer
(pointing to the root node, &), then total number of
° ° ° non-null pointers are 7 (one pointing to each node
in the tree).
e Putting such small checks not just optimize
our code but also shows our commitment toward writing better code.

Next chapter discuss how does memory actually looks when a
recursive function is called in contrast to an iterative function.

How to Solve a Problem Using Recursion

Our focus usually is to solve a problem, with recursion, we can actually
code without solving a problem, if we can somehow define the large
problem in terms of smaller problems of same type.



Our focus is on solving the problem for top case and leave the rest for
recursive calls to do. Consider the below example:

Example 1.4: We all know about Bubble Sort, where an atray is sorted in n
passes as shown in the below code:
void bubbleSort (int *arr, int n)
{

for (int i=0; i<n-1; i++)

for (int §=0; j<n-i-1; 3j++)
if(arr[§] > arr[3+1]
swap (&arr[j], &arr[j+1]1);

Code: 1.10

Whete swap is a function that swaps two integers.
void swap(int *a, int *b){
*a A= *b;
*b A= *a;

*a ~= *b;

Code: 1.11

Bubble Sort repeatedly steps through the array, compares each pair of
adjacent items and swaps them if they are in the wrong order. After
traversing for the first time, the largest element reaches last position in the
array.

In the second pass, the second largest element reaches second last
position and so on. There are n-1 passes that takes n—1 elements to their
right positions, the n element will be automatically at the first position.

Recursive implementation of Bubble Sort:

To make it a recursive function, we first need to define the larger
problem in terms of smaller subproblems and task that each function will
be performing. If the array is
9, 6, 2, 12, 11, 9, 3, 17

Then after the first pass, the largest element, 12, reach end of array:
6, 2, 9, 11, 9, 3, 7, 12



With 12 at the n® position, we need to sort first n-1 elements. “Sor#
Sirst n elements” and “Sort first n-1 elements” are same problems with different
parameters. We have found our recursion, each function performs one pass
and rest is left to recursion:
void bubbleSortRec (int *arr, int n){
// Perform one pass
for(int j=0; j<n-1; j++)
if(arr[j] > arr[j+1])
swap (&arr[j], &arr[j+1]);

bubbleSortRec (arr, n-1);

Code: 1.12

We cannot be good coders without masteting the art of recursion.
My suggestion to everyone reading this book is that when you write simple
programs like linear search, binary search, sorting, etc. try to also implement
them recursively. It will be a good net practice before the actual match.

Question 1.1: Below code print the mathematical table of n.
void printTable (int n) {
for(int i=1; i<=10; i++){
printf(“%d * %d = %d\n”, n, i, (n*i));

Code: 1.13

Write a recursive function that prints the mathematical table of n.

Hint: You may have to pass/ accept i as parameter.



How it Looks in Memory

Application’s

int g = 5; — Goes in Duta area-
int main()
1 =0 (defoutt value)
static int a,
S T gt

Hmpl

int *p; ik = garbage.

P = (int*) malloc (sizeof (int)) ;

*p = 10; '—/r— I
} ‘,\\ocﬂ m\w AR of Stack

mainG’

Before discussing how a recursive calls looks inside memory, we should
understand how memory is divided internally and what part of the program
goes in which section of the memory. This chapter is specific to C language,
but the concepts are similar in other popular languages also.

Picture 2.1 shows lifecycle of a C language program:

Source Files ———?

LY S
User-defined__ 48 Object File
Header Files v

Linking Execn.,\table
File
@
Standard P4
header files aoé!

Picture: 2.1

Read any good C language book to learn about compilation and
linking of a C language program, this book assume that you have working



knowledge of C language. After compiling and linking, 5 the binaty
executable of program gets generated (exe on windows). When this
executable binary is actually executing (running) it is called a process.

When a process is executed, first it is loaded into memory (RAM).
Area of memory where process is loaded is called process address space.
Picture 2.2 shows broad layout of process address space (Picture 2.2 is
independent of platform, actual layout may differ for operating system and for program).

Executable Code
—> Global / Static Data

Dynamic memory (Allocated using
malloc, calloc, new, etc.

-+ Activation Records of functions

Command line arg. & environment variables

Picture: 2.2

This memory is allocated to our program by the operating system. The
process address space has following segments

1. Code segment (or Text segment)
2. Data segment
3.  Stack segment
4. Heap segment
In next section, we are discussing these segments one by one.
Code segment

v' 'This segment contains machine code (in form of executable
instructions) of the compiled program.

¥’ Itis read-only and cannot be changed when the program is executing.

v May be shateable so that only a single copy is in memory for different
executing programsé.

¥ Size of code segment is fixed at load time.

® Most IDEs compile, link and execute the program using a single button click. But
internally all these steps are performed.

6 Shareable code is outside the scope of this book.



Data Segment

v'All global and static data variables are allocated memoty in this
segment.
v" Memoty is allocated in this area when the program is loading (before

main function is called). That’s why global and static variables are also
called load-time variables.

v All load-time variables (global and static), are initialized at the load-
time. If no initial value is given for a load-time variable then it is
initialized with the zero of its type’.

v Internally, this segment is divided in two areas, initialized and
uninitialized. If initial value of a variable is given it goes in the
initialized data area else it goes in the uninitialized data area. All the
uninitialized variables are then initialized with zeros. The main reason
why they are stored separately within data segment, is, bacause the
uninitialized data area can be memset to zeto in a single operation.

¥’ Size of data segment is fixed at load time and does not change when
program is executing.

Stack Segment

v' Stack segment contains Activation Records (also called Stack Frames)
of all the active functions. An active function is a function that is
currently under the call. Consider Code 2.1 below
int main(){

funl();
}
void funl(){
fun2 () ;
}
void fun2(){
}
void fun3(){
// NEVER CALLED

Code: 2.1

7 Zero of int data type is 0. Zero of pointer data type is NULL.



When main is called, it is the only active function. Then main calls
funl. At this point funl is executing but both main and funl are
active. When funl calls fun2, then the execution is in fun2, but
main, funl and fun2 are all active and has their activation records
in Stack.

When function fun2 returns, then activation record of fun2 is poped
from the Stack and execution is back in fun1. At this point main and
funl are active and has their activation records in the Stack.

fun3, is never active, because it is never called and hence its activation
record never gets created on the Stack.

v When a function is called, its Activation Record is created and pushed
on the top of stack.

v When a function returns then the corresponding Activation Record is
poped from the Stack.

¥’ Size of Stack keeps changing while the program is executing because
the number of active functions keep changing.

¥ Non-static local variables of a function are allocated memory inside
Activation Record of that function when it is active.

v' Variables that are allocated memory on Stack are not initialized by
default. If initial value of a variable is not given then it is not initialized
and its value will be garbage (this is different from load-time variables
allocated memory in Data Segment).

v Activation record also contains other information required in function
execution.

v Stack Pointer (SP register) keeps track of the top of the Stack.

v Point of execution is always inside the function whose activation
record is on the top of Stack. Function whose activation record is
inside Stack, but not at the top is active but not executing.

¥ If a function is recursive then multiple activation records of the
function may be present on the Stack (one activation record for each
instance of the function call).

Heap Segment

v

When we allocate memory at run time using malloc (), calloc(),
and realloc() in C language (new and new[] in C++), then that
memory is allocated on the Heap. It is called dynamic memory or
fun-time memory.



¥ In C language we cannot initialize the memory allocated on Heap. In
C++, if we use new operator to allocate memory, then we can initialize
it using constructors.

v' Memory allocated in heap does not have a name (unlike memory
allocated in and Stack segments). The only way to access this memory
is via pointers pointing to it. If we lose address of this memory, there is
no way to access it and such a memory will become memory leak. It
is one of the largest sources of error in C/C++ programming.

¥ Both Heap and Stack segment shares a common area and grows
toward each other.

After compilation and linking, the executable code (in machine
language) gets generated. The first thing that happens when this executable
code is executed is that it is loaded in the memory. Loading has following
steps:
¥ Code goes in code area. Code is in the form of binary machine

language instructions and Instruction Pointer (IP register) holds the

address of current instruction being executed.

v’ Global and static variables are all d y in the data area.
Data area has two sub-parts, Initialized and Un Initialized data area, if
initial value of a variable is given by us, it gets allocated in the initialized
data area, else memory to the variable is allocated in the un-initialized
data area and it is initialized with zero.

¥ Global and static variables are initialized. If we have given the
initial value explicitly, then variables are initialized with that value
otherwise they are initialized with zeros of their data types.
int x = 5; // initialized with 5
int y; // initialized with 0

After these steps, we say that the program is loaded. After loading is
complete, the main function is called® and actual execution of the program
begins. Read the entire program given in Code 2.2 carefully:

// Go in data area at load time. Initialized with 0.
int total;

/** Code (machine instructions) of function goes in
* code area. When this function is called, then

® Question: Who calls the main fanction ?



* Activation Record of the function is created on
* Stack.
B
int square (int x) {
// x goes in AR® when this function is called.
return x*x;

/** Code of function goes in the code area. When this
* function is called (at run-time), its AR gets

* created on Stack and memory to non-static local

* variables (x and y) is allocated in that AR.

* count, being a static variable, is allocated in

* data area at load time.

*

int squareOfSum(int x, int y){
static int count = 0; // Load-time var
printf ("Fun called %d times", ++count);
return square (x+y);

/** Code goes in code area. When main is called, its
* activation record gets created on Stack and memory
* to non-static local variables (a and b) is
* allocated in that Activation Record.

!
int main(){
int a=4, b=2;
total = squareOfSum(a, b);
printf ("Square of Sum = %d",total);

Code: 2.2

This program computes (a+b)? and print the result. To keep it
simple, we are using the hard coded values 4 and 2 for a and b respectively.
The function squareOfSum also keeps a count of how many times it is
called in a static variable count, and print the count every time it is called.

Code 2.2 may not be the best implementation, but it serves our
purpose. Read the code again, especially the comments before each

® AR = Activation Record



function and make sure that we understand everything.

After compilation and linking, the executable of the program is created
and when this executable is run, the first thing that happens is that this
executable is loaded in the memory (RAM). At this point the main
function is not yet called and the memory looks like Picture 2.3:

CODE

0 Jeota

STACK®=) ¢mdVIH DATA

Picture: 2.3

After loading is complete, main function is called. When a function is
called, its Activation Record is created and pushed in the Stack. The AR has

v Local (non-static) variables of a function (a and b for main).
¥ Other things stored in the Activation Record.

In the diagrams, we are only showing non-static local variables in
Activation Records. After main function is called, the memory looks as
shown in Picture 2.4

CODE
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Picture: 2.4
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At any time, the point of execution (Instruction Pointer) is in the

function whose AR is at the top of Stack. Let us understand what all
happens internally during a function call.

When a function is called:

1. State (register values, Instruction Pointer value, etc.) of calling function
is saved!? in the memory.

2. Activation record of called function is created and pushed on the top
of Stack. Local variables of called function are allocated memory inside
the AR.

3. Instruction pointer (IP register) moves to the first executable
instruction of called function.

4. Execution of the called function begins.

Similarly when the called function returns back (to the calling function),
following work is done:

1. Return value of the function is stored in some register.

2. AR of called function is popped from the memory (Stack size is
reduced and freed memoty gets added to the free pool, which can be
used by cither the stack or heap).

3. State of the calling function is restored back to what it was before the
function call (Point-1 in function call process above).

4. Instruction pointer moves back to the instruction where it was before
calling the function and execution of calling function begins from the
point at which it was paused!!.

5. Value returned from called function is replaced at the point of call in

calling function.

19 Value of local variables of a function under execution are stored in the AR of function

which is preserved in the stack. But Registers will also have some values, these values
also need to be saved (because Registers are needed by the called function). This state
is saved in the memory.

" This is conceptually similar to Context Switch of process contexts in a

muti-processing operating system when one process is preempted to execute another
process and after some time control returns back to the first process and it starts
executing from the same point where it was preempted.



Clearly, a function call is a lot of overhead both in terms of
time and memory.

One of the reasons behind the popularity of macros in C language
(even after all the evil that they bring along) is this overhead in function call.
Another was the type independence that macros bring!2.

Some compilers optimize the performance by replacing function call
with entire code of the function during compilation, hence avoiding the
actual function call overheads. This is called inline expansion. For example,
in Code 2.2, the compiler may just put entire code of function square
inside squareOfSum and remove the function call all together as shown
below.
int squareOfSum(int x, int y){

static int count = 0; // Load-time var
printf (“Fun called %d times”, ++count);
return (x+y) * (x+y);

Code: 2.3

Recursive functions are very difficult to expand inline because
compiler may not know the depth of function call at compile time.

Example 2.1: Let us also see how memory looks like if we miss the
terminating condition in recursion. Code 2.4 is example of infinite recursion.
int main () {
int x = 0;
x++;
if (x<5){
printf (“Hello”);
main () ;

Code: 2.4

When the program is executed after compilation, it is first loaded in
the memory and then the main function is called. At this point (after

12 In C-++, both the benefits are given in the form of inline functions and templates and
they are not error prone like macros.



calling main) the memory looks as shown in Picture 2.5. Code area has the
code, The Data atea is empty because there is no load-time (global or static)
vatiable. Stack has only one activation record of function main.

CODE
DATA

STACK

3 0 AR of main ()

Picture: 2.5

Initial value of x is 0, after increment x become 1, since x<5, the
condition is true and main is called again. A new AR for this newly called
main is created on the Stack and this AR also has local variable x that is
different from variable x in AR of previous call (see Picture 2.6). Value of
this new x is again 0, and main is called again. Evety time main is called,
the value of x in the new activation record is 0.

CODE
DATA

%[ 0 | [~AROfmain()
x 1 f«=AR of main ()

Picture: 2.6

STACK

Every instance of main is actually using a different x (from their own
instance of AR).

Code 2.4 will continue to print “Hello”, until a point when no space
is left in the Stack to create new AR. At this point main cannot be called
further and the program will crash.

An important thing to note is that the program will not print “Hello0”
infinitely. It is printed, till the memory stack overflows.



Recursive v/s Non-Recursive Inside Memory

Let us consider Example 1.1 from chapter-1 again.
int sum(int n){
if (n==1)
return 1;
else
return n + sum(n-1);

Code: 2.5
When we call this function for n=3, as sum (3) ; It will call sum(2) ;
which will in-turn call sum (1) ;

At this point (when execution control is in sum (1)), the memory
stack will have three instances of activation records of function sum, each
having a local variable n, as shown in Picture 2.7.

n [+=AR of sum (1)
n [+=AR of sum(2)
n[ 3 | [*ARof sun(3)

Picture: 2.7

In the iterative version (Code 1.4) there is only one function call to
sum (3) and three local variables n, i and sum on the Activation Record
(AR) of the function as shown in Picture 2.8.

n
AR Of sum (3)

Picture: 2.8

In recursive version, one activation record is created for each value of
n. If n=1000 then 1000 ARs are created. Therefore the extra memory
taken is O (n). Table 2.1 gives a comparison of asymptotic running time
and extra memory taken for recursive and non-recursive sum functions.



The asymptotic time may be same, O (n) for both the cases, but actual
time taken for recursive version is much more than the iterative version
because of the constant multiplier.

Recursive Non-Recursive
Time O(n) O (n)
Memory O(n) 0(1)
Table: 2.1

Example 2.2: Let us consider one more example. Code 2.6 is the recursive
function to computes factorial of n:

int factorial (int n){
if(l==n || O==n)
return 1;
else
return n * factorial (n-1);

Code: 2.6

If function is called for n=4,
fact (4);

from some other function to compute factorial of 4. During successive
function calls, the memory looks like Picture 2.9.

return 1
2 fact ) 2° fact (1)
Rl ract ) 3° fact(2)
Bl 4 W+ sact

AFTERY® CALL AFTER £7 CALL

STACK

arfact@) 5 4° fact (3)

AFTER I CALL

When the functions return value to their caller functions, the AR will
be poped from the stack and the stack will look like Picture 2,10 (return
values shown on right side).
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Picture: 2.10



There will also be other function’s AR in the Stack (eg. main function).
They are not shown to save the space.

Code 2.7 shows the non-recursive code to compute factotial of n.
int factorial (int n){
int £ = 1;
for(int i=2; i<=n; i++)
£=f*i;
return £;

Code: 2.7

The memory image of function in Code 2.7 is shown in Picture 2.11.
Compare it with the memory taken by the recursive code.

5
| —
o[ 4 ]

Picture: 2.11

STACK

Code 2.7 may have more local vatiables, but there is just one AR in the
memory itrespective of the value of n.

Recursion is a huge overhead. Both in terms of memory and

execution time.

The examples of recursion seen till now are simple linear recursions.
One of the major problem with recursive function comes when recursive
calls starts overlapping at the level of subproblems. Ovetlapping
subproblems is discussed in detail in chapter 4.

Memory Layout as a Problem-Solving Tool

A clear understanding of lifecycle of program execution and how a program
is loaded in memory comes handy in solving many more questions other
than recursion. Consider the below examples:



Example 2.3: What is value of x in the below code?

static int x = strlen("Hello");

The above code is compile-time error. To put it simply, “static and
Global variables cannot be initialized with the return value of a function.”

We are trying to initialize a static variable with the return value of
function strlen.

We know that static variables are initialized at load time.

But wait, functions cannot be called at load time. A function can only
be called when loading is complete and the program is executing (first
function that gets called is main).

How can we initialize, at load-time, with something that is not
available until execution time. Hence, Ertor!

What if we break up the statement in two parts?
static int x; // Initialized with zero
x = strlen("Hello");

Now thete is no problem. At load time vatiable x is initialized with
zero. During execution the function strlen ("Hello") is called and x is
assigned the value 5.

Example 2.4: What value will get printed if we call function fun?
void fun() {

int a = 5;

static int b = a;

printf ("Value: %d", b);

Code: 2.8

No, the answer is not 5 or 0. The above code is also a compile time
ERROR.

We know, static variables are initialized at load time. In code 2.8 we
are initializing b with a, but variable a, is not available while loading, It will
be allocated memory in the activation record when function fun is called



and fun is called at execution-time. It is called only after the loading is
complete and when the code starts executing.

Also, if there are more than one instances of any function in the Stack
(in case of recursive functions). Then each AR have a separate copy of local
variable a, but there is only one copy of static variable (allocated in the
data atea). By that logic also static variable (single copy) cannot be initialized
with a local variable (possible zero or multiple copies).

Load-time variables cannot be initialized with local variables.

Conclusion
1. A function will have multiple ARs inside stack if and only if it is
recutsive.

2. Global and static variables can only be initialized with constants.

3. The memory to load-time variables is allocated before any function is
called.

4. The memory to load-time variables is released only after the execution
is complete.

We have not discussed the Heap area because the purpose was to explain
recursion and not pointers or dynamic memoty allocation ot deallocation.
To learn how heap area is used, read some good book on pointers in C

language.



Optimal Substructure

Am I just recursion?

Optimal substructure means, that optimal solution to a problem of size n
(having n elements) is based on an optimal solution to the same problem of
smaller size (less than n elements). i.e while building the solution for a
problem of size n, define it in terms of similar problems of smaller size, say,
k (k < n). We find optimal solutions of less elements and combine the
solutions to get final result.

Example 3.1: Consider finding the shortest path for travelling between two
cities by car. A person want to drive from city A to city C, city B lies in
between the two cities.

There ate three different paths connecting A to B and three paths
connecting B to city C as shown in Picture 3.1:

12 km



The shortest path of going from A to C (30 km) will involve both,
taking the shortest path from A to B and shortest path from B to C. It
means:

1. If the shortest route from Delhi to Mumbai passes thru
Pathmeda, then it will be the sum of shortest route from Delhi to
Pathmeda and shortest route from Pathmeda to Mumbai.

2. If the shortest route from Delhi to Mumbai passes thru Jaipur
and Pathmeda then the shortest route from Jaipur to Mumbai
also passes thru Pathmeda.

In other words, the problem of getting from Delhi to Pathmeda is
nested within the problem of getting from Delhi to Mumbai.

In a nutshell, it means, we can write recursive formula for a
solution to the problem of finding shortest path.

We say, that the problem of finding the shortest route between two
cities demonstrates optimal substructure property. This is one of the two
conditions of dynamic programming. Another condition is overlapping
subproblems, discussed in Chapter-4.

Standard algotithms like Floyd—Watshall and Bellman—Ford to find all-
pair shortest paths are typical examples of Dynamic Programming.

Example 3.2: Consider now, the problem to find the longest path between
two cities. Given four cities, A, B, C and D. The distance between them is

as shown in Picture 3.2:
o = 0

2 2 km

Picture: 3.2

The longest distance from A to D is 6 km, via city C. But this path is
not the combination of longest path from A to C and C to D because the
longest path between A and C is 9 km (via B and D).



Clearly longest path problem does not have the optimal substructure
property (and hence not a DP problem).

Use of Optimal Substructure in DP

Fundamentally, DP is an important tool for optimizing recursive solutions
in a way that is more efficient, both in terms of memory and time than
regular recursion.

Writing a recursive formula or defining the optimal substructure is the
first step toward dynamic programming. If we cannot write a recursive
formula for the problem, we may not be thinking about using dynamic
programming.

The logic of dynamic programming usually comes from recursion.
Solution of a problem is derived from solution of subproblems, solution of
subproblem is derived from solution of sub-subproblems and so on.

In questions of dynamic programming, it is a good idea, to first solve
the problem using recursive formula and then use the same formula with
bottom-up approach of dynamic programming.

Next chapter discuss the second property of dynamic programming,
ovetlapping subproblems and in successive chapters we discuss two more
problem solving approaches, Memoization and bottom-up dynamic

programming.



Overlapping Subproblems

The book delayed because of laziness, procrastination and
lack of discipline. Oops! The problems overlap.

All the recussive problems we discussed in previous chapters were singular
in nature. We were using recursion, but each subproblem was solved only
once.

In this chapter we focus on complex recursions. Recursive function is
called with exactly same parameters more than once. In this case we say that
a subproblem is solved multiple times.

Example 4.1: Consider the example of finding n® term of Fibonacci
series!?. Below is the Fibonacci series
1,1, 2, 3, 5, 8, 13, 21,

First two terms are both 1, and each subsequent term is sum of previous
two terms. Recursive definition of Fibonacci number is

Fibonacci (1) = Fibonacci(2) =1 ifn=1,2
Fibonacci (n) = Fibonacci (n-1)+Fibonacci(n-2) £or n>2

B3 Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit
prosody dated back to 450 B.C. Like most other things, the series went from
east to west and was named after the guy who introduced it to west, rather
than the original founders, that guy happens to be Fibonacci.



The simplest algorithm to compute n® term of Fibonacci is direct
translation of mathematical definition:
int fib(int n){
if (n==1 || n==2)
return 1;
else
return fib(n-1) + fib(n-2);

Code: 4.1

Code 4.1 is a recursive code. We may want to put an extra check and
throw an exception if n is negative or zero, so that our code does not run
into infinite recursion if called with zero or negative value as argument. We
skipped this check to keep the code simple.

It may not be obvious, but Example 4.1 also has optimal substructure
property. To find optimal solution (the only solution in this case) for nt
term we need to find the optimal solution for n-1* term and n-2 term.

‘The equation of time taken by the function in Code 4.1 is
T(n) = T(n-1) + T(n-2) + 0(1)

This is an equation for exponential time. The reason why it is taking
exponential time for such a simple algorithm is because it is solving
the subproblems (computing k® term, k<n) multiple times. Picture 1.1
show function calls for n=5, each node in the picture represents a
function call and value in the node represents value of n in that call.

®
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Picture: 4.1

‘The function £ib (n), where n=5, call itself twice with n=4 and n=3.
Function with n=4 will in turn call £ib function twice with n=3 and n=2.
Note that £ib (3) is called twice, from fib (4) and fib (5) respectively
(see Picture 4.2). In fact £ib (2) is called three times.



In all the examples of recursion seen in first three chapters, each
subproblems was solved only once. But, when we compute 20% term of
Fibonacci using Code 4.1 (call £ib (20)), then fib(3) is called 2584
times and £ib (10) is called 89 times. It means that we are computing the
10% term of Fibonacci 89 times from scratch.

In the ideal world, if we have already computed value of £ib (10)
once, we should not be recomputing it again. Had we been computing one
term only once (solving a subproblem only once), the code would have
been really fast, even if we are using recursion. Memoization, Dynamic
programming and Greedy approach are techniques used to solve this classic
problem.

Code 4.2 has non-recursive function to find the n* term of Fibonacci.
First and second terms ate both 1. Third term is computed using the first
two, then we compute the 4% term using this 3< term and 224 terms and
move forward like this till we reach the n* term as shown in Code 4.2.
int fib(int n){

int a=1, b=1, ¢, ent = 3;
if(n ==1 || n ==2)

return 1;

for (ecnt = 3; cnt <= n; cnt++)

c =a+ b;

a =Db;
b =c;
}
return c;

Code: 4.2



Code 4.2 is taking O (n) time and constant extra memory. Table 4.1
gives a comparison of number of times function fib is called for different
values of n for recursive and iterative version:

n = 2 '3 4 |5 10 20 40
Recursive | 1 8|5 |9 109 13529 204668309
Iterative 1 1 1|43 1 1 1
Table: 4.1

Above table is a comparison of number of function calls made.
But the time taken by recursive and non-recursive functions are not same.
One instance of recussive function is taking O(1) time, in non-
recursive the function instance is taking O (n). But there will always be
only one instance of function called itrespective of the value of n.

When we called the functions for n=20, then the recutsive function in
Code 4.1 took 65.218 time where as non-recursive code in Code 4.2 took
0.109 time (time in micro seconds measured on a slow machine).

To understand it better, non-recursive code will take about one second
to compute the same term for which recursive code will take more than 10
minutes. And this is for relatively smaller value of n, when function is called
for n=80 (i.e £ib (80)), the recursive code took hours and non-recursive
code does not take even a second.

It is difficult to believe that such an innocent looking code can
hang our system for as small a value of n as 80. The culprit is overlapping
subproblems. Example 4.2, discuss one more example of ovetlapping
subproblems:

Example 4.2: There are N stations in a route, starting from 0 to N-1. A
train moves from first station (0) to last station (N-1) in only
forward direction. The cost of ticket between any two stations is given,
Find the minimum cost of travel from station 0 to station N-1.

Solution:

First we have to define for ourselves, the data structure in which cost
of ticket between stations is stored. Let us assume that there are four
stations (0 to 3) and cost of ticket is stored in a 4*4 matrix, as below.

cost[4][4] = { { O, 10, 75, 94},
{=ly 0; 35, 50F,
{-1, -1, 0, 80},
iy =1y =Ly 0}
}i



cost[i] [§] is cost of ticket from station i to station j. Since we ate
not moving backward, cost [i] [j] does not make any sense when i >
3, and hence they are all -1. If i==7, then we ate at the same station where
we want to go, therefore all the diagonal elements are zeros.

In fact this is a fit case to use sparse arrays'4,

Y& INTERVIEW TIP

Our solution in the interview may not be the most optimized in terms of time or memory,
because the time available during the interview is limited. But as a candidate we shonld
always talk about the scope of improvements in our code. For example, in the above
solution, you may use 2-dim array but you showld apprise the interviewer that using
sparse arrays may be better in this case.

If we want to move from station-0 to station-2 then the
cheapest way is to take the ticket of station-1 from station-0 and
then again take the ticket of station-2 from station-1. This way total
cost of travel is Rs. 45 (10+35). If we take direct ticket of station-2
from station-0 then the cost of travel is Rs. 75.

In the given example there are 4 stations, and we need to compute
minimum cost of travel from station-0 to station-3.

If minCost (s, d) is minimum cost of traveling from station-s to
station-d. The Minimum cost to teach N-1 from 0 can be recursively
defined as
minCost (0, N-1)
= MIN { cost[0][n-1],
cost[0][1] + minCost(l, N-1),
minCost (0, 2) + minCost(2, N-1),

minCost (0, N-2) + cost[N-2][n-1]}

First option is to go directly to station N-1 from station-0 without

!4 A sparse array is simply an array most of whose entries are zero (or null, or some other
default value). The occurrence of zero-value elements in a large array is inefficient for
both computation and storage. So rather than keeping the array as it is (with empty
cells), the non-empty cells are stored in some other data structure and empty cells are
not stored at all.



any break. Second option is to break at station-1 and so on. When we
break at station-i, we calculate the min cost of moving from 0 to i
and then the min cost of moving from i to N-1. Note that we are not
going to station N-1 directly from i, we are just ensuring a break at
station-i.

There are two terminating conditions for above recursion as defined
below:

// 1. When both station are same.
IF(s == d) return 0.

// 2. when s is just before d, then there is only
// one way to reach d from s.

IF(s == d-1) RETURN cost[s][d].

Both the above conditions can be merged into one (because
cost[s] [d] isalso 0 whens == d).
IF (s == || s == d-1) RETURN cost[s][d].

Implementation of this recursive solution is given in Code 4.3:
// Two dim array having cost of tickets.
int cost[N][N];

// Calculate min cost from source(s) to destination (d)
int calculateMinCost(int s, int d){

if (s == Il == d-1)
return cost[s][d];

int minCost = cost[s][d];

// Try every intermediate station to find min
for (int i = s+1; i<d; i++)

{

// MinCost of going from s to i.
// and MinCost of going from i to d.

int temp = calculateMinCost(s, i) +
calculateMinCost (i, d):
if (temp < minCost)
minCost = temp;



}

return minCost;

Code: 4.3

To calculate the minimum cost for travelling from station-0 to N-
1 call the above function as:
calculateMinCost (0, N-1);

Note that solution of Code 4.3 demonstrates optimal substructure
propetty. Because we are computing the min cost of travel between
intermediate stations to find the actual min cost of going from initial source
to final destination.

The code is also solving a subproblem multiple times. For example, to
find min cost from station-0 to station-4 we are computing min
cost of station-1 to station-3 twice as shown in Picture 4.3.
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Picture: 4.3

If there are 10 stations, then we will be solving this subproblem of
computing the min cost of travelling from station-1 to station-3,
144 times. Just imagine, if we have 100 stations then how many times we
are computing minimum cost to move from say, station-10 to
station-20 as part of solving the main problem. Code 4.3 takes
exponential time because of these ovetlapping subproblems.

Y¢ INTERVIEW TIP

A recursive exponential-time solution is usually an acceptable answer in the interview
becanse even interviewer understand that the available time is limited.

1t is good interview practice to put a quick not-so-optimized fully-working and bug-
Jree solution on the table and then work on optimizing i, instead of getting stuck and not
responding in the process of coming up with most the optimal solution.



First it will create an impression on the interviewer that you can handle unknown
problems methodically and come to a quick solution, second it will comfort you that you
have at least given one fool-proof working solution, so even if you are not able to give the
best solution, it is still not that bad.

Also, you may not get time 1o execute all the steps during the interview. Going
abead with the quick recursive solution will go in your favor. Just make sure to handle
the boundary condition properly in the implementation and leave no bug in the code.

Once you present that solution on the paper and tell the interviewer thas, it can be
optimized further if we use dynamic programming, Interviewer may take it on the face
value and give you complete credit for optimized solution without even asking you for the
solution. If there is time, the interviewer may ask you to optimize yosur solution.

Having said that, if you can come up with the optimized DP answer easily then
_you must go for it.

Y¢ CODING COMPETITION TIP

1In a coding competition (Online or otherwise) the recursive solution may not be the way to
g0 forward. In an online competition, you may find some of the test cases failing becanse of
the high execntion time taken by recursive code (even when the solution is right). Also, in
the competition, your code will be checked against the code of other contestants.

Question 4.1: Given a matrix of order N*N. What are the total number of
ways in which we can move from the top-left cell (arr[0][0]) to the
bottom-right cell (arr [N-1] [N-11]), given that we can only move either
downward ot rightward?

This problem is discussed in Example 9.2.



Memoization

I wish we could choose which memories to remember.

In the previous chapter we saw how recursive solution may be solving the
same subproblem multiple times. It happens in case of ovetlapping
subproblems and it may take time complexity of the code to exponential
levels.

Recursion itself is bad in terms of execution time and memory. In
Code 4.1, the problem gets worse when we compute value of £ib (x) from
scratch again even when it was computed earlier (overlapping subproblems).

When £ib (10) is calculated for the first ime we can just remember
the result and store it a cache. Next time when a call is made for £ib (10)
we just look into the cache and return the stored result in O (1) time rather
than making 109 recursive calls all over again. This approach is called
Memoization.

In memoization we store the solution of a subproblems in some sort
of a cache when it is solved for the first time. When the same subproblem is
encountered again, then the problem is not solved from scratch, rather, it’s
already solved result is returned from the cache. Flow chart in Picture 5.1
shows the flow of execution pictorially:

Consider Code 4.1 again (computing nt Fibonacci term), let us add an
integer array, memo of size N that will act as cache to store result of
subproblems (N = max value of n that need to be computed).



int memo[N] = {0};

Look in the cache to see
if subproblem is already
solved forn

Value present
in cache

Solve subproblem for n

Store result in cache

YES

Return value from cache

Picture: 5.1

All elements of array are initialized to zero. When kt# Fibonacci term is
computed for the first time it is stored in memo [k] . When the function
gets called again for n=k (to compute k® Fibonacci term), we just return
memo (k] in constant time rather than computing it again (0 (2¥) time
operation). Code 5.1 is the memoized version of Code 4.1:

// This array will store fib(k) at k'th index.
// memo[k]==0 means fib(k) is not yet computed
int memo[N] = {0};

int fib(int n) {
//1If fib(n) already computed, don't compute again
if (memo[n] != 0)
return memo[n];

// compute fib(n) and store it at memo[n].



if(n==1 || n==2)
memo[n] = 1;
else
memo[n] = fib(n-1)+fib(n-2);

return memo[n];

Code: 5.1

Function £ib (n) will call itself recussively only when it is called for
the first time for n, in subsequent calls for the same value it will just do a
look-up in the array.

There are two types of call to the function, one that does actual
computation and hence may call itself recursively and other that just do a
look-up in the atray and return the already stored result. The former is non-
memoized call and later ones are all memoized calls.

There will be exactly O (n) non-memoized calls and each call takes
constant time, because if £ib (4) and £ib(3) are already computed then
non-memoized call of £ib (5) will add the two and take constant time.
Total time taken to compute nt term of Fibonacci is O(n) . We have
optimized an exponential time function to take linear time using a simple
cache.

Let us extend Table 4.1, of previous chapter and add one more row in

it:
n = 2 3|4 |5 10 20 40
Recursive 1 3 5 9 109 13529 204668309
Iterative 1 1 1 1 1 1 1
Memo 1 3 5 7 17 37 77
Table: 51

For n=100, the function, fib(100), in Code 5.1 is called just
197 times. For the sake of comparison, if one function call takes one
sec to execute’. Then Code 5.1 will take 1.28 minutes to compute
40% term.

'S This is just an assumption. Actual machines runs much faster. A 2 GHz CPU (two
gigahertz) goes through 2,000,000,000 cycles per second. One instruction may take
one or more CPU cycles. Usually a O(1) function call will take time in microseconds.



Whereas recursive function in Code 4.1 will take 6.5 years to compute the
same term, Thankfully we have faster computers that are overriding our bad
code and are doing the work of years in seconds.

Example 4.2 of previous chapter is also solving subproblems multiple
times. The recursive solution in Code 4.3 can also be memoized in a similar
way. But in this case the cache cannot be a one-dimensional array because
subproblems in this case has two parameters, s and d:

Find minimum cost o travel from Station-s to Station-d

We take a two dimensional array of size N*N as cache to stores
minimum cost of traveling between two stations.
int memo[N] [N] = {0};

Once the minimum cost is computed for traveling from station-s
to station-d, this value is stoted in cell memo [s] [d] . Next time when
the function is called with same parameters (to compute min cost from
station-s to station-d), we do not compute the min cost again and
just return the value stored in memo [s] [d] (constant time).

Deciding data structure of cache is important step in
memoization. The cache should be capable of storing results
of all subproblems. Usually cache is an array. If our problem
has only one dimension, then it is one-dim array, else we
use multi-dimensional array.

Memoized solution of Example 4.2 is shown in Code 5.2 below:
// Cache used for Memoization
int memo[N] [N] = {0};

int calculateMinCost (int s, int d){
if (s == d || s == d-1)
return cost[s] [d];

// Enter only if value is not yet computed
if (memo[s] [d] == 0)
{

// Code Similar to recursive version



int minCost = cost[s][d];

for (int i = s+1; i<d; i++)
{

// Cost of going from s to i directly
// and then from i to d directly.

int temp = calculateMinCost(s, i) +
calculateMinCost (i,d);
if (temp < minCost)
minCost = temp;

// Store the minCost in cache
memo [s] [d] = minCost;

}

return memo[s] [d];

Code: 5.2

Code 5.2 takes O (n?) extra memory and O (n®) time. This is a huge
improvement over the exponential time recursive solution in Code 4.3.

Memoization is Recursion

Memoization is a strong technique, it improves the performance in a big
way by avoiding multiple re-computations of subproblems. The goodness
of recursion (to be able to visualize a problem and solve it in a top-down
fashion) is used without the side effects of overlapping subproblems that
comes with recursion.

Memoization = Recursion
+ Cache
- Recomputing overlapping subproblems

From Chapter 2 we know that even without overlapping subproblems
recursion itself is an overhead because multiple instances of Activation
Record gets created in the stack (and each AR creation and removal is a
cost in terms of both memory and time). Memoization uses recursion, do I
need to say more about room for improvements in memoization.



In fact, if there are no overlapping subproblems then memoization will
be exactly similar to recursion in terms of execution time.

The dynamic programming approach discussed in next chapter is the
bottom-up approach to problem solving that reduces both time and space
complexity further.



Dynamic Programming

Energy of a nation is like sap of a tree,
it rises bottom-up.

Before moving furthet, let us understand that the way Apple Inc. is not
related to “Apple’ the fruit in any way, Dynamic programming has nothing
to do with being dynamic or even programming. It is just an approach to
problem solving.

Wikipedia defines Dynamic programming as “A method for solving a
complex: problem by breaking it down into a collection of simpler subproblems, solving
each of those subproblems just once, and storing their solutions - ideally, using a memory-
based data structure””

By this definition, memoization is also dynamic programming. Some
authors in fact use the term “Memoized Dynamic P; ing” ot “Top-Down
dynamic programming for Memoization and they use “Bottom-up dynamic
programming” to describe what we are calling Dynamic Programming here.

In this book, we have used the terms ‘Memoigation’ and ‘Dynamic
Programming, to refer to top-down and bottom-up approaches of problem
solving where a subproblem is solved only once.

Tterative function to compute nt Fibonacci term that we saw in Code
4.2 is actually a dynamic programming solution. We went in a bottom-up
manner, starting with first computing fib (1), then £ib(2) and so on



(moving in forward direction).
int fib(int n){
if (n==1 || n==2)
return 1;

int a = 1; // For (k-2)'th term term.
int b = 1; // For (k-1)'th term
int c; // For k'th term

for (int i = 3; i <= n; i++)

e =a + b;

a =Db;
b =e;
}
return c;

Code: 6.1

Both Memoization and Dynamic Programming solves
indivisual subproblem only once.

Memoization uses recursion and work top-down, whereas
Dynamic Programming moves in opposite direction solving

the problem bottom-up.

Dynamic programming unroll the recursion and move in opposite
direction to Memoization.

Code 6.1 takes linear time. Memoized function in Code 5.1 also takes
0(n) time, but DP is better because thete is no recursive function call and
only one instance of activation record gets created on the Stack.

Note that even Code 6.2 is DP.
int fib(int n){
// Array to store fib numbers
int arr[N];



arr[l] = 1; arr([2] = 1;

for (int i = 3; i <= n; i++)

{
// compute fib(n) and store it
arr[i] = arr[i-1] + arr(i-2];:

return arr([n];

Code: 6.2

But obviously it is less optimized than Code 6.1 because we are storing
all the terms computed till now taking O (n) extra memory. To compute
the k™ term, we only need (k-1)* term and (k-2)* term and not the
previous terms. Code 6.2, unnecessarily increases extra memory
consumption from 0 (1) to O (n).

Question 6.1. Write function to calculate fibonacci (n) in 1g(n) time.

We have seen the recursive and memoiezed version of Example 4.2 in
chapter 4 and Chapter 5. The recursive solution takes exponential time and
memory and memoized version takes O (n®) time. However better solution
is to use bottom-up DP approach that takes O (n?) time and O (n) extra
memory.

The approach is to first calculate min cost for Station-0, then for
Station-1, then Station-2, and so on. These costs ate stored in a one
dimensional artay minCost [N] .

Minimum cost to reach station-0 is zero, because we ate already
there
minCost[0] = 07

Minimum cost to reach Station-1is cost[0] [1], because that is
the only way to reach Station-1
minCost[1] = cost[0][1]:



Minimum cost to reach Station-2 is minimum of below two values
(either go directly to Station-2 or take a break at Station-1).
1. minCost[0] + cost[0][2]
B minCost[l] + cost[1][2]

Note that MinCost is a lookup in the cache and cost is a lookup in
the cost array. Similarly, minimum cost to reach Station-3 is minimum
of below three values.

1.Goto station-3 directly
minCost [0]+cost[0] [3]

2. Goto station-1 then from there go to station-3 directly
minCost[1]+cost[1][3]

3. Go to station-2 (min cost already computed) then go to station-3
minCost [2]+cost[2] [3]

When we are breaking at station-2. We are using the already
computed min cost of reaching station-2 and adding the actual cost of
going directly from station-2 to station-3 (obsetve optimal
substructure).

Similatly minimum cost to reach Station-4 is minimum of 4 values
T minCost[0]+cost[0] [4]
2. minCost[1]+cost[1][4]
3w minCost[2]+cost[2] [4]
4. minCost[3]+cost[3][4]

and so on. Code 6.3 has the function for this:
int calculateMinCost (int cost[N] [N]) {
// minCost[i]=min cost from station-0 to station-i
int minCost[N];
minCost[0] = 0;
minCost[1l] = cost[0][1];

for (int i=2; i<N; i++)
{

minCost[i] = cost[0][i];



for (int j=1; j<i; j++)
if (minCost[i] > minCost[j] + cost[i][j])
minCost[i] = minCost[j] + cost[i][j];
}
return minCost[N-1];

Code: 6.3

Clearly, DP is the most optimal solution, in terms of both execution
time and memory as seen in Fibonacci and min-distance problems.

Major applications of DP is in solving complex problems bottom-up
where the problem has optimal substructure and subproblems overlaps.
The challenge with Dynamic Programming is that it is not always intuitive
esp. for complex problems. In Chapter-7 we discuss the strategy to nail
down complex dynamic programming problems step-by-step.

Sometime the subproblems overlap in a non-obvious way and does
not appear to have an intuitive recursive solution, as shown in the Example
6.1.

Example 6.1: Find length of longest substring of a given string of digits,
such that sum of digits in the first half and second half of the substring is
same. For example,

Input: "142124"

Output: 6

The whole string is answer, because, sum of first 3 digits = sum of last 3
digits (1+4+2 = 1+2+4) .

Input: "9430723"

Output: 4

Longest substring with first and second half having equal sum is
"4307".

Solution

One hint is that result substring have even number of digits, since its first
and second halves are equal in length.

The brute force solution is to consider all the substrings of even length
and check if sum of digits in their first half is equal to that of second half.



In the process keep a check of the length of substrings and return
maximum of all lengths at the end.

A small optimization can be that if we have already found a substring
with length greater than current substting for which sum of two halves is
equal, then we do not need to compute sum of left and right halves for
current substring (see Code 6.4).
int maxSubStringLength (char *str) {

int n = strlen(str);
int maxLen =0;

// i = Starting index of substring
for(int i=0; i<n; i++)
{
// j = End index of substring (even length)
for(int j =i+l; j<n; j += 2)
{
// len = Length of current Substring
int len = 3j - i + 1;

// If maxLen is > length of current string.
// Do Nothing
if (maxLen >= len)

continue;

int 1Sum = 0, rSum = 0;
for(int k =0; k < len/2; k++)
{
1Sum += (str[it+k] - '0');
rSum += (str[i+k+len/2] - '0');
}
if (1Sum == rSum)
maxLen = len;

}

return maxLen;

Code: 6.4



This function takes O (n®) time, and this is probably the fitst solution
that strike our mind. Two important points from this example are:

1. The most intuitive solution may not always use recursion.
2. 'The most intuitive solution may not always take exponential time.

But there are subproblems and subproblems are overlapping.

For example, sum of digits from index i to j is already computed
while checking for one substring. Then for another substring (in next loop)
we may be computing sum of digits from index i+l to j. We are
computing this sum all over again when we can reusing the sum of digits
from i to j and just subtract str[i] from this sum (constant time
operation) rather then re-computing the sum from i+1 to j (linear time
operation).

Let us build a two-dimensional table that stores sum of sub strings.
sum[i] [§] in Code 6.5 store sum of digits from index i to index J.
/* sum[i] [j] = Sum of digits from i to j
* if i>j, then value holds no meaning.
g
int sum[N] [N];

int maxSubStringLengthDP (char *str) {
int n = strlen(str);
int maxLen = 0;

// Lower diagonal of matrix is not used (i>j)
// Filling diagonal values.
for (int i =0; i<n; i++)

sum([i] [i] = str[i]-'0';

for (int len=2; len<=n; len++)
{
// Pick i and j for current substring
for (int i=0; i<n-len+l; i++)
{
int j = i+len-1;
int k = len/2;



// Calculate value of sum[i][]]
sum[i] [§] = sum[i][j-k] + sum[j-k+1][F];

// Update if 'len' is even, left and right
// sums are same and len is more than maxLen
if (len%2 == 0 && sum[i] [j-k] == sum[(j-k+1)][]F]
&& len > maxLen)
maxLen = len;

}

return maxLen;
Code: 6.5

The above solution is using DP and takes O (n?) time and O (n?)
extra memory. Clearly there is a scope of improvement in terms of extra
memory taken because we are not using lot of space that we have allocated
in the 2-dim matrix.

Question 6.2: solve the problem in Example 6.1 so that it does not take
more than O (n?) time and takes constant extra memory.

¢ INTERVIEW TIP

If someone does not know anything about Dynamic Programming then also he may be
solving Example 5.2 the same way as we did. Just that we have a name for this tipe of
approach. He may be just optimizing the memory and time taken by the brute-force
solution.

As an analogy: Sometimes the approach we take for coding, the way we organize
our classes and interfaces is such that it has its applicability at multiple places outside the
current project also. So we document that way of coding and call it design pattern.

Someone completely unaware of a design pattern may also be solving the problem in
a similar way. Just that he is not aware if it is called Design pattern or if it has any
name.

In next chapter we look at the difference in two fundamental
approaches of problem solving that we have discussed so far. The top-
down approach (tecursion or memoization) and bottom-up approach
(dynamic programming).



Top-Down v/s Bottom-Up

Contrast is an excellent teacher.

We have leatnt about recursion, memoization and dynamic programming in
previous chapters. First two ate top-down approach to problem solving
while DP solves a problem in bottom-up manner. In this chapter we try to
further compare bottom-up and top-down approaches of problem solving.

Example 7.1: Consider Code 7.1 to compute factorial of n.
int factorial (int n){

if (1==n)
return 1;
else

return n * factorial (n-1);

Code: 7.1

While defining the solution we have a top-down view. We define
factorial(n) in terms of factorial(n-1) and then put a
terminating condition at the bottom.

Picture 7.1 shows the function calls for factorial (4). This is a top-
down approach of problem solving. We statt solving the problem from top
(factorial (4)) and solve subproblems (at bottom) on need basis. If
solution of a subproblem is not requited for computing the solution of
larger problem, then the subproblem is not solved.



fact(4) return 24

Fun call 1 Eeturn 6

Fun call 2 EStnie

Fun call 3 zeturs 1
Fun call 4
Picture: 7.1

A bottom-up approach on the other hand develops the solution
starting from the bottom as shown below:

11=1
21=2(19=1
31=3(29)=6
41=4(3)=24

int factorial (int n){
int fact = 1;
for(int i=2; i<=n; i++)
fact *= i;
return fact;

Code: 7.2

In top-down we have an understanding of the destination initially and
we develop the means required to reach there. On the other hand, bottom-
up has all the means available and we move toward the destination. Below
is an interesting analogy:

‘Top-down: First you say I will take over the world. How will you do that? You say, I
will take over Asia first. How will you do that? 1 will take over India first. How will
you do that? 1 will first become the Chief Minister of Delbi, ete. etc.

Bottom-up: You say, I will become the CM of Delbi. Then will take over India, then
all other countries in Asia and finally I will take over the whole world.

We saw the difference, right? No matter, how similar it looks, it has
nothing to do with any Chief Minister ©.

Note that in both approaches the first work done is Acquiring-Delhi.
Similarly, factorial(l) will be computed first no-matter what the



approach is. Just that in Top-down, we have a backlog of computing all the
factorials (in memory Stack in form of activation records).

Top-down is usually mote intuitive because we get a bitd’s eye view
and a broader understanding of the solution.

The simplest example of top-down approach are Binary tree
algorithms. The algorithm of pre-order traversal is:
PreOrder (Root)

Print data at root

Traverse left sub-tree in PreOrder

Traverse right sub-tree in PreOrder

This algorithm, starts from the top and moves toward leaves. Most of
the Binary tree algorithms are like this only. We start from the top, traverse
the tree in some order and keep making decisions on the way. Consider the
below example:

Example 7.2: Given a Binary Tree, For each node, add sum of all the
nodes in its hierarchy to its value. Below picture shows a sample input and
output.

=

Picture: 7.2

Node with value 9 has only one child, its value get added to 9 and
value of this node becomes 12. Node with value 4 has three nodes in its
hierarchy (6, 9 and 3), all these values will get added to this node and final
value of this node becomes =4 + 6 + 9 + 3 = 22. Similarly, all other
nodes, have their values updated. Leaf nodes remain unchanged.

Note: this problem is not related to DP.

In most Binary Tree questions, we do not have to solve the entire
problem. If we look at it from top and assume that the problem is already



solved for left and right sub trees, then we just need to solve it for the root
node.

Recursion solves the problem for left and right subtrees and we just
need to put the terminating condition(s). In this example there can be two
terminating conditions:

1. If cutrent node is null, do not do anything.
2. If current node is leaf node, then also do not do anything.

Algorithm is to traverse the tree in post order (because we will be
adding the sum only after the problem is solved for both the child nodes)
and solves the problem as discussed below.
addChildSum (Root)

addChildSum for Left sub-tree
addChildSum for Right sub-tree
Add value of left and Right child nodes to root

Code 7.3 translates above algorithm to code.
void addChildSum (Node * root) {

if (root == NULL) return; // Terminating cond.

// Compute for Left Sub Tree
addChildSum (root->left);

// Compute for Right Sub Tree
addChildSum(root->right) ;

int finalSum = root->data;
if (root->left != NULL)

finalSum += root->left->data;

if (root->right != NULL)
finalSum += root->right->data;

root->data = finalSum;

Code: 7.3



Nothing will change for leaf nodes. For all other nodes, after
computation is done for left and right subtrees, we add the data of left and
right child to the current node.

Note that, even if the algorithm is top-down, the flow of data is always
bottom-up.

* INTERVIEW TIP
Recursion is a top-down approach of problem solving.

M.

% is also top-down, but it is an imp over recursion where we cache
the results when a subproblem is solved, when same subproblem is encountered again
we use the result from cache rather them computing it again. It has the
drawbacks of recursion with an improvements that one problem is solved only once.

So if there are no overlapping subproblems (eg. In the case of factorial
Junction) memoized function will be excactly same as recursive function.
Dynamic programming attempis to solve the problem in a bottom-up
manner avoiding the overhead of recursion altogether.

In almost all cases, bottom-up is better than top-down. But for

the sake of completeness, let us discuss one use case where you may
choose to go with top-down!6.

Negatives ofBottom-up DP

In top-down approach (recursion or memoized) we do not solve all
the subproblems, we solve only those problems that need to be solved
to get the solution of main problem. In bottom-up dynamic
programming, all the subproblems are solved before getting to the main
problem.

We may therefore (very rarely) be solving more subproblems in
top-down DP than required. The DP solutions should be properly
framed to remove this ill-effect. Consider the below example:

Example 7.3: In combinatorics, Combination is defined recursively:

C(n,m) = C(n-1,m) + C(n-1,m-1)

Code 7.4 defines recursive function that take two arguments n and
m and return C (n, m) .

16 Such comparative knowledge is good to have from interview point of view. The
interviewer have luxury of asking any question and expects a balanced answer from
you. As a candidate you do not have that luxury.



int comb(int n, int m){

if(n==0 || m == Il (n ==m))
return 1;

else
return comb (n-1,m) + comb(n-1,m-1);

Code: 7.4

The DP solution for this problem requires to construct the entire
pascal triangle and return the (m+1)*® value in the (n+1)*" row. (Row
number and column number starts from zero). For example, C (5, 4) will
return the highlighted value in below Pascal triangle:

The DP solution construct the whole triangle and return this value.
The tecursive solution on the other hand compute only the required nodes
of Pascal triangle as highlighted below

If n and m are very big values then recursion may actually beat DP,
both in terms of time and memory.

This is just to complete the discussi henwise, if dynamic prog ing can be
used, then go for it, it will almost never disappoint you.

We now know everything about Dynamic Programming. Next chapter
focuses on the strategy used to solve dynamic programming problems
asked in coding competitions or intetviews.



Strategy for DP Question

Fitting-in is a short term strategy,
Standing out pays off in long term.

There is no magic formula, no shortcut !

The most important thing is methodical thinking and practice, "practice
good, practice hard".

Dynamic programming is an art and the more DP problems we solve,
the easier it gets to relate a new problem to the one we have already solved
and draw parallel between the two. It looks very artistic when we see
someone solving a tricky DP so easily.

While solving a DP question, it is always good to write recursive
solution first and then optimize it using either DP or Memoization
depending on complexity of problem and time available to solve the
problem.

Memoization
(Recursion + Cache)

Solve it using
Recursion

Dynamic Programming
Bottom-Up

Dynamic programming problems has two properties, optimal
substructure and overlapping subproblems. Optimal substructure
property makes recursion an obvious choice to solve DP problems.



Most often, both Memoization and DP use the logic of Recursion
only. These approaches are already discussed in previous chapters. In next
sections we are just revising these three concepts with the help of an
example.

Solve it Using Recursion

If we have a command over recursion, then we may be able to give a
recursive solution to the DP problems without even knowing that they
belong to DP. Consider the below example:

Example 8.1: Given a two-dimensional squate matrix cost [] [] of order
M*N where cost [1] []] represents the cost of passing though cell (1, 5).
Total cost to reach a particular cell is the sum of costs of all the cells in that
path (including the starting and final cell). We can only move either
downward or rightward. i.e If we are at cell (i, j) then we can either go
tocel (i, j+1) orto (i+1, 3).

Write a function that return the minimum cost of moving from the

top-left cell to bottom-right cell of the matrix. Picture 8.1 shows the Cost
matrix and Minimum Cost path in that matrix.

1 3 5 8 1l=x3 5 8
2
& |l 2 1 | 7 2=m1
Il
b4
4 3 o] 3 3 | 2==3
Cost Matrix MinCostPath

Picture: 8.1

Without having any prior knowledge of Dynamic Programming, we
can solve it by applying methodical problem solving approach.

In recursion, we start solving from the last cell, define the larger
problem in terms of the smaller subproblems of the same type and call the
same function recursively to solve the subproblems.

e Larger Problem: get the minimum path cost till cell (2, 3)
e  Smaller Problems-1: get the minimum path cost till cell (2,2)
e  Smaller Problems-2: get the minimum path cost till cell (1,3)



The smaller-problems are exactly same as larger problem with
different values of M and N. The same function that solve large problem can
also solve smaller problems. Hence, Recursion !

Once we have solution to smaller problems, we know the minimum
cost to reach cell (2,2) and minimum cost to reach cell (1,3).
Now, There are only two ways to reach the last cell (2,3) and they are
via cell (2,2) and cell (1,3)

If x and y are the minimum cost to reach cell (2,2) and (1,3)
respectively, then minimum cost of reaching cell (2,3) is

MINIMUM(x, Y) + Cost[2][3]
Let us write the above logic in the form of code
int minPathCost (int cost[M] [N], int m, int n){
int x = minPathCost(cost, m-1, n);
int y = minPathCost (cost, m, n-1);

return (getMin(x,y) + cost[m][n]);
}
Code: 8.1

getMin is a helper function that returns minimum of two integers. We
need to add terminating condition in the above code. Below are the
terminating conditions ((m, n) represent the destination cell):

1. If m=0 and n=0, it means our destination is top-left cell only. there is
only one way to be at (0, 0) cell. Return value stored at cell (0,0).

2. If m=0 and n#0, we are in the top row and not at (0,0). The only
way to reach this cell is from right because there is no way to reach it
from the top. Calculate the minPathCost of cell on the right and add
current cell’s cost.

3. Ifm#0 and n=0, we are in the first column (leftmost) and not at (0, 0).
Then the only way to reach this cell is from top because there is no way
to reach it from the right. Calculate the minPathCost of cell above it
and add current cell’s cost.

Point 2 and 3 above are not exactly terminating conditions. They are
just restricting the recursion. Point 1 is the only terminating
condition. Code 82 is the complete code with all terminating
conditions.



int getMin(int a, int b) {
return a<b?a:b;
}
// calculate the min path cost from (0,0) to (m,n)
int minPathCost (int cost[M] [N], int m, int n){

if(m == 0 & n == 0) // At cell (0,0)
return cost[0][0];

if(m == 0) // IN FIRST ROW
return minPathCost (cost,m,n-1) + cost[0] [n];

if(n == 0) // IN FIRST COLUMN
return minPathCost (cost,m-1,n) + cost[m][0];

int x = minPathCost (cost, m-1, n);
int y = minPathCost (cost, m, n-1);
return (getMin(x,y) + cost[m][n]);

Code: 8.2

In the interviews, even this solution may be acceptable to the
interviewer, esp. if the candidate is less experienced.

Also, observe the optimal substructure property in Code 8.2. The
optimal solution of larger problem depends on the optimal solutions of
smaller subproblems.

Problem with Code 8.2 is that solutions of subproblems are computed
multiple times. For example, minPathCost for index (1,2) is computed
twice in the given example. Picture 8.2 shows the function call diagram for
M=2, N=3.

Numbers in each node represent the value of M,N for which the
function is called. The diagram is not complete for the sake of saving space,
but in the diagram itself, we are computing the minPathCost of reaching
cell (1, 2) twice. All the function calls under the subtree with cell (1, 2)
are duplicate.

If values of M and N are large, there will be lot of overlaps and as
expected, Code 8.2 takes exponential time, O (2") . And since it involves
recursion, the extra memory taken is also very high.
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Picture: 8.2

Memoized Approach (Recursion + Remember)

A better approach is to remember the solution of minPathCost for each
cell (1, j) when it is computed for the first time in some cache (2-dim
array). When we want minPathCost for cell (i,j) again, then we just
look-up into the cache rather than computing it all over again. Since we are
storing cost for each cell, storing it in a two-dim mattix makes the most
obvious choice. Code 8.3 is the memoized version of Code 8.2:

// Global cache used to store memoized results.
int MEM[M] [N] = {0};

int minPathCost (int cost[M] [N], int m, int n){
// If the value for cell (m,n) is already
// computed, don't compute it again.
if (MEM[m] [n] != 0){

return MEM[m] [n];

if(m == 0 && n == 0){
MEM[m] [n] = cost[0][0];
}
else if(m == 0){
MEM[m] [n] = minPathCost (cost, m, n-1)+cost[0][n];
}
else if(n == 0){
MEM[m] [n] = minPathCost(cost, m-1, n)+cost([m][0];



}

else{

int x = minPathCost(cost, m-1, n);
int y = minPathCost (cost, m, n-1);
MEM([m] [n] = (getMin(x,y) + cost[m][n]);

return MEM[m] [n];

Code: 8.3

Note: In the above code we have used a global array MEM to store results of
subproblems. The problem with using global array is that we need to set all it'’s cells to
eros each time before calling function minPathCost otherwise it will hold values
from the previous function call. We have kept it global for the sake of simplicity.

Let us look at some important points:

I

‘When minPathCost is computed for any cell (i,j) for the first
time, we store this value in MEM array at MEM[1] [§].

Before computing the minPathCost for any cell (i,3), we
check if that value is alteady computed ot not (i.e MEM[i] []] is
non-zero). If already computed, we just return that value and do
not compute it again.

In Code 8.3 we are still using recursion, but not computing one
problem multiple times. Picture 8.3 shows function call diagram for Code
8.3. Compare it with Picture 8.2, the numbet of function calls have reduced

substantially.
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Compare it with Picture 8.2. Total number of function calls have
reduced substantially. Time taken by Code 8.3 is O (n?). If we consider a
larger matrix (of say, 100*100), then the difference between recursion and
memoization is huge. In the next section we look into DP solution of this
problem.

Bottom-Up DP Solution

The optimal solution is to move bottom-up*” starting from (0,0) to (m,n)
and keep finding minPathCost for all the cells that fall in our way.

As in case of recursion, to compute the minPathCost of a particular
cell, we need minPathCost of the cell above it and cell on left of it. We
will fill the matrix as follows.

1. minPathCost of (0,0) is same as cost [0] [0]

1

2. 'There is only one way to reach elements in the first row (from left).
Hence the cost is sum of all the cells on the left added to value of
the cell.

1(4(9 (17

3. Similarly, there is only one way to reach cells in the first column,
and that is from the top. Hence the minPathCost of all cells in
the first column is sum of all the cells above it added to cell’s value.

1 |/ 4|9 |47
5
9

17 Do not get confused by the name ‘Bottom-Up’. It means that we are moving from the
base case (or source) to the advanced case (or destination).



4. Now we need to fill rest of the empty cells starting from cell
(1,1). The logic used is same as the one we used in recutsion and
memoization.

MEM[i] [J] = getMin(MEM[i-1][j], MEM[i][j-1]) +
cost[i][3]1;

Code 8.4 has the complete code of Dynamic Programming.
int MEM[M] [N] = {0};
int minPathCost (int cost[M] [N]) {
MEM[0] [0] = cost[0][0];

// Top Row
for (int j=1; <N ; j++)
MEM[0] [j] = MEM[O0] [j-1] + cost[0][]];

// Left Column
for(int i=1; i<M ; i++)
MEM[i] [0] = MEM[i-1][0] + cost[i][0];

// Filling other cells
for (int i=1; i<M; i++)
for (int j=1; j<N; j++)
MEM[i] [j] = getMin (MEM[i-1][3j], MEM[i][j-1]) +
cost[i][]];
return MEM[M-1] [N-1];

Code: 8.4

Code 8.4 does not use recursion and takes O (n?) time. It is a huge
improvement over previous two versions, recutsion and memoization.

Each cell of final minPathCost matrix (MEM) stores the minimum
cost to reach that cell from (0, 0)

114|917
67|14
91912




Question 8.1: What will be the logic if we are allowed to move in three
directions, right, down and diagonally lower cells.

>

v

Picture: 8.5
Problem Solving Using DP

In some cases, we are expected to solve the problem using DP only. Rest of
this chapter discuss how to identify if a problem is actually DP, and
approaches that can be used to solve DP problems. Chapter-9 has practice
questions that shows the strategy in action.

Before devising a strategy, first thing is to identify if 2 question is fit
for DP.

Finding if DP is Applicable?

The strongest check for DP is to look for optimal substructure and
ovetlapping subproblems.

DP is used where a complex problem can be divided in subproblems
of the same type and these subproblems overlap in some way (either fully
of partially). The overlap may be obvious as seen in Example 8.1 or non-
obvious as in Example 6.1.

Most of the times, we may also be trying to optimize something,
maximize something, minimize something or finding the total number of
ways of doing something and the optimal solution for larger parameter
depends on optimal solutions of same problems with smaller parameter.

Largest application of Dynamic programming is in solving
complex problems that demonstrate  Overlapping
subproblems and Optimal substructure.



Ask yourself the following questions:

1. Is it possible to divide the problem into subproblems of the same
type?

2. Are the subproblems overlapping?

3. Are we trying to optimize something, maximizing or minimizing
something or counting the total number of possible ways to do
something.

If the answer to first two questions is yes, chances are that DP is

applicable. Take the third point as a bonus check.

Solving DP Problems

There is no one fool-proof plan that we can use to solve all DP questions
because not every problem is the same, but one should be able to solve
most DP problems following the below steps:

1.

See if DP is applicable. If problem can be defined in terms of
smaller subproblems and the subproblems ovetlap then chances are
that DP can be used.

Define recursion. Having subproblems of similar kind means there is
recursion.

a) Define problem in terms of subproblems, define it in a top-
down manner, do not worry about time complexity at this point.

b) Solve base case (leave rest to recursion). The subproblems are
solved by recursion, what is left is the base case.

¢) Add a terminating condition. This step is relatively trivial. We
need to stop somewhere, That will be the terminating conditions.

After this step we have a working solution using recutsion.

Try memoization (optional). If a subproblem is solved multiple
times, then try to cache its solution and use the cached value when
same subproblem is encountered again.

Try solving Bottom-up. This is the step where we try to eliminate
recursion and redefine our solution in forward direction starting from
the most basic case. In the process we store only those tesults that will
be required later.



Step-3 is usually for the beginners, who are just starting with the
concept. It is an improvement over step-2 without getting into the
complexity of DP. In intetviews, usually the recursive solution is acceptable,
but the best answer is DP. In the coding competitions, usually DP is the
only accepted solution. With experience we start skipping step-3 and jump
to step-4 directly.

Y¢ INTERVIEW TIP

At point-2 we have a working solution. It may be taking more time than the optimal
solution, but it is syntactically and semantically correct.

1t may be sufficient to solve the problem tll this point during an interview. But you
should apprise the interviewer that it is not the most optimal solution and you can further
optimize it by using DP.

Let us see this strategy in action in some real interview questions:
Example 8.2: Given an empty plot of size 2 x n. We want to place tiles
such that the entite plot is covered. Each tile is of size 2 x 1 and can be
placed either horizontally or vertically. If n is 5, then one way to cover the
plot is as shown in Picture 8.6

Empty plot Tiles placed in Plot
Picture: 8.6
Write a function that accept n as input and return the total number of
ways in which we can place the tiles (without breaking any tile).
Solution
Let us define the recursion. We can place the tile either hotizontally or
vertically.

1. If we place the first tile vertically, then the problem reduces to:
Number of ways tiles can be placed on a plot of size 2%(n-1).

%ﬁ

N-1
Picture: 8.7



2. If we place the first tile horizontally, then the second tile must also be
placed horizontally (see Picture 8.9). The problem then reduces to:
Number of ways tiles can be placed on a plot of size 2%(n-2).

H_}

N-2
Picture: 8.8
In both the cases we are able to define the large problem in terms of
smaller problems of the same type. This is Recursion. Recursion also has
terminating conditions. Terminating conditions are:
If n==1, there is just 1 way possible
v Place one tile vertically
If n==2, there are 2 possible ways
¥ Place both tiles vertically
v" Place both tiles horizontally.

Code 8.5 has the recursive solution for this problem:
int countWays (int n) {
// terminating conditions

if(n == 0) { return 0; }
if(n == 1) { return 1; }
if(n == 2) { return 2; }

return countWays(n-1) + countWays (n-2);

Code: 8.5

The above recursion is same as that of Fibonacci (except for the
terminating conditions). The dynamic solution to Fibonacci was discussed
in Code 6.1 and is an O (n) time solution.

Y¢ INTERVIEW TIP
1t is a good idea during the interview if you can relate the unknown problem to a known

problem. You can even tell this to the interviewer. This is a big quality and will go in
_your favor while deciding for your selection.



Question 8.2: If size of the plot in Example 8.2 is changed to 3*n, then
what changes do we need to make in the solution? Picture 8.9 shows one of
the possible atrangements on a plot of size 3*n where n=12.

Picture: 8.9

Example 8.3: Consider a game where 2 player can scote 3, 5 or 10 points
in one move. Given a total score N, find the total number of unique ways to
reach a score of N.

For example: If N = 13, output should be 5 because there are 5 ways
to reach to a score of 13 as shown below
(3, 10) (3, 5, 5) (5, 3, 5) (5, 5, 3) (10, 3)

The recursion to solve this problem is
#of ways to score N = #of ways to score (N-10) +
#of ways to score (N-5) +
#of ways to score (N-3)

With the below terminating conditions:

1. #of ways to score N is 0 if n<0
2. #of ways to score N is 1 if n ==

The code is simple

int waysToScore (int n) {
if(n < 0) { return 0; }
if(n == 0) { return 1; }

return waysToScore (n-10) +
waysToScore (n-5) +

waysToScore (n-3) ;

Code: 8.6



Code 8.6 is solving one subproblem multiple times. The function call
tree for n=13, is shown in Picture 8.10. The tree is not complete, but it
shows that subproblems ovetlap, and as n becomes large, there will be
more ovetlaps. Code 8.6 takes exponential time, O (n®) in the worst case.

Code 8.7 gives bottom-up dynamic programming solution for this problem.
It uses one-dimensional array, arr and store number of ways to score k at
index k in the array.
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Picture: 8.10

int waysToScore (int n) {
// arr[i] will store numberOfWays to score i.
int arr([n+l] = {0}, i;

arr[0] = 1;

for(i=1; i<=n; i++)
{
if(i-3 >= 0)
arr[i] += arr[i-3];
if(i-5 >= 0)
arr[i] += arr[i-5];
if (i-10 >= 0)
arr[i] += arr[i-10];

return arr([n];

Code: 8.7



Question 8.3: What is the total number of ways to reach a particular score
if (10, 3) and (3, 10) are considered same. Modify your function
accordingly.

Consider one more example

Example 8.4: Given an atray of integers, write a function that returns the
maximum sum of sub array, such that elements are contiguous.
Input Array: {-2, -3, 4, -1, -2, 1, 5, -3}
Output: 7
-2, =3, 4, -1, -2, 1, 5, -3)

The brute-force algorithm for this problem is given in Code 8.8. It use
two loops and consider all intervals (i,§) of the array for all possible
values of i and j.
int maxSubArraySum(int * arr, int n){

int maxSum = 0;
int tempSum = 0;

for (int i=0; i<n; i++)
{
tempSum = arr[i];
for (int j=i+l; j<n; j++)
{
// tempSum hold sum of all elements from
// i to j index (both including)
tempSum += arr[jl;
if (tempSum > maxSum)
maxSum = tempSum;

}

return maxSum;

Code: 8.8

If all the elements of array are negative, then above algorithm returns
0. This may not be acceptable, we can add one more check at the end to see
if maxSum is 0. In this case, we set maxSum to maximum value in the array.



Kadane’s Algorithm

Code 8.8 takes O(n?) time. There is a better algotithm to solve this
problem. It is called Kadane’s Algorithm, It is O(n) time algorithm and
requires the atray to be scanned only once. We keep two integer variables

int maxSumEndingHere = 0;
int maxSumSoFar = 0;

Loop for each element in the array and update the two variables as
shown below:
maxSumEndingHere = maxSumEndingHere + a[i]
if (maxSumEndingHere < 0)
maxSumEndingHere = 0
if (maxSumSoFar < maxSumEndingHere)
maxSumSoFar = maxSumEndingHere

Code 8.9 is the complete code:
int maxSubArraySum(int a[], int n){
int maxSumSoFar = 0;
int maxSumEndingHere = 0;

for (int i = 0; i < n; i++)
{

maxSumEndingHere = maxSumEndingHere + al[i];

if (maxSumEndingHere < 0)
maxSumEndingHere = 0;

if (maxSumSoFar < maxSumEndingHere)
maxSumSoFar = maxSumEndingHere;
}

return maxSumSoFar;
Code: 8.9

The function takes O (n) time and is an improvement over the previous
one. If we call this function for the following array
(=2, =3, 4, =1, =2, 1A, .5, =3}



Then the intermediate values of maxSumEndingHere and
maxSumSoFar variables are shown in Table 8.1 below:

Table: 8.1

This is one of the few examples of dynamic programming where brute
force solution is non-recursive and is relatively easy. In fact the recursion of
this problem is unintuitive. The recursion is defined below

N|jo|lu|[s|lwnv|k o
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M(n) = max(M(n-1) + A[n], A[n])

Where M is the function, maxSubArraySum and A is the array. The
optimal substructure property of problem is clear from above equation, to
find the maxSubArraySum for n elements we need to find
maxSubArraySum of n-1 elements. But subproblems ate not ovetlapping
because M (n) is only calling M (n-1).

This leaves room for interpretations as to whether Kadane's algorithm
is DP or not. It demonstrates the optimal substructure property by breaking
larger problem down into smaller subproblems, but its core recursive
approach does not generate overlapping subproblems, which is what DP is
meant to handle efficiently.

We do not have a strong opinion on this, readers are free to opine
whether or not they consider Kadane’s algotithm as DP. If such discussion
comes in the interview, then take it as an opportunity to give both sides of
the story along with your stand point. Such technical discussions are as
important as answering any question in the interview.



Practice Questions

Don’t practice until you get it right.
Practice until you can’t get it wrong.

Edit Distance

Example 9.1: The words COMPUTER and COMMUTER are very similar, and
aupdate of just one letter, P->M will change the first word into the
second. Similarly, word SPORT can be changed into SORT by deleting one
character, p, or equivalently, SORT can be changed into SPORT by
inserting p.

Edit distance between two strings is defined as the minimum number
of character operations (update, delete, insert) required to convert one
string into another.

Given two strings strl and str2 and following three operations that
can performed on strl.

1. Insert
2. Remove
3. Replace



Find minimum number of opetations required to convett strl to
str2. For Example: if Input strings are CAT and CAR then the edit distance
81
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Similarly, if the two input strings are, SUNDAY and SATURDAY, then edit
distance is 3.
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Recursive Solution

As discussed eatlier in the book, we try to define the larger problem in term
of smaller problems of the same type. We start with comparing the first
character of str1 with first character of str2.

e If they are same, then we do not need to do anything for this position
and need to find the edit distance between remaining strings (ignoring
first character from each).

e If they are not same, then we can perform three operations:

= Delete first character of strl and find edit distance between
str2 and strl (with first character of strl removed).

= Replace the first character of strl with first character of str2
and then find the edit distance between the strings ignoting first
character from each string (because they are same).

= Insert the first character of string str2 at the head of string
strl. After insertion, the first character of of two strings
become same and we need to find edit distance between the two
strings ignoring their first characters. (size of str1l has increased
by one character)

We find the minimum of these values using recursion. Since we have
already applied one operation (either of Delete, Replace or Insert), add one
to this minimum value and return the result.



Code 9.1 is the code for above recursion:
int editDistance (char* strl, char* str2)({
// If strl is empty,
// then all characters of str2 need to inserted.
if (strl == NULL || *strl == '\0')
return strlen(str2);

// If str2 is empty,
// then all characters of strl need to be deleted.
if(str2 == NULL || *str2 == '\0')

return strlen(strl);

// If first characters of both are same,
// then ignore it and find edit distance
// of rest of the strings
if (*strl == *str2)

return editDistance(strl+l, str2+l1);

// Find edit distance for all three operations
int d; u; i;

d = editDistance(strl+l, str2);

u = editDistance (strl+l, str2+1);

i = editDistance(strl, str2+l);

// Return minimum of the three values plus 1
return getMinimum(d, u, i) + 1;

Code: 9.1

Code 9.1 takes exponential time in the worst case, O ( n®) to be precise
and there are lot of ovetlapping subproblems as shown in Picture 9.1. The
diagram show function calls for two string of size 3 each that gives the
worst case time. For example, strl = "ABC", str2 = "Xyz"
editDistance of last 2 characters from each string (2,2) is computed
three time. If the string sizes are big then there will be further overlap of
subproblems.



Dynamic Solution

The dynamic solution to the above problem solves for all possible
combinations of two strings in bottom-up. If strl has n characters and
str2 has m chatacters then total number of possible combinations ate m*n.
This makes mattix of order m*n an obvious choice to store the
minEditDistance of subproblems.
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Picture: 9.1
In such cases, whete we have two strings and we want to store some value
cotresponding to each cell (i,3) that have i characters from first string

and j characters from second string, we put one string in the row and other
in the column.

Picture 9.2 show it for strings “SUNDAY” and “SATURDAY”
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Picture: 9.2

Each cell represents the minimum edit operations needed for
the corresponding first and second strings. For example, Cell marked as
Cyy in Picture 9.2, store number of edit operations required if two
strings are “SAT” and “SU” respectively. When all cells of the matrix
are populated, then bottom-right cell will hold the minimum edit
distance between two strings SATURDAY and SUNDAY.

First empty row represents the edit distances when first string
is empty, and the second empty column represents edit distances
when second string is empty?®.



The top row and leftmost column are easy to fill. If the first string is
empty, then all the characters of second string need to inserted in first or all
characters from second need to be deleted to make the two same. In both
the cases, number of operations is equal to the number of characters in
second string. Similatly first column is filled with number of characters in
the first string.
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Picture: 9.3

Let us call above matrix EditD. Then remaining cells of this matrix
are populated as below:
IF (strl[i-1] == str2[j-1])
EditD[i] [j] = EditD[i-1][j-1]
ELSE
EditD[i] [j] = 1 + MINIMUM(EditD[i-1][j-1],
EditD[i-1][]1,
EditD[1i][]j-11)
Code 9.2 below is the code for above logic:
int editDistDP(char* sl, char* s2, int m, int n){

int EditD[m+1] [n+1];

for (int j=0; j<=m; j++) // TOP ROW
EditD[0][3] = 3;

for (int i=0; i<=n; i++) // LEFT COLUMN

18 You may skip the empty top row and empty leftmost column and change your logic
accordingly.



EditD[i] [0] = i;

for (int i=1; i<=m; i++){
for (int j=1; Jj<=n; j++){
// IF TWO CHAR ARE SAME

if (s1l[i-1] == s2[j-1])
EditD[i] [j] = EditD[i-1][j-11;
else

EJitD[i][j] = getMinimum(EditD[i][j-1],
EditD[i-1][§],
EditD[i-1][j-1]) + 1;

}
return EditD[m] [n];

Code: 9.2

If we follow above logic, matrix is populated as shown in Picture 9.4:

S A T U R D A v
0 1 2 3 4 5 6 7 8
S 1 0 1 2 3 4 5 6 7
u 2 1 1 2 2 3 4 5 6
N 3 2 2 2 3 3 4 5 6
D 4 3 3 3 3 4 3 4 5
A 5 4 3 4 4 4 4 3 4
24 6 5 4 4 5 5 5 4 3
Picture: 9.4

Code 9.2 takes O(n?) time and O (n?)extra memory. It is a huge
improvement ovet the O (3") exponential time solution of Code 9.1. Just to
get a sense of difference, if n=100, then 3" = 5.1537752e+47 and n®
is just 10000.

Total Path Count

Example 9.2: Given a two dimensional array, find total number of paths
possible from top-left cell to bottom-right cell if we are allowed to move



only rightward and downward. For example, if matrix is of order 2*2, then
only two paths are possible as shown in Picure 9.5.

In a matrix of order 3*4, there are 10 unique paths to reach cell
(2,3) from (0, 0), two of these paths are shown in Picture 9.6.
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Solution

This problem is very similar to the one discussed in Example 8.1. The
approach to solve this problem is also similar.

Recursive Solution
The cell (m,n) can be reached from two cells

1. The one above it (m-1, n)
2. 'The one on the left of it (m, n-1)

Suppose if there are P1 ways of reaching cell (m-1, n) and P2 ways
of reaching cell (m,n-1), then we can reach cell (m,n) in P1 + P2
unique ways, via cell (m, n-1) and (m-1,n). This defines our recursion.

The terminating condition is when we hit the top row or leftmost
column. There is just one way to reach any cell in top row (going rightward
from (0, 0)). Similarly, there is only one way to reach any cell in the left-
most column (going downwards from (0,0)). The number of ways to
reach (0,0) is zero because we are already there.

These can be the terminating conditions of our recursion. Code 9.3
implements this recursive logic.
int numOfPaths (int m, int n){

// TERMINATING CONDITIONS

if(m == 0 && n == 0) {return 0;} // CELL (0,0)

if(m == 0 || n == 0){return 1;} // FIRST ROW/COLUMN



return numOfPaths(m-1, n) + numOfPaths(m, n-1);
Code: 9.3
Code 9.3 takes exponential time, O (n?). Clearly, it demonstrates both
the properties of DP, optimal substructure and overlapping subproblems.
The dynamic solution of this problem is also similar to the DP solution of
Example 8.1.

Dynamic Solution

We take two-dimensional array as cache and first populate top row and left
column as per terminating conditions.

Now, we start populating rest of the cells as
arr[i] [§] = arr[i-11([3] + arr[i]l[j-1]

The final matrix is
oj1(1])1
1123 ]4
1(3|6]|10

Each cell (i,7j) represent the total nummber of paths to reach that
cell from top-left cell (0, 0). The last cell (2, 3) holds the final value.
int numOfPathsDP (int m, int n){

// Variable length arrays allowed in C language. If
// your compiler gives error, allocate it on heap.
int cache([m] [n];

for (int i = 1; i < m; i++) // 1lst Row
cache[i] [0] = 1;



for (int j = 1; j < n; j++) // 1lst Column
cache[0][]j] = 1;

// populating other cells
for (int i = 1; i < m; i++)
for (int 3 =1; 3 <€ my F+t)
cache[i] [j] = cache[i-1][]j] + cache[i][j-1];

return cache[m-1] [n-1];

Code: 9.4

Code 9.4 takes 0(n’) time. Using DP we have reduced the time
taken from exponential to polynomial.

Question 9.1: Given a 2-dim grid where there is a hotizontal and a vertical
road after each kilometer as shown in Picture 9.7. Dotted lines show the
roads.

10

0 1 2 3 4 5 6 7 8 9 10
Picture: 9.7

You are at the origin (0, 0), and want to go to a point (x,y). What
is the total number of unique routes that you can take if you are allowed to
move only in forward and upward directions?



Question 9.2: A variation to the problem asked in Question 9.1 is that, at
some places there is repair work going on and hence you cannot take those
routes. Unavailable route information may be given in the form of point
array (e.g from point (2, 1) to point (3, 1) the route is not available).

In the below diagram, cross represent blocked route. If cross is placed
on a particular edge then that edge is not allowed.

Picture: 9.8

Write a function that returns the total number of unique ways to go to
some point (x,y) from origin (0,0).

Question 9.3: What if in Example 9.2, you are allowed to move in diagonal
direction also? How will your logic change for recursive and dynamic
solution? Same variation can be asked for Question 9.1 and Question 9.2.

Question 9.4: Minimum Chess Moves Problem. In the game of chess a
Knight can move 2.5 steps (a square that can be reached by moving two
squares horizontally and one square vertically, or two squares vertically and
one squate hotizontally). Picture 9.9 shows all possible moves of a knight.
A King, can move only one step (either horizontally, vertically or
diagonally). Valid moves of a king is shown in Picture 9.10.

We have designed a special piece that can move either like a knight or
like a king. If that piece is named P, then all valid moves of P are shown in



Picture 9.11. It is union of moves of Knight and King.

Given that P is in a particular cell, and you want to move it to another
cell then what is the minimum number of moves it takes P to go from
source to destination. Write a function that accepts source and destination
cells and return the minimum number of moves it will take P to move from
source to destination cell.
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Picture: 9.11

String Interleaving

Example 9.3: String C is said to be interleaving of string A and B if it
contains all the characters of A and B and the relative order of characters of
both the strings is preserved in C. For example, if values of A, B and C are
as given below.

A = xyz B = abcd

C = xabyczd

string C is the interleaving of strings A and B as shown in Picture 9.12:



Picture: 9.12

Given three string A, B and C, write a function to check if third string
is the intetleaving of first and second strings.

Solution
One of first checks should be that,

IF (num of char in C # num of char in A + num of char in B) THEN
C IS NOT interleaving of A and B.

When the number of characters in C is equal to sum of number of
characters in other two strings only then we need to move forward.

The approach to solve this problem is simple, consider the three
strings again and check each character of string C
A = xyz B = abcd
C = xabyczd

The first character x, in C obviously comes from string A, because the
first character of B is not x. The problem now reduce to, check if string
abyczd is an interleaving of string yz and abcd. i.e
A = yz B = abcd
C = abyczd

This problem is of same type as otiginal problem and can be solved
using recursion. Another case is when first character of both A and B is
same as that of C, consider below values for A, B and C:

A = bcc B = bbca
C = bbcbcac

In this case, first character of C can either come from A or from B and
we have to look for both the possibilities as shown in Picture 9.13.



A = "bee"
B "bbca"
C = "bbcbcac"
1f b is taken from A If b is taken from B
a A = "bce"
B B = "bca"
C = "bcbcac" C = "bcbcac"
Picture: 9.13

In both the cases the problem is getting reduced to the subproblems
of the same type, hence optimal substructure. The subproblems are also
overlapping as shown in Picture 9.14.

A = "bcc"
B = "bbca"
C = "bbcheac"
If bis taken from A If b is taken from B
A= A=
B B
C = "bebcac" C = "bebcac
|
b can come from B only If bis taken from A If b is taken from B
A = "cc" A = "cc" A = "bcc"
B = "bca" B = "bca" B = "ca"
€ = "cbeac = "chcac" C = "cbcac"
Picture: 9.14

The subproblems marked with circle are exactly same. This
subproblem is solved twice while computing solution of the main problem.
If strings are large then there will be many such overlapping
subproblems.

Hence it is a fit case for Dynamic Programming. Let us write the
recursive solution first:

Below is the recussive function that accepts three string A, B and C and
return true if string C is interleaving of strings A and B.
int isInterleaving(char* A, char* B, char* C)
{
// If all strings are empty
if (1 (*A) && ! (*B) && !(*C))



return true;

// If C is empty, A or B (or Both) is not empty
if (*C == '\0")
return false;

// If both A and B are empty, but C is not
if(*A == '\0' && *B == '\0")
return false;

int first = false;
int second = false;

// 1f first char of A = first char of C
if (*A == *C)
first = isInterleaving(A+1l, B, C+1);

// If first char of B = first char of C
if (*¥B == *C)
second = isInterleaving (A, B+1l, C+1);

return (first || second):

Code: 9.5

True and false are defined as 1 and 0 respectively.Code 9.5 takes
0(2") exponential time. Below, we discuss the DP solution to reduce this
time to polynomial time.

Dynamic Programming Solution

The dynamic solution starts solving the problem bottom-up. At each stage
we are computing if a substring of C is interleaving of substrings of A and B.
If i (i<=m, length of A) and j (j<=n, length of B) are variables that
iterate over string A and B then for all possible values of i and j we see if
first i characters of A and first j characters of B interleave to form first
(i+3) characters of C.



Matrix seems to be the obvious choice for storing all such values
(Because there are two parameters i and j) with one string on horizontal
axis and one on vertical axis as shown in Picture 9.15.

b b c a
b‘
c‘
c

Picture: 9.15

‘The value in the cell (i, j) is true if first i characters of A and first j
characters of string B intetleave to form first (i+3) characters of string C.
While filling the matrix, if we are at cell (i,3), we check the (i+j-1)®%
character in C.

For example, cell (1,2) represent whether b (first 1 char of bec) and
bb (first 2 characters of string bbca) intetleave to form bbc (first 3
characters of stting bbcbceac) or not. In our solution this should be false
because they do not intetleave to form bbc.

Cell (0,0) is true. It means that zero characters of A and zeto
characters of B intetleave to form string that is same as first zero characters

of string C.

b b c a
T
b
e
c
Picture: 9.16

First row means that string A is empty. It will just check if substring B
is same as that of substring of C:

IF (B[i-1]!= C[i-1])
MAT[O0] [i] = FALSE



ELSE
MAT[0] [1] = MAT[O] [i-1]

Similarly First column will be populated as
IF (A[j-1]!= C[j-11)

MAT[§] (0] = FALSE
ELSE

MAT[j][0] = MAT[j-1][0]

The first row and column for strings bce, bbea and bbcbeac are
populated as shown in Picture 9.17.

b b c a
T[T [T |T|F
b T
c F
c|F

Picture: 9.17

Other cells are populated starting from top-left, moving in row-wise
order. At each cell, we compare the current character of A and B with the
current character of C. if we are at cell (i, j), then current characters of A,
B and C are the i-1%*", j-1*" and (i+j-1)t% character in A, B and C
respectively. At each cell, there are four possibilities

1. Current character of C is neither equal to current character of A nor
current character of B. Value of cell is False.

2. Current character of C is equal to current character of A, but not
cutrent character of B. Value of cell is same as the cell above it.

3. Current character of C is equal to current character of B, but not
curtent character of A. Value of cell is same as the cell on its left.

4. Current character of C is equal to current character of both A and B
(all three are same). Value of cell is true if either the cell above it or
on the left of it is true, otherwise it is false.

Code 9.6 has the complete code.
bool isInterleaved(char* A, char* B, char* C)

{



// Find lengths of the two strings
int M = strlen(A);
int N = strlen(B);

// c should have exactly M+N characters
if(strlen(C) != M+N)
return false;

// 2-Dim Array Mat.
// All values are set to 0 (FALSE)
bool Mat[M+1] [N+1];

Mat[0][0] = true;

// Populating first column
for(int i=1; i<=M; i++)
{
AEATI=1] = =11}
Mat[i] [0] = false;
else
Mat[i] [0] = Mat[i-1][0];

// Populating first Row
for (int j=1; Jj<=N; Jj++)
{

if (B[j-1] != C[j-1]
Mat[0] [j] = false;
else

Mat[0][j] = Mat[0][j-1];

for (int i=1; i<=M; ++i)
{
for (int j=1; j<=N; ++j)
{
// Cur char of C same as A but not B



if (A[i-1]==C[i+]j-1] && B[J-1]!=C[i+j-1])
{
Mat[i][]] = Mat[i-1][3];
}
// Cur char of C same as B but not A
else if (A[i-1]!=C[i+]j-1] &&
Blj-1]==C[i+j-1])

Mat[i]l[j] = Mat[i]l[3-1];
}
// Cur char of C same as both A and B
else if (A[i-1]==C[i+]-1] &&
B[j-1]==C[i+]-1])

Mat[i] [J]=(Mat[i-1][3] || Mat[i][3-1]) ;
}

else
{
Mat[i]l[j] = 0; // FALSE

}

return Mat[M] [N];

Code: 9.6

After all the cells are populated the matrix will look like Picture 9.18.
Final answer is the value stored in bottom-right cell

b b c a
TIT|(T|T|F
Bl T|T| F| T | F
e) F | T T T|T
¢c F F T F|T
C=bbcbcac



Code 9.6 takes O(n®) time. This is a huge improvement over the
exponential time recutsive solution.

Question 9.5: Given two strings, print all the interleavings of the string.
For example,

INPUT: AB XY

OUTPUT: ABXY AXBY AXYB XABY XAYB XYAB

Question 9.6: In Example 9.3, if all the characters in string A are different
from those in string B, then do we still need the two-dimensional matrix?
Suggest a O (n+m) time algotithm that takes O (1) extra memory and gives
the right result for this particular case.

Subset Sum

Example 9.4: Given an array of non-negative integers and a positive
number X, determine if there exist a subset of the elements of array with
sum equal to X. For example:

Input Array: {3, 2, 7, 1} X =6

Output: True // because sum of (3,2, 1)is 6

Solution:

The recursive solution is relatively easy, if we traverse the array, then, at
each element, there are two possibilities, either to include that element in
the sum or not. If current element in the array is P, then

e If we include it in the sum, we need to search for X-P in
remaining atray.

e If we do not include it in the sum, we need to search for X in the
remaining array.

In both the cases, we are left with a similar type of problem that can be
solved using recursion. The terminating condition for recursion is when
either X becomes 0 (success) or array is exhausted (failure). Consider code
9.
int isSubsetSum(int* arr, int n, int X)

{
if (X == 0)
return true;



if (n == 0)
return false;

// 1f first element is > X, ignore it
if (arr[0] > X)

return isSubsetSum(arr+l, n-1, X);

/* else, check both ways

* - excluding first element in the sum
* - including first element in the sum
*/

return isSubsetSum(arr+l, n-1, X) ||
isSubsetSum(arr+l, n-1, X-arr([0]);

Code: 9.7

Clearly the subproblems are overlapping and recursion is taking
exponential time O (2") . DP can help improve upon this time.

Dynamic Programming Solution

In DP we solve it in a bottom-up manner and store intermediate results in a
two dim matrix MAT[] []. MAT[i] [] is true if there is a subset of
arr[0 .. i] with sum equal to j, otherwise false. The final value will be
in MAT [n] [X].

If array is {3, 2, 7, 1} and X is 6, then we have one column of
matrix for sum going from 0 to X and a row for each element of the array
as shown in picture 9.19

B NN W

Picture: 9.19

First column is all true, because if X is 0 then we can always make up
that with an empty set (not picking any element from array). The first row is
all false except for the place where X=3, because with one 3, we can only



form a sum of 3 and nothing else (for 6 we need two 3’s, but we just have
one in this subatray).

P 9N W

We fill all other cell in row-wise order (starting with cell (1,1)).
While populating the it row, if v is the value of 1% row (ex. v for row-0 is
3, for row-1 is 2, for row-2 is 7 and row-3 is 1) then first v positions in the
row are exact copy of the row above it because value of the row cannot
contribute in those values.

SN W

For all other columns, we again look in the row above it:

e IF value at cell just above it, i.e (i-1, j),is True then cell (i,3) is
also True.
e ELSE, copy the content of cell (i-1, j-v) tocell (i,3).

0 1 2 3 4 5 6
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Picture: 9.22

Note that the cell (1, 3) is true because the cell just above it is true.
After filling all values in the matrix, it will look like below



ORI 2834 5 e
3| T F F T F F F
20 T (F | T|T | F | T|F
il T | F T F|T|F
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This row is exact copy of the previous row because
7 does not contribute in sum when X is 6.

Picture: 9.23

The final answer is the value in the bottom-right cell of the matrix.
int isSubarrSum(int arr[], int n, int X)
{
// The value of MAT[i][j] is true if there is a
// MAT of arr[0..j-1] with X equal to i
int MAT[X+1] [n+1];

// If X is 0, then answer is true
for (int i = 0; i <= n; i++)
MAT[0] [1] = true;

// If X is not 0 and arr is empty, answer is false
for (int i = 1; i <= X; i++)
MAT[i] [0] = false;

// Fill the MAT table in botton up manner
for (int i = 1; i <= X; i++)
{
for (int j = 1; j <= n; j++)
{
MAT[i] [j] = MAT[i][j-1];
if (i >= arr[j-1])
MAT[i][3] = MAT[i][3] ||
MAT[i - arr[j-11]1[j-1]1;

}
return MAT[X] [n];

Code: 9.8



Question 9.7: Given an array of numbers and a number X, find two
numbers whose sum is equal to X. Your solution should take not mote than
O(n.lg(n)) time and constant extra memory in the worst case. Do you
need DP in this case?

Question 9.8: In Example 9.4, we are just returning a boolean value true or
false. We are not actually printing the subset that sum up to X. For example,
ifarrayis {3, 2, 7, 1} andXis 6, the functon returns true, but it will
not print the subset (3, 2, 1) whose sum is 6.

Write a function the prints the subset and return true if there exist a
subset whose sum is equal to X. If no such subset exists, then the function
should not print anything and just return false.

Longest Common Subsequence

Example 9.5: A subsequence of a string S, is a set of characters that appear
in the string in left-to-right order, but not necessatily consecutively. For
example if string is ACTTGCG

e Then, ACT ,ATTC, T , ACTTCG are all subsequences,

e But, TTA is not Subsequence of the string.

A string of length n can have 2" subsequences (including the null
sequence and the entire array??).

A common subsequence of two strings is a subsequence that is
subsequence of both strings. A longest common subsequence (LCS) is a
common subsequence of maximal length. For example if S1 and S2 are
two sequences as given below:

81 = AAACCGTGAGTTATTCGTTCTAGAA
S2 = CACCCCTAAGGTACCTTTGGTTC

Yip string is “ABC”, then at each character we have two choices, either to include that
character in the subsequence or not. And these two choices will result in two different
subsequences. Hence the total number of subsequences are,

2%2 ¥ 2= 8.

It is similar to finding the power set of a set.



Then their LCS is ACCTAGTACTTTG that is present in both the
sequences:
S1 = AAACCGTGAGTTATTCGITCTAGAA
$2 = CACCCCTAAGGTACCTTTGGTTC

Given two strings, write a function that returns the total number of
characters in their Longest Common Subsequence (LCS). In above
example, the function should return 13, number of characters in LCS
ACCTAGTACTTTG. If the given strings are ABCD and AEBD then this
function should return 3, length of the LCS, ABD.

Recursive Solution

The problem demonstrate optimal substructure property and the larger
problem can be defined in terms of smaller subproblems of the same type
(and hence recursion).

Let m and n be the total number of characters in the two strings
respectively. We start with comparing the last characters of these two
strings. There are two possibilities:

1. Both ate same
Then this character is the last character of their LCS. It means we have
already found one character in LCS. Add 1 to the result and remove
the last character from both the strings and make recursive call with
the modified strings.

2. Both are different
Then we need to find lengths of two LCS, first having of m-1
characters from first string and n characters from second string and
another with m characters from first string n-1 characters from the
second string, and return the maximum of two.

Case 1:

LCS ("ABCD", "AEBD") = 1 + LCS("ABC", "AEB")

Case 2:

LCS ("ABCDE", “AEBDF") = Max (LCS ("ABCDE", "AEBD"),

LCS ("ABCD", "AEBDF"))



Consider one mote example, when S1 is ABCDEF and S2 is
APQBRF their last characters are same, so
LCS (ABCDEF, APQBRF) = 1 + LCS(ABCDE, APQBR)

Now the two sequences that we have are ABCDE and APQBR. Their
last characters are not same, hence,
LCS (ABCDE, APQBR) = MAX (LCS(ABCDE, APQB),
LCS (ABCD, APQBR))

And so on. Let us code this logic in C language

int lecs(char *X, char *Y, int m, int n)
{
// terminating condition of recursion
if (m == Il n==0)
return 0;

// Comparing last character of strings
if (X[m-1] == Y[n-1])
return 1 + les(X, Y, m-1, n-1);
else
return getMax (lcs(X, Y, m, n-1),
les(X, Y, m=1, n));

Code: 9.9

Where getMax is a function that returns maximum of two integer
values as defined below:
int getMax(int x, int y){

return (x > y)? x : y;

Code 9.9 takes exponential time, 0 (2") in the worst case and wotst
case happens when all the characters of the two strings are different (in case
of mismatch function is called twice).
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Picture: 9.24

Picture 9.24 shows that we ate solving one subproblem multiple times.
So, the LCS problem demonstrates optimal substructure, and there are
overlapping subproblems also. It is a fit case for DP. We first talk about
how to memoize it and then look at the DP solution.

Memoization

To avoid computation of a subproblem multiple times we can either
use memoization or dynamic programming. In memoization, we take a two
dimensional array, of size M*N
int table[m] [n];

When length of LCS of first i characters of X and j characters of Y is
computed for the first time, it is stored in cell table[i] [j]. If function
is called with m=i and n=j again then the LCS is not computed from
scratch and stored value is returned from the table. Below code uses
memoization, for the sake of simplicity, table is defined global®. Let us
assume that all cells in the table ate initialized with -1.

Note that, since table is global, we have to initialize it each time,
before calling the function, else it will use the values populated in last
function call.

int les(char *X, char *Y, int m, int n)
{

// terminating condition of recursion

2 As discussed earlier also, usually it is not a good practice to declare global variable and
it is certainly bad to have it global in this case. The calling function need to re-initialize
table with -1 each time before the call, else, it will continue to hold values from
previous function call.



if (m==0 || n == 0)
return 0;

// If value is already computed
if (table[m] [n] != -1)
return table[m] [n];

// Comparing last character of strings
if (X[m-1] == Y[n-1])
table[m] [n] = 1 + les(X, Y, m-1, n-1);
else
table[m] [n] = getMax (lcs(X, ¥, m, n-1),
les(X; ¥, m-1; A))3
return table[m] [n];

Code: 9.10
We have reduced the time complexity from exponential to polynomial

time, but the function in Code 9.10 is still using recursion. Next we discuss
the DP solution that solve the problem bottom-up without using recursion.

Using bottom-up DP, the problem can be solved in O (mn) time, i.e
0(n?) if both strings has n characters.

Dy ic Progr ing Sol

The bottom-up solution builds the table of LCS of substrings and start
computing the length building on the final solution. As in other such cases,
we use a mattix and place one string along the row and another one along
the column as shown in the below diagram for strings ABCD and AEBD.

A E B D Fir_st fow feptesents the case when
l T first string is empty, and first column
represents the case when second string is
empty.

In both cases the LCS will have
zero characters because one of the two

strings is empty.

O 0 ® > &
olo|o o o |®



Let, name of the table above be LCSCount, we start populating it in
row-wise order using the following logic:

IF (strl[i-1] == str2[j-1])
LCSCount[i] [j] = LCSCount[i-1][j-1] + 1;
ELSE

LCSCount[i] [j] = max (LCSCount[i-1][j],
LCSCount [1] [J-11) 7

After the matrix is populated it will look like Picture 9.25 and final
value is in the bottom-right cell of the LCSCount matrix.
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Picture: 9.25

Code 9.11 shows the above DP logic in action. We may not receive m
and n as parameters because there are library functions to compute length
of a string,
int LCS(char *strl, char *str2, int m, int n){

// All cells of matrix are initialized to 0.
// So, don’t need explicit initialization

// for first row and column.

int LCSCount[m+1] [n+1];

// making first col zero
for (int i=0; i<=m; i++)
LCSCount [i] [0] = O;

// making first row zero
for (int j=0; j<=n; j++)

LCSCount[0][j] = O;

for (int i=1; i<=m; i++)



for (int j=1; j<=n; j++)
{
if (strl[i-1] == str2[j-1])
LCSCount [i][j] = LCSCount[i-1][j-1] + 1;
else
LCSCount[i] [j] = max(LCSCount[i-1][]j],
LCSCount [i] [j-11)7

}
return LCSCount[m] [n];

Code: 9.11

The above code takes O(mn) time to execute and is an
improvement over both recursion and memoization.

Example 9.6: Extend the solution of Example 9.5 to also print the
LCS. For example, in the above example, the function should also print
ABD.

Solution:

While filling the LCSCount matrix, we remember from where the value
of each cell is coming. For any cell in the matrix, value may be:
1. Same as the cell on left side of current cell.

2. Same as the cell above the current cell.

3. 1 + value of cell on left-up of current cell

For each cell, if we look at whete the value in that cell is being
populated from (above, left or diagonally upward). The value is populated
from diagonally upward when current characters of both strings are same,
as shown in Picture 9.26. Else it is populated from the larger of the two
values, one above it and second on the left of it.

After matrix is populated (using Code 9.11), we start from bottom-right
cell and move upward tracing the path till top row (or left column) as
shown in Picture 9.27.
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While moving backward, whenever we move diagonally upward,
we add that character to the start of LCS. The LCS in above case is ABD.

Let us assume that LCSCount is defined globally. 1.CS function,
when called will populate this matrix. The code for printing the longest

common subsequence is shown in Code 9.12. It calls the function LCS
from Code 9.11.

int printLCS(char *strl, char *str2, int m, int n)
{

// Will populate the LCSCount array.

int len = LCS(strl, str2, m, n);

// Array to store the char in LCS
char lcs[len+l];

lcs[len] = '\0’; // last char
len——;

// Start from bottom-right corner
int i =m, j =n;
// Continue till we hit the top or left wall
while (1 > 0 && 3 > 0)
{
// If current char in strl and str2 are equal,
// then, it is part of LCS
if (strl[i] == str2[j])
{
lcs[len] = strl[i];
i--; j--; len--;



// If not equal, find larger of the two and
// go in direction of larger value
else if (LCSCount[i-1][§] > LCSCount[i] [§-1])

L=
else
I==i

// Print the lcs
printf ("LCS is :%s", lcs);

Code: 9.12

If we ignote the time taken by the LCS function, the core logic of
Code 9.12 takes O (n) time. Because at each point we are moving one step.
And we need to move only n steps in worst case (the LCS cannot have
more charactets than the length of original sequence).

Question 9.9: Given an artay of integers write code that returns length of
the longest monotonically increasing subsequence in the array.

Question 9.10: Change Question 9.9 to also print longest monotonically
increasing subsequence in the array.

Question 9.11: A sequence is bitonic if it is first monotonically increases
and then monotonically decreases. For example, the sequences
(1,4,6,8,3,-2), (9,2,-4,-10,-15), and (1,2,3,4) are all
bitonic, but (1,3,12,4,2,10) is not bitonic.

Write a function that accepts an array of integers and returns the
length of longest bitonic subsequence in the array.

Please note that a sequence in increasing order is bitonic with empty
decreasing part and similarly a sequence in decreasing order is bitonic with
empty increasing part.

Hint: A bitonic sequence can be circularly shifted to monotonically increase (or
monotonically decrease sequence).

Question 9.12: Change Question 9.11 to also print the longest
bitonic subsequence in an array.



Coin Change Problem

Example 9.7: Given an infinite supply of coins of N
diffetent denominations (values), (V1, V2, ..., VN). Find the
minimum number of coins that sum upto a number S. For example:

Input: Coins = {1, 2, 5, 10, 20, 50}, S = 65
Output: 3 (50+10+5)

Input: Coins = (1, 2, 5, 10, 12, 20, 50}, S = 65
Output: 3 (50+10+5)

Input: Coins = {1, 5, 6, 9}, S = 11
Output: 2 (6+5)

Greedy Approach

First of all the Greedy algotithm of taking the coin with highest
demonination and subtracting its multiple from the total does not work in
all cases. It will work fine for the coins of denominations that we have in
our currency (even after demonetization).

Our currency has following denominations: 1, 2, 5, 10, 20,
50, 100, 500, 20002

If we want to give a change of, say, 65 using minimum number of
cutrency notes, then we can use the below greedy approach:

“Choose the maximum denomination possible”

We can check that this greedy approach give us the most optimal
solution for given currency notes.
50, 10, 5

2! When first draft of this book was written, in sept 2016, India had currency note of
Rs. 1000 also. But after demonetization, these are the currency notes available in India.



Proof of of above algorith

Let C50, C20, C10, C5, C2 and C1 respectively, be the number of
fifties, twenties, tens, fives, twos and ones in the change generated by the
greedy algorithm and let Co50, Co020, Col0, Co5, Co2 and Col,
respectively, be the number of fifties, twenties, tens, fives, twos and
ones in the change generated by an optimal algorithm.

We make the following obsetvations:

The number of lower denomination is less that the value of next
higher denomination. i.e the change given in Rs. 1 notes will be less than
Rs. 2, because if it is equal to two then we will give a Rs. 2 note. Similarly
number of Rs.2 notes will be less than 3 (because three Rs. 2 notes will
make the value of six and hence Rs. 5 note will be used instead). Therefore,

C20 < 3, C10 < 2, C5 < 2, C2 < 3andCl < 2
In the optimal change solution, we can establish, similar thing. i.e
Co20 < 3, Col0 < 2, Co5 < 2, Co2 < 3andCol < 2

To see this, note that is Co20 >=3, we can replace three twenties by a
fifty and a ten and provide the change using one less currency note.
Similarly,
we can say for the other denominations. Hence, the total amount of change
given in lower denominations is less than the value of the next higher
denomination.

Now if C50 != Co50, then either the greedy ot the optimal solution
must provide Rs. 50 or more in lower denominations. This violates the
above observations. So, C50 = Co50. Similarly, if C20 != Co020, then
cither the greedy or the optimal solution must provide Rs. 20 or more in
lower denominations which violates the above observations, so, C20 =
Co020. Similarly we can prove it for other denominations.

Greedy do not work in all situations

In the greedy approach, we are not examining all possible solutions, the way
we do in dynamic programming. Hence, only some specific problems can
be solved using greedy approach. For other problems we may have to get
back to dynamic programming.



For example, if we change the denomination of coins in the above
problem to the following
{1, 2, 5. 10, 12, 20, 50}

And apply the same greedy approach
“Choose the maximum denomination possible”
Then we will give the following changes for S=65

First, we will give a note of Rs. 50. The value left is Rs. 15 and hence
we cannot give any note of Rs. 20. So we will give a note of Rs. 12. Hence
the currency given till now is: 50, 12

Rs. 3 more need to be given. There is no currency of Rs. 3. Hence we
will give a change of 2 and 1. So we end up giving 4 currency notes as
below:

50, 12, 2, 1

We know that the most optimal solution for S=65 has 3 currency
notes:

50, 10, 5
Hence, the Greedy approach does not work for all the cases.

Recursive Solution

The minimum number of coins for a value of S can be computed using
below recursive formula.

IF 8§ == 0, THEN
0 coins.
ELSE
minCoins (S) = 1 + min(minCoins(S - coin[0]),

minCoins (S - coin[l1]),
minCoins (S - coin[2]),
minCoins (S - coin[N-1])

)



Coin array stores values of each currency denomination. In the above
recursion, we are finding all possible solutions and then returning
the minimum of all these values.

We are solving subproblems multiple times in the above recursion.
For example, if inputs are

Coins = {1, 5, 6, 9}, s = 11
We can reach to a value of 6 by subtracting one 5 times or by
subtracting 5 once from S. The subproblem for S=6, is solved multiple
times.
Code 9.13 is the recutsive code
int minCoins (int *coin, int n, int S){
// Terminating Condition
if (8 == 0)
return 0;

// Initialize result

int res = INT_ MAX;

for (int i=0; i<n; i++)

{
// Try every coin that has value < S
if (coin[i] <= 8)
{

int temp = minCoins(coin, n, S-coin[i]);

if (temp + 1 < res)
res = temp + 1;

}

return res;
Code: 9.13
This solution is taking exponential time in the worst case. If we draw
the function call tree, we can obsetve that subproblems are solved multiple

times. That makes it a good candidate for Dynamic Programming.

We can also use memoization to avoid solving one subproblem again.



Just take an array of size S and when minCoins is computed for any value
k for the first time, it is stored at index k in the array. When the function is
called again for S = k, then a lookup happens in the array and this value is
not computed again. Next is the Dynamic Programming solution:

Dynamic Programming Solution

In the DP solution, logic remain similar to recursion, just that the solution
is computed in forward order, starting from i=1 to i=S.
int minCoins (int* coin, int n, int S)
{
// resultArr[i] store minimum number of coins
// required for S=i.
// resultArr[S] will have final result.
int resultArr[S+1];

// For s=0
resultArr[0] =

// Initialize all values to Infinite
for (int i=1; i<=S; i++)
resultArr[i] = INT_ MAX;

// Compute values bottom-up
for (int i=1; i<=S; i++)
{
// Go through all coins < i
for (int j=0; j<n; j++)
if (coin[j] <= i)
{
int temp = resultArr[i-coin[j]];
if (temp!=INT_MAX && temp+l < resultArr[i])
resultArr[i] = temp + 1;

}
return resultArr[S];

Code: 9.14



Question 9.13: Update Example 9.7 to find total number of ways we can
make the change of the amount using the coins of given denominations.

Cutting a Rod

Example 9.8: Given an iron rod of a certain length and price of selling
rods of different lengths in the market, how should we cut the rod so that
the profit is maximized.

For example, let us say that the price of rods of different lengths in the
market is as given in the table below:

Length 1 2 3 4 5 6 Z 8
Price 1 5 8 9 10 | 17 | 17 | 20

If we have a rod of length 4, then selling the rod as it is (without
cutting it into pieces) in the market will get us value 9. Where as if we cut
the road in two pieces of length=2 each, then the two pieces will be sold for
Rs. 5 each, giving us a total value of 10 (5+5) . Hence, it is a good idea to
cut the rod in two pieces rather then sell it as a single piece in the market.

But we ate still not sute if cutting rod in two equal pieces is the most
optimal solution of not, because we have not seen all possible values. Since
we are cutting the rod in integer lengths only, Table 9.1 lists all possible
ways of cutting the rod and the cost of that combination in the market.

Length of each part | Total market value
4 9
_ 1+8=9
Ly Ly 2 1+1+45=7
1s 17 Lz 0 1+1+1+1=4
2, 2 5+5=10
Table: 9.1

From Table 9.1, it is clear that cutting the rod in two equal pieces of
length 2 each gives us the maximum value.
Y INTERVIEW TIP

Apn important question that you should be asking to the interviewer is that whether or not
there is any cost associated with cutting the rod. We have assumed it to be free, but during



the interview 1ry to either ask explicitly, or if you assume it, then apprise the interviewer
about your assumptions.

Another question that can be asked is if you can cut the rod in fractions or only
integer length pieces are allowed.

Solution

The recursive solution is based on computing all possible combinations and
value associated with each combination, and returning the maximum of all
these values.

We cut the rod in all possible sizes and compare the cost as done in
the code below:
// value array holds the market value of each length
// n is total length of the Rod.
// (We need values till length n)
int cutRod(int *value, int n)
{

if (n <= 0)
return 0;

int maxValue = INT_MIN;

for (int i=1; i<=n; i++){
maxValue = getMaximum (maxValue,
value[i] + cutRod(value, n-i));

return maxValue;
Code: 9.15

Code 9.15 gives the right solution, but we are computing maxValue of one
size again and again. Picture 9.28 shows the function calls for n=4. The
maxValue of length 2 is computed twice. If n is large then there will be
many overlapping subproblems. The solution takes exponential time
because of these overlapping subproblems.
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Memoized Solution

In memoization, we stote the result of subproblem when it is computed for
the first time and then reuse this result when the same subproblem is
encountered again.

To store the results of subproblems use another array maxvalues of
size n. For the sake of simplicity, let us assume that this array is defined in
global scope. The i index of this array holds the maxValue for a rod of
length i. Before computing the maxValue for length i, it will be checked
in the table, whether value for i is already computed or not. If already
computed, resultArr[i] is returned and not computed again as shown
in Code 9.16.

// Array holds maxValue of length i at index i.
int maxValues[N] = {0};

int cutRod(int *value, int n){
if (n <= 0)
return 0;

// If maxValue already computed
if (maxValues[n] != 0)

return maxValues[n];

maxValues[n] = INT_MIN;



for (int i=1; i<=n; i++){
maxValues[n] = getMax(maxValues[n],
value[i] + cutRod(value, n-i));

return maxValues[n];

Code: 9.16

The above code will return the result in polynomial time, but it is still not
the most optimized code because it is using recursion. Next is the
optimized DP that solves the problem interatively.

Dynamic Programming Solution

In the dynamic programming we solve the problem starting from length 0,
moving forward till length N.

int cutRod(int *values, int n){
// Array holding the Max Values of i
int maxValues[n+1];
maxValues[0] = 0;

Int i, 93

// Calcualting values from 1 to n
for (i = 1; i<=n; i++)
{
int maxValues[i] = INT_MIN;
for (j = 0; j < 1i; j++){
maxValues[i] = max (maxValues[i],
values[j] + maxValues[i-j-1]);

return maxValues[n];

Code: 9.17



If N=8 and value of each length is as given below:

Length 1, 2 3 4 5 6 7 8
Price 1 5 8 9 10 17 | &7 20

Then the maxValue of each length as stored in maxValues array are
as follows:

Length 01| 2 3 4 5 6 7 8
maxValues | 0 | 1 5 8 10 13 | 17 | 18 | 22

Dynamic progtamming solution takes O(n?) time and is an
improvement over exponential time recursive solution.

0-1 Knapsack Problem

Example 9.9: Given n items in a shop, where each item has a weight and
a value. A thief breaks into the shop with a knapsack. The thief can carry a
maximum weight C. Items cannot be broken or taken partially. Each item
has to be either picked or left completely. What is the maximum value that
the thief can carry?

Let the below two arrays represent weight and value of each item
int W[n]; // WEIGHT ARRAY
int V([n]; // VALUE ARRAY

W[i] represent weight of it item and V[i] represent the value of 1%
item. We have to find out the maximum value that the thief can carry.

Solution

Brute force solution is to consider all subsets of items and calculate total
weight and value for each subset. Discard the subsets whose total weight is
greater than C. From the remaining, pick the maximum value subset.
Recursive Solution

There are two options at the level of each item, this item is included in the

final set (that thief carries) and this item is not included in the final set. We
are computing two values:



1. When that item is included in the final set
2. When that item is not included in the final set

If the nt item is included in the final set, it means that thief has added
that item to his knapsack. Then we need to find the maximum value thief
can carry if there are n~1 items and he can catry a total weight of C-W[n-
1]. Where W[n-1] is the weight of n*" item

If the nt item is not included in the final set, it means that the thief has
decided not to pick that item. Then we need to find the maximum value
thief can carry if there are n—1 items and he can catry a total weight of C.

These two approaches leave us with subproblems of the same type.
Below is the code for above recutsion:

int knapSack(int C, int *weight, int *val, int n){
// Terminating condition for recursion
// If either no item left or knapsack is full
if (n <=0 || C<=0)
return 0;

~

// If weight of the n'th item is more than C,
// then it cannot be included in the knapsack.
(weight[n-1] > C)

return knapSack(C, weight, val, n-1);

Fh

i

// n'th item included
int x = val[n-1] +

knapSack (C-weight [n-1],weight,val,n-1);

// n'th item not included
int y = knapSack(C, weight, val, n-1);

return getMax(x, y);:

Code: 9.18



Code 9.18 takes exponential time, O (2") in the worst case and the
recursion will draw a very familiar function call tree where each node has
two child nodes resulting in solving one subproblem multiple times.

DP Solution

One of the challenges of DP is to identify how to store the values. Usually,
while storing the values, we keep on dimension for each solution variable.

Here we have two variable C(capacity) and N(items). Let row denote
items and column denote the capacity. Cell (i,j) stores max value that
thief can carry if first i items are in the shop and capacity of knapsack is 3.

Code 9.19 below has the logic of populating the table.
int knapSack(int C, int *weight, int *val, int n){
int table[n+1][C+1];

// top row and first col will hold zero
for(int i=0; i<=n; i++)
table[i] [0] = 0;
for (int j=1; j<=C; j++)
table[0] [j] = O;
for (int i = 1; i <= n; i++)
{
for (int cp = 1; cp <= C; cp++)
{
if (weight[i-1] <= cp)
{
int x = cp-weight[i-1];
table[i] [cpl=getMax (val[i-1] + table[i-1] [x],
table[i-1] [cp]);
}
else
table[i] [cp] = table[i-1][cp];:

}
return table[n] [C];

Code: 9.19



Code 9.19 takes O (nC) time. If we have four items (n=4) with the
following weight and values

[Femshe [z 5 T4 |5 ]
|Value |3 |4 |5 |6|

And capacity is 5 (C=5). Then the table is populated as below:

Items
Weight —» 0o 1 2 3 4 5
0 0 0 0 0 0 0
i 0 0 3 3 3 3
2 0 0 3 4 4 7
3|0 0 3 4 5 i
4 0 0 3 4 5 7
Picture: 9.29

And the final answer is 7.

Question 9.14: Modify solution of Example 9.9 to also print the items that
are picked to maximize the value.

Longest Palindromic Subsequence

Example 9.10: A subsequence of a string is the sequence of charactets in
the same relative order as they appear in the original string. Subsequence is
explained in Example 9.5.

Given a string, find the length of longest subsequence that is also a
palindrome. For example, if the string if BBABCBCAB then its subsequence
BABCBAB is the longest subsequence that it also a palindrome, so
our answer, length of such longest subsequence is 7.

T suggest you to study example 9.5 before reading further because we
will be making many references to that example.



Recursive Solution

Let X be the given string and N be the number of characters in X.
We compare the first character with last character of the string. If they
are same, then both these characters are part of the palindromic
subsequence and we continue finding other characters in subsequence by
removing the first and last character from the string.

If first character is not same as the last character, then we find
the longest palindromic subsequence of first N-1 characters and last
N-1 characters and return the maximum of these two values.

Below is the C language code for the above logic. Initial values
of start and end are 0 and n-1 respectively. At any point, they
hold the index of first and last element of subatray under consideration.
int lps(char *str, int start, int end){

// Terminating conditions
if (start>end)

return 0;
if (start == end)

return 1;

// first and last char are same

if (str[start] == str([end])
return lps (str, start+l, end-1) + 2;
else

return getMax (lps(str, start, end-1),
lps(str, start+l, end));

Code: 9.20

The above code is taking exponential time in the worst case, 0 (2") to
be precise. The worst case comes when LPS is of length 1 and first and last
characters are never same.

Clearly, we are solving subproblems multiple times and Code 9.20 can
be memoized using a table of size N*N, where cell (i,3) stores the LPS of
substring starting from 1 character to 3** character. It is very similar to
the memoized solution of example 9.5.



Dynamic Programming Solution

In DP solution, we use the logic discussed in recursion and populate
the table, starting from top-left.

int lps(char *str, int n){
if (str == NULL || *str == '\0')
return 0;

int table[n][n];

// Single char str is palindrom of length 1
// therefore initializing with 1
for(int i = 0; i < n; i++)

table[i][i] = 1;
for (int k=2; k<=n; k++)
{

for (int i=0; i<n-k+1; i++)

{

int j = i+k-1;

if (str[i] == str[j] && k == 2)
table[i] [J] = 2;

else if(str[i] == str([j])
table[i] [j] = table[i+l1][j-1] + 2;
else

table[i] [J] = getMax (table[i][j-11,
table[i+1][j]);

}
return table[0] [n-1];

Code: 9.21

Note that, lower diagonal values of the table are useless and are not
filled in the process, you may want to talk about use of sparse arrays (see
footnote 14) in the interview.

Code 921 takes O(n?) time in the worst case which is
an improvement over the exponential time recursive solution.



Question 9.15: Modify the above code to also print the longest
palindromic sub sequence.

Dropping E¢ggs Puzzle

Example 9.11: We have two identical eggs and access to a 100
floor building.

We do not know how strong the eggs are. Eggs can be really
strong and may not break even when dropped from 100*" floor or they
may be fragile and break if dropped from first floor itself.

We want to find out the highest floor from where eggs can be dropped
without breaking it. In the process, we are allowed to break both the eggs.

Question is, at least how many times do we need to drop, to find
the answer (highest floor from where eggs start breaking)?

It looks more like a pugzle than a DP guestion. Most pugzles asked in coding
interviews have their solutions in some computer science concepts. That's why pugzles are
asked in  interviews  of  companies  like  Microsoft  and  Adobe.

Below we have discussed some of the solutions that you may come up
during the interview starting from least optimal to most optimal. Interviews
are not interrogation, they are discussions whete the interviewer want
to understand the interviewee more than selecting or rejecting him. It is
a good idea to discuss more than one solutions during the interview

a) Linear Solution

e Start from the first floor, and keep moving one floor up at a time.
From each floor drop the egg and see if it breaks.

o If the egg breaks at the k* floor, then answer is k.

Number of Drops required in the worst case: 100. Note that this is the
only way to solve the puzzle if we have one egg. Think of it like the linear seatch in
an array, where we traverse the array linearly in forward direction.

b) Absolute Binary Solution

In this solution we apply the logic of Binary search on the first egg and
linear search on the second egg. In this solution we divide the interval of
100 floors in 2 equal halves and follow the following algorithm:



Drop the egg from 50'th floor

IF Egg breaks
Try with the 2™ egg starting from 1'st floor
till 50 in a linear way.
IF Egg does not break.
Drop the egg from the 75 floor.
And so on.

Number of drops required in the worst case is 50.
c) Fixed Interval Approach

In the above approach we are always dividing the floors in two halves equal
(intetvals) for the first egg. The problem is that for second egg we have to
move linearly. We do not get the O0(lg(n)) solution as in the case of
Binary search because the binary-ness is only on the first egg and not on
the complete solution (second egg is still linear).

In this approach we try to look for other intervals sizes (and not just half
of the total). For example, what if we divide the total floors (100) in 4 equal
intervals, ending at floor numbers, 25, 50, 75 and 100. The first egg is
dropped from floor-25, then floot-50, then floor-75 and then floor-100. If it
breaks on dropping from, say, floor-50, then the second egg is dropped
lineatly from floor-26 to floor-49.

We can pick any number of intervals. If we divide the floors in a
way that each interval is of size k each, then the logic we are following is as
follows:
curFloor = k
WHILE (curFloor <=100)

Drop first egg from curFloor

IF it breaks
Drop second Egg starting from (curFloor-k+1)
floor till (curFloor-1) to get the answer.

ELSE

curFloor = curFloor + k
If we take k=25 (4 intervals), then minimum number of drops in the
worst case ate 28. But we do not know if it is the best answer. Table 9.2
shows the minimum number of drops required in the worst case for
different intervals.



As seen, the minimum number of drops in the worst case
decreases when we increase the intetval. But after a particulat point (after
13 inervals), the minimum number of drops in the worst case starts
increasing. So, if we follow this approach, then the minimum number of
drops required in worst case is 19.

Interval Num. of Drops Interval Num. of Drops
1 100 9 19
2 51 10 19
3 35 11 19
4 28 12 19
5 24 13 19
6 21 14 20
7 19 15 20
8 19 16 21
Table: 9.2

Minimum drops requited is: 19 (For Interval 8, 9,10,11,12 & 13)
d) Variable Interval Approach

In previous approach, the size of interval for the first egg was fixed. In this
case we are not using the same interval size every time.

Let x be the total number of drops required to find the correct floor
number in optimal solution. If first egg breaks when it is dropped for the
first time, then we have x-1 drops left for the second egg. Now second egg
is dropped linearly, so the floor from which first egg was dropped must
have been floot-x (so that there are x-1 floors from stat till that point).

If the first egg does not break on its first drop, then we drop it
again from, say, floor p. Let us assume that it breaks on the second drop.
Now, 2 drops are used by the first egg, so x-2 drops are left for the
second egg (because total number of drops are x). It means, first egg is
dropped from a distance of x-1 after x (first interval). Second interval
is of size x-1. And so on.

The last interval size is just 1. Sum of size of all the intervals
must become greater than, or equal to 100, the total
number of floors. The mathematical equation for this is

X + (x-1) + (x-2) + .. + (1) >= 100



Solving the equation for x, we get
x =14

Hence, the total number of drops required = 14. This is the most
optimal answer.

ie drop the first egg from following floors until it breaks: 14, 27
(14+13), 39 (14+13+12), 50(14+13+12+11), 60, 69, 77,
84, 90, 95, 99, 100..

If it breaks at any point, the second egg is dropped linearly from 1+
the previous floor from where the first egg was dropped.

Droping Eggs as DP Problem

Let us generalize the problem and say that we have n floors and x eggs. If
we drop an egg from p® floor, either the egg breaks or it does not break.

e If the egg breaks, then the floor that we are searching for is before
floor-p, so we need to check for p-1 floors with remaining x-1
cggs.

e If the egg does not break, then the floor that we are searching for is
after floor-p, so we need to check for n—p floors with x eggs.

The value that is maximum of the above two is our answer. We do so
for all the floors, and return the minimum value. The logic is as follows:
int dropngEggs (int numFloors, int numEggs) {
// 0 Floor-0 drop needed. 1 floor-1 drop needed
// Or if only 1 egg then drops = numFloors
if (numFloors == | | numFloors == | | numEggs == 1)
return numFloors;

int min = INT MAX;
// droppings from 1lst to last floor and return

// minimum of these values plus 1.
for (int p = 1; p <= numFloors; p++)



int temp = getMax (dropngEggs (p-1, numEggs),
dropngEggs (numFloors-p, numEggs));
if (temp < min)
min = temp;

return min + 1;

Code: 9.22

So there exist an optimal substructure property. If we draw
the function call diagram we can see that subproblems are also
overlapping. This makes the dropping eggs puzzle a fit case for dynamic

programming.

We have practiced so many questions. Can you try solving it on
your own ? A good problem to ponder is the best gift any teacher can
give. Consider this a gift from our side ©.
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