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The editors and participants dedicate this volume to the memory of our dear friend
and colleague Sergĭı Kolyada (December 7th, 1957 – May 16th, 2018)
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and L’uboḿır Snoha 15

Sergiy and the MPIM
Pieter Moree 21

Homotopy types and geometries below Spec(Z)
Yuri I. Manin and Matilde Marcolli 27

Dynamical zeta functions of Reidemeister type and representations spaces
Alexander Fel’shtyn and Malwina Zietek 57

Rigorous dimension estimates for Cantor sets arising in Zaremba theory
Oliver Jenkinson and Mark Pollicott 83

Volume growth for infinite graphs and translation surfaces
P. Colognese and M. Pollicott 109

Dynamically affine maps in positive characteristic
Jakub Byszewski, Gunther Cornelissen, and Marc Houben 125

Special α-limit sets
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Preface

This volume flows from the activity Dynamics: Topology and Numbers, held
at the Max Planck Institute for Mathematics (MPIM) in Bonn in July 2018. The
activity brought together about 90 researchers from 25 different countries, along
with many of the long-term visitors at the MPIM. This was the fourth conference at
the MPIM on the theme of dynamical systems and its relationships with the diverse
fields of number theory, geometry, topology, ergodic theory, and combinatorics.

Sergĭı at the MPIM (with permission of the Max Planck Institute for
Mathematics)

The four activities in the same broad area were instigated by Sergĭı, starting
with the highly successful Algebraic and Topological Dynamics in 2004, continuing
with Dynamical Numbers in 2009 and Dynamics and Numbers in 2014, and ending
with Dynamics: Topology and Numbers in 2018. All four of these gatherings
highlighted Sergĭı’s ability to bring diverse mathematicians together and to organise
conferences with great energy, friendliness, enthusiasm, and commitment. The

ix
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success of this series of conferences also reflects the effort and skill of the staff at
the MPIM, who found ways around every difficulty and offered unfailing support
to the various organisers (comprising David Ellwood, Sergĭı Kolyada, Yuri Manin,
Martin Möller, Pieter Moree, Anke Pohl, Tom Ward, and Don Zagier in various
combinations).

Tragically, Sergĭı passed away less than two months before the 2018 conference
was due to take place. Instead of a rather celebratory event, those assembled were
able to share fond memories of Sergĭı and reflect on his many contributions. We
can only echo Mike Shub’s words when another mathematician passed away far too
early: “Don’t forget to say that we all liked him”.

The editors wish to record their thanks to the staff at the Max Planck Institute,
and to the many researchers who participated, for all the efforts they made to make
this a stimulating and intellectually rich event. The editors also thank Alexandre
Kosyak for help in contacting mathematicians in Ukraine connected to Sergĭı.

Pieter Moree, Bonn
Anke Pohl, Bremen
L’ubomı́r Snoha, Banská Bystrica
Tom Ward, Leeds
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The life and mathematics of Sergĭı Kolyada

L’ubomı́r Snoha

Sergĭı Kolyada was a distinguished Ukrainian mathematician in the area of low-
dimensional dynamical systems and topological dynamics. He studied dynamical
systems of the form (X, f), given by a (usually compact metric) space X and a
continuous map f : X → X. If we were to describe his work in keywords, then the
following are probably the most appropriate: zero Schwarzian, triangular map, ω-
limit set, topological entropy, topological transitivity, minimal map, minimal set,
chaos, sensitivity, functional envelope of a dynamical system, and dynamical com-
pactness. He introduced, together with his co-authors, several new notions includ-
ing the functional envelope of a dynamical system, Li–Yorke sensitivity, dynamical
topology, and dynamical compactness.

Sergĭı’s name appears in many variants.

Serg�ĭ Kol�da (in his Ukrainian language publications);
Serg�ĭ Fedoroviq Kol�da (in the Ukrainian Wikipedia);
Sergeĭ Fedoroviq Kol�da (in older publications in Russian);
Sergĭı Kolyada (on his home page, most of recent papers, and his preferred
version in the last few years);
Sergǐı Kolyada (in some recent papers);
Sergii Koliada (in his last passport);
Sergiy Kolyada (on social media and in his Google Scholar profile);
also as Sergii Kolyada, Sergei Kolyada, Sergey Kolyada, S. F. Koljada and
perhaps others.

Kol�da in Ukrainian means “a Christmas carol”.

1. On the life of Sergĭı Kolyada

Sergĭı Kolyada was born on December 7th, 1957 in Kolyady, a small village
in the Shyshaky raion (district) in Poltava oblast (province, or region) in Ukraine
(at that time, part of the Soviet Union). Kolyady is located between Kiev and
Kharkiv, some 300km from Kiev. He and his younger brother attended school in
the nearby village of Pryshyb. Because his mathematics teacher conducted classes

2010 Mathematics Subject Classification. Primary 01A70.
Key words and phrases. Biography, obituary, bibliography.
The author was supported by the Slovak Research and Development Agency under the con-

tract No. APVV-15-0439. He is very grateful to Tom Ward for many improvements of an earlier
version of the manuscript.
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with him separately, he won the district mathematics Olympiad in the 7th grade.
At the same time, a telegram was sent to the school that the Ukrainian Physics
and Mathematics Lyceum, a boarding high school for talented pupils, located in
Kiev and affiliated with Taras Shevchenko National University could be applied for.
The family allowed him to apply and, having passed the entrance examinations, he
became a student of this boarding school in 1972. From 1975 he studied at Taras
Shevchenko University in Kiev, where he graduated with an M.Sc. in Mathematics
in 1980.

Sergĭı married Maria Vakaryuk in 1980, and they went on to have two daughters,
Irina (who has two sons Artem and Maxim) and Natasha. His devotion to the family
and the great pleasure he took in them was evident to all who knew him throughout
his life.

After graduation he worked as a programming engineer, and it was only in 1985
that he started to work at the Academy of Sciences of the Ukrainian Soviet Socialist
Republic (SSR)1 in Kiev (first at the Institute of Hydrobiology and, from 1987, at
the Institute of Mathematics). In 1987 he received the title of Candidate of Physical
and Mathematical Sciences (C.Sc.), a post-graduate scientific degree corresponding
to the PhD, when he defended his dissertation “Discrete dynamical systems with
negative and zero Schwarzian derivative” under the supervision of Alexander N.
Sharkovsky (Šarkovskĭı).

Sergĭı started what became a long and significant cooperation with the Max
Planck Institute for Mathematics (MPIM) in Bonn in 2001. He co-organized several
activities there in the area of dynamical systems and some of its near relatives. For
more details about these activities, we refer to the article “Sergiy and the MPIM”
by Pieter Moree in this volume.

In 2005 he received the title of Doctor of Physical and Mathematical Sciences
(D.Sc.) after defending his dissertation “Topological dynamics: minimality, entropy
and chaos” at the National Academy of Sciences of Ukraine in Kiev.

In 2006 he started to teach at the Taras Shevchenko University on a part-
time basis, continuing his work at the Institute of Mathematics of the Academy of
Sciences.

In 2010 the Ukrainian State Prize in Science and Technology was awarded
to a group of researchers including Sergĭı for a collection of publications entitled
“Dynamical systems theory: modern methods and their applications”.

Sergĭı spent the summer semester of 2013 at the Technische Universität
München as a John von Neumann Visiting Professor.

De facto in November 2017, and de jure a few months later, Sergĭı became the
head of the Department of Dynamical Systems and Fractal Analysis of the Institute
of Mathematics, and he fulfilled these duties until his untimely death.

Sergĭı was an exceptional organizer of a wide range of academic activities.
He was a member of many organizing committees, and was highly successful in
winning international grants for organizing conferences. He organized the Soviet–
Spanish–Czechoslovakian Symposium “Dynamical Systems and their Applications”
in Kiev (June 28–July 4, 1991) and the conference “Dynamical Systems and Ergodic
Theory” in Katsiveli (August 21–30, 2000). He also co-organized activities and

1From 1991 to 1993 it was called the Academy of Sciences of Ukraine, and since 1994 its
name has been the National Academy of Sciences of Ukraine.
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conferences in the area of dynamical systems at the Max Planck Insititute in Bonn
in 2004, 2006, 2009 and 2014; for more details see the article by Pieter Moree.

Being both very friendly, international in outlook, and naturally communica-
tive, Sergĭı had co-authors from all over the world, including Chile, China, France,
Israel, the Netherlands, Slovakia, Spain, Ukraine and the U.S.A. He made research
visits to institutions in Australia, Chile, China, Czech Republic, France, Germany,
Hongkong, Slovakia, Spain and the U.S.A.

His public activities were numerous and impressive. He was a member of the
American Mathematical Society, the Society of Friends of the Institut des Hautes
Études Scientifiques, the Ukrainian Scientific Club, and the Kiev Mathematical
Society. He played a decisive role in the relaunch of the Kiev Mathematical So-
ciety in 2006, and he served as President of the society for the years 2006–2014,
and as Vice-President thereafter. Being a Ukrainian patriot, he did not miss any
opportunity to support mathematical research in Ukraine and especially to encour-
age and sponsor young Ukrainian mathematicians and students of mathematics.
He brought several talented Ukrainian students to MPIM, and suggested them for
PhD positions there; for details see the article by Pieter Moree. Sergĭı was co-
chairman of the Competition of “Shevchenko Scientific Society in the US” and the
“US-Ukraine Foundation” for young mathematicians in Ukraine. He initiated the
creation of “M. Ostrogradskiy scholarships” from the all-Ukrainian charitable orga-
nization “Fund for the Promotion of Mathematical Science” to the ten best students
of mathematics at Universities in Kiev, and in the years 2001-2003 he organized
lecture series from different branches of mathematics for these students.

Sergĭı’s hobbies largely revolved around sports. As a student he played bas-
ketball and football for the teams of Taras Shevchenko University. While he later
quit basketball, he remained faithful to football throughout his life. From 2006 he
was a member of the ‘old men’ or ‘veteran’ football clubs Fortuna (in Kiev) and
SFC Hofgarten United (in Bonn). Besides playing, he was also a knowledgeable fan
of football more generally. Continuing this enjoyment of skilled physical activity,
his younger daughter Natasha is a professional ballroom dancer, and Sergĭı enjoyed
watching the dance competitions she and her partner attended. He was always very
proud of her international successes.

Sergĭı passed away prematurely in Kiev on May 16th, 2018. He is missed,
not only by his co-authors and by the community of dynamists as an excellent
mathematician and a colleague always interested in the work of others, but also by
all who met him. All those who knew him will miss his smile, his great kindness,
and his willingness to help.

2. On the mathematical work of Sergĭı Kolyada

We cannot discuss all of Sergĭı’s results, concentrating instead on those which
he considered to be most important or that he liked most. Sergĭı appreciated the
special role played by examples in dynamical systems, and was particularly talented
at constructing revealing examples and counter-examples.

We divide his mathematical work into themes. Some of his papers and results
should, or at least could, be included into several themes, but we will mention
them only within one. To keep this article to a reasonable length, we will only
occasionally mention papers by other authors which are based on work by Sergĭı.
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Sergĭı’s smile will be missed by all who knew him
(photo with permission of Irina Kolyada)

2.1. Interval dynamics. Sergĭı did his PhD, and wrote his first articles, in
interval dynamics [K1,K2,K3,K4,K5,K7,K8]. Some of those results are also
included in the monograph [K51], whose slightly expanded English version ap-
peared as [K52]. In interval dynamics he studied the measure of repellers and
quasi-attractors, the dynamics of one-parameter families of continuous maps and
the dynamics of continuous maps with Schwarzian derivative of constant sign.

For instance, in [K4] he proved that unimodal maps with zero Schwarzian
derivative have at most one attracting cycle inside the interval (by work of Singer,
such a property was known for unimodal maps with negative Schwarzian [Sin78]).
In [K8] he gave a new example of a one-parameter family λf of unimodal maps
with negative Schwarzian, for which the monotonicity of bifurcations for periodic
orbits does not hold (and the topological entropy is not monotone); the first such
example appeared in [Zdu84].

2.2. Triangular maps. In the study of topological dynamics of triangular
maps, Sergĭı’s name is among the first which should be mentioned. A triangular
map is a continuous map F : I2 → I2, where I = [0, 1], of the form

F (x, y) = (f(x), g(x, y)).

Such a map preserves ‘vertical’ fibres: the fibre over x is mapped to a fibre over f(x).
This is a special type of skew product. Triangular maps became popular in 1979,
when Kloeden [Klo79] proved that Sharkovsky’s theorem held for them. Thus it
was natural to believe that in fact most of the results of interval dynamics could be
carried over to them (to establish this is sometimes called Sharkovsky’s program;
for the state of the art of this program see the recent survey [Šte16]). Kolyada was
the first to show that this belief was false. In [K6,K9,K10,K12,K13,K15,K19]
he developed the basics of the theory of triangular maps; a reader interested in
this topic should first of all read [K13]. In particular, he constructed an important
and surprising example of a triangular map of type 2∞ with positive topological
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entropy [K9,K13] (recall that interval maps of type 2∞ have entropy zero; a map
is of type 2∞ if it has periodic orbits of periods all powers of two, and of no other
periods).

Triangular maps also appear in some other papers, including in particular the
paper [K22] which is discussed in Subsection 2.6.

2.3. ω-limit sets. Given a point x in a dynamical system (X, f), its ω-limit
set ωf (x) is the set of all limit points of the trajectory x, f(x), f2(x), . . . . The
topological structure of ω-limit sets depends on the phase space X. As established
in [ABCP89], a non-empty closed subset M of I = [0, 1] is an ω-limit set for some
continuous map f : I → I if and only if M is either nowhere dense or is a union of
finitely many non-degenerate closed intervals. If M is a subset of a vertical fibre in
the square I2, it can be an ω-limit set of a triangular map F of the square even if
the topological structure of M is more complicated. The reason is that in this case
the point x with ωF (x) = M can be chosen outside that fibre. A full topological
characterization of ω-limit sets of triangular maps which lie in just one vertical
fibre, was found, in co-authorship, by Kolyada in [K11,K14]. The result has an
interesting consequence we are going to describe.

By work of Dowker and Friedlander [DF54] for homeomorphisms, and of Shar-
kovsky [Šar65] for continuous maps, it is known that for dynamical systems on
compact metric spaces the following are equivalent:

(1) (X, f) can be embedded as an ω-limit set in some larger system (Y, g),
(2) (X, f) is f -connected or weakly incompressible (meaning that there is no

non-empty, proper, closed set A ⊆ X such that f(A) ⊆ IntA).

The result from [K11,K14] mentioned above implies the following fact explicitly
mentioned in [K52, p.21]:

A non-empty closed subset X of the unit interval is an ω-limit set (that is,
there is a dynamical system (Y, g) containing X as an ω-limit set or, equivalently, X
admits a continuous self-map f such that (X, f) is f -connected) if and only if X
is not a disjoint union of a finite number of non-degenerate closed intervals and
a non-empty countable set whose distance from at least one of those intervals is
positive.

For some other results of Sergĭı on ω-limit sets see [K16,K17,K38]. His last
paper [K50] deals with special α-limit sets.

2.4. Topological entropy. Kolyada is a co-author of the extension of the
notion of topological entropy to non-autonomous systems given by a compact metric
space and a sequence of continuous self-maps of it:

X
f1−→ X

f2−→ X
f3−→ · · · .

This was motivated by the wish to understand better the entropy of triangular
maps, and in particular Bowen’s formula [Bow71] giving an estimate for it. Basic
properties of the entropy of non-autonomous systems have been proved, and basic
counter-examples were published in [K18]. As an easy corollary of some results
on the entropy of non-autonomous systems, the commutativity of the entropy of
autonomous systems was obtained:

h(f ◦ g) = h(g ◦ f).
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S. Kolyada, M. Misiurewicz and L’. Snoha in Banská Bystrica in June 2017
(working on [K50]; photo with permission of Štefan Gyürki)

Later it turned out that this formula was not new, see [DM86]. However, it was
unknown among dynamists and probably it would still be forgotten if [K18] had
not appeared. This is one of Sergĭı’s most cited papers.

In [K23], entropy for non-autonomous systems given by a sequence of piecewise
monotone interval maps

I1
f1−→ I2

f2−→ I3
f3−→ · · ·

is studied (notice that the intervals are not fixed here) and it is proved that, under
some additional assumptions, the Misiurewicz–Szlenk formula [MS80] for the topo-
logical entropy of piecewise monotone interval maps holds. In the autonomous case,
the formula enables one to compute the entropy by counting the number of ‘laps’ of
the iterates of the map. In the non-autonomous case, one has to count the number
of laps of the compositions fn ◦ · · · ◦ f2 ◦ f1; the formula now works only under
additional assumptions. As an application, the version of the Misiurewicz–Szlenk
formula for non-autonomous systems allowed a dramatic simplification of the proof
that Kolyada’s old example of a triangular map of type 2∞ from [K9,K13] has
positive entropy.

Other papers of Sergĭı dealing with topological entropy are [K15,K22,K25,
K28,K31,K32,K37,K42].

2.5. Minimality. Minimality was one of Sergĭı’s favorite topics, and he con-
tributed to this area significantly. For a survey on minimality we refer to [K36].

2.5.1. Properties of minimal maps. In topological dynamics, the most funda-
mental dynamical systems are the minimal ones. These are systems which have
no non-trivial subsystems. More precisely, a dynamical system (X, f) defined by a
topological space X and a continuous self-map f is called minimal if X does not
contain any non-empty, proper, closed f -invariant set (a set M ⊆ X is f -invariant
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if f(M) ⊆ M). In such a case we also say that the map f itself is minimal (note
that here we consider only continuous maps). An equivalent definition is: (X, f) is
minimal if for every x ∈ X, the orbit {x, f(x), f2(x), . . . } is dense in X.

Sergĭı, with co-authors, showed that if (X, f) is minimal with X a compact
metric space, then in many respects the continuous map f behaves like a homeo-
morphism [K24]:

• there is no non-empty redundant open set for f (G ⊆ X is said to be
redundant for f if f(X \G) = f(X));
• f is feebly open (i.e. it sends non-empty open sets to sets with non-empty
interior);
• f preserves the topological size of a set in both directions. More precisely,
the implication

A ⊆ X has property P ⇒ both f(A) and f−1(A) have property P

holds for P meaning ‘is nowhere dense’, ‘is dense’, ‘is of 1st category’, ‘is
of 2nd category’, ‘is residual‘, ‘has the Baire property’, ‘has non-empty
interior’;
• f is almost 1-to-1, meaning that the set {x ∈ X | card f−1(x) = 1} is a
dense Gδ in X.

Further, in [K24] the existence of minimal non-invertible maps on the torus was
established (the existence of minimal homeomorphisms on the torus is well-known).
This was the first example of a minimal non-invertible map on a manifold.

2.5.2. Spaces admitting minimal maps. A long-standing open problem in topo-
logical dynamics is to classify compact metric spaces admitting minimal maps or
minimal homeomorphisms.

In [K26], non-homogeneous metric continua admitting minimal maps but not
admitting minimal homeomorphisms are constructed (for the circle the converse is
well-known: it admits a minimal homeomorphism but does not admit a minimal
non-invertible map). One curious result from [K29] is that the interval [0, 1] admits
a sequence of continuous self-maps converging to the identity and forming a minimal
non-autonomous dynamical system on [0, 1]. Some other contributions are explicitly
or implicitly contained in papers dealing with minimal sets in a given space.

2.5.3. Minimal sets. Given a dynamical system (X, f), a set M ⊆ X is called
a minimal set if it is non-empty, closed and f -invariant and no proper subset of M
has these three properties. So, a non-empty closed set M ⊆ X is a minimal set if
and only if (M, f |M ) is a minimal system. Thus a system (X, f) is minimal if and
only if X is the (unique) minimal set in (X, f). The basic fact discovered by G. D.
Birkhoff is that in any compact system (X, f) there are minimal sets.

Minimal sets are fundamental objects of study in topological dynamics. A
natural (and open) problem is to describe the possible minimal sets for dynamical
systems in a given space. Two major contributions of Sergĭı and his co-authors to
this problem are the following results.

The first result states that for minimal sets on 2-manifolds the dichotomy
“nowhere dense or everything” holds. More precisely, in [K34] it is proved that on
compact connected 2-manifolds with or without boundary, a minimal set either is
the whole manifold or is nowhere dense.

The second contribution is a very detailed description of minimal sets of con-
tinuous fibre-preserving maps in graph bundles, see [K41]. The complete results
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are too technical to describe here, but one particular corollary says that the fibre-
preserving maps in tree bundles have only nowhere dense minimal sets. In partic-
ular, if F is a continuous triangular map in the square I2 and M is a minimal set
of F , then M is nowhere dense in the space pr1(M) × I (pr1 denotes the projec-
tion onto the first factor; the nowhere density of M in the square I2 is trivial, but
here pr1(M) × I is a very small subspace of the square, since pr1(M) is a Cantor
set or a finite set). Moreover, either a typical fibre of M is a Cantor set, or there
is a positive integer N such that a typical fibre of M has cardinality N .

2.6. Topological transitivity. Topological transitivity, an important notion
in topological dynamics and one of the ingredients in several well-known definitions
of chaos, appeared often in Sergĭı’s research papers. He also co-authored two surveys
on this topic, see [K21,K35]. In [K22] the connection between transitivity, density
of the set of periodic points, and topological entropy for low dimensional continuous
maps are investigated. The paper deals with this problem in the case of the n–star
and the circle among the one-dimensional spaces and in some higher dimensional
spaces. Particular attention is paid to extensions of transitive maps from a compact
metric space X to triangular maps in X × [0, 1] without increasing topological
entropy and with transitivity preserved. An extension theorem is obtained, saying
that this is always possible when the transitive map in X is non-minimal. Later,
in [K37], this was proved without the assumption of non-minimality. An analogue
of the extension theorem from [K22] was also proved for many other dynamical
properties, see [BS03,Dir08]. As shown already in [K22], such extension theorems
can be used to find, on a given space, the infimum/minimum of the topological
entropy of continuous maps with given dynamical property (the ‘entropy bounds
problem’). Other papers co-authored by Sergĭı, where transitivity plays a central
role, are [K40,K43,K45].

2.7. Chaos. Recall that if (X; d) is a metric space and f : X → X a continuous
map, then the dynamical system (X, f) is called Li–Yorke chaotic if there exists an
uncountable set S ⊆ X such that for all x, y ∈ S, x �= y, the pair (x, y) is proximal
but not asymptotic. That is

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) > 0

(such a set S is called a scrambled set). There was a long-standing open problem
whether positive topological entropy implies Li–Yorke chaos. The following theorem
proved by Kolyada and his co-authors in [K25], is of fundamental importance in
chaos theory:

If (X; d) is a compact metric space and a continuous map f : X → X has
positive topological entropy, then it is Li–Yorke chaotic.

Another important contribution is [K27] where Kolyada and Akin introduced
the following new notion of chaos, which combines the classical notion of sensitivity
with a Li–Yorke version of chaos.

Let (X; d) be a compact metric space and f : X → X a continuous map. Then
the system (X, f) is said to be Li–Yorke sensitive if there exists ε > 0 such that
every x ∈ X is a limit of points y ∈ X such that the pair (x, y) is proximal but
not ε-asymptotic. That is,

lim inf
n→∞

d(fn(x), fn(y)) = 0 and lim sup
n→∞

d(fn(x), fn(y)) ≥ ε.
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In [K27] the authors analyzed properties of such systems and compared them
with other ones. The notion turned out to be quite popular, and some of the open
problems formulated in that paper have already been solved. Other papers of Sergĭı
dealing with chaos or related topics are [K30,K39,K47].

2.8. The functional envelope of a dynamical system. If (X, f) is a dy-
namical system given by a compact metric space (X; d) and a continuous map f :
X → X then the functional envelope of (X, f) is, according to [K32], the dynamical
system (S(X), Ff) whose phase space S(X) is the space (in general a non-compact
space) of all continuous self-maps of X with the compact-open topology, and the
map Ff : S(X) → S(X) is defined by Ff (ϕ) = f ◦ ϕ for any ϕ ∈ S(X). Since the
metric space (X; d) is compact, each of the following two metrics is compatible with
the compact-open topology on S(X):

• the metric dU of uniform convergence: dU (ϕ, ψ) = supx∈X d(ϕ(x), ψ(x));
• the Hausdorff metric dH , derived from the metric dmax((x1, y1), (x2, y2)) =
max{d(x1, x2), d(y1, y2)} on X ×X, applied to pairs of maps (no distinc-
tion is made between a map and its graph).

Though the metrics dU and dH are equivalent, they are not in general uniformly
equivalent. Therefore the “uniform” and the “Hausdorff” envelopes of a system
may differ with respect to dynamical properties which depend on the metric (for
example, the topological entropy in non-compact envelopes may differ in this way).

The functional envelope of a system always contains a copy of the original sys-
tem (hence the ‘envelope’ terminology). The motivation for the study of dynamics
in functional envelopes comes from semi-group theory, from the theory of functional
difference equations (mainly from [SMR93]) and from dynamical systems theory,
see [K32]. We present a few results on dynamics in functional envelopes.

Let P be a property a map from S(X) may or may not have. It is said to be
a range down property if

range θ ⊆ rangeϕ =⇒ (ϕ has P ⇒ θ has P ).

It is proved in [K32] that the following are range down properties: compactness
of the orbit closure, non-emptiness of the ω-limit set, recurrence, simultaneous
compactness and minimality of the orbit closure.

In [K32] it is also proved that while dense orbits in functional envelopes may
exist, for many compact metric spaces X there are no dense orbits in the functional
envelope (S(X), Ff). In particular, this is true if X is a manifold.

If f has zero topological entropy, then both the uniform and the Hausdorff
functional envelope may have infinite entropy; examples can be found in [K32].
By [Mat13], if X is a tree and f has zero or positive entropy, then the Hausdorff
functional envelope has zero or infinite entropy, respectively. By [K42], if X is
a Peano continuum or a compact metric space with continuum many connected
components, then the only possible values of the entropy of the functional envelope
are zero and infinity (regardless of whether we consider the uniform or the Haus-
dorff envelope). For more facts on the topological entropy of functional envelopes
see [DST17].

2.9. Dynamical topology. Let us recall that in topological dynamics one
investigates dynamical properties that can be described in topological terms. For
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example, topological transitivity is a dynamical property of a map, and is defined
in terms of behaviour of open sets under the iterates of the map.

In contrast with this, in [K43] and [K45] Kolyada and his co-authors intro-
duced the notion of dynamical topology. This is the area where one investigates
topological properties of spaces of maps that can be described in dynamical terms.
For instance, one can ask what are the topological properties of the space of all
transitive maps on a given space.

If I is a real compact interval, denote by T the space of all (continuous) tran-
sitive maps I → I, with the C0-metric. Further, let TPM or TPL be the subspaces
of all piecewise monotone, or piecewise linear elements of T , respectively. One of
the results from [K43] says that the spaces T , TPM and TPL are contractible (and
hence arc-wise connected) and are locally arc-wise connected. The investigation of
the topology of various spaces of transitive interval maps is continued in [K45]. It
is shown there that some loops that are not contractible in some of those spaces,
can be contracted in slightly larger spaces. The methods developed in these papers
are used in the recent paper [Fan19].

2.10. Dynamical compactness. A family F of subsets of Z+ = {0, 1, 2, . . . }
is called a Furstenberg family if it is hereditary upward (that is, F1 ⊆ F2, F1 ∈ F
together imply that F2 ∈ F). If F is a Furstenberg family, its dual family kF is
defined as the family of all subsets of Z+ which are large enough to ensure that
they intersect every set from F non-trivially.

If (X,T ) is a dynamical system, x ∈ X, G ⊆ X and F ⊆ Z+, put

TFx = {T ix | i ∈ F}
and

nT (x,G) = {n ∈ Z+ | Tnx ∈ G}.
Now let X be a compact metric space. Recall that if (X,T ) is a dynamical system
and x ∈ X, then the classical ω-limit set of x is

ω(x) =
⋂
n∈N

{T k(x) | k ≥ n}

={z ∈ X | for every neighbourhood G of z, nT (x,G) is infinite}.
By changing the set of times appearing in this definition, one can define the ω-limit
set of x with respect to a Furstenberg family F :

ωF (x) =
⋂
F∈F

TFx.

It is easy to show that

ωF (x) = {z ∈ X | for every neighbourhood G of z, nT (x,G) ∈ kF}.
So,

ω(x) = ωFcof
(x)

where Fcof is the Furstenberg family of all cofinite sets.
By our assumption that the metric space X is compact, we have that ω(x) �= ∅

for every x ∈ X. Kolyada and his co-authors, see [K44], call a dynamical sys-
tem (X,T ) dynamically compact with respect to F , if ωF (x) �= ∅ for every x ∈ X.
They study this notion in [K44] and [K48]. In their considerations, the Fursten-
berg family F is a family with some dynamical meaning. Therefore they use terms
such as transitive compactness or sensitive compactness. They investigate many
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classical notions of topological dynamics by using the concept of dynamical com-
pactness. One remarkable fact proved in [K48] says that all dynamical systems are
dynamically compact with respect to a Furstenberg family if and only if this family
has the finite intersection property.

Sergĭı had many mathematical plans for the future. It is our loss that he will
not fulfil them.
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Basel, 2008. In memory of Alexander Reznikov; Including papers from the International
Conference held in Bonn, September 22–29, 2006. MR2401786
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Recollections about Sergĭı Kolyada

Irina Kolyada
I’m the eldest daughter of a great man, a remarkable mathematician and best

father in the world – Sergĭı Kolyada. Many people know the scientific achievements
of my father the Professor of Mathematics, but I would like to say something about
his life.

I’m not a mathematician, but my father told me that mathematics is an in-
credible science, very hard and very beautiful. His love for mathematics started
early in his childhood. He was born in a very small village and studied at a village
school, where the teacher of mathematics saw in a young boy a talented, diligent
and persistent mathematician. Due to this, at the age of 15, that boy from the
village went to a mathematical school in Kyiv. I could talk for a long time about
how he won mathematical Olympiads, and how with the support of his teacher he
was able to get to Kyiv, but if we could ask Sergĭı “How did you get to mathemat-
ics?”, his answer would be unequivocal: “I loved mathematics”, and true love does
miracles.

Dad told us that his school years were difficult and, at the same time, very
interesting. Teachers of this school were preparing real mathematicians, not just
for the program, nor to win Olympiads, but for the principle that “the tasks must
always be pursued by mathematicians, a professional mathematician is one whose
mathematical problems chase days, months, years! Otherwise, you are not a math-
ematician.”

Later, he studied at the Taras Shevchenko National University, in the Faculty
of Mechanics and Mathematics. There Sergĭı Kolyada met his future wife and the
only love of all his life, Mariya. I should mention the interesting arithmetical fact
that my mother’s birthday is March 14, a date shared with π.

As a student, Sergĭı regularly participated in the seminars of the Institute of
Mathematics of the National Academy of Sciences of Ukraine, despite the fact that
he only started to work there seven years later.

Personally, I have incredible memories from my childhood. Even now, when I
go to the Institute, I see a little girl, who knew every step of this building, every
crack of the floor, every employee. I adored it when my dad took me to his work, as
for me it had a special smell of mathematics. That was the period when papers were
prepared on typewriter, with copies through carbon paper or written in notebooks
by hand, and formulas were recorded with chalk on the board. I especially liked to
make corrections in my father’s papers “−” replaced with “+”, “x” with “y”. Of
course dad noticed, and joked that I forced him to be more attentive.

c©2020 American Mathematical Society
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Sergĭı’s family (photo with permission of Irina Kolyada)

I remember the first time I went to an international conference, which was
headed by my father. Given the atmosphere that mathematicians inhabited, I was
proud to be a daughter of a professor of mathematics.

Especially memorable were our visits to France, Germany, Spain,... I appreci-
ated the respect the wider mathematical community showed to Professor Kolyada!
He prepared with great care and inspiration for every conference, piece of work and
speech.

Despite the fact that during the last 15 years my father worked outside Ukraine,
he was a real patriot who devoted himself to the development of mathematics there.
Doing science in Ukraine is not easy. Dad, with like-minded collaborators, created
the Kyiv Mathematical Society, and for many years was the President of the society,
whose main task was to popularize mathematics as a science. I particularly want to
emphasize the special contribution he made to the support of young mathematicians
of Ukraine.

In 2006 Sergĭı began to teach at the Taras Shevchenko National University,
where he had studied. Whatever the weather in Kyiv, whatever the circumstances,
on Monday, after a two-hour journey, dad reached the audience to conduct seminars
for students for a penny. I asked him “Why do you need it?”, and the answer was
very simple: “If at least a few of my students continue my work, I will be happy
to have left a mark in their life and the life of the future mathematics of Ukraine.”
And it happened. Over the past eight years, my father had students to whom he
just gave “problems” at University, not expecting any solutions. The result was
that with almost all of his students he published scientific work. All of them are
now continuing his work, studying at postgraduate courses in Bonn, Paris and other
European cities.

In addition, he founded and became co-chair of the Competition of the Taras
Shevchenko Scientific Society in America and the Ukraine–USA Foundation for
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Young Mathematicians in Ukraine. He also initiated the creation of grants named
by M. Ostrogradsky for the ten best student mathematicians of Universities in
Kyiv. It is a great contribution to the future of mathematics in Ukraine.

Sport was dad’s real hobby. In his student years, he played for the university
basketball team. He supported his brother, the well-known Ukrainian hockey player
Mykola Kolyada. And of course, every day for many years he supported my sister
Natalia, now a world champion in sport ballroom dancing.

Over the last 15 years he played football. In almost every place, where he lived
or worked, he joined a football team. In Kyiv it was the Football Club “Fortuna”,
and twice a week they played their favorite game no matter what the weather was.
It was in one of those games that he spent the last minutes of his life.

Whether he was thinking of mathematics or playing football, the family was
always at the front of his mind. He was proud of the achievements of his daugh-
ters and grandchildren, and always loved and supported his wife. Grandchildren
admired him and always wanted to be like him. And for me and my sister he was
definitely the best dad in the world. Every day, wherever he was, we all received a
message – “Good morning and have a good day!”. The same message was received
on May 16 of 2018. The last one.

Alexander (Sasha) Blokh
I have known Sergĭı since around 1973, when we both participated in the all-

Ukrainian and all-Soviet mathematical Olympiads; he was a member of the Poltava
team, and I was a member of the Kharkiv team. During the competition, it just
so happened that we stood next to each other in line at a self-service restaurant.
We shook hands, and step by step started talking about a variety of topics, from
sports to mathematics. We became friends and have stayed friends ever since.

We kept in touch through letters after we entered colleges (he in Kyiv, I in
Kharkiv), and began discussing more advanced mathematics; evidently, we had
similar taste in it as both of us got interested in dynamical systems, in particu-
lar, in one-dimensional dynamics (maybe because we were both impressed by the
Sharkovskĭı theorem), so our professional contacts continued at a new level.

However there was a lot of human warmth in this interaction too. I remember
vividly how Sergĭı stayed with us in Moscow for a couple of days when our first
son Ilya was 4 years old. Sergĭı entertained Ilya by telling him and all of us funny
stories and riddles. For some time afterwards Ilya would ask me whether this funny
“dyadya” (which literally means “uncle” but in this context simply means “man”)
was coming back.

I moved to the US in 1991, still we would often meet at conferences or meetings,
including various activities at Max-Planck Institut für Mathematik in Bonn where
Sergĭı would invite me. I remember visiting him in Kyiv some time in the 1990-s;
we had two unforgettable nights just walking in this great city, listening to street
musicians, and talking.

You may not know this, but Poltava is a nice city of 300,000 in the heart of
Ukraine. It gave the world a number famous people such as philosopher Hryhoriy
Skovoroda or writer Nikolay Gogol; a well-known mathematician named Ostrograd-
sky is from Poltava too. To me, though, the most important fact about Poltava
is that modern Ukrainian literature was born in Poltava when Ivan Kotlyarevsky
published his mock-heroic poem Eneyida. The soft and beautiful Poltava dialect
gave rise to the modern literary Ukrainian language, and this was the language I
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loved to hear from Sergĭı, who spoke it very eloquently. I will always remember
him just like that, as a soft-spoken, always smiling, kind and helpful person, and a
great friend.

L’ubomı́r Snoha
Sergĭı was my most important co-author – we wrote some 20 joint papers. We

were also close friends. When one of us needed help, either in work or in a private
matter, or simply needed a word of support, he could always turn to the other one
who, for sure, did his best to help him, putting aside all other work and duties.

We often used to meet at conferences and joint research stays in Banská Bystri-
ca, in Kiev and in research institutions abroad. Our families also knew each other
well. I lived with his family when in Kiev, and he with us in Banská Bystrica.

The first time we met was from May 29 to June 2, 1989 during the ‘Summer
School on Dynamical Systems – Bratislava, Kiev, Warsaw’ in Modra-Piesky, Slo-
vakia, and it was friendship at first sight. Apart from some short visits I made to
Banská Bystrica, Sergĭı had been there earlier. Indeed, in July 1978, as a university
student, he took part in the so-called ‘International Summer Brigadier Camp’ in
Dubová near Banská Bystrica, while I started working at the Faculty of Education
in Banská Bystrica only a few days later, since August 1978. The summer camp,
part of the so-called ‘student summer activity’ organized by the Socialist Youth
Union, brought students from different Soviet block countries to work in factories
in the district of Banská Bystrica. Sergĭı worked at the construction site at the
Petrochema Dubová refinery, and we often laughed at memories of his experiences.
Ukrainian students, unlike students from some other countries who were a bit lazy,
worked really hard and therefore made very good money. After the brigade they
went on a sightseeing trip to Prague, then finally back to Kiev.

Later in June 1990 we met at the ‘3rd Czechoslovak Summer School on Dy-
namical Systems’ in Dubńık (near Stará Turá).

At this point Sergĭı and I were ‘only’ friends and were not cooperating in
mathematics. We became co-authors through Jaroslav Smı́tal. I was a former
student of Jaroslav and I regularly visited his seminar on dynamical systems at my
alma mater, Comenius University in Bratislava. In 1990 he offered me a visit to Kiev
under a scientific agreement between Comenius University and the Mathematical
Institute of the Ukrainian Academy of Sciences. At that time Sergĭı was preparing
the English version of his results on triangular maps. We discussed the topic and I
also helped him with the preparation of the paper and in particular with English.
(At that time his knowledge of English was close to zero; it is remarkable that later
he was able to improve so much.) His paper then appeared in Ergodic Theory and
Dynamical Systems in 1992.

During my stay we started to collaborate. Since he was preparing his paper on
triangular maps and before my visit to Kiev I read an article on omega-limit sets, I
asked him whether he could characterize omega-limit sets of triangular maps, or at
least omega-limit sets lying in one fibre. He did not, so we started to think about
the problem. Of course, we found time also for other activities. Sergĭı, as a football
fan, invited me to a stadium in Kiev, to watch the footbal match between Dynamo
Kiev and CSKA Moscow. Dynamo won 4-1.

Then Sergĭı first visited me. He stayed in a student dormitory. When I sug-
gested we could go and see my family, he was concerned that my wife would not
welcome an unexpected visitor. I told him something like “A ty dumaex xto my
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ne normal�nye l�di?” (“Do you think that we are not normal people?”), and
he recalled this story many years later.

At that time we did not have access to email communication. From time to
time we called each other, but it was very expensive and one had to wait a long
time at the post office for a connection. So, we used to send letters to each other,
but it was too slow and the conference in Kiev where we wanted to present the
not yet completed result, was already close. It was necessary to use non-traditional
methods of communication. Once I traveled to Bratislava airport, and approached
a young man in the queue to check-in for a flight to Kiev. He agreed to take
a letter to Sergĭı, after I showed him that it was just mathematics and nothing
dangerous. I showed him a picture of Sergĭı, saying that he would wait at the
airport in Kiev. Sergĭı heroically typed our work in ChiWriter in the form of a
preprint of the institute. During the Soviet-Spanish-Czechoslovakian Symposium
‘Dynamical Systems and their Applications’ in Kiev, June 28 - July 4, 1991, the
preprint was already available and I gave a talk on our first joint work ‘On omega-
limit sets of triangular maps’, in part made possible by a kind young traveller.

Our first joint research stay outside our countries was a month stay in Barcelo-
na at the very beginning of 1993. We were invited by Lluis Alsedà and Jaume Llibre
to the Centre de Recerca Matemàtica. We all four investigated mainly the entropy
bounds problem in various spaces (what is the infimum of the topological entropy
for transitive maps in a given space?). Lluis and Jaume obtained early results,
while we were trying to solve the problem for triangular maps. In the middle of our
stay we still did not have any contribution, but one night, at about two o’clock,
sitting at the table and working hard in our flat in San Cugat, we succeeded. When
looking back at our careers, this stay was very important and we vere grateful to
our both hosts. We used to buy some food in a shop close to our flat, and we were
disappointed with the fact that, as it seemed to us, in Spain there was no bread.
Instead, we were buying ‘pan de molde’ which was too soft for us. By chance, in the
second half of our stay, we realized that we had used a flawed inductive argument
‘if there is no bread in our shop, then there is no bread in any other shop’. In fact,
in a nearby bakery there was a good choice of various kinds of bread.

In 1996 we spent a month doing ‘Research in Pairs’ in Oberwolfach, and Sergĭı
travelled some 57 hours on buses and trains to get there. At that time we could
not afford flights. This was quite usual for us in those years, and I once took three
days to get to a conference in Lisbon.

Sergĭı was a real friend who always was thinking about the others and followed
the rule ‘Guest in the house, God in the house.’ In the 1990’s I had health problems
with asthma and allergy. Sergĭı of course knew about that and he also knew that
because of that we had removed all the carpets in my flat in Banská Bystrica. In
those years I visited him and stayed in the room of his daughters while the girls
lived with their parents in the rest of the flat. To my surprise they also had no
carpets, and I only recently learned that they removed them just for the period
of my stay! This consideration was typical of Sergĭı, and on a later visit in May
1994 he arranged for us to work together on the coast in Katsiveli in Crimea for
the benefit of my health. Thanks to Sergĭı, I could breath the sea air. We rented
a room there and did mathematics on the beach, with stones put on the sheets of
papers, to stop the wind stealing them.
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The journey to Crimea was interesting. Since we both were fans of the satirical
novels ‘The Twelve Chairs’ and ‘The Little Golden Calf’ by Ilf and Petrov, we knew
some parts of them by heart. In particular, Balaganov, one of the characters of the
latter novel, knew, apart from Moscow, out of all the ‘seats of world culture’ only
Kiev, Melitopol and Zhmerinka. Of course, when our train stopped at Melitopol,
we both got off the train to stand for at least a moment on the ground of this
‘seat of world culture’. Later Sergĭı and I also always stopped for a while at the
monument to Panikovsky, another character from ‘The Little Golden Calf’, when
I was in Kiev.

Once we visited my mother in Lučenec in south of Slovakia, because Sergĭı had
a better bus connection to Ukraine from there than from Banská Bystrica. Having
arrived at Lučenec, I helped him with his luggage and somehow I forgot my bag in
the bus. This was a catastrophe, because our notes with what we were doing last
two weeks were in the bag and so they were lost. We both went back to the bus
station, but the bus was not there and it was getting dark. From some other drivers
I got the information that the bus was in a depot somewhere behind Lučenec. By
taxi we were able to find the place. There were buses and two dogs behind the
gate, and nothing like a doorbell. Fortunately the dogs were barking so loudly that
finally a night watchman appeared and already from afar he cried: ‘The bag is
here!’ So we were lucky and our mathematics was saved.

Sergĭı is waving at us
(photo with permission of Micha�l Misiurewicz)

Sergĭı was a practical
man, while I am not. In
particular, when we were
together somewhere (say in
Barcelona, Marseille or Bonn)
and we were preparing food
in the kitchen, he was the
cook, and I the assistant. My
mother and my wife always
asked me: “Will Sergĭı also
be there?” when I travelled.
They knew that Sergĭı would
take good care of their son and
husband. Sergĭı was very well
liked by my family, and af-
ter his death my mother asked
her priest to serve a mass for
him.

We generally spoke Rus-
sian to each other. How-
ever, my mother and Sergĭı
spoke Slovak and Ukrainian
and claimed to understand

each other. Sergĭı sometimes laughed at mistakes in my Russian, and I used to
repeat some mistakes on purpose, as they somehow belonged to us. However, if
anybody asked him about my Russian, he always claimed that it was very good.

I miss my great friend Sergĭı very much and I will not forget about him till the
end of my days.
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Sergiy and the MPIM

Pieter Moree

Sergiy was a regular visitor of the MPIM, almost part of the furniture. Be-
tween 2000 and 2017 he was in Bonn almost every year, each time for a period of
several months. In this way he spent over the years a total of about 5 years at
MPIM!

I got to know Sergiy in 2004 (the year I started to work at MPIM), when he
organized an activity. Our contact became much more intensive when we were
co-organizing the 2006 memorial conference for Alexander Reznikov [6] (a talented
Kiev born mathematician who faced many difficulties in his life, and who unfor-
tunately, like Sergiy, passed away very early). Co-organizing that conference with
Sergiy was dear to me, as it was a small way to pay tribute to a coauthor (see [9])
I admired greatly.

F. Hirzebruch with Ukrainian mathematicians A. Kosyak,
S. Kolyada, M. Viazovska and V. Lyubashenko after becoming

a Honary Member of the Kiev Mathematical Society
(with permission of the Max Planck Institute for Mathematics)
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After my first co-organizational experience with Sergiy, several more were to
follow, some of these quite time intensive. It is therefore not surprising that my
contact with Sergiy was usually focused on pushing further the organization of the
activities, rather than other matters. A particularly helpful feature of working with
Sergiy was his uncanny ability to respond to email requests almost immediately. Of
course, when he was physically at MPIM and the issue was not absolutely minor,
I would go to his office — always the same one, his favorite — to discuss things in
person. Often enough I would run into him at the coffee machine, where he would
be taking his usual coffee with lime.

For Sergiy and me some of the most relaxing organizational moments always
came with the standard conference boat trip on the Rhine, to various destinations.
As far as I remember we always had wonderful summer weather.

Over the years it was always clear to me that his family was very dear to him,
and a source of much pride. Sergiy was also a very keen soccer player. Indeed, he
organized soccer matches on the Hofgarten, a pleasant grass field not far away from
MPIM. A few times I joined in, and team was jokingly called FC Hofgarten. The
young ones would run and run, but Sergiy would position himself strategically, and
in this way was often able to score. His organizational and personal skills showed
themselves in soccer as well as in mathematics. In later years he also played indoor
soccer, with a largely German group of people not particularly having a scientific
or mathematical background.

Somehow outside the institute we rarely met in the course of joint lunches
or dinners. It thus came as a surprise — a very memorable one for me — to
be invited with a small group to the restaurant La Cigale on Friedrichstraße for
Sergiy’s 50th birthday celebration. Each guest in turn toasted his future and spoke
some personal words about Sergiy. He was quite amazed about how fast time flies,
expressed his deep gratitude to his friends, and was quite moved by the toasts. This
is a lunch I will never forget. There were also some joint lunches with Prof. F.
Hirzebruch [1,11], during which the deep respect of Sergiy for Prof. Hirzebruch was
clear. Prof. Hirzebruch played a vital role in reconnecting German mathematicians
after the second world war with non-German ones, and he had a huge influence
in making Bonn the foremost town in Germany for pure mathematics. A research
stay in the early 1950s at the Institute for Advanced Study (IAS) in Princeton
inspired Prof. Hirzebruch to found a similar institute in Germany. Eventually he
was successful, and the MPIM started in 1982. In 1999 it moved to its current
location, right in the center of the city of Bonn. Prof. Hirzebruch always maintained
good connections with mathematicians in Eastern European countries, even during
the period when this was not at all straightforward. This was amply demonstrated
when he managed to get a mathematical star from Moscow, Prof. Yu. I. Manin, to
join the MPIM as a Director. As a retired director, Prof. Manin is still a regular
presence in the institute and keeps his weekly seminar running.

At a special 4p.m. institute tea on the occasion of the 80th birthday of Prof.
Hirzebruch (17 October, 2007), Sergiy handed him a document stating that Prof.
Hirzebruch had been made an Honorary Member of the Kiev Mathematical Society.

Sergiy played a crucial role in suggesting highly gifted students from Kiev to ap-
ply for a PhD position at the MPIM. These were: Anton Mellit, Danylo Radchenko,
Julia Semikina, Maryna Viazovska and Masha Vlasenko. All of them did their PhD
with Don Zagier, except Julia who is doing her PhD with Wolfgang Lück. Among
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Sergiy and Ľubomı́r Snoha working at MPIM
(with permission of the Max Planck Institute for Mathematics)

these talented mathematicians, perhaps Maryna Viazovska has found the biggest
international acclaim to date. She achieved a breakthrough on optimal sphere pack-
ing in dimension 8 that rightly attracted much attention, both mathematical and
from the wider media. Later, involving amongst others Danylo Radchenko (who at
the time was studying for his PhD at MPIM with Don Zagier and is a current post-
doc at MPI) the work was generalized to dimension 24 [3]. These two papers are
mentioned in the award announcement of the 2017 Sastra Ramanujan prize which
Viazovska received. An issue of the American Mathematical Society Notices had
her picture as cover, and an article on her work [4]. In December 2017 she received
a ‘New Horizons in Mathematics’ prize, which is a subcategory of the Breakthrough
in Mathematics Prize. She is honored in the citation for a ‘remarkable application
of the theory of modular forms to the sphere packing problem in special dimen-
sions.’ She also won the European Prize in Combinatorics 2017. In the laudatio for
that prize, her work on spherical designs [2] (finished at MPI) was also mentioned.
This work was started in Kiev, but completed whilst she was at MPI.

I already mentioned that Danylo Radchenko and Julia Semikina are both cur-
rently employed in Bonn. Masha Vlasenko is a research fellow at the Institute of
Mathematics of the Polish Academy of Sciences (IMPAN) in Warsaw, and Anton
Mellit an assistant professor at the University of Vienna.

Apart from his own mathematical work, Sergiy’s legacy to mathematics is great,
and many profited from his hard work and organizational skills, his instinctive
kindness, and his wisdom as a person.

0.1. Activities and conferences co-organized at MPIM. This is the list
of the activities co-organized by Sergiy, for all of which he was the originator of
the idea to organize them.
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• Algebraic and topological dynamics, 2004, Activity: May-July, Con-
ference: July 5-9, 2004 [5].
• Geometry and Dynamics of Groups and Spaces (in memory of
Alexander Reznikov), Sept. 22-29, 2006 [6].
• Dynamical Numbers: Interplay between Dynamical Systems and
Number Theory, Activity: May-July 2009, Conference: July 20-24,
2009 [7].
• Dynamics and numbers, Activity: July 2014, Conference: July 21-25,
2014 [8].
• Dynamics: Topology and Numbers, July 2-6, 2018.

All these activities and conferences were sponsored by the MPIM. The 2004 activity
was in addition supported by the European Science Foundation. The 2009 activity
had as co-sponsors the Clay Institute and the Hausdorff Centre of Mathematics.

It is not common for conferences at the MPIM to be followed up by conference
proceedings, and the fact that all of the above led to conference proceedings is in
large part due to the great energy, enthusiasm and very substantial efforts of Sergiy.
The present editors did not have to deliberate long about whether to bring out a
conference proceedings, as producing one we see as a clear action in the spirit of
Sergiy and a suitable acknowledgment of his enormous editorial efforts.

Sergiy also helped to conceive and organize the conference in 2018, but since
it was to be for his 60th birthday, he did not want to be an official organizer. It
is a cruel twist of fate that Sergiy passed away less than two months before this
conference.

The conference [6] was in memory of Alexander Reznikov (1960-2003). The
remaining ones belong to the same series so to say, with the note that due to
intensified collaboration with the Hausdorff Institute of Mathematics that is focused
on trimester programs, people wanting to apply for an activity at MPIM are urged
to apply with HIM. It is for this reason that in 2018 only a conference was organized
and not an activity and a conference.

The activities typically had around 100 MPIM external participants, and as
a whole form a remarkable account of a rich field of mathematics and a fitting
memorial to a remarkable mathematician.
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Homotopy types and geometries below Spec(Z)

Yuri I. Manin and Matilde Marcolli

To the memory of Sergiy Kolyada

Abstract. After the first heuristic ideas about “the field of one element”
F1 and “geometry in characteristics 1” (J. Tits, C. Deninger, M. Kapranov,
A. Smirnov et al.), were developed several general approaches to the construc-
tion of “geometries below SpecZ”. Homotopy theory and the “the brave new
algebra” were taking more and more important places in these developments,
systematically explored by B. Toën and M. Vaquié, among others.

This article contains a brief survey and some new results on counting
problems in this context, including various approaches to zeta–functions and
generalised scissors congruences.

We introduce a notion of F1 structures based on quasi-unipotent endo-
morphisms on homology. We also consider F1 structures based on the inte-
gral Bost–Connes algebra and its endomorphisms. In both cases we consider

lifts of these structures, via an equivariant Euler charactetristic, to the level of
Grothendieck rings and further lifts, via the formalism of assembler categories,
to homotopy theoretic spectra.

1. Brief summary and plan of exposition

1.1. Geometries below SpecZ: a general categorical framework. Fol-
lowing [ToVa09], Sec. 2.2 – 2.5, we start with a symmetric monoidal category with
unit (C,⊗,1). The category of commutative associative unital monoids Comm (C)

will play the role of commutative rings; accordingly, the opposite category AffC :=
Comm (C)op will be an analogue of the category of affine schemes.

In order to be able to define more general schemes, objects of a category SchC ,
we must introduce upon AffC a Grothendieck topology by giving a collection of
sieves (covering families) defined for each object of AffC .

It is shown in [ToVa09] that if (C,⊗,1) is complete, cocomplete and closed,
then there are several natural topologies upon AffC , whose names encode the
similarities between them and respective topologies on the category of usual affine
schemes (spectra of commutative rings), in particular the Zariski topology. Starting
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with the monoidal symmetric category of abelian groups (Z–Mod, ⊗Z,Z) one comes
to the usual category of schemes SchZ .

The version of F1–schemes SchF1
suggested in [ToVa09] is embodied in the

final stretch of the similar path starting with (Sets,×, {∗}).
Finally, some pairs of categories (SchC , SchD) can be related by two functors

going in opposite directions and satisfying certain adjointness properties. Intu-
itively, one of them describes appropriate descent data upon certain objects XC

of SchC necessary and sufficient to define an object XD lying under XC . One of
the most remarkable examples of such descent data from SchZ to SchF1

was devel-
oped by J. Borger, cf. [Bo11a], [Bo11b]: roughly speaking, it consists in lifting all
Frobenius morphisms to the respective Z–scheme. In a weakened form, when only
a subset of Frobenius morphisms is lifted, it leads to geometries below SpecZ but
not necessarily over F1.

1.2. Schemes in the brave new algebra. In a very broad sense, the invasion
of mathematics by homotopy theory in general started with a radical enrichment of
the Cantorian intuition about what are natural numbers N: they are cardinalities
of not just arbitrary finite sets, but rather of sets of connected components π0 of
topological spaces.

The multiplication and addition in N have then natural lifts to the world of
stable homotopy theory, the ring of integers being enriched by passing to the sphere
spectrum, where it becomes the initial object, in the same way as Z itself is an initial
object in the category of commutative rings, etc. More details and references are
given in Section 4 of this article.

Moreover, “counting functions”, such as numbers of Fq–points of a scheme
reduced modulo a prime p, with q = pa, can be generalized to the world of scissors
congruences where they become the basis for the study of zeta functions.

1.3. The structure of the article. (A). Section 2 is dedicated to a categori-
fication in homotopy theory of a class of schemes in characteristics 1 admitting the
following intuitive description: 1–Frobenius morphisms acting upon their cohomol-
ogy have eigenvalues that are roots of unity.

Here are some more details. The main arithmetic invariant of an algebraic
manifold V defined over a finite field Fq, is its zeta–function Z(V, s) counting the
numbers of its points cardV (Fqn) over finite extensions of Fq.

Assuming for simplicity that V is irreducible and smooth, as a consequence
of the Weil conjectures proved by Deligne, we can identify Z(V, s) with a rational
function of q−s which is an alternating product of polynomials whose roots are
characteristic numbers of the Frobenius endomorphism Frq of V acting upon étale
cohomology H∗

et(V ) of V .

In various versions of F1–geometry, the structure consisting of cohomology with
the action of a Frobenius upon it is conspicuously missing, although it is clearly
lurking behind the scene (see e.g. a recent survey and study [LeBr17]).

Our homotopical approach here develops the analogy between Frobenius maps
and Morse–Smale diffeomorphisms.

In the remaining parts of the article, we focus upon another “counting formal-
ism” and its well developed homotopical environment.
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Namely, on the Fq– schemes of finite type, non–necessarily smooth and proper
ones, the function c : V → cardV (Fq) satisfies the following “scissors identity”: if
X ⊂ V is a Zariski closed subscheme, Y : V \X, then

c(V ) = c(X) + c(Y )

and also c(V1 × V2) = c(V1)c(V2). In other words, c becomes a ring homomorphism
of the Grothendieck ring K0 of the category of Fq–schemes.

(B). In Section 3 we consider a lift to the equivariant Grothendieck ring K Ẑ
0 (V)

of the integral Bost–Connes system, described in [CCM09] in the context of F1-

geometry. We obtain endomorphisms σn and additive maps ρ̃n that act on K Ẑ
0 (V)

and map to the corresponding maps of the integral Bost–Connes system through
the equivariant Euler characteristic. We obtain in this way a noncommutative

enrichment KẐ
0(V) of the Grothendieck ring and an Euler characteristic, which is

a ring homomorphism to the integral Bost–Connes algebra. After passing to Q–
coefficients, both algebras become semigroup crossed products by the multiplicative
semigroup of positive integers,

KẐ
0 (V)⊗Z Q = K Ẑ

0 (V)Q �N,

with K Ẑ
0 (V)Q = K Ẑ

0 (V) ⊗Z Q and target of the Euler characteristic the rational
Bost–Connes algebra Q[Q/Z]�N.

(C). In Section 4 we revisit the construction of the previous section, by further
lifting it from the level of the Grothendieck ring to the level of spectra. We use the
approach based on assemblers, developed in [Za17a], [Za17b].

We recall briefly the general formalism of [Za17a] and present a small modifi-
cation of the construction of [Za17c] of the assembler and spectrum associated to
the Grothendieck ring of varieties, which will be useful in the following, namely the

case of the equivariant Grothendieck ring K Ẑ
0 (V) considered in the previous section.

We then prove that the lift of the integral Bost–Connes algebra to the level of
the Grothendieck ring described in the previous section can further be lifted to the
level of spectra.

(D). In Section 5 we discuss the construction of quantum statistical mechanical

expectation values on the Grothendieck ring K Ẑ
0 (V) based on motivic measures and

the expectation values of the Bost–Connes system.

(E). Finally, in Section 6 we revisit the construction discussed in the previous

section in a setting where, instead of considering varieties with a good Ẑ-action,
we consider a “dynamical” model of F1-structure based on the existence of an
endomorphism f : X → X that induces a quasi–unipotent map f∗ in homology. Our
purpose here is to show a compatibility between this proposal about F1-structures
and the idea of [CCM09] of F1-geometry encoded in the structure of the integral
Bost–Connes algebra, through its relation to cyclotomic fields.

This also returns us to the framework of Section 2, thus closing the circle.
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1.4. General context and goals. As we have already mentioned, behind the
many different manifestations of F1-geometry there is a general unifying idea that
can be roughly stated as the principle that roots of unity and cyclotomic points
should provide a good notion of points over F1 and extensions, as well as associated
counting functions. This idea was made explicit in the unpublished notes [KapSmi]
and developed in various directions in [Ma95] and [Sou04] (understanding the
nature of the archimedean Euler factors) and later in [CC10] and [Ma10]. This
cyclotomic viewpoint of F1-geometry was reformulated in [CCM09] in terms of the
Bost–Connes quantum statistical mechanical system, where the endomorphisms of
the Bost–Connes algebra and their action on roots of unity are seen as a replacement
for the classical Frobenius action in the case of points over finite fields. It was further
shown in [Mar09] that this Bost–Connes formulation of F1-geometry is compatible
with the approach to F1-geometry via λ-rings developed in [Bo11a], [Bo11b].

In the present paper and its continuation [LieManMar19] we explore further
instances of the relation between cyclotomy and F1-geometry, including a construc-
tion of a λ-ring structure associated to the action of Morse–Smale diffeomorphisms
on homology, with roots of unity occurring as eigenvalues. We also extend the
Bost–Connes formulation of F1-geometry through the perspective of motivic mea-
sures and of homotopy theoretic spectra. More precisely, we first lift the integral
Bost–Connes algebra of [CCM09] to the level of a Grothendieck ring of varieties

with a good Ẑ-action in such a way that the Bost–Connes algebra is obtained from
the endomorphisms defined at the level of the Grothendieck ring by taking the equi-

variant Euler characteristic. Varieties with a good Ẑ-action and their associated
Ẑ-equivariant motives are again a manifestation of F1-geometry expressed through
the presence of cyclotomic structures.

This lift of the Bost–Connes algebra to the Ẑ-equivariant Grothendieck ring is
then further lifted using the method of assemblers to a homotopy theoretic spec-
trum. An approach to F1-geometry via homotopy theoretic spectra and Segal Γ-
spaces (which we also use in our construction) was already considered, from a differ-
ent viewpoint, in [ToVa09] and in [CC16]. One of our goals in the present inves-
tigation is to create a unified framework where cyclotomic points, the Bost–Connes
algebra structure, certain motivic zeta functions, and an appropriate construction
of spectra, and their various relations to F1-geometry can be simultaneously real-
ized. In the following part [LieManMar19] of this work, we focus on more general
motivic measures than the equivariant Euler characteristics we work with here, and
we also incorporate the formulation of F1-structures via torifications introduced in
[LoLo11] and further developed in [ManMar16].

This point of view on lifts of the Bost–Connes formulation of F1-geometry to
Grothendieck rings and spectra is also closely related to the question of categori-
fications of the Bost–Connes algebra considered in [MaTa17]. Categorification
is a very broad principle which has been a successfully applied to many different
mathematical settings (see [Mazo12] for an introductory overview). It is shown
in Section 8 of the continuation [LieManMar19] of the present paper that the
construction based on Grothendieck rings and spectra described here has a paral-
lel version based on Nori motives that maps through a fiber functor, rather than
an Euler characteristic, to the motivic categorification of the Bost–Connes algebra
constructed in [MaTa17]. Our point of view on lifts of the Bost–Connes algebra
via motivic measures and zeta functions was further developed in [LeBr19].
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2. Roots of unity as Weil numbers

2.1. Local zetas and homotopy. In this section we develop the idea sketched
in the subsection 0.2 of [Ma10]: namely, that a q = 1 replacement of the structure
(Frq, H

k
et(V )) is a pair (f∗k, Hk(M,Z)) where f∗k is the action of a Morse–Smale dif-

feomorphism f : M →M of a compact manifold M upon its homology Hk(M,Z).
In particular, in this model characteristic roots of f∗ acting upon (co)homology
groups are roots of unity, as might be expected from “Weil numbers in character-
istic 1”.

We start with basic definitions and references.

2.2. Morse–Smale diffeomorphisms. Below M always means a compact
smooth manifold, and f : M → M its diffeomorphism. A point x ∈ M is called
non–wandering, if for any neighborhood U of x, there is some n > 0 such that
U ∩ fn(U) �= ∅.

Definition 2.1. A function f is called a Morse–Smale diffeomorphism, if

(i) The number of non–wandering points of f is finite.
(ii) f is structurally stable that is, any small variation of f (in the Cr topol-

ogy) is isotopic to f .

This short definition appears in [Gr81]; for a more detailed discussion of ge-
ometry, see [FrSh81].

2.3. Action of Morse–Smale diffeomorphisms on homology. For any
compact manifold M , its homology groups Hk(M,Z) are finitely generated abelian
groups. Any diffeomorphism f : M → M induces automorphisms f∗k of these
groups. According to [ShSu75], if f is Morse–Smale, then each f∗k is quasi–
unipotent, that is, its eigenvalues are roots of unity.

However, generally this condition is not sufficient. An additional necessary
condition is vanishing of a certain obstruction, described in [FrSh81] and further
studied in [Gr81].

Namely, consider the category QI whose objects are pairs (g,H), where H
is a (finitely generated) abelian group, and g : H → H is a quasi–idempotent
endomorphism of H (by definition, this means that eigenvalues of g are zero or
roots of unity.) Morphisms in QI are self–evident.

The abelian group K0(QI) admits a morphism onto its torsion subgroup G.
Denote by ϕ : K0(QI)→ G be such a morphism.

Theorem 2.2. [FrSh81] Let f : M →M be a diffeomorphism such that each
f∗k : Hk(M,Z) → Hk(M,Z) is quasi–unipotent. Let [f∗k] be the class in K0(QI)
of the pair (f∗k, Hk(M,Z)). Then

(i) If f is Morse–Smale, then χ(f∗) :=
∑

k(−1)kϕ([f∗k]) ∈ G is zero.
(ii) If in addition M is simply connected, and dimM > 5, then vanishing of

χ(f∗) implies that f is isotopic to a Morse–Smale diffeomorphism.
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2.4. Passage from (f∗k, Hk(M,Z)) to a scheme over F1. In this subsection,
we sketch a final step from homotopy to F1–geometry.

One should keep in mind, however, that there might be many divergent paths,
starting at this point, because there are several different versions of “geometries
over F1”.

We will choose here a version developed in James Borger’s paper [Bo11a] (and
continued in [Bo11b]). Roughly speaking, in order to define an affine scheme over
F1, one should give a (commutative) ring with λ–structure and then treat this
λ–structure as “descent data” from the base SpecZ to the base SpecF1.

2.4.1. From (f∗k, Hk(M,Z)) to a λ–ring. Consider for simplicity only the case
(ii) of Theorem 2.2. Then for each k, Hk(M,Z)) is a free Z–module of finite rank,
and f∗k is its quasi–unipotent automorphism. Fix such a k.

Introduce upon Hk(M,Z)) the structure of Z[T, T−1]–module, where T acts as
f∗k.

We can consider the minimal subcategory C of Z[T, T−1]–modules, containing
Hk(M,Z) and closed with respect to direct sums, tensor products, and exterior
powers, and then produce the Grothendieck λ–ring K0(C) using exterior powers to
define the relevant λ–structure (cf. [At61], p. 26, and [Le81]).

Definition 2.3. The F1–scheme, whose Borger’s lift to SpecZ is K0(C), is the
representative of (f∗k, Hk(M,Z)) in F1–geometry.

Remark 2.4. It seems that another short path from (f∗k, Hk(M,Z)) to an
F1–scheme defined differently might lead to one of Le Bruyn’s spaces in [LeBr17].

2.5. Cases when eigenvalues of conjectural Frobenius maps are not
roots of unity. Here we will briefly discuss possible extensions of the picture
above, leading to various geometries “below SpecZ” but generally not over SpecF1.

The most interesting new virtual zeta–functions of this type were discovered
only recently under the generic name “zeta–polynomials”, [Ma16], [JMOS16],
[OnRoSp16].

In [Ma16], it was described how to produce such polynomials from period
polynomials of any cusp form over SGL(2,Z) which is an eigenform for all Hecke
operators: this passage is a kind of “discrete Mellin transform”. It was also proved
that zeroes of period polynomials lie on the unit circle of the complex plane, but
generally are not roots of unity. Both this construction and the results about zeroes
were generalised in [JMOS16], [OnRoSp16] to the case of cusp newforms of even
weight for Γ0(N). It turned out that, with appropriate scaling, zeroes of period

polynomials lie on the circle {z | |z| = 1√
N
}.

Problem 2.5. Make explicit geometries under SpecZ in which one can accom-
modate the respective “motives”.
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3. The Bost–Connes system and the Grothendieck ring

3.1. Ẑ-equivariant Grothendieck ring. We recall the following definitions
from [Lo99]. Let G be an affine algebraic group acting upon an algebraic variety
X. We say that this action is good, if each G–orbit is contained in an affine open
subset of X.

The Grothendieck ring KG
0 (V) is generated by isomorphism classes [X] of pairs,

consisting of varieties with good G–action. Upon these pairs the inclusion–exclusion
relations are imposed: [X] = [Y ] + [X � Y ] where Y ↪→ X and X � Y ↪→ X are
G–equivariant embeddings. Multiplication in KG

0 (V) is induced by the diagonal
G–action on the product.

In the main special case considered in [Lo99],

G = Ẑ = lim←−
n

Z/nZ.

One defines K Ẑ
0 (V) as the Grothendieck ring of varieties with an action of Ẑ that

factors through a good action of some finite quotient Z/nZ.
In this section, we first consider varieties defined over the field C of complex

numbers and classes in the Grothendieck ring correspondingly taken in K0(VC) and
the equivariant K Ẑ

0 (VC). We then consider the case of varieties defined over Q
with the equivariant Grothendieck ring K Ẑ

0 (VQ). In the first case the target of the
equivariant Euler characteristic consists of the abelian part Z[Q/Z] of the integral
Bost–Connes algebra, while in the second case it is a subring spanned by the range
projectors of the Bost–Connes algebra.

As observed in [Lo99], there is an Euler characteristic ring homomorphism

χẐ : K Ẑ
0 (VC)→ K Ẑ

0 (C),

to the Grothendieck ring of finite dimensional representations. Since the character

group is Hom(Ẑ,Gm) = Q/Z, the latter is identified with the group ring

K Ẑ
0 (C) = Z[Q/Z].

3.2. Equivariant Euler characteristics. Since we are considering varieties
with a good action of Ẑ that factors through some finite quotient, the Euler char-
acteristic above can be obtained as in [Ve73], for an action of a finite group G,
by replacing the alternating sum of dimensions of the cohomology groups with a
sum in the ring R(G) of representations of G of the classes of cohomology groups,
viewed as G-modules.

As observed in [Gu-Za17], one can also define an equivariant Euler charac-
teristic, for good actions on varieties of a finite group G, as a ring homomorphism
χG : KG

0 (V)→ A(G), where A(G) is the Burnside ring of G, the Grothendieck ring
of the category of finite G-sets. In this case the equivariant Euler characteristic is
defined as χG(X) =

∑
k≥0[Xk] where X has a simplicial decomposition with k–

skeleton Xk, such that G acts by simplicial maps which map each k–simplex either
identically to itself or to another simplex, so that it makes sense to consider the
classes [Xk] in A(G). It is shown in [Gu-Za17] that the result is independent of the
choice of such a simplicial decomposition. It is also shown that any invariant with
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values in a commutative ring R, defined on varieties with a good G–action homeo-
morphic to locally closed unions of cells in finite CW-complexes with G acting by
cell maps, which satisfies inclusion-exclusion (on G-invariant decompositions) and
multiplicativity on products is necessarily a composition

KG
0 (V)→ A(G)→ R

of χG with a ring homomorphism ϕ : A(G) → R. In particular, this is the case
for the Euler characteristic KG

0 (V)→ R(G) obtained by composing χG : KG
0 (V)→

A(G) with the natural ring homomorphism ϕ : A(G)→ R(G) that sends G–sets to
their space of functions.

When considering the profinite group Ẑ = lim←−n
Z/nZ, the Burnside rings

A(Z/nZ) form a projective system with limit

Â(Ẑ) = lim←−
n

A(Z/nZ),

the completed Burnside ring of Ẑ, which is the Grothendieck ring of almost finite
Ẑ-spaces, namely those Ẑ-spaces that are discrete and essentially finite, that is,
such that for every open subgroup H the set of points fixed by all elements of H
is finite, see Section 2 of [DrSi88]. The Burnside ring A(Ẑ) of finite Ẑ-spaces sits
as a dense subring of Â(Ẑ). Moreover, there is an identification of this completed

Burnside ring with the Witt ring Â(Ẑ) = W (Z), see Corollary 1 of [DrSi88].

3.3. Lifting the integral Bost–Connes system. Consider now the endo-
morphisms σn : Z[Q/Z]→ Z[Q/Z] given by σn(e(r)) = e(nr) on the standard basis
{e(r) : r ∈ Q/Z} of Z[Q/Z]. The integral Bost–Connes algebra AZ introduced in
[CCM09] is generated by the group ring Z[Q/Z] together with elements μ̃n and
μ∗
n satisfying the relations

(3.1) μ̃nm = μ̃nμ̃m, μ∗
nm = μ∗

nμ
∗
m, μ∗

nμ̃n = n, μ̃nμ
∗
m = μ∗

mμ̃n,

where the first two relations hold for arbitrary n,m ∈ N, the third for arbitrary
n ∈ N and the fourth for n,m ∈ N satisfying (n,m) = 1, and the relations

(3.2) xμ̃n = μ̃nσn(x) μ∗
nx = σn(x)μ

∗
n, μ̃nxμ

∗
n = ρ̃n(x),

for any x ∈ Z[Q/Z], where ρ̃n(e(r)) =
∑

nr′=r e(r
′).

The maps ρ̃n and the endomorphisms σn satisfy the compatibility conditions,
for all x, y ∈ Z[Q/Z] (see Proposition 4.4 of [CCM09])

(3.3) ρ̃n(σn(x)y) = xρ̃n(y), σn(ρ̃m(x)) = (n,m) · ρ̃m′(σn′(x)),

where (n,m) = gcd{n,m} and n′ = n/(n,m) and m′ = m/(n,m).

Lemma 3.1. The endomorphisms σn : Z[Q/Z]→ Z[Q/Z] lift to endomorphisms

σn : K Ẑ
0 (VC)→ K Ẑ

0 (VC) such that the following diagram commutes

K Ẑ
0 (VC)

σn

��

χẐ

�� Z[Q/Z]

σn

��
K Ẑ

0 (VC)
χẐ

�� Z[Q/Z].

These endomorphisms define a semigroup action of the multiplicative semigroup N
on the Grothendieck ring K Ẑ

0 (VC).
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Proof. Let X be a variety with a good Ẑ-action, which factors through some
finite quotient Z/NZ. Let α : Ẑ×X → X denote the action. The endomorphisms
σn : Z[Q/Z] → Z[Q/Z] given by σn(e(r)) = e(nr) have an equivalent description
as the action on the group of roots of unity of all orders given by raising to the
n–th power σn : ζ → ζn. One can then obtain an action αn : Ẑ×X → X given by
αn = α ◦ σn. Thus, we assign to a pair (X,α) of a variety with a good Ẑ–action
the pair (X,αn) of the same variety with the action αn. This assignment respects
isomorphism classes and is compatible with the relations, hence it determines en-

domorphisms of K Ẑ
0 (VC), with σnm = σn ◦ σm, namely a semigroup action of the

multiplicative semigroup N on the Grothendieck ring K Ẑ
0 (VC). �

The maps ρ̃n : Z[Q/Z]→ Z[Q/Z] of the form

(3.4) ρ̃n(e(r)) =
∑

nr′=r

e(r′)

are not ring homomorphisms but only morphisms of abelian groups. After tensor-
ing with Q, one obtains the group algebra Q[Q/Z] = Z[Q/Z] ⊗Z Q on which the
ρ̃n induce endomorphisms of the form ρn(e(r)) = n−1

∑
nr′=r e(r

′) satisfying the
relations σnρn(x) = x and ρnσn(x) = πnx, for x ∈ Q[Q/Z] and the idempotent
πn = n−1

∑
ns=0 e(s). The arithmetic Bost–Connes algebra is the crossed product

Q[Q/Z]�N generated by Q[Q/Z] and μn, μ
∗
n with the crossed-product action of N

implemented by μnxμ
∗
n = ρn(x), see [CCM09].

Once one considers varieties defined over Q, the Grothendieck ring K Ẑ
0 (Q) can

be characterized as follows.

Lemma 3.2. The Grothendieck ring K Ẑ
0 (Q) can be identified with the subring

of Z[Q/Z] generated by the elements nπn =
∑

ns=0 e(s).

Proof. As noted in [Lo99], the element
∑

ns=0 e(s) in Z[Q/Z] is the image of
the irreducible representation of Z/nZ given by the cyclotomic field Q(ζn) seen as

a Q-vector space, and these representations give a basis of K Ẑ
0 (Q). �

Remark 3.3. According to the Corollary 4.5 in [CCM09], the range of the
maps ρ̃n in (3.4) is an ideal in Z[Q/Z]. This follows from the relation ρ̃n(σn(x)y) =
xρ̃n(y) of (3.3). If r

′ an element of the set En(r) = {r′ ∈ Q/Z : nr′ = r}, we have
ρ̃n(e(r)) = e(r′)

∑
ns=0 e(s).

Lemma 3.4. There are endomorphisms σn : K Ẑ
0 (Q) → K Ẑ

0 (Q) induced by
the endomorphisms σn : Z[Q/Z] → Z[Q/Z]. They lift to endomorphisms σn :

K Ẑ
0 (VQ)→ K Ẑ

0 (VQ) given by σn(X,α) = (X,α ◦ σn) as in Lemma 3.1.

Proof. By identifying K Ẑ
0 (Q) with a subring of Z[Q/Z] as in Lemma 3.2,

we see that the endomorphisms σn : Z[Q/Z] → Z[Q/Z] induce endomorphisms of

K Ẑ
0 (Q) by the relations σn(ρ̃m(x)) = (n,m) · ρ̃m′(σn′(x)) as in (3.3). Since we have

nπn = ρ̃n(1), we see that the endomorphisms σn map the subring K Ẑ
0 (Q) to itself.

The lift to σn : K Ẑ
0 (VQ) → K Ẑ

0 (VQ) is obtained by by the same argument as in
Lemma 3.1. Namely, the map σn(X,α) = (X,α ◦ σn) defines an endomorphism of

K Ẑ
0 (VQ) which satisfies σn ◦ χẐ = χẐ ◦ σn, with χẐ : K Ẑ

0 (VQ) → K Ẑ
0 (Q) the Euler

characteristic. �
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In order to lift the maps ρ̃n to the level of the Grothendieck ring K Ẑ
0 (VQ), we

put

Vn := [Zn, γn] ∈ K Ẑ
0 (VQ),

where Zn is a zero–dimensional variety over Q with #Zn(Q̄) = n. Any such variety
with a smooth model over SpecZ can be identified with Zn = Spec(Qn). It is

endowed with the natural action γn : Ẑ× Zn → Zn that factors through Z/nZ.

Given a variety X with a good Ẑ-action α : Ẑ×X → X, let

Φn(α) : Ẑ×X × Zn → X × Zn

be given by

(3.5)
Φn(α)(ζ, x, ai) = (x, γn(ζ, ai)) for i = 1, . . . ,

and (α(ζ, x), γn(ζ, an)) for i = n.

Notice that (3.5) is just a form of the Verschiebung map: for ζ the generator
of Z/nZ we have

Φn(α)(ζ, x, ai) = (x, ai+1) for i = 1, . . . , n− 1,

and (α(ζ, x), a1) for i = n.

Proposition 3.5. The maps

(3.6) ρ̃n[X,α] := [X × Zn,Φn(α)]

define a homomorphism of the Grothendieck group K Ẑ
0 (VQ) that satisfies

(3.7) σn ◦ ρ̃n[X,α] = [X,α]⊕n

and

(3.8) ρ̃n ◦ σn[X,α] = ρ̃n[X,α ◦ σn] = [X,α] · [Zn, γn].

Proof. Given a variety X with a good Ẑ-action α : Ẑ×X → X, consider the

product [X,α] ·Vn in K Ẑ
0 (VQ). This class has a representative [X×Zn, (α×γn)◦Δ],

where Δ : Ẑ→ Ẑ× Ẑ is the diagonal. We have

σn ◦ ρ̃n[X,α] = σn[X × Zn,Φn(α)] = [X × Zn,Φn(α) ◦ σn].

We also have

Φn(α) ◦ σn = (α× 1) ◦Δ,

since

Φn(α) ◦ σn(ζ, x, ai) = Φn(α)(ζ
n, x, ai) = (Φn(α)(ζ))

n(x, ai),

where we write Φn(α)(ζ) : X × Zn → X × Zn for the action of ζ ∈ Ẑ, with
Φn(α)(ζ1 · · · ζn) = Φn(α)(ζ1) ◦ · · · ◦ Φn(α)(ζn), and the n-fold composition gives

Φn(α)(ζ) ◦ · · · ◦ Φn(α)(ζ)(x, ai) = (α(ζ, x), ai).

This shows (3.7).

The second relation is obtained similarly. We have

ρ̃n ◦ σn[X,α] = ρ̃n[X,α ◦ σn] = [X × Zn,Φn(α ◦ σn)],
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where

Φn(α)(ζ, x, ai) = (x, ai+1) for i = 1, . . . , n− 1,

and (α(ζn, x), a1) for i = n.

Now α(ζn, x) = α(ζ)n(x), hence we have Φn(α ◦ σn)(ζ)(x, ai) = Φn(α(ζ)
n)(x, ai).

The usual relations Vn(Fn(a)b) = aVn(b) between Frobenius Fn and Verschebung Vn

(see Proposition 2.2 of [CC14]) holds in this case as well in the form Φn(α(ζ)
n) =

α(ζ)Φn(1) where Φn(1)(x, ai) = (x, ai+1) is the cyclic permutation action of Z/nZ
on Zn. Thus, we obtain Φn(α ◦ σn) = (α× γn) ◦Δ. This gives (3.8). �

The relation (3.7) corresponds to σn ◦ ρ̃n(x) = nx, and (3.8) to ρ̃n ◦ σn(x) =
nπnx, for x ∈ Z[Q/Z]. They are geometric manifestations of the same relation
between the maps σn and ρ̃n of the integral Bost–Connes system and the Frobenius
and Verschiebung described in [CC14]. For other occurrences of the same relation
see also [MaRe17], [MaTa17].

3.4. A non–commutative extension of the Grothendieck ring. Let

KẐ
0(VQ) be the non-commutative ring generated by K Ẑ

0 (VQ) and elements μ̃n,
μ∗
n for n ∈ N satisfying the relations (3.1) for all n,m ∈ N, and (3.2) for all

x = [X,α] ∈ K Ẑ
0 (VQ) and all n ∈ N.

Lemma 3.6. The Euler characteristic χẐ : K Ẑ
0 (VQ) → K Ẑ

0 (Q) ↪→ Z[Q/Z] ex-
tends to a ring homomorphism χ : KẐ

0 (VQ) → AZ to the integral Bost–Connes
algebra. After tensoring with Q, we obtain a homomorphism of semigroup crossed
product rings

χ : K Ẑ
0 (VQ)Q �N→ Q[Q/Z]�N,

where KẐ
0 (VQ)⊗ZQ = K Ẑ

0 (VQ)Q�N with K Ẑ
0 (VQ)Q = K Ẑ

0 (VQ)⊗ZQ, and AZ⊗ZQ =
AQ = Q[Q/Z]�N is the rational Bost–Connes algebra.

Proof. We define the map χ as χẐ on elements of K Ẑ
0 (VQ) and the identity

on the extra generators χ(μ̃n) = μ̃n and χ(μ∗
n) = μ∗

n. By Lemma 3.4 and Propo-

sition 3.5, this map is compatible with the relations in KẐ
0 (VQ) and in AZ. After

tensoring with Q, the algebra KẐ
0 (VQ) ⊗Z Q can be identified with a semigroup

crossed product by taking as generators the elements of K Ẑ
0 (VQ) and μn = n−1μ̃n

and μ∗
n, which satisfy the relations

μ∗
nμn = 1, μnm = μnμm, μ∗

nm = μ∗
nμ

∗
m, ∀n,m ∈ N,

μnμ
∗
m = μ∗

mμn if (n,m) = 1

μnxμ
∗
n = ρn(x) with ρn(x) =

1

n
ρ̃n(x),

with σnρn(x) = x, for all x = [X,α] ∈ K Ẑ
0 (VQ). The semigroup action in the

crossed product K Ẑ
0 (VQ)Q �N is given by x → ρn(x) = μnxμ

∗
n. The target algebra

is the rational Bost–Connes algebra AZ ⊗Z Q = Q[Q/Z]�N. Again the map given

by χẐ on elements of K Ẑ
0 (VQ) and by χ(μn) = μn and χ(μ∗

n) = μ∗
n determines a

homomorphism of crossed-product algebras. �
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4. From Rings to Spectra

4.1. Spectra. We give a brief review of spectra, with the purpose of recalling
a construction of Segal [Se74] that constructs spectra from Gamma spaces. We
then review the notion of assembler categories [Za17a] and how they can be used
to construct a Gamma space and an associated spectrum whose π0 realizes certain
abstract scissor-congruence relations.

The construction of spectra from Gamma spaces was first developed in the
context of the Bousfield–Friedlander spectra, see Definition 2.1 of [BousFr78].

In this setting, one considers the simplicial category Δ, which has an object [n]
for each n ∈ N given by the finite totally ordered set [n] = {0 < 1 < . . . < n− 1},
with morphisms the face and degeneracy maps δni and σn

i satisfying the simplicial
relations.

A simplicial object is a functor S : Δop → C from the simplicial category of a
given category C. It is determined by a sequence of objects X(n) of C with mor-
phisms corresponding to faces and degeneracies. We denote by Δ(C) the resulting
category of simplicial objects in C. In particular, a simplicial set is a simplicial
object in the category of sets and we will use the notation Δ = Δ(Sets) for the
category of simplicial sets.

Similarly, a bisimplicial object is a functor BS : Δop×Δop → C, or equivalently
a simplicial object in the category of simplicial objects Δ(C). The diagonal of a
bisimplicial object BS is the simplicial object obtained by precomposition of BS
with the diagonal functor Δop → Δop ×Δop.

The category S of Bousfield–Friedlander spectra has objects X given by se-
quences of simplicial sets X = {Xn}n≥0 endowed with structure maps ϕX

n : S1 ∧
Xn → Xn+1 for all n ≥ 0, and morphisms given by maps fn : Xn → Yn with
commutative diagrams

S1 ∧Xn

ϕX
n ��

1S1∧fn

��

Xn+1

fn+1

��
S1 ∧ Yn

ϕY
n �� Yn+1.

The sphere spectrum S has Sn = S1 ∧ · · · ∧ S1, the n–fold smash product, and
ϕn the identity map.

Let γX
n : Xn → ΩXn+1 be the maps induced by the adjoints of the structure

maps. An Ω-spectrum is a spectrum where the maps γX
n are weak equivalences for

all n.

The homotopy groups πk(X) of spectra are given by

πk(X) = lim−→
n

πk+n(Xn)

over the maps πk+n(Xn) → πk+n(ΩXn+1) � πn+k+1(Xn+1), induced the γX
n . A

spectrum is n–connected if πk(X) = 0 for all k ≤ n and connective if it is −1-
connected. A spectrum X is cofibrant if all the structure maps φX

n : S1 ∧ Xn →
Xn+1 are cofibrations.

However, a problem with the Bousfield–Friedlander spectra is that they do
not have a homotopically good smash product. The construction of categories of
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spectra with smash products were developed in the ’90s, especially the S-modules
model of [EKMM97] and the symmetric spectra model of [HSS00]. In a more
modern approach, it is therefore preferable to work with symmetric spectra for the
Segal construction. Indeed, the Gamma-spaces, SW-categories and Waldhausen
categories that occur in relation to the spectra underlying the Grothendieck ring of
varieties and its variants naturally give rise to symmetric spectra.

A symmetric spectrum consists of a sequence of pointed spaces (pointed sim-
plicial sets) X = {Xn}n≥0 together with a left action of the symmetric group Sn on
Xn for all n ≥ 0 and structure maps given by based maps ϕX

n : S1∧Xn → Xn+1 for
all n ≥ 0, with the condition that, for all n,m ≥ 0 the composition ϕX

n+m−1◦· · ·◦ϕX
n

ϕX
n+m−1 ◦ · · · ◦ ϕX

n : Sm ∧Xn → Sm−1 ∧Xn+1 → · · ·S1 ∧Xn+m−1 → Xn+m

is Sn × Sm-equivariant. A morphism of symmetric spectra is a collection of Sn-
equivariant based maps fn : Xn → Yn such that fn+1 ◦ ϕX

n = ϕY
n ◦ (fn ∧ IdS1),

for all n ≥ 0. A symmetric spectrum is ring spectrum if it is also endowed with
Sn × Sm-equivariant multiplication maps

Mn,m : Xn ∧Xm → Xn+m

and unit maps ι0 : S0 → X0 and ι1 : S1 → X1 satisfying the associativity commu-
tative squares

Xn ∧Xm ∧Xr

Mn,m∧Id

��

Id∧Mm,r�� Xn ∧Xm+r

Mn,m+r

��
Xn+m ∧Xr

Mn+m,r �� Xn+m+r

the unit relations

Mn,0 ◦ (Id ∧ ι0) = Id : Xn � Xn ∧ S0 → Xn ∧X0 → Xn

and similarly M0,n ◦ (ι0∧Id) = Id for all n ≥ 0, as well as χn,1 ◦ (Mn,1 ◦ (Id∧ ι1)) =
(M1,n ◦ (ι1 ∧ Id)) ◦ τ with τ : Xn ∧ S1 → S1 ∧ Xn and χn,m ∈ Sn+m the shuffle
permutation moving the first n elements past the last m. Commutativity of a
symmetric ring spectrum is expressed by the commutativity of the diagrams

Xn ∧Xm
��

Mn,m

��

Xm ∧Xn

Mm,n

��
Xn+m χn,m

�� Xm+n

with the twist as the first map. For a detailed introduction to symmetric spectra
we refer the reader to [Schw12].

4.2. Γ–spaces. We recall the setting of Γ–spaces used in the Segal’s construc-
tion of spectra from categorical data. The notion of Γ-spaces and its relation to
connective spectra formalizes the intuition that spectra are a natural homotopy-
theoretic generalization of abelian groups.

Let Γ0 denote the category of finite pointed sets, with objects

n = {0, 1, 2, . . . , n}
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and morphisms f ∈ Γ0(n,m) given by functions

f : {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}, with f(0) = 0.

Let Γ denote the opposite category.

A pointed category C is a category with a chosen object that is both initial and
final. A pointed functor F : Γ0 → C is called a Γ-object in C.

Given a pointed category C, the category ΓC has objects the pointed functors
F : Γ0 → C and morphisms the natural transformations between these functors.

Γ-spaces are objects of the category ΓC, in the case where C = Δ∗ is the
category of pointed simplicial sets.

Given a Γ-space F : Γ0 → Δ∗, the morphisms fj : n → 1 that map the j-th
element to 1 and the rest to 0 induce, for each n ≥ 1, a morphism

(4.1) F (n)→
n∏

j=1

F (1).

The special Γ–spaces (or Segal Γ–spaces) are Γ–spaces F as above, where all
the maps (4.1) are weak equivalences. For special Γ–spaces the weak equivalence
F (2) � F (1)× F (1) induces a monoid

π0(F (1))× π0(F (1))→ π0(F (2))→ π0(F (1)).

Such a Γ–space is called very special when this monoid is an abelian group.

The Γ–space S : Γ0 → Δ∗ is given by the inclusion of the category Γ0 into Δ∗
mapping a finite pointed set to the corresponding discrete pointed simplicial set.
As shown in [Se74] (Barratt–Priddy–Quillen theorem), the associated spectrum is
the sphere spectrum, which we also denote by S.

The category Γ0 of finite pointed sets has a smash product functor ∧ : Γ0×Γ0 →
Γ0, with (n,m) → n ∧m, which extends to a smash product of arbitrary pointed
(simplicial) sets.

The smash product of Γ-spaces constructed in [Ly99] is obtained by first asso-
ciating to a pair F, F ′ : Γ0 → Δ∗ of Γ–spaces a bi–Γ-space F ∧̃F ′ : Γ0 × Γ0 → Δ∗

(F ∧̃F ′)(n,m) = F (n) ∧ F ′(m)

and then defining

(F ∧ F ′)(n) = colimk∧�→n(F ∧̃F ′)(k, �),

where k ∧ � is the smash product ∧ : Γ0 × Γ0 → Γ0. It is shown in [Ly99] that,
up to natural isomorphism, this smash product is associative and commutative and
with unit given by the Γ-space S, and that the category of Γ-spaces is symmetric
monoidal with respect to this product.

Another use of Γ-spaces in the context of F1-geometry can be found in the
recent paper [CC16].
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4.3. From Γ–spaces to connective spectra. The construction of [Se74],
and more generally [BousFr78], assigns a connective spectrum to a Γ-space in such
a way as to obtain an equivalence between the homotopy category of Γ-spaces and
the homotopy category of connective spectra. The construction of spectra from
Γ-spaces can be performed in the modern setting of symmetric spectra, rather than
in the original Bousfield–Friedlander formulation of [BousFr78], see Chapter I,
Section 7.4 of [Schw12].

If X is a simplicial set, one denotes by X∗ the pointed simplicial set obtained by
adding a disjoint base point. Given a Γ-space F : Γ0 → Δ∗ and a pointed simplicial
set X, one obtains a new Γ-space X ∧ F , which maps n ∈ Γ0 to X ∧ F (n) in Δ∗.

Recall that, given a functor F : Cop × C → D, the coend
∫ C∈C

F (C,C) is the
initial cowedge, where a cowedge to an object X in C is a family of morphisms
hA : A → X, for each A ∈ C, such that, for all morphisms f : A → B in C the
following diagrams commute

F (B,A)
F (f,A)��

F (B,f)

��

F (A,A)

hA

��
F (B,B)

hB �� X.

The key step in the construction of a connective spectrum associated to a Γ–
space consists of extending a Γ–space F to an endofunctor of the category of pointed
simplicial sets. This endofunctor is defined in [BousFr78] (see also [Schw99]) as
the functor (still denoted by F ) that maps a pointed simpliciat set K ∈ Δ∗ to the
coend

F : K →
∫ n∈Γop

Kn ∧ F (n),

with natural assembly maps K ∧ F (K ′)→ F (K ∧K ′).

The spectrum associated to F , which we denote by F (S), is then given by the
sequence of pointed simplicial sets F (S)n = F (Sn = S1 ∧ · · · ∧ S1), with the maps
S1 ∧ F (Sn)→ F (Sn+1).

The smash product of Γ-spaces is compatible with the smash product of spectra:
as shown in [Ly99], if F, F ′ : Γ0 → Δ∗ are Γ-spaces with F (S) and F ′(S) the
corresponding spectra, then there is a map of spectra,

F (S) ∧ F ′(S)→ (F ∧ F ′)(S)

which is natural in (F, F ′), and a weak equivalence if one of the factors is cofibrant.

This gives rise to a notion of ring spectra (see [Schw99]) defined as the monoids
in the symmetric monoidal category of Γ–spaces with the smash product of [Ly99]
recalled above. One refers to these as Γ–rings. Namely, a Γ–ring is a Γ–space F en-
dowed with unit and multiplication maps S→ F and F ∧F → F with associativity
and unit properties (Sec VII.3 of [MacL71]). The associated connective spectrum
of a commutative Γ-ring is a commutative symmetric ring spectrum. However, not
all connective commutative symmetric ring spectra come from a commutative Γ–
ring, see [La09]. For a comparative view of the settings of Γ-rings and symmetric
ring spectra, see the discussion in Section 2 of [Schw99].
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If G is an abelian group, there is an associated Γ-space HG given on objects
by

HG(n) = G⊗ Z[n] � Gn,

where Z[n] is the free abelian group on the finite set n. If f : n→ m is a morphism
in Γ0, then the associated morphism H(f) : HG(n) → HG(m) maps an n-tuple
(g1, . . . , gn) (with g0 = 0) in Gn to the m–tuple (

∑
j∈f−1(1) gj , . . . ,

∑
j∈f−1(n) gn).

This Eilenberg–MacLane Γ–space HG maps to the Eilenberg–MacLane spectrum of
G, which we still denote by HG. If R is a simplicial ring, then HR is an S–algebra
with multiplication HR ∧HR→ H(R⊗R)→ HR and unit S→ HZ→ HR.

4.4. Assemblers, spectra, and the Grothendieck ring. We start with a
brief survey of the construction of a spectrum associated to the Grothendieck ring
of varieties developed in [Za17a] and [Za17c].

Inna Zakharevich developed in [Za17a] and [Za17b] a very general formalism
for scissor–congruence relations. The abstract form of scissor–congruence consists
of categorical data called assemblers, which in turn determine a homotopy–theoretic
spectrum, whose homotopy groups embody scissor–congruence relations. This for-
malism is applied in [Za17c] in the framework producing an assembler and a spec-
trum whose π0 recovers the Grothendieck ring of varieties. This is used to obtain
a characterisation of the kernel of multiplication by the Lefschetz motive, which
provides a general explanation for the observations of [Bor14], [Mart16] on the
fact that the Lefschetz motive is a zero divisor in the Grothendieck ring of varieties.

A sieve in a category C is a full subcategory C′ that is closed under precompo-
sition by morphisms in C. A Grothendieck topology on a category C consists of the
assignment of a collection J (X) of sieves in the over category C/X, for each object
X in C, with the following properties:

(i) the over category C/X is in the collection J (X);

(ii) the pullback of a sieve in J (X) under a morphism f : Y → X is a sieve in
J (Y );

(iii) given C′ ∈ J (X) and a sieve T in C/X, if for every f : Y → X in C′ the
pullback f∗T is in J (Y ) then T is in J (X).

Let C be a category with a Grothendieck topology. A collection of morphisms
{fi : Xi → X}i∈I in C is a covering family if the full subcategory of C/X that
contains all the morphisms of C that factor through the fi,

{g : Y → X | ∃i ∈ I h : Y → Xi such that fi ◦ h = g},

is in the sieve collection J (X).

In a category C with an initial object ∅ two morphisms f : Y → X and g :
W → X are called disjoint if the pullback Y ×X W exists and is equal to ∅. A
collection {fi : Xi → X}i∈I in C is disjoint if fi and fj are disjoint for all i �= j ∈ I.

An assembler category C is a small category endowed with a Grothendieck
topology, which has an initial object ∅ (with the empty family as covering family),
and where all morphisms are monomorphisms, with the property that any two finite
disjoint covering families of X in C have a common refinement that is also a finite
disjoint covering family.



HOMOTOPY TYPES AND GEOMETRIES BELOW Spec(Z) 43

A morphism of assemblers is a functor F : C → C′ that is continuous for
the Grothendieck topologies and preserves the initial object and the disjointness
property, that is, if two morphisms are disjoint in C their images are disjoint in C′.

For X a finite set, the coproduct of assemblers
∨

x∈X Cx is a category whose
objects are the initial object ∅ and all the non–initial objects of the assemblers Cx.
Morphisms of non–initial objects are induced by those of Cx.

The abstract scissor congruences consist of pairs of an assembler C and a sieve
D in C. Given such a pair, one has an associated assembler C � D defined as
the full subcategory of C that contains all the objects that are not non–initial
objects of D. The assembler structure on C�D is determined by taking as covering
families in C � D those collections {fi : Xi → X}i∈I with Xi, X objects in C � D
that can be completed to a covering family in C, namely such that there exists
{fj : Xj → X}j∈J with Xj in D such that {fi : Xi → X}i∈I ∪ {fj : Xj → X}j∈J

is a covering family in C. There is a morphism of assemblers C → C �D that maps
objects of D to ∅ and objects of C � D to themselves and morphisms with source
in C � D to themselves and morphisms with source in D to the unique morphism
to the same target with source ∅. The data C,D, C � D are an abstract scissor
congruence, [Za17a], [Za17b].

The construction of spectra from assembler categories uses the general con-
struction of spectra from categorical data is provided by the Segal construction
[Se74] of spectra from Γ–spaces, that we recalled in Section 4.2 above.

The main construction of [Za17a] associates to an assembler C a homotopy–
theoretic spectrum, whose homotopy groups provide a family of associated topolog-
ical invariants satisfying versions of scissor congruence relations. The main steps
of the construction can be summarized as follows (see [Za17a]):

(1) One associates to an assembler C a category W(C) with objects {Ai}i∈I ,
collections of non–initial objects Ai of C indexed by a finite set I, and morphisms
f : {Ai}i∈I → {Bj}j∈J given by a map of finite sets f : I → J and morphisms
fi : Ai → Bf(i) such that {fi : Ai → Bj : i ∈ f−1(j)} is a disjoint covering family
for all j ∈ J .

(2) For a finite pointed set (X, x0) and an assembler C, one considers the as-
sembler X ∧ C :=

∨
x∈X�{x0} C. The assignment X → NW(X ∧ C), where N is

the nerve, is a Γ–space in the sense of [Se74] recalled above, hence it defines a
spectrum K(C) by

Xn = NW(Sn ∧ C)

with structure maps S1 ∧Xn → Xn+1 determined by the maps

X ∧ NW(C)→ NW(X ∧ C).

(3) The group K0(C) := π0K(C) is the free abelian group generated by objects
of C modulo the scissor–congruence relations [A] =

∑
i∈I [Ai] for each finite disjoint

covering family {Ai → A}i∈I .
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(4) Given a morphism ϕ : C1 → C2 of assemblers, there is an assembler C2/ϕ
and a morphism ι : C2 → C2/ϕ such that the diagram

K(ι) ◦K(ϕ) : K(C1)→ K(C2)→ K(C2/ϕ)

is a cofiber sequence.

4.5. Assembler for the equivariant Grothendieck ring. As we have seen

in the previous section, the equivariant version of the Grothendieck ring K Ẑ
0 (VK)

is generated by isomorphism classes of varieties with a “good” Ẑ-action, where as
before good means that each orbit is contained in an affine open subvariety of X
and that the action factors through some finite level Z/NZ. The scissor congruence
relations in K Ẑ

0 (VK) are of the form [X] = [Y ] + [X � Y ] where Y ↪→ X and

X � Y ↪→ X are Ẑ-equivariant embeddings. The product is given by the Cartesian

product endowed with the induced diagonal Ẑ-action.

Lemma 4.1. The category CẐ with objects that are varieties X with a good Ẑ-
action and morphisms that are equivariant locally closed embeddings, endowed with
the Grothendieck topology generated by the covering families {Y ↪→ X,X � Y ↪→
X} of Ẑ-equivariant embeddings, is an assembler category. The spectrum K Ẑ(V)
determined by the assembler CẐ has π0 given by the equivariant Grothendieck ring

K Ẑ
0 (V).

Proof. The first part of the statement follows as in Example 1 of sec. 1 of
[Za17c]. The empty set is the initial object. Finite disjoint covering families

are Ẑ-equivariant maps fi : Xi ↪→ X where Xi = Yi � Yi−1 for a chain of Ẑ-
equivariant embeddings ∅ = Y0 ↪→ Y1 ↪→ · · · ↪→ Yn = X. The property that any
two finite disjoint covering families have a common refinement follows since the
category has pullbacks, [Za17a]. Morphisms are compositions of closed and open

Ẑ-equivariant embeddings, hence they are all monomorphisms. For the second part,
by Theorem 2.3 of [Za17a], if K(C) is the spectrum determined by an assembler
C, then π0K(C) is generated, as an abelian group, by the objects of C with the
scissor–congruence relations determined by disjoint covering families. In this case

this means that K(CẐ) is generated by the pairs (X,α) of a variety X with a good

Ẑ-action α with relations [X] = [Y ] + [X � Y ] for the covering families given by Ẑ-
equivariant embeddings {Y ↪→ X,X�Y ↪→ X}. The ring structure is coming from
the symmetric monoidal structure on the category of assemblers, which induces
an E∞–ring structure on the spectrum K(C). In this case it induces the product

on K Ẑ
0 (V) given by the Cartesian product of varieties with the diagonal Ẑ-action

(see also Theorem 1.4 of [Ca15]). The ring structure is induced by an E∞–ring
spectrum structure on K(C) which is in turn induced by a symmetric monoidal
structure on the category of assembler, cf. [Za17a]. �

Following Theorem 4.25 of [Ca15], the ring structure on K Ẑ
0 (V) can also be

seen, as in the case of the ordinary Grothendieck ring K0(V), as induced on π0 by
an E∞–ring spectrum structure obtained from the fact that the cartesian product
of varieties determines a biexact symmetric monoidal structure on V , seen as an
SW–category (a subtractive Waldhausen category).
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4.6. Lifting the Bost–Connes algebra to spectra. We will now show
how to lift the maps σn and ρ̃n of the Bost–Connes system from the level of the

Grothendieck ring K Ẑ
0 (V) to the level of the spectrum K Ẑ(V).

Proposition 4.2. The maps σn(X,α) = (X,α ◦ σn) and ρ̃n(X,α) = (X ×
Zn,Φn(α)) on K Ẑ

0 (V) determine endofunctors of the assembler category CẐ. The
endofunctors σn are compatible with the monoidal structure induced by the Carte-
sian product of varieties with diagonal Ẑ–action.

Proof. The endofunctors σn of CẐ map an object (X,α) to (X,α ◦ σn) and a

pair of Ẑ-equivariant embeddings

(Y, α|Y ) ↪→ (X,α)←↩ (X � Y, α|X�Y )

to the pair of embedding

(Y, α|Y ◦ σn) ↪→ (X,α ◦ σn)←↩ (X � Y, α|X�Y ◦ σn).

This determines the functor σn on both objects and morphisms of CẐ. The com-
patibility with the monoidal structure comes from the compatibility with Cartesian
products σn(X,α)×σn(X

′, α′) = (X×X ′, (α×α′)◦Δ◦σn) = σn((X,α)×(X ′, α′)).

The group homomorphisms ρ̃n of K Ẑ
0 (V) are also induced by endofunctors of CẐ,

which map objects by ρ̃n(X,α) = (X × Zn,Φn(α)) and pairs of Ẑ–equivariant
embeddings

(Y, α|Y ) ↪→ (X,α)←↩ (X � Y, α|X�Y )

to pair of embedding

(Y × Zn,Φn(α|Y )) ↪→ (X × Zn,Φn(α))←↩ ((X � Y )× Zn,Φn(α|X�Y ))

where Φn(α|Y ) = Φn(α)|Y and Φn(α|X�Y ) = Φn(α)|X�Y . The functors ρ̃n, how-
ever, are not compatible with the monoidal structure, and this reflects the fact

that they only induce group homomorphisms on K Ẑ
0 (V) rather than ring homomor-

phisms. �

One can obtain a similar argument working with subtractive Waldhausen cat-
egories as in [Ca15] in place of assemblers as in [Za17a].

4.7. The Kontsevich–Tschinkel Burnside ring. In a similar way, instead

of working with the Grothendieck ring K Ẑ
0 (V), we can consider the refinement of

the Grothendieck ring constructed in [KoTsch17]. We discuss here briefly how to
adapt the previous construction to this case.

In [KoTsch17] a refinement of the Grothendieck ring of varieties is introduced,
which is based on birational equivalence. More precisely, for K a field of charac-
teristic zero, the Burnside semiring Burn+(K) is defined as the set of equivalence
classes of smooth K-varieties under the K-birational equivalence relation, with addi-
tion and multiplication are given by disjoint union and product over K (Definition 2
of [KoTsch17]). The Burnside ring Burn(K) is the Grothendieck ring generated
by the semiring Burn+(K). Equivalently, the Burnside ring Burn(K) is generated
by isomorphism classes [X] of smooth varieties over K with the equivalence relation
[X] = [U ] for U ↪→ X an open embedding with dense image.
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To construct an assembler and an associated spectrum that recovers the Burn-
side ring Burn(K) as its zeroth homotopy group, we proceed again as in [Za17a].

Lemma 4.3. Let CBurn be the category with non–initial objects given by the
smooth K-varieties X and morphisms given by the open embeddings U ↪→ X with
dense image. Consider the Grothendieck topology which is generated by the open
dense embeddings U ↪→ X. The category CBurn is an assembler and the associated
spectrum K(CBurn) has π0K(CBurn) = Burn(K).

Proof. The initial object is the empty scheme. If X is irreducible, a dis-
joint covering family consists of a single dense open set U ↪→ X and the common
refinement of two disjoint covering families U1 ↪→ X and U2 ↪→ X is the dense
open set U1 ∩ U2 ↪→ X. Morphisms are monomorphisms given by compositions of
open dense embeddings. This shows that the category CBurn is an assembler. As
an abelian group, π0K(CBurn) is generated by the objects of CBurn with relations
[X] =

∑
i[Xi] for {fi : Xi → X} a finite disjoint covering family. In this case this

means identifying [X] = [U ] for any dense open embedding U ↪→ X, which is the
equivalence relation of Burn(K). �

It is shown in [KoTsch17] that the Burnside ring Burn(K) with the grading
given by the transcendence degree, maps surjectively to the associated graded object
grK0(VK) with respect to the filtration of K0(VK) by dimension

(4.2) Burn(K)→ grK0(VK).

As we did in the case of the Grothendieck ring, we can also consider an equi-
variant version of the Kontsevich–Tschinkel Burnside ring Burn(K) with respect to

the group Ẑ, see sec. 5 of [KoTsch17]. The corresponding assembler and spectrum
are obtained as a modification of the case discussed above. The following statement
can be proved by arguments as in Lemma 4.3 and Lemma 4.1.

Lemma 4.4. Let BurnẐ(K) be generated by equivalence classes of smooth K-

varieties with a good Ẑ-action with respect to the equivalence relation [X] = [U ] for

U ↪→ X a Ẑ-equivariant dense open embedding. The category CẐBurn with objects the

smooth K–varieties X with a good Ẑ–action and and morphisms the Ẑ–equivariant
dense open embeddings U ↪→ X is an assembler with π0K(CẐBurn) = BurnẐ(K).

We refer to K(CẐBurn) as the Ẑ–equivariant Burnside spectrum.

The notion of an epimorphic assembler with a sink was introduced in Section 4
of [Za17a]. It denotes an assembler C with a sink object S such that Hom(X,S) �= ∅
for all other objects X ∈ C, and with the properties that all morphisms f : X → Y
in C with X non-initial are epimorphisms with the set {f : X → Y } a covering
family, and for X,Y �= ∅ no two morphisms X → Z and Y → Z are disjoint. There
is a group GC associated to epimorphic assembler with a sink, with elements the
equivalence classes of pairs of morphisms f1, f2 : X → S from a non-initial object
to the sink, where the equivalence [f1, f2 : X → S] = [g1, g2 : Y → S] is determined
by the existence of an object Z and maps hX : Z → X and hY : Z → Y such that
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the diagram commutes
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��

��
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�
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and with the composition given by any (equivalent) completion to a commutative
diagram of the form
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��
��
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��

��
��

�

S S S

It is shown in Theorem 4.8 of [Za17a] that any choice of a morphism fX : X → S
from each object of C to the sink object S determines a morphism of assemblers
C → SG, where SG is the assembler with objects ∅ and �, a non-invertible morphism
∅ → � and invertible morphisms Aut(�) = G, which has spectrum K(SG) = Σ∞

+ BG
(see Example 3.2 of [Za17a]). This morphism of assemblers C → SG induces an
equivalence on K-theory.

Lemma 4.5. The assembler CẐBurn is a coproduct of epimorphic assemblers with
sinks

CẐBurn =
∨

[X,α]

CẐBurn(X,α)

where
K(CẐBurn(X,α)) � Σ∞

+ BAutẐ(K(X,α)),

with AutẐ(K(X,α)) the group of Ẑ-equivariant birational automorphisms of X with

good Ẑ-action α.

Proof. For an irreducible smooth projective variety X with a good Ẑ-action
α : Ẑ×X → X, consider the assembler CẐBurn(X,α) with objects (U, αU ) ↪→ (X,α)

the Ẑ-equivariant dense open embeddings, with α, αU the compatible good actions
of Ẑ on X and U , respectively. Arguing as in Theorem 5.3 of [Za17a] for the non-

eqiuvariant case, we see that CẐBurn(X) satisfies the conditions of an epimorphic

assembler with sink. The associated group GẐ
(X,α) consists of equivalence classes

of pairs f1, f2 : (U, αU ) → (X,α), and the fi are equivariant with respect to these

actions. The group GẐ
(X,α) is therefore given by the group AutẐ(K(X,α)) of Ẑ-

equivariant birational automorphisms of the variety with good Ẑ action (X,α). We

then have K(CẐBurn(X,α)) � Σ∞
+ BAutẐ(K(X,α)). Moreover, we can identify the

assembler CẐBurn with the coproduct over equivalence classes [X,α] of the assemblers

CẐBurn(X,α) as above, since the morphisms of CẐBurn between non-initial objects come

from morphisms of the CẐBurn(X,α) and the objects of CẐBurn consist of an initial
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object ∅ and the non-initial objects of the CẐBurn(X,α) for a choice of representatives
of the classes [X,α]. �

The relation between the Kontsevich–Tschinkel Burnside ring BurnẐ(K) and

the equivariant Grothendieck ring K Ẑ
0 (VK) can then be formulated at the level of

assemblers and spectra in a form similar to Theorem 5.2 of [Za17a], using the same

argument, adapted to the equivariant case. Let CẐ,(�)K denote the full sub-assembler

of the assembler CẐK of Lemma 4.1 above, consisting of varieties of dimension at

most � with good Ẑ-action.

Proposition 4.6. Let BẐ
n denote the set of birational isomorphism classes

of varieties of dimension n with good Ẑ-action, through Ẑ-equivariant birational
isomorphisms. The coproduct assembler

CẐBurn,n :=
∨

[X,α]∈BẐ
n

CẐBurn(X,α)

satisfies

K(CẐBurn,n) �
∨

[X,α]∈BẐ
n

Σ∞
+ BAutẐ(K(X,α)) � hocofib(K(CẐ,(n−1)

K )→ K(CẐ,(n)K )).

4.8. Burnside spectrum and Bost–Connes endomorphisms. The same
procedure we used to lift the Bost–Connes maps σn and ρ̃n to the Grothendieck

ring K Ẑ
0 (V) and the spectrum K Ẑ(V) can be adapted to lift the same maps to the

Kontsevich–Tschinkel Burnside ring BurnẐ(K) and the spectrum K(CẐBurn).

Proposition 4.7. The maps σn and ρ̃n of the integral Bost–Connes algebra

lift to endofunctors of the assembler category CẐBurn, with the σn compatible with
the monoidal structure induced by the Cartesian product. These endofunctors in-
duce the corresponding maps σn and ρ̃n on the Kontsevich–Tschinkel Burnside ring

BurnẐ(K).

Proof. We argue as in Proposition 4.2. The endofunctors σn of CẐBurn map an

object (X,α) to (X,α ◦ σn) and a Ẑ-equivariant dense open embedding

(U, α|U ) ↪→ (X,α)

to the Ẑ–equivariant dense open embedding

(U, α|U ◦ σn) ↪→ (X,α ◦ σn).

This determines the functor σn on both objects and morphisms of CẐBurn. As in
Proposition 4.2 one sees the σn are compatible with Cartesian products and induce

ring homomorphisms of BurnẐ(K). The ρ̃n map objects by ρ̃n(X,α) = (X ×
Zn,Φn(α)) and Ẑ-equivariant dense open embeddings (U, α|U ) ↪→ (X,α) by

(U × Zn,Φn(α|U )) ↪→ (X × Zn,Φn(α))

with Φn(α|U ) = Φn(α)|U . The ρ̃n are not compatible with the monoidal structure

and only induce group homomorphism on BurnẐ(K). �
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5. Expectation values, motivic measures, and zeta functions

5.1. The Bost–Connes expectation values. In the case of the original
Bost–Connes system, one considers representations π of the Bost–Connes algebra
(either the integral AZ or the rational AQ = Q[Q/Z] � N) on a Hilbert space
H = �2(N) and associates to the algebra and the representation a dynamical system,
namely the one–parameter group of automorphism σ : R → Aut (A) of the C∗-
algebra generated by AQ, seen as an algebra of bounded operators on H. The time
evolution satisfies the covariance condition

π(σt(a)) = eitHπ(a)e−itH ,

where H is an (unbounded) linear operator on H, the Hamiltonian of the system.
In the Bost–Connes case the time evolution is determined by σt(μn) = nitμn and
σt(x) = x for x ∈ Q[Q/Z]. The Hamiltonian acts on the standard orthonormal
basis of �2(N) as Hεn = log(n) εn and the partition function Z(β) = Tr(e−βH) is
the Riemann zeta function, [BoCo95]. For any element a ∈ AQ the expectation
value with respect to the Bost–Connes dynamics is then given by

(5.1) 〈a〉β = ζ(β)−1Tr(π(a)e−βH) = ζ(β)−1
∑
n∈N

〈εn, π(a)e−βHεn〉.

We can similarly construct Bost–Connes expectation values associated to the non-

commutative ring KẐ
0(V) defined in Section 3.4.

5.2. The equivariant Euler characteristic. As we discussed above, the

equivariant Euler characteristic χ : K Ẑ
0 (VQ) → K Ẑ

0 (Q) induces a ring homomor-

phism KẐ
0(VQ)→ AZ where AZ is the integral Bost–Connes algebra. After tensor-

ing with Q, one obtains a morphism of crossed product algebras KẐ
0(VQ) ⊗ Q =

K Ẑ
0 (VQ)Q �N→ AQ = Q[Q/Z]�N, with K Ẑ

0 (VQ)Q = K Ẑ
0 (VQ)⊗Q.

Proposition 5.1. Let π be a representation of the Bost–Connes algebra AQ on
the Hilbert space H = �2(N) with π(μn)εm = εnm and π(e(r))εn = ζnr εn for r → ζr
an embedding of Q/Z as the group of roots of unity in C∗. Then π determines a

one–parameter family of group homomorphism ϕβ : K Ẑ
0 (VQ) → C, with β ∈ R∗

+,

such that for all [X,α] ∈ K Ẑ
0 (VQ) the product ζ(β)·〈[X,α]〉β, with ζ(β) the Riemann

zeta funciton, is a Z-combination of values at roots of unity of the polylogarithm
function Liβ(x).

Proof. For the generators a = e(r) of Z[Q/Z] the expectation value (5.1) is
a polylogarithm function evaluated at a root of unity normalized by the Riemann
zeta function,

〈e(r)〉β = ζ(β)−1
∑
n≥1

ζnr n−β =
Liβ(ζr)

ζ(β)
,

where π(e(r))εn = ζnr εn with r → ζr an embedding of Q/Z as the roots of unity
in C∗. Given a representation π of the Bost–Connes algebra, we compose the

equivariant Euler characteristic KẐ
0(VQ)⊗Q = K Ẑ

0 (VQ)Q �N→ AQ = Q[Q/Z]�N
with the Bost–Connes expectation value ϕ(X,α) = 〈χ(X,α)〉β. �
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5.3. Expectation values of motivic measures. Other examples can be
constructed using other motivic measures. For example, one can consider the mixed
Hodge motivic measure h : K0(VC)→ K0(HS) with h(X) =

∑
r(−1)r[Hr

c (X,Q)] ∈
K0(HS). This is a refinement of the Hodge–Deligne polynomial motivic measure
P : K0(VC) → Z[u, v, u−1, v−1] with P (X, u, v) =

∑
p,q dimHp,qupvq. In the case

of complex varieties with a good Ẑ-action that factors through a finite quotient

Z/nZ, the graded pieces Hp,q are Ẑ-modules. The equivariant Hodge–Deligne poly-

nomial is then defined as the polynomial in Z[Q/Z][u, v] given by P Ẑ((X,α), u, v) =∑
p,q E

p,q(X,α)uqvq with Ep,q(X,α) =
∑

k(−1)kHp,q(Hk
c (X,C)), with the Ẑ-

module structure determined by the actoin α. The equivariant weight polyno-

mial is given by W Ẑ(X,w) = P Ẑ(X,w,w) while evaluation at w = 1 recovers the
equivariant Euler characteristic. The associated expectation values are then of the
form

ϕβ(X,α) =
∑
p,q

〈Ep,q(X,α)〉β uqvq.

5.4. Zeta functions and assemblers. Passing from the level of Grothen-
dieck rings to assemblers, spectra, and K-theory, as in [Za17a]–[Za17c], also pro-
vides possible methods for lifting the zeta functions at the level of K-theory. One
approach, currently being developed [Za18], directly uses assemblers and the con-
struction of a map of assemblers between the assemblers underlying the Grothen-
dieck ring (and its equivariant version as discussed above) and an assembler of
almost-finite-G-sets, by mapping a variety X to the almost-finite set X(K̄). An-
other approach to the lifting of zeta functions was developed in [CaWoZa17],
using étale cohomology and SW-categories. Zeta functions and the lifts of the
Bost–Connes system to assemblers and spectra are further developed in the second
part of this work, [LieManMar19].

Following the approach being developed in [Za18], one can show that the equi-
variant Euler characteristic

χẐ : K Ẑ
0 (V)→ Z[Q/Z]

discussed above in Sections 3.1–3.2 lifts to a map of assembler by considering, as
in Section 3.2, the morphism

χG : KG
0 (V)→ A(G)→ R(G)

with A(G) the Burnside ring, for a finite group G, with the equivariant Euler
characteristics defined as in [Gu-Za17] as mapping χG(X) =

∑
k[Xk] with [Xk]

the classes in A(G) of the k-skeleta. In the case of Ẑ one considers the completion

Â(Ẑ) = lim←−A(Z/nZ) as discussed in Section 3.2, where the complete Burnstein ring

Â(Ẑ) is seen as the Grothendieck ring of almost-finite Ẑ-sets [DrSi88]. According
to [Za18], there is a construction of an assembler of almost-finite-G-sets, which we
denote by AFG. The equivariant Euler characteristic

χG : KG
0 (V)→ A(G)

then lifts to a morphism of assemblers

χG : CG → AFG

since the assignment of X to the union of the Xk as G-sets and G-equivariant
embeddings Y ↪→ X and X � Y ↪→ X to the corresponding maps of the skeleta as
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G-sets maps disjointness morphisms in the assembler CG to disjoint morphisms in
the assembler AFG. In particular, the equivariant Euler characteristic

χẐ : K Ẑ
0 (V)→ Â(Ẑ)

can be lifted to a morphism of assemblers

χẐ : CẐ → AF Ẑ.

6. Dynamical F1-structures and the Bost–Connes algebra

6.1. The spectrum as Euler characteristic. The point of view we adopt
here is similar to [EbGu-Za17]. We consider the Grothendieck ringKZ

0 (VC) of pairs
(X, f) of a complex quasi-projective variety X with an automorphism f : X → X,
such that f∗ in homology is quasi-unipotent. The addition is given by disjoint union
and the product by the Cartesian product.

The quasi-unipotent condition ensures that the spectrum of the induced action
f∗ : H∗(X,Z) → H∗(X,Z) is contained in the set of roots of unity. We can then
consider the spectrum of f∗ as an Euler characteristic.

Lemma 6.1. The spectrum of the induced map on homology determines a ring
homomorphism

(6.1) σ : KZ
0 (VC)→ Z[Q/Z].

Proof. To a pair (X, f) we associate the spectrum of the map f∗ : H∗(X,Z)→
H∗(X,Z), seen as a subset Σ(f∗) ⊂ Q/Z of roots of unity counted with integer
multiplicities. Thus, we have σ(X, f) =

∑
λ∈Σ(f∗)

mλ λ. The spectrum of a tensor

product is given by the set of products of eigenvalues of the two matrices, hence
the compatibility with the ring structure of KZ

0 (VC). �

Under suitable assumptions on the induced map on H∗(X,C) and its Hodge
decomposition, one can also consider other kinds of motivic measures associated to
the spectrum Σ, for example generalizations of the Hodge–Deligne polynomial, see
[EbGu-Za17].

6.2. Lifting the Bost–Connes algebra to dynamical F1-structures. Let
Zn be a zero-dimensional variety with #Zn(C) = n. Then, for a given (X, f) ∈
KZ

0 (VC), the Verschiebung pair (X×Zn,Φn(f)) consists of the variety X×Zn with
the automorphism Φn(f)(x, ai) = (x, ai+1) for i = 1, . . . , n− 1 and Φn(f)(x, an) =
(f(x), a1).

Lemma 6.2. The induced map in homology Φn(f)∗ : H∗(X×Zn,Z)→ H∗(X×
Zn,Z) is the Verschiebung map.

Proof. We have Hk(Zn,Z) = Zn for k = 0 and zero otherwise, hence we can
identify H∗(X×Zn,Z) � H∗(X,Z)⊕n. Then the action Φn(f)(x, ai) = (x, ai+1) for
i = 1, . . . , n − 1 and Φn(f)(x, an) = (f(x), a1) induces the action Φn(f)∗ = V (f∗)
in homology. �

Proposition 6.3. The maps σn(X, f)=(X, fn) and ρ̃n(X, f)=(X×Zn,Φn(f))
lift the maps σn and ρ̃n of the integral Bost–Connes algebra to the Grothendieck ring
KZ

0 (VC), compatibly with the spectrum Euler characteristic σ : KZ
0 (VC)→ Z[Q/Z].
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Proof. The argument is analogous to the case of Ẑ-actions analyzed in the
previous section. Because of the relations between Frobenius Fn(f) = fn and
Verschiebung Vn(f) we have

σn◦ρ̃n(X, f) = σn(X×Zn,Φn(f)) = (X×Zn,Φn(f)
n) = (X×Zn, f×1) = (X, f)⊕n

ρ̃n ◦ σn(X, f) = ρ̃n(X, fn) = (X × Zn,Φn(f
n)) = (X, f)× (Zn, γ),

with γ = Φn(1) : ai → ai+1 and an → a1, where as before we used the relation
Vn(Fn(a)b) = aVn(b), which gives Φn(f

n) = fΦn(1). Under the spectrum Euler
characteristic map σ : KZ

0 (VC) → Z[Q/Z] we then see that we have commutative
diagrams

KZ
0 (VC)

σ ��

σn

��

Z[Q/Z]

σn

��
KZ

0 (VC)
σ �� Z[Q/Z]

and similarly for the ρ̃n, where σn are ring homomorphism and ρ̃n are group ho-
momorphisms. �

Thus, we can consider a non-commutative version of the Grothendieck ring
KZ

0(VC).

Definition 6.4. Let KZ
0 (VC) be the non-commutative ring generated by

KZ
0 (VC) together with generators μ̃n and μ∗

n satisfying the relations (3.1) for all
n,m ∈ N, and (3.2) for all x = (X, f) ∈ KZ

0 (VC) and all n ∈ N.

Consider then the algebra KZ
0 (VC)Q = KZ

0 (VC)⊗Z Q. As in the Ẑ–equivariant
case analyzed in the previous section, the maps σn and ρ̃n induce endomorphisms
σn and ρn of KZ

0 (VC)Q, which determine a non-commutative semigroup crossed
product algebra. The spectrum Euler characteristic (6.1) extends to an algebra
homomorphism to the rational Bost–Connes algebra.

Proposition 6.5. The algebra KZ
0 (VC) ⊗Z Q is isomorphic to a semigroup

crossed product algebra KZ
0 (VC)Q � N with the semigroup action given by x →

n−1ρ̃n(x). The spectrum Euler characteristic (6.1) extends to an algebra homomor-
phism σ : KZ

0(VC)⊗ZQ→ AQ, where AQ = Q[Q/Z]�N is the rational Bost–Connes
algebra.

Proof. The algebra KZ
0 (VC) ⊗Z Q is generated by the elements of KZ

0 (VC)Q
and additional generators μn = n−1μ̃n and μ∗

n, which satisfy the relations

μ∗
nμn = 1, μnm = μnμm, μ∗

nm = μ∗
nμ

∗
m, ∀n,m ∈ N,

μnμ
∗
m = μ∗

mμn if (n,m) = 1

μnxμ
∗
n = ρn(x) with ρn(x) =

1

n
ρ̃n(x),

with σnρn(x) = x, for all x = (X, f) ∈ KZ
0 (VC). The semigroup action in the crossed

product algebra KZ
0 (VC)Q�N is given by x → ρn(x) = μnxμ

∗
n, hence one obtains an

identification of these two algebras. The morphism σ : KZ
0(VC)⊗Z Q → AQ is the

map given by the spectrum Euler characteristic on elements of KZ
0 (VC), extended

to Q-coefficients, and it maps χ(μn) = μn and χ(μ∗
n) = μ∗

n. By Proposition 6.3, it
determines a homomorphism of crossed–product algebras. �
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6.3. Assembler and Bost–Connes endofuntors. First we consider an as-
sembler category CZC associated to the ring KZ

0 (VC) and the associated Γ–space and
spectrum KZ(VC) with π0K

Z(VC) = KZ
0 (VC), then we show that the maps σn and

ρ̃n define endofunctors of the assembler CZC, hence they induce maps of spectra and
induced map of the homotopy groups that recover the Bost–Connes map on π0.

Proposition 6.6. Let CZC be the following category. Its objects are the pairs
(X, f) of a complex quasi–projective variety X with an automorphism f : X → X,
such that the induced map f∗ in homology is quasi–unipotent. Its morphisms ϕ :
(Y, h) ↪→ (X, f) are given by embeddings Y ↪→ X of components preserved by the
map f and h = f |Y . This is an assembler category, and the associated spectrum
KZ(VC) := K(CZC) has π0K(CZC) = KZ

0 (VC). The maps σn and ρ̃n on KZ
0 (VC) lift to

endofunctors of the assembler CZC, in which σn also compatible with the monoidal
structure.

Proof. The argument is similar to the Ẑ-equivariant case we discussed before.
In the category CZC the Grothendieck topology is generated by the covering families
{(X1, f |X1

) ↪→ (X, f), (X2, f |X2
) ↪→ (X, f)} with X = X1 � X2 and the Xi are

preserves by the map f : X → X. The empty X is the initial object. The finite
disjoint covering families are given by embeddings ϕi : (Xi, f |Xi

) ↪→ (X, f), where
the Xi are unions of components preserved by the map, f |Xi

= f ◦ ϕi. Any two
finite disjoint families have a common refinement since the category has pullbacks,
[Za17a] and morphisms are compositions of embeddings hence monomorphisms.
The abelian group structure on π0K(CZC) is determined by the relation (X, f) =
(X1, f |X1

) + (X1, f |X2
) for each decomposition X = X1 � X2 that is preserved

by the map f : X → X. The product is determined by the symmetric monoidal
structure induced by the Cartesian product. Thus, we obtain the ring KZ

0 (VC). The
endofunctors σn map objects by σn(X, f) = (X, fn) and maps pairs of embeddings
with X = X1 �X2

{(X1, f |X1
) ↪→ (X, f)←↩ (X2, f |X2

)}
to pairs of embeddings

{(X1, f
n|X1

) ↪→ (X, fn)←↩ (X2, f
n|X2

)}
These functors are compatible with Cartesian products, hence with the monoidal
structure. The endofunctore ρ̃n act on objects as ρ̃n(X, f) = (X × Zn,Φn(f)) and
map a pair of embeddings as above to the pair

{(X1 × Zn,Φn(f)|X1
) ↪→ (X × Zn,Φn(f))←↩ (X2 × Zn,Φn(f)|X2

)},
where Φn(f)|Xi

= Φn(f |Xi
). The functors ρ̃n are not compatible with the monoidal

structure hence they induce group homomorphisms of π0K(CZC). �

Note that, unlike the Ẑ-equivariant cases considered in the previous sections,
the spectrum K(CZC) is not so interesting topologically, since in the assembler we
are only using decompositions into connected components. The reason for wanting
only this type of scissor-congruence relations in KZ

0 (VC) is the spectrum Euler
characteristic σ : KZ

0 (VC) → Z[Q/Z], which should map a splitting X = X1 � X2

compatible with f : X → X to a corresponding splitting H∗(X,Z) = H∗(X1,Z)⊕
H∗(X2,Z) with quasi-unipotent maps f∗|Xi

, so that the spectrum as an element of
Z[Q/Z] satisfies σ(X, f) = σ(X1, f1) + σ(X2, f2).
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and Russian summaries), Mosc. Math. J. 4 (2004), no. 1, 217–244, 312, DOI
10.17323/1609-4514-2004-4-1-217-244. MR2074990
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Dynamical zeta functions of Reidemeister type
and representations spaces

Alexander Fel’shtyn and Malwina Zietek

Dedicated to the memory of Sergiy Kolyada

Abstract. In this paper we continue to study the Reidemeister zeta function.
We prove Pólya – Carlson dichotomy between rationality and a natural bound-
ary for analytic behavior of the Reidemeister zeta function for a large class of
automorphisms of Abelian groups. We also study dynamical representation
theory zeta functions counting numbers of fixed irreducible representations
for iterations of an endomorphism. The rationality and functional equation
for these zeta functions are proven for several classes of groups. We find a
connection between these zeta functions and the Reidemeister torsions of the
corresponding mapping tori. We also establish the connection between the

Reidemeister zeta function and dynamical representation theory zeta functions
under restriction of endomorphism to a subgroup and to a quotient group.

1. Introduction

Let G be a countable discrete group and φ : G → G an endomorphism. Two
elements α, β ∈ G are said to be φ-conjugate or twisted conjugate, iff there exists
g ∈ G with β = gαφ(g−1). We shall write {x}φ for the φ-conjugacy or twisted
conjugacy class of the element x ∈ G. The number of φ-conjugacy classes is called
the Reidemeister number of an endomorphism φ and is denoted by R(φ). If φ is
the identity map then the φ-conjugacy classes are the usual conjugacy classes in
the group G. Taking a dynamical point of view, we consider the iterates of φ, and
we may define [11] a Reidemeister zeta function of φ as a power series:

Rφ(z) = exp

( ∞∑
n=1

R(φn)

n
zn

)
.
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Whenever we mention the Reidemeister zeta function Rφ(z), we shall assume that
it is well-defined and so R(φn) < ∞ for all n > 0. The following problem was
investigated [13]: for which groups and endomorphisms is the Reidemeister zeta
function a rational function? Is this zeta function an algebraic function?

When a Reidemeister zeta function is a rational function the infinite sequence of
coefficients of the corresponding power series is closely interconnected, and is given
by the finite set of zeros and poles of the zeta function. In [11–14,21], the ratio-
nality of the Reidemeister zeta function Rφ(z) was proven in the following cases:
the group is finitely generated and an endomorphism is eventually commutative;
the group is finite; the group is a direct sum of a finite group and a finitely gener-
ated free Abelian group; the group is finitely generated, nilpotent and torsion free.
Recently, the rationality and functional equation for the Reidemeister zeta function
were proven for endomorphisms of fundamental groups of infra-nilmanifolds [5] and
for endomorphisms of fundamental groups of infra-solvmanifolds of type (R) [15].

In this paper we continue to study the Reidemeister zeta function. We prove
Pólya – Carlson dichotomy between rationality and a natural boundary for analytic
behavior of Reidemeister zeta function for a large class of automorphisms of Abelian
groups.

We continue to study dynamical representation theory zeta functions (see [18])
counting numbers of fixed irreducible unitary representations for iterates of an
endomorphism. The rationality and functional equation for these zeta functions
are proven for several classes of groups. We find a connection between these zeta
functions and the Reidemeister torsions of the corresponding mapping tori.

We establish the connection between Reidemeister zeta function and dynam-
ical representation theory zeta functions under restriction of endomorphism to a
subgroup and to a quotient group.

Our method is to identify the Reidemeister numbers with the number of fixed

points of the induced map φ̂ (respectively, its iterations) of an appropriate subspace

of the unitary dual Ĝ, when R(ϕ) <∞. This method is called the twisted Burnside–
Frobenius theory (TBFT), because in the case of a finite group and identity auto-
morphism we arrive to the classical Burnside–Frobenius theorem on enumerating
of (usual) conjugacy classes via irreducible unitary representations.

Let us present the contents of the paper in more details.
In Section 2 the rationality and functional equation for dynamical represen-

tation theory zeta functions are proven for endomorphisms of finitely generated
Abelian groups; endomorphisms of finitely generated torsion free nilpotent groups;
endomorphisms of groups with finite φ-irreducible subspaces of corresponding uni-
tary dual spaces and for automorphisms of crystallographic groups with diagonal
holonomy Z2. For a periodic automorphism of a group we have proved a product
formula for dynamical representation theory zeta functions which implies that these
zeta functions are radicals of rational functions.

In Section 3 we investigate the rationality of these zeta functions and the con-
nections between Reidemeister zeta function and dynamical representation theory
zeta functions under restriction of endomorphism to a subgroup and to a quotient
group. We also prove the Gauss congruences for the Reidemeister numbers of iter-
ations of endomorphism for a group with polycyclic quotient group.
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In Section 4 we presents results in support of a Pólya – Carlson dichotomy
between rationality and a natural boundary for analytic behavior of Reidemeister
zeta function for a large class of automorphisms of Abelian groups.

2. Dynamical zeta functions and representations spaces

Suppose, φ is an endomorphism of a discrete group G. Denote by Ĝ the unitary
dual of G, i.e. the space of equivalence classes of unitary irreducible representa-

tions of G, equipped with the hull-kernel topology, denote by Ĝf the subspace of
the unitary dual formed by irreducible finite-dimensional representations, and by

Ĝff the subspace of Ĝf formed by finite representations, i.e. representations that

factorize through a finite group. Generally the correspondence φ̂ : ρ → ρ ◦ φ does
not define a dynamical system (an action of the semigroup of positive integers) on

the unitary dual Ĝ or its finite-dimensional part Ĝf , or finite part Ĝff , because in
contrast with the authomorphism case, the representation ρ ◦ φ may be reducible,
so it is only possible to decompose ρ ◦φ into irreducible components and we obtain

a sort of multivalued map φ̂.
Nevertheless we can consider representations ρ such that ρ ∼ ρ ◦φ and proceed

as follows.

Definition 2.1. A representation theory Reidemeister number RT (φ) is de-

fined [18] as the number of all [ρ] ∈ Ĝ such that ρ ∼ ρ ◦ φ. Taking [ρ] ∈ Ĝf

(respectively [ρ] ∈ Ĝff ) we obtain RT f (φ) (respectively RT ff (φ)). Evidently
RT (φ) � RT f (φ) � RT ff (φ).

In analogy with the Reidemeister zeta function and other similar objects we
have defined in [18] jointly with E.Troitsky following dynamical representation zeta
functions

RTφ(z) = exp

( ∞∑
n=1

RT (φn)

n
zn

)
,

RT f
φ (z) = exp

( ∞∑
n=1

RT f (φn)

n
zn

)
,

RT ff
φ (z) = exp

( ∞∑
n=1

RT ff (φn)

n
zn

)
,

when numbers RT (φn) (resp, RT f (φn) , or RT ff (φn)) are all finite.
The importance of these numbers is justified by the following dynamical inter-

pretation. In [17] the following “dynamical part” of the dual space, where φ̂ and

all its iterations φ̂n define a dynamical system, was defined.

Definition 2.2. Following [17] a class [ρ] is called a φ̂-f -point, if ρ ∼ ρ◦φ (so,
these are the points under consideration in the Definition 2.1).

Definition 2.3. Following [17] an element [ρ] ∈ Ĝ (respectively, in Ĝf or Ĝff )
is called φ-irreducible if ρ ◦ φn is irreducible for any n = 0, 1, 2, . . . .

Denote the corresponding subspaces of Ĝ (resp., Ĝf or Ĝff ) by Ĝφ (resp., Ĝφ
f

or Ĝφ
ff ).
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Lemma 2.4 (Lemma 2.4 in [17]). Suppose the representations ρ and ρ ◦ φn are

equivalent for some n ≥ 1. Then [ρ] ∈ Ĝφ.

Corollary 2.5 (Corollary 2.5 in [17]). Generally, there is no dynamical sys-

tem defined by φ̂ on Ĝ (resp., Ĝf , or Ĝff). We have only the well-defined notion

of a φ̂n-f-point.

A well-defined dynamical system exists on Ĝφ (resp., Ĝφ
f , or Ĝφ

ff ). Its n-

periodic points are exactly φ̂n-f-points.

We refer to [17] for proofs and details.
Once we have identified the coefficients of representation theory zeta functions

with the numbers of periodic points of a dynamical system, the standard argument
with the Möbius inversion formula (see e.g. [12, p. 104], [17]) gives the following
statement.

Theorem 2.6. (Theorem 2.7 of [18]) Suppose , RT (φn) <∞ for any n. Then
we have the following Gauss congruences for representation theory Reidemeister
numbers: ∑

d|n
μ(d) ·RT (φn/d) ≡ 0 mod n

for any n.
A similar statement is true for RT f (φn) and RT ff (φn).

Here the above Möbius function is defined as

μ(d) =

⎧⎨⎩ 1 if d = 1,
(−1)k if d is a product of k distinct primes,
0 if d is not square− free.

Definition 2.7. Following [17] we say that TBFT (resp., TBFTf , TBFTff )
takes place for an endomorphism φ : G → G and its iterations, if R(φn) < ∞ and

R(φn) coincides with the number of φ̂n-f -points in Ĝ (resp., in Ĝf , Ĝff ) for all
n ∈ N.

Similarly, one can give a definition for a single endomorphism (without itera-
tions).

The following statement follows from the definitions.

Proposition 2.8. (Proposition 2.8 of [18]) Suppose, φ : G → G is an endo-
morphism and R(φ) < ∞. If TBFT (resp., TBFTf ) is true for G and φ, then
R(φ) = RT (φ) (resp., R(φ) = RT f (φ) = RT ff (φ)).

If the suppositions hold for φn, for any n, then Rφ(z) = RTφ(z) (resp., Rφ(z) =

RT f
φ (z) = RT ff

φ (z)).

Denote by AMf (φn) the number of isolated n-periodic points(i.e. isolated φ̂n-

f -points) of the dynamical system (φ̂)n on Ĝφ
f .

If these numbers are finite for all powers of φ, the corresponding Artin–Masur
representation zeta function is defined as

AMf
φ (z) = exp

( ∞∑
n=1

AMf (φn)

n
zn

)
.
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Let Z(φ) be one of the numbers RT (φ), RT f (φ), RT ff (φ), AMf (φ) . Let

Zφ(z) = exp

( ∞∑
n=1

Z(φn)

n
zn

)
be one of the zeta functions AMf

φ (z), RTφ(z), RT f
φ (z), RT ff

φ (z).

Theorem 2.9. Let φ be a periodic automorphism of least period m of a group
G . Then the zeta function Zφ(z) is equal to

Zφ(z) =
∏
d|m

d

√
(1− zd)−P (d),

where the product is taken over all divisors d of the period m, and P (d) is the
integer

P (d) =
∑
d1|d

μ(d1)Z(φd|d1).

Proof. Since φm = id, then (φ̂)m = id as well and Z(φj) = Z(φm+j) for every
j. If (k,m) = 1, there exist positive integers t and q such that kt = mq + 1. So
(φk)t = φkt = φmq+1 = φmqφ = (φm)qφ = φ. Consequently, Z(φk) = Z(φ). The
same argument shows that Z(φd) = Z(φdi) if (i,m/d) = 1 where d divisor m Using
these series of equal numbers we obtain by direct calculation

Zφ(z) = exp

( ∞∑
i=1

Z(φi)

i
zi

)
= exp

⎛⎝∑
d|m

∞∑
i=1

P (d)

d
· z

di

i

⎞⎠
= exp

⎛⎝∑
d|m

P (d)

d
· log(1− zd)

⎞⎠ =
∏
d|m

d

√
(1− zd)−P (d)

where the integers P (d) are calculated recursively by the formula

P (d) = Z(φd)−
∑

d1|d;d1 
=d

P (d1).

Moreover, if the last formula is rewritten in the form Z(φd) =
∑

d1|d P (d1) and one

uses the Möbius inversion law for real function in number theory, then

P (d) =
∑
d1|d

μ(d1) · Z(φd/d1),

where μ(d1) is the Möbius function in number theory. The theorem is proved. �

Corollary 2.10. If in Theorem 2.9 the period m is a prime number, then

Zφ(z) =
1

(1− z)Z(φ)
· m

√
(1− zm)Z(φ)−Z(φm).

Theorem 2.11. Let φ : G → G be an endomorphism of group G. Suppose

that subspaces Ĝφ, Ĝφ
f , and Ĝφ

ff are finite. Then zeta function Zφ(z) is a rational
function satisfying a functional equation

Zφ

(
1

z

)
= (−1)azbZφ(z).
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In particular we have

(1) Zφ(z) =
∏
[γ]

1

1− z#[γ]
,

where the product is taken over the periodic orbits of the dynamical system (φ̂)n in

Ĝφ, resp Ĝφ
f , or Ĝ

φ
ff . In the functional equation the numbers a and b are respectively

the number of periodic φ̂-orbits of elements of Ĝφ, resp Ĝφ
f , or Ĝ

φ
ff and the number

of periodic elements of Ĝφ, resp Ĝφ
f , or Ĝφ

ff .

Proof. We shall call an element of Ĝφ, resp Ĝφ
f , or Ĝ

φ
ff periodic if it is fixed

by some iteration of φ̂. A periodic element γ is fixed by φ̂n iff n is divisible by the
cardinality the orbit of γ. We therefore have

Z(φn) =
∑

γ periodic
#[γ]|n

1 =
∑

[γ] such that,
#[γ]|n

#[γ].

From this follows

Zφ(z) = exp

( ∞∑
n=1

Z(φn)

n
zn

)
= exp

⎛⎜⎝∑
[γ]

∞∑
n=1

#[γ]|n

#[γ]

n
zn

⎞⎟⎠
=
∏
[γ]

exp

( ∞∑
n=1

#[γ]

#[γ]n
z#[γ]n

)
=
∏
[γ]

exp

( ∞∑
n=1

1

n
z#[γ]n

)

=
∏
[γ]

exp
(
− log

(
1− z#[γ]

))
=
∏
[γ]

1

1− z#[γ]
.

Moreover

Zφ

(
1

z

)
=
∏
[γ]

1

1− z−#[γ]
=
∏
[γ]

z#[γ]

z#[γ] − 1
=
∏
[γ]

−z#[γ]

1− z#[γ]

=
∏
[γ]

−z#[γ]Zφ(z) = (−1)#{[γ]}z
∑

#[γ]Zφ(z).

�

2.1. Endomorphisms of finitely generated Abelian groups. For a
finitely generated Abelian group G we define the finite subgroup Gfinite to be
the subgroup of torsion elements of G. We denote the quotient G∞ := G/Gfinite.
The group G∞ is torsion free. Since the image of any torsion element by a homo-
morphism must be a torsion element, the function φ : G→ G induces maps

φfinite : Gfinite −→ Gfinite, φ∞ : G∞ −→ G∞.

If G is abelian, then Ĝ = Ĝf = Ĝϕ = Ĝϕ
f [17].

The Lefschetz zeta function of a discrete dynamical system φ̂ equals:

Lφ̂(z) := exp

( ∞∑
n=1

L(φ̂n)

n
zn

)
,
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where

L(φ̂n) :=
dimX∑
k=0

(−1)k Tr
[
φ̂∗k

n
: Hk(Ĝ;Q)→ Hk(Ĝ;Q)

]
is the Lefschetz number of φ̂n. The Lefschetz zeta function Lφ̂(z) is a rational

function of z and is given by the formula:

Lφ̂(z) =
dimX∏
k=0

det
(
I − φ̂∗k · z

)(−1)k+1

.

Theorem 2.12. Let φ : G → G be an endomorphism of a finitely generated
Abelian group. Then we have

(2) Z(φn) =| L(φ̂n) |,

where L(φ̂n) is the Lefschetz number of φ̂ thought of as a self-map of the topological

space Ĝ. From this it follows that zeta functon Zφ(z) is a rational function and is
equal to:

(3) Zφ(z) = Lφ̂(σz)
(−1)r ,

where σ = (−1)p where p is the number of real eingevalues λ ∈ Spectr(φ∞) such
that λ < −1 and r is the number of real eingevalues λ ∈ Spectr(φ∞) such that
| λ |> 1. If G is a finite abelian group then this reduces to

Z(φn) = L(φ̂n) and Zφ(z) = Lφ̂(z).

Proof. If G is finite abelian then Ĝ is a discrete finite set, so the number of
fixed points is equal to the Lefschetz number. This finishes the proof in the case
that G is finite.

If G is a finitely generated free Abelian group then the dual of G is a torus
whose dimension is equal to the rank of G. The dual of any finitely generated
discrete Abelian group is the direct sum of a torus and a finite group.

If G a finitely generated Abelian group it is only necessary to check that the

number of fixed points of φ̂n is equal to the absolute value of its Lefschetz number.
We assume without loss of generality that n = 1. We are assuming that Z(φ) is

finite, so the fixed points of φ̂ form a discrete set. We therefore have

L(φ̂) =
∑

x∈Fix φ̂

ind(φ̂, x).

Since φ is a group endomorphism, the zero element 0 ∈ Ĝ is always fixed. Let x be

any fixed point of φ̂. We then have a commutative diagram

g Ĝ
φ̂−→ Ĝ g

� � � �
g + x Ĝ

φ̂−→ Ĝ g + x

in which the vertical functions are translations on Ĝ by x. Since the vertical maps
map 0 to x, we deduce that

ind(φ̂, x) = ind(φ̂, 0)



64 ALEXANDER FEL’SHTYN AND MALWINA ZIETEK

and so all fixed points have the same index. It is now sufficient to show that

ind(φ̂, 0) = ±1. This follows because the map on the torus

φ̂ : Ĝ0 → Ĝ0

lifts to a linear map of the universal cover, which is in this case the Lie algebra of
Ĝ. The index is then the sign of the determinant of the identity map minus this

lifted map. This determinant cannot be zero, because 1− φ̂ must have finite kernel

by our assumption that the Z(φ) is finite (if det(1 − φ̂) = 0 then the kernel of

1− φ̂ is a positive dimensional subgroup of Ĝ, and therefore infinite). So we have

Z(ϕn) =| L(φ̂n) |= (−1)r+pnL(φ̂n) for all n (see also [12]).
Then the zeta function

Zφ(z) = Lφ̂(σz)
(−1)r

is rational function as well. �

2.1.1. Functional equation. To write down a functional equation for the Rei-
demeister type zeta functions, we recall the following functional equation for the
Lefschetz zeta function:

Lemma 2.13 ([19, Proposition 8], see also [7]). Let M be a closed orientable
manifold of dimension m and let f : M → M be a continuous map of degree d.
Then

Lf

( α

dz

)
= ε (−αdz)(−1)mχ(M) Lf (αz)

(−1)m

where α = ±1 and ε ∈ C is a non-zero constant such that if |d| = 1 then ε = ±1.

We obtain:

Theorem 2.14 (Functional Equation). Let φ : G→ G be an endomorphism of
a finitely generated Abelian group of the rank ≥ 1. Then the zeta function Zφ(z),
whenever it is defined, has the following functional equation:

Zφ

(
1

dz

)
= Zφ(z)

(−1)mε(−1)r

where d is a degree φ̂, m = dim Ĝ, ε is a constant in C×, σ = (−1)r, p is the number
of real eigenvalues of φ∞ which are > 1 and r is the number of real eingevalues
λ ∈ Spectr(φ∞) such that | λ |> 1. If |d| = 1 then ε = ±1.

Proof. We have Zφ(z) = Lφ̂(σz)
(−1)r . By Lemma 2.13

Zφ

(
1

dz

)
= Lφ̂

( σ

dz

)(−1)r

=
(
ε(−σdz)(−1)mχ(Ĝ)Lφ̂(σz)

(−1)m
)(−1)r

= Zφ(z)
(−1)mε(−1)r(−σdz)(−1)m+rχ(Ĝ).

On the other hand χ(Ĝ) = 0 because the dual Ĝ of any finitely generated discrete
Abelian group of the rank ≥ 1 is the direct sum of a torus of dim ≥ 1 and a finite
group, i.e. Ĝ is a union of finitely many tori. This finishes our proof. �
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2.2. Endomorphisms of nilpotent groups and crystallographic groups.

Theorem 2.15. Let φ : G → G be an endomorphism of a finitely generated
torsion free nilpotent group G or let φ be an automorphism of crystallographic group

G with diagonal holonomy Z2. Then the zeta function RT f
φ (z) = RT ff

φ (z)) is
rational function.

Proof. Any finitely generated torsion free nilpotent group is a supersolvable,
hence, polycyclic group. Any crystallographic group with diagonal holonomy Z2 is a
polycyclic-by-finite group. In [16,17] twisted Burnside-Frobenius theorem(TBFTf

and TBFTff ) was proven for endomorphisms of polycyclic groups and for automor-
phisms of polycyclic-by-finite groups. This theorem implies equality of Reidemeister

zeta function Rφ(z) and zeta function RT f
φ (z) = RT ff

φ (z)). In [12] the rational-

ity of the Reidemeister zeta function Rφ(z) was proven for endomorphisms of a
finitely generated torsion free nilpotent groups and in [6] the rationality of Rφ(z)
was proven for automorphisms of crystallographic groups with diagonal holonomy
Z2. This completes the proof.

�

3. Connection with Reidemeister Torsion

Like the Euler characteristic, the Reidemeister torsion is algebraically defined.
Roughly speaking, the Euler characteristic is a graded version of the dimension,
extending the dimension from a single vector space to a complex of vector spaces.
In a similar way, the Reidemeister torsion is a graded version of the absolute value
of the determinant of an isomorphism of vector spaces. Let di : Ci → Ci+1 be a
cochain complex C∗ of finite dimensional vector spaces over C with Ci = 0 for i < 0
and large i. If the cohomology Hi = 0 for all i we say that C∗ is acyclic. If one is
given positive densities Δi on Ci then the Reidemeister torsion τ (C∗,Δi) ∈ (0,∞)
for acyclic C∗ is defined as follows:

Definition 3.1. Consider a chain contraction δi : Ci → Ci−1, ie. a linear map
such that d ◦ δ+ δ ◦ d = id. Then d+ δ determines a map (d+ δ)+ : C+ := ⊕C2i →
C− := ⊕C2i+1 and a map (d+ δ)− : C− → C+. Since the map (d+ δ)2 = id+ δ2 is
unipotent, (d+δ)+ must be an isomorphism. One defines τ (C∗,Δi) :=| det(d+δ)+ |
(see [20]).

Reidemeister torsion is defined in the following geometric setting. Suppose K
is a finite complex and E is a flat, finite dimensional, complex vector bundle with
base K. We recall that a flat vector bundle over K is essentially the same thing as
a representation of π1(K) when K is connected. If p ∈ K is a basepoint then one
may move the fibre at p in a locally constant way around a loop in K. This defines
an action of π1(K) on the fibre Ep of E above p. We call this action the holonomy
representation ρ : π → GL(Ep).

Conversely, given a representation ρ : π → GL(V ) of π on a finite dimensional

complex vector space V , one may define a bundle E = Eρ = (K̃ × V )/π. Here K̃

is the universal cover of K, and π acts on K̃ by covering tranformations and on V
by ρ. The holonomy of Eρ is ρ, so the two constructions give an equivalence of flat
bundles and representations of π.

If K is not connected then it is simpler to work with flat bundles. One then
defines the holonomy as a representation of the direct sum of π1 of the components
of K. In this way, the equivalence of flat bundles and representations is recovered.
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Suppose now that one has on each fibre of E a positive density which is locally
constant on K. In terms of ρE this assumption just means | det ρE |= 1. Let V
denote the fibre of E. Then the cochain complex Ci(K;E) with coefficients in E
can be identified with the direct sum of copies of V associated to each i-cell σ of
K. The identification is achieved by choosing a basepoint in each component of
K and a basepoint from each i-cell. By choosing a flat density on E we obtain
a preferred density Δi on Ci(K,E). One defines the R-torsion of (K,E) to be
τ (K;E) = τ (C∗(K;E),Δi) ∈ (0,∞).

3.1. The Reidemeister type zeta functions and the Reidemeister tor-
sion of the mapping Torus. Let f : X → X be a homeomorphism of a compact
polyhedron X. Let Tf := (X × I)/(x, 0) ∼ (f(x), 1) be the mapping torus of f .

We shall consider the bundle p : Tf → S1 over the circle S1. We assume here
that E is a flat, complex vector bundle with finite dimensional fibre and base S1.
We form its pullback p∗E over Tf . Note that the vector spaces Hi(p−1(b), c) with
b ∈ S1 form a flat vector bundle over S1, which we denote HiF . The integral lattice
in Hi(p−1(b),R) determines a flat density by the condition that the covolume of
the lattice is 1. We suppose that the bundle E ⊗ HiF is acyclic for all i. Under
these conditions D. Fried [20] has shown that the bundle p∗E is acyclic, and we
have

(4) τ (Tf ; p
∗E) =

∏
i

τ (S1;E ⊗HiF )(−1)i .

Let g be the preferred generator of the group π1(S
1) and let A = ρ(g) where

ρ : π1(S
1) → GL(V ). Then the holonomy around g of the bundle E ⊗ HiF is

A⊗ f∗
i . Since τ (E) =| det(I −A) | it follows from (16) that

(5) τ (Tf ; p
∗E) =

∏
i

| det(I −A⊗ f∗
i ) |(−1)i .

We now consider the special case in which E is one-dimensional, so A is just a
complex scalar λ of modulus one. Then in terms of the rational function Lf (z) we
have [20]:

(6) τ (Tf ; p
∗E) =

∏
i

| det(I − λ.f∗
i ) |(−1)i=| Lf (λ) |−1 .

From this formula and Theorem 2.12 we have

Theorem 3.2. Let φ : G → G be an automorphism of a finitely generated
abelian group G. If G is infinite then one has

τ
(
Tφ̂; p

∗E
)
=| Lφ̂(λ) |

−1=| Zφ(σλ) |(−1)r+1

,

and if G is finite one has

τ
(
Tφ̂; p

∗E
)
=| Lφ̂(λ) |

−1=| Zφ(λ) |−1 .

where λ is the holonomy of the one-dimensional flat complex bundle E over S1, r
and σ are the constants described in Theorem 2.12 .
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3.2. Examples.

Example 3.3. Let Γ be a locally compact group. The following statements are

equivalent(see [2]): i) Γ has Kazhdan’s Property (T); (ii) 1Γ is isolated in Γ̂; (iii)

every finite dimensional irreducible unitary representation of Γ is isolated in Γ̂; (iv)

some finite dimensional irreducible unitary representation of Γ is isolated in Γ̂.
This implies immediately that for an endomorphism of a locally compact group

Γ with Kazhdan’s Property (T) the following zeta functions coincide: RT f
φ (z) =

AMf
φ (z).

Now let us present some examples of Theorem 2.11 for discrete groups with
extreme properties. Suppose, an infinite discrete group G has a finite number of
conjugacy classes. Such examples can be found in [16].

Example 3.4. For the Osin group (see [26]) there is only trivial(1-dimensional)
finite-dimensional representation. Indeed, the Osin group is an infinite finitely
generated group G with exactly two conjugacy classes. All nontrivial elements of
this group G are conjugate. So, the group G is simple, i.e. G has no nontrivial
normal subgroup. This implies that group G is not residually finite (by definition
of residually finite group). Hence, it is not linear (by Mal’cev theorem) and has no
finite-dimensional irreducible unitary representations with trivial kernel. Hence, by
simplicity of G, it has no finite-dimensional irreducible unitary representation with
nontrivial kernel, except for the trivial one. Let us remark that the Osin group is
non-amenable, contains the free group in two generators F2, and has exponential
growth.

Let φ : G → G be any endomorphism of Osin group G. Thus, we have the
following: RT f (φn) = RT ff (φn) = 1 for all n. This implies that for any endomor-
phism of Osin group G zeta functions

RT f
φ (z) = RT ff

φ (z) =
1

1− z

are rational.

Example 3.5. For large enough prime numbers p, the first examples of finitely
generated infinite periodic groups with exactly p conjugacy classes were constructed
by Ivanov as limits of hyperbolic groups. The Ivanov group G is an infinite periodic
2-generator group, in contrast to the Osin group, which is torsion free. The Ivanov
group G is also a simple group see [16]. The discussion can be completed in the
same way as in the case of the Osin group.

Example 3.6. G. Higman, B. H. Neumann, and H. Neumann proved that any
locally infinite countable group G can be embedded into a countable group G∗ in
which all elements except the unit element are conjugate to each other (see [30]).
The discussion above related to the Osin group remains valid for G∗ groups.

4. Reduction to subgroups and quotient groups

4.1. Reduction to subgroups. The following lemma is useful for calculating
Reidemeister numbers and zeta functions. It will also be used in the proofs of the
theorems of this chapter.
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Lemma 4.1. Let φ : G → G be any endomorphism of any group G, and let H
be a subgroup of G with the properties

φ(H) ⊂ H

∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

Then

R(φ) = R(φH),

where φH : H → H is the restriction of φ to H. If all the numbers R(φn) are finite
then

Rφ(z) = RφH
(z).

Proof. Let x ∈ G. Then there is an n such that φn(x) ∈ H. It is known that
x is φ-conjugate to φn(x) (see Lemma 7 [13]). This means that the φ-conjugacy
class {x}φ of x has non-empty intersection with H.

Now suppose that x, y ∈ H are φ-conjugate, ie. there is a g ∈ G such that

gx = yφ(g).

We shall show that x and y are φH -conjugate, ie. we can find a g ∈ H with the
above property. First let n be large enough that φn(g) ∈ H. Then applying φn to
the above equation we obtain

φn(g)φn(x) = φn(y)φn+1(g).

This shows that φn(x) and φn(y) are φH -conjugate. On the other hand, one knows
by Lemma 7 that x and φn(x) are φH -conjugate, and y and φn(y) are φH conjugate,
so x and y must be φH -conjugate.

We have shown that the intersection with H of a φ-conjugacy class in G is a
φH-conjugacy class in H. We therefore have a map

Rest : R(φ) → R(φH)
{x}φ → {x}φ ∩H

This clearly has the two-sided inverse

{x}φH
→ {x}φ.

Therefore Rest is a bijection and R(φ) = R(φH). �

Let Z(φ) be one of the numbers RT (φ), RT f (φ), RT ff (φ). We shal write Z(φ)
for one of the corresponding sets RT (φ),RT f (φ),RT ff (φ) of equivalence classes
of irreducible representations.

Lemma 4.2. Let φ : G → G be any endomorphism of Abelian-by-finite group
G, and let H be a subgroup of G with the properties

φ(H) ⊂ H

∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

Then

Z(φ) = Z(φH),

where φH : H → H is the restriction of φ to H. If all the numbers Z(φn) are finite
then

Zφ(z) = ZφH
(z).
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Proof. All irreducible representations of Abelian-by-finite group G are finite
dimensional.

Let ρ : G → U(V ) be irreducible representation, and suppose that there is a
matrix M ∈ U(V ) with

ρ ◦ φ = M · ρ ·M−1,

i.e ρ ∈ Z(φ). Suppose that ρH , the restriction of ρ toH, is a reducible representation
i.e. there is a decomposition V = V1 ⊕ V2 into H-modules. We shall derive a
contradiction. We can find g ∈ G such that ρ(g)V1 �∈ V1. However for sufficiently
large n we have φn(g) ∈ H. This shows that ρ(H)MnV1 �∈MnV1. However since H
is φ-invariant and V1 isH-invariant, MnV1 = V1. Therefore ρ(H)MnV1 �∈ V1, which
gives us a contradiction. Consequently ρ must be an irreducible representation of
H on MnV . However MnV = V , so the representation ρH is irreducible. Clearly
the class of ρH is the same as the class of ρH ◦ φH , i.e ρH ∈ Z(φH). We thus have
a map

Rest : Z(φ)→ Z(φH), ρ→ ρH .

Now let ρH ∈ Z(φH) be given. Then there is a matrix M such that

ρ ◦ φH = M · ρ ·M−1.

If M ′ is any other such matrix then M ′ ·M−1 commutes with ρH(x) for all x. It
follows that for g ∈ φ−n(H) the element

M−n · ρ(φn(g)) ·Mn

is independent of the chosen M , and depends only on ρ, g and n. Now suppose that
φn(g) = h1 ∈ H and φm(g) = h2 ∈ H,m > n. Then φm−n(h1) = h2, which implies

Mm−n · ρ(h1) ·Mn−m = ρ(h2),

and therefore
M−n · ρ(φn(g)) ·Mn = M−m · ρ(φm(g)) ·Mm.

The above expression is thus independent of M and n, and depends only on ρ and
g. We may therefore define for g ∈ G

ρ̄(g) = M−n · ρ(φn(g)) ·Mn

where n is large enough that φn(g) ∈ H. One can easily checks that ρ̄ is a rep-
resentation of G. Since ρH is irreducible it follows that ρ̄ is irreducible. One sees
immediately that the class of ρ̄ is the same as the class of ρ̄◦φ, i.e ρ ∈ Z(φ). Finally
we have

Rest(ρ̄) = ρ

and since any other extension ρ̃ of ρ to G such that ρ̃ ∈ Z(φ) must satisfy

ρ̃(g) = M−n · ρ(φn(g)) ·Mn,

we have
Rest(ρ) = ρ.

This shows that Rest is a bijection, so Z(φ) = Z(φH). �

Corollary 4.3. Let H = φn(G). Suppose that all the numbers R(φk) and
Z(φk), k ∈ N are finite. Then

R(φ) = R(φH), Z(φ) = Z(φH), Rφ(z) = RφH
(z), Zφ(z) = ZφH

(z)

.
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Theorem 4.4. Let φ : G→ G be any endomorphism of Abelian-by-finite group
G, and let H be a subgroup of G with the properties

φ(H) ⊂ H

∀x ∈ G ∃n ∈ N such that φn(x) ∈ H.

Suppose that all the numbers R(φk) and Z(φk), k ∈ N are finite. If one of the
following conditions is satisfied:

1. H is a finitely generated abelian group, or
2. H is a finite group, or
3. H is a crystallographic group with diagonal holonomy Z2 and φH is an

automorphism,

then

Rφ(z) = RφH
(z) = ZφH

(z) = Zφ(z)

and these zeta functions are rational functions.

Proof. TBFT (resp., TBFTf , TBFTff ) for an endomorphism φ : G→ G and
its iterations were proven in [13] for finitely generated abelian groups and for finite
groups. Any crystallographic group with diagonal holonomy Z2 is a polycyclic-
by-finite group and it has only finite dimensional irreducible representations. In
[16, 17] twisted Burnside-Frobenius theorem(TBFTf and TBFTff ) was proven
for automorphisms of polycyclic-by-finite groups.

These results implie equality of the Reidemeister zeta function RφH
(z) and the

zeta function ZφH
(z). Hence from Lemma 4.1 and Lemma 4.2 it follows that

Rφ(z) = RφH
(z) = ZφH

(z) = Zφ(z).

In [13] the rationality of the Reidemeister zeta function Rφ(z) was proven for
endomorphisms of finitely generated abelian groups and for finite groups and in [6]
the rationality of Rφ(z) was proven for automorphisms of almost-crystallographic
groups with diagonal holonomy Z2. This completes the proof.

�

4.2. Reduction to Injective Endomorphisms on quotient groups. Let
G be a group and φ : G → G an endomorphism. We shall call an element x ∈ G
nilpotent if there is an n ∈ N such that φn(x) = e.

Let N be the set of all nilpotent elements of G.
Let Z(φ) be one of the numbers RT f (φ), RT ff (φ) and Z(φ) one of the corre-

sponding sets of equivalence classes of irreducible representations.

Theorem 4.5. The set N is a normal subgroup of G. We have φ(N) ⊂ N
and φ−1(N) = N . Thus φ induces an endomorphism [φ/N ] of the quotient group
G/N given by [φ/N ](xN) := φ(x)N . The endomorphism [φ/N ] : G/N → G/N is
injective, and we have

R(φ) = R([φ/N ]), Z(φ) = Z([φ/N ]).

Let the numbers R(φn) and Z(φn) be all finite. Then

Rφ(z) = R[φ/N ](z), Zφ(z) = Z[φ/N ](z).
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If the quotient group G/N is polycyclic then one has the following Gauss congru-
ences for Reidemeister numbers:∑

d|n
μ(d) ·R(φn/d) ≡ 0 mod n

for any n. If one of the following conditions is satisfied:

1. The quotient group G/N is a finitely generated abelian group, or
2. G/N is a finite group, or
3. G/N is a finitely generated torsion free nilpotent group, or
4. G/N is a crystallographic group with diagonal holonomy Z2 and [φ/N ] is

an automorphism,

then

Rφ(z) = R[φ/N ](z) = Z[φ/N ](z) = Zφ(z)

and these zeta functions are rational functions.

Proof. (i) Let x ∈ N, g ∈ G. Then for some n ∈ N we have φn(x) = e.
Therefore φn(gxg−1) = φn(gg−1) = e. This shows that gxg−1 ∈ N so N is a
normal subgroup of G.

(ii) Let x ∈ N and choose n such that φn(x) = e. Then φn−1(φ(x)) = e so
φ(x) ∈ N . Therefore φ(N) ⊂ N .

(iii) If φ(x) ∈ N then there is an n such that φn(φ(x)) = e. Therefore φn+1(x) =
e so x ∈ N . This show that φ−1(N) ⊂ N . The converse inclusion follows from (ii).

(iv) We shal write R(φ) for the set of φ-conjugacy classes of elements of G. We
shall now show that the map x→ xN induces a bijection R(φ)→R([φ/N ]). Sup-
pose x, y ∈ G are φ-conjugate. Then there is a g ∈ G with gx = yφ(g). Projecting to
the quotient group G/N we have gnxN = yNφ(g)N , so gNxN = yN [φ/N ](gN).
This means that xN and yN are [φ/N ]-conjugate in G/N . Conversely suppose
that xN and yN are [φ/N ]-conjugate in G/N . Then there is a gN ∈ G/N
such that gNxN = yN [φ/N ](gN). In other words gxφ(g)−1y−1) = e. Therefore
φn(g)φn(x) = φn(y)φn(φ(g)).

This shows that φn(x) and φn(y) are φ-conjugate. However x and φn(x) are
φ-conjugate as are y and φn(y). Therefore x and y are φ-conjugate.

(v) We have shown that x and y are φ-conjugate iff xN and yN are [φ/N ]-
conjugate. From this it follows that x → xN induces a bijection from R(φ) to
R([φ/N ]). Therefore R(φ) = R([φ/N ]).

(vi) We shall now show that Z(φ) = Z([φ/N ]). Let ρ ∈ Z(φ) and let M be a
transformation for which

ρ ◦ φ = M · ρ ·M−1

if x ∈ N then there is an n ∈ N with φn(x) = e. Thus N is contained in the kernel
of ρ and there is a representation [ρ/N ] of G/N given by

[ρ/N ](gN) := ρ(g).

Since [ρ/N ] satisfies identity

[ρ/N ] ◦ [φ/N ] = M · [ρ/N ] ·M−1,

we have [ρ/N ] ∈ Z([φ/N ]).
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(vii) Conversely if ρ ∈ Z([φ/N ]) we may construct a ρ̄ ∈ Z(φ) by

ρ̄(x) := ρ(xN).

It is clear that [ρ/N ] = ρ and ρ̄/N = ρ.
In [16, 17] the twisted Burnside-Frobenius theorem(TBFTf and TBFTff )

was proven for endomorphisms of polycyclic groups and for automorphisms of
polycyclic-by-finite groups. Then from (v) and (vi) it follows that

R(φn) = R([φ/N ]n) = Z([φ/N ]n) = Z(φn).

Gauss congruences now follow from Corollary 2.5 and the general theory of con-
gruences for periodic points (cf. [31,33]). More precisely, let Pd be the number of
periodic points of least period d of the dynamical system of Corollary 2.5. Then
R(φn) = Z(φn) =

∑
d|n

Pd.

By the Möbius inversion formula,∑
d|n

μ(d)R(ϕn/d) = Pn ≡ 0 mod n,

since number Pn is always divisible by n, because Pn is exactly n times the number
of orbits of cardinality n.

Twisted Burnside-Frobenius theorem(TBFTf and TBFTff ) implies also equal-

ity of Reidemeister zeta function Rφ(z) and zeta function RT f
φ (z) = RT ff

φ (z)). In

[12] the rationality of the Reidemeister zeta function Rφ(z) was proven for endo-
morphisms of finitely generated abelian groups and for endomorphisms of finitely
generated torsion free nilpotent groups, and in [6] the rationality of Rφ(z) was
proven for automorphisms of crystallographic groups with diagonal holonomy Z2.
This completes the proof.

�

5. Pólya – Carlson dichotomy for Reidemeister zeta function

In this section we present results in support of a Pólya–Carlson dichotomy
between rationality and a natural boundary for the analytic behaviour of the Rei-
demeister zeta function of Abelian group endomorphisms.

Let φ : G → G be a endomorphism of a countable Abelian group G that
is a subgroup of Qd, where d � 1. Let R = Z[t] be a polynomial ring. Then
the Abelian group G naturally carries the structure of a R-module over the ring
R = Z[t] where multiplication by t corresponds to application of the endomorphism:
tg = φ(g) and extending this in a natural way to polynomials. That is, for g ∈ G
and f =

∑
n∈Z cnt

n ∈ R = Z[t] set

fg =
∑
n∈Z

cnt
ng =

∑
n∈Z

cnφ
n(g),

where all but finitely many cn ∈ Z are zero. This is a standard procedure for the
study of dual automorphisms of compact Abelian groups, see Schmidt [28] for an
overview.

Let us now consider the Pontryagin dual group Ĝ and dual endomorphism

φ̂ : ρ → ρ ◦ φ on the Ĝ.
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We shall require the following statement:

Lemma 5.1. [13] Let φ : G → G be an endomorphism of an Abelian group G.

Then the kernel ker
[
φ̂ : Ĝ→ Ĝ

]
is canonically isomorphic to the Pontryagin dual

of Coker φ.

Proof. We construct the isomorphism explicitly. Let χ be in the dual of
Coker (φ : G→ G). In that case χ is a homomorphism

χ : G/ Im (φ) −→ U(1).

There is therefore an induced map

χ : G −→ U(1)

which is trivial on Im (φ). This means that χ ◦ φ is trivial, or in other words φ̂(χ)

is the identity element of Ĝ. We therefore have χ ∈ ker(φ̂).

If on the other hand we begin with χ ∈ ker(φ̂), then it follows that χ is trivial
on Im φ, and so χ induces a homomorphism

χ : G/ Im (φ) −→ U(1)

and χ is then in the dual of Coker φ. The correspondence χ ↔ χ is clearly a
bijection.

�

The following results are also needed

Lemma 5.2. [25] Let L ⊂ N be R-modules and g ∈ R.
Then
(1) ∣∣∣ N

gN

∣∣∣ = ∣∣∣ N/L

g(N/L)

∣∣∣∣∣∣ L

L ∩ gN

∣∣∣
(2) If N/L is finite and the map x→ gx is a monomorphism of N then∣∣∣ N

gN

∣∣∣ = ∣∣∣ L
gL

∣∣∣.
Suppose that G as an R- module satisfies the following conditions:
(1) the set of associated primes Ass(G) is finite and consists entirely of non-zero

principal ideals of R,
(2) the map g → (tj − 1)g is a monomorphism of G for all j ∈ N

(equivalently, tj − 1 /∈ p for all p ∈ Ass(G) and all j ∈ N),
(3) for each p ∈ Ass(G), m(p) = dimK(p) Gp <∞, where K(p) denotes the field

of fractions of R/p and Gp = G⊗R K(p) is the localization of the module G at p.

Lemma 5.3. [25] Let N be an R-module for which Ass(N) consists of finitely
many non-trivial principal ideals and suppose m(p) = dimK(p) Np <∞. If g ∈ R is
such that the map x→ gx is a monomorphism of N , then N/gN is finite.

If the Pontryagin dual endomorphism φ̂ is an ergodic finite entropy epimorphism

of the compact connected Abelian group Ĝ of finite dimension d ≥ 1 then the
endomorphism φ : G→ G satisfies the conditions (1) - (3) above. Such dual groups

Ĝ are called solenoids(see [25,28]).
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For the dual endomorphism φ̂ : Ĝ → Ĝ, we use the following closed periodic
point counting formula taken from [25, Th. 1.1] and [1, Pr. 14]. Let Fφ̂(j) =

|Fix(φ̂j)| denotes the number of points fixed by the endomorphism φ̂j . Some
obvious conditions such as ergodicity and finite entropy are necessary to ensure that
Fφ̂(j) is finite for all j ∈ N. Let P(K) denote the set of finite places of the algebraic

number field K. The places of the field K are the equivalence classes of absolute
values on K. When char(K) = 0, the infinite places are the archimedean ones.
All other places are said to be finite. Given a finite place of K, there corresponds
a unique discrete valuation v whose precise value group is Z. The corresponding
normalised absolute value | · |v = |Rv|−v(·), where Rv is the residue class field of v.
For any set of places S, we write |x|S =

∏
v∈S |x|v.

Proposition 5.4. [25, Th. 1.1], [1, Pr. 14] If φ̂ : Ĝ → Ĝ is an ergodic finite

entropy automorphism of a finite dimensional compact connected Abelian group Ĝ ,
then there exist algebraic number fields K1, . . . ,Kn, sets of finite places Pi ⊂ P(Ki)
and elements ξi ∈ Ki, no one of which is a root of unity for i = 1, . . . , n, such that
for any j ∈ N.

(7) Fφ̂(j) =

n∏
i=1

∏
v∈Pi

|ξji − 1|−1
v =

n∏
i=1

|ξji − 1|−1
Pi

.

Proof. We outline the major steps in the proof.
Under assumptions of the proposition the number of the periodic points Fφ̂(j)

is finite for all j ∈ N. Considering abelian group G as Z[t]-module and using a
straightforward duality argument in Lemma 5.1( or in [23, Lemma 7.2]) we have

Fφ̂(j) = |Fix(φ̂j)| = |Ker(φ̂j − IdĜ)| = | ̂Coker (φ− IdG)|
= |Coker (φj − IdG)| = |G/(φj − 1)G| = |G/(tj − 1)G|.

The multiplicative set U =
⋂

p∈Ass(G)R − p has U ∩ ann(a) = ∅ for all non-

zero a ∈ G, so the natural map G → U−1G is a monomorphism. Identifying
localizations of R with subrings of Q(t), the domain R = U−1R =

⋂
p∈Ass(G)Rp

is a finite intersection of discrete valuation rings and is therefore a principal ideal
domain [24]. The assumptions of finite entropy and finite topological dimension
force U−1G to be a Noeterian R - module.Hence, there is a prime filtration

{0} = G0 ⊂ G1 ⊂ · · · ⊂ Gn = U−1G

in which Gi/Gi−1
∼= R/qi for non-trivial primes qi ⊂ R, 1 ≤ i ≤ n. Moreover,

pi = qi ∩R ∈ Ass(G) for all 1 ≤ i ≤ n. Identifying G with its image in U−1G and
intersecting the chain above with G gives a chain

{0} = L0 ⊂ L1 ⊂ · · · ⊂ Ln = G.

Considering this chain ofR-modules, for each 1 ≤ i ≤ n there is an induced inclusion

Li

Li−1
↪→ Gi

Gi−1

∼=
R

qi

∼= K(pi) = Ki
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and Ni = Li/Li−1 may be considered as a fractional ideal of Ei = R/pi. Using
Lemma 5.2(1), ∣∣∣ Li

(tj − 1)Li

∣∣∣ = ∣∣∣ Ni

(tj − 1)Ni

∣∣∣∣∣∣ Li−1

Li−1 ∩ (tj − 1)Li

∣∣∣,
where 1 ≤ i ≤ n. Let y ∈ Li, let η denote the image of y in Ni and let ξi denote the
image of t in Ei. If (t

j − 1)y ∈ Li−1 then (ξji − 1)η = 0. The ergodicity assumption

implies tj − 1 /∈ pi so (ξji − 1) �= 0. Therefore, η = 0 and y ∈ Li−1. It follows that
Li−1 ∩ (tj − 1)Li = (tj − 1)Li−1 and hence,∣∣∣ Li

(tj − 1)Li

∣∣∣ = ∣∣∣ Ni

(tj − 1)Ni

∣∣∣∣∣∣ Li−1

(tj − 1)Li−1

∣∣∣,
Successively applying this formula to each of the modules Li, 1 ≤ i ≤ n, gives,

|G/(tj − 1)G| =
n∏

i=1

|Ni/(t
j − 1)Ni|

Consider now an individual term |Ni/(t
j − 1)Ni|. Since Ei is a finitely generated

domain, [25, Th. 1.1][8, Th. 4.14] shows that the integral closure Di of Ei in
Ki is a finitely generated Dedekind domain. Therefore, Di is finitely generated
as an Ei-module. We may consider Ii = Di ⊗Ei

Ni as a fractional ideal of Di.

Lemma 5.3 and Lemma 5.2(2) imply that |Ni/(ξ
j
i − 1)Ni| = |Ii/(ξji − 1)Ii| (see

[25]). By considering Ii/(ξ
j
i − 1)Ii as a Di-module, finding a composition series for

this module and successively localizing at each of its associated primes to obtain
multiplicities, it follows that

|Ii/(ξji − 1)Ii| =
∏

m∈Ass(Ii/(ξ
j
i−1)Ii)

q
δm(ξi,Ii)
m ,

where qm = |Di/m| and δm(ξi, Ii) = dimDi/m(Ii/(ξ
j
i − 1)Ii)m. Let

Pi = {m ∈ Spec(Di) : Im �= Ki}.
It follows that the product above may be taken over all m ∈ Pi to yield the same
result. Each localization (Di)m is a distinct valuation ring of Ki and Pi may be
identified with a set of finite places of the global field Ki. Hence, since δm(ξi, Di) =

vm(ξ
j
i − 1), finally we have

|Ii/(ξji − 1)Ii| =
∏

m∈Pi

q
δm(ξi,Di)
m =

∏
m∈Pi

q
vm(ξji−1)
m =

∏
m∈Pi

|ξji − 1|−1
m ,

where | · |m is the normalised absolute value arising from Dm. This concludes the
proof. �

Remark 5.5. It is useful to note that Ki = Q(ξi), i = 1, . . . , n. Applying the
Artin product formula [32] to (7) gives

(8) Fφ̂(j) =
n∏

i=1

|ξji − 1|P∞
i ∪Si

,

where P∞
i denotes the set of infinite places of Ki and Si = P(Ki) \ Pi. It is also

worth noting that [25, Rmk. 1] implies that |ξi|v = 1 for all v ∈ Pi, i = 1, . . . , n,
as φ is an automorphism.
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The following results are needed to have more ready access to the theory of
linear recurrence sequences. Relevant background on the connection between linear
recurrence sequences and the rationality may be found in the monograph of Everest,
van der Poorten, Shparlinski and Ward [10].

Lemma 5.6. (cf. [1]) Let R(z) =
∑∞

n=1 R(φn)zn. If Rφ(z) is rational then R(z)
is rational. If Rφ(z) has analytic continuation beyond its circle of convergence, then
so too does R(z). In particular, the existence of a natural boundary at the circle of
convergence for R(z) implies the existence of a natural boundary for Rφ(z).

Proof. This follows from the fact that R(z) = z ·R′
φ(z)/Rφ(z). �

One of the important links between the arithmetic properties of the coefficients
of a complex power series and its analytic behaviour is given by the Pólya–Carlson
theorem [3], [27], [29].

Pólya–Carlson Theorem. A power series with integer coefficients and radius of
convergence 1 is either rational or has the unit circle as a natural boundary.

For the proof of the main theorem of this section we use the following key result
of Bell, Miles and Ward .

Lemma 5.7 (Lemma 17 in [1]). Let S be a finite list of places of algebraic
number fields and, for each v ∈ S, let ξv be a non-unit root in the appropriate
number field such that |ξv|v = 1. Then the function

F (z) =
∞∑

n=1

f(n)zn,

where f(n) =
∏

v∈S |ξnv − 1|v for n � 1, has the unit circle as a natural boundary.

The main results of this section are the following counting formulas for the
Reidemeister numbers and a Pólya–Carlson dichotomy between rationality and a
natural boundary for the analytic behaviour of the Reidemeister zeta function. We
follow the method of the proof of Bell, Miles and Ward in [1, Theorem 15] for the
Artin–Masur zeta function of compact abelian groups automorphisms.

Theorem 5.8. Let φ : G → G be an automorphism of a countable Abelian
group G that is a subgroup of Qd, where d � 1. Suppose that the group G as
R = Z[t]- module satisfies the following conditions:

(1) the set of associated primes Ass(G) is finite and consists entirely of non-
zero principal ideals of the polynomial ring R = Z[t],

(2) the map g → (tj − 1)g is a monomorphism of G for all j ∈ N
(equivalently, tj − 1 /∈ p for all p ∈ Ass(G) and all j ∈ N),

(3) for each p ∈ Ass(G), m(p) = dimK(p)Gp <∞.
Then there exist algebraic number fields K1, . . . ,Kn, sets of finite places Pi ⊂

P(Ki), Si = P(Ki) \ Pi, and elements ξi ∈ Ki, no one of which is a root of unity
for i = 1, . . . , n, such that

(9) R(φj) =
n∏

i=1

∏
v∈Pi

|ξji − 1|−1
v =

n∏
i=1

|ξji − 1|−1
Pi

=
n∏

i=1

|ξji − 1|P∞
i ∪Si

for all j ∈ N.
Suppose that the product in (9) only involves finitely many places and that |ξi|v

�= 1 for all v in the set of infinite places P∞
i of Ki and all i = 1, . . . , n.
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Then the Reidemeister zeta function Rφ(z) is either rational function or has a
natural boundary at its circle of convergence, and the latter occurs if and only
if |ξi|v = 1 for some v ∈ Si, 1 � i � n.

Proof. The Reidemeister number of an endomorphism φ of an Abelian group
G coincides with the cardinality of the quotient group Coker (φ−IdG) = G/Im(φ−
IdG) (or Coker (IdG−φ) = G/Im(IdG−φ)). A straightforward duality argument
using Lemma 5.1 shows that

(10) R(φ)= |Coker (φ− IdG)|= | ̂Coker (φ− IdG)|= |Ker(φ̂− IdĜ)|= |Fix(φ̂)|.

If the endomorphism φ : G → G satisfies the conditions (1) - (3), then the

Pontryagin dual endomorphism φ̂ is an ergodic finite entropy epimorphism of the

compact connected Abelian group Ĝ of the finite dimension d ≥ 1 i.e. the Pon-

tryagin dual group Ĝ is a solenoid(see [25,28]). Hence the Reidemeister numbers
R(φj) and the number of periodic points of the dual map Fφ̂(j) are finite for all

j ∈ N . By (7), (8) and (10) we have

(11) R(φj) = Fφ̂(j) =

n∏
i=1

∏
v∈Pi

|ξji − 1|−1
v =

n∏
i=1

|ξji − 1|−1
Pi

=

n∏
i=1

|ξji − 1|P∞
i ∪Si

.

Let S∗
i = {v ∈ Si : |ξi|v �= 1}, S∗∗

i = {v ∈ Si : |ξi|v > 1} and let

f(j) =

n∏
i=1

|ξji − 1|Si\S∗
i
, g(j) =

n∏
i=1

|ξji − 1|P∞
i ∪S∗

i
.

So, R(φj) = f(j)g(j) by (9). By the ultrametric property

g(j) =

n∏
i=1

|ξi|jS∗∗
i
· |ξji − 1|P∞

i
.

We can expand the product over infinite places using an appropriate symmetric
polynomial to obtain an expression of the form

(12) g(j) =
∑
I∈I

dIw
j
I ,

where I is a finite indexing set, dI ∈ {−1, 1} and wI ∈ C.
Furthermore, by (12),

Rφ(z) = exp

⎛⎝∑
I∈I

dI

∞∑
j=1

f(j)(wIz)
j

j

⎞⎠ .

If Si \ S∗
i = ∅ for all i = 1, . . . , n, then f(j) ≡ 1, and it follows immediately that

the Reidemeister zeta function Rφ(z) is rational function.
Now suppose that Si \ S∗

i �= ∅ for some i. As noted in Lemma 5.6, we need
only exhibit a natural boundary at the circle of convergence for∑

I∈I
dI

∞∑
j=1

f(j)(wIz)
j
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to exhibit one for Rφ(z). Moreover, lim supj→∞ f(j)1/j = 1, so for each I ∈ I, the
series

∞∑
j=1

f(j)(wIz)
j

has radius of convergence |wI |−1.
Since |ξi|v �= 1 for all v ∈ P∞

i , i = 1, . . . , n, there is a dominant term wJ in the
expansion (12), for which

|wJ | =
n∏

i=1

|ξi|S∗∗
i

∏
v∈P∞

i

max{|ξi|v, 1} =
n∏

i=1

∏
v∈P∞

i ∪P(Kj)

max{|ξi|v, 1},

and |wJ | > |wI | for all I �= J (note that log |wJ | is the topological entropy, as given
by [22]).

Since |wJ |−1 < |wI |−1 for all I �= J , this means that it suffices to show that
the circle of convergence |z| = |wJ |−1 is a natural boundary for

∑∞
j=1 f(j)(wIz)

j .

But this is the case precisely when
∑∞

j=1 f(j)z
j has the unit circle as a natural

boundary, and this has already been dealt with by Lemma 5.7. �

5.1. Examples. To give an example of irrational Reidemeister zeta function
let us consider an endomorphism φ : g → 2g on the module Z[ 13 ] which is an
infinitely generated abelian group. We follow the method and the calculations of
Everest, Stangoe and Ward in Lemma 4.1 in [9] for the Artin–Masur zeta function

of the dual compact abelian group endomorphism φ̂ .

Lemma 5.9. (cf. Lemma 4.1 of [9] ) The Reidemeister zeta function Rφ(z) has
natural boundary |z| = 1

2 .

Proof. The dual compact abelian group Ẑ[ 13 ] is a one dimensional solenoid.
By (7), (8) and (11) the Reidemeister numbers of iterations of φ and the number of

periodic points of the dual map φ̂ are R(φj) = |Fix(φ̂j)| = Fφ̂(j) = |2j−1|·|2j−1|3.
Let ξ(z) =

∑∞
n=1

zn

n |2n − 1| · |2n − 1|3 so the Reidemeister zeta function
Rφ(z) = exp(ξ(z)). Now

ξ(z) =

∞∑
n=0

z2n+1

2n+ 1
(22n+1 − 1) +

∞∑
n=1

z2n

2n
(22n − 1)|22n − 1|3

= log

(
1− z

1− 2z

)
− 1

2
log

(
1− z2

1− 4z2

)
+

∞∑
n=1

z2n

2n
(22n − 1)|22n − 1|3.

Notice that

|2n − 1|3 = |(3− 1)n − 1|3 = |3n − n3n−1 + · · ·+ (−1)n−13n+ (−1)n − 1|3 =

=

{
1
3 |n|3 if n is even,

1 if n is odd.

In particular,

(13) |4n − 1|3 = |22n − 1|3 = 1
3 |2n|3 = 1

3 |n|3.
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Write 1
6ξ1(z) for the last term in an expression for ξ(z) above, so by (13)

ξ1(z) = 3
∞∑
n=1

z2n

n
(4n − 1)|4n − 1|3 =

∞∑
n=1

z2n

n
(4n − 1)|n|3.

Following Lemma 4.1 in [9] we shall show that ξ1(z) has infinitely many logarithmic
singularities on the circle |z| = 1

2 , each of which corresponds to a zero of the
Reidemeister zeta function Rφ(z).

Write 3a
∣∣∣∣n to mean that 3a

∣∣n but 3a+1 �
∣∣ n. Notice that 3a

∣∣∣∣n if and only if
|n|3 = 3−a. Then ξ1 may be split up according to the size of |n|3 as

ξ1(z) =
∞∑
j=0

1

3j

∑
3j‖n

z2n

n
(4n − 1) =

∞∑
j=0

1

3j
η
(4)
j (z),

where η
(a)
j (z) =

∑
3j ||n

z2n

n (an − 1). Then

η
(a)
0 (z) =

∑
30||n

z2n

n
(an − 1) =

∞∑
n=1

z2n

n
(an − 1)−

∞∑
n=1

z6n

3n
(a3n − 1)

= log

(
1− z2

1− az2

)
− 1

3
log

(
1− z6

1− a3z6

)
,

η
(4)
1 (z) =

∑
31||n

z2n

n
(4n − 1) =

∑
30||n

z6n

3n
(43n − 1) = 1

3η
(43)
0 (z3),

η
(4)
2 (z) = 1

9η
(49)
0 (z9),

and so on. Thus

ξ1(z) = log

(
1− z2

1− (2z)2

)
+ 2

∞∑
j=1

1

9j
log

(
1− (2z)2×3j

1− z2×3j

)
,

so for the Reidemeister zeta function we have

|Rφ(z)| =
∣∣∣∣ 1− z

1− 2z

∣∣∣∣ ·
∣∣∣∣∣1− (2z)2

1− z2

∣∣∣∣∣
1/2

·
∣∣∣∣∣ 1− z2

1− (2z)2

∣∣∣∣∣
1/6

·
∞∏
j=1

∣∣∣∣∣1− (2z)2×3j

1− z2×3j

∣∣∣∣∣
1/3×9j

.

It follows that the series defining the Reidemeister zeta function Rφ(z) has a

zero at all points of the form 1
2e

2πij/3r , r � 1 so |z| = 1
2 is a natural boundary for

the Reidemeister zeta function Rφ(z). �
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Rigorous dimension estimates for Cantor sets
arising in Zaremba theory

Oliver Jenkinson and Mark Pollicott

In memoriams: Jean Bourgain and Sergiy Kolyada

Abstract. We address the question of the accuracy of bounds used in the
study of Zaremba’s conjecture. Specifically, we establish rigorous estimates on
the Hausdorff dimension of certain Cantor sets which arise in the analysis of
Zaremba’s conjecture in the work of Bourgain, Kontorovich and Huang.

1. Introduction

Given any rational number p
q ∈ (0, 1) a simple application of Euclid’s algorithm

shows there exist coefficients a1, · · · , an ∈ N such that

p

q
= [a1, · · · , an] :=

1

a1 +
1

a2+
1

a3+···+ 1
an

(see e.g. [15, Thm. 161]). Given a finite subset A ⊂ N, however, a natural ques-
tion is to enquire as to what restriction is imposed on the denominators of such
rational numbers in the case where a1, · · · , an ∈ A, in other words to study the
corresponding denominator set

QA =

{
q ∈ N : ∃p ∈ N, a1, · · · , an ∈ A such that

p

q
= [a1, · · · , an]

}
.

More specifically, Zaremba [28] conjectured that when A = {1, 2, 3, 4, 5}, all natural
numbers occur as denominators q for suitable choices of a1, · · · , an ∈ A, i.e. that
Q{1,2,3,4,5} = N.

The choice of numbers up to 5 in this conjecture is natural, since the corre-
sponding result fails for the smaller set A = {1, 2, 3, 4}, where for example it is
known that the numbers 6, 54 and 150 do not lie in the denominator set Q{1,2,3,4}
(see [23, p. 193]).
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The original motivation of Zaremba to study this problem was related to nu-
merical integration and the use of the method of “good lattice points”. Although
Zaremba’s conjecture remains open, there is various numerical evidence supporting
it (see e.g. the discussion in [23, §2]); indeed in the article [4], the authors cite
work of Borosh showing that all the denominators q ≤ 104 occur in Q{1,2,3,4,5}, and

quote Knuth as having established the same result in the range 104 ≤ q ≤ 3.2×106.
In a significant recent paper, Bourgain & Kontorovich [5] showed that for the

larger set A = {1, 2, · · · , 50}, the corresponding denominator set QA has density
one as a subset of N, in other words

lim
N→+∞

QA ∩ {1, . . . , N}
N

= 1.

There is known to be a close connection between this kind of problem and the
Hausdorff dimension of certain related sets. For a finite subset A ⊂ N, let EA

denote the set of all x ∈ (0, 1) such that the digits a1(x), a2(x), . . . in the (infinite)
continued fraction expansion

x = [a1(x), a2(x), a3(x), . . .] =
1

a1(x) +
1

a2(x)+
1

a3(x)+···

all belong to A. Sets of the form EA are said to be of bounded type (see e.g. [23,26]);
in particular they are Cantor sets, and study of their Hausdorff dimension has
attracted significant attention (see e.g. [7–10,13,14,16,17,20–22]).

In the context of the Zaremba conjecture, the following result of Huang [18,19]
illustrates the connection with bounds on the Hausdorff dimension of bounded type
sets EA:

Theorem 1 (Huang). For the set A = {1, 2, 3, 4, 5}, the corresponding denom-
inator set QA has density one in N provided dim(EA) >

5
6 .

In particular, Huang’s theorem represents an improvement on the above result
of Bourgain-Kontorovich (in that the set {1, 2, . . . , 50} is replaced by the smaller
set {1, 2, 3, 4, 5}), provided the lower bound dim(EA) >

5
6 does indeed hold. In fact

Huang [18,19] cites as evidence of this bound a paper of the first author [20], where
the techniques of [21] were used to give a non-rigorous indication that dim(EA) ≈
0.8368 > 0.8333 . . . = 5

6 . Although the method introduced in [21] yielded high
quality empirical approximations, it is only in our more recent paper [22] that
effective techniques have been introduced for converting these heuristics into a
rigorous proof of the quality of a specific computation. In view of the conditional
nature of Huang’s Theorem 1, and the recent availability of techniques potentially
capable of rendering rigorous the heuristic estimate of dim(EA) in [20], in this
paper we employ the technology of [22] in order to rigorously prove the following:

Theorem 2. If A = {1, 2, 3, 4, 5} then dim(EA) >
5
6 .

Indeed in §5 we give a rigorous proof, stated as Theorem 8, of a significantly
more accurate estimate on dim(E{1,2,3,4,5}). Combining Theorems 1 and 2 we
deduce the following unconditional version of Huang’s Theorem.
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Corollary 1 (after Huang). For the set A = {1, 2, 3, 4, 5}, the corresponding
denominator set QA has density one in N.

A stronger conjecture due to Hensley [17, Conj. 3, p. 16] was that provided
dim(EA) >

1
2 then every sufficiently large natural number occurs as a corresponding

denominator, i.e. that QA contains all sufficiently large natural numbers. However,
Bourgain & Kontorovich [5] indicated that A = {2, 4, 6, 8, 10} provides a counterex-
ample to this conjecture, noting that in this case QA does not contain any natural
numbers which are equal to 3 (mod 4), and that moreover dim(EA) ≈ 0.517 > 1/2
(see [5, p. 139]). Their approximation to dim(E{2,4,6,8,10}), using an implemen-
tation of the algorithm of [21], is a heuristic one, in the spirit of the empirical
computations in [20, 21] rather than the rigorously validated version of [22]. In
view of the importance of this Bourgain-Kontorovich counterexample to Hensley’s
conjecture, it is of interest to rigorously establish the lower bound on the dimension
of E{2,4,6,8,10} (which we present in §4 as Theorem 7):

Theorem 3. If A = {2, 4, 6, 8, 10} then dim(EA) >
1
2 .

In particular, this confirms the assertion of [5, p. 139], yielding:

Corollary 2 (after Bourgain-Kontorovich). The set A = {2, 4, 6, 8, 10} pro-
vides a counterexample to the Hensley conjecture.

Finally, we recall that Bourgain & Kontorovich proved [5, Thm. 1.26] the ex-
istence of h ∈ N such that there are infinitely many prime numbers d which have a
primitive root b (mod d) with the property that the partial quotients of the rational
b/d are bounded by h, and they indicated that h could be chosen to equal 51. The
following sharpening of this result due to Huang [19, Cor. 1.1.12] is reliant on a
lower bound for the Hausdorff dimension of the Cantor set E{1,2,3,4,5,6}:

Theorem 4 (Huang). If dim(E{1,2,3,4,5,6}) >
19
22 then there are infinitely many

prime numbers d which have a primitive root b (mod d) such that the partial quo-
tients of b/d are ≤ 7.

Although Huang indicates that dim(E{1,2,3,4,5,6}) >
19
22 is true, citing the empir-

ical approximation dim(E{1,2,3,4,5,6}) ≈ 0.8676 > 0.86363636 . . . = 19
22 of [20], there

was no rigorous proof of this result. Once again, therefore, there is considerable
interest in rendering Theorem 4 an unconditional result by providing a rigorous
validation of the Hausdorff dimension bound. This we do in our third main result:

Theorem 5. If A = {1, 2, 3, 4, 5, 6} then dim(EA) >
19
22 .

In fact we give a rigorous proof of a significantly more accurate estimate on
dim(E{1,2,3,4,5,6}) as Theorem 9 in §6. A corollary of Theorem 5 is the unconditional
analogue of Huang’s Theorem 4:

Corollary 3 (after Huang). There are infinitely many prime numbers d which
have a primitive root b (mod d) such that the partial quotients of b/d are ≤ 7.

The organisation of this article is as follows. After some preliminaries in §2 on
Hausdorff dimension and the thermodynamic underpinnings of our computational
approach, in §3 we describe (after [22]) the way in which these computations can
be converted into rigorous effective bounds. In §4 we prove that the Hausdorff
dimension of E{2,4,6,8,10} is greater than 1/2, in §5 we establish a rigorous bound
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on dim(E{1,2,3,4,5}) which in particular shows this dimension to be larger than
5/6, and in §6 we rigorously approximate the dimension of E{1,2,3,4,5,6}, which in
particular implies it is larger than 19/22.

2. Preliminaries

In this section we collect a number of results (see also [21,22]) which underpin
our algorithm for approximating Hausdorff dimension.

We begin by recalling some results for continued fractions. For a non-empty
finite subset A ⊂ N, let EA denote the set of all x ∈ (0, 1) such that the digits
a1(x), a2(x), . . . in the continued fraction expansion

x = [a1(x), a2(x), a3(x), . . .] =
1

a1(x) +
1

a2(x)+
1

a3(x)+···

all lie in A. Equivalently, if

Tn(x) := (n+ x)−1

then EA is the smallest non-empty closed set satisfying the self-similarity condition

EA = ∪n∈ATn(EA) .

The Gauss map

T (x) =
1

x
(mod 1)

is such that T ◦ Tn is the identity map for each n, and all of the sets EA satisfy
T (EA) = EA.

Each of the sets EA ⊂ [0, 1] is a Cantor set of zero Lebesgue measure, and a
natural way to describe their size is via Hausdorff dimension.

Definition 1. For a general set E ⊂ R, if we define

Hδ
ε (E) := inf

{∑
i

diam(Ui)
δ : U = {Ui} is an open cover of E

such that each diam(Ui) ≤ ε

}
,

and Hδ(E) := limε→0 H
δ
ε (E), then the Hausdorff dimension of E, denoted dim(E),

is defined to be the infimum of the set {δ : Hδ(E) = 0}.

For the sets EA, their Hausdorff dimension coincides with their box dimension
(see e.g. [12]).

For a general continuous function f : EA → R, its pressure P (f) is defined to
be

P (f) = lim
n→+∞

1

n
log

⎛⎜⎝ ∑
Tnx=x
x∈EA

ef(x)+f(Tx)+...+f(Tn−1x)

⎞⎟⎠ ,

and making the particular choice f = −s log |T ′| leads to an important characteri-
sation of the Hausdorff dimension of EA (see [3,6,12,24]):

Lemma 1. The function R → R defined by s → P (−s log |T ′|) is strictly de-
creasing, and its unique zero is precisely the Hausdorff dimension dim(EA).
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For s ∈ R, and finite A ⊂ N, define the transfer operator LA,s by

LA,sf(x) =
∑
n∈A

f(Tnx)

(n+ x)2s
.

This operator is known to leave invariant a number of natural function spaces,
notably the Hilbert Hardy spaces considered below, or for example the Banach
space of Lipschitz functions on [0, 1]. On these spaces the value eP (−s log |T ′|) is an
eigenvalue of strictly largest modulus, and is a simple eigenvalue. Consequently,
Lemma 1 implies that the Hausdorff dimension of EA is the unique value s ∈ R
such that LA,s has spectral radius equal to 1.

When acting on suitable Hilbert Hardy spaces, the trace tr(Ln
A,s) of each n-th

power Ln
A,s is given (see [21,25]) by

(1) tr(Ln
A,s) =

∑
i∈An

|T ′
i (zi)|s

1− T ′
i (zi)

=
∑
i∈An

∏n−1
j=0 T j(zi)

2s

1− (−1)n
∏n−1

j=0 T j(zi)2
,

where the point zi is the unique fixed point in (0, 1) of the n-fold composition
Ti = Ti1 ◦ Ti2 ◦ · · · ◦ Tin (and hence a period-n point for the Gauss map T ), and
in particular is a quadratic irrational. The function defined on the complex disc
|z| < e−P (−s log |T ′|) (i.e. the disc of convergence of

∑∞
n=1

zn

n tr(Ln
A,s)) by

(2) Δ(z, s) = exp

(
−

∞∑
n=1

zn

n
tr(Ln

A,s)

)
extends by analytic continuation to an entire function of C, called the determinant
of LA,s.

When acting on suitable Hilbert Hardy spaces, the eigenvalues of LA,s are
precisely the reciprocals of the zeros of its determinant. In particular, the zero of
the function Δ(s, ·) with smallest modulus is e−P (−s log |T ′|), therefore the Hausdorff
dimension of EA is precisely the value of s such that 1 is the zero of minimum
modulus of Δ(s, ·).

In fact, when LA,s acts on such a space of holomorphic functions, its approxi-
mation numbers decay at an exponential rate (see [22, Cor. 2]), so that LA,s belongs
to an exponential class (cf. [1,2]) and is in particular a trace class operator, from
which the existence and above properties of trace and determinant follow (see [27]).

This allows us (cf. [21, 22]) to write Δ(z, s) as the series Δ(z, s) = 1 +∑∞
n=1 δn(s)z

n , and then set z = 1 to define the dimension determinant D by

D(s) := Δ(1, s) = 1 +

∞∑
n=1

δn(s) ,

a holomorphic function which is known to be entire (see [21,25]). Solutions s of

(3) 0 = 1 +

∞∑
n=1

δn(s) = D(s)

are such that the value 1 is an eigenvalue for the operator LA,s, and in particular
the largest real zero of D is precisely the dimension dim(EA) (cf. Proposition 1),
being the value of s such that 1 is the leading eigenvalue (i.e. of maximum modulus)
for the operator LA,s.
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The coefficients δn(s) are computable (to arbitrary precision, for a given s) in
terms of those periodic points of T |EA

whose period is ≤ n, using the formula (1).
Therefore, for any given N ∈ N, we may define DN by

(4) DN (s) := 1 +

N∑
n=1

δn(s) ,

so that a solution sN to the equation DN (s) = 0 will be an approximate solution to
(3), and the smaller

∑∞
n=N+1 δn(s) is the better this approximation will be. In what

follows, we use rigorous upper bounds on (the absolute value of)
∑∞

n=N+1 δn(s) to
yield rigorous estimates on |sN − dim(EA)|.

3. Bounding dimension determinant coefficients

We now begin the serious task of converting these theoretical estimates into
practical bounds that can be used to complete the proofs of the results stated in the
introduction. The key point is that we can employ a number of technical innovations
introduced in [22] in order to make estimates both effective and rigorous.

Let A ⊂ N be finite. An open disc D ⊂ C is said to be admissible (for A) if
∪i∈ATi(D) ⊂ D.

For an admissible disc D of radius �, centred at c, let D′ be the smallest disc,
concentric with D, such that ∪i∈ATi(D) ⊂ D′, and let �′ denote the radius of D′.
The associated contraction ratio θ = θA,D is then defined as

θ = θA,D :=
�′

�
.

Introducing the notation

(5) En(θ) :=
θn(n+1)/2∏n
i=1(1− θi)

,

we note the super-exponential decay En(θ) = O(θ
n2

2 ) as n→∞.

Definition 2. The Hilbert Hardy space H2(D) consists of those functions f

which are holomorphic on D such that ‖f‖2 := supr<�

∫ 1
0
|f∗(c+ re2πit)|2 dt <∞,

with inner product given by

(f, g) =

∫ 1

0

f∗(c+ �e2πit)g∗(c+ �e2πit) dt ,

where f∗ and g∗ denote the respective non-tangential limit functions of f and g.

The monomials

(6) mk(z) = �−k(z − c)k

constitute an orthonormal basis of H2(D).
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Admissibility of D ensures that for s ∈ R, the transfer operator LA,s preserves
H2(D). In particular,

LA,s(mk)(z) =
∑
j∈A

(Tj(z)− c)k

�k(z + j)2s
,

and we may use numerical integration to explicitly compute (to arbitrary precision)
the norm ‖LA,s(mk)‖ as

(7) ‖LA,s(mk)‖2 =

∫ 1

0

∣∣∣∣∣∣
∑
j∈A

(Tj(γ(t))− c)k

�k(γ(t) + j)2s

∣∣∣∣∣∣
2

dt ,

where γ(t) = c+ �e2πit.
For j ∈ A the functions

wj,s(z) =
1

(z + j)2s

are holomorphic on the admissible disc D, and we use their uniform norms

‖wj,s‖∞ = sup
z∈D
|wj,s(z)| ,

together with the contraction ratio θ, to define the constant

(8) Ks = Ks,A,D :=

∑
j∈A ‖wj,s‖∞
θ
√
1− θ2

.

For s ∈ R and n,Q,M,N ∈ N with n ≤ Q ≤ M ≤ N , if we introduce the
quantities

(9) αn,N,+(s) :=

⎛⎜⎝ N∑
k=n−1

‖LA,s(mk)‖2 +

⎛⎝∑
j∈A

‖wj,s‖∞

⎞⎠2

θ2(N+1)

1− θ2

⎞⎟⎠
1/2

,

(10) βM,−
l,N,+(s) :=

∑
i1<...<il≤M

l∏
j=1

αij ,N,+(s) ,

(11) JQ,N,s := Ks

(
1 + θ2(N+2−Q)

)1/2
,

(12) βM,+
n,N,+(s) := βM,−

n,N,+(s) +
n−1∑
l=0

Jn−l
Q,N,s β

M,−
l,N,+(s) θ

M(n−l)En−l(θ) .

then the following bound was established in [22].
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Theorem 6. Let A ⊂ N be finite, and D an admissible disc, with contraction
ratio θ = θA,D. If s ∈ R, and Q,M,N ∈ N with n ≤ Q ≤ M ≤ N , then the
dimension determinant coefficients δn(s) satisfy

|δn(s)| ≤ min
(
Kn

s En(θ) , βM,+
n,N,+(s)

)
.

Remark 1. Theorem 6 was proved in [22] using the theory of approximation
numbers in Hilbert space. The inequality |δn(s)| ≤ Kn

s En(θ) from Theorem 6 is
referred to as the Euler bound, acknowledging Euler’s work [11] on the identity
En(θ) =

∑
i1<...<in

θi1+...+in . The term Kn
s En(θ) has a simple closed form, and

is O(γn2

) as n → ∞ for any γ ∈ (θ1/2, 1), though the constant Ks = Ks,A,D

may be large enough (if A is large) to render the tail estimate |
∑

n>Q δn(s)| ≤∑
n>Q Kn

s En(θ) insufficiently sharp if Q is chosen to be small. The terms βM,+
n,N,+(s),

referred to as upper computed Taylor bounds in [22], have the virtue of being read-
ily computable to arbitrary precision, but are not available in closed form; their
utility, therefore, is in bounding |δn(s)| for n ≤ Q, where Q is chosen so that
the tail estimate derived from the Euler bound is sufficiently sharp. In practice

M and N will be chosen so that βM,+
n,N,+(s) agrees with βM,−

n,N,+(s) (which is given

by a notably simpler formula) to very high precision (e.g. several hundred deci-

mal places), i.e. the more complicated term
∑n−1

l=0 Jn−l
Q,N,s β

M,−
l,N,+(s) θ

M(n−l)En−l(θ)

in (12) effectively plays no computational role; similarly, αn,N,+(s) will in prac-

tice agree with (
∑N

k=n−1 ‖LA,s(mk)‖2)1/2 to very high precision, so that the term

(
∑

j∈A ‖wj,s‖∞)2 θ2(N+1)

1−θ2 in (9) effectively plays no computational role.

4. The Hausdorff dimension of E{2,4,6,8,10} is greater than 1/2

Motivated by the work of Bourgain & Kontorovich [5] described in §1, specifi-
cally [5, p. 139] (see also [23, Lem. 2.20]), our aim in this section will be to provide
a rigorous proof of the fact that the Hausdorff dimension of E{2,4,6,8,10} is greater
than 1/2, a result which heretofore has enjoyed a folklore status, based on convinc-
ing but non-rigorous numerical work.

Our approach is motivated by the following observation:

Proposition 1. For any finite alphabet A, if s0 ∈ R is such that the corre-
sponding dimension determinant D = DA satisfies D(s0) < 0, then dim(EA) > s0.

Proof. The method is to show firstly that D cannot have real zeros that are
larger than dim(EA), so that D, being a continuous function, does not change sign
on the interval (dim(EA),∞), and secondly that the derivative D′(s) is strictly
positive at its zero s = dim(EA). This then implies that D is strictly positive on
(dim(EA),∞), or in other words the desired result that ifD(s0) < 0 then necessarily
dim(EA) > s0.
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To show that if s>dim(EA) then D(s) �=0, recall that s → p(s)=P (−s log |T ′|)
is strictly decreasing on R, with s = dim(EA) its unique zero. Therefore s →
z1(s) = e−p(s), which is the zero of minimum modulus of Δ(·, s), is a strictly
increasing function. In particular, z1(dim(EA)) = 1, so if s > dim(EA) then z1(s) >
1; thus all zeros of Δ(·, s) must have modulus strictly larger than 1. Therefore in
particular the equation Δ(1, s) = 0 has no solutions for s > dim(EA), i.e. the
equation D(s) = 0 has no solutions for s > dim(EA), i.e. D has no zeros that are
strictly larger than dim(EA).

To complete the proof it remains to show that the derivative D′(s) is strictly
positive at s = dim(EA). To see this we use the infinite product

Δ(z, s) =

∞∏
r=1

(1− zλr(s)),

where λr(s) are the eigenvalues of LA,s, listed according to algebraic multiplicity,
and ordered so that their absolute values are non-increasing, with in particular
λ1(s) > |λr(s)| for all r ≥ 2 (since the leading eigenvalue λ1(s) is simple).

If Γ(s) :=
∏∞

r=2(1− λr(s)) then D(s) = (1− λ1(s))Γ(s), so

D
′(s) = −λ′

1(s)Γ(s) + (1− λ1(s))Γ
′(s) ,

and since λ1(dim(EA)) = 1 then

D
′(dim(EA)) = −λ′

1(dim(EA))Γ(dim(EA)).

But s → λ1(s) = ep(s) is strictly decreasing, so −λ′
1(dim(EA)) > 0, and there-

fore it remains to show that Γ(dim(EA)) > 0. For this, note that if s ∈ R (in
particular if s = dim(EA)), the coefficients in the power series expansion of Δ(z, s)
are all real, by (1). Therefore non-real zeros of Δ arise as conjugate pairs, both with
the same multiplicity. Multiplying out those factors in the product representation
of Γ corresponding to conjugate pairs, we see that Γ(dim(EA)) is an infinite product
of strictly positive terms (since |λr(dim(EA))| < 1 for each r ≥ 2). The sequence
of terms converges to 1, since |λr(dim(EA))| → 0, therefore the infinite product
converges to a strictly positive value. That is, Γ(dim(EA)) > 0, as required. �

Having established Proposition 1, our strategy for proving that dim(E{2,4,6,8,10})
> 1/2 will be to show thatD(1/2) < 0 for the corresponding dimension determinant
D = D{2,4,6,8,10}.

In view of the central role of the value s = 1/2 in this section, we shall write

LA := LA,1/2 ,

and

δn := δn(1/2) ,

so that

D(1/2) = 1 +
∞∑

n=1

δn .

It will turn out to be sufficient to work with Gauss map orbits of periods 1, 2
and 3, and in Lemmas 2, 3, 4 below we record exact formulae for the corresponding
traces of the operator LA.
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Lemma 2. If A = {2, 4, 6, 8, 10} then u1 = tr(LA) is given by the exact formula

u1 =

√
2− 1

1 +
(√

2− 1
)2 +

√
5− 2

1 +
(√

5− 2
)2 +

√
10− 3

1 +
(√

10− 3
)2

+

√
17− 4

1 +
(√

17− 4
)2 +

√
26− 5

1 +
(√

26− 5
)2

=
1

2
√
2
+

1

2
√
5
+

1

2
√
10

+
1

2
√
17

+
1

2
√
26

.

Proof. From (1), u1 =
∑

n∈A zn/(1 + z2n), where

zn = [n, n, n, . . .] =
√
k2n + 1− kn ,

for kn = n/2, and the result follows. �

Lemma 3. If A = {2, 4, 6, 8, 10} then u2 = 1
2 tr(L2

A) is given by the exact
formula

u2 =
1

2

(
3− 2

√
2

1−
(
3− 2

√
2
)2 +

19− 6
√
10

1−
(
19− 6

√
10

)2 +
33− 8

√
17

1−
(
33− 8

√
17

)2 +
51− 10

√
26

1−
(
51− 10

√
26

)2
+

3
(
9− 4

√
5
)

1−
(
9− 4

√
5
)2 +

2
(
17− 12

√
2
)

1−
(
17− 12

√
2
)2 +

2
(
7− 4

√
3
)

1−
(
7− 4

√
3
)2 +

2
(
5− 2

√
6
)

1−
(
5− 2

√
6
)2

+
19− 6

√
10

1−
(
19− 6

√
10

)2 +
2
(
31− 8

√
15

)
1−

(
31− 8

√
15

)2 +
2
(
11− 2

√
30

)
1−

(
11− 2

√
30

)2 +
2
(
25− 4

√
39

)
1−

(
25− 4

√
39

)2
+

2
(
13− 2

√
42

)
1−

(
13− 2

√
42

)2 +
2
(
41− 4

√
105

)
1−

(
41− 4

√
105

)2 +
2
(
21− 2

√
110

)
1−

(
21− 2

√
110

)2
)
.

Proof. From (1),

u2 =
1

2

∑
(m,n)∈A2

zm,n

1− z2m,n

,

where it can be shown that

zm,n = km,n −
√
k2m,n − 1 ,

for

km,n = 1 +
mn

2
.

Note that z4,4 = z2,8 = z8,2 = 9− 4
√
5, contributing the term with coefficient 3 in

the above expression for u2. Otherwise the four remaining fixed points contribute
the terms with coefficient 1, and the 9 remaining period-2 orbits contribute the
terms with coefficient 2 (since zm,n = zn,m). �
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Lemma 4. If A = {2, 4, 6, 8, 10} then u3 = 1
3 tr(L3

A) is given by the exact
formula

u3 =
1

3

(
5
√
2− 7

1 +
(
5
√
2− 7

)2 +
17

√
5− 38

1 +
(
17

√
5− 38

)2 +
37

√
10− 117

1 +
(
37

√
10− 117

)2
+

65
√
17− 268

1 +
(
65

√
17− 268

)2 +
101

√
26− 515

1 +
(
101

√
26− 515

)2 +
3
(√

145− 12
)

1 +
(√

145− 12
)2

+
3
(√

290− 17
)

1 +
(√

290− 17
)2 +

3
(√

442− 21
)

1 +
(√

442− 21
)2 +

3
(√

485− 22
)

1 +
(√

485− 22
)2

+
3
(√

730− 27
)

1 +
(√

730− 27
)2 +

6
(√

901− 30
)

1 +
(√

901− 30
)2 +

6
(√

1522− 39
)

1 +
(√

1522− 39
)2

+
6
(√

2305− 48
)

1 +
(√

2305− 48
)2 +

3
(√

3026− 55
)

1 +
(√

3026− 55
)2 +

6
(√

3137− 56
)

1 +
(√

3137− 56
)2

+
6
(√

4762− 69
)

1 +
(√

4762− 69
)2 +

3
(√

5185− 72
)

1 +
(√

5185− 72
)2 +

3
(√

5330− 73
)

1 +
(√

5330− 73
)2

+
3
(√

6401− 80
)

1 +
(√

6401− 80
)2 +

3
(√

7922− 89
)

1 +
(√

7922− 89
)2 +

6
(√

8101− 90
)

1 +
(√

8101− 90
)2

+
6
(√

11026− 105
)

1 +
(√

11026− 105
)2 +

3
(√

12322− 111
)

1 +
(√

12322− 111
)2 +

6
(√

16901− 130
)

1 +
(√

16901− 130
)2

+
3
(√

19045− 138
)

1 +
(√

19045− 138
)2 +

3
(√

23717− 154
)

1 +
(√

23717− 154
)2 +

6
(√

29242− 171
)

1 +
(√

29242− 171
)2

+
3
(√

36482− 191
)

1 +
(√

36482− 191
)2 +

3
(√

41210− 203
)

1 +
(√

41210− 203
)2 +

3
(√

44945− 212
)

1 +
(√

44945− 212
)2

+
6
(√

63505− 252
)

1 +
(√

63505− 252
)2 +

3
(√

97970− 313
)

1 +
(√

97970− 313
)2 +

3
(√

110890− 333
)

1 +
(√

110890− 333
)2

+
3
(√

171397− 414
)

1 +
(√

171397− 414
)2 +

3
(
5
√
74− 43

)
1 +

(
5
√
74− 43

)2
)
.

Proof. From (1),

(13) u3 =
1

3

∑
(l,m,n)∈A3

zl,m,n

1 + z2l,m,n

,

where it can be shown that

zl,m,n =
√
k2 + 1− k ,

for

(14) k = kl,m,n =
1

2
(lmn+ l +m+ n) .

The 35 terms in the above expression for u3 correspond to the 35 distinct values of
zl,m,n as (l,m, n) ranges over A3. Of the 125 terms in (13), five correspond to fixed
points, and the remaining 120 correspond to points of least period 3. Of the 40
period-3 orbits, half of them are such that l, m, and n are distinct elements of A; in
such cases the distinct orbits coded by (l,m, n) and (l, n,m) satisfy zl,m,n = zl,n,m
(note that (14) is symmetric in l, m, n), thus contributing 6 identical terms in the
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sum (13), i.e. the terms with coefficient 6 in the above expression for u3. The other
20 period-3 orbits, for which precisely two of l, m, n are equal, contribute 3 identical
terms in the sum (13), i.e. the terms with coefficient 3 in the above expression for
u3. Thus u3 is naturally written as a sum of 35 = 5 + 10 + 20 terms. �

Using the exact formulae of Lemmas 2, 3, and 4 we are now able to evaluate
the order-3 approximation D3(1/2) to D(1/2):

Lemma 5. For E = E{2,4,6,8,10}, the order-3 approximation D3(1/2) satisfies

(15) D3(1/2) = 1 + δ1 + δ2 + δ3 < − 1

20
.

Proof. Using the definitions of the δi, and Lemmas 2, 3, and 4, we bound1

δ1 = −u1 < −954/1000 ,

δ2 =
1

2
u2
1 − u2 < −102/1000 ,

δ3 = u1u2 − u3 −
1

6
u3
1 < 2/1000 ,

therefore

D3(1/2) = 1 + δ1 + δ2 + δ3 < −54/1000 < −1/20 .
�

Lemma 6. The error term for the approximation of D(1/2) by D3(1/2) is
bounded by

|D(1/2)−D3(1/2)| <
1

20

Proof. Let D ⊂ C be the disc of radius � = 3/2 centred at c = 1/2. For
the alphabet A = {2, 4, 6, 8, 10} this disc has contraction ratio θ = 1/3 (the point
−1 ∈ ∂D satisfies T2(−1) = 1, which has distance 1/2 = θ� from the centre of D,
see Figure 1).

For each n ∈ A = {2, 4, 6, 8, 10} the function wn(z) = 1/(z + n) has maximum
modulus on D when z = c− � = −1, in other words

‖wn‖∞ =
1

n− 1
,

and therefore ∑
n∈A

‖wn‖∞ = 1 +
1

3
+

1

5
+

1

7
+

1

9
=

563

315
,

so

K =

∑
n∈A ‖wn‖∞
θ
√
1− θ2

=
563

70
√
2
< 6 .

Now

|δn| ≤ KnEn(θ) < 6nEn(1/3) =
6n3−n(n+1)/2∏n
i=1(1− 3−i)

=: Fn ,

1These bounds are conveniently checked by numerically evaluating the explicit formulae for
u1, u2, u3 given in Lemmas 2, 3, and 4, using either a pocket calculator or a package such as
Mathematica. One finds that u1 = 0.95459995 . . ., u2 = 0.55800098 . . ., and u3 = 0.38595811 . . ..
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Figure 1. Inner disc D′ (dashed) contains images T2(D), T4(D),
T6(D), T8(D), T10(D) of the outer disc D (centre 1/2, radius 3/2),
in the proof that dim(E{2,4,6,8,10}) > 1/2

from which we readily derive2 the required bound

|D(1/2)−D3(1/2)| ≤
∞∑

n=4

|δn| <
∞∑

n=4

Fn < 1/20 .

�

Remark 2. The specific disc D used in the proof of Lemma 6 ensures that
error bounds are both reasonably sharp and take a conveniently simple form. Its
contraction ratio 1/3 is fairly close to optimal, though in fact the minimum possible
contraction ratio is slightly smaller than 3/10, and if we were wishing to establish

2Note that F4 = 81/2080 ≈ 0.0389, F5 = 243/251680 ≈ 0.000965512, F6 = 729/91611520 ≈
0.0000079, etc., and in fact

∑∞
n=4 Fn = 0.039915 . . ..
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n sn
1 0.48423601174084654015914428125801664463082136184352
2 0.51785646889922347669500264756892828759037033720127
3 0.51735835552554373712759333961028665424316762904677
4 0.51735703035327082175724494790903719578904071340121
5 0.51735703093697422452618598486769311779169231777479
6 0.51735703093701730520259909968044128779914246471704
7 0.51735703093701730466662960310305782115301520544050
8 0.51735703093701730466662847483603679980173115413977
9 0.51735703093701730466662847483643973376603352818029
10 0.51735703093701730466662847483643973379049172430329

Table 1. Approximations sn to dim(E{2,4,6,8,10})

very high accuracy rigorous bounds on dim(E{2,4,6,8,10}) then it would be preferable
to work with a disc whose contraction ratio is (close to) optimal. Note that our
choice of D here is not available in the case of alphabets A containing the number
1, since the point −1 on the boundary of D is then a pole for the function 1/(z+1)
which arises in defining the associated transfer operator.

We can now prove the desired result:

Theorem 7. The Hausdorff dimension of E{2,4,6,8,10} is strictly larger than
1/2.

Proof. For A = {2, 4, 6, 8, 10}, Lemmas 5 and 6 together give D(1/2) < 0
where D = DA. Proposition 1 then implies that dim(EA) > 1/2. �

To end this section we provide (see Table 1) a sequence of approximations to
the dimension of E{2,4,6,8,10}, indicating that

dim(E{2,4,6,8,10}) = 0.5173570309370173046666284748364397337 . . . .

With extra work, the majority of these empirically observed decimal digits could
be rigorously justified using the techniques involving computed bounds (along the
lines of §5 and §6), though in this section our preference was to establish, in a
rather explicit way not relying on computer assistance, the more conservative lower
bound dim(E{2,4,6,8,10}) > 1/2 which is of specific number-theoretic interest (see
[5, p. 139] and [23, Lem. 2.20]).

5. The Hausdorff dimension of E{1,2,3,4,5}

Here we consider the set E{1,2,3,4,5}, corresponding to the choice A = {1, 2, 3,
4, 5}. The approximation sN to dim(E{1,2,3,4,5}), based on periodic points of period
up to N , is the zero (in the interval (0, 1)) of the function DN defined by (4);
these approximations are tabulated in Table 2 for 1 ≤ n ≤ 8. We note that the
7th and 8th approximations to dim(E{1,2,3,4,5}) share the first 13 decimal digits3

0.8368294436812.

3Note that Hensley [17, p. 16] gives the ten decimal digit approximation 0.8368294437, where
the first 9 digits are correct, and the final digit is rounded up.
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n sn
1 0.705879459442766674905124438813
2 0.848104427201487198901594372491
3 0.837214988477016376170810547613
4 0.836824477038318042493697933421
5 0.836829420428362177143803729319
6 0.836829443722239849891499678185
7 0.836829443681235947667216097180
8 0.836829443681208815677961682649

Table 2. Approximations sn to dim(E{1,2,3,4,5})

It turns out that we can rigorously justify 8 of these decimal digits. Define

s− = 0.83682944

and

s+ = 0.83682945 = s− + 10−8 .

We then claim:

Theorem 8. The Hausdorff dimension dim(E{1,2,3,4,5}) lies in the interval

(s−, s+).

Proof. Since EA is a subset of R, its Hausdorff dimension is smaller than 1,
and by Proposition 1 we know that dim(EA) is the largest real zero of D. Our
strategy is to firstly show that D(s−) < 0 < D(s+), so that the continuous function
D has a zero in (s−, s+), and secondly show that D is strictly increasing on (s+, 1),
from which it follows that D has no real zeros larger than s+, hence that dim(EA)
must lie between s− and s+.

Let D ⊂ C be the open disc centred at c, of radius �, where c is the largest real
root of the polynomial

5c7 + 60c6 + 243c5 + 309c4 − 225c3 − 459c2 + 225c− 21 ,

so that

c ≈ 0.871259267043988728104853432066954096301642480251564013290706298815 ,

and

(16) � = −2 +
√
c2 + 6c+ 8− 3/c ,

so that

� ≈ 1.24705349298248245984837857517910962469791117416655000430012735 .

The relation (16) ensures that T1(c− �) and T5(c+ �) are equidistant from c, and
this common distance is denoted by �′ = T1(c− �)− c = c− T5(c+ �), so that

�′ ≈ 0.730776538381714937358210535581775862495407050089163969996563349 .

The specific choice of c is to ensure that the contraction ratio θ = �′/� is minimised,
taking the value

θ =
�′

�
≈ 0.586002559227810334771610807887260173705711718278460922051957 .
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Having computed the points of period up to P = 8 we can form the functions
s → δn(s) for 1 ≤ n ≤ 8, and evaluate these at s = s− to give
(17)

D8(s
−) = 1+

8∑
n=1

δn(s
−) = (−7.23265042091732132359 . . .)×10−9 < −7×10−9 < 0 ,

and at s = s+ to give

D8(s
+) = 1 +

8∑
n=1

δn(s
+)

= (1.24148369391570553114 . . .)× 10−8 > 10−8 > 0 .

(18)

We now aim to show that the approximation D8 is close enough to D for (17)
and (18) to imply, respectively, the negativity of D(s−) and the positivity of D(s+).
In other words, we seek to bound the tail

∑∞
n=9 δn(s), and this will be achieved

by bounding the individual Taylor coefficients δn(s), for n ≥ 9 = P + 1. It will
turn out that for n ≥ 13 the cruder Euler bound on δn(s) is sufficient, while for
P +1 = 9 ≤ n ≤ 12 = Q we will use the upper computed Taylor bound (cf. Remark

1) βM,+
n,N,+(s) for suitable M,N ∈ N.
Henceforth let Q = 12, M = 150, N = 200, and consider the case s = s−. We

first evaluate the H2(D) norms of the monomial images LA,s(mk) for 0 ≤ k ≤ N =
200, as

‖LA,s(m0)‖ = 1.18094153698482882249447608084779380079799521014296 . . .
‖LA,s(m1)‖ = 0.50373481635455365839901987777081994881907010494221 . . .
‖LA,s(m2)‖ = 0.25538908510961660244036590250705094646855677581007 . . .

...
‖LA,s(m200)‖ = (9.2211490601699406685842370009793893017 . . .)× 10−48.

Using these norms ‖LA,s(mk)‖ we then evaluate, for 1 ≤ n ≤ M = 150, the
terms αn,N,+(s) = αn,200,+(s) defined (cf. (9)) by

αn,N,+(s) =

⎛⎝ N∑
k=n−1

‖LA,s(mk)‖2 +
(

5∑
i=1

‖wi,s‖∞

)2

θ2(N+1)

1− θ2

⎞⎠1/2

to be

α1,200,+(s) = 1.31924766289256695924356827596610055341618618514631 . . .
α2,200,+(s) = 0.58804037469497804159060266597641325581551232133109 . . .
α3,200,+(s) = 0.30338542658416252872670480452558662518433118485741 . . .

...
α150,200,+(s) = (8.4073197947570136649265418048602686584245204793167 . . .)

× 10−36.

The terms αn,200,+(s) are then used to form the upper computed Taylor bounds

βM,+
n,N,+(s) = βM,−

n,N,+(s) +
∑n−1

l=0 Jn−l
Q,N,s β

M,−
l,N,+(s) θ

M(n−l)En−l(θ), where

βM,−
n,N,+(s) = β150,−

n,200,+(s) =
∑

i1<...<in≤150

n∏
j=1

αij ,200,+(s) ,
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which for 9 ≤ n ≤ 12 = Q are4

βM,+
9,N,+(s) = (3.869148479201423350100950886266017856266325933993 . . .)× 10−9

βM,+
10,N,+(s) = (2.041028155630093895625799528930764710962712003414 . . .)×10−11

βM,+
11,N,+(s) = (6.130924622613936837872004195147235402486502450229 . . .)×10−14

βM,+
12,N,+(s)=(1.0522363626350277460656303574730842052357778811099 . . .)×10−16

so in particular

(19)

12∑
n=9

|δn(s)| ≤
12∑

n=9

βM,+
n,N,+(s) < 3.9× 10−9.

It remains to derive the Euler bounds on the Taylor coefficients δn(s) for n ≥ 13.
For s > 0 and i ∈ {1, 2, 3, 4, 5}, the function wi,s(z) = 1/(z + i)2s has maximum
modulus on D when z = c− �, so

(20) ‖wi,s‖∞ = 1/(i+ c− �)2s .

A computation using (20) gives

‖w1,s‖∞≤2.200652531203248404044479104226642405462553341431015058177155 ,

‖w2,s‖∞≤0.444077465889954989420982559661627815714819270961004072921669 ,

‖w3,s‖∞≤0.198948407046876624291927334956495986322487588119823603200126 ,

‖w4,s‖∞≤0.115896001097710230802023825180791690553618611817392771206340 ,

‖w5,s‖∞≤0.077082300149426430401659913390892369783863063355289787925134 ,

thus
5∑

i=1

‖wi,s‖∞≤3.036656705387216678961072737416450267837341875684525293430 ,

and therefore

Ks =

∑5
i=1 ‖wi,s‖∞
θ
√
1− θ2

≤ 6.395071652440547917777437764079486107 .

Now |δn(s)| ≤ Kn
s En(θ), and we readily compute that

K13
s E13(θ) < (1.40011020114202973438010314635460316413126280165 . . .)×10−10 ,

K14
s E14(θ) < (5.04481723697163767907422523105683213038944634054 . . .)×10−13 ,

and the super-exponential decay of the terms Kn
s En(θ) means we easily bound

(21)

∣∣∣∣∣
∞∑

n=13

δn(s)

∣∣∣∣∣ ≤
∞∑

n=13

Kn
s En(θ) < 1.5× 10−10 .

Combining (21) with (19) gives, for s = s−,

(22)

∣∣∣∣∣
∞∑

n=9

δn(s)

∣∣∣∣∣ < 4× 10−9 .

4Although not needed in this proof, we record here that the values of βM,+
n,N,+(s) for 1 ≤ n ≤ 8

are βM,+
1,N,+(s) ≈ 2.58, βM,+

2,N,+(s) ≈ 2.22, βM,+
3,N,+(s) ≈ 0.84, βM,+

4,N,+(s) ≈ 0.16, βM,+
5,N,+(s) ≈ 0.015,

βM,+
6,N,+(s) ≈ 0.00085, βM,+

7,N,+(s) ≈ 0.000025, βM,+
8,N,+(s) ≈ 4.15× 10−7.
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Combining (22) with (17) then gives

(23) D(s−) = 1 +

∞∑
n=1

δn(s
−) < −3× 10−9 < 0 .

We now show that D(s+) is positive. In view of (18), for this it is sufficient
to show that |

∑∞
n=9 δn(s)| < 10−8 for s = s+. In fact the stronger inequality (22)

(which we have proved for s = s−) can also be established for s = s+, using the same
general method as for s = s−, since the intermediate computed values for the norms

‖LA,s(mk)‖, the terms αn,N,+(s), the computed Taylor bounds βM,+
n,N,+(s), and the

Euler bounds Kn
s En(θ), are sufficiently close to those for s = s− = s+ − 10−8.

Combining (18) with inequality (22) for s = s+ gives the required positivity

(24) D(s+) = 1 +

∞∑
n=1

δn(s
+) > 0 .

Since D is continuous, (23) and (24) imply that it has a zero in (s−, s+), and
in particular that dim(EA), as the largest zero of D (by Proposition 1), is larger
than s−. To prove that dim(EA) < s+ it now suffices to show that D is strictly
increasing on (s+, 1), and hence has no zeros in this interval. For this we use that

the function D8(s) = 1+
∑8

n=1 δn(s) is available to us in closed form, together with
an estimate on the derivative of the remainder function

R8(s) := D(s)−D8(s) =
∞∑

n=9

δn(s) .

In particular, D8 can be shown to be both strictly increasing and strictly concave
on the interval (s+, 1) (cf. Figure 2, showing the restriction of D8 to [0, 1]), with

(25) D′
8(s) > D′

8(1) = 1.3546901785 . . . >
13

10
for all s ∈ (s+, 1) .

Let U denote the ε-neighbourhood in C of the real interval (s+, 1), where for
concreteness we choose ε = 1/10. We shall bound the modulus of R8 on U via
Euler bounds on the coefficients δn(s) for n > 8, s ∈ U , and then use Cauchy’s
integral formula to derive a bound on R′

8(s) for s ∈ (s+, 1). Recall (see Theorem
6) that |δn(s)| ≤ Kn

s En(θ), where En(θ) = θn(n+1)/2
∏n

i=1(1−θi)−1 is independent
of s, and

Ks =

∑5
i=1 ‖wi,s‖∞
θ
√
1− θ2

=

∑5
i=1(i+ c− �)−2s

θ
√
1− θ2

.

It is readily shown that

sup
s∈U
|Ks| = K1+ε = K11/10 = 7.11229430658606518348 . . . ,

so that

sup
s∈U
|δ9(s)| ≤ K9

11/10E9(θ) = 0.01024367095233740092 . . . ,

sup
s∈U
|δ10(s)| ≤ K10

11/10E10(θ) = 0.00034957413642133622 . . . ,

sup
s∈U
|δ11(s)| ≤ K11

11/10E11(θ) = 0.00000697687020201114 . . . ,

sup
s∈U
|δ12(s)| ≤ K12

11/10E12(θ) = 0.00000008150368808892 . . . ,
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Figure 2. Order-8 approximation D8 to the dimension determi-
nant for E{1,2,3,4,5}.

and we can therefore bound

(26) sup
s∈U
|R8(s)| ≤

∞∑
n=9

sup
s∈U
|δn(s)| <

11

1000
.

If Cs denotes the positively oriented circular contour of radius ε = 1/10, cen-
tred at s, then Cauchy’s integral formula gives the derivative formula R′

8(s) =
1

2πi

∮
Cs

R8(t)
(t−s)2 dt, and U is the union over s ∈ (s+, 1) of the open discs bounded by

the Cs, so (26) yields

|R′
8(s)| ≤

1

ε2
sup
t∈Cs

|R8(t)| ≤ 100 sup
t∈U
|R8(t)| <

11

10
for all s ∈ (s+, 1) .

In particular,

(27) R′
8(s) > −

11

10
for all s ∈ (s+, 1) ,

so combining (25) and (27) gives

D
′(s) = D

′
8(s) +R

′
8(s) > 0 for all s ∈ (s+, 1) ,

so indeed D is strictly increasing on (s+, 1), as required. �

Remark 3. The analysis of Bourgain-Kontorovich and Huang also applies to
more general finite subsets A ⊂ N, see [18]. More precisely, if dim(EA) >

5
6 then

the corresponding subset QA ⊂ N has density one. Therefore, it is natural to
consider other non-sequential finite subsets A for which we can rigorously show
dim(EA) >

5
6 .
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n sn
1 0.742538972647559226233764770933
2 0.878373312250454078800953132613
3 0.867983314494266000322362181011
4 0.867614537223019698282665367406
5 0.867619151810964612388367917252
6 0.867619173277394444047871397558
7 0.867619173240135215103752503105
8 0.867619173240110928010919906321

Table 3. Approximations sn to dim(E{1,2,3,4,5,6})

Using the same method as that used in this section, one can show rigorously
that the dimensions of the sets EA associated to the choices A = {1, 2, 3, 5, 6, 8} or
A = {1, 2, 3, 4, 6, 18}, for example, are greater than 5

6 .

6. The Hausdorff dimension of E{1,2,3,4,5,6}

Here we consider the setE{1,2,3,4,5,6}, corresponding to the choiceA = {1, 2, 3, 4,
5, 6}. The approximation sN to dim(E{1,2,3,4,5,6}), based on periodic points of pe-
riod up to N , is the zero (in the interval (0, 1)) of the function DN defined by (4);
these approximations are tabulated in Table 3 for 1 ≤ n ≤ 8. We note that the
7th and 8th approximations to dim(E{1,2,3,4,5,6}) share the first 13 decimal digits
0.8676191732401.

It turns out that we can rigorously justify 7 of these decimal digits. Define

s− = 0.8676191

and

s+ = 0.8676192 = s− + 10−7 .

We then claim:

Theorem 9. The Hausdorff dimension dim(E{1,2,3,4,5,6}) lies in the interval

(s−, s+).

Proof. The strategy of proof is similar to that used for Theorem 8, firstly
showing that D(s−) < 0 < D(s+) so that D has a zero in (s−, s+), and secondly
arguing that this is the largest zero of D, hence must be dim(EA).

Let D ⊂ C be the open disc centred at c, of radius �, where this time

c ≈ 0.888786621704996501948480357049568065602437524401186717911139539201

is chosen as the largest real root of the polynomial

384c7 + 5376c6 + 25872c5 + 42560c4 − 16660c3 − 67228c2 + 26803c− 2744 ,

and

� = −5

2
+

1

2

√
4c2 + 28c+ 45− 14/c

≈ 1.284639341742533191143484074021163452454469 .
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It follows that

�′ = T1(c− �)− c = c− T6(c+ �)

≈ 0.76643890552427727077005511585427320750401107808160 ,

and therefore

θ =
�′

�
≈ 0.596617961648792936828996037574102515963872474543358842308573 .

The points of period up to P = 8 determine the functions s → δn(s) for
1 ≤ n ≤ 8, which when evaluated at s = s− and s = s+ give
(28)

D8(s
−) = 1+

8∑
n=1

δn(s
−) = (−1.498373759369204270864 . . .)× 10−7 < −10−7 < 0 ,

(29)

D8(s
+) = 1+

8∑
n=1

δn(s
+) = (5.474638165609240513579 . . .)× 10−8 > 5× 10−8 > 0 .

We now claim that D8 is close enough to D for the inequalities (28) and (29)
to imply that D(s−) < 0 < D(s+), and will establish this by bounding δn(s), for
n ≥ 9 = P + 1. As previously, for n ≥ 13 the Euler bound on δn(s) turns out to
be sufficient, while for 9 ≤ n ≤ 12 =: Q we use upper computed Taylor bounds

βM,+
n,N,+(s), where once again we set M := 150, N := 200. To introduce some variety

in the part of the proof presented in full, and in recognition of the fact that in
the present case D8(s

+) is closer to zero than D8(s
−) is, we here consider the case

s = s+.
The norms ‖LA,s(mk)‖ are computed via numerical integration, and then used

to form the terms αn,200,+(s), which are then used to form the upper computed
Taylor bounds which for 9 ≤ n ≤ 12 take the values

βM,+
9,N,+(s) = (1.2621946246695406685698419986501410410894484475601 . . .)× 10−8

βM,+
10,N,+(s) = (8.314966430413518627081622024687687663503710477628 . . .)×10−11

βM,+
11,N,+(s) = (3.176610018228192242136810148998407171840692198466 . . .)×10−13

βM,+
12,N,+(s) = (7.061524069747938884792482724386219757269895805839 . . .)×10−16 ,

from which

(30)
12∑

n=9

|δn(s)| ≤
12∑

n=9

βM,+
n,N,+(s) < 1.3× 10−8.

To compute the Euler bounds on δn(s) for n ≥ 13 we note, as previously,
that ‖wi,s‖∞ = 1/(i + c − �)2s, whence ‖w1,s‖∞ = 2.39 . . ., ‖w2,s‖∞ = 0.44 . . .,
‖w3,s‖∞ = 0.18 . . ., ‖w4,s‖∞ = 0.10 . . ., ‖w5,s‖∞ = 0.07 . . ., ‖w6,s‖∞ = 0.05 . . .,
and

6∑
i=1

‖wi,s‖∞ ≤ 3.25697706521837422093384125065777 ,

therefore

Ks =

∑6
i=1 ‖wi,s‖∞
θ
√
1− θ2

≤ 6.802359696999181386288200501725510191455 .
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It follows that5

K13
s E13(θ) < (1.751608670306048305544710571625984526147775 . . .)× 10−9 ,

K14
s E14(θ) < (8.632960731433444691012413481027827464799512 . . .)× 10−12 ,

and

(31)

∣∣∣∣∣
∞∑

n=13

δn(s)

∣∣∣∣∣ ≤
∞∑

n=13

Kn
s En(θ) < 2× 10−9 ,

so (30), (31) together give, for s = s+,

(32)

∣∣∣∣∣
∞∑
n=9

δn(s)

∣∣∣∣∣ < 1.5× 10−8 ,

and combining (32) with (29) gives

(33) D(s+) = 1 +
∞∑
n=1

δn(s
+) > 3.5× 10−8 > 0 .

It remains to show thatD(s−) is negative. In view of (28), for this it is sufficient
to show that |

∑∞
n=9 δn(s)| < 10−7 for s = s−. In fact the stronger inequality (32)

(which we have proved for s = s+) can also be established for s = s−, using the
same general method as for s = s+, since the intermediate computed values for

‖LA,s(mk)‖, αn,N,+(s), β
M,+
n,N,+(s), and Kn

s En(θ), are sufficiently close to those for

s = s+ = s− + 10−8. Combining (28) with inequality (32) for s = s− gives the
required negativity

(34) D(s−) = 1 +

∞∑
n=1

δn(s
−) < 0 .

Since D is continuous, (33) and (34) imply that it has a zero in (s−, s+), and
in particular that dim(EA), as the largest zero of D (by Proposition 1), is larger
than s−.

To prove that dim(EA) < s+ it now suffices to show that D has no zeros in
(s+, 1). For this, it is technically convenient to deviate slightly from the approach
used in the proof of Theorem 8, by firstly establishing that D is strictly increasing
on (s+, 9/10) (hence has no zeros in this interval, since D(s+) > 0), and then
showing directly that D is strictly positive on [9/10, 1].

The functionD8 can be shown to be both strictly increasing and strictly concave
on the interval (s+, 9/10), with

(35) D′
8(s) > D′

8(9/10) = 1.8898838248 . . . >
3

2
for all s ∈ (s+, 9/10) .

Define R8(s) := D(s)−D8(s) =
∑∞

n=9 δn(s), and let U denote the ε-neighbourhood
in C of the interval (s+, 9/10), where ε = 1/5. Now |δn(s)| ≤ Kn

s En(θ) (by Theorem
6), where

Ks =

∑6
i=1 ‖wi,s‖∞
θ
√
1− θ2

=

∑6
i=1(i+ c− �)−2s

θ
√
1− θ2

,

5Note that K12
s E12(θ) = (2.119 . . .)× 10−7, which is slightly too large for our purposes, thus

justifying the choice of Q = 12 as the largest index for which the computed Taylor bound, rather
than the Euler bound, is used.
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and it is readily shown that

sup
s∈U
|Ks| = K9/10+ε = K11/10 = 7.56580745219371800335 . . . ,

so that

sup
s∈U
|δ9(s)| ≤ K9

11/10E9(θ) = 0.04376686701280541755 . . . ,

sup
s∈U
|δ10(s)| ≤ K10

11/10E10(θ) = 0.00190306136091161412 . . . ,

sup
s∈U
|δ11(s)| ≤ K11

11/10E11(θ) = 0.00004925505297772416 . . . ,

sup
s∈U
|δ12(s)| ≤ K12

11/10E12(θ) = 0.00000075953226513723 . . . ,

and we can therefore bound

(36) sup
s∈U
|R8(s)| ≤

∞∑
n=9

sup
s∈U
|δn(s)| <

1

20
.

If Cs denotes the positively oriented circular contour of radius ε = 1/5, centred at
s, then Cauchy’s integral formula together with (36) yields

|R′
8(s)| ≤

1

ε2
sup
t∈Cs

|R8(t)| ≤ 25 sup
t∈U
|R8(t)| <

5

4
for all s ∈ (s+, 9/10) ,

and in particular,

(37) R
′
8(s) > −

5

4
for all s ∈ (s+, 9/10) ,

so combining (35) and (37) gives

D
′(s) = D

′
8(s) +R

′
8(s) > 0 for all s ∈ (s+, 9/10) ,

so indeed D is strictly increasing on (s+, 9/10), as claimed.
It remains to show that D has no zeros in the interval [9/10, 1]. Since D8 is

increasing on this interval,
(38)

D8(s) ≥ D8(9/10) = 0.06368315529812853238 . . . >
1

20
for all s ∈ [9/10, 1] .

Now s → Kn
s is increasing on [9/10, 1], so if s ∈ [9/10, 1] then

|δn(s)| ≤ Kn
s En(θ) ≤ Kn

1 En(θ) =
Kn

1 θ
n(n+1)/2∏n

i=1(1− θi)
< AKn

1 θ
n(n+1)/2

where A :=
∏n

i=1(1− θi)−1 = 6.780731869 . . ., therefore

∞∑
n=9

|δn(s)| < A

∞∑
n=9

Kn
1 θ

n(n+1)/2 < AK9
1θ

45
∞∑
i=0

(K1θ
10)i =

AK9
1θ

45

1−K1θ10

= 0.02845 . . . <
3

100
,

and hence

(39) sup
s∈[9/10,1]

|R8(s)| ≤ sup
s∈[9/10,1]

∞∑
n=9

|δn(s)| <
3

100
.
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From (38) and (39) it follows that

D(s) = D8(s) +R8(s) >
1

20
− 3

100
> 0 for all s ∈ [9/10, 1] ,

so indeed D has no zeros in the interval [9/10, 1], and the proof is complete. �
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Volume growth for infinite graphs and translation surfaces

P. Colognese and M. Pollicott

This paper is dedicated to the memory of Sergeiy Kolyada

Abstract. In this note we give asymptotic estimates for the volume growth
associated to suitable infinite graphs. Our main application is to give an
asymptotic estimate for the volume growth associated to translation surfaces.

1. Introduction

We begin by recalling the definition of volume entropy for compact Riemannian
manifolds due to Manning [7]. Let M be a compact manifold with Riemannian

metric ρ and universal cover M̃ equipped with the lifted metric ρ̃. Fix a point

c ∈ M̃ and consider a ball B(c, R) of radius R > 0 centred at c.

Definition 1.1. The volume entropy of M is defined by

h = h(M,ρ) := lim
R→∞

1

R
log Volρ̃(B(c, R)),

where Volρ̃ denotes the Riemannian volume on M̃ with respect to ρ̃.

For manifolds (M,ρ) of non-positive curvature this coincides with the topo-
logical entropy h of the associated geodesic flow [7]. In the case of manifolds with
negative sectional curvature, Margulis [9] showed in his thesis that there is a simple
asymptotic formula: There exists C > 0 such that

lim
R→+∞

Volρ̃(B(c, R))

ehR
= C.

A closely related result in [9] gave an asymptotic formula for the number Π(x,R)
of geodesic arcs starting and finishing at a given point x of length at most R: There
exists D > 0 such that

lim
R→+∞

Π(x,R)

ehR
= D.

A related notion of volume entropy was considered for directed, finite, con-
nected, non-cyclic graphs without terminal vertices by Lim in [6]. In this note we
extend Lim’s definition of volume entropy to suitable infinite graphs and show the
analogue of Margulis’ result in this context (Theorem 2.1). As an application we
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show a version of Margulis’ theorem for the natural analogue of volume growth for
translation surfaces (Theorem 6.3). Independently, Eskin and Rafi have proved a
parallel result for closed geodesics (see Remark 6.13.4).

This note originated as a summer MPhil project of the first author. It may
have been possible to apply the transfer operator methods in [15], but instead we
employ a more direct and elementary approach.

We are grateful to A. Eskin, J. Chaika, R. Sharp, S. Ghazouani and the three
anonymous referees for their useful comments.

2. Infinite Graphs

In this section we will introduce the types of graphs we shall we working with
as well as basic definitions which will be used throughout the paper.

Let G be a non-empty connected directed graph. Let V = V(G) and E = E(G)
be the vertex and oriented edge sets respectively. For every edge e, let i(e) and
t(e) denote the initial and the terminal vertex of e, respectively. We can define a
length distance d on G by introducing a length function � : E → R which assigns a
positive real number �(e) to each edge e ∈ E .

Example 2.1 (Infinite Graph). Consider a graph G formed from one vertex
and a countably infinite number of edges.

· · ·v e1 e2 e3 e4

Figure 1. A single vertex V = {v} and infinitely many edges E = {en}∞n=1.

A path in G corresponds to a sequence of edges p = e1 . . . en for which t(ej) =
i(ej+1), for 1 ≤ j < n and we denote its length by �(p) =

∑n
j=1 �(ej).

Let PG(x,R) = {p = e1 . . . en : i(e1) = x, �(p) ≤ R} denote the set of all such
paths of length at most R starting at x ∈ V(G). We denote its cardinality by
NG(x,R) = #PG(x,R).
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Definition 2.2. We define the volume entropy of (G, �, x) as

h(G, �, x) = lim sup
R→+∞

1

R
logNG(x,R).

However, we need to make further assumptions on the length function � for
h(G, �, x) to be finite. To see this, consider the graph G in Example 2.1 which
has a single vertex and an infinite number of edges, and assume that the lengths
don’t tend to infinity. Then for R sufficiently large, NG(x,R) = ∞ and thus
h(G, �, x) =∞.

We summarise below the properties of the graph that are needed in the proof.

Graph Hypotheses. Henceforth, we shall consider graphs with finite vertex set
V and a countable edge set E . Furthermore we require that E and the associated
length function satisfy the following properties:

(H1) For all σ > 0 we have
∑

e∈E e
−σ�(e) <∞;

(H2) For all edges e, e′ ∈ E there exists a path in G which starts with e and
ends with e′1; and

(H3) There does not exist a d > 0 such that

{�(c) : c is a closed path} ⊂ dN.

Under the above hypotheses, the volume entropy h = h(G, �, x) does not depend on
the choice of base point x.

Lemma 2.3. If the graph G satisfies (H1) and (H2) then 0 < h <∞.

Proof. By assumption (H2), and the pigeonhole principle applied to V , there
exist a path connecting the base point x to some vertex v and two closed paths, c1
and c2, which pass through v. By considering all possible concatenations of these
closed paths it is clear that there exists b > 0 such that NG(x,R) ≥ 2�R/b� for all

R > 0 and hence h ≥ log 2
b > 0.

To see that h is finite we can formally write∑
p∈PG(x,R)

e−σ�(p) ≤
∞∑

n=1

(∑
e∈E

e−σ�(e)

)n

, (2.1)

for σ > 0, where the Right Hand Side involves all possible sums of edge lengths.
Using (H1) one can see that for σ = σ0 sufficiently large

∑
e∈E e

−σ�(e) < 1 and thus
the geometric series on the Right Hand Side of (2.1) converges. In particular, since
h is easily seen to be the absicssa of convergence of the series on the Left Hand Side
of (2.1) we see that h ≤ σ0 < +∞, as required. �

Our main result for G is the following asymptotic for the growth of paths.

Theorem 2.1. If the graph G satisfies (H1),(H2) and (H3) then there exists a
constant C > 0 such that NG(x,R) ∼ CehR, i.e.,

lim
R→+∞

NG(x,R)

ehR
= C.

1A slightly weaker assumption would be to require that for a sufficiently large finite subset
E0 ⊂ E, for every e, e′ ∈ E0 there exists a path in G which starts with e and ends with e′
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The proof follows the lines of the classical proof of the prime number theorem.
In particular, it is based on the use of a Tauberian theorem (in Section 5). This,
in turn, depends on the properties of the complex function ηG(z), the Laplace
transform of NG(x,R) (defined in Section 4). The function ηG(z) is analysed using
matrices introduced in the next section. In the special case of finite graphs, the
asymptotic in Theorem 2.1 could be easily deduced using ideas in [13] for finite
matrices.

Remark 2.2. Without hypothesis (H3) this theorem may not hold. For ex-
ample, even in the case of finite graphs, if we consider the graph G with a single
vertex and two edges of length 1, then NG(x,R) = 2�R� for all R > 0. In this case,
the limit in Theorem 2.4 does not converge.

3. Countable Matrices

In this section consider a graph G and length function � which satisfy hypotheses
(H1)-(H3). Let us order the edge set E = (ea)a∈N by non-decreasing length and
write �(a) := �(ea), a ∈ N.

Definition 3.1. We can associate to G the infinite matrix M0 defined by

M0(a, b) =

{
1 if t(a) = i(b),

0 otherwise.

For each z ∈ C we define the matrix Mz by Mz(a, b) = M0(a, b)e
−z�(b) for a, b ∈ E .

Let P (n, a, b) denote the set of paths in G consisting of n edges, starting with
edge ea and ending with edge eb. It then follows from formal matrix multiplication
that for any n ≥ 1, we can write the (a, b)th entry of the nth power of the matrix
as:

Mn
z (a, b) = ez�(a)

∑
p∈P (n+1,a,b)

e−z�(p), (3.1).

which will be finite by hypothesis (H1).
Given any matrix L = (L(a, b))∞a,b=1 with supa

∑
b |L(a, b)| < +∞ we can

associate to L a bounded linear operator L̂ : �∞(C)→ �∞(C) by

L̂(u) =
( ∞∑

b=1

L(a, b)ub

)∞
a=1

where u = (ub)
∞
b=1 ∈ �∞(C).

In particular, by hypothesis (H1), when Re(z) > 0 we can associate to Mz a

bounded operator M̂z : �∞(C)→ �∞(C) by

M̂z(u) =
( ∞∑

b=1

Mz(a, b)ub

)∞
a=1

.

To proceed, we would like to understand the domain of meromorphicity of the lin-

ear operator (I − M̂z)
−1 : �∞(C)→ �∞(C), where I denotes the identity operator.

To this end, we shall make use of an idea by Hofbauer and Keller in [4], where they
observe that the invertibility of certain operators of the above form depends only
on the determinant of an associated finite matrix.
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Fix ε > 0 and, for convenience, assume also h > ε. Given k ≥ 1, we can
truncate the matrix Mz to the k × k matrix Az = (Mz(i, j))

k
i,j=1. Then we can

then write

Mz =

(
Az Bz

Cz Dz

)
where, in particular, Dz = (Mz(i+ k, j + k))

∞
i,j=1. Again, we can interpret I − D̂z

as a bounded linear operator on �∞(C) and write (I − D̂z)
−1 =

∑∞
m=0 D̂z

m
if the

operator D̂z has norm ‖D̂z‖ < 1. In particular, this is true when Re(z) ≥ ε for k
sufficiently large, since by (H1) we have

‖D̂z‖ ≤ sup
n∈N

∞∑
m=1

|Dz(n,m)| ≤
∞∑

m=1

e−Re(z)�(m+k) ≤
∞∑

m=1

e−ε�(m+k) < 1. (3.2)

Writing �∞(C) as the corresponding direct sum of two subspaces, we can then easily
verify that

I−M̂z =

(
I − Âz − B̂z(I − D̂z)

−1Ĉz −B̂z(I − D̂z)
−1

0 I

)(
I 0

−Ĉz I − D̂z

)
. (3.3)

Let us denote the k × k matrix Wz := Az + Bz(I −Dz)
−1Cz, where each entry is

given by a convergent series. By (3.3), whenever det(I −Wz) �= 0 then we see that

I − M̂z is invertible, with inverse

(I − M̂z)
−1

=

(
I 0

(I − D̂z)
−1Ĉz (I − D̂z)

−1

)(
(I − Ŵz)

−1 (I − Ŵz)
−1B̂z(I − D̂z)

−1

0 I

)
.

(3.4)
This leads to the following result.

Lemma 3.2. The operator (I − M̂z)
−1 has an analytic extension to Re(z) > 0

except when det(I −Wz) = 0.

Proof. This follows from the identity (3.4) and since the ε > 0 used in the
above construction can be chosen arbitrarily small. �

4. Complex functions

We can now introduce a complex function whose analytic properties will be
useful in deriving our asymptotic estimates for NG(x,R). Fix x ∈ V .

Definition 4.1. We can formally define the complex function

ηG(z) =

∫ ∞

0

e−zRdNG(x,R) =
∑

p∈P (x)

e−z�(p), z ∈ C,

where P (x) = {p = e1 · · · en : n ≥ 0, i(e1) = x} is the set of paths in G starting
at x.

We first observe that ηG(z) converges to an analytic function for Re(z) > h, by
virtue of Definition 2.2. In order to construct a meromorphic extension of ηG(z) we
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shall relate ηG(z) to the matrix Mz. For Re(z) > 0, we define:

(a) w(z) = (χEx
(ej)e

−z�(j))∞j=1 ∈ �1(C) where χEx
denotes the characteristic

function of the set Ex = {e ∈ E : i(e) = x} of edges whose initial vertex
is x; and

(b) 1 = (1)∞j=1 ∈ �∞(C) is the vector all of whose entries are equal to 1,

then we can formally rewrite ηG(z) as

ηG(z) =
∑

p∈P (x)

e−z�(p) = w(z) ·
( ∞∑

n=0

M̂z

n
)
1

= w(z) ·
(
I − M̂z

)−1

1,

(4.1)

where w ·v =
∑∞

j=1 wjvj for w ∈ �1(C) and v ∈ �∞(C). Observe that for Re(z) > 0

we have w(z) ∈ �1(C) by (H1). In particular, by Lemma 3.2 the expression in (4.1)
extends to Re(z) > 0, and the locations of the poles are given by those z such that
the finite rank operator (I −Wz) is not invertible. Moreover, we can easily write

ηG(z) =
φ(z)

det(I −Wz)
(4.2)

where φ(z) is holomorphic on Re(z) > 0.

Proposition 4.1. ηG(z) has a meromorphic extension to Re(z) > 0.

Proof. Observe that det(I−Wz) is the sum of a countable number of holomor-
phic functions which uniformly converge on any compact domain in Re(z) > 0 and
hence det(I −Wz) is holomorphic. The result follows from the identity (4.2). �

Let ε < h. By (3.2) we can choose k large enough such that (I − D̂z) is
invertible, on the half plane Re(z) ≥ ε. Recall that a non-negative n×n matrix M
is irreducible if for all i, j satisfying 1 ≤ i, j ≤ n there exists a natural number m
such that (Mm)i,j > 0.

Lemma 4.2. Let σ > 0. Then Wσ is a non-negative irreducible matrix. Further-
more, Wσ has a simple maximal positive eigenvalue ρ(σ) = ρ(Wσ), which depends
analytically on σ and satisfies ρ′(σ) < 0.

Proof. Recall that Wσ = Aσ + Bσ(I −Dσ)
−1Cσ, which by construction is a

non-negative matrix. We can also deduce that the matrix Wσ is irreducible. To
see this, note that by assumption (H2), for all 1 ≤ i, j ≤ k, there exists some path
of length n starting with edge ei and ending with edge ej . Such a path can be
broken up into sub-paths of two types. The first type consists of those paths that
stay completely within {e1, · · · , ek}, and the second type which consists of those
paths that initially enter the complement E −{e1, · · · , ek} and finally leave at their
end. Note that Wn

σ (i, j) is a sum including powers of Aσ(i, j) (corresponding to
sub-paths of the first type) and Bσ(I − Dσ)

−1Cσ (corresponding to sub-paths of
the second type), where the powers are less than or equal to n. Hence Wn

σ (i, j) > 0.
We can now apply the Perron-Frobenius theorem (see [3]) to deduce that the

maximal positive eigenvalue ρ(σ) > 0 for Wσ exists and that Wσ has associated
positive left and right eigenvectors u(σ) and v(σ) (which we normalise so that
u(σ) · v(σ) = 1). By differentiating the eigenvalue equations for u(σ) and v(σ), one
can show that

ρ′(σ) = u(σ) ·W ′
σv(σ) < 0,
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where W ′
σ is the matrix with entries W ′

σ(i, j) =
dWx(i,j)

dx (σ) < 0 for all i, j (see [14]
for a similar argument). �

Proposition 4.2. h is a simple pole of ηG(z).

Proof. For z in a neighbourhood of h, we denote by ρ(z) the perturbed eigen-
value of Wz. We can write det(I −Wz) = (1 − ρ(z))Πk

i=2(1 − λi(z)), where the
λi(z) denote the other eigenvalues of Wz. Since the λi(z) are bounded away from
1 for z near h (by the Perron-Frobenius theorem and standard perturbation the-
ory), φ(h) �= 0 and ρ′(h) �= 0 (by Lemma 4.2), we can conclude that (z − h)ηG(z)
converges to a non-zero constant, as z tends to h. �

Proposition 4.3. ηG(z) has no poles other than h on the line Re(z) = h.

Proof. Suppose for a contraction that there exists another pole at h + it
(t �= 0). Let c be any closed path and choose an integer kc > k such that the edges
of c have index smaller than kc. Then construct the kc × kc matrices Wz. From
equation (4.2) we see that det(I−Wh+it) = 0, and thus 1 is an eigenvalue for Wh+it

and Wh. Furthermore, we can see that ρ(Wh) = 1 since otherwise ηG(z) has a pole
at c > h, contradicting Definition 2.2.

Next observe that |Wh+it(a, b)| ≤Wh(a, b) for all 1 ≤ a, b ≤ k. Since ρ(Wh+it)
≥ 1 = ρ(Wh), we can apply Wielandt’s theorem (see [3]) which allows us to conclude
that ρ(Wh+it) = ρ(Wh) = 1 and that there exists a diagonal matrix D, whose non-
zero entries have unit modulus such that Wh+it = DWhD

−1, and thus for all n we
have Wn

h+it = DWn
h D

−1.
Suppose that the closed path c begins with some edge ea and consists of n

edges. One can check that Wn
h+it(a, a) = Wn

h (a, a) (since Wn
h+it = DWn

h D
−1) and

that e(h+it)�(c) is one of the terms in the left hand sum. However, this can only hold
if t is such that �(c)t = 2πmc for some non-zero integer mc. As c was arbitrary,
the above construction implies that for all closed paths c, �(c) ∈ dN with d = 2π/t
which contradicts (H3). �

5. Proof of Theorem 2.1

We can complete the proof using a similar approach to Parry in [13], where he
considered only finite matrices. In particular, we will use the following formulation
of the Ikehara–Wiener Tauberian theorem [2] applied to our counting function,
NG(x,R).

Theorem 5.1 (Ikehara–Wiener Tauberian theorem). Let A : R+ → R+ be a
monotonic, non-decreasing function and formally denote η(z) :=

∫∞
0

e−zRdA(R),
for z ∈ C. Then suppose that η(z) has the following properties:

(1) there exists some a > 0 such that η(z) is analytic on Re(z) > a;
(2) η(z) has a meromorphic extension to a neighbourhood of the half-plane

Re(z) ≥ a;
(3) a is a simple pole for η(z), i.e., C = limz↘a(z − a)η(z) > 0; and
(4) the extension of η(z) has no poles on the line Re(z) = a other than a.

Then A(R) ∼ CeaR as R→ +∞.

From the results in the previous section we see that the ηG(s) satisfies the
assumptions of Theorem 5.1 with a = h and so we have proved Theorem 2.1.
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6. Translation surfaces

In this section we will consider a definition of volume entropy for translation
surfaces and prove asymptotic results using the work developed in the previous
sections.

Definition 6.1. A translation surface X is a compact surface with a flat
metric except at a finite set Σ = {x1, . . . , xn} of singular points with cone angles
2π(k(xi) + 1), where k(xi) ∈ N, for i = 1, . . . , n.

A path which does not pass through singularities is a locally distance minimiz-
ing geodesic if it is a straight line segment. This includes geodesics which start and
end at singularities, known as saddle connections. We will consider oriented saddle
connections.

Geodesics can change direction if they go through a singular point, and a pair
of line segments ending and beginning, respectively, at a singular point form a
geodesic if the angle between them is at least π. Thus a locally distance minimising
geodesic (of length R) on a translation surface X with singularity set Σ, is a curve
γ : [0, R]→ X satisfying the following conditions:

• There exist 0 ≤ t1 < ... < tn ≤ R, where n ≥ 0, such that γ(ti) ∈ Σ;
• For ti < t < ti+1 γ(t) ∈ X\Σ;
• γ : (ti, ti+1)→ X\Σ is a geodesic segment (possibly a saddle connection);
• The smallest angle between γ|(ti−1,ti) and γ|(ti,ti+1) is at least π (cf. [1],
Lemma 2.1).

Let S = {s1, s2, ...} be the set of oriented saddle connections ordered by non-
decreasing lengths.

Definition 6.2. We define a saddle connection path p = (si1 , ..., sin) to be a
finite string of oriented saddle collections si1 , ..., sin which form a geodesic path.

We denote by �(p) = �(s1) + �(s2) + · · · + �(sn) the sum of the lengths of the
constituent saddle connections. We let i(p), t(p) ∈ Σ denote the initial and terminal
singularities, respectively, of the saddle connection path p.

Example 6.3 (Square tiled surfaces [16]). We can consider the square-tiled
surfaces by identifying opposite sides of arrangements of a finite number of copies
of the unit square (Figure 2). The values of the lengths of the saddle connections

are of the form {
√
n2 +m2 : (n,m) ∈ Z2 − (0, 0) co-prime}.

Figure 2. (i) A square tiled surface formed from four tiles; (ii) a
square tiled surface formed from three tiles.
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We now turn our attention to defining a notion of volume entropy for translation
surfaces in terms of the growth of the volume of a ball as its radius tends to
infinity. By analogy with the definition of volume entropy for Riemannian manifolds
(Definition 1.1) we can consider the rate of growth of balls in the universal cover

X̃ of X.

Definition 6.4. Let x̃ ∈ X̃ and consider a ball B(x̃, R) ⊂ X̃ of radius R > 0
with centre x̃. We define the volume entropy of X to be

h = h(X) := lim sup
R→+∞

1

R
log VolX̃(B(x̃, R))

where VolX̃ denotes the natural volume on X̃.

Definition 6.4 is closely related to the definition of Dankwart [1], which was
formulated in terms of orbital counting. As in the case of the definitions of volume
entropy for Riemannian manifolds and finite metric graphs, h is independent of the
choice of x̃. For convenience, we can take x̃ to be the lift of a singularity x ∈ Σ.

It is also possible to interpret this definition in terms of X rather than X̃. To
this end we have the following definition.

Definition 6.5. Let mR(y) be number of distinct geodesic arcs in X from x
to y of length at most R.

We can now rewrite VolX̃(B(x̃, R)) =
∫
X
mR(y)dVolX(y) (see Figure 3). For

economy of notation we will write V (x,R) := VolX̃(B(x̃, R)).

Let x ∈ Σ be a singularity, then we define

π(x,R) := {p : i(p) = x and l(p) ≤ R}

to be the number of saddle connection paths starting at x of length less than or
equal to R.

Lemma 6.6. Let X be a translation surface and fix a singularity x ∈ Σ and let
2π(k(x) + 1) be the cone angle of x. Then for R > 0,

V (x,R) = (k(x) + 1)πR2 +
∑

p∈π(x,R)

k(t(p))π(R− �(p))2,

where the singularity at the end of path p has cone angle 2π(k(t(p)) + 1).

Proof. The volume contributed by the geodesics starting from x which do not
pass through a singularity is given by (k(x)+1)πR2, where 2π(k(x)+1) is the cone
angle at x. On the other hand, the contribution to the volume by those geodesics
γ which pass through one or more singularities comes when the geodesic leaves its
last singularity at time �(p) < R, say. It can exit in one of 2πk(p) directions. Then
the total volume of such γ is given by k(t(p))π(R− (�(p))2. �

We shall now prove asymptotic results for translation surfaces using the analysis
developed for infinite graphs.
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4 22

2

2

3

3

3

3

Figure 3. (i) A small ball centred at a singularity; (ii) As the
radius R increases the ball overlaps with itself (and the values of
the multiplicity function mR(·) are indicated).

Definition 6.7. We can associate to X the countable matrix M0, indexed by
S, defined by

M0(s, s
′) =

{
1 if ss′ form a saddle connection path,

0 otherwise.

For each z ∈ C we define the matrix Mz by Mz(s, s
′) = M0(s, s

′)e−z�(s′) for
s, s′ ∈ S.

In order that the matrices have the same properties that served us well for
graphs, we require specific features of a translation surface.
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R

Figure 4. (i) The radii of the projections B(x̃, R) of balls in the
universal cover are concatenations of saddle connections followed
by a radial line segment from a singularity; (ii) A heuristic figure
illustrating that the boundary of B(x̃, R) will consist of the union
of circular arcs centred on singularities reached via concatenations
of saddle connections

Translation Hypotheses. Henceforth, we shall consider translation surfaces
whose countable set of saddle connections is denoted by S. Moreover, we require
that S and the lengths of the saddle connections satisfy the following properties:

(T1) For all σ > 0 we have
∑

s∈S e−σ�(s) < +∞;
(T2) For any directed saddle connections s, s′ ∈ S there exists a saddle connec-

tion path beginning with s and ending with s′; and
(T3) There does not exist a d > 0 such that

{�(c) : c is a closed saddle connection path} ⊂ dN.

We claim that the above hypotheses hold for all translation surfaces.

Property (T1) follows from the lower bound in following result (see [10] and
[11]).

Proposition 6.1. Let X be a translation surface and let N(X,L) denote the
number of saddle connections on X of length less than or equal to L. Then there



120 P. COLOGNESE AND M. POLLICOTT

exists constants 0 < c1 < c2 <∞ such that

c1L
2 ≤ N(X,L) ≤ c2L

2,

for L sufficiently large.

To see that Hypotheses (T2) and (T3) hold for all translation surfaces, we
require the following result in [1] which we restate for our purposes here.

Proposition 6.2. Let X be a translation surface. If s, s′ ∈ S are oriented
saddle connections then there exists a saddle connection path which starts with s
and ends with s′.

Hypothesis (T2) follows immediately from this fact.
To show Hypothesis (T3) holds for all surfaces we first note that if the lengths

of all closed geodesics were an integer multiple of some constant d, then the length
of every saddle connection would be an integer multiple of d/2. To see this, let s be
any saddle connection on X. If i(s) = t(s) then s is a closed geodesic and so we are
done. If i(s) �= t(s) then by Proposition 6.2, there exists a closed saddle connection
path ci such that ci passes through i(s) and that s̄cis forms a saddle connection
path (where s̄ is the saddle connection s with reversed orientation). Similarly, there
exists a closed saddle connection path ct which starts and ends at t(s), such that
scts̄ forms a saddle connection path. Note that the concatenation scts̄ci is also a
closed saddle connection path of length 2�(s) + �(ct) + �(ci) and so by Hypothesis
(T3), �(s) ∈ (d/2)N. Let us now assume for a contradiction that (T3) does not hold
and, in particular, the above property holds for the saddle connection lengths.

Using results in [12], X contains an embedded cylinder C (the product of a
circle with an interval) whose boundaries consist of a single saddle connection or
multiple parallel saddle connections. We now aim to construct a countable family
of triangles using this cylinder (Figure 5). Fix two singularities x and y, one from

x x x x

y y y

b b b

aT1
T2

T3
c3

Figure 5. Three copies of a cylinder on X with two singularities
on separate boundaries represented by circles and squares. The
corresponding triangles T1, T2 and T3 are also drawn.

each boundary. Let b denote the union of saddle connections which form the bound-
ary of the cylinder connecting x to itself. Let a be one of the saddle connection
connecting x to y across the cylinder such that the angle between a and b is acute.
Then consider the unique saddle connection cn connecting x to y which is defined
to be the third side in a triangle Tn whose other edges are b concatenated with itself
n times and a. By hypothesis each edge has length which is an integer multiple
of d/2. However, by elementary Euclidean geometry we can show that this cannot
hold for all sufficiently large n, giving the required contradiction.
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To derive an asymptotic estimate for V (x,R) we can associate the complex
function

ηX(z) =

∫ ∞

0

e−zRdV (x,R).

Let P(x) := {p : i(p) = x} denote the set of saddle connection paths starting at x.
We can rewrite ηX(z) as follows:

ηX(z) =

∫ ∞

0

e−zR

(
d

dR
Vol(B(x,R))

)
dR

= 2π(k(x) + 1)

∫ ∞

0

e−zRRdR + 2π
∑

p∈P(x)

k(t(p))

∫ ∞

�(p)

e−zR(R− �(p))dR

= 2π(k(x) + 1)

∫ ∞

0

e−zRRdR + 2π
∑

p∈P(x)

k(t(p))e−z�(p)

∫ ∞

0

e−zRRdR

=
2π

z2
(k(x) + 1) +

2π

z2

∑
p∈P(x)

k(t(p))e−z�(p)

=
2π

z2
(k(x) + 1) +

2π

z2
v(z) · (I − M̂z)

−1u,

(6.1)
where u = (k(t(sj)))

∞
j=1 ∈ �∞(C) and v(z) = (χEx

(sj)e
−z�(sj))∞j=1 ∈ �1(C), where

χEx
denotes the characteristic function of the set Ex = {s ∈ S : i(s) = x} of saddle

connections starting from the singularity x ∈ Σ.

Lemma 6.8. The function ηX(z) is analytic for Re(z) > h and has a mero-
morphic extension to Re(z) > 0. Moreover ηX(z) has a simple pole at z = h and
no other poles on Re(z) = h.

Proof. We can apply the analysis of (I − M̂z)
−1 in Section 4 to (6.1), where

we use hypotheses (T1)-(T3) in place of (H1)-(H3). �
We can now apply Theorem 5.1 to deduce the following.

Theorem 6.3. There exists a C > 0 such that V (x,R) ∼ CehR as R → +∞,
i.e.,

lim
R→+∞

V (x,R)

ehR
= C.

Typically C = C(x) will depend on the choice of x.
There is a closely related result for counting the number of geodesic arcs

NX(x, y,R) starting at x ∈ Σ and finishing at y ∈ Σ.

Proposition 6.4. There exists a D > 0 such that NX(x, y,R) ∼ DehR as
R→ +∞, i.e.,

lim
R→+∞

NX(x, y,R)

ehR
= D.

Proof. The proof simply requires replacing the function ηX(z) by the function

ηN (z) =

∫ ∞

0

e−zRdNX(x, y,R) = v(z) · (I − M̂z)
−1w,

where w = (χF(si))
∞
i=1, with χF (s) denoting the characteristic function for the set

F = {s ∈ S : t(si) = y} of saddle connections ending at the singularity y and u(z)
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was defined after equation (6.1). Again the properties of (I − M̂z)
−1 allow one to

apply Theorem 5.1 to deduce the result. �

Remark 6.5. We conclude with some final remarks.

(1) It is not necessary for the ball in Theorem 6.3 to be centered at a sin-
gularity. Let y ∈ X − Σ and let G be the set of geodesics g, from y to
a singularity, such that g has length �(g). Order G by non-decreasing
lengths. We define a matrix P where
(a) the rows are indexed by such geodesics g and the columns are indexed

by the oriented saddle connections s;
(b) the non-zero entries correspond to pairs g, s such that:

(i) The singularity t(g) at the end of g is the same as that i(s) at
the start of the saddle connection s; and

(ii) The geodesic g and saddle connection s have an angle of at
least π between them.

(c) The non-zero entries are Pz(g, s) = e−z�(s).
One can then modify the complex function to ηX(z) = 2π

z2 (k(x) + 1) +
2π
z2 vp(z) · P̂z(I − M̂z)

−1u, where vp(z) = (e−z�(g))g∈G ∈ �1(C) and then
continue the proof as in Theorem 6.3.

(2) Theorem 6.3 also follows as a corollary of Theorem 6.4 by using a simple
approximation argument. In particular, this shows that C=D

∫∞
0

e−uu2du.
(3) Let L(x,R) be the total circumference of a circle centred at x and whose

radius is a geodesic of length R. The same approach as in the proof of
Theorem 6.3 (or an approximation argument as in item 2) would give an
asymptotic formula of the form: There exists E > 0 such that L(x,R) ∼
EehR, as R→ +∞.

(4) Eskin and Rafi have announced a closely related asymptotic result to The-
orem 6.3 for closed geodesics on X. By studying zeta functions ζX(z) in-
stead of eta functions ηX(z) they show that the number of closed geodesics
of length at most R > 0 is asymptotic to ehR/hR as R→ +∞.
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[16] G. Schmithüsen, Examples for Veech groups of origamis, The geometry of Riemann surfaces
and abelian varieties, Contemp. Math., vol. 397, Amer. Math. Soc., Providence, RI, 2006,
pp. 193–206, DOI 10.1090/conm/397/07473. MR2218009

[17] A. Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer,
Berlin, 2006, pp. 437–583, DOI 10.1007/978-3-540-31347-2 13. MR2261104

Department of Mathematics, Warwick University, Coventry, CV4 7AL, UK

Email address: p.m.g.colognese@warwick.ac.uk

Department of Mathematics, Warwick University, Coventry, CV4 7AL, UK

Email address: masdbl@warwick.ac.uk

https://www.ams.org/mathscinet-getitem?mr=2035655
https://www.ams.org/mathscinet-getitem?mr=955824
https://www.ams.org/mathscinet-getitem?mr=1053805
https://www.ams.org/mathscinet-getitem?mr=1135877
https://www.ams.org/mathscinet-getitem?mr=710244
https://www.ams.org/mathscinet-getitem?mr=666871
https://www.ams.org/mathscinet-getitem?mr=2218009
https://www.ams.org/mathscinet-getitem?mr=2261104




Contemporary Mathematics
Volume 744, 2020
https://doi.org/10.1090/conm/744/14982

Dynamically affine maps in positive characteristic

Jakub Byszewski, Gunther Cornelissen, and Marc Houben

with Appendix B by the authors and Lois van der Meijden

dedicated to the memory of Sergiy Kolyada

Abstract. We study fixed points of iterates of dynamically affine maps (a
generalisation of Lattès maps) over algebraically closed fields of positive char-
acteristic p. We present and study certain hypotheses that imply a dichotomy
for the Artin–Mazur zeta function of the dynamical system: it is either rational
or non-holonomic, depending on specific characteristics of the map. We also
study the algebraicity of the so-called tame zeta function, the generating func-
tion for periodic points of order coprime to p. We then verify these hypotheses
for dynamically affine maps on the projective line, generalising previous work
of Bridy, and, in arbitrary dimension, for maps on Kummer varieties arising
from multiplication by integers on abelian varieties.

1. Introduction

We consider so-called dynamically affine maps, a concept in algebraic dynamics
introduced by Silverman [43, §6.8] in order to unify various interesting examples,
such as Chebyshev and Lattès maps, cousins of which occur in complex dynamics
under the name of “finite quotients of affine maps” or “rational maps with flat
orbifold metric” [35]. We will only consider the case of a ground field of positive
characteristic p > 0. (Most of our methods would simplify considerably in charac-
teristic zero and lead to results of a rather different flavour.) Before we present the
definition, we will illustrate by approximative pictures (constructed in Mathemat-

ica [51], using the function RandomInteger for randomisation) what distinguishes
the dynamics of such maps from that of other polynomials maps and random maps.

1.1. A compilation of (restrictions of) maps. Let f : S → S denote a
map from a finite set S to itself. It can be represented by a directed graph Df

(sometimes called the “function digraph” of f), with vertices labelled by elements
of S and an arrow from a vertex x to a vertex y occurring precisely if f(x) = y. In
Figure 1, we plotted the graphs corresponding to two random such maps where S
is a set with 73 + 1 elements.
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Now consider a rational function f : P1(Fp) → P1(Fp) defined over Fp (in
this subsection we assume for convenience that p �= 2). To represent f pictorially,
consider the restrictions f |FpN

: P1(FpN) → P1(FpN) for various N . In Figure 2,

we plotted the graph of the polynomial function x → x2 + 1 for various p and N ,
and in Figure 3, we did the same for x → x2 − 2. At first sight, the graph for a
random map looks similar to the graph for x → x2+1, but the graph for x → x2−2
looks much more structured. This is no coincidence; Figure 3 represents the graph
of restrictions of a dynamically affine map, whereas Figure 2 does not.

Figure 1. Graph of two random maps on a set with 73 + 1 elements

Figure 2. Graphs of x → x2 + 1 on P1 over a field with 73 and
172 elements (left to right)

A common feature of all function digraphs is that their connected components
are cycles (consisting of periodic points) with attached trees. What is different
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in Figure 3 is the symmetry in the attached trees; this is well-understood for the
polynomial x → x2 − 2, which relates to the Lucas–Lehmer test and failure of the
Pollard rho method of factorisation, see, e.g. [38,50]. Let us mention one further
result [29, Thm. 1.5 & Example 7.2]: for the graph of a quadratic polynomial with
integer coefficients, the value of

lim inf
p→+∞

#{x ∈ Fp belongs to a cycle of Df mod p}/p

is 0 for x2 + 1 but 1/4 for x2 − 2.

Figure 3. Graphs of x → x2 − 2 on P1 over a field with 73 and
172 elements (left to right)

Figure 4. Graphs of the Lattès map arising from doubling mod-
ulo inversion on the elliptic curve E : y2 = x(x − 1)(x − 2) over a
field with 113 and 232 elements (left to right)

To explain what is special about the dynamically affine map x → x2 − 2
as opposed to the polynomial map x → x2 + 1, notice that x2 − 2 = T2(x),
where T2 is the normalised Chebyshev polynomial of the second kind, defined by
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Tn(x+x−1) = xn+x−n. This reveals a hidden group structure: the map arises from
the group endomorphism σ : Gm → Gm, x → x2 on the multiplicative group Gm

after quotienting on both sides by the automorphism group Γ = {1, γ} generated
by the inversion γ : Gm → Gm, z → z−1 that commutes with σ. That x2 + 1 (for
p �= 2, 3) is not special in this sense follows from the classification of dynamically
affine maps on P1 [9].

We perform a similar construction using another algebraic group, the elliptic
curve E : y2 = x(x − 1)(x − 2), and the doubling map σ : E → E,P → 2P . After
taking the quotient by Γ = 〈P → −P 〉, we find a so-called Lattès map P1 → P1

which we have graphed over various finite fields in Figure 4. Again, we see a very
structured picture, rather different from Figure 1 and Figure 2.

We will not dwell any longer on the study of iterations of maps on finite sets,
both random and “polynomial over finite fields”—a rich subject in itself—but rather
switch to our main object of study: dynamically affine maps over algebraically
closed fields of positive characteristic.

1.2. What is a dynamically affine map? Let V be an algebraic variety
over an algebraically closed field K of characteristic p and f : V → V a morphism.
We make the following assumption throughout:

(C) The map f is confined, i.e. the number of fixed points fn of the n-th iterate
fn of f is finite for all n.

Definition. A morphism f : V → V of an algebraic variety V over K is called
dynamically affine if there exist:

(i) a connected commutative algebraic group (G,+);
(ii) an affine morphism ψ : G→ G, that is, a map of the form

g → ψ(g) = σ(g) + h,

where σ ∈ End(G) is a confined isogeny (i.e. a surjective homomorphism
with finite kernel) and h ∈ G(K);

(iii) a finite subgroup Γ ⊆ Aut(G); and
(iv) a morphism ι : Γ\G → V that identifies Γ\G with a Zariski-dense open

subset of V

such that the following diagram commutes:

(1)

G G

Γ\G Γ\G

V V.

ψ

π π

ι ι

f

Remark. In this paper, we adhere to the convention that a dynamically affine
map consists of all the given (fixed) data in the definition, so that we can refer to the
constituents (G,ψ, σ, h,Γ, ι) directly. The same map f might arise from different
sets of data, and in our sense be a different dynamically affine map despite being
the same map on V .

Example. As explained above, the map P1 → P1, x → x2 − 2 is dynamically
affine for the data (G=Gm, σ : x → x2, h=1,Γ= 〈z → z−1〉, ι : Γ\Gm�A1 ↪→P1)
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(written multiplicatively); its restrictions (to certain finite fields) were represented
in Figure 3.

The map P1 → P1, x → (x4− 4x2− 4)/(4x(x− 1)(x− 2)) is dynamically affine
for the data (G = E, σ : P → 2P, h = 0E ,Γ = 〈P → −P 〉, ι : Γ\E ∼= P1 → P1),
where E is the elliptic curve y2 = x(x− 1)(x− 2); its restrictions were represented
in Figure 4.

Remark. We have slightly modified Silverman’s definition [43, §6.8] of a dy-
namically affine map. Instead of assuming confinedness of σ, Silverman imposes
the condition deg(σ) � 2 (as in Erëmenko’s classification theorem [20]). As long
as G is one-dimensional and K = Fp, the definitions are equivalent.

In a general setup one could assume merely that σ is an isogeny and only require
f to be confined. This reduces, after some case distinctions, to the case where σ is
a confined isogeny, so we choose to put the latter property in the definition.

1.3. Counting fixed points, orbits, and the dynamical Artin–Mazur
zeta function. A natural way to begin a quantitative analysis of a discrete dy-
namical system such as iteration of a map f : V → V is to consider the sequence
(fn) given by the number of fixed points of the n-th iterate of f . Confinedness
implies that this is a well-defined sequence of integers, and we can form the (full)
Artin–Mazur dynamical zeta function ([2], [45, §4]) defined as

(2) ζf (z) := exp

⎛⎝∑
n�1

fn
zn

n

⎞⎠ .

We consider this a priori as a formal power series, but the question of convergence
in a neighbourhood of z = 0 (equivalent to fn growing at most exponentially in n)
is interesting, and we study this in Appendix A.

Counting fixed points and closed orbits is related: if P� denotes the number of
closed orbits of length �, then fn =

∑
�|n �P�, and there is an “Euler product”

(3) ζf (z) =
∏
C

1

1− z�(C)
,

where the product runs over the closed orbits C.
It is interesting to understand the nature of the function ζf (z) (Smale [45,

Problem 4.5]); Artin and Mazur [2, Question 2 on p. 84]). For example, rationality
or algebraicity of ζf (z) means that there is an easy recipe to compute all fn from a
finite amount of data (in the rational case, it implies that (fn) is linearly recurrent).
Zeta functions of more general dynamical systems can:

− be rational : e.g. for “Axiom A” diffeomorphisms by Manning [32, Cor. 2],
for rational functions of degree � 2 on the Riemann sphere by Hinkkanen
[27, Thm. 1], for the Weil zeta function (when f is the Frobenius map
on a variety defined over a finite field) by Dwork [19] and Grothendieck
[26, Cor. 5.2], for endomorphisms of real tori [4, Thm. 1], and when fn
replaced by the Lefschetz number of fn [45];

− be algebraic but not rational : e.g. when f is an orientation preserving sur-
face homeomorphism and fn is replaced by the Nielsen number of fn by
Pilyugina and Fel’shtyn [36], [21, Thm. 36];
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− be transcendental : e.g. for restrictions of shifts by Bowen and Lanford [7, §3–
4] and for separable dynamically affine maps on P1(Fp) by Bridy [8, Thm.
1], [9, Thm. 1.2 & 1.3];

− have an essential singularity : e.g. for some flows by Gallavotti [23, §4];
− have a natural boundary : e.g. for certain beta-transformations by Flatto, La-

garias and Poonen [22, Thm. 2.4], for some Zd-actions (d � 2) by Lind
[31], for some flows by Pollicott [37, §4] and Ruelle [40], for a “ran-
dom” such zeta function by Buzzi [10], for some explicit automorphisms
of solenoids by Bell, Miles, and Ward [6], and for most endomorphisms of
abelian varieties in characteristic p > 0 by the first two authors [11].

Following the philosophy of [11], we will also study “tame dynamics” via the
so-called tame zeta function defined by

(4) ζ∗f (z) := exp

⎛⎝∑
p�n

fn
zn

n

⎞⎠ ,

summing only over n that are not divisible by p. Tame and “full” dynamics are
related by the formulae in (5) below, but the tame zeta function tends to be better
behaved. In Appendix B, we give some explicit expressions for the tame zeta
function of several dynamically affine maps on P1.

1.4. Main results. Bridy studied the zeta function for dynamically affine
maps on V = P1. The main results in [9, Thm. 1.2 & 1.3] imply that if f is
dynamically affine for V = P1 and K = Fp, then ζf (z) is transcendental over
C(z) (the field of rational functions with complex coefficients) if and only if f is
separable; otherwise ζf (z) is rational. Bridy’s full result applies to all K; the proof
uses a case-by-case analysis (see Table 1 in Appendix B below) and is based on the
relation between transcendence and automata theory. This starkly contrasts with
the fact that in characteristic zero all dynamically affine maps have a rational zeta
function (a much more general result by Hinkkanen was quoted above).

In this paper, we prove a strengthening of Bridy’s result. For this, we need
some further concepts. Let f : V → V be a dynamically affine map.

Definition. An endomorphism σ ∈ End(G) is said to be coseparable if σn− 1
is a separable isogeny for all n ∈ Z>0. A dynamically affine map f is called
coseparable if the associated isogeny σ is coseparable.

Remark. In [11], we called a coseparable endomorphism of an abelian va-
riety “very inseparable” and showed that this implies inseparability [11, 6.5(ii)].
However, it is not true that coseparable dynamically affine maps are inseparable in
general. For example, if f is the map f : P1 → P1, x → tx for t ∈ K transcenden-
tal over Fp, then f is both coseparable and separable (a more general statement is
given in [9, Thm. 1.3]).

Definition. A holomorphic function on a connected open subset Ω ⊆ C is said
to have a natural boundary along ∂Ω if it has no holomorphic continuation to any
larger such Ω′ � Ω [41, §6]. We call a function F (z) root-rational if F (z)t ∈ C(z) for
some t ∈ Z>0. We call F (z) holonomic if it satisfies a nontrivial linear differential
equation with coefficients in C(z).
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Since algebraic functions are holonomic [49, Thm. 6.4.6], the following is indeed a
strengthening of Bridy’s result. At the same time, it shows that “tame” dynamics
is better behaved.

Theorem A. Assume f : P1 → P1 is a dynamically affine map.

(i) If f is coseparable, ζf (z) is a rational function; otherwise, ζf (z) is not
holonomic; more precisely, it is a product of a root-rational function and
a function admitting a natural boundary along its circle of convergence.

(ii) For all f , ζ∗f (z) is root-rational; equivalently, it is algebraic and satisfies

a first order differential equation over C(z).

We mention an amusing corollary of Theorem A: although ζf (z) is in general not
holonomic, the pair (ζf (z), ζfp(z)) always satisfies a simple differential equation;
see Corollary 2.4 for a precise statement.

Rather than using results from automata theory, we prove Theorem A essen-
tially relying on a method of Mahler (see [5]). We structure the proof abstractly,
showing the result for dynamically affine maps (in any dimension) that satisfy cer-
tain hypotheses (H1)–(H4) (see Section 3), and then verify these for V = P1.

We give a more general discussion of when the hypotheses hold or fail, in this
way producing the first higher-dimensional examples of dynamically affine maps
in positive characteristic with nontrivial Γ where we understand the nature of the
dynamical zeta function. Recall that the quotient of an abelian variety A by the
group Γ = {[±1]} is called a Kummer variety.

Theorem B. Let V denote a Kummer variety arising from an abelian va-
riety A, and let f : V → V denote the dynamically affine map induced by the
multiplication-by-m map σ = [m] for some integer m � 2. Then ζ∗f (z) is root-

rational. The function ζf (z) is not holonomic if m is coprime to p and rational
otherwise.

Remark. We use the word “Kummer variety” for the variety V = Γ\A that,
for dimA > 1, is singular at points in the finite subset Γ\A[2] of V , but the name is

sometimes used for the minimal resolution Ṽ of V . Since the set of singular points
is finite and stable by f , the map f can be seen as a birational map f : Ṽ ��� Ṽ with
locus of indeterminacy stable by f , and the above theorem can be interpreted as a
statement about the periodic points of this birational map outside the preimage of
the singular points.

Remark. The non-holonomicity shows that the sequence (fn) of number of
fixed points of the iterates of f is somewhat “complex”, but it does not mean that
fn is “uncomputable”. As a matter of fact, the results in [12] say that for f an en-
domorphism of an algebraic group there exists a formula expressing fn in terms of a
linear recurrent sequence and two specific periodic sequences of integers that control
a p-adic deviation of fn from being linearly recurrent. These data can in principle
be computed by breaking up the algebraic group into abelian varieties, tori, vector
groups, and semisimple groups. Similarly, one can in principle trace through our
proofs to compute fn for dynamically affine maps satisfying our hypotheses.

We finish the introduction by mentioning a few possibilities for future research.

− The relation between fixed points and closed orbits may be used to study the
distribution of closed orbit lengths (analogously to the prime number theorem).
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Because of the analytic nature of the function ζf (z) revealed by our results,
one cannot in general use standard Tauberian methods. We have studied this
question via a different route for maps on abelian varieties [11] and for maps
on general algebraic groups [12] (which covers the case of dynamically affine
maps with trivial Γ, h, and ι, but is more general, since we do not require the
group G to be commutative). It would be interesting to extend this to general
dynamically affine maps.

− We have no good understanding of the dynamical zeta function of general
rational functions on P1 that are not dynamically affine, e.g. x → x2 + 1 in
characteristic p � 5 (see [8, Question 2]). It would be interesting to investigate
the nature of the (tame) zeta function for such examples.

− Inhowfar the hypotheses (H1)–(H4) are necessary to reach the conclusion of
the main theorem merits attention, since they are extracted from a “method
of proof” rather than intrinsic.

− In general, V may be singular. It is interesting to study whether V admits
a resolution to which f extends as a morphism, and the relation between the
zeta function of that extended morphism and the zeta function of f . This
is nontrivial already for Kummer surfaces (where, for p > 2, the minimal
resolution is a K3 surface, and hence has trivial étale fundamental group [28,
pp. 3–6]).

The structure of the paper is as follows: After some generalities, we introduce the
hypotheses in Section 3 and prove the main result, conditional on the hypotheses, in
the following section. Then, in Section 5 we discuss the validity of the hypotheses in
various settings (giving examples and counterexamples). The main theorems then
follow immediately from these results. In the first appendix, we consider the radius
of convergence of ζf (z), and in the second appendix, we compute a collection of
examples of tame zeta functions of dynamically affine maps.

2. Generalities

Relations between zeta functions.

Proposition 2.1. The tame and full dynamical zeta function are related by
the following equalities of formal power series:

(5) ζ∗f (z) =
ζf (z)

p
√
ζfp(zp)

, ζf (z) =
∏
i�0

pi
√
ζ∗
fpi

(zpi).

Proof. For the first equality, note that

log ζ∗f (z) =
∑
n�1

fn
zn

n
− 1

p

∑
m�1

fpm
zpm

m
= log

(
ζf (z)ζfp(zp)−1/p

)
.

The second equality follows by applying the first one to the functions fpi

for i ∈
Z�0. �

Remark 2.2. A useful computational fact is the following: if f : S → S is a
map and S decomposes as a union S = S1 ∪ S2 with f(S1) ⊆ S1 and f(S2) ⊆ S2,
then

ζf (z) =
ζf |S1

(z) · ζf |S2
(z)

ζf |S1∩S2
(z)

,

and similarly for ζ∗f (z).
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Recurrences. We recall some well-known facts (see e.g. [11, §1]). If (an)n�1 is
a sequence of complex numbers, then the ordinary generating function

∑
n�1 anz

n

is rational if and only if the sequence is linear recurrent, and if and only if there
exist λi ∈ C× and polynomials pi ∈ C[z] such that

(6) an =
r∑

i=1

pi(n)λ
n
i

for sufficiently large n. The statement that the zeta function

(7) F (z) = exp

⎛⎝∑
n�1

an
zn

n

⎞⎠
is rational is stronger: this happens if and only if Equation (6) holds for all n ∈ Z>0

with the pi(n) replaced by integers mi independent of n. The λi occurring in (6)
are called the roots of the recurrence, the polynomials pi their multiplicities. We
say that (an) satisfies the dominant root assumption if there is a unique root λi of
maximal absolute value, possibly with multiplicity �= 1.

For a zeta function F (z) in (7), we may consider its tame variant

F ∗(z) = exp

⎛⎜⎜⎝∑
n�1
p�n

an
zn

n

⎞⎟⎟⎠ .

It follows from the formula

(8) F ∗(z) = F (z) ·

⎛⎝p−1∏
j=0

F (e
2iπj
p z)

⎞⎠−1/p

that if F (z) is rational, then F ∗(z) is root-rational.

Algebraicity properties and differential equations. If a formal power
series F (z) satisfies a nontrivial linear differential equation over C(z), it is said to
be holonomic. If F (z) is algebraic over C(z), it is holonomic [49, Thm. 6.4.6]. On
the other hand, if F (z) converges on some nontrivial open disc D and has natural
boundary along ∂D, then it cannot be holonomic, since a holonomic function has
only finitely many singularities (for a precise statement, see [48, 4(a)]).

The equivalence statement in Theorem A(ii) is implied by the following lemma,
which is certainly well-known, but for which we were unable to find a convenient
reference. (A more general result can be found in [49, Exercise 6.62] together with
an argument attributed to B. Dwork and M. F. Singer.)

Lemma 2.3. An algebraic function F (z) ∈ C((z)) is root-rational if and only if
f satisfies a first order homogeneous differential equation F ′(z) = R(z)F (z) with
R(z) ∈ C(z).

Proof. First assume that F (z) is root-rational, i.e. F (z) = q(z)k with q(z) ∈
C(z), k ∈ Q. We may assume that q(z) �= 0, and then F (z) satisfies the equation

F (z)′ = R(z)F (z) with R(z) = kq′(z)
q(z) .

The converse direction can be proven by direct integration and partial fraction
expansion of R(z), but we give a somewhat different argument. Assume that F (z)
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satisfies the equation F (z)′ = R(z)F (z) with R(z) ∈ C(z), where we may assume
R(z) �= 0. Let P ∈ C(z)[t] be the minimal polynomial of F (z) over C(z). Write
P = td + ad−1(z)t

d−1 + · · ·+ a0(z) with ai(z) ∈ C(z). Differentiating the equation
P (F (z)) = 0 gives

(9) PD(F (z)) + P ′(F (z))F (z)′ = 0,

where PD =
∑d

i=0 a
′
i(z)t

i is obtained from P by differentiating the coefficients and

P ′ =
∑d

i=0 iai(z)t
i−1 is the usual derivative of P . Substituting F ′(z) = R(z)F (z)

into (9), we see that F is a root of the polynomial PD + tR(z)P ′, which is a
polynomial of degree d with leading coefficient dR(z), and hence

PD + tR(z)P ′ = dR(z)P.

Comparing the coefficients at ti for i = 0, . . . , d− 1, we see that each ai(z) satisfies
the equation

a′i(z) = (d− i)R(z)ai(z),

which differs from the equation satisfied by F (z) only by a multiplicative constant.
Comparing these solutions gives ai(z) = ciF (z)d−i for some ci ∈ C. If ai(z) = 0
for all i ∈ {1, . . . , d}, we get F (z) = 0. Otherwise, for some i we have ai(z) �= 0,
and F (z) = (c−1

i ai(z))
1/(d−i) is root-rational. �

Thus, Theorem A(ii) immediately implies the result alluded to in the introduc-
tion:

Corollary 2.4. If f : P1 → P1 is a dynamically affine map, then the pair
of zeta functions (F1(z), F2(z)) = (ζf (z), ζfp(z)) satisfies a nonlinear first order
differential equation

F ′
1(z)F2(z

p)− F1(z)F
′
2(z

p)zp−1 = R(z)F1(z)F2(z
p)

for some rational function R(z) ∈ C(z), regardless of whether or not f is cosepa-
rable.

Proof. The root-rationality of ζ∗f (z) implies that it satisfies a differential equa-

tion of the form (ζ∗f (z))
′ = R(z)ζ∗f (z) for some rational function R(z) ∈ C(z). The

result follows by taking derivatives in the first identity in (5). �

3. Introduction of the general hypotheses

Let f : V → V be a dynamically affine map with data as in diagram (1). Denote
by Orbf (x) := {fn(x) | n ∈ Z�0} the forward orbit of x ∈ V (K) under f . For an
isogeny τ ∈ End(G), we denote by deg(τ ) and degi(τ ) the degree and inseparable
degree of the field extension K(G)/τ∗K(G), respectively. Then we have

(10) #ker(τ ) = deg(τ )/ degi(τ ).

The following lemma, taken from [9, Lemma 2.4] (cf. Remark 4.2), will be crucial
to control the sequence (fn), as it allows us to express fn in terms of kernels of
isogenies on the algebraic group G. The proof will be given in Section 4.

Lemma 3.1. Let f : V → V be a dynamically affine map. Consider the set

C := {x ∈ V (K) | Orbf (x) ∩ ι((Γ\G)(K)) = ∅}.
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Then

(11) fn = (f |C)n +
1

|Γ|
∑
γ∈Γ

#ker(σn − γ).

Combining Lemma 3.1 with (10), we see that in order to understand the sequence
(fn) it suffices to control, for every γ ∈ Γ,

(a) the sequence (f |C)n;
(b) the “inseparable degree sequence” degi(σ

n − γ);
(c) the “degree sequence” deg(σn − γ).

Notice that the translation parameter h ∈ G(K) no longer occurs in (11).
We now introduce the four hypotheses that we require in order to prove the

main theorems. The first three hypotheses (H1), (H2) and (H3) are employed
to control the sequences (a), (b) and (c), respectively, while (H4) is a technical
hypothesis that we require to avoid an unexpected cancellation of singularities in
our proof of the existence of a natural boundary.

We use the following

convention: If a hypothesis is assumed in an environment (def-
inition, lemma, theorem, hypothesis, . . . ), we label the environ-
ment by this hypothesis in square brackets.

Hypothesis (H1). The zeta function corresponding to f |C is rational.

For the second hypothesis, we recall the following notion: a discrete valuation
on a (not necessarily commutative) ring R is a map v : R→ Z∪{∞} such that for
all τ, τ1, τ2 ∈ R we have v(τ ) =∞ if and only if τ = 0, v(τ1τ2) = v(τ1)+ v(τ2), and
v(τ1 + τ2) � min{v(τ1), v(τ2)}. It follows from these properties that v(τ1 + τ2) =
min{v(τ1), v(τ2)} whenever v(τ1) �= v(τ2).

Hypothesis (H2). Both σ and Γ belong to a subring R of End(G) all of
whose nonzero elements are isogenies, and such that there exists a discrete valuation
v : R → Z∪{∞} satisfying degi(τ ) = pv(τ) for all isogenies τ ∈ R.

Note that the valuation v considered in (H2) takes only nonnegative values.
Before introducing the last two hypotheses, we set up some notation.

Notation 3.2. Let v be as in (H2). For m ∈ Z�0, we let

Γm := {γ ∈ Γ | v(γ − 1) � m}.

This defines a descending filtration of normal subgroups of Γ

Γ = Γ0 ⊇ Γ1 ⊇ · · · ⊇ ΓN = 1,

where

N := max{v(γ − 1) | γ ∈ Γ, γ �= 1}+ 1.

Form ∈ Z�0 we define sm ∈ Z>0 to be the smallest integer such that v(σsm−γm) �
m for some γm ∈ Γ; in general, sm might not exist, but s0 certainly does, and we
will show in Lemma 4.11 that for m > 0 either none of the sm exist or all do
depending on whether or not f is coseparable. Write s := sN and γ̃ := γN .
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Hypothesis (H3). [(H2)] Let m ∈ Z�0. If sm exists, then

exp

⎛⎜⎜⎝ 1

|Γm|
∑
n�1
γ∈Γm

deg(σsmn − γγn
m)

zn

n

⎞⎟⎟⎠ ∈ C(z).

Remark 3.3. The statement of Hypothesis (H3) a priori depends on the choice
of the elements γm. However, it will follow from Lemma 4.12(ii) below that it is
independent of such a choice.

Hypothesis (H4). [(H2)] The number s exists and the sequence

(12) (deg(σsn − γ̃n))n�1

is a linear recurrent sequence satisfying the dominant root assumption.

Remark 3.4. If s exists and (H3) holds, then the sequence (12) is automat-
ically linear recurrent. Moreover, by Lemma 4.11, s exists if and only if f is not
coseparable, and the element γ̃ ∈ Γ is then unique.

We then have the following results:

Theorem 3.5. Assume f : V → V is a dynamically affine map satisfying the
hypotheses (H1)–(H4). Then ζf (z) is not holonomic. More precisely, it is a
product of a root-rational function and a function admitting a natural boundary
along its circle of convergence.

Theorem 3.6. Assume f : V → V is a dynamically affine map satisfying the
hypotheses (H1)–(H3). Then ζ∗f (z) is root-rational.

The proofs of these theorems will be given in the next section.

4. Proofs of Theorems 3.5 and 3.6

Preliminary results on the action of Γ.

Lemma 4.1. Let f : V → V be a dynamically affine map.

(i) There exists a group automorphism α : Γ → Γ such that for any γ ∈ Γ,
ψγ = α(γ)ψ and σγ = α(γ)σ.

(ii) The map σn − γ is an isogeny for all n ∈ Z>0 and γ ∈ Γ.
(iii) #(ψn − γ)−1(0) = #(σn − γ)−1(0) for all n ∈ Z>0 and γ ∈ Γ.

Proof. (i) That α exists as a map of sets follows from [43, Prop. 6.77(a)(b)].
Recall that, by assumption, σ is surjective and has finite kernel. Now, for all
γ1, γ2 ∈ Γ we have

α(γ1γ2)σ = σ(γ1γ2) = (σγ1)γ2 = α(γ1)α(γ2)σ,

which implies that α is a group homomorphism. For γ ∈ ker(α), we have σ(γ−1) =
0, and so im(γ − 1) ⊆ ker(σ). Since ker(σ) is finite and G is connected, we must
have im(γ − 1) = {0}, and so γ = 1. This shows that α is injective, and hence
bijective.

(ii) Let γ ∈ Γ and n ∈ Z>0. We will show that σn−γ has finite kernel. Suppose
that x ∈ G(K) is such that σn(x) = γ(x). Put β := αn. Then

(13) σdn(x) =
(
βd−1(γ) · · ·β(γ)γ

)
(x).
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Since β is injective and Γ is finite, there exists d ∈ Z>0 for which

βd−1(γ) · · ·β(γ)γ = 1,

so that (σn−γ)−1(0) ⊆ (σdn−1)−1(0). Since by assumption σ is confined, we have
that (σdn − 1)−1(0) is finite, and the desired result follows.

(iii) For every n, there exists hn ∈ G(K) such that ψn(g) = σn(g) + hn for all
g ∈ G(K). We then have

#(ψn − γ)−1(0) = #(σn − γ)−1(−hn) = #(σn − γ)−1(0),

where in the last equality we use the fact that σn − γ is an isogeny. �

Proof of Lemma 3.1. The proof of [9, Lemma 2.4] shows that

fn = (f |C)n +
1

|Γ|
∑
γ∈Γ

#(ψn − γ)−1(0).

The desired result now follows from Lemma 4.1(iii). �

Remark 4.2. The claim in [9, Lemma 2.4] that (11) holds for dynamically
affine maps using Silverman’s definition (under the additional assumption that ψ
is surjective), is incorrect. For example, when V = G = E ×E for an elliptic curve
E, Γ = {1}, σ = [1] × [2], and h = (P, 0) with P ∈ E(K) a non-torsion point,
then fn = ψn = 0, but ker(σn − 1) ⊇ E(K)× {0} is infinite for all n ∈ Z>0. The
mistake in the proof is that under the assumptions in Silverman’s definition, Lemma
4.1(iii) does not need to hold (for this one needs part (ii) of the lemma, which is
equivalent to σ being confined). Nevertheless, in [9] the result is only applied for
dimV = 1, where Silverman’s definition implies confinedness of σ, hence none of
the other results are affected.

Preliminary results on valuations.

Proposition 4.3. Let R denote a (not necessarily commutative) ring with
a discrete valuation v. Then the following statements hold for all x, y ∈ R and
n ∈ Z>0:

(i) R has no nontrivial zero divisors.
(ii) The characteristic of R is either zero or prime.
(iii) If v(x) � 0 and v(y) � 0, then v(xy − yx) � v(x− y).
(iv) If v(x) � 0 and v(y) � 0, then v(xn − yn) � v(x− y).
(v) Assume that x and y commute, v(x) = v(y) = 0, and v(x−y) > 0. Then:

(a) if char(R) = 0 and v(Z−{0}) = 0, then v(xn − yn) = v(x− y);
(b) if char(R) = 0 and v(p) > 0 for some prime p, then if v(x − y) >

v(p)/(p− 1), we have v(xn − yn) = v(x− y) + v(n);
(c) if char(R) = p > 0, then v(xn − yn) = v(x− y) · |n|−1

p .
(vi) In cases (b) and (c) above, if z ∈ R satisfies v(z − 1) > 0, then v(zn − 1)

is unbounded as n ranges over Z>0.

Proof. (i) Follows directly from the fact that the valuation v(x) of x is infinite
if and only if x = 0.

(ii) Follows from (i).
(iii) Follows from the formula xy − yx = (x− y)x− x(x− y).
(iv) Let R′ be the subring of R generated by x and y. Then the restriction of

v to R′ is a valuation on R′ taking only nonnegative values. We have xn − yn =
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(y+(x−y))n−yn = yn−yn+z, where z lies in the two-sided ideal of R′ generated
by (x− y), and hence v(xn − yn) = v(z) � v(x− y).

(v) Since x and y commute, we have

(14) xn − yn = n(x− y)yn−1 +
n∑

k=2

(
n

k

)
(x− y)kyn−k.

If v(n) = 0, then the first term has strictly smaller valuation than the second one,
and hence v(xn − yn) = v(x− y), proving case (a), as well as cases (b) and (c) for
p�n. It now suffices to consider (b) and (c) for n = p; the general result will then
follow by induction on vp(n). For (b), the assumption on v(x− y) implies that

(15) v

((
p

k

))
+ (k − 1)v(x− y) > v(p)

for all 2 � k � p. This shows that again in (14) the first term has strictly smaller
valuation than the second one, which yields v(xp − yp) = v(x− y) + v(p). For (c),
note that v(xp − yp) = v((x− y)p) = pv(x− y).

(vi) Follows from the formula (14) with x = z, y = 1, and n an arbitrarily large
power of p. �

Remark 4.4. [(H2)] If R as above is the endomorphism ring of a connected
commutative algebraic group G over K and v is a valuation on End(G) satisfying
[(H2)], then Proposition 4.3(ii) can be made slightly more explicit: the character-
istic of R will then be either zero or equal to p = char(K). In fact, if � ∈ Z>0 is
a prime and v(�) > 0, then the multiplication-by-� map is either zero or an insep-
arable isogeny, and hence its differential, which on the tangent space at 0 is given
by multiplication by �, is not an isomorphism. Since the tangent space at 0 is a
K-vector space, we must have p = char(K) > 0 and � = p. This also implies that
the prime p found in (v)(b) is equal to char(K).

Remark 4.5. The assumption that x and y commute is necessary in Proposi-
tion 4.3(v)(b). Consider the quaternion algebra H generated over Q by i, j with

i2 = j2 = −1 and ij = −ji, and let O = Z+Z i + Z j + Z 1+i+j+k
2 be the ring of

Hurwitz quaternions, which is a maximal order in H. Consider the valuation v on
O corresponding to the prime element 1 + i ∈ O. Put x = i+ 4j and y = i. Then
v(x2 − y2) = v(−16) = 8, but v(x − y) + v(2) = 6. The assumption that x and y
commute is missing from [9, Lemma 6.2], but the result is only applied for y = 1,
and so other results in that reference are not affected.

Recall that f : V → V is a dynamically affine map with associated data as in
diagram (1). Assume that f satisfies (H2). In order to obtain more information
about f , we will apply Proposition 4.3 to the ring R = R and the valuation v
supplied by (H2).

Lemma 4.6. [(H2)] If σ is coseparable, then σn − γ is a separable isogeny for
all n ∈ Z>0 and γ ∈ Γ.

Proof. Let γ ∈ Γ and n ∈ Z>0. By Lemma 4.1(ii), σn − γ is an isogeny, so it
remains to show that it is separable. Applying Proposition 4.3(iv), we see that

v(σn − γ) � v(σ|Γ|n − γ|Γ|) = v(σ|Γ|n − 1) = 0,

where in the last equality we use that σ is coseparable. �
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Proposition 4.7. [(H1)–(H3)] If f is coseparable, then ζf (z) is rational and
ζ∗f (z) is root-rational.

Proof. If f is coseparable, then by Lemma 4.6, #ker(σn − γ) = deg(σn − γ)
for all n and γ. The desired result for ζf (z) then follows by applying Lemma 3.1
together with (H1) and (H3) with m = 0. By the general rationality conditions
in Section 2, this implies that ζfp(z) is rational as well, and hence the result for
ζ∗f (z) follows from (5). �

Remark 4.8. Proposition 4.7 is false if we drop the assumption of the hypothe-
ses. In fact, if (H2) and (H3) do not hold, then ζf (z) may even have a natural
boundary along its circle of convergence (see Example 5.9 below).

Lemma 4.9. [(H2)] If f is not coseparable, then v(σ) = 0.

Proof. If v(σ) > 0, then v(σn−1) = 0 for all n, contradicting the assumption
that σ is not coseparable. �

Lemma 4.10. [(H2)] Suppose that n ∈ Z>0 and γ ∈ Γ are such that v(σn−γ) �
N . Then σn and γ commute.

Proof. Since N > 0 and v(γ) = 0, we have v(σ) = 0. Let α ∈ Aut(Γ) as in
Lemma 4.1(i), so that σγ = α(γ)σ. It follows that

N � v(σn − γ) � v(σnγ − γσn) = v((αn(γ)− γ)σn) = v(αn(γ)− γ).

We conclude that αn(γ) = γ, and hence σnγ = αn(γ)σn = γσn. �

We will now prove the announced result on the existence of the numbers sm
defined in Notation 3.2.

Lemma 4.11. [(H2)]

(i) If f is coseparable, then none of the numbers sm exist for m > 0.
(ii) If f is not coseparable, then all of the numbers sm exist.

Proof. (i) If f is coseparable, then by Lemma 4.6 all the maps σn − γ for
n ∈ Z>0 and γ ∈ Γ are separable isogenies, and hence v(σn − γ) = 0. Hence sm do
not exist for m > 0.

(ii) Since f is not coseparable, there is some n ∈ Z>0 such that v(σn − 1) > 0,
and hence by Proposition 4.3.(vi) the values of v(σn − 1) can be arbitrarily large.
This proves the existence of sm for all m. �

Lemma 4.12. [(H2)] Suppose that f is not coseparable. Let m ∈ Z�0. Then:

(i) The set

Sm := {n ∈ Z>0 | v(σn − γ) � m for some γ ∈ Γ}
is equal to sm Z>0.

(ii) For every n ∈ Z>0, {γ ∈ Γ | v(σsmn − γ) � m} = Γmγn
m.

Proof. (i) By Proposition 4.3(iv), we have v(σsmn−γn
m) � v(σsm−γm) � m,

so Sm ⊇ sm Z>0. Now suppose to the contrary that there exists an n ∈ Sm−sm Z>0.
Then there exists a γ ∈ Γ such that v(σn − γ) � m, and we can write n = dsm + r
for 0 < r < sm. We obtain

m � v(σn − γ) = v(σr(σdsm − γd
m) + (σr − γγ−d

m )γd
m).
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This leads to a contradiction since v(σr(σdsm − γd
m)) � m and v((σr − γγ−d

m )γd
m)

< m.
(ii) We know that v(σsmn−γn

m) � m, so for any γ ∈ Γ we have the equivalence

v(σsmn − γ) � m ⇐⇒ v(γ − γn
m) � m

⇐⇒ v(γγ−n
m − 1) � m ⇐⇒ γ ∈ Γmγn

m. �

Preliminary results on natural boundaries.

Lemma 4.13. Let h, β ∈ R>0 with β < 1. Then the power series

(16) Gh(z) :=
∑
n�1

|n|hpzn, Hβ(z) :=
∑
n�1

β|n|−1
p zn

have radius of convergence 1 and define holomorphic functions that have a natural
boundary along the unit circle.

Proof. That the radius of convergence is 1 follows from the fact that

lim sup
n→∞

(
|n|hp
)1/n

= 1 = lim sup
n→∞

(
β|n|−1

p
)1/n

.

Now, note that Gh and Hβp satisfy the following similar functional equations:

Gh(z) =
z

1− z
− zp

1− zp
+ p−hGh(z

p),(17)

Hβ(z) = β

(
z

1− z
− zp

1− zp

)
+Hβp(zp).

In order to prove the statement on the natural boundary, we will show by induction
on k � 1 that for every primitive pk-th root of unity ω we have

lim
λ→1−

Gh(λω) = −∞ = lim
λ→1−

Hβ(λω).

We present details for the case of Gh(z); the proof for Hβ(z) is analogous. For
k = 1, it follows from (17) that for every 0 < λ < 1 we have

Gh(λω) =
λω

1− λω
− λp

1− λp
+ p−hGh(λ

p).

As Gh(λ
p) � λp/(1−λp) and h > 0, it follows that Gh(λω)→ −∞ as λ→ 1−. For

k > 1, the result follows from induction by substituting λω into (17). �

Remark 4.14. Alternatively, since (17) implies that Gh(z) is a so-called p-
Mahler function, we could have immediately concluded that Gh(z) is either rational
or has the unit circle as a natural boundary by a result of Randé [39] (see also
[5, Thm. 2]). The former possibility can be excluded by an explicit computation
using the functional equation (17). Such an approach does not work for Hβ(z).

Proofs of Theorems 3.5 and 3.6. Assume that f satisfies (H1)–(H3). We
have already dealt with the case where f is coseparable in Proposition 4.7, so it
remains to consider the case where f is not coseparable.

Using Lemma 3.1, we may write the zeta function ζf (z) as

ζf (z) = ζf |C (z) · exp

⎛⎝∑
n�1

∑
γ∈Γ

deg(σn − γ)

pv(σn−γ)

zn

n

⎞⎠1/|Γ|

,
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with a similar expression for the tame zeta function ζ∗f (z). For m ∈ Z�0, we

consider separately the terms corresponding to a fixed value of v(σn − γ), giving
rise to functions

ζf,m(z) = exp

⎛⎜⎜⎝ ∑
n�1,γ∈Γ

v(σn−γ)=m

deg(σn − γ)

pm
zn

n

⎞⎟⎟⎠ .

Consider the sets

Tm = {(n, γ) ∈ Z>0× Γ | v(σn − γ) � m}.

By Lemma 4.12, we have Tm = {(smn, γγn
m) | n ∈ Z>0, γ ∈ Γm}, and hypothesis

(H3) implies that the function

Fm(z) = exp

⎛⎝ ∑
(n,γ)∈Tm

deg(σn − γ)
zn

n

⎞⎠
satisfies Fm(z)sm/|Γ| ∈ C(zsm); hence it is root-rational. It follows that the function

ζf,m(z) = (Fm(z)/Fm+1(z))
1/pm

is root-rational as well.
We analogously define the tame functions ζ∗f,m(z), summing only over indices

n coprime to p. By Equation (8), these are also root-rational, and we have the
product formulas

(18) ζf (z) = ζf |C (z)

⎛⎝∏
m�0

ζf,m(z)

⎞⎠1/|Γ|

and ζ∗f (z) = ζ∗f |C (z)

⎛⎝∏
m�0

ζ∗f,m(z)

⎞⎠1/|Γ|

.

Our next aim is to simplify the tail (i.e. the product of all terms with m
suitably large) of (18) using Proposition 4.3(v). To this end, take an integer M �
max(N, v(p)/(p− 1) + 1) and set r := sM and τ := σsMγ−1

M . By Lemma 4.10 the
elements σsM and γM commute, and we can rewrite the tail of (18) as

∏
m�M

ζf,m(z) = exp

⎛⎝∑
n�1

deg(τn − 1)

pv(τn−1)

zrn

rn

⎞⎠ .

Set C := v(τ − 1) � M . By Proposition 4.3(v) applied to x = τ and y = 1, we
obtain

(19) v(τn − 1) =

{
C + v(n) if char(End(G)) = 0;

C|n|−1
p if char(End(G)) = p > 0.

In particular, if p�n, then v(τn − 1) is independent of n, so we have ζ∗f,m(z) = 1 for

m � M and m �= C. The product expansion in (18) therefore shows that the tame
zeta function is root-rational, proving Theorem 3.6.

Now suppose that f also satisfies (H4). Since s divides r and deg(τn − 1) =
deg(σrn − γ̃rn/s), we see that (deg(τn − 1))n�1 is a linear recurrent sequence with
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a unique dominant root, say Λ, with multiplicity μ ∈ Z. We then obtain

z
d

dz
log

∏
m�M

ζf,m(z) =
∑
n�1

μΛnzrn ·
{
p−C |n|v(p)p if char(End(G)) = 0

p−C|n|−1
p if char(End(G)) = p

+R(z),

where R(z) is some power series with radius of convergence > |Λ|−1/r.
As stated in [6, Lemma 1], the existence of a natural boundary for a series∑

anz
n along its circle of convergence implies the existence of a natural boundary

along its circle of convergence for the corresponding zeta function exp
∑

anz
n/n.

By applying Lemma 4.13 with h = v(p) or β = p−C (depending on whether End(G)
is of characteristic 0 or p) and substituting Λzr for z into Gh(z) or Hβ(z), it follows
that the series ⎛⎝ ∏

m�M

ζf,m(z)

⎞⎠1/|Γ|

has a natural boundary along its circle of convergence. Theorem 3.5 now follows
from the product expansion in (18). �

Remark 4.15. An examination of the (by the proof, finite) product expansion
for the tame zeta function (18), shows that in fact ζ∗f (z)

t ∈ C(z) for t = pC+1r,
where C and r are as in the proof.

5. Discussion of the hypotheses

Classification of G for V = P1. Suppose that V = P1 and recall that K
is algebraically closed. Since Γ is finite and ι has Zariski-dense image, for dimen-
sion reasons G is a connected one-dimensional algebraic group. By the Barsotti–
Chevalley structure theorem for algebraic groups [13,14], G is an extension of a
linear algebraic group by an abelian variety, and thus (again by connectedness and
dimension considerations) G is either a one-dimensional connected linear algebraic
group or an abelian variety of dimension one. In the latter case, G is an elliptic
curve E. In the former case, either G = Gm, the multiplicative group; or G = Ga,
the additive group [47, Thm. 3.4.9]. We denote by [m] the multiplication-by-m
map on G. The corresponding endomorphism rings are as follows:

(i) if G = Gm, then End(G) ∼= Z, with the map [m] given by x → xm;
(ii) if G = Ga, then End(G) ∼= K〈φ〉 is the ring of skew-commutative polyno-

mials in the Frobenius φ : x → xp, with φa = apφ for all a ∈ K;
(iii) if G = E is an elliptic curve, then End(E) is either Z, an order in an

imaginary quadratic number field in which p splits, or a maximal order in
the quaternion algebra over Q that ramifies precisely at p and ∞ [17].

Hypothesis (H1).

Lemma 5.1. If f : C → C is an arbitrary map on a finite set C, then ζf (z) is
rational and ζ∗f (z) is root-rational.

Proof. Since there are only finitely many orbits, this follows for ζf (z) from
the Euler product (3), and then for ζ∗f (z) from (5). �

Corollary 5.2. If f : V → V is a dynamically affine map and either dimV =
1 (e.g. if V = P1) or G is complete (e.g. if G is an abelian variety), then f satisfies
(H1).
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Proof. If G is complete, then C = ∅, and the result is clear. If dimV = 1,
then the assumption that Γ\G is a Zariski-dense open subset of V implies that C
is finite, and Lemma 5.1 applies. �

Example 5.3. We give an example where (H1) fails. Consider G = Gm×Gm,
Γ = {1}, the standard embedding G ↪→ V := P1×P1 and

f : V → V, (x, y) → (xm, ym)

for an integer m � 2 coprime to p. Then

C = (P1×{0}) ∪ (P1×{∞}) ∪ ({0} ×P1) ∪ ({∞} ×P1)

is a union of four copies of P1 intersecting in four points

C ′ = {(0, 0), (0,∞), (∞, 0), (∞,∞)},
all of which are fixed by f . Applying Remark 2.2, we get that

ζf |C (z) = ζg(z)
4(1− z)4,

where ζg(z) is the zeta function of g : P1 → P1, x → xm, which was shown to be
transcendental over C(z) by Bridy [8] (our result in this paper even shows that the
function has a natural boundary).

Hypothesis (H2).

Proposition 5.4.

(i) A nontrivial abelian variety A satisfying (H2) with R = End(A) has to
be simple.

(ii) There exist commutative algebraic groups G of arbitrary dimension > 1
that satisfy (H2) with R = End(G) but that are not simple.

(iii) For any connected commutative algebraic group G, (H2) is equivalent to
the claim that all nonzero elements of R are isogenies and for every m,
the set

Im := {τ ∈ R−{0} | logp degi(τ ) � m} ∪ {0}
is an ideal in R. (Note that by the multiplicativity of the inseparable degree
this is equivalent to degi(τ1+τ2) � min{degi(τ1), degi(τ2)} for all nonzero
τ1, τ2, τ1 �= −τ2.)

(iv) Let G = A be a nontrivial abelian variety. Then (H2) holds with R =
Z ↪→ End(A) (and then necessarily Γ = {1} or Γ = {±1}).

Proof. Note that the hypothesis on the existence of v implies that R is a (not
necessarily commutative) domain (Proposition 4.3(i)).

(i) Since an abelian variety A factors up to isogeny into a direct product of
simple abelian varieties, End(A) is a domain if and only if A is simple.

(ii) Consider extensions of algebraic groups

1→ Gm → G→ A→ 1,

where G is abelian and A is any simple abelian variety. These are classified by

Ext1(A,Gm) ∼= Â(K), where Â is the dual abelian variety of A [33, Thm. 9.3].

Suppose Â(K) has a non-torsion point P (in particular, K has to be transcendental
over Fp) and choose an extension corresponding to P . We claim that G does not
contain any nontrivial abelian variety. Suppose otherwise and let A′ be a nontrivial
abelian variety contained in G. The image of A′ in A cannot be zero, and hence
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is equal to all of A since A is simple. It follows that A′ and Gm generate G, and
a result of Arima [1, Thm. 2] implies that the extension corresponds to a point of

finite order in Â(K). We conclude that G does not contain any nontrivial abelian
variety, and hence by [1, Prop. 7] the restriction map End(G) → End(Gm) ∼= Z
is injective, meaning that End(G) ∼= Z. The inseparable degree of [n] on G is the
product of those on Gm and A, and if A has dimension g and p-rank r, then the
valuation v = (2g − r + 1)vp on R = End(G) satisfies (H2).

(iii) If v is a valuation as in (H2), then

Im = {τ ∈ R | v(τ ) � m}
is an ideal. Conversely, if all Im are ideals, then v defined by

v(τ ) := sup{m | τ ∈ Im}
satisfies (H2).

(iv) For a nontrivial abelian variety A the endomorphism ring End(A) has
characteristic zero and the maps [m] : A→ A for m ∈ Z \{0} are isogenies, and are
separable if and only if p�m. By multiplicativity of the inseparable degree, we find
that degi([m]) = degi([p])

vp(m), and hence the valuation v : R → Z∪{∞} given by
v([m]) = cvp(m) with c := logp degi([p]) satisfies (H2). �

Lemma 5.5. Hypothesis (H2) holds for dynamically affine maps on P1.

Proof. We verify, for G a one-dimensional connected algebraic group, that
the Im as in Proposition 5.4(iii) are indeed ideals. Note that the claim that all
nonzero elements of End(G) are isogenies is immediate by a dimension argument.
For G = Gm and G = Ga, the set of inseparable isogenies together with the zero
map is the principal ideal generated by the Frobenius φ : x → xp, so Im = (φm) is
an ideal. If G = E is an elliptic curve, then for any isogeny τ : E → E, we have
that logp degi(τ ) is the largest r > 0 for which τ factors through the pr-Frobenius

E → E(pr) [44, II.2.12], which again implies that the Im are ideals. �
Remark 5.6. Another approach, folllowing [9], is to check the result for each

of the possible one-dimensional groups G with the following valuations:

(i) if G = Gm, then on End(G) ∼= Z set v = vp, the p-adic valuation;
(ii) If G = Ga, then on End(G) = K〈φ〉 set v = vφ, the valuation associated

to the two-sided ideal (φ);
(iii) If G = E is an elliptic curve, set v = vp ◦ N , where N is the field norm

of the extension End(E)⊗Q of Q if E is ordinary and N is the reduced
norm on the quaternion algebra End(E)⊗Q if E is supersingular.

Hypothesis (H3). The following general observation will be used multiple
times to verify that Hypothesis (H3) holds in certain cases: If R is a (not necessar-
ily commutative) domain and Γ is a nontrivial finite subgroup of the multiplicative
group of R, then

∑
γ∈Γ γ = 0.

We first discuss the degree function on a commutative subring R of the endo-
morphism ring End(A) of an abelian variety A. The ring S = End(A) ⊗Z Q is a
semisimple Q-algebra, and hence is isomorphic to a product of finitely many (full)
rings of matrices over Q. Let

ψ = (ψ1, . . . , ψk) : S →
k∏

i=1

Mni
(Q)
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be such an isomorphism. The degree of an endomorphism α ∈ End(A) can be
computed by the formula

deg(α) =

k∏
i=1

detψi(α)
νi ,

where νi ∈ Z>0 are certain integers (see [25, Cor. 3.6] or the discussion in [11,
Prop. 2.3]). Since the ring R is commutative, the matrices in ψi(R) ⊆ Mni

(Q)
can be simultaneously triangularised, so that after conjugating by appropriate ma-
trices, we may assume that ψ(R) lies in the product of rings UTni

(Q) of upper
triangular matrices. Composing the homomorphism ψi|R with the homomorphism

UTni
(Q) → Q

ni
that maps each matrix to the tuple consisting of its diagonal

elements, we obtain a ring homomorphism

λ = (λ1, . . . , λl) : R → Q
l
,

where l =
∑k

i=1 ni. The degree function on R then takes the form

deg(α) =
l∏

j=1

λj(α)
μj ,

where μj ∈ Z>0 are certain integers.

Proposition 5.7. Let A be an abelian variety over K, let f be a dynamically
affine map with G = A, and let R be a commutative subring of the endomorphism
ring End(A) that contains both σ and Γ. If (H2) is satisfied for the ring R, then
f satisfies (H3).

Proof. Using the notation provided by the statement of (H3), write τ := σsm

and τ̃ := τγ−1
m . By Lemma 4.1(ii), confinedness of σ implies that τn−γ is an isogeny

for all γ ∈ Γ. Since R is commutative, we have deg(τn − γγn
m) = deg(τ̃n − γ) for

γ ∈ Γ.
Using the notation explained at the beginning of this subsection, we obtain the

formula ∑
γ∈Γm

deg(τ̃n − γ) =
∑

γ∈Γm

l∏
j=1

λj(τ̃
n − γ)μj .

Since λj : R → Q are ring homomorphisms, we may expand the product on the
right hand side and rewrite the formula as∑

γ∈Γm

l∏
j=1

λj(τ̃
n − γ)μj =

∑
k

∑
γ∈Γm

χk(γ)η
n
k

for some ηk ∈ Q and some characters χk : Γ→ Q
×
. If a character χk is nontrivial,

then
∑

γ∈Γm
χk(γ) = 0; otherwise,

∑
γ∈Γm

χk(γ) = |Γm|. Thus, we obtain

1

|Γm|
∑

γ∈Γm

deg(τn − γγn
m) =

∑
χk=1

ηnk ,

and the desired result follows from the general criteria for rationality of the zeta
function discussed in Section 2. �

Proposition 5.8. A dynamically affine map on P1 satisfies (H3).
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Proof. As in the proof of the previous proposition, we set τ := σsm . If
G = Gm, then, identifying End(G) with Z, we have

deg(τn − γγn
m) = |τn − γγn

m| = deg(τ )n − γγn
m sgn(τ )n.

If G = Ga, then

deg(τn − γγn
m) = deg(τ )n.

(This holds even when deg(τ ) = 1 since τ is confined.) Finally, ifG = E is an elliptic
curve, then deg(τ ) = ττ , where τ denotes τ or the complex/quaternionic conjugate
of τ depending on whether End(E) is Z, an order in an imaginary quadratic number
field or an order in a quaternion algebra over Q. In either case∑

γ∈Γm

deg(τn − γγn
m) =

∑
γ∈Γm

(
(ττ)n − γγn

mτ n − τnγm
nγ + 1

)

= |Γm|(deg(τ )n + 1)−

⎛⎝ ∑
γ∈Γm

γ

⎞⎠ γn
mτ n − τnγm

n

⎛⎝ ∑
γ∈Γm

γ

⎞⎠ .

Combining the three cases, we find that in case Γm is nontrivial, we get

(20)
∑

γ∈Γm

deg(τn − γγn
m) =

{
|Γm| deg(τ )n if G = Gm or G = Ga;

|Γm|(deg(τ )n + 1) if G = E,

whereas in case Γm is trivial, the elements τ and γm commute by Lemma 4.10, and
hence ∑

γ∈Γm

deg(τn − γγn
m) = deg(τn − γn

m)(21)

=

⎧⎪⎨⎪⎩
deg(τ )n − (γm sgn(τ ))n if G = Gm;

deg(τ )n if G = Ga;

deg(τ )n + 1− (γmτ)n − (τγm)n if G = E.

We may regard these formulas as equalities between complex numbers (for G = E
embedding the fieldQ(γmτ) intoC). It follows that the corresponding zeta function
is rational. �

Example 5.9. For an example where (H3) does not hold, consider K = F3,
G = Ga ×Ga, Γ = {1}, V = G and

f : G→ G, (x, y) → (x9 + y3, x3).

Since the differential of σ = f is zero, the map f is even coseparable. One may
directly compute the values of deg(σn − 1). One way to do this is to write

σ =

(
φ2 φ
φ 0

)
with φ : Ga → Ga the Frobenius map, and show that for a matrix τ in M2(F3[φ])
with nonzero determinant the degree of τ as a map τ : G→ G and the degree in φ
of det(τ ) ∈ F3[φ] are related by the formula

deg(τ ) = 3degφ(det(τ)).
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(This follows easily by writing τ in Smith normal form.) Computing the eigenvalues
of σ as Laurent series in φ−1, we get that

deg(σn − 1) =

{
9n, 2�n;
9n−|n|−1

3 , 2|n,

and hence the zeta function satisfies the equation

z
d

dz
log ζf (z) =

∑
deg(σn − 1)zn =

9z

1− 81z2
+H1/9(81z

2),

where H1/9(z) is the function from Lemma 4.13. It follows that ζf (z) has a natural
boundary along |z| = 1/9 and (H3) indeed fails to hold.

For a detailed computation of the degree and a general discussion of fixed points
of endomorphisms of vector groups, we refer the reader to [12].

Hypothesis (H4).

Proposition 5.10. A dynamically affine non-coseparable map on P1 satisfies
(H4).

Proof. It follows directly from (20) and (21) applied for m = N that deg(τ )
is the dominant root (note that for G = Gm and G = E, confinedness of σ implies
that deg(τ ) � 2). �

We will now examine property (H4) in the case where G = A is an abelian
variety.

Proposition 5.11. Let f be a dynamically affine map with G = A an abelian
variety. Assume that the hypothesis (H2) is satisfied for a commutative ring R ⊆
End(A).

(i) The map f satisfies (H4) if and only if σ is not coseparable and the
characteristic polynomial of the action of σ on the �-adic Tate module
T�(A), where � is any prime � �= p, has no roots of complex absolute value
1.

(ii) The map f satisfies (H4) if and only if the map σ, regarded as a dynam-
ically affine map σ : A→ A, satisfies (H4).

Proof. By Lemma 4.11 it suffices to treat the case where σ is non-coseparable
and the number s exists.

(i) We have the formula

(22) deg(σsn − γ̃n) =
l∏

j=1

(λj(σ)
sn − λj(γ̃)

n)μj .

Since Γ is finite and σ is confined, the elements λj(γ̃) are roots of unity while λj(σ)
are not. By the discussion in [11, Section 5], the elements λj(σ) are exactly the
roots of the action of σ on T�(A). Expanding the expression in (22), one can show
that deg(σsn − γ̃n) is given by a linear recurrence, and that the dominant root is
unique if and only if |λj(σ)| �= 1 for all j. (The argument is identical to the one
where γ̃ = 1 as given in [11, Prop. 5.1(v)].)

(ii) This is clear since the condition in (i) depends neither on s nor on γ̃. �
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Example 5.12. For an example where (H4) fails, let G = G4
m, Γ = {1}

and V = G. We choose f = σ ∈ End(G) ∼= M4(Z) to be the companion matrix
of the minimal polynomial g of a Salem number α > 1 of degree 4 (e.g. g =
x4 − 3x3 + 3x2 − 3x+ 1 [46]). Then deg(σn − 1) = | det(σn − 1)| and if β ∈ C is a
zero of g with absolute value 1, then α and αβ are distinct dominant roots of the
linear recurrent sequence (deg(σn − 1))n�1.

Proofs of Theorems A and B.

Proof of Theorem A. The theorem will follow by combining Theorems 3.5
and 3.6 with the following observations.

A dynamically affine map f : P1 → P1 satisfies the hypotheses (H1)–(H3) by
Corollary 5.2, Lemma 5.5 and Proposition 5.8. If f is not coseparable, it satisfies
(H4) by Proposition 5.10. If f is coseparable, the function ζf (z) is rational by
Proposition 4.7. �

Proof of Theorem B. In this situation, (H1)–(H3) hold by Corollary 5.2
and Propositions 5.4(iv) and 5.7. If p|m, the map σ is coseparable, and ζf (z) is
rational. If p�m, σ is not coseparable, and f satisfies (H4) by Proposition 5.11. �

Appendix A.
Radius of convergence of ζf for dynamically affine maps f

In general, the existence of a positive radius of convergence of a dynamical zeta
function is a nontrivial property of the growth of the number of periodic points of
a given order. In the manifold setting, this is studied in [2]; Kaloshin showed that
a positive convergence radius is not topologically Baire generic in the Cr topology
for any 2 � r < +∞ [30, Corollary 1].

In this appendix, we study this problem for a morphism f : V → V on an
algebraic variety V . We can say something in case f is dynamically affine, or in
case V is smooth projective, but we do not know what happens in the general case.

Theorem A.1. Let f : V → V denote a dynamically affine map over an alge-
braically closed field K of characteristic p, satisfying (H1). Then the zeta functions
ζf (z) and ζ∗f (z) converge to holomorphic functions on a nontrivial open disk centred
at the origin.

Proof. It follows from the definitions that ζ∗f (z) converges whenever ζf (z)

does. The latter function converges for |z| < 1/ lim sup n
√
fn. Hence to prove the

statement, it suffices to prove that fn � cn for some constant c. By Lemma 3.1, it
suffices to prove that (f |C)n � cn and #ker(σn − γ) � cn for all γ ∈ Γ and some
constant c (independent of n). The first statement follows immediately from (H1).

For the second statement, we note that #ker(σn − γ) = #Fix(τ ), where τ =
σnγ−1. The main point in the proof is to reduce to the case of G being an abelian
variety, a torus, or a vector group, by a method similar to the one employed in
[12]. Here, we give a more ad hoc discussion (avoiding cohomology) and simplify
matters using the commutativity of G.

We first observe that if N is a connected normal algebraic subgroup of G stable
under End(G), then τ induces an endomorphism τG/N of G/N . We claim that τG/N

is confined and that

(23) #Fix(τ ) = #Fix(τ |N ) ·#Fix(τG/N ).
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To see this, we first note that by Lemma 4.1(i) powers τk of τ are of the form γ′σnk

for some γ′ ∈ Γ, and hence by Lemma 4.1(ii) τ is confined. Since N is connected
and the map τ is confined, we get that τ |N − 1 is an isogeny (in particular, it is
surjective), which implies that the map Fix(τ ) → Fix(τG/N ) is surjective as well.
Applying this to γ = 1 shows that the map σG/N is confined, and we get an exact
sequence of finite groups

0→ Fix(τ |N )→ Fix(τ )→ Fix(τG/N )→ 0.

Notice also that τ |N = σ|nNγ|−1
N and τG/N = σn

G/Nγ−1
G/N admit the same decompo-

sition as τ with σ|N (resp., σG/N ) being a confined isogeny on N (resp., G/N).
We apply (23) several times: first, by Chevalley’s structure theorem for al-

gebraic groups [14, Thm. 1.1], G has a unique normal connected linear algebraic
subgroup N such that G/N is an abelian variety. Then N is stable by End(G),
since there are no nontrivial morphisms from a linear algebraic group N to an
abelian variety A [14, Lem. 2.3]. Now suppose G is a connected commutative
linear algebraic group; then there exists a normal connected unipotent algebraic
subgroup U of R such that the quotient R/U is a torus T , i.e. isomorphic to Gs

m

for some s ∈ Z�0 [34, Thm. 16.33]. There are no nontrivial morphisms U → T
[16, Cor. IV.2.2.4], so U is preserved by any endomorphism of R. Now if G is
connected commutative unipotent, it is isogenous to a direct product W1×· · ·×Wt

of additive groups of truncated Witt vectors [42, Thm. VII.1]. Since pdWi = 0
for some d, we obtain a decomposition series of G (using [16, Prop. IV.2.2.3])
G ⊇ pG ⊇ p2G ⊇ · · · ⊇ 0, in which pG is preserved by any endomorphism of G,
and each successive quotient is a connected commutative unipotent algebraic group
of exponent p. By [42, Prop. VII.11], such a group is isomorphic to a vector group
Gr

a for some r ∈ Z�0.
By the above discussion, we are reduced to considering the following three

cases. In each of these cases, G is connected commutative, End(G) is a ring with a
degree function deg : End(G)→ N∪{−∞} and #ker(σn − γ) � deg(σn− γ), so it
suffices to prove that in each of these cases deg(σn−γ) grows at most exponentially
in n.

− G is an abelian variety: G is isogenous to a product of simple abelian
varieties, and deg(σn− γ) becomes a product of reduced norms N(σn

i − γi) on
finitely many simple Q-algebras Ri (with τi ∈ Ri and γi ∈ R×

i ) [11, Prop. 2.3].
Passing to the algebraic closure of Q, one easily sees that these satisfy a linear
recurrence in n, and hence grow at most exponentially.

− G � Gs
m is a torus: Identifying endomorphisms of G with matrices in Ms(Z),

one sees (e.g. by using the Smith normal form) that

deg(σn − γ) = | det(σn − γ)|.

Expanding the determinant shows the desired growth behaviour.
− G � Gr

a is a vector group: Endomorphisms of G are given by r×r matrices
over the skew polynomial ring K〈φ〉 with φa = apφ for a ∈ K. The degree
of an isogeny τ ∈ End(G) can be computed using the Dieudonné determinant
ddet by the formula

deg(τ ) = pdegφ ddet(τ).
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(Since K〈φ〉 is left and right euclidean, we can put the matrix τ in Smith
normal form and use the fact that unimodular matrices have Dieudonné de-
terminant of degree 0 [24, Thm. 4.6]). We will use that if τ is a matrix
over K〈φ〉 all of whose entries have degree � d as polynomials in φ, then
degφ ddet(τ ) � rd [24, Thm. 3.5]. Choose an integer d � 1 so that the entries
of σ have degree � d. For sufficiently large n the entries of σn− γ have degree
� nd, and hence

deg(σn − γ) = pdegφ ddet(σn−γ) � pnrd. �

Remark A.2. For a more comprehensive treatment of degrees and inseparable
degrees of endomorphisms of algebraic groups (not necessarily commutative), we
refer the reader to [12].

In the above proof, the positive radius of convergence of ζf (z) is recursively de-
fined based on a decomposition of G along subgroups and quotients. The following
is a case where we can find a direct bound on the radius of convergence:

Proposition A.3. When V is smooth projective and f : V → V is any mor-
phism, ζf (z) and ζ∗f (z) define holomorphic functions on a disk of radius the smallest
absolute value of a zero of the characteristic polynomial

det(1− f∗z | H2•(V )),

where H2•(V ) =
dimV⊕
j=0

H2j(V,Q�) is the even étale cohomology of V for some � �= p.

Proof. In this case, we have a coefficient-wise bound fn � (Γfn · Δ), where
the right hand side is the intersection number of the graph of fn with the diagonal
in V × V . Since V is smooth projective and f has finitely many fixed points, by
the Grothendieck–Lefschetz fixed point formula in �-adic cohomology for � �= p
[15, Cor. 3.7, p. 152 (= Exposé “Cycle”, p. 24)] we find that

(24) exp
(∑

(Γfn ·Δ)zn/n
)
=

2 dimV∏
i=0

det(1− f∗z | Hi(V,Q�))
(−1)i+1

,

and the right hand side converges in an open disk of radius the smallest absolute
value of a zero of the denominator. �

Remark A.4. If V = Pk is a projective space, the result follows essentially
from Bézout’s theorem (see e.g. [18, Prop. 1.3]). A more general “intersection-
theoretic” argument such as in the proof of Proposition A.3 seems to apply only
in a restrictive setting, since the Grothendieck–Lefschetz fixed point formula can
fail for general endomorphisms of general varieties, and one cannot in general leave
out the assumptions of properness and smoothness. It seems these assumptions are
rarely satisfied, as witnessed by the following sample result in characteristic zero: if
Γ is a finite group of endomorphisms of a complex abelian variety of dimension � 3
acting irreducibly on the tangent space at 0, Γ\G is necessarily a projective space,
G is a power of an elliptic curve, and Γ is one of two possible groups (depending
on the dimension) [3, Thm. 1.1].
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Appendix B.
Explicit computation of tame zeta functions

for some dynamically affine maps on P1

Classification of dynamically affine maps on P1. Bridy [9] classified all
dynamically affine maps f of degree � 2 on the projective line by showing that
they are conjugate by a fractional linear transformation to polynomials fc in an
explicit standard form, as in Table 1 (where μd ⊆ k× denotes a nontrivial subgroup
consisting of d-th roots of unity). This is the characteristic-p analogue of the clas-
sification over C given in [35, Thm. 3.1].

G Γ Γ\G fc

Ga

{1}
P1 − {∞}

Additive polynomial

μd Subadditive polynomial

Gm

{1} P1 − {0,∞} Power map

{±1} P1 − {∞} Chebyshev map

E �= {1} P1 Lattès map

Table 1. Classification of dynamically affine maps on P1.

With the notation and terminology of Table 1, f is coseparable precisely when either
fc is inseparable, or fc is a separable (sub)additive polynomial for which f ′

c(0) is
transcendental over k (cf. [9, Thm. 1.2 & 1.3]). One easily checks that these are
precisely the maps for which fn is maximal for all n (i.e. fn = deg(f)n + 1; each
fixed point of fn has multiplicity one).

Some examples of tame zeta functions. The “trivial” case provides us
with a useful notational tool: if X = pt is a point, then f has a unique fixed point
(fn = 1 for all n), so we suppress the (irrelevant) f from the notation, to obtain

ζpt(z) =
1

1− z
and ζ∗pt(z) = ζpt(z)/

p

√
ζpt(zp) =

p
√
1− zp

1− z
.

We will now present examples of tame zeta functions, writing them in a concise
form using the function ζ∗pt(az

b) for various a and b. Much of the general struc-
ture of (tame) zeta functions of algebraic groups is already visible in the following
basic example for which we provide a detailed computation (we stick to p > 2 for
convenience).

Proposition B.1. Let m � 2 be an integer and let f : P1 → P1, x → xm be
the power map over an algebraically closed field K of characteristic p > 2. If p
divides m, set β := 0. Otherwise, let β := (|ms − 1|p − 1)/s ∈ Z[1/p], where s is

the smallest positive integer for which |ms − 1|p < 1 (i.e. the order of m in F×
p ).

Then

ζ∗f (z) = ζ∗pt(mz)ζ∗pt(z)

(
ζ∗pt((mz)s)

ζ∗pt(z
s)

)β

.

Proof. The iterate fn has as its fixed points ∞, 0, and the distinct solutions
to xmn−1 = 1 in Fp. Hence fn = 2 + (mn − 1) · |mn − 1|p.
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If p|m, we have fn = mn + 1, and the result follows. Now assume that m is
coprime to p. We then have (see e.g. [9, Lemma 6.1])

(25) |mn − 1|p =

{
1 if s�n,
|ms − 1|p · |n|p if s|n.

Observe that s is a divisor of p− 1; in particular, s is coprime to p and β ∈ Z[1/p].
If we set M := |ms − 1|p, the tame zeta function can be computed as follows:

log ζ∗f (z)/ζ
∗
pt(z)

2 =
∑

p�n;s�n

mn − 1

n
zn +M

∑
p�n;s|n

(mn − 1)

n
zn

=
∑
n

mn − 1

n
zn −

∑
n

mpn − 1

pn
zpn

+ (M − 1)

(∑
n

msn − 1

sn
zsn −

∑
n

mpsn − 1

psn
zpsn

)

= log

(
1− z

1−mz
· (1− (mz)p)

1
p

(1− zp)
1
p

)
+

(M − 1)

s
log

(
1− zs

1− (mz)s
· (1− (mz)ps)

1
p

(1− zps)
1
p

)
.�

Without showing further details of computations (that go along the lines of those
for the power map) we now list several other tame zeta functions.

Proposition B.2. Suppose that K is an algebraically closed field of charac-
teristic p > 2. Let m � 2 be an integer. The normalised Chebyshev polynomial
Tm is the unique monic polynomial of degree m with integer coefficients satisfying
Tm(z + z−1) = zm + z−m. Consider the Chebyshev map

Tm : P1 → P1

given by the polynomial Tm (denoted by the same symbol).
Let E/K denote an elliptic curve and let π : E → P1 be a covering map of

order two. The (standard) Lattès map

Lm : P1 → P1

corresponding to π is defined by the property Lm ◦ π = π ◦ [m], where [m] is the
multiplication-by-m map on E.

If p�m, let s denote the multiplicative order of m modulo p. Let h = 1 if f is
a Chebyshev map or a Lattès map arising from an ordinary elliptic curve, and let
h = 2 otherwise. Set β := (|ms−1|hp −1)/s ∈ Z[1/p]. Then the corresponding tame
zeta functions (quotiented by a convenient factor) are given in Table 2. �

Proposition B.3. Suppose that K is an algebraically closed field of character-
istic p > 0 and consider an additive polynomial in K[X] of the form a0X+a1X

p+

· · ·+amXm with m = pr for some integer r � 1. Assume that a0 ∈ F
×
p and m � 2.

Consider f as a map

f : P1 → P1, X → a0X + a1X
p + · · ·+ amXm.

Let s � 1 be the smallest integer with fs(X) = X + aXpt

+ · · · for a �= 0 and
t ∈ Z>0. Put β = (p−t − 1)/s. Then

ζ∗f (z) = ζ∗pt(mz)ζ∗pt(z)ζ
∗
pt((mz)s)β. �
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Condition ζ∗Tm
(z)/(ζ∗pt(mz)ζ∗pt(z)) ζ∗Lm

(z)/(ζ∗pt(m
2z)ζ∗pt(z))

p|m 1 1

p�m and 2�s
(
ζ∗pt((mz)s)

ζ∗pt(z
s)

)β/2
(
ζ∗pt((m

2z)s)ζ∗pt(z
s)

ζ∗pt((mz)s)2

)β/2

p�m and s = 2t

(
ζ∗pt((mz)t)ζ∗pt(z

t)

ζ∗pt(z
2t)

)β
(
ζ∗pt((m

2z)t)ζ∗pt(z
t)ζ∗pt((mz)t)2

ζ∗pt((mz)2t)2

)β

Table 2. Tame zeta functions of some dynamically affine maps on P1.

In characteristic two and for more general (sub)additive polynomials, similar meth-
ods apply, but the computations are more tedious and we have not listed the out-
come. We have not carried out an explicit computation for general Lattès maps
arising from endomorphisms of elliptic curves that are not given by multiplication
by an integer or corresponding to larger (possibly noncommutative) automorphism
groups Γ.
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Publishing Co., Amsterdam, 1970. Avec un appendice Corps de classes local par Michiel
Hazewinkel. MR0302656

[17] Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper (German),
Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272, DOI 10.1007/BF02940746.
MR0005125

[18] Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms
of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture
Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294, DOI 10.1007/978-3-642-13171-
4 4. MR2648690

[19] Bernard Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J.
Math. 82 (1960), 631–648, DOI 10.2307/2372974. MR140494
4, 905–919]. MR1027462
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Special α-limit sets

Sergǐı Kolyada†, Micha�l Misiurewicz, and L’ubomı́r Snoha

Abstract. We investigate the notion of the special α-limit set of a point. For
a continuous selfmap of a compact metric space, it is defined as the union of
the sets of accumulation points over all backward branches of the map. The
main question is whether a special α-limit set has to be closed. We show that
it is not the case in general. It is unknown even whether a special α-limit set
has to be Borel or at least analytic (it is in general an uncountable union of
closed sets). However, we answer this question affirmatively for interval maps
for which the set of all periodic points is closed. We also give examples showing
how those sets may look like and we provide some conjectures and a problem.

1. Introduction

Let (X, f) be a dynamical system given by a compact metric space X and a
continuous map f : X → X.

The ω-limit set of x ∈ X, ω(x), is the set of points of accumulation of the
sequence (fn(x))∞n=0. If f is a homeomorphism, one can define the α-limit set of x,
α(x), as the ω-limit set of x for f−1. However, if f is not a homeomorphism, this
simple way does not work.

The standard solution is to define the α-limit set α(x) of x as the set of limits
of all convergent sequences (xni

)∞i=0 such that fni(xni
) = x and limi→∞ ni = ∞.

However, one can also think of different solutions.
A backward branch of x is a sequence (xn)

∞
n=0 such that x0 = x and f(xn) =

xn−1. The α-limit set of the backward branch (xn)
∞
n=0 is the set of points of accu-

mulation of this sequence.
In 1992, M. Hero [6] explored still different path. He defined the special α-limit

set sα(x) of x as the union of the α-limit sets over all backward branches of x.
Clearly, always sα(x) ⊂ α(x). If we want to specify that we are using the map f ,
we will write sα(x, f) instead of sα(x) (and similarly ω(x, f) and α(x, f) instead
of ω(x) and α(x), respectively). We denote SA(f) =

⋃
x∈X sα(x, f).

To formulate some known facts on special α-limit sets, we recall some notions
and fix notations. By Orb(x) or Orb(x, f) we denote the orbit of the point x, i.e.
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the set {x, f(x), f2(x), . . . }. By Fix(f), Per(f), Rec(f) and Ω(f) we denote, respec-
tively, the set of fixed points, periodic points, recurrent points and nonwandering
points of f . Recall that x is a recurrent point if x ∈ ω(x) and it is a nonwandering
point if for every neighbourhood U of x there is n ≥ 1 such that fn(U) ∩ U �= ∅.

By Λ∞ = Λ∞(f) we denote the attracting center defined as follows. First,
for a subset Y of X, put Λ(Y, f) =

⋃
x∈Y ω(x, f). Then Λ∞(f) =

⋂∞
n=1 Λ

n(f),

where Λ1(f) = Λ(X, f) and Λn(f) = Λ(Λn−1(f)) for every n > 1. Further denote
Γ(f) =

⋃
x∈X γ(x, f) where γ(x, f) = ω(x, f)∩α(x, f). For interval maps, by [13],

we have

(1.1) Per(f) ⊂ Rec(f) ⊂ Γ(f) = Λ2(f) = Λ∞(f) ⊂ Per(f) ⊂ Λ1(f) ⊂ Ω(f)

and, by [5], x ∈ Ω(f) if and only if x ∈ α(x).
For a continuous selfmap f of the interval I = [0, 1], Hero’s main results are

the following ones.

(H1) The following are equivalent:
(1) x ∈ sα(y) for some y,
(2) x ∈ sα(x),
(3) x ∈ Λ∞.

(H2) SA(f) \ Rec(f) �= ∅ if and only if f has a periodic point with period not
a power of two.

To get (H1) and (H2), Hero proved, among others, the following facts for interval
maps.

(H3) If x ∈ Rec(f) then x ∈ sα(x).
(H4) If x ∈ SA(f) then x ∈ sα(x) and x ∈ Γ(f).
(H5) If x ∈ Γ(f) then x ∈ sα(x).

Combining (H3–H5) with (1.1), we get for interval maps

Rec(f) ⊂ SA(f) = Γ(f) = Λ2(f) = Λ∞(f) ⊂ Λ1(f).

Notice that the inclusion SA(f) ⊂ Λ1(f) can be reformulated as follows:

(H6) Every special α-limit point is an ω-limit point.1

Another interesting result is the following.

(H7) If y ∈ sα(x) then the orbit closure Orb(y) = Orb(y) ∪ ω(y) ⊂ sα(x).

Hero proved (H7) for interval maps but one can see that the proof works in general.
The special α-limit sets have been studied also on graphs and dendrites, see

[10–12]. Let us also mention that the α-limit sets of the backward branches (xn)
∞
n=0

of a map have been studied in [3].
To study special α-limit sets is more complicated than to study ω-limit sets or

α-limit sets. While it is clear that the ω-limit sets, α-limit sets and α-limit sets of
backward branches are always closed, the situation with the special α-limit sets is
unclear. In general, those sets are uncountable unions of closed sets, so a priori their
topology may be very complicated. Are those sets closed? If not, are they Borel or
at least analytic? And are there any other constraints on them? Those questions
can be asked in a general case, but as always, the special case when X = I = [0, 1]

1This can be alternatively proved as a trivial consequence of a Sharkovsky’s result, see [9],
saying that a point c ∈ [0, 1] lies in Λ1(f) if and only if every open interval containing c contains at
least three points of some trajectory. Recall another trivial consequence: the set Λ1(f) is closed.
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is the closed unit interval promises more results than the general one. Thus, in this
paper we will concentrate mainly on this special case.

Our partial answers to the main question whether the set sα(x) is necessarily
closed, are as follows.

• In the general case sα(x) does not have to be closed, see Example 2.1.
• For interval maps with closed set of periodic points, sα(x) has to be closed,
see Theorem 3.3.
• For transitive interval maps sα(x) has to be closed, see Corollary 3.11.

Our conjecture is as follows.

Conjecture 1.1. For all continuous maps [0, 1] → [0, 1] all sets sα(x) are
closed.

Further, we show that

• not all closed subsets of [0, 1] are special α-limit sets for interval maps,
see Proposition 3.6, see also Proposition 3.7.

Therefore it is natural to state the following problem.

Problem 1.2. Characterize all subsets/closed subsets A of [0, 1] for which there
exists a continuous map [0, 1]→ [0, 1] and a point x ∈ [0, 1] such that sα(x) = A.

For completeness recall that the characterization of ω-limit sets for continuous
interval maps is nontrivial but known, see [1]: A subset of [0, 1] is an ω-limit set for
some continuous map [0, 1]→ [0, 1] if and only if it is nonempty, closed and either
nowhere dense or a union of finitely many nondegenerate closed intervals.

Characterization of α-limit sets for continuous interval maps is trivial (and
apparently not mentioned in literature): A subset A ⊂ [0, 1] is an α-limit set for
some continuous map [0, 1]→ [0, 1] if and only if it is closed (possibly empty). One
implication is trivial. To prove the converse implication, fix a closed set A ⊂ [0, 1].
We need to find a continuous map f and a point x such that α(x) = A. Examples
with A = ∅ and A = [0, 1] are easy (a non-surjective map, cf. Proposition 2.3,
and for instance the full tent map, respectively). Otherwise, let J be a connected
component of the open set [0, 1]\A. At least one of the endpoints of J belongs to A;
denote it by x. Let f be a continuous map with f(A) = {x} and f([0, 1] \A) ⊂ J .
Then

⋃∞
n=1 f

−n(x) = A and α(x) = A.

2. General case

We start by providing an example where a special α-limit set is not closed. It
will always be clear from the context whether (0, 1) means an open interval or the
point of the plane with coordinates 0 and 1.

Example 2.1. First for every a ∈ (0, 1) we define the map ϕa : [0, 1] → [0, 1]
by setting ϕa(x) = min(x/a, 1) (see Figure 1). Clearly, the maps ϕa converge
uniformly to the identity as a goes to 1.

Now our space X ⊂ R2 is the union of straight line segments Ia joining the
point (0, 1) with (a, 0) over all a ∈ {1 − 1/n : n = 2, 3, 4, . . . } ∪ {1}. We define
the map f : X → X by defining f on I1 as the identity and on Ia for a < 1 as
π−1
a ◦ ϕa ◦ πa, where πa : Ia → [0, 1] is the projection to the second coordinate.

Clearly, f is continuous.
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0 1a

Figure 1. The map ϕa.

For every a ∈ (0, 1) we have sα(1, ϕa) = {0, 1}, while for the identity sα(1, Id) =
{1}. Thus, we get sα((0, 1), f) = {(0, 1)} ∪ {(1− 1/n, 0) : n = 2, 3, 4, . . . }. This set
is not closed.

Note that we can modify the above example by replacing the set {1−1/n : n =
2, 3, 4, . . . } by the interval [1/2, 1), and then our phase space will be a triangle.

Now we prove some basic facts that hold in the general case. We work here
with a dynamical system (X, f) where X is a compact metric space and f : X → X
is continuous.

In general, sα(x) (as well as α(x)) may be empty, because for instance it may
happen that x has no preimages. Let us investigate closer this problem. For this
we need a simple topological lemma.

Lemma 2.2. If Y =
⋂∞

n=0 f
n(X) then f(Y ) = Y .

Proof. Clearly, f(Y ) ⊂ Y . Take a point y ∈ Y . Then for every n we have
y ∈ fn+1(X), so there is xn ∈ fn(X) such that f(xn) = y. From the sequence (xn)
we can choose a subsequence convergent to some x ∈ X. For each m almost all
points xn belong to fm(X), and therefore x ∈ fm(X). Thus, x ∈ Y . By continuity,
f(x) = y. This proves that Y ⊂ f(Y ). �

Without compactness of X the lemma would be false. Take the discrete space
consisting of z, y and xn,m where n,m are integers, 1 ≤ n ≤ m. Set f(z) = f(y) = z,
f(x1,m) = y and f(xn,m) = xn−1,m if n > 1. Then {y, z} = Y �= f(Y ) = {z}.

The following proposition gives the answer to the question when sα(x) �= ∅.
Proposition 2.3. The following conditions are equivalent:

(1) sα(x) �= ∅,
(2) α(x) �= ∅,
(3) x ∈

⋂∞
n=0 f

n(X).

In particular, if f is a surjection then sα(x) is nonempty for every x ∈ X.

Proof. Since sα(x) ⊂ α(x), (1) implies (2). By the definition, if (2) holds
then f−n(x) �= ∅ for all n, and thus (3) holds. Hence, it remains to prove that (3)
implies (1).

By Lemma 2.2, if x ∈
⋂∞

n=0 f
n(X) then x has an infinite backward branch.

From this branch we can choose a convergent subsequence, so sα(x) �= ∅. �
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Recall that f : X → X is minimal if every orbit is dense and is topologically
exact if for every nonempty open set U ⊂ X there is a positive integer n such that
fn(U) = X. Further, a set E ⊂ X is f -invariant if f(E) ⊂ E. By B(x, δ) denote
the ball with radius δ, centered at x.

Proposition 2.4. Let E ⊂ X be an f -invariant set such that
⋃∞

n=1 f
n(U) ⊃

X \ E for every nonempty open set U ⊂ X. Then

sα(x) = X for every x ∈ X \ E.

Thus, if E = ∅ then sα(x) = X for every x ∈ X. In particular, this is true if f is
topologically exact or minimal.

Proof. Fix x ∈ X \ E and y ∈ X. We prove that y ∈ sα(x).
Due to the assumption, in the ball B(y, 1) there is a point y1 whose fk1-image

(for some k1 ≥ 1) is x. Since E is f -invariant and x ∈ X\E, also y1 ∈ X\E. By the
same argument as above, there is a point y2 ∈ B(y, 1/2) \E with fk2(y2) = y1 (for
some k2 ≥ 1). Continuing this way, we find a sequence of points (yn)

∞
n=1 in X \ E

and a sequence of positive integers (kn)
∞
n=1 such that yn → y and fkn(yn) = yn−1

for n ≥ 2 and fk1(y1) = x. Hence y ∈ sα(x). �

Note that if the set E in this proposition is not equal to X then it has
empty interior. Otherwise it contains a nonempty open set U for which then
trivially

⋃∞
n=1 f

n(U) ⊂ E. Since E �= X, this contradicts the assumption that⋃∞
n=1 f

n(U) ⊃ X \ E. The proposition thus shows that, under those assumptions,
for almost every (in topological sense) point x, the set sα(x) equals the whole space
X.

Let us now study what happens if we replace a point with its image or a
preimage.

Lemma 2.5. If y ∈ sα(x) then

(1) Orb(y) ⊂ sα(x); in particular f(y) ∈ sα(x),
(2) y ∈ sα(f(x)) and f(y) ∈ sα(f(x)).

Proof. (1) This follows from (H7) and our comment after it.
(2) The first property follows from the definition and the second one is a con-

sequence of it and of (1). �

Lemma 2.6. If y ∈ sα(x) then f−1(y) ∩ sα(x) �= ∅.

Proof. If y ∈ sα(x) then there is a sequence of points (yn)
∞
n=1 and a sequence

of positive integers (kn)
∞
n=1 such that yn → y and fkn(yn) = yn−1 for n ≥ 2

and fk1(y1) = x. Set zn = fkn−1(yn). By passing to a subsequence if necessary,
we may assume that zn → z. Then f(z) = limn→∞ f(zn) = limn→∞ fkn(yn) =
limn→∞ yn−1 = y. Hence z ∈ f−1(y). Since fkn(zn+1) = zn for n ≥ 1 and
f(z1) = x, we also have z ∈ sα(x). �

From Lemmas 2.5 and 2.6 we get immediately the following corollary.

Corollary 2.7. We have f(sα(x)) = sα(x). In particular, if sα(x) is finite
then it is a union of periodic orbits.

The following lemma will be useful when constructing examples. By IntC we
denote the interior of C.
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Lemma 2.8. Suppose that there is an f -invariant (not necessarily closed or
open) set C and a point y ∈ X with the following two properties:

(a) y has positive distance from C,
(b) y is pre-trapped by C, meaning that there exists a positive integer t such

that f t(y) ∈ IntC.

Then y /∈ SA(f) :=
⋃

x∈X sα(x).

Proof. Suppose, on the contrary, that y ∈ sα(x) for some x. Then there is
a sequence of points (yn)

∞
n=1 and a sequence of positive integers (kn)

∞
n=1 such that

yn → y, fkn(yn) = yn−1 for n ≥ 2 and fk1(y1) = x. Since f is continuous, by
(a) and (b) there is a neighbourhood U of y such that U ∩ C = ∅ and f t(U) ⊂ C.
Then, since f(C) ⊂ C, we get f �(U) ⊂ C for all � ≥ t. Since yn → y, there is n0

such that for all n ≥ n0 we have yn ∈ U . Thus,

(2.1) n ≥ n0 and � ≥ t⇒ f �(yn) ∈ C.

Consider t+1 points yn0
, yn0+1, . . . , yn0+t ∈ U . For L := kn0+1+kn0+2+ · · ·+kn0+t

we have

(2.2) fL(yn0+t) = yn0
∈ U.

However, n0+t ≥ n0 and for the integer L, which is the sum of t positive integers, we
have L ≥ t. Therefore we can use (2.1) to get fL(yn0+t) ∈ C. This contradicts (2.2).

�

Now we investigate how the special α-limit sets behave when we consider the
iterations of the map.

Proposition 2.9. Let n be a positive integer. The special α-limit sets have the
following properties:

(1) sα(x, fn) ⊂ sα(x, f),
(2) sα(x, f) ⊂ sα(fn(x), f),

(3) sα(x, f) =
⋃n−1

i=0

⋃
fi(y)=x sα(y, f

n),

(4) sα(x, f) ⊂
⋃n−1

j=0 sα(f j(x), fn).

(5) SA(fn) = SA(f).

Proof. Property (1) follows immediately from the definition, while (2) follows
from Lemma 2.5. To prove (3), observe that a backward branch of x for f decom-
poses into n backward branches of preimages of x for fn. Property (4) follows
from (3) and (2). Finally, one inclusion in (5) follows from (1) and the other one
from (3) or (4). �

3. Interval maps

Here we prove the main results about the special α-limit sets for interval maps.
Thus, I = [0, 1] will be the closed unit interval, and f : I → I a continuous map.

Lemma 3.1. Let f be an interval map. If y ∈ α(x) and f(y) = y, then y ∈
sα(x).

Proof. If y = x, then f(x) = x, so y = x ∈ sα(x). Thus, we may assume that
y < x.
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By the assumption, there exists a sequence xn → y such that fkn(xn) = x for
some kn →∞. By choosing a subsequence, we may assume that the sequence (xn)
is monotone and xn < x for all n.

Assume first that the sequence (xn) is decreasing. By induction we will find a
sequence (yn) such that fm(y1) = x for some m, and fkn(yn) = yn−1, y < yn < xn,
for all n ≥ 2. We start by taking y1 = x1 and m = k1. Now, if yn−1 is already
chosen, we note that yn−1 ∈ (y, x), fkn(y) = y, and fkn(xn) = x, so there exists
yn ∈ (y, xn) such that fkn(yn) = yn−1. This completes the induction step. Clearly,
yn → y, so by the definition, y ∈ sα(x).

Now we assume that the sequence (xn) is increasing. Then xn < y < x and
fkn(xn) = x, so there exists 0 ≤ mn < kn such that fmn(xn) < y and fmn+1(xn) >
y. We will distinguish two cases.

The first case is that supn f
mn(xn) < y. Denote this supremum by a. Since

xn → y, we may assume that mn > 0 and xn > a for all n. Then we repeat the
proof from the case of (xn) decreasing. Namely, by induction we find a sequence
(yn) such that fm(y1) = x, and fmn(yn) = yn−1, xn < yn < y, for all n ≥ 2. This
time in the induction step we have yn−1 ∈ (a, y), fmn(y) = y, and fmn(xn) ≤ a.
Again we get y ∈ sα(x).

The second case is that supn f
mn(xn) = y. Then, by passing to a subsequence,

we may assume that fmn(xn) → y. By continuity and since f(y) = y, we get
fmn+1(xn)→ y. By taking a subsequence again, we may assume that the sequence
(fmn+1(xn)) is decreasing. Notice that fkn−mn−1(fmn+1(xn)) = x. Therefore, if
kn −mn − 1 → ∞, we can use the sequence (fmn+1(xn)) instead of the sequence
(xn), and we know already that in this case y ∈ sα(x). Thus, it remains to show
that the sequence (kn − mn − 1) of nonnegative integers is unbounded (then a
subsequence tends to infinity and we may use the mentioned argument). Suppose,
on the contrary, that the sequence (kn − mn − 1) is bounded. By passing to a
subsequence we may assume that it is constant, i.e. there is N ≥ 0 such that
kn −mn − 1 = N , n ∈ N. Since fmn+1(xn)→ y, by continuity we get fN (y) = x,
which is impossible since y is a fixed point of f . �

Theorem 3.2. Let f be an interval map. If a point y ∈ α(x) is periodic, then
y ∈ sα(x).

Proof. Let y ∈ α(x, f) be a periodic point of f of period p. Then there
exists a sequence of points (yk) convergent to y, such that fmk(yk) = x for some
sequence (mk) going to infinity. There is j ∈ {0, 1, . . . , p − 1} such that infinitely
many numbers mk are congruent to j modulo p. By passing to a subsequence if
necessary, we may assume that for every k there is a positive rk with mk = prk+ j.
Put zk = f j(yk). By continuity, zk → f j(y). Moreover, rk → ∞ and for g = fp

we have grk(zk) = x. Hence, f j(y) ∈ α(x, g). Since f j(y) is a fixed point of g,
Lemma 3.1 gives us f j(y) ∈ sα(x, g) = sα(x, fp). Then, by Proposition 2.9(1),
f j(y) ∈ sα(x, f) and, by Lemma 2.5(1), y = fp−j(f j(y)) ∈ sα(x, f). �

Once we know that α(x) ∩ Per(f) ⊂ sα(x), we can specify a class of interval
maps for which all special α-limit sets are closed.

Theorem 3.3. For an interval map f , if the set of all periodic points is closed,
then sα(x) = α(x) ∩ Per(f) for every x. In particular, all special α-limit sets are
closed and SA(f) = Per(f).
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Proof. Let f be an interval map for which the set Per(f) is closed. Then, by
a theorem of Sharkovsky (see [8]), the ω-limit set of every point is finite and so it is
a periodic orbit. Thus, by (H6), all special α-limit points are contained in Per(f).
Hence, for any point x we have sα(x) ⊂ α(x)∩Per(f). Since Theorem 3.2 gives the
converse inclusion, sα(x) = α(x) ∩ Per(f). Since both α(x) and Per(f) are closed,
the set sα(x) is also closed. Since every sα(x) ⊂ Per(f) and also Per(f) ⊂ SA(f),
we have SA(f) = Per(f). �

Notice that the set α(x) may be larger than sα(x) even under the assumptions
of Theorem 3.3, see Examples 4.3 and 4.4.

An interval map is called of type n if it has a periodic orbit of period n but no
periodic orbits of periods preceding n in the Sharkovsky ordering. Additionally, it
is of type 2∞ if it has periodic orbits of period 2n for all n and of no other periods.
If f is of type 2n for some finite n, then Per(f) consists of all fixed points of f2n ,
so it is closed. Therefore, we get a corollary to Theorem 3.3.

Corollary 3.4. For an interval map of type 2n for some finite n, all special
α-limit sets are closed.

This is still true for interval maps of type 2∞ with closed set of periodic points.
However, there are well known examples of interval maps of type 2∞ whose set of
periodic points is not closed (see, e.g., [8]). Recall also that for the maps having
also periodic points whose period is not a power of two, the set of periodic points
is never closed.

Let us now continue with other properties of the special α-limit sets for interval
maps (so we assume below that f : [0, 1] → [0, 1] is a continuous map). By an
interval we always mean a nondegenerate interval (still, we sometimes emphasize
that it is nondegenerate).

Lemma 3.5. If f is constant on some open interval J , then J contains at most
one point of sα(x); this point is periodic and its orbit contains x. In particular, if
K ⊂ sα(x) is an interval, then fn(K) is an interval (and not a singleton) for every
positive integer n.

Proof. Assume that f is constant on an open interval J , and y ∈ J belongs
to sα(x). Then there are points z, w ∈ J such that fk(w) = z and fn(z) = x for
some k, n ≥ 1. Thus, fk(y) = fk(z) = fk(w) = z and fn(y) = fn(z) = fn(w) = x.
Hence fk+n(y) = x. We get x = fk(fn(y)) = fk(x), so x is periodic. Moreover,
fk(z) = z, so z is also periodic. However, fn(z) = x, so x and z must belong to the
same periodic orbit. Since y ∈ sα(x), the point z can be chosen arbitrarily close to
y, and this proves that y belongs to the orbit of x. Thus y is periodic. Clearly, the
orbit of x, since it is periodic, can contain at most one point of J .

Now let K ⊂ sα(x) be an interval. We already know that then f is not constant
on K, i.e. f(K) is an interval. By Corollary 2.7 we have f(K) ⊂ sα(x), hence also
f2(K) is an interval. By induction, fn(K) is an interval for every n. �

A subinterval K of [0, 1] is called periodic or weakly periodic if there is a positive
integer k such that K, f(K), . . . , fk−1(K) are pairwise disjoint and fk(K) = K or

fk(K) ⊂ K, respectively. In such a case, the set
⋃k−1

i=0 f i(K) is called a cycle or a
weak cycle, respectively, of intervals of period k.

Proposition 3.6. Assume that Int sα(x) �= ∅. Then there are only finitely
many nondegenerate components of sα(x) and they form a cycle containing x.
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Proof. Let J be a nondegenerate component of sα(x). Then there are y, z ∈
Int(J) such that fn(y) = z for some n ≥ 1. Since, by Corollary 2.7, f(sα(x)) =
sα(x), we have fn(J) ⊂ J and by Lemma 3.5, f i(J), i = 1, . . . , n− 1 are nondege-
nerate intervals. Thus, we get a weak cycle of intervals in sα(x) of period at most n.
If we enlarge those intervals to the components of sα(x) containing them, we get a
weak cycle of nondegenerate components of sα(x). Since some points of this weak
cycle are eventually mapped to x, the point x itself has to belong to one of those
components. If there are two different weak cycles of nondegenerate components of
sα(x), one of them does not contain x, a contradiction.

Thus there are an interval K and a positive integer k such that the union

of all nondegenerate components of sα(x) equals
⋃k−1

i=0 f i(K), where K, f(K), . . . ,
fk−1(K) are pairwise disjoint intervals and the interval fk(K) ⊂ K. We claim
that this weak cycle is a cycle, i.e. fk(K) = K. Suppose, on the contrary, that
fk(K) is a proper subinterval of K. Then, regardless of whether K is closed or
not, Int(K \ fk(K)) �= ∅. Let L ⊂ K \ fk(K) be an open interval. Then L ⊂ sα(x)
and so, by Lemma 3.5, fk(L) ⊂ fk(K) is a nondegenerate interval. Therefore one
can choose a point y ∈ L with fk(y) ∈ Int fk(K). Since L is open, y has positive
distance from fk(K). Moreover, fk(K) ⊂ K and so the set fk(K) is fk-invariant.
Hence, by Lemma 2.8, y /∈ SA(fk). By Proposition 2.9(5), y /∈ SA(f). This
contradicts the fact that y ∈ L ⊂ sα(x). �

Now we will consider simultaneously two situations; if at least one of them
occurs, we will say that x is of cyclic type. The first one is when the orbit of x is
periodic, the second one when there is a nondegenerate component of sα(x). In the
second situation, by Proposition 3.6, those components form a cycle and x belongs
to one of them. We will call the union of those components (or the periodic orbit
of x) the cycle of x.

In both cases we can use the standard techniques of combinatorial dynamics
(see, e.g., [2]). The closures of the components of the complement of the cycle
of x in the convex hull of this cycle are vertices of a Markov graph. The graph
is directed; there is an arrow from J to K if K is contained in the interval with
endpoints f(a) and f(b), where J = [a, b]. Then we can use the symbolic dynamics.
In particular, for every path in the graph there is a point of the interval with that
itinerary.2 The orbit of this point x goes along the path, that is, fn(x) belongs to
the nth vertex of the path.

Moreover, if the path is finite, of length k, then we can prescribe any point of
the kth vertex as fk(x). Different infinite paths result in different points, except
for at most countably many paths. Indeed, if a point y has two different infinite
itineraries, then fn(y) = x for some n, and x is a periodic point. If the period of x
is k, then the itinerary of y, starting at (n+ k)th term or earlier, becomes periodic
and goes along the fundamental loop of the Markov graph (see [4]). For a given
n there are only finitely many such itineraries, so totally this can happen only for
countably many itineraries.3

We can also speak of the entropy of the cycle (or of the graph). It is the
minimal possible topological entropy of a continuous interval map with this cycle.

2The converse is not true. Due to our definition of the Markov graph, some points may be
mapped by f in a way which does not correspond to arrows in the graph.

3This is the same situation as with the decimal expansions of the numbers from [0, 1]; if we
remove countably many expansions, then two different expansions give different numbers.
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It is equal to the logarithm of the spectral radius of the transition matrix of its
Markov graph (see Corollary 4.4.8 of [2]). In particular, if the period of the cycle
is not a power of 2, then its entropy is positive (see Corollary 4.4.18 of [2]).

Proposition 3.7. Assume that x is of cyclic type and the entropy of its cycle
is positive. Then the cardinality of sα(x) minus the cycle of x is continuum.

Proof. Clearly, this cardinality cannot be larger than continuum. We will
show that it is at least continuum.

Since the entropy of the Markov graph is positive, it is easy to see that there is
a transitive subgraph G of positive entropy (transitive means that there is a path
from every vertex to every one). Indeed, if the entropy is positive then there are
two distinct loops through some vertex; taking only vertices appearing in those
loops produces a transitive subgraph with positive entropy. In this situation, there
is a vertex J of G from which there are arrows to at least two vertices. This means
that f(J) contains at least two vertices, so it contains some element of our cycle.
Thus, there is a point x0 ∈ J such that f j(x0) = x for some j ≥ 0.

We will write paths as strings of vertices. Let C = V0V1V2 . . . be an infinite
path in the graph G. Let us construct by induction a sequence of finite paths Cn

as follows. Set C0 = J (a path of length 0; the length of a path is the number of
arrows in it). If the path Cn−1 is defined, then the path Cn is the concatenation
of three paths: the beginning of C of length n, i.e. V0V1 . . . Vn, then a connector
Wn

1 . . .Wn
s(n), and then the path Cn−1. The connector is chosen in such a way that

Cn is a path in G; this is possible since G is transitive.
Recall that f j(x0) = x where x0 ∈ J . During the induction step we can also

choose a point xn ∈ V0 such that fn+s(n)+1(xn) = xn−1 (remember that xn−1 lies
in the first vertex of Cn after the connector, i.e. in J if n = 1 and in V0 if n ≥ 2).
In such a way, the sequence (xn) is a subsequence of the backward branch of x.
From this sequence we can choose a subsequence convergent to some point y. Then
y ∈ sα(x). Since xm ∈ V0 for all m ≥ 1, we have y ∈ V0. Further, if n ≥ 1 then for
all m ≥ n the point fn(xm) belongs to Vn. Thus, f

n(y) ∈ Vn. Therefore, the path
corresponding to y is C.

Since the entropy of G is positive, the number of infinite paths in G has car-
dinality continuum. Thus, we get a subset of sα(x) of cardinality continuum, and
only finitely many of those points can belong to our cycle of points or intervals (if
such a point belongs to an interval of the cycle, it has to be its endpoint). �

From Propositions 3.6 and 3.7 we get immediately two corollaries.

Corollary 3.8. Assume that x is periodic and sα(x) has empty interior. If
the orbit of x has positive entropy (in particular, if its period is not a power of 2)
then the cardinality of the set of components of sα(x) is continuum.

Corollary 3.9. Assume that sα(x) has nonempty interior and the cycle of
the nondegenerate components of sα(x) has positive entropy (in particular, if its
period is not a power of 2). Then the cardinality of the set of components of sα(x)
that are singletons is continuum.

Now we are going to study special α-limit sets of transitive interval maps.
Recall that if f : [0, 1] → [0, 1] then the endpoint 0 (resp. 1) is accessible if there
exists x ∈ (0, 1) and n ≥ 1 such that fn(x) = 0 (resp. fn(x) = 1). If an endpoint
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is not accessible, it is called nonaccessible. Recall also, see e.g. [7, Section 2.1.4],
that a transitive interval map is of one of the following two kinds:

• A topologically mixing map. Let E ⊂ {0, 1} be the set of those endpoints
which are nonaccessible. It can be E = ∅ or E = {0} or E = {1} or
E = {0, 1}. Always f(E) = E (if E = {0, 1}, then the endpoints are
either fixed points or they form a periodic orbit of period 2) and it follows
from the definition of an accessible point that also f−1(E) = E. Moreover,
for every nonempty open set U ⊂ [0, 1],

⋃∞
n=1 f

n(U) ⊃ [0, 1] \ E.
• A transitive map which is not topologically mixing. Then there is a point
c ∈ (0, 1) such that f([0, c]) = [c, 1], f([c, 1]) = [0, c] and both f2|[0,c]
and f2|[c,1] are topologically mixing (clearly, then c is the unique fixed

point of f). Let E1 or E2 be the set of nonaccessible endpoints for f2|[0,c]
or f2|[c,1], respectively, and let E = E1 ∪ E2. Then E ⊂ {0, c, 1} and

both f(E) = E and f−1(E) = E. Again, for every nonempty open set
U ⊂ [0, 1],

⋃∞
n=1 f

n(U) ⊃ [0, 1] \ E.

Proposition 3.10. Let f be a transitive interval map. Except of at most three
points, for all other x we have sα(x) = [0, 1]. For each of those (at most three)
exceptional points, sα(x) is nonempty and consists of at most two points.

Proof. The set E from the above classification of transitive maps has at most
three points, is invariant and

⋃∞
n=1 f

n(U) ⊃ [0, 1] \E for every nonempty open set
U ⊂ [0, 1]. Now use Proposition 2.4 to get that sα(x) = [0, 1] for every x ∈ [0, 1]\E.
Since f−1(E) = E and E is closed, for every x ∈ E we have sα(x) ⊂ E (here
sα(x) �= ∅ since f is surjective). If E = {0, c, 1}, then we cannot have sα(x) = E,
since then f−1({c}) = {c} and f−1({0, 1}) = {0, 1}. �

Corollary 3.11. Let f be a transitive interval map. If sα(x) contains more
than two points then sα(x) = [0, 1]. In particular, for every x ∈ [0, 1] the set sα(x)
is closed.

4. Examples

In this section we provide examples of special α-limit sets of various kinds for
interval maps. We also formulate some conjectures for interval maps.

Example 4.1. While an ω-limit set for a continuous interval map cannot be
the disjoint union of a closed interval and a singleton, Figure 2 shows that this is
possible for a special α-limit set.

Example 4.2. A preimage of a point in sα(x) need not belong to sα(x). In
Figure 2 there are points outside sα(x) which are mapped to sα(x). However, see
Lemma 2.6.

Example 4.3. For maps ϕa from Example 2.1, we have sα(1) = {0, 1}, while
α(1) = [0, 1] is much larger.

Example 4.4. A constant piece in the previous example is not that important,
see Figure 3.

Example 4.5. Let f(0) = 0, f(1/4) = f(3/4) = 1/2, f(1) = 1 and let f be
linear in between, see Figure 4. Then it is a continuous map [0, 1] → [0, 1] and
sα(1/2) = {0, 1/2, 1}, all the three points being fixed for f .
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0 1x

Figure 2. Here sα(x) = {0} ∪ [1/2, 1].

0 11/4 1/21/8

Figure 3. Here sα(1) = {0, 1} and α(1) = {1/2n−1 : n ∈ N} ∪ {0}.

0 11/2

Figure 4. Here sα(1/2) = {0, 1/2, 1}.
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Example 4.6. For a continuous map f : [0, 1]→ [0, 1], sα(x) can be countable
infinite. To get sα(1) = {1, 1/2, 1/4, . . . } ∪ {0}, consider the map from Figure 5.

0 11/4 1/21/8

Figure 5. Here sα(1) is countable infinite.

Example 4.7. We construct a continuous map f : [0, 1] → [0, 1] with sα(1)
being the middle third Cantor set, see Figure 6. In the construction, the peak over
the middle third goes to the very top. In each step, only the peak over the rightmost
contiguous interval of that rank goes to the very top. The heights of other peaks
tend to zero as the rank tends to infinity and so we get a continuous map. On the
other hand, those heights are chosen in such a way that the following property is
fulfilled: If J is a contiguous interval of rank n and it is not the rightmost contiguous
interval of that rank, then the maximum of f on J is larger than the minimum of
the contiguous interval of rank n − 1 which is closest to J from the right. Such a
construction ensures that for every contiguous interval J there is k with fk(J) & 1.

0 1

to
the top

to
the
top

Figure 6. Here sα(1) is the middle third Cantor set.

Example 4.8. Also it is possible to get sα(1) equal to the union of {1} and a
Cantor set, see Figure 7.
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0 1

Figure 7. Here sα(1) is the union of the Cantor set and the sin-
gleton {1}.

Example 4.9. If two special α-limit sets intersect each other, they need not
be equal, see Figure 8. Compare this with properties of minimal sets.

0 11/2

Figure 8. Here sα(1) = {1/2, 1} and sα(0) = {0, 1/2}.

Conjecture 4.10. If Int(sα(x) ∩ sα(y)) �= ∅ then sα(x) = sα(y).

Example 4.11. If there exists x such that sα(x) = [0, 1], f need not be tran-
sitive, see Figure 9.

Conjecture 4.12. If there are x1 �= x2 with sα(x1) = sα(x2) = [0, 1], then f
is transitive.

Example 4.13. In examples of transitive maps in Figure 10 we have sα(x) =
[0, 1] for all x, with possible exceptions of at most three points, as claimed in
Proposition 3.10.
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0 11/2

Figure 9. Here sα(1/2) = [0, 1] but f is not transitive.

0 1 0 1

0 1 0 1

Figure 10. At most three points x whose sα(x) is not equal to [0, 1].

Conjecture 4.14. If sα(x) = [0, 1] then either f is transitive or there is
c ∈ (0, 1) such that f |[0,c] and f |[c,1] are transitive.

Example 4.15. Consider the map f from Figure 11. Then y > 1/2 is pre-
trapped by the f -invariant interval [0, 1/2]. Hence by Lemma 2.8, y /∈

⋃
x∈[0,1] sα(x).

Conjecture 4.16. Any isolated point of sα(x) is periodic.
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0 1y1/2

Figure 11. Here y /∈
⋃

x∈[0,1] sα(x).
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Equicontinuity of minimal sets for
amenable group actions on dendrites

Enhui Shi and Xiangdong Ye

In memory of Sergĭı Kolyada

Abstract. We show that if G is an amenable group acting on a dendrite X,
then the restriction of G to any minimal set K is equicontinuous, and K is
either finite or homeomorphic to the Cantor set.

1. Introduction

It is well known that every continuous action of a topological group G on a
compact metric space X must have a minimal set K. A natural question is to
ask what can be said about the topology of K, and the dynamics of the subsys-
tem (K,G). The answer to this question certainly depends on the topology of X
and involves the algebraic structure of G. We assume throughout that groups are
topological groups, and that the actions are continuous.

In the case of an orientation-preserving group action on the circle S1, the topol-
ogy of minimal sets and the dynamics on them are well understood. In fact, for any
action of a topological group G on S1, the minimal set K can only be a finite set,
a Cantor set, or the whole circle (see, for example, [13]). The interaction between
the topology of K and the algebraic structure of G arises as follows.

• If K is a Cantor set, then (K,G) is semi-conjugate to a minimal action
of G on S1.
• If K = S1, then (K,G) is either equicontinuous, or (K,G) is ε-strongly
proximal for some ε > 0, and G contains a free non-commutative subgroup
(so, in particular, G cannot be amenable; see [8]).

The classes of minimal group actions on the circle up to topological conjugacy have
been classified by Ghys using bounded Euler class (see [4,5]).

Recently, there has been considerable progress in the study of group actions
on dendrites. Minimal group actions on dendrites appear naturally in the theory
of 3-dimensional hyperbolic geometry (see, for example, [2,10]). Shi proved that
every minimal group action on a dendrite is strongly proximal, and the acting group
cannot be amenable (see [15,16]). Based on the results obtained by Marzougui and
Naghmouchi in [9], Shi and Ye showed that an amenable group action on a dendrite
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always has a minimal set consisting of 1 or 2 points (see [17]), which is also implied
by the work of Malyutin and Duchesne–Monod (see [3, 7]). For group actions
on dendrites with no finite orbits, Glasner and Megrelishvili showed the extreme
proximality of minimal subsystems and the strong proximality of the whole system;
for amenable group actions on dendrites, they showed that every infinite minimal
subsystem is almost automorphic (see [6]). For Z actions on dendrites, Naghmouchi
proved that every minimal set is either finite or an adding machine (see [12]).

We prove the following theorem in this paper, which extends the correspond-
ing result for Z actions in [12], and answers a question proposed by Glasner and
Megrelishvili in [6].

Theorem 1.1. Let G be an amenable group acting on a dendrite X, and sup-
pose that K is a minimal set for the action. Then (K,G) is equicontinuous, and K
is either finite or homeomorphic to the Cantor set.

Recently, Shi and Ye have shown that every amenable group action on uniquely
arcwise connected continua (without the assumption of local connectedness) must
have a minimal set consisting of 1 or 2 points (see [18]). We end this introduction
with the following general question:

What results holding for group actions on dendrites can be ex-
tended to actions on uniquely arcwise connected continua?

In the following, we assume all the groups appearing in this paper are countable.

2. Preliminaries

2.1. Group actions. Let X be a compact metric space, Homeo(X) its home-
omorphism group, and let G be a group. A group homomorphism φ : G →
Homeo(X) is called an action of G on X; we also write (X,G) to denote an action
of G on X. For brevity, we usually write gx or g(x) instead of φ(g)(x).

The orbit of x ∈ X under the action of G is the set

Gx = {gx | g ∈ G}.
For a subset A ⊆ X, set GA =

⋃
x∈A Gx; a set A is said to be G-invariant if GA =

A; finally, a point x ∈ X is called a fixed point of the action if Gx = {x}. If A is
a G-invariant closed subset of X and Gx = A for every x ∈ A (that is, the orbit of
each point is dense), then A is called a minimal set for the action. In this setting
every action has a minimal set by Zorn’s lemma.

A Borel probability measure μ on X is called G-invariant if μ(g(A)) = μ(A)
for every Borel set A ⊂ X and every g ∈ G. The following lemma follows directly
from the G-invariance of the support supp(μ) (which is automatic).

Lemma 2.1. If (X,G) is minimal and μ is a G-invariant Borel probability
measure on X, then supp(μ) = X.

Lemma 2.2. Suppose that a group G acts on a compact metric space X, and
that K is a minimal set in X carrying a G-invariant Borel probability measure μ.
If U and V are open sets in X such that V ⊃ U and g(V ∩ K) ⊂ U ∩ K for
some g ∈ G, then K ∩ (V \ U) = ∅.

Proof. Assume to the contrary that there is some u ∈ K ∩ (V \ U). Then
there is an open neighborhood W & u with W ⊂ V \ U . By Lemma 2.1, we
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have μ(W ∩K) > 0. This then implies that μ(V ∩K) = μ(g(V ∩K)) ≤ μ(U ∩K) <
μ(V ∩K), a contradiction. �

2.2. Amenable groups. Amenability was first introduced by von Neumann.
Recall that a countable group G is said to be amenable if there is a sequence of
finite sets Fi (i = 1, 2, 3, . . . ) such that

lim
i→∞

|gFi ' Fi|
|Fi|

= 0

for every g ∈ G, where |Fi| is the number of elements in Fi. The sequence (Fi)
is called a Følner sequence and each Fi a Følner set. It is well known that solv-
able groups and finite groups are amenable and that any group containing a free
non-commutative subgroup is not amenable. One may consult the monograph of
Paterson [14] for the proofs of the following lemmas.

Lemma 2.3. Every subgroup of an amenable group is amenable.

Lemma 2.4. A group G is amenable if and only if every action of G on a
compact metric space X has a G-invariant Borel probability measure on X.

2.3. Dendrites. A continuum is a non-empty connected compact metric
space. A continuum is said to be non-degenerate if it is not a single point. An
arc is a continuum which is homeomorphic to the closed interval [0, 1]. A contin-
uum X is uniquely arcwise connected if for any two points x �= y ∈ X there is a
unique arc [x, y] in X connecting x and y.

A dendrite X is a locally connected, uniquely arcwise connected, continuum.
If Y is a subcontinuum of a dendrite X, then Y is called a subdendrite of X. For
a dendrite X and a point c ∈ X, if X \ {c} is not connected, then c is called a cut
point of X; if X \ {c} has at least 3 components, then c is called a branch point
of X.

Lemmas 2.5 to 2.8 are taken from [11].

Lemma 2.5. Let X be a dendrite with metric d. Then, for every ε > 0, there
is a δ > 0 such that diam([x, y]) < ε whenever d(x, y) < δ.

Lemma 2.6. Let X be a dendrite. If Ai (i = 1, 2, 3, . . . ) is a sequence of
mutually disjoint sub-dendrites of X, then diam(Ai)→ 0 as i→∞.

Lemma 2.7. Let X be a dendrite. Then X has at most countably many branch
points. If X is nondegenerate, then the cut point set of X is uncountable.

Lemma 2.8. Let X be a dendrite and c ∈ X. Then each component U of X\{c}
is open in X, and U = U ∪ {c}.

Now we give a proof of the following technical lemma.

Lemma 2.9. Let X be a dendrite and let f : X → X be a homeomorphism.
Suppose o is a fixed point of f , and let c1, c2 be cut points of X different from o.
Suppose that U is a component of X \{c1} not containing o, that V is a component
of X \ {c2} not containing o, and that f(c1) ∈ V . Then f(U) ⊂ V .

Proof. Assume to the contrary that there is some u ∈ U with f(u) /∈ V .
Since c2 is a cut point, f(c1) ∈ V , o /∈ V , and f(o) = o, we have c2 ∈ [f(o), f(c1)]
and c2 ∈ [f(u), f(c1)]. This implies that f−1(c2) ∈ [o, c1]∩[u, c1] = {c1} since o /∈ U .
Thus f(c1) = c2, which contradicts the assumption that f(c1) ∈ V . �
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If [a, b] is an arc in a dendrite X, denote by [a, b), (a, b], and (a, b) the sets [a, b]\
{b}, [a, b] \ {a}, and [a, b] \ {a, b}, respectively.

2.4. Equicontinuity. Let X be a compact metric space with metric d, and
let G be a group acting on X. Two points x, y ∈ X are said to be regionally
proximal if there are sequences (xi), (yi) in X and (gi) in G such that xi → x
and yi → y as i → ∞, and lim gixi = lim giyi = w for some w ∈ X. If x, y are
regionally proximal and x �= y, then {x, y} is said to be a non-trivial regionally
proximal pair. The action (X,G) is equicontinuous if, for every ε > 0, there is
a δ > 0 such that d(gx, gy) < ε for all g ∈ G whenever d(x, y) < δ.

The following lemma can be found in [1].

Lemma 2.10. Suppose (X,G) is a group action. Then (X,G) is equicontinuous
if and only if it contains no non-trivial regionally proximal pair.

3. Proof of the main theorem

In this section we are going to show our main result. Before doing this we state
two simple lemmas.

Lemma 3.1. Suppose a group G acts on the closed interval [0, 1]. If K ⊂ [0, 1]
is minimal, then K contains at most 2 points.

Proof. Let x = infK and y = supK. Then G preserves the set {x, y},
so K = {x, y} by the minimality of K. �

Lemma 3.2 (See [17]). Let G be an amenable group acting on a dendrite X.
Then there is a G-invariant set consisting of 1 or 2 points.

Now we are ready to prove the main result.

Proof of Theorem 1.1. We first show that (K,G) is equicontinuous.
Assume to the contrary that (K,G) is not equicontinuous. Then by Lemma

2.10, there are u �= v ∈ K such that u, v are regionally proximal; that is, there are
sequences (ui), (vi) in X and (gi) in G with

(3.1) ui → u, vi → v, lim gixi = lim giyi = w

as i→∞ for some w ∈ K.
By Lemma 3.2, there are o1, o2 ∈ X such that {o1, o2} is a G-invariant set.

Then [o1, o2] is G-invariant by the unique arcwise connectedness of X. From the
assumption, K is infinite so K ∩ [o1, o2] = ∅ by Lemma 3.1. Without loss of
generality, we may suppose that o1 = o2 and denote this common point by o;
otherwise, we need only collapse [o1, o2] to one point. Then o is a fixed point for
the action.

Case 1. [u, o] ∩ [v, o] = {o} (see Fig.1(1)). By Lemma 2.7, we can choose cut
points c1 ∈ (u, o) and c2 ∈ (v, o). Let Du be the component of X \ {c1}, which
contains u; let Dv be the component of X\{c2}, which contains v. From minimality
and Lemma 2.8, there is some g′ ∈ G with g′w ∈ Du. From (3.1) and Lemma 2.5,
we have

(3.2) ui ∈ Du, vi ∈ Dv and g′gi[ui, vi] ⊂ Du

for large enough i. Write g = g′gi. Then o ∈ [ui, vi] and g(o) ∈ Du. This is a
contradiction, since o is fixed by G.
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Case 2. [u, o] ∩ [v, o] = [z, o] for some z �= o.

Subcase 2.1. z = v (see Fig.1(2)). Then u �= z and z ∈ K. Take a cut point c1 ∈
(u, z) and let Du be the component of X \ {c1} which contains u. Then v /∈ Du,
and there is some g ∈ G with gz ∈ Du by the minimality of K. Take a cut
point c2 ∈ (z, o) which is sufficiently close to z to ensure that g(c2) ∈ Du. Let Dz

be the component ofX\{c2} which contains z. By Lemma 2.4, there is aG-invariant
Borel probability measure on K. Applying Lemma 2.9, we get g(Dz) ⊂ Du, which
contradicts Lemma 2.2, since z ∈ Dz \Du.

Subcase 2.2. z = u. In this case we can deduce a contradiction along the lines of
the argument in Subcase 2.1.

Subcase 2.3. z �= u and z �= v (see Fig.1(3)). Take a cut point c1 ∈ (u, z).
Let Du be the component of X \ {c1}, which contains u. Similar to the argument
in Case 1, there is some g ∈ G with g(z) ∈ Du. Take a cut point c2 ∈ (z, o) which
is sufficiently close to z to ensure that g(c2) ∈ Du. Let Dz be the component
of X \ {c2}, which contains z. Then g(Dz) ⊂ Du by Lemma 2.9. This contradicts
Lemma 2.2 since v ∈ Dz \Du.

Now we prove that if K is not finite, thenK is homeomorphic to the Cantor set.
If not, then there is some non-degenerate connected component Y of K. Clearly,
for any g, g′ ∈ G, either g(Y ) = g′(Y ) or g(Y ) ∩ g′(Y ) = ∅. This, together with
Lemma 2.6 and the equicontinuity of (K,G), implies that the subgroup H = {g ∈
G : g(Y ) = Y } has finite index in G. It follows that (Y,H) is minimal. This
contradicts Lemma 3.2 and Lemma 2.3, since Y is a non-degenerate dendrite. �

Fig. 1
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Abstract. The question we deal with here, which was presented to us by
Joe Auslander and Anima Nagar, is whether there is a nontrivial cascade
(X,T ) whose enveloping semigroup, as a dynamical system, is topologically
weakly mixing (WM). After an introductory section recalling some definitions
and classic results, we establish some necessary conditions for this to happen,
and in the final section we show, using Ratner’s theory, that the enveloping
semigroup of the ‘time one map’ of a classical horocycle flow is weakly mixing.

1. Introduction

A cascade is a homeomorphism T on a compact Hausdorff space X. We call the
system (X,T ) metric when X is metrizable. If A is a closed, invariant subset of X,
i.e. T (A) = A, then the restriction of T to A defines the subsystem on A. If (X1, T1)
is a cascade and π : X → X1 is a continuous surjection such that π ◦ T = T1 ◦ π
then π is a surjective cascade morphism and (X1, T1) is a factor of (X,T ).

For A,B ⊂ X we let N(A,B) = {i ∈ Z : A∩ T−i(B) �= ∅}. Here Z denotes the
set of integers and we use N for the set of non-negative integers. We write N(x,B)
for N({x}, B) when x ∈ X. The cascade is transitive when N(U, V ) is nonempty
for every pair of nonempty, open subsets U, V of X. We let O(x) = {Tnx : n ∈ Z}
denote the orbit of x. A point x is a transitive point when the orbit-closure O(x) =
X. When (X,T ) admits transitive points the system is called point transitive. A
point transitive system is transitive and the converse holds when the system is
metric. In a metric transitive system the set of transitive points forms a dense Gδ

set by the Baire Category Theorem . The system (X,T ) is called totally transitive
if for every 0 �= n ∈ Z the system (X,Tn) is transitive.

When the homeomorphism is understood, we will refer to the system X.
The system X is called minimal when every point of X is a transitive point, or,

equivalently, when X contains no proper, closed, invariant subset. A point x ∈ X
is called a minimal point, or an almost periodic point (hereafter abbreviated a.p.)

when the restriction of T to O(x) is minimal.
A subset of Z is called thick when it contains blocks of consecutive integers of

arbitrary length. It is called syndetic when it meets every thick subset. A point x
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is minimal if and only if N(x, U) is syndetic for every neighborhood U of x, see,
e.g. [Aus] Theorem 1.8.

An ambit (X, x0, T ) is a point transitive cascade (X,T ) with a chosen transitive
base point x0. If π : (X,T ) → (X1, T1) is a surjective cascade morphism and
(X, x0, T ) is an ambit then (X1, π(x0), T1) is an ambit factor.

The enveloping semigroup E(X,T ) (or simply E(X)) is the closure in XX of
the set {T i : i ∈ Z}. If T∗ denotes composition with T then (E(X), IdX,T∗) is an
ambit, where IdX = T0 is the identity map. If x ∈ X then the evaluation map
p → px, is a surjection of ambits evx : (E(X), IdX , T∗) → (O(x), x, T ) taking the
enveloping semigroup onto the orbit closure of x.

Proposition 1.1. For any non-empty index set I and the product system
(XI , T (I)) we can identify E(X) with E(XI) by mapping T i to (T (I))i. Hence, for

any k-tuple (x1, x2, . . . , xk) ∈ Xk the ambit O(x1, x2, . . . , xk) is a factor of E(X)
via evaluation at (x1, x2, . . . , xk), i.e. by p → (px1, px2, . . . , pxk) for p ∈ E(X). In
addition, E(X) can be expressed as the inverse limit of these factors.

Proof. The first two claims are easy to check. To prove the last one, observe
that (E(X), T∗) is the orbit closure (O(IdX), TX) in (XX , TX). Partially ordered
by inclusion, the collection of finite (unordered) subsets of X forms a directed set

with respect to which O(IdX) is the inverse limit lim← O(x1, x2, . . . , xk) via the
evaluation maps. �

If A is closed invariant subset of X then the restriction map E(X) → E(A)
is a surjective morphism. A surjective morphism π : (X,T ) → (X1, T1) induces a
surjective morphism π∗ : E(X,T )→ E(X1, T1) by mapping T i to T i

1.

2. Recurrence

For the system (X,T ) and the point x ∈ X the limit point sets α(x) and ω(x)
are the sets of limit points of the bi-infinite sequence {T i(x) : i ∈ Z} as i tends to
−∞ and +∞ respectively. Both α(x) and ω(x) are non-empty, closed, invariant
subsets. The orbit-closure of x consists of the orbit and α(x) ∪ ω(x).

For (E(X), T∗) we denote

Ad+(X) =
⋂

cls {Tn : n ≥ 1}, Ad−(X) =
⋂

cls {Tn : n ≤ −1}

and Ad(X) = Ad+(X) ∪ Ad−(X). Ad(X) is called the adherence semigroup of
(X,T ). It is a closed subsemigroup of E(X). Furthermore, evx(Ad−(X)) = α(x)
and evx(Ad+(X)) = ω(x).

A point x is called recurrent if x ∈ α(x)∪ω(x) and positive recurrent if x ∈ ω(x).
Thus, x is recurrent (or positive recurrent) if x = px for some p ∈ Ad(X) (resp. for
some p ∈ Ad+(X)).

A point is recurrent if and only if N(x, U) is infinite for every neighborhood
U of x and it is positive recurrent if for every such U , N(x, U) ∩ N is infinite. If
π : (X,T )→ (X1, T1) is a surjective morphism and x is a recurrent point in X then
π(x) is a recurrent point in X1.

Lemma 2.1. If (X,T ) is the inverse limit of a system {(Xi, Ti)} indexed by
the directed set I and with πi : X → Xi the corresponding projections, then x ∈ X
is recurrent (or positive recurrent) if and only if πi(x) is recurrent (resp. positive
recurrent) for every i ∈ I.
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Proof. If px = x for some p ∈ Ad(X) then pπi(x) = πi(px) = πi(x) for all i.
Conversely, if πi(x) is recurrent, then Ki = {p ∈ Ad(X) : pπi(x) = πi(x)} is a

closed, non-empty compact subset of Ad(X). Since I is directed, these sets form a
filterbase and so by compactness the intersection K is a nonempty subset of Ad(X)
which consists of the p ∈ Ad(X) such that px = x.

For positive recurrence apply the same argument using Ad+ instead. �

The system (X,T ) is called pointwise recurrent when every point of X is re-
current, i.e. x ∈ α(x) ∪ ω(x) for all x ∈ X. It is called pointwise forward recurrent
when x ∈ ω(x) for all x ∈ X.

It is clear that subsystems and factors of a system which is pointwise recurrent
or pointwise forward recurrent satisfy the corresponding property. By Lemma 2.1
these properties are preserved by inverse limits as well.

Lemma 2.2. If the product system X × X is pointwise recurrent then either
(X,T ) or (X,T−1) (or both) is pointwise forward recurrent.

Proof. If neither (X,T ) nor (X,T−1) is pointwise forward recurrent, then
there exist x, y ∈ X such that x /∈ ω(x) and y /∈ α(y). Since ω(x, y) ⊂ ω(x)× ω(y)
and similarly for α it follows that (x, y) /∈ α(x, y) ∪ ω(x, y). �

Definition 2.3. Given a cascade (X,T ), let A be an invariant subset of X.

(a) We say that A is an isolated invariant set if there is a closed subset U ⊂ X
containing A in its interior such that A is the maximum closed invariant
subset of U , i.e. if a closed invariant set B is contained in U then B ⊂ A;
or, equivalently if A =

⋂
n∈Z T

n(U). The set U is called an isolating
neighborhood for A.

(b) We will call A an attractor if there is a closed subset U ⊂ X containing
A in its interior such that A =

⋂
n∈N Tn(U).

Thus, an attractor is isolated and an isolated invariant set is closed.
The above is not the standard definition of an attractor but is equivalent to

it, see [Ak-93] Theorem 3.3(b). If A is an attractor for (X,T ) then there exists a
dual repeller R, i.e. an attractor for (X,T−1), disjoint from A and such that for all
x ∈ X \ (A ∪ R), ω(x) ⊂ A and α(x) ⊂ R. In particular, no point of X \ (A ∪ R)
is recurrent. See [Ak-93] Proposition 3.9. From this we prove the following result
from [Ak-96].

Theorem 2.4. If (X,T ) is pointwise forward recurrent and A is an isolated
invariant subset of X then A is clopen in X.

Proof. Let U be an isolating neighborhood for A. If x ∈
⋂

n∈N T−n(U) then
Tn(x) ∈ U for all n ∈ N. Since U is closed, ω(x) ⊂ U . Since ω(x) is invariant, it
is a subset of A. Because the system is pointwise forward recurrent, x ∈ ω(x) and
so x ∈ A. Thus, A =

⋂
n∈N T−n(U). Thus, A is an attractor for (X,T−1) with

dual repeller R. Since no point of X \ (A∪R) is recurrent, this set must be empty.
Thus, A = X \R is open. �

Examples 2.5. (a) Let L = IP{10t}∞t=1 ⊂ N be the IP-sequence generated by
the powers of ten, i.e.

L = {10a1 + 10a2 + · · ·+ 10ak : 1 ≤ a1 < a2 < · · · < ak}.
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Let f = 1L and let X = OT (f) ⊂ {0, 1}Z, where T is the shift on Ω = {0, 1}Z. It
is easy to check that X is a Cantor set with a single fixed point 0 and such that
every other orbit is dense, so that (X,T ) is pointwise recurrent. The fixed point 0
forms an isolated invariant set which is not clopen and it follows that neither (X,T )
nor (X,T−1) is pointwise forward recurrent, so (X × X,T × T ) is not pointwise
recurrent. In fact, the point f is clearly forward but not backward recurrent and
there are points in X which are backward but not forward recurrent. (See also
[DY] and [Ak-16, Theorem 4.16].)

(b) As was shown in [Ak-93, page 180] the stopped torus example (X,T ) is
a connected, topologically mixing, pointwise recurrent system, containing a unique
fixed point as its mincenter 1. Furthermore, the fixed point is a proper isolated
closed invariant subset. So again neither (X,T ) nor (X,T−1) is pointwise forward
recurrent.

(c) Let (X,T ) be an infinite subshift. Such a system is expansive which says
exactly that the diagonal ΔX is an isolated, invariant subset of X × X. Since X
is infinite, the diagonal is not clopen and so neither (X × X,T × T ) nor (X ×
X, (T × T )−1) is pointwise forward recurrent. Hence, the product system on X4

is not pointwise recurrent. On the other hand, if, for example, (X,T ) is minimal
then it and its inverse are pointwise forward recurrent.

(d) A minimal system (X,T ) is called doubly minimal if every point in

X ×X \
⋃
{(Id× T )nΔX : n ∈ Z}

has a dense orbit in X ×X. Such systems exist in abundance, and many of them
are also subshifts, hence expansive (see [W]). It follows directly from the definition
that if X is a doubly minimal subshift, then X ×X is pointwise recurrent. Thus
such a system (X,T ) has the property that X ×X is pointwise recurrent but as in
(a) neither the subshift (X × X,T × T ) nor its inverse can be pointwise forward
recurrent. Hence, X4 is not pointwise recurrent.

The system (X,T ) is called weakly rigid (see [GMa]) when IdX is a recurrent
point of E(X). That is, IdX ∈ Ad(X) and so either IdX ∈ Ad+(X) or IdX ∈
Ad−(X).

Theorem 2.6. For a cascade (X,T ) the following are equivalent.

(i) The system (X,T ) is weakly rigid.
(ii) E(X) = Ad(X).
(iii) The product system (XI , T (I)) is weakly rigid for every nonempty index

set I.
(iv) The product system (XI , T (I)) is pointwise recurrent for every nonempty

index set I.
(v) (E(X), T∗) is pointwise recurrent.

(vi) For any k-tuple (x1, x2, . . . , xk) ∈ Xk the subsystem O(x1, x2, . . . , xk) is
pointwise recurrent.

(vii) The collection {N(x, U) : x ∈ X,U an open set with x ∈ U} forms a filter
base.

Proof. (i) ⇔ (ii): As it is the orbit closure of IdX , E(X) is contained in the
closed, invariant set Ad(X) if and only if IdX ∈ Ad(X).

1The mincenter of a dynamical system is the closure of the union of its minimal subsystems.
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(i) ⇔ (iii): E(X,T ) ∼= E(XI , T I).
(i) ⇒ (vi): The evaluation map at (x1, . . . , xk) takes IdX to (x1, . . . , xk). Sim-

ilarly, (iii) ⇒ (iv).
(iv) ⇒ (v): E(X) is a subsystem of XX .
(v) ⇒ (i): Obvious.

(vi) ⇒ (v): E(X) is the inverse limit of the O(x1, x2, . . . , xk)’s.
(vi) ⇔ (vii): If Ui is an open set containing xi for i = 1, . . . , k, then

N((x1, . . . , xk), U1 × . . . Uk) =
⋂k

i=1 N(xi, Ui). �

It follows that weak rigidity is preserved by factors, subsystems and inverse
limits.

When IdX ∈ Ad+(X) then E(X) = Ad+(X) and every (XI , T (I)) is pointwise

forward recurrent. Conversely, if every O(x1, x2, . . . , xk) is pointwise forward recur-
rent then IdX ∈ Ad+(X). In particular, if X is weakly rigid then either (X,T ) or
(X,T−1) is pointwise forward recurrent.

Recall that x ∈ X is almost periodic, or a.p., when it has a minimal orbit
closure. We call the system (X,T ) pointwise almost periodic or pointwise a.p. when
every point x ∈ X is a.p. A point transitive, pointwise a.p. system is minimal.

We will call the system distal when (X×X,T ×T ) is pointwise a.p. Again this
is not the usual definition but the equivalence is described in [E, Theorem 1] (see
also [Aus] Theorem 5.6). Distality is preserved by factors, subsystems and inverse
limits. Using [E] Theorem 1 or [Aus] Theorem 5.6 and arguments similar to those
of Theorem 2.6 one can prove the following.

Theorem 2.7. For a cascade (X,T ) the following are equivalent.

(i) The system (X,T ) is distal.
(ii) (E(X), T∗) is a minimal system.
(iii) E(X) is a group.
(iv) The product system (XI , T (I)) is pointwise a.p. for every nonempty index

set I.
(v) For any k-tuple (x1, x2, . . . , xk) ∈ Xk the subsystem O(x1, x2, . . . , xk) is

pointwise a.p.
(vi) There exists a filter F of syndetic sets such that for every x ∈ X and open

subset U containing x, the return time set N(x, U) is an element of F.

Corollary 2.8. If system (X,T ) is distal, then it is weakly rigid. Moreover,
E(X) = Ad+(X) = Ad−(X).

Proof. Since E(X) is minimal, it is equal to each of the nonempty, closed
invariant subsets Ad+(X) and Ad−(X). In particular, IdX ∈ E(X) lies in Ad+(X)
and Ad−(X). �

The system X is weak mixing (hereafter WM) when the product system X×X
is transitive. The transitivity property is preserved by factors and inverse limits
and so the same is true for WM.

Recall that subset of Z is called thick when it contains runs of arbitrary length.
The following is a classic result of Furstenberg (see [F, Proposition II.3]).

Theorem 2.9. For a cascade (X,T ) the following are equivalent.

(i) The system (X,T ) is WM.
(ii) The product system (XI , T (I)) is WM for every nonempty index set I.
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(iii) For every pair U, V of nonempty open subsets of X, the visiting time set
N(U, V ) is thick.

(iv) The system (X,T ) is transitive and for every nonempty open subset U of
X, the return time set N(U,U) is thick.

(v) The collection {N(U, V ) : U, V non-empty open sets} forms a filter base.

Corollary 2.10. If a cascade (X,T ) is WM, then it it totally transitive.

Proof. Every N(U, V ) is thick and so meets kZ for any positive integer k. �

Corollary 2.11. Let (X,T ) be a nontrivial, WM system. Then every transi-
tive point in X is recurrent.

Proof. Let x ∈ X be a transitive point. If x is not recurrent, then it has
a neighborhood U such that N(x, U) is finite. As x is not recurrent, it is not
periodic and so we can remove a finite set to obtain a neighborhood U ′ such that
N(x, U ′) = {0}. As N(x, U ′ \ {x}) = ∅ and x is a transitive point it follows that
U ′ \ {x} = ∅. That is, the singleton set {x} is clopen. Now, in this case, the sets
U = {(x, x)} and V = {(x, Tx)} are clopen subsets of X ×X but there is no k ∈ Z
such that (T × T )kU ∩ V �= ∅. Thus, (X,T ) is not weak mixing. �

3. Some obstructions to WM of E(X,T )

Recall that an ambit (X, x0, T ) is an enveloping semigroup if and only if it
is point universal; i.e. it satisfies the following condition: For every x ∈ X there
is a (unique) homomorphism of ambits (X, x0, T ) → (X, x, T ) (see e.g. [GMe,
Proposition 2.6]).

We will say that X has a WM enveloping semigroup when the system
(E(X), T∗) is WM.

Call a subset F of Z diff-thick when the difference set {i− j : i, j ∈ F} is thick.

Theorem 3.1. For a cascade (X,T ) the following are equivalent.

(i) The system (X,T ) has a WM enveloping semigroup.

(ii) For any k-tuple (x1, x2, . . . , xk) ∈ Xk the ambit O(x1, x2, . . . , xk) is WM.
(iii) There exists a filter F of diff-thick sets such that for every x ∈ X and

open subset U containing x, the return time set N(x, U) is an element of
F.

Proof. (i)⇔ (ii): Each ambit O(x1, x2, . . . , xk) is a factor of E(X) and E(X)
is an inverse limit of these factors. WM is preserved by factors and inverse limits.

(iii) ⇒ (ii): If U1, U2 are open sets which meet O(z) with z = (x1, x2, . . . , xk)
then there exist i1, i2 ∈ Z such that (T (k))i1(z) ∈ U1, (T

(k))i2(z) ∈ U2. Let U =
(T (k))−i1(U1) ∩ (T (k))−i2(U2). Since F is a filter, N(z, U) ∈ F. If (T (k))k1(z),
(T (k))k2(z) ∈ U then k2 − k1 + (i2 − i1) ∈ N(U1, U2). Since N(z, U) is diff-thick

and the translate of a thick set is thick, N(U1, U2) is thick. Hence, O(z) is WM.
(ii) ⇒ (iii): If U� is a neighborhood of x� for � = 1, . . . , k and U = U1 ×

· · · × Uk then U is a neighborhood of z = (x1, x2, . . . , xk) and so N(U,U) is thick.
Furthermore, as above, N(U,U) = N(z, U)−N(z, U) and so N(z, U) is diff-thick.

Since N(z, U) =
⋂k

�=1 N(x�, U�), it follows that {N(x, V ) : x ∈ X,V open in X
with x ∈ V } generates a filter of diff-thick sets.

�
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Corollary 3.2. If system (X,T ) has a WM enveloping semigroup then it is
weakly rigid.

Proof. Corollary 2.11 and condition (ii) of Theorem 3.1 imply condition (vi)
of Theorem 2.6.

�

Theorem 3.3. Let (X,T ) be a transitive cascade.

(1) If (X,T ) is weakly rigid, or, more generally, if (X ×X,T × T ) is point-
wise recurrent, then X does not admit a proper isolated, closed, invariant
subset.

(2) If (X,T ) is weakly rigid and WM, then X is connected.

Proof. If (X,T ) is weakly rigid, then (X×X,T×T ) is pointwise recurrent. By
Lemma 2.2 either (X,T ) or (X,T−1) is pointwise forward recurrent. By Theorem
2.4 an isolated, closed, invariant proper subset would be clopen, contradicting the
transitivity of X.

Now suppose that X is not connected and so there exist U, V proper, disjoint
clopen sets with union X. Then W = (U ×U)∪ (V ×V ) is a proper, clopen subset
of X × X containing the diagonal ΔX = {(x, x) : x ∈ X}, which is a non-empty
invariant set. Hence, A =

⋂
n∈Z(T × T )n(W ) is a non-empty, closed, invariant set

since W is closed. Since W is open, it is an isolating neighborhood for A. If X were
WM then X ×X would be transitive and, being weakly rigid, X ×X ×X ×X is
pointwise recurrent and so X ×X can contain no such isolated invariant set. �

Corollary 3.4. Let (X,T ) be a transitive cascade.

(1) If X is not connected, then its enveloping semigroup E(X,T ), as a dy-
namical system, is not WM.

(2) If X admits a proper, isolated, closed, invariant subset, then its enveloping
semigroup E(X,T ), as a dynamical system, is not WM.

Proof. By Corollary 3.2, (X,T ) is weakly rigid and WM if E(X,T ) is WM.
Now apply Theorem 3.3. �

Remark 3.5. We will next give an alternative proof of the fact that a weakly
rigid WM system is necessarily connected; in fact we prove a slightly stronger result.

Theorem 3.6. A totally transitive, weakly rigid cascade (X,T ) is connected.

Proof. Assume to the contrary that X is not connected. We first note that
X̂, the canonically defined largest totally disconnected factor of X, is nontrivial,
and that E(X) → E(X̂). So we now assume that X is nontrivial and totally
disconnected. Such a system always admits a nontrivial symbolic factor X → Y
(i.e. Y ⊂ {0, 1}Z is a subshift), which by total transitivity is infinite. It then fol-
lows that there are four distinct points yi (i = 1, 2, 3, 4) such that y1 and y2 are
right asymptotic while y3 and y4 are left asymptotic (see [GH, Theorem 10.36],
the so called Schwartzman lemma). Now clearly any limit point of the orbit
{Tn(y1, y2, y3, y4) : n ∈ Z} has at most three distinct coordinates. In particu-
lar the point (y1, y2, y3, y4) is not recurrent. This implies that Y is not weakly
rigid, contradicting the fact that Y is a factor of X. (See also Proposition 6.7 in
[GMa].) �
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4. The horocycle flow

Theorem 4.1. The enveloping semigroup of a classical horocycle flow
(X, {Ut}t∈R), where G = PSL(2,R), Γ < G is a uniform lattice, X = G/Γ and
Ut(gΓ) = utgΓ = ( 1 t

0 1 ) gΓ, t ∈ R, g ∈ G, is WM. The same holds for the discrete
flow (X,U1).

Proof. Recall that E(X, {Ut}t∈R) is isomorphic, as a flow, to the infinite
pointed product of the family of pointed systems {(X, x) : x∈X}, i.e. E(X, {Ut}t∈R)

=
∨

x∈X(X, x) = {Utx : t ∈ R} ⊂ XX , where x ∈ XX is the identity map x(x) =
x, ∀x ∈ X. It follows that E(X, {Ut}t∈R) is the inverse limit of the family of finite
pointed systems

{X({x1, x2, . . . , xn}) = (X, x1) ∨ (X, x2) ∨ · · · ∨ (X, xn)},
where we range over the directed collection of, unordered, k-tuples {x1, x2, . . . , xn}
⊂ X. It therefore suffices to show that each X({x1, x2, . . . , xn}) is WM. The fact
that this is indeed the case is a direct corollary of Ratner’s theory, as follows:

By Ratner’s orbit closure theorem (see [R-91, Theorem A]) we have

X({x1, x2, . . . , xn}) = {UtX(x1, x2, . . . , xn) : t ∈ R} = H(x1, x2, . . . , xn),

where H < G × G × · · · × G (n times) is a closed connected subgroup of Gn

containing the subgroup {ut × ut× · · · × ut : t ∈ R} and there is a discrete uniform
lattice Λ < H so that X({x1, x2, . . . , xn}) = H(x1, x2, . . . , xn) ∼= H/Λ. By unique
ergodicity of (G/Γ, {Ut}t∈R), the Haar measure λ on H/Λ is an n-fold self-joining
of μ, the unique invariant probability measure on G/Γ. Now apply Ratner’s joining
theorem (see [R-83, Theorem 7, page 283]) to conclude that λ has the following
form: There is, for some q, 1 ≤ q ≤ n, a partition

Ij ⊂ I = {1, 2, . . . , n}, Ij = {i(j)1 , i
(j)
2 , . . . , i(j)nj

}, j = 1, . . . q,
q⋃

j=1

Ij = I,

and there are elements a
(j)
ik
∈ G, k = 1, . . . , nj , j = 1, . . . , q, with

Γ
(j)
0 =

nj⋂
k=1

a
(j)
ik

Γ(a
(j)
ik

)−1

uniform lattices, such that, each (XIj , λj , {Ut}t∈R) is isomorphic to the horocy-

cle flow on (G/Γ
(j)
0 , μ

(j)
0 , {Ut}t∈R), and λ =

∏q
j=1 λj . In particular then the mea-

sure preserving dynamical system (H/Λ, λ, {Ut}t∈R) is measure theoretically weakly
mixing, hence also topologically WM.

Finally, the same arguments will work for the discrete flow (X,U1). �
Example 4.2. The case where Γ is a nonarithmetic maximal uniform lattice

is special. We see that E(X, {Ut}t∈R) = E(G/Γ, {Ut}t∈R) ∼= X [X], as dynamical
systems, where [X] denotes the collection of {Ut}t∈R orbits in G/Γ. Note that both
the R-flow E(X, {Ut}t∈R) and the discrete system E(X,U1), have the property that
any point x ∈ X [X] whose coordinates have the property that no two of them belong
to the same {Ut}t∈R orbit, has a dense orbit in X [X]. Of course card ([X]) = c, the
cardinality of the continuum. Projecting on any set of four coordinates we obtain
a real flow with 4-fold minimal self joinings. The corresponding U1 cascade has
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the same property when we allow for off-diagonals resulting from the {Ut}t∈R flow.
This does not contradict the result of J. King [K, page 756], which says that there
is no infinite minimal cascade (X,T ) with 4-fold minimal self-joinings. The reason
is that here, as it turns out, the ‘future ε-bounded pair’ produced in Theorem 21
of [K], must lie on the same {Ut}t∈R orbit.

Remark 4.3. It is easy to see that if (X,T ) is a dynamical system whose

enveloping semigroup is WM then so is the associated system (X̂, T ) obtained from
X by collapsing its mincenter to a point (see e.g. the remark at the beginning of
Section 3). This leads us to the following:

Problem 4.4. Is there a nontrivial metric connected cascade (X,T ) with triv-
ial mincenter whose enveloping semigroup is WM ? Note that such a system is
necessarily both proximal and weakly rigid.
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The inhomogeneous Sprindžhuk conjecture
over a local field of positive characteristic

Arijit Ganguly and Anish Ghosh

Abstract. We prove a strengthened version of the inhomogeneous Sprindžhuk
conjecture in metric Diophantine approximation, over a local field of positive
characteristic. The main tool is the transference principle of Beresnevich and
Velani [8] coupled with earlier work of the second named author [22] who
proved the standard, i.e. homogeneous version.

1. Introduction

The context of this paper is the metric theory of Diophantine approximation
over local fields of positive characteristic. In [22], the second named author proved
the Sprindžhuk conjectures in this setting (in fact, also in multiplicative form),
here we prove the inhomogeneous variant of the conjecture. We use the inhomo-
geneous transference principle of Beresnevich and Velani [8] to transfer the ho-
mogeneous result from [22] and also use a positive characteristic version of the
transference principle of Bugeaud and Laurent interpolating between uniform and
standard Diophantine exponents, established recently by Bugeaud and Zhang [10].
The possibility of proving the S-arithmetic inhomogeneous Sprindžhuk conjectures
was suggested by Beresnevich and Velani ([8], §8.4) and the present paper realises
this expectation in another natural setting, that of local fields of positive charac-
teristic.

Metric Diophantine approximation on manifolds is a subject which studies the
extent to which typical Diophantine properties for Lebesgue measure on Rn are in-
herited by smooth submanifolds or other measures. The theory began with Mahler
[38] who conjectured that almost every point on the Veronese curve is not very
well approximable. Mahler’s conjecture was resolved by Sprindžhuk [42,43], who
in turn made a stronger conjecture which was resolved by Kleinbock and Mar-
gulis [33] using methods from the ergodic theory of group actions on homogeneous
spaces, specifically, sharp nondivergence estimates for unipotent flows on the space
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of lattices. Subsequently, an S-arithmetic version of the conjectures were estab-
lished by Kleinbock and Tomanov [35] and a positive characteristic version was
established by the second named author [22]. Both the latter works used adap-
tations of the dynamical approach of Kleinbock and Margulis. In [8], Beresnevich
and Velani proved a transference principle which allowed them to prove an inho-
mogeneous versions of the Baker-Sprindžhuk conjectures. We refer the reader to
the above papers for more details. We will recall all the relevant concepts in the
function field context in the next section.

Following the work of Beresnevich and Velani, there have been several recent
advances in inhomogeneous Diophantine approximation. In [6], an inhomogeneous
Khintchine type theorem was established for affine subspaces, complementing the
earlier work [3] for nondegenerate manifolds, see also [27] for more inhomogeneous
results on affine subspaces. Further, an S-arithmetic inhomogeneous Khintchine
type theorem for nondegenerate manifolds was established by Datta and the second
named author [12].

1.1. The setup. We follow our paper [17] in setting the notation. Let p be a
prime and q := pr, where r ∈ N, and consider the function field Fq(T ). We define
a function | · | : Fq(T ) −→ R≥0 as follows.

|0| := 0 and

∣∣∣∣PQ
∣∣∣∣ := edegP − degQ for all nonzero P,Q ∈ Fq[T ] .

Clearly | · | is a nontrivial, non-archimedian and discrete absolute value in Fq(T ).
This absolute value gives rise to a metric on Fq(T ).

The completion field of Fq(T ) is Fq((T
−1)), i.e. the field of Laurent series over

Fq. The absolute value of Fq((T
−1)), which we again denote by | · |, is given as

follows. Let a ∈ Fq((T
−1)). For a = 0, define |a| = 0. If a �= 0, then we can write

a =
∑
k≤k0

akT
k where k0 ∈ Z, ak ∈ Fq and ak0

�= 0 .

We define k0 as the degree of a, which will be denoted by deg a, and |a| := edeg a.
This clearly extends the absolute value | · | of Fq(T ) to Fq((T

−1)) and moreover, the
extension remains non-archimedian and discrete. Let Λ and F denote Fq[T ] and
Fq((T

−1)) respectively from now on. It is obvious that Λ is discrete in F . For any
d ∈ N, F d is throughout assumed to be equipped with the supremum norm which
is defined as follows

||x|| := max
1≤i≤n

|xi| for all x = (x1, x2, ..., xd) ∈ F d ,

and with the topology induced by this norm. Clearly Λn is discrete in Fn. Since
the topology on Fn considered here is the usual product topology on Fn, it follows
that Fn is locally compact as F is locally compact. Let λ be the Haar measure on
F d which takes the value 1 on the closed unit ball ||x|| = 1.

Diophantine approximation in the positive characteristic setting consists of ap-
proximating elements in F by ‘rational’ elements, i.e. those from Fq(T ). This
subject has been extensively studied, beginning with work of E. Artin [1] who
developed the theory of continued fractions, and continuing with Mahler who de-
veloped Minkowski’s geometry of numbers in function fields and Sprindžuk who, in
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addition to proving the analogue of Mahler’s conjectures, also proved some transfer-
ence principles in the function field setting (see [42]). The subject has also received
considerable attention of late, we refer the reader to [15,37] for overviews and to
[2,18,28,29,36] for a necessarily incomplete set of references.

In the present paper we prove an inhomogeneous analogue of the Sprindžuk
conjectures, our main result is an upper bound for inhomogeneous Diophantine
exponents.

Theorem 1.1. Let U ⊆ F d be open and f : U −→ Fn be a (C,α0)− good map,
for some C,α0 > 0, and assume that (f , λ) is nonplanar. Then, for every θ ∈ F ,
and λ almost every x ∈ U,

ω(f(x), θ) ≤ 1.

We also establish the corresponding lower bound.

Theorem 1.2. Let U ⊆ F d be open and f : U −→ Fn be a (C,α0)− good map,
for some C,α0 > 0, and assume that (f , λ) is nonplanar. Then, for every θ ∈ F ,
and λ almost every x ∈ U,

ω(f(x), θ) ≥ 1.

Remarks:

(1) Note that the exceptional set of x for which the inequalities in Theorems
1.1 and 1.2 need not hold depends on the inhomogeneous parameter θ.

(2) The relevant definitions are made in the next section. A main example to
keep in mind is the original setup of Diophantine approximation on man-
ifolds, i.e. if f = (f1, . . . , fn) where the fi’s are analytic and 1, f1, . . . , fn
are linearly independent over F , then f is (C,α) good for some C,α and
nonplanar. More generally, if f is a smooth nondegenerate map, then it
is (C,α)-good as well as nonplanar. The notions of (C,α) good functions
and nondegenerate maps were introduced by Kleinbock and Margulis [33].

(3) The homogeneous analogue of Theorem 1.1 was proved in [22] (Theorem
3.7), the lower bound is a consequence of Dirichlet’s theorem.

(4) In [3], and subsequently in [6] a more general problem is considered where
the inhomogeneous term is also allowed to vary. It should be possible to
incorporate this improvement into Theorem 1.1.

(5) The next five sections deal with the proof of the main theorem. Sections
2 and 3 give the necessary prerequisites, in section 4 the lower bounds for
Diophantine exponents are obtained and in section 6, the corresponding
upper bounds. The final section is devoted to open questions and future
possibilities for research.
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2. Homogeneous and Inhomogeneous Diophantine exponents

The theory of Diophantine approximation in positive characteristic begins with
Dirichlet’s theorem, which we now recall.

Theorem 2.1. (Theorem 2.1 [17]) Let m,n ∈ N, k = m+ n and

a+ := {t := (t1, t2, . . . , tk) ∈ Zk
+ :

m∑
i=1

ti =
n∑

j=1

tm+j} .

Consider m linear forms Y1, Y2, . . . , Ym over F in n variables. Then for any t ∈ a+,
there exist solutions q = (q1, q2, . . . , qn) ∈ Λn \ {0} and p = (p1, p2, . . . , pm) ∈ Λm

of the following system of inequalities

(2.1)

{
|Yiq− pi|<e−ti for i = 1, 2, . . . ,m
|qj | ≤ etm+j for j = 1, 2, . . . , n .

We will consider only unweighted Diophantine approximation in this paper, so
t1 = · · · = tm = 1/m and tn+1 = · · · = tn = 1/n. We denote by Mm×n(F ), the
vector space of m × n matrices with entries from F equipped with the supremum
norm. In view of Theorem 2.1, it is natural to define exponents of Diophantine
approximation as follows. Let X ∈ Mm×n(F ) and θ ∈ Fm. The inhomogeneous
exponent, ω(X, θ) of X, is the supremum of the real numbers ω for which, for
arbitrarily large T ∈ N, the inequalities

(2.2) ‖Xq− p− θ‖ < e−
n
mωT , ‖q‖ < eT ,

have a solution (p,q) ∈ Λm × (Λn \ {0}). The uniform inhomogeneous exponent,
ω̂(X, θ), is the supremum of the real numbers ω̂ for which, for all sufficiently T ∈ N,
the inequalities

‖Xq− p− θ‖ < e−
n
m ω̂T , ‖q‖ < eT ,

have a solution (p,q) ∈ Λm × (Λn \ {0}).

In this paper, we will adopt the point of view of Diophantine approximation
of single linear forms, i.e. we will assume that y ∈ Fn where Fn is identified with
M1×n(F ) as opposed to simultaneous Diophantine approximation where one con-
siders y ∈Mn×1.

If θ = 0, then the corresponding Diophantine exponent ω(y) := ω(y, 0) (resp.
ω̂(y)) is called the homogeneous Diophantine exponent. By Dirichlet’s theorem
stated above, ω(y) ≥ 1 for every y ∈ Fn. We are following the normalisation in
[8] rather than the one used in [22,33] according to which the critical exponent is n.

The Borel-Cantelli lemma implies that ω(y) = 1 for λ almost every y ∈ Fn.
It is therefore natural to define y ∈ Fn to be very well approximable if ω(y) > 1.
Sprindžhuk [43] proved that for λ a.e. x ∈ F ,

(2.3) f(x) := (x, x2, . . . , xn)

is not very well approximable, thereby settling the positive characteristic analogue
of Mahler’s conjecture. A special case of the theorems proved in this paper is that
for every θ ∈ F , ω(f(x), θ) = 1 for almost every x. Following [8] we may define
inhomogeneously extremal measures as follows.
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Definition 2.2. Let μ be a measure supported on a subset of Fn. We say
that μ is inhomogeneously extremal if for all θ ∈ F ,

ω(y, θ) = 1 for μ a.e. y ∈ Fn.

Then our main theorems can be restated as follows:

Theorem 2.3. Let U ⊆ F d be open and f : U −→ Fn be a (C,α0)-good map,
for some C,α0 > 0, and assume that f is nonplanar. Then f∗λ is inhomogeneously
extremal.

3. Good and nonplanar maps

We recall the following definitions and results from [35, §1 and 2]. For the sake
of generality, we assume X is a Besicovitch metric space, U ⊆ X is open, ν is a
Radon measure on X, (F , | · |) is a valued field and f : X −→ F is a given function
such that |f | is measurable. Recall that a metric space X is called Besicovitch [35]
if there exists a constant NX such that the following holds: for any bounded subset
A of X and for any family B of nonempty open balls in X such that

∀x ∈ A is a center of some ball of B,

there is a finite or countable subfamily {Bi} of B with

1A ≤
∑
i

1Bi
≤ NX .

For any B ⊆ X, we set

||f ||ν,B := sup
x∈B∩ supp (ν)

|f(x)|.

Definition 3.1. For C,α> 0, f is said to be (C,α)-good on U with respect to
ν if for every ball B ⊆ U with center in supp (ν), one has

ν({x ∈ B : |f(x)|<ε}) ≤ C

(
ε

||f ||ν,B

)α

ν(B) .

The following properties are immediate from Definition 3.1.

Lemma 3.2. Let X,U, ν,F , f, C, α, be as given above. Then one has

(1) f is (C,α)-good on U with respect to ν ⇐⇒ so is |f |.
(2) f is (C,α)-good on U with respect to ν =⇒ so is cf for all c ∈ F .
(3) ∀ i ∈ I, fi are (C,α)-good on U with respect to ν and supi∈I |fi| is mea-

surable =⇒ so is supi∈I |fi|.
(4) f is (C,α)-good on U with respect to ν and g : V → R is a continuous

function such that c1 ≤ | fg | ≤ c2 for some c1, c2 > 0 =⇒ g is (C( c2c1 )
α, α)-

good on U with respect to ν.
(5) Let C2 > 1 and α2 > 0. Then f is (C1, α1)-good on U with respect to ν

and C1 ≤ C2, α2 ≤ α1 =⇒ f is (C2, α2)− good on V with respect to ν.

We say a map f = (f1, f2, . . . , fn) from U to Fn, where n ∈ N, is (C,α)-good
on U with respect to ν, or simply (f , ν) is (C,α)-good on U , if every F-linear
combination of 1, f1, . . . , fn is (C,α)-good on U with respect to ν.
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Definition 3.3. Let f = (f1, f2, . . . , fn) be a map from U to Fn, where n ∈ N.
We say that (f , ν) is nonplanar at a given point x0 ∈ U if for any ball B with
centered at x0, the restrictions of the functions 1, f1, . . . , fn on B ∩ supp (ν) are
linearly independent over F . If (f , ν) is nonplanar at ν almost every point of U ,
then it is called nonplanar. We also simply say f is nonplanar when there is no
possibility of confusion.

A typical example is provided by f = (f1, f2, . . . , fn) where 1, f1, . . . , fn are
smooth and linearly independent on U . Such a map has been called nondegenerate
by Kleinbock and Margulis.

For m ∈ N and a ball B = B(x; r) ⊆ X, where x ∈ X and r > 0, we shall use
the notation 3mB to denote the ball B(x; 3mr). Finally, we will need the notion of
a doubling measure.

Definition 3.4. The measure ν is said to be doubling on U if there exists
D > 0 such that for every ball B with center in supp (ν) such that 2B ⊆ U , one
has

ν(2B)

ν(B)
≤ D .

4. Transference principles and lower bounds

The lower bound will follow immediately from two Diophantine transference
principles. The following result was proved by Bugeaud and Zhang [10] and consti-
tutes a positive characteristic version of the transference principle of Bugeaud and
Laurent [9].

Theorem 4.1. (Theorem 1.2, [10]) Let X ∈ Fm×n. Then for all θ ∈ Fm, we
have

(4.1) ω(X, θ) ≥ 1

ω̂(Xt)
and ω̂(X, θ) ≥ 1

ω(Xt)
.

with equalities for almost every θ.

We will also need a positive characteristic version of Dyson’s transference prin-
ciple [14] which can be formulated as follows.

Theorem 4.2. For y ∈ Fn,

ω(y) = 1 if and only if ω(ty) = 1.

We omit the short proof which can be obtained by a verbatim repetition of the
proof in [14], or the more recent, more general version proved in Theorem 1.7 in [11].

It is now easy to complete the proof of the lower bound Theorem 1.2.

Proof. Under the hypothesis of Theorem 1.2, using Theorem 3.7 of [22], we
have that for λ almost every x, ω(f(x)) = 1. Set y = f(x), then by Dyson’s
transference principle, ω(ty) = 1. By Dirichlet’s theorem, ω̂(y) ≥ 1 and the trivial
inequality

ω(y, θ) ≥ ω̂(y, θ) ≥ 0,

applied to ty and θ = 0 we get that ω(ty) = 1. Finally, by (4.1), we get that
ω(y, θ) ≥ 1 which completes the proof.

�
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5. The Transference principle of Beresnevich-Velani

In this section we state the inhomogeneous transference principle of Beresnevich
and Velani from [8, Section 5] which will allow us to convert our inhomogeneous
problem to the homogeneous one. Let (Ω, d) be a locally compact metric space.
Given two countable indexing setsA andT, let H and I be two maps fromT×A×R+

into the set of open subsets of Ω such that

(5.1) H : (t, α, ε) ∈ T×A× R+ → Ht(α, ε)

and

(5.2) I : (t, α, ε) ∈ T×A× R+ → It(α, ε).

Furthermore, let

(5.3) Ht(ε) :=
⋃
α∈A

Ht(α, ε) and It(ε) :=
⋃
α∈A

It(α, ε).

Let Ψ denote a set of functions ψ : T → R+ : t → ψt. For ψ ∈ Ψ, consider
the limsup sets

(5.4) ΛH(ψ) = lim sup
t∈T

Ht(ψt) and ΛI(ψ) = lim sup
t∈T

It(ψt).

The sets associated with the map H will be called homogeneous sets and those
associated with the map I, inhomogeneous sets. We now come to two important
properties connecting these notions.

The intersection property. The triple (H, I,Ψ) is said to satisfy the inter-
section property if, for any ψ ∈ Ψ, there exists ψ∗ ∈ Ψ such that, for all but finitely
many t ∈ T and all distinct α and α′ in A, we have that

(5.5) It(α, ψt) ∩ It(α
′, ψt) ⊂ Ht(ψ

∗
t ).

The contraction property. Let μ be a finite, non atomic, doubling measure
supported on a bounded subset S of Ω. We say that μ is contracting with respect
to (I,Ψ) if, for any ψ ∈ Ψ, there exists ψ+ ∈ Ψ and a sequence of positive numbers
{kt}t∈T satisfying

(5.6)
∑
t∈T

kt <∞,

such that, for all but finitely t ∈ T and all α ∈ A, there exists a collection Ct,α of
balls B centred at S satisfying the following conditions:

(5.7) S ∩ It(α, ψt) ⊂
⋃

B∈Ct,α

B

(5.8) S ∩
⋃

B∈Ct,α

B ⊂ It(α, ψ
+
t )



198 ARIJIT GANGULY AND ANISH GHOSH

and

(5.9) μ(5B ∩ It(α, ψt)) ≤ ktμ(5B).

We are now in a position to state Theorem 5 from [8].

Theorem 5.1. Suppose that (H, I,Ψ) satisfies the intersection property and
that μ is contracting with respect to (I,Ψ). Then

(5.10) μ(ΛH(ψ)) = 0 ∀ ψ ∈ Ψ⇒ μ(ΛI(ψ)) = 0 ∀ ψ ∈ Ψ.

6. Proof of Theorem 1.1

Fix θ ∈ F . It is enough to show that for any open ball V ⊆ U such that
5V ⊆ U , ω(f(x), θ) ≤ 1 for λ almost all x ∈ V. In fact, we prove

∀ ω > 1, λ({x ∈ V : ω(f(x), θ) > ω}) = 0.

For each (t, α = (p,q), ε) ∈ N× (Λ× Λn \ {0})× R+, we set

It(α, ε)
def
= {x ∈ V : |f(x) · q+ p+ θ| < ε, ||q|| ≤ et},

and

Ht(α, ε)
def
= {x ∈ V : |f(x) · q+ p| < ε, ||q|| ≤ et}.

Let Ψ denote the collection of functions ψω : N → R, t → 1
enωt , for ω > 1. We

denote the restriction of λ to V by μ and thus it is supported on V .

Since ∀ ω > 1, {x ∈ V : ω(f(x), θ) > ω}) ⊆ ΛI(ψω) so, it suffices to show that
λ(ΛI(ψω)) = 0 for any ω > 1. Theorem 3.7 in [22] implies that

∀ ω > 1, λ(ΛH(ψω)) = 0.

Therefore to prove Theorem 1.1, in view of the Theorem 5.1, we only need to
verify the intersection and contraction properties. These will be performed in the
following two subsections.

6.1. Verification of the intersection property. Let t ∈ N, α = (p,q), α′ =
(p′,q′) ∈ Λ × Λn \ {0} with α �= α′ and ω > 1. If at least one of ||q|| and ||q′||
is > et, then there is nothing to prove. Otherwise, the ultrametric property yields
that if x ∈ It(α, ψω(t)) ∩ It(α

′, ψω(t)) then
(6.1)
|f(x) · (q− q′) + (p− p′)| ≤ max{|f(x) · q+ p+ θ|, |f(x) · q′ + p′ + θ|} ≤ 1

enωt .

Note that if q = q′, then |p− p′| ≤ 1
enωt and so p = p′ which is impossible. Hence,

it follows from (6.1) that It(α, ψω(t)) ∩ It(α
′, ψω(t)) ⊆ Ht(α− α′, ψω(t)).

6.2. Verification of the contraction property. Fix α ∈ Λ×Λn \ {0}. We
observe that, for any t ∈ N, It(α, ψω(t)) ⊆ It(α, ψω+1

2
(t)) and

(6.2)

μ(It(α, ψω+1
2
(t))) ≤ μ

(
{x ∈ V : |f(x) · q+ p+ θ| < 1

e
ω+1
2 nt
}
)
* 1

e
ω+1
2 ntα0

μ(V ),

since f is (C,α0)-good on U . From the nonplanarity of f , we have

inf
α

sup
x∈U
|f(x) · q+ p+ θ| > 0.
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So the absolute constant appearing in the last inequality of (6.2) can be made
independent of α. Thus it turns out from (6.2) that, for all sufficiently large t,

(6.3) It(α, ψω+1
2
(t)) � V for all α.

For any t that satisfies (6.3) and all α, we now construct a collection of balls
Ct,α centered in V which makes (5.7)-(5.9) hold. If It(α, ψω(t)) = ∅ then we set
Ct,α as the empty collection and consequently, (5.7)-(5.9) become trivial. Suppose
It(α, ψω(t)) is nonempty. Let x ∈ It(α, ψω(t)). Since It(α, ψω+1

2
(t)) is open, there

exists a ball B′(x) with center x such that B′(x) ⊆ It(α, ψω+1
2
(t)). We can scale it

and denote it by B(x), due to (6.3), in such a way that

(6.4) B(x) ⊆ It(α, ψω+1
2
(t)) 	 V ∩ 5B(x).

It is also clear from the construction that 5B(x) ⊆ 5V ⊆ U . Consider

Ct,α
def
= {B(x) : x ∈ It(α, ψω(t))}.

The conditions (5.7) and (5.8) are obvious.

Define Fα : U −→ R, Fα(x) = |f(x) · q+ p+ θ|, ∀ x ∈ U and let B ∈ Ct,α. By
the last inequality given in (6.4), we see that

(6.5) sup
x∈5B

Fα(x) ≥ sup
x∈5B∩V

Fα(x) ≥
1

e
ω+1
2 nt

.

Furthermore, one has
(6.6)

sup
x∈5B∩It(α,ψω(t))

Fα(x) <
1

enωt
≤ 1

enωt
× e

ω+1
2 nt sup

x∈5B
Fα(x) =

1

e
w−1

2 nt
sup
x∈5B

Fα(x),

due to (6.5). Hence, from (6.6) and the assumption that f is (C,α0)-good on U , it
follows now that

(6.7)

μ(5B ∩ It(α, ψω(t))) = λ(5B ∩ It(α, ψω(t)))

≤ λ

(
{x ∈ 5B : Fα(x) <

1

e
w−1

2 nt
sup
x∈5B

Fα(x)}
)

≤ C

e
w−1

2 ntα0

λ(5B).

Since 5B ∩ V = V or 5B, accordingly as V ⊆ 5B or 5B ⊆ V , so we have μ(5B) =
λ(V ) or λ(5B). In the first case, we obtain λ(5B) ≤ λ(5V ) = 5nλ(V ) = 5nμ(5B),
and λ(5B) = μ(5B) in the later. Thus in either case, we see that λ(5B) ≤ 5nμ(5B).
In view of this and (6.7), the condition (5.9) of the contraction property is obvious
as soon as we set

kt
def
=

5nC

e
w−1

2 ntα0

, ∀ t+ 1.

7. Further directions

In this section, we mention some directions for future research.
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7.1. One vs almost every dichotomies. In [32], D. Kleinbock proved a re-
markable dichotomy for Diophantine exponents. A special case of his results implies
that if a connected analytic manifoldM⊂ Rn has one not very well approximable
point, then almost every point on M is not very well approximable. In [13], a
p-adic version of this result was obtained. It is natural to ask if inhomogeneous
analogues of Kleinbock’s results hold. In other words, we propose

Conjecture 7.1. Let M ⊂ Rn be a connected analytic manifold. Suppose
there exists x ∈M such that for every θ ∈ R,

(7.1) ω(x, θ) = 1.

ThenM is inhomogeneously extremal.

This conjecture can of course be formulated over any local field as well as in
the multiplicative setting. It should be noted that Kleinbock’s technique does not
seem to be directly applicable in the inhomogeneous setting.

7.2. Diophantine approximation on limit sets. Beginning with pioneer-
ing work of Patterson [39], the theory of metric Diophantine approximation in the
context of dense orbits of geometrically finite Kleinian groups has developed into a
full fledged theory. Recently, in [7], a theory of metric Diophantine approximation
on manifolds was developed in the context of Kleinian groups. Namely, questions
of inheritance of Diophantine properties for proper subsets of the limit set of a
Kleinian group were investigated. This theory has a natural counterpart in positive
characteristic; where one considers orbits of discrete subgroups of G(k) for algebraic
groups G defined over k on the boundary of the Bruhat-Tits building. It would be
interesting to obtain a “manifold” theory in this context analogous to [7].

7.3. Friendly and nonplanar measures and multiplicative Diophan-
tine approximation. It should be possible to extend our main Theorem to a
wider class of measures, namely strongly contracting measures as considered by
Beresnevich and Velani [8]. This class of measures includes friendly measures as
defined by Kleinbock, Lindenstrauss and Weiss [34]. Though we do not discuss this
here, in fact Theorems 1.1 and 1.2 should hold for a wider class of measures, the
so called strongly contracting measures as introduced by Beresnevich and Velani, a
category which includes the important class of friendly measures introduced earlier
by Kleinbock, Lindenstrauss and Weiss [34]. It should also be possible to extend the
main Theorem to the setting of multiplicative Diophantine approximation, thereby
obtaining an inhomogeneous analogue of Baker’s strong extremality conjecture.

7.4. Khintchine-Groshev type theorems. In [36], S. Kristensen proves an
asymptotic formula for the number of solutions to inhomogeneous Khintchine type
inequalities for matrices with entries in F , thereby obtaining an analogue of W.
Schmidt’s results [40,41] in the positive characteristic setting. While this general-
ity seems out of reach at present in the context of manifolds, it would be interesting
to prove a qualitative result, namely homogeneous and inhomogeneous Khintchine
type theorems for smooth manifolds in the positive characteristic setting. These
would constitute function field analogues of the work of Bernik, Kleinbock and
Margulis [5] who proved the convergence Khintchine theorem for smooth nondegen-
erate manifolds, and Beresnevich, Bernik, Kleinbock and Margulis [4] who proved
the divergence case. In the inhomogeneous case, the convergence and divergence
khintchine type theorems were proved by Badziahin, Beresnevich and Velani [3].
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7.5. Affine subspaces and their nondegenerate submanifolds. The re-
sults in the present paper have to do with nondegenerate manifolds. At the other
end of the spectrum lie affine subspaces, the study of whose Diophantine proper-
ties involves subtle considerations concerning the slope of the subspace. There has
been considerable work in this area recently, cf. [20,21,23–25,30,31]. We refer
the reader to [26] for a survey of this subject. It would be interesting to obtain
function field analogues of these results, both homogeneous and inhomogeneous.

References

[1] E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. I (German), Math. Z.
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Abstract. Local similarity between the Mandelbrot set and quadratic Julia

sets manifests itself in a variety of ways. We discuss a combinatorial one, in the
language of geodesic laminations. More precisely, we compare quadratic in-
variant laminations representing Julia sets with the so-called Quadratic Minor
Lamination (QML) representing a locally connected model of the Mandelbrot
set. Similarly to the construction of an invariant lamination by pullbacks of
certain leaves, we describe how QML can be generated by properly under-
stood pullbacks of certain minors. In particular, we show that the minors of
all non-renormalizable quadratic laminations can be obtained by taking limits
of “pullbacks” of minors from the main cardioid.

Introduction

Quadratic polynomials Pc(z) = z2 + c, where c ∈ C, play an important role
in complex dynamics. They provide a simple but highly non-trivial example of
polynomial dynamical systems (note that every quadratic polynomial is affinely
conjugate to one of the form Pc), and this family is universal in the sense that many
properties of the c-parameter plane reappear locally in almost any analytic family
of holomorphic maps [McM00]. The central object in the c-plane is theMandelbrot
setM2. By definition, c ∈M2 if the Julia set J(Pc) of Pc is connected, equivalently,
if the sequence of iterates Pn

c (c) does not escape to infinity (see [DH85]).
The Mandelbrot set is compact and connected. It is not known if it is locally

connected, but there is a nice modelMc
2, due to Douady, Hubbard and Thurston, of

M2 (i.e., there exists a continuous map π :M2 →Mc
2 such that point inverses are

connected); moreover, ifM2 is locally connected, π is a homeomorphism. Namely,
set D = {z ∈ C : |z| < 1} and S = {z ∈ C | |z| = 1}; call D the unit disk and S
the unit circle. There are pairwise disjoint chords (including degenerate chords, i.e.
singletons in S) or polygons inscribed in D = {z ∈ C : |z| � 1} such that, after
collapsing all these chords and polygons to points, we get a quotient space Mc

2.
We will write QML for the set consisting of all these chords and edges of all these
polygons. This set is called the quadratic minor lamination.
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More generally, a (geodesic) lamination is a set of chords (called leaves) in
D that contains all points of S such that the limit of any converging sequence of
leaves is a leaf. The lamination QML can be described explicitly. For example, one
can algorithmically generate countably many leaves dense in QML, and there are
several known constructions, e.g. [Lav86,Lav89] (other combinatorial viewpoints
onMc

2 and QML can be found in [BOPT16,Kel00,PR08,Sch09]). In this paper,
a new construction is provided that is based on taking preimages under the angle
doubling map. Each of the setsM2 andMc

2 contains countable and dense family of
homeomorphic copies of itself. Thus,M2 andMc

2 are examples of so-called fractal
sets.

Figure 1. The geolamination QML

A description of QML by Thurston [Thu85] refers to laminational models of
Julia sets. By the filled Julia set K(Pc) of a polynomial Pc we mean the set of
points z ∈ C with Pn

c (z) �→ ∞. The Julia set J(Pc) is the boundary of K(Pc). If
K(Pc) is locally connected, then it can be also obtained from D by collapsing leaves
and finite polygons of some lamination L(Pc).

Indeed, if K(Pc) is locally connected, the Riemann map defined for the com-
plement of K(Pc) can be extended onto S which gives rise to a continuous map
ψ : S → J(Pc) that semiconjugates the angle doubling map σ2 : S → S (taking
z ∈ S to z2) and Pc|J(Pc). Considering convex hulls of fibers (point-inverses) of
ψ and collecting boundary edges of these convex hulls, we obtain the lamination
L(Pc). Declaring points x, y of S equivalent if and only if ψ(x) = ψ(y) we arrive
at the invariant laminational equivalence ∼c and the associated quotient space J∼c

of S (the topological Julia set), homeomorphic to J(Pc). Equivalence classes of ∼c

have pairwise disjoint convex hulls. The topological polynomial f∼c
: J∼c

→ J∼c
,

induced by σ2, is topologically conjugate to Pc|J(Pc). Laminational equivalence
relations ∼ similar to ∼c can be introduced with no references to polynomials by
listing their properties similar to those of ∼c (this can be done for degrees higher
than 2 as well). In that case one also considers the collection L∼ of the edges of con-
vex hulls of all ∼-classes and all singletons in S called the q-lamination (generated
by ∼).

A lamination L∼c
thus obtained satisfies certain dynamical properties (in our

presentation we rely upon [BMOV13]). Below we think of σ2 applied to a chord
� with endpoints a and b so that it maps to the chord whose endpoints are σ2(a)
and σ2(b); we can think of this as an extension of σ2 over � and make it linear on
�. The properties are as follows:

(1) forward invariance: for every � ∈ L, we have σ2(�) ∈ L;
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(2) backward invariance: for every � ∈ L we have � = σ2(�1) for some
�1 ∈ L;

(3) sibling property: for every � ∈ L, we have −� ∈ L.

Here −� is the image of � under the map z → −z of S. (Under this map all angles are
incremented by 1

2 modulo 1). The leaf −� is called the sibling of �. A chord which is
a diameter of D is said to be critical. Laminations with properties (1)–(3) are called
quadratic invariant laminations. By [BMOV13] all quadratic q-laminations L∼
are invariant, however the converse is not true and there are quadratic invariant
laminations that are not q-laminations. Below we often call quadratic invariant
laminations simply quadratic laminations.

Properties (1) – (3) from above deal exclusively with leaves. To understand the
dynamics one also considers components of the complement in D to the union of all
leaves of L. More precisely, a gap of L is the closure of a component of D \

⋃
�∈L �.

Gaps G are said to be finite or infinite according to whether G ∩ S is a finite or
infinite set. By [BMOV13] if G is a gap of a quadratic lamination L, then either
all its edges map to one leaf of L, or all its edges map to a single point in S, or the
convex hull of the set σ2(G∩S) is a gap of L which one can view as the image of G.
Moreover, the map on the boundary of G satisfies gap invariance: either there
exists a critical edge of G, or the map τ = σ2|G∩S extends to S as an orientation
preserving covering map τ̂ such that G∩S is the full preimage of τ (G∩S) under τ̂ .
Gap invariance was part of the original definition of a (geodesic) lamination given
by Thurston in [Thu85]. It allows us to extend the map σ2 onto the entire D if a
quadratic lamination L is given. Indeed, we have already described how σ2 acts on
leaves; it can then be extended over gaps using the barycentric construction (see
[Thu85] for details).

Due to the backward invariance property, quadratic laminations can often be
generated by taking pullbacks of leaves. By a pullback of a leaf � ∈ L, we mean a
leaf �1 ∈ L such that σ2(�1) = �. An iterated pullback of � of level n is defined as
a leaf �n ∈ L with σn

2 (�n) = �. The concept of (iterated) pullback is widely used
in the study of (quadratic) invariant laminations. In this paper we show that it
can also be used as one studies parameter laminations, i.e., laminations which do
not satisfy conditions (1) — (3), such as QML. Let us now discuss QML in more
detail.

To measure arc lengths on S, we use the normalized Lebesgue measure (the
total length of S is 1). The length of a chord is by definition the length of the
shorter circle arc connecting its endpoints. Following Thurston, define a major
leaf (a major) of a quadratic lamination as a longest leaf of it. (There may be
one longest leaf that is critical or two longest leaves that are siblings.) The minor
leaf (the minor) of a lamination is the σ2-image of a major. If a minor m is non-
periodic, then there exists a unique maximal lamination with minor m denoted by
L(m). If a minor m is periodic and non-degenerate, then we define L(m) as the
unique q-lamination with minor m. Finally, if m is a periodic singleton, then we
explicitly define L(m) later in the paper so that m is the minor of L(m) (note,
that in this case the choice of L(m) is irrelevant for our purposes). Call L(m) the
minor leaf lamination associated with m. Observe that there are no minors that
are non-degenerate and have exactly one periodic endpoint.

A chord in D with endpoints a and b is denoted by ab. If two distinct chords
intersect in D, we say that they cross or that they are linked. Given a chord ab,
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without a lamination, we have ambiguity in defining pullbacks of ab. Namely, there
are two preimages of a and two preimages of b, and, in general, there are several
ways of connecting the preimages of a with the preimages of b. Even if we prohibit
crossings and impose the sibling property, then there are three ways (two ways of
connecting the preimages by two chords and one way of connecting them by four
chords). However, if we know that the pullbacks must belong to L(m), then they
are well defined. We can describe the process of taking pullbacks explicitly, without
referring to L(m). One of the main objectives of this paper is to apply a similar
pullback construction to QML.

Thurston’s definition of QML is simply the following: QML consists precisely
of the minors of all quadratic laminations. In particular, it is true (although not at
all obvious) that different minors do not cross.

Offsprings of a minor. In order to state the first main result, we introduce
some terminology and notation. The convex hull of a subset A ⊂ R2 = C will be
denoted by CH(A). Let � and �1 be chords of S, possibly degenerate, not passing
through the center of the disk. We will write H(�) for the smaller open circle arc
bounded by the endpoints of �. Set D(�) = CH(H(�)); since H(�) is an open arc,
D(�) does not include �. If �1 ∈ D(�), then we write �1 < �. The notation �1 � �

will mean �1 ⊂ D(�). Note that, if �1 shares just one endpoint with � and �1 � �,
then it is not true that �1 < �. It follows that if �1 � �, �1 �= � then |�1| < |�|, where
|�| denotes the length of �; in particular �1 < � implies |�1| < |�|. If �1 < � (resp.,
�1 � �), then we say that �1 lies strictly behind (resp., behind) �. Observe that our
terminology applies to degenerate chords (i.e., singletons in the unit circle) too; a
degenerate chord �1 = {b} is strictly behind � if and only if b ∈ H(�), and �1 � �

simply means that b ∈ H(�).
Let us now describe an inductive process that shows how dynamical pullbacks

of minors of quadratic laminations lead to the construction of the parametric lam-
ination QML. Namely, consider any non-degenerate minor m ∈ QML. Suppose
that a point a ∈ S lies behind m and σn

2 (a) is an endpoint of m for some minimal
n > 0. Observe that then a is not periodic as no image of a minor is located
behind this minor. Consider all numbers k such that σk

2 (a) is an endpoint of a
minor m′

k with a < m′
k � m (thus, a is separated from m by m′

k or m′
k = m), and

the least such number l. Denote by ma the pullback of m′
l in L(m′

l) containing a

such that σl−1
2 (ma) is a major of L(m′

l) and call it an offspring of m. We also say
that ma is a child of m′

l. Observe that periodic minors are nobody’s offsprings.
Indeed, if m′ � m′′,m′ �= m′′ are minors, σi

2(m
′) = m′′, and m′ is periodic, then

σj
2(m

′′) = m′ � m′′ for some j, and it is well-known that this is impossible for
minors.

Theorem A. Let m ∈ QML be a non-degenerate minor. Then offsprings of a
minor m ∈ QML are minors too (i.e., they are leaves of QML). Thus, if a point a
lies behind m and is eventually mapped to an endpoint of m under σ2 then there
is a minor ma & a that is eventually mapped to m under σ2.

The first claim of Theorem A easily implies the second one.

Renormalization and baby QMLs. The empty lamination is the lamination
all of whose leaves are degenerate (i.e., are singletons in S).
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Consider two quadratic laminations L1 and L2. If L2 ⊂ L1, then we say that
L1 tunes L2; in particular this means that any lamination trivially tunes itself. If
L2 � L1, then L1 is obtained out of L2 by inserting some chords (which become
leaves of L1) in gaps of L2. If in this setting L2 = L(m2) for a non-degenerate
periodic minor m2 (we do not exclude the possibility L2 = L1), then L1 is called
renormalizable. A lamination L1 is almost non-renormalizable if there exists no non-
empty lamination L(m2) � L1. We call L1 almost non-renormalizable because if
it is as above while also L1 = L(m1) with non-degenerate periodic minor m1 then,
as we saw above, L1 is renormalizable, but only in a trivial way. Observe that in
[BOT17] almost non-renormalizable laminations are called oldest ancestors.

Let m be a non-degenerate periodic minor. We will write C(m) for the central
set of L(m), i.e., the gap/leaf of L(m) containing the center of D and, therefore,
located between the two majors of L(m). Equivalently, C(m) can be called the
critical set of L(m). Then σ2(C(m)) is the convex hull of σ2(S ∩ C(m)). This is
also a gap or a leaf of L(m) having m as a boundary leaf (edge). We will see that,
if L(m1) is renormalizable, then m1 is contained in σ2(C(m)) for some m as above.
Moreover, we can choose m so that L(m) is almost non-renormalizable.

All edges (i.e., boundary chords) of σ2(C(m)) are leaves of QML. However,
there are also leaves of QML in σ2(C(m)) that enter the interior of σ2(C(m)). All
these leaves are precisely the minors of all laminations strictly containing L(m).
It follows that all renormalizable laminations are represented by minors in gaps
of the form σ2(C(m)), where m is periodic and such that L(m) is almost non-
renormalizable. In other words, all minors of almost non-renormalizable laminations
and all points in S form a lamination QMLnr (“nr” from non-renormalizable) whose
infinite gaps are a special gap CAc and gaps of the form σ2(C(m)), where m is a
minor such that L(m) is almost non-renormalizable. (There are also finite gaps of
QMLnr; each such gap is a gap of QML too, associated to a non-renormalizable
lamination.) Observe that for any periodic minor m the edges of the set σ2(C(m))
are leaves of QML (they are minors of laminations that tune L(m)). The gap
CAc, the combinatorial main cardioid, is the central gap of QMLnr (and of QML
itself). By definition, it is bounded by all periodic minors m, for which L(m) has
an invariant finite gap adjacent to m, or m is an invariant leaf of L(m). There
are no leaves of QML in CAc, except for the edges of CAc. The lamination QMLnr

was introduced in [BOT17].
Consider a gap σ2(C(m)) of QMLnr, where m is a non-degenerate periodic mi-

nor (then L(m) is almost non-renormalizable). Observe that σ2(C(m)) is invariant
under σp

2 , where p is the (minimal) period of m. There is a monotone map ξm
from the boundary of σ2(C(m)) to S that collapses all edges of σ2(C(m)). We may
also arrange that ξm semi-conjugates σp

2 restricted to the boundary of σ2(C(m))
with σ2. Under ξm, any leaf ab ∈ QML lying in σ2(C(m)) is mapped to a leaf
ξm(ab) = ξm(a)ξm(b) of QML. In this sense, we say that leaves of QML lying in
σ2(C(m)) form a baby QML. Thus, QML admits the following self-similar descrip-
tion: the lamination QML is the union of QMLnr and all baby QMLs inserted in
infinite gaps of the form σ2(C(m)).

To complete this self-similar description we suggest an explicit construction for
QMLnr in terms of offsprings.

Theorem B. The lamination QMLnr is obtained as the set of all offsprings of
the edges m ⊂ CAc and the limits of such offsprings.
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Theorem B parallels the encoding of the Mandelbrot set in terms of “the Yoccoz
combinatorial analytic invariants” introduced by C. Petersen and P. Roesch in
[PR08], more specifically see Corollary 3.23 from [PR08] (we are indebted to one
of the referees for this remark).

Dynamical generation of the QML. Theorem B is the basis for a dynamical
generation of the QML. The construction consists of three steps repeated countably
many times, and then one final step.

Step 1. First, we construct all edges of the combinatorial main cardioid. The
endpoints of these edges can be computed explicitly.

Step 2. For every edge m of the CAc, we construct all offsprings of m. As
follows from Theorem B, taking offsprings is as easy as taking pullbacks of a leaf
in an invariant lamination.

Step 3. Take the limits of all offsprings from step 2. We obtain a lamination
behind m with gaps of the form σ2(C(m1)), where m1 is a periodic minor behind
m such that L(m1) is almost non-renormalizable. Drawing these laminations for
all edges of CAc gives the lamination QMLnr.

Step 4. In each gap of the form σ2(C(m1)) as above, construct chords whose
ξm1

-images are leaves constructed at steps 1–3. In other words, we repeat our con-
struction for each baby QML, and then keep repeating it countably many times.
Let us denote the thus obtained family of leaves of QML by QMLfr. By [BOT17],

QMLfr includes all minors of so-called finitely renormalizable quadratic lamina-
tions (“fr” comes from “finitely renormalizable”) so that the only minors that are
missing are the ones that correspond to infinitely renormalizable laminations, i.e.
laminations L for which there exists a nested infinite sequence of pairwise distinct
laminations L1 ⊂ L2 ⊂ . . . such that Ln ⊂ L for any n.

Step 5. To get the missing minors we now take the limits of leaves of QMLfr.
Notice that, by [BOT17], these limit minors are, for the most part, degenerate
(i.e., they are singletons in S). The limit minors that are non-degenerate are ex-
actly those that correspond to the quadratic laminations L(m) that are infinitely
renormalizable with the following additional property: L(m) coincides with a q-
lamination L∼m

associated to a laminational equivalence ∼m such that the cor-
responding topological polynomial contains a periodic arc in its topological Julia
set.

Possible applications to other parameter slices. The problem of con-
structing models of the entire connectedness locus in degrees greater than 2 seems
to be rather complicated. Even in degree three there are no known “global” mod-
els of this space. In this brief discussion we will, therefore, talk about complex
one dimensional slices of parameter spaces of higher degree polynomials; moreover,
for the sake of simplicity we will only deal with the cubic case. Finally, for the
sake of brevity we assume familiarity with basic concepts of combinatorial complex
dynamics.

One of the main goals of this paper is to develop tools and techniques that can
be used to construct combinatorial models for complex one dimensional slices of
parameter spaces of cubic polynomials. Indeed, by C. McMullen [McM00], slices
of the cubic connectedness locus contain lots of copies ofM2 to which our results
apply directly (in fact, the article [McM00] contains much more general results).



DYNAMICAL GENERATION OF PARAMETER LAMINATIONS 211

However otherwise the situation is not as simple. A lot of results show that in
the cubic case various parameter slices are not locally connected. Lavaurs [Lav89]
proved that the cubic connectedness locus itself is not locally connected. Epstein
and Yampolsky [EY99] showed that the bifurcation locus in the space of real cubic
polynomials is not locally connected either. Buff and Henriksen [BH01] presented
copies of quadratic Julia sets, including not locally connected Julia sets, in slices of
M3. These are complications of analytic and topological nature.

There are also combinatorial hurdles that need to be overcome. To begin with,
Thurston’s Central Strip Lemma 1.4 fails already in the cubic case; e.g., if a cubic
lamination admits a critical quadrilateral Q associated with the critical strip S, and
a critical leaf �, then the forward orbit of Q may come close to � and then enter S,
a dynamical phenomenon impossible in the quadratic case because of the Central
Strip Lemma. In addition, Thurston’s No Wandering Triangle Theorem (Theorem
1.11) also fails in the cubic case [BO04,BO08]. This complicates both the task
of constructing a combinatorial model of slices of cubic polynomial spaces and the
task of applying the idea of the present paper to such slices even assuming that the
laminational model for (some) slices have been constructed.

In fact, we are not aware of many combinatorial models of such spaces (even
though we believe that a lot of them admit combinatorial models in terms of lami-
nations). An example one might consider is given in the paper [BOPT16c] which
we now discuss. Consider the tripling map σ3 : S→ S and fix a critical leaf D of σ3.
Moreover, choose D so that it cannot be a boundary leaf of a periodic Siegel gap.
Then consider the space of all cubic laminational equivalence relations ∼ which
have a critical class containing the endpoints of D (e.g., the endpoints of D may
well be a class of this equivalence relation). Observe that in this case the class
containing the endpoints of D must be finite.

To each such equivalence relation ∼ we associate its minor set m∼ defined as
follows. First, if there is a unique critical set (class) of ∼, then m∼ is the convex
hull of its image. Second, if there are two ∼-classes and both are finite, then we
choose the one not containing the endpoints of D and set m∼ to be the convex hull
of the image of this ∼-class. Finally, consider the remaining case which is as follows:
∼ has a unique periodic critical Fatou gap of period k such that σk

3 : U → σ3(U)
is two-to-one. Evidently, this implies that σk

3 : U → U is two-to-one. We show in
[BOPT16c] that there is a unique edge M∼ of U of period k. In this case we set
m∼ = σ3(M∼).

One of the main results of [BOPT16c] is that the minor sets m∼ can be viewed
as tags of their laminational equivalence relations ∼D (so that the space of all such
laminational equivalence relations is similar to M2) while the collection of their
convex hulls will give rise to a lamination LD. The corresponding space of all cubic
laminations that admit critical leaf D is S/ ∼D. We hope that the ideas and results
of this paper can be properly adjusted to lead to a more explicit description of the
structure of S/ ∼D at least for some critical leaves D. A likely candidate for that is

the critical leaf D = 1
3
2
3 , first preimage of a σ3-fixed angle 0. This is based upon the

fact that if D = 1
3
2
3 , then we can prove the Central Strip Lemma for all laminations

admitting D, and this allows us to apply similar arguments to the present paper, in
particular concerning pulling back the minors and thus constructing new minors.

In general, the plan can be as follows. Consider a parameter slice and assume
that its combinatorial model exists. This model will be a lamination L in D. In
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order to construct L, we will apply a similar procedure to the one described above
for QML. Steps 1–3 will be replaced with similar steps. However, step 4 will
operate with genuine baby QMLs rather than copies of L. Thus, the lamination L
will consist of a sublamination Lnr in whose infinite gaps we insert copies of QML
rather then copies of Lnr itself.

Evidently, a lot of details in the actual implementation of the outlined approach
will be very different from what is done in the current paper. There are also com-
plications related to the fact that some quadratic techniques fail for higher-degree
polynomials. Instead of Thurston’s technique based on the Central Strip Lemma,
we will have to rely on methods developed in [BOPT16c] or, more generally, in
[BOPT17]. However, even in the simplest cases of cubic parameter laminations, a
complete implementation of this program will require at least as much space as this
paper. Thus we postpone the details to future publications. Still, we believe that
the sketched technique should (hopefully!) work for some (but not all) complex one
dimensional slices.

To summarize, we think that while our dynamical approach to the construction
of the Mandelbrot set is quite consistent with the more static viewpoints of Thurston
[Thu85], Keller [Kel00], Lavaurs [Lav86,Lav89], and Schleicher [Sch09], it is
based upon a familiar pullback construction which has its own advantages, in par-
ticular making it more accessible to those familiar with that dynamically-based
process.

1. Majors and minors

In this section, we recall fundamental properties of quadratic laminations. Since
all statements here can be traced back to [Thu85], we skip references to this seminal
paper of Thurston until the end of the section (see also [Sch09] and [BOPT16]
where some of these results are more fleshed out). The exposition is adapted to
our purposes, and some facts are stated in a different but equivalent form (see
[BMOV13] for an extension of this approach to higher degree laminations). Some
proofs are omitted.

1.1. Notation and terminology. As usual, C is the plane of complex num-
bers identified with the real 2-dimensional vector space R2. For any subset A ⊂ C,
we let A denote its closure. For any set G ⊂ D of the form G = CH(G ∩ S), we let
σ2(G) denote the set CH(σ2(G ∩ S)). Chords of S on the boundary of G are called
edges of G. A chord of S with endpoints a, b ∈ S is denoted by ab. If a = b, then
the chord is said to be degenerate, otherwise it is said to be non-degenerate.

We will identify R/Z with S by means of the map θ ∈ R/Z → θ = e2πiθ.
Elements of R/Z are called angles. The point θ will be sometimes referred to as

the point in S of angle θ. For example 0 and 1
2 are the only points of S lying on

the real axis, and 0 1
2 is the corresponding diameter. In order to avoid confusion,

we will always write 0, 1
2 ,

1
4 rather than 1, −1, i, etc.

Let M be a chord of the unit circle. We will write −M for the chord obtained
from M by a half-turn, i.e., by the involution z → −z. Let S be the (closed) strip
between M and −M . Define the map ψ : [0, 1

2 ]→ [0, 1
2 ] by ψ(x) = 2x if 0 � x � 1

4

and ψ(x) = 1− 2x if 1
4 � x � 1

2 ; the fixed points of ψ are 0 and 1
3 . Then it is easy

to see that given a chord �, we have |σ2(�)| = ψ(|�|). The dynamics of ψ shows that
for any non-degenerate chord � there exists n � 0 such that |σn

2 (�)| � 1
3 . Hence
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if ±M are the majors of a lamination then |M | � 1
3 and |σ2(M)| � 1

3 . Suppose

that |M | � 1
3 and that m = σ2(M) is disjoint from the interior of S. Then the

chords ±M and the strip S are uniquely determined by m. Under the assumptions
just made, we call m minor-like, set S = S(m), and call it the central strip of m.
Observe that ifm is degenerate, then S(m) = M = −M is a diameter, in particular,
it has no interior. We will write Q(m) for the quadrilateral CH(M ∪ (−M)).

Lemma 1.1. Suppose that � = ab, a �= b is a leaf of a lamination L such that
|�| � 1

3 and 0 /∈ H(�). Then � is minor-like. In particular if m is a minor and
� � m, then � is minor-like.

Proof. Either two or all four edges of Q(�) are leaves of L. If only one vertex
of Q(�) belongs to H(�), then at least one edge of Q(�) belongs to L and crosses �,
a contradiction. Hence either two preimages a′, b′ of points a and b, respectively,
belong to H(�), or none. Set �′ = a′b′; then σ2(�

′) = �. Suppose that �′ �= �;

then |�′| < |�|. If σ2(H(�′)) is S \ H(�) then the fact that |�| � 1
3 implies that

|S \ H(�)| � 2
3 and hence |H(�′)| � 1

3 , a contradiction with |�′| < |�| � 1
3 . Hence

σ2(H(�′)) = H(�) and |�′| � 1
6 . Moreover, the restriction of σ2 to H(�′) is one-to-

one and expanding. It follows that σ2 has a fixed point in H(�′). The only fixed

point of σ2 is 0, hence we have 0 ∈ H(�′), a contradiction. Thus, either �′ = � or

Q(�) ∩ H(�) = ∅ (evidently, all vertices of Q(�) cannot belong to H(�)). In the

former case it follows that � = 1
3
2
3 is a minor, in the latter case � is minor-like

by definition. For the last claim of the lemma, note that if m is a minor, then
0 /∈ H(m). �

A critical chord is a diameter of S. The endpoints of a critical chord are mapped
under σ2 to the same point of S. A set G ⊂ D of the form G = CH(G ∩ S) is said
to be semi-critical if G contains a critical chord. Equivalently, a semi-critical set
contains the center of the disk.

1.2. The Central Strip Lemma. A chord of S is said to be vertical if it

separates 0 from 1
2 , and horizontal otherwise. The distinction between the two

types of chords is important for quadratic laminations.

Lemma 1.2. Let m be a minor-like chord. Then σ2(S(m) ∩ S) = H(m).

Proof. The set S(m) ∩ S consists of two arcs, each of length � 1
6 . Both arcs

map to the same arc A of length � 1
3 < 1

2 . On the other hand, A is bounded by

the endpoints of m, hence A = H(m). �

Lemma 1.3. Let m be a non-degenerate minor-like chord. Then S(m) is bound-
ed by vertical chords.

The only degenerate minor-like chord for which the statement fails, is 0.

Proof. Assume that the edges ±M of S(m) are horizontal. Then 0 1
2 ⊂ S(m),

hence, 0 ∈ H(m) by Lemma 1.2. Thus 0 belongs to both S(m) and D(m). On the
other hand, by definition of minor-like chords, these two sets cannot have common
interior points. It follows that 0 is an endpoint of m. Let α be the other endpoint.
Then α

2 ∈ H(m) ∩ S(m), a contradiction. �
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Let us make the following observations.

(a) If � is a chord of S such that |�| � 1
4 , then |σ2(�)| = 2|�|; otherwise

|σ2(�)| = 1− 2|�|.
(b) We have |σ2(�)| > |�| if and only if |�| < 1

3 .
(c) If � is disjoint from the edges ±M of S(m) and |�| > |M |, then � is a

vertical chord in S(m) (here m = σ2(M) is minor-like).
(d) Any non-degenerate chord eventually maps to a chord of length � 1

3 .

Lemma 1.4 (The Central Strip Lemma). Let m be a minor-like chord. Suppose
that the chords σn

2 (m) do not cross any edge of S(m) for any n > 0.

(1) If |σn
2 (m)| < |m| for a minimal n > 0, then σn−1

2 (m) is a vertical chord
in S(m) distinct from either edge of S(m), and σn

2 (m) � m;
(2) if σn

2 (m) ⊂ S(m) for some n > 0, and n is the smallest positive integer
with this property, then the chord σn

2 (m) is vertical.

Proof. We will write ±M for the edges of S(m). To prove (1), observe that
|σn−1

2 (m)| > |M | which implies that σn−1
2 (m) ⊂ S(m) is a vertical chord. Observe

now that (2) follows from (1) since if σn
2 (m) ⊂ S(m) is horizontal, then |σn

2 (m)| �
|m|/2. �

1.3. Minor leaf laminations. By definition, the Central Strip Lemma, and
by observations (a) – (d), a minor m has the following properties:

(SA1) it is minor-like;
(SA2) all σn

2 (m), where n � 0, are pairwise unlinked and do not cross any edges
of S(m);

(SA3) for any n > 0 we have |σn
2 (m)| � |m|;

(SA4) if σn
2 (m) � m for some n > 0, then σn

2 (m) = m (thus, images of m are
disjoint from D(m) ∪ S(m) \ (M ∪ −M)).

For brevity, in what follows we will refer to these properties simply as SA1,
SA2, SA3 and SA4. Clearly, SA3 always implies SA4. Moreover, by the Central
Strip Lemma, if SA1 and SA2 hold for a chord m, then SA3 and SA4 for this chord
are equivalent.

Definition 1.5 (Stand Alone Minor). A chord m is called a stand alone minor
if properties SA1–SA3 hold. (Then automatically SA4 also holds).

Note that all points of S are stand alone minors. Any stand alone minor is the
minor of a certain quadratic lamination. Any such lamination can be constructed
by “pulling back” the minor and all its images. Such pullbacks are mostly unique
but, if m is periodic, allow for small variations.

In this paper we establish dynamical conditions that imply that certain leaves
of a lamination L with minor m are minors themselves. We do this by verifying for
them that they are stand alone minors. This requires checking for them conditions
SA1 – SA3. It turns out that depending on the location of � with respect to m
or the length of � with respect to the length of m some of these conditions easily
follow.
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Lemma 1.6. Let � be a leaf of a lamination L with minor m. Then the following
holds.

(1) Choose the least i � 0 with |σi
2(�)| � |m|. Then |σj

2(�)| � |m| for any
j � i. Thus, if |�| � |m| then |�| � |σ2(�)| � . . . � |σi

2(�)| so that property
SA3 holds for �. In particular, σt

2(m) � m,σt
2(m) �= m is impossible.

(2) If m � �, then no eventual image of � crosses the edges of S(�) so that
property SA2 holds for �.

Proof. (1) By assumption, |σi
2(�)| � |m|. If |σj

2(�)| < |m| for some j � i, then,

by the Central Strip Lemma, for some k the leaf σk
2 (�) is vertical inside S(m), a

contradiction with the vertical pullbacks ±M of m being the majors of L. Observe
that |m| � 1

3 as was explained in the paragraph right before Lemma 1.1. Hence

for each r, 0 � r � i − 1 we have |σr
2(�)| � |m| � 1

3 which easily implies that

|σr
2(�)| � |σr+1

2 (�)|, r = 0, . . . , i− 1.
(2) Since the horizontal pullbacks of � cross the vertical edges of S(m), which

are leaves of L, the vertical pullbacks ±L of � (which are the edges of S(�)) must be
leaves of L. Hence eventual images of � do not cross an edge of S(�), as desired. �

A few well-known results concerning quadratic laminations with a given minor
m are summarized in Theorem 1.7; these results can be found in [Thu85], or can
be easily deduced from [Thu85].

Theorem 1.7. If m is a stand alone minor, then there exists a quadratic lam-
ination L with minor m. Depending on m, the following holds.

(1) If m is non-periodic, then either
(a) a quadratic lamination L with minor m is unique, or
(b) if in addition m is non-degenerate, then there are at most two qua-

dratic laminations L̂ ⊂ L with minor m one of which must be a

q-lamination L̂ with finite gaps.
(2) If m is periodic and non-degenerate, then there exists a unique q-lamina-

tion L such that m is its minor.
(3) If m is periodic and degenerate, then there are at most four quadratic

laminations with m as a minor, and there exists a unique q-lamination L̂
whose periodic minor m̂ has m as an endpoint. Moreover, if m �= 0 then
m̂ is non-degenerate.

In any case, there exists a unique q-lamination L̂(m) such that, if m is not a

periodic point, then any lamination with minor m contains L̂(m); moreover, if m is

non-degenerate and non-periodic, then all leaves of L̂(m) are non-isolated in L̂(m)

and all gaps of L̂(m) are finite. In case (1)(b), any leaf of L \ L̂(m) is eventually
mapped to vertical edges of Q(m).

We can now define a specific lamination L(m) with minor m.

Definition 1.8. If m is a non-periodic or non-degenerate stand alone minor,
define L(m) as one of the laminations from Theorem 1.7 as follows: in case (1)(a)
the lamination L(m) is the unique quadratic lamination with minor m; in case
(1)(b), the lamination L(m) is the bigger of the two laminations with minor m; in
case (2) it is the unique q-lamination with minor m. In any case the central set of

L(m) is denoted by C(m). Finally, the q-lamination L̂ from Theorem 1.7 will be

denoted by L̂(m) and will be called the q-lamination associated with m.
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This defines L(m) except for the case when m is a periodic singleton (which
will be done later). By definition, m is the minor of L(m). Observe that the central
set C(m) of a lamination L(m) is either a critical leaf (a diameter), a collapsing
quadrilateral, or an infinite periodic quadratic gap.

In the sequel, by a minor we mean a stand alone minor or, which is the same
by Theorem 1.7, the minor of some (not specified) quadratic lamination. Minors
are also identical to leaves of the QML. The lamination L(m) is called the minor
leaf lamination associated with a minor m. In order to construct L(m), we will
describe the process of taking pullbacks of chords.

Definition 1.9 (m-pullbacks). Let m be a minor-like chord, let � = ab be a
chord of S that is not linked with m. The m-pullbacks of � are defined as follows.
If � = m, then the m-pullbacks are the major(s) ±M , the edges of S(m). If � �= m
is a point in S, then the m-pullbacks of � are points in σ−1

2 (�). Otherwise, there are

four points in σ−1
2 (�∩S), and there are two possible cases. First, � ⊂ D(m) in which

case all four points belong to S(m). Then we define the m-pullbacks of � as the
horizontal pullbacks of �. Second, � ⊂ D\D(m) in which case all four points belong

to S \ S(m). If m is non-degenerate or � is disjoint from m, the m-pullbacks of �
are defined as the two pullbacks of � that do not cross M or −M . In the remaining
case m is degenerate and is an endpoint of �; then we define the m-pullbacks of �
to be the pullbacks of � that have length � 1

4 .

In the last case in Definition 1.9, if m �= 0 or if m = 0 but � �= 0 1
2 , there are

exactly two m-pullbacks of � while if m = 0 (hence M = 0 1
2 ) and � = M then there

are four such pullbacks: 0 1
4 ,

1
4
1
2 ,

1
2
3
4 and 3

40.

Observe that if (degenerate) m �= 0 is an endpoint of � then the m-pullbacks

of � are horizontal. Indeed, in that case M �= 0 1
2 is a diameter of D with endpoints

±a. We may assume that a is in the upper half-plane. Then m = σ2(a) < M .
If � is small, then the m-pullbacks of � are two short chords coming out of the
points ±a (the other two candidate pullbacks are of length > 1

4 ). Clearly, both
chords are horizontal. As we continuously increase the length of �, its pullbacks
also continuously increase. The longest option for � is still shorter than a half-
circle, hence these chords are m-pullbacks of �. If at some moment they stop
being horizontal, then at this moment the endpoints of these chords not in M

must become either 0 or 1
2 . Hence their common image � must have an endpoint

σ2(0) = 0. However � cannot have 0 as an endpoint, a contradiction.
Importantly, there is no way of making m-pullbacks depend continuously on

m. This is why the definition of m-pullbacks may not look very natural. Observe
the following. If m is a minor, then any chord of the form σn

2 (m) is an m-pullback
of σn+1

2 (m) for n � 0. Indeed, this statement is non-trivial only for non-degenerate
m. In this case m-pullbacks are determined by the property that they do not
cross the edges of S(m) (by property (4) of minors, iterated images of m never
enter S(m) \ (M ∪−M)). The following theorem complements Theorem 1.7; recall
that in case when m is non-degenerate, or degenerate and non-periodic, L(m) was
defined above (see Theorem 1.7).

Theorem 1.10. If m is a non-degenerate or non-periodic minor then iterated
m-pullbacks of iterated σ2-images of m are dense in L(m).
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In fact, Theorem 1.10 inspires the definition of L(m) in the only remaining case
when m is a periodic singleton; in that case we define L(m) as the closure of the
family of all iterated m-pullbacks of M where M is the diameter mapped to m by
σ2.

1.4. Classification of dynamic gaps. The key tool that allowed Thurston
to succeed in establishing a complete classification of gaps of quadratic laminations
was Theorem 1.11 (No Wandering Triangles Theorem). Let Δ be a triangle with
vertices in S. It is said to be wandering if all σn

2 (Δ) have non-empty disjoint
interiors for n � 0.

Theorem 1.11. Wandering triangles do not exist.

The first step in the classification of all gaps is the following corollary.

Corollary 1.12. Let G be a gap of a quadratic lamination L. Then an even-
tual image of G either contains a diameter or is periodic and finite.

Semi-critical gaps are classified as follows:

• strictly preperiodic critical finite gaps with more than 4 edges;
• collapsing quadrilaterals, i.e., quadrilaterals that are mapped to non-
degenerate leaves;
• collapsing triangles, i.e., triangles with a critical edge;
• caterpillar gaps, i.e., periodic gaps with a critical edge.
• Siegel gaps, i.e., infinite periodic gaps G such that G ∩ S is a Cantor set,
σn
2 maps G onto itself for some n, and σn

2 restricted to the boundary of
G is semi-conjugate to an irrational rotation of the circle under the map
that collapses all edges of G to points.

All edges of a caterpillar gap are eventually mapped to the critical edge. Any
caterpillar gap has countably many edges and countably many vertices.

Let A ⊂ S be a compact set. Denote by σd : S → S the d-tupling map that
takes z to zd for any d � 2. We say that σd : A → σd(A) has degree k covering
property if there is a degree k orientation preserving covering f : S → S such that
σd|A = f |A and such k is minimal.

Proposition 1.13. Consider a gap G of a quadratic lamination L such that
no edge of G is a critical leaf. Then the map σ2 : G ∩ S→ σ2(G ∩ S) has degree k
covering property, where k = 1 or 2.

A bijection from a finite subset A of S to itself is a combinatorial rotation if
it preserves the cyclic order of points. Thus, a combinatorial rotation f : A → A
is a map which extends to an orientation preserving homeomorphism g : S → S,
topologically conjugate to a Euclidean rotation. A gap G of a quadratic lamination
L is periodic if σp

2(G) = G for some p > 0; the smallest such p is the period of
G. If G is of period p, then σp

2 restricted to G ∩ S is the first return map of G.
By Proposition 1.13 the first return map of a finite periodic gap is a combinatorial
rotation. Moreover, if L has no critical leaves then the first return map of an infinite
periodic gap G has the degree 2 covering property and G ∩ S is a Cantor set.
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Lemma 1.14. Let G be a periodic gap of a quadratic lamination L, and f :
G ∩ S→ G ∩ S its first return map.

(1) If G is finite, then f is a transitive combinatorial rotation. In particular,
for any a, b ∈ G ∩ S such that ab is not an edge of G, the chord fk(ab)
crosses ab for some k > 0.

(2) If a �= b ∈ S ∩ G and neither a nor b eventually maps to 0, then fk(ab)
is vertical for some k � 0. This is true, e.g., if the interior of G contains
the center of D, the lamination L is non-empty, and a, b are arbitrary
points in G ∩ S.

Proof. The only claim that is not explicitly contained in [Thu85] is the last
one. Assume, by way of contradiction, that fk(ab) is horizontal for all k � 0. Then,
for every k, either both fk(a) and fk(b) are in the open upper half of D, or both in
the open lower half of D. Suppose that a point x ∈ S never maps to 0. Define the

address of x as U if x is above 0 1
2 and as L otherwise. (The symbols U and L come

from “Upper” and “Lower”). The itinerary of x is an infinite word in the alphabet
{U,L} consisting of addresses of all fk(x) for k � 0. Similarly, we can define finite
itineraries of length N if, instead of all k � 0, we take all k such that 0 � k < N .
It is easy to see that the locus of points with a given finite itinerary is an arc in
S. Moreover, this arc has length 2−N , where N is the length of the itinerary. It
follows that every infinite itinerary defines at most one point. In particular, since
by the assumption a and b have the same itinerary, we conclude that a = b, a
contradiction.

If G contains the center of D in its interior, then L does not have critical
leaves. Hence σ2 has a degree k covering property on G, with k = 1 or 2. We
claim that then 0 /∈ G. Indeed, suppose otherwise. Then it is easy to see that G
is invariant and, hence, f = σ2. Now, if G is finite, then f fixes 0, hence cannot
act as a transitive combinatorial rotation. If G is infinite, then the fact that L has
no critical leaves implies that f has degree 2 covering property on G. Using the
density of

⋃
n�0 σ

−n
2 (0) in both S and G∩ S, we conclude that G = D and L is the

empty lamination, a contradiction. Hence we may assume that 0 (and, therefore
1
2 ) do not belong to G. Since G is periodic, the points 0 and 1

2 do not belong to
iterated σ2-images of G either. This implies that if a �= b ∈ G∩ S then, by the first
paragraph, fk(ab) is vertical for some k � 0. �

1.5. Classification of parameter gaps. Thurston classified all gaps of QML
(see Theorem II.6.11 of [Thu85]); we outline this classification below.

Suppose first that G is a finite gap of QML. ThenG is strictly preperiodic under
σ2. Moreover, it is the σ2-image of a finite central set C in a quadratic lamination
L. The gap C has 6 edges or more. Conversely, if a quadratic lamination L has a
finite central gap C with 6 or more edges, then σ2(C) is a finite gap of QML. To
summarize, finite gaps of QML are precisely finite gaps of quadratic q-laminations
that are the images of their central gaps.

Suppose now that G is an infinite gap of QML. Then all edges of G are periodic
minors. It may be that G = CAc. Otherwise, there is a unique edge mG = m of G
such that all � � m for any other edge � of G. Then G ⊂ σ2(C(m)). However, only
the edge m is on the boundary of σ2(C(m)). Other edges of G enter the interior of
σ2(C(m)).
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It is useful to think about G as a copy of CAc inserted into σ2(C(m)). To make
this more precise, observe that there is a monotone continuous map ξm : S → S
with the following properties. Every complementary component of σ2(C(m)) in S,
together with endpoints of the edge of σ2(C(m)) that bounds it, is mapped to one
point. The map ξm semi-conjugates the restriction σp

2 |σ2(C(m))∩S with σ2. Here
p is the period of σ2(C(m)). The map ξm is almost one-to-one on σ2(C(m)) ∩ S
except that it identifies the endpoints of every edge of σ2(C(m)). There is a unique
map ξm with the properties just listed. Then G is a copy of CAc in the sense
that the ξm-images of the edges of G are precisely the edges of CAc. Moreover,
ξm-pullbacks are well defined for all edges of CAc. Indeed, no endpoint of an edge
of σ2(C(m)) has period > 1 under the first return map to σ2(C(m)). Note that, as
a consequence, the period of m is the smallest among the periods of all edges of G.
Other periods are integer multiples of the period of m.

The case of CAc is somewhat special as this gap is not associated with any
minor. Thurston suggested to think of CAc as being associated with the degenerate
minor 0. Indeed, with these understanding, most properties of infinite gaps of QML
extend to the case of CAc.

2. Derived minors, children, and offsprings: proof of Theorem A

Let us begin with a technical lemma.

Lemma 2.1. Let � be a leaf of a quadratic lamination L where either L = L(m),

and m is not a periodic point, or L is a q-lamination. Moreover, let σi
2(�)∩σ

j
2(�) �=

∅ for some 0 � i < j. Then σi
2(�) is a periodic leaf. In particular, if � < m and

σn
2 (�) = m for some n, then all leaves σi

2(�) with σi
2(�) � m,σi

2(�) �= m, are pairwise
disjoint.

Proof. By Definition 1.8, the lamination L(m) is either a q-lamination, or a

tuning of a q-lamination with finite gaps. Thus, either σi
2(�) = σj

2(�) is a periodic

leaf (mapped to itself under σ
|j−i|
2 ), or both leaves σi

2(�) and σj
2(�) are contained in

the same finite periodic gap G of some q-lamination. However, in the latter case,
neither leaf in question can be a diagonal of G because, by Lemma 1.14, eventual
images of such diagonals cross each other. Thus again σi

2(�) is a periodic leaf.
Now, let � < m, set n to be the smallest number such that σn

2 (�) = m, and

assume that σi
2(�) ∩ σj

2(�) �= ∅ for some 0 � i < j � n. Then, by the above,
σi
2(�) and m belong to the same periodic orbit of leaves. However, σr

2(m) � m is
impossible unless σr

2(m) = m, by Lemma 1.6 . �
Let us now describe several ways of producing new minors � from old ones, cf.

part (a) of Lemma II.6.10a in [Thu85]. We say that a leaf � separates the leaf �′

from the leaf �′′ if �′ and �′′ are contained in distinct components of D \ � (except,
possibly, for endpoints). In particular, this means that � �= �′ and � �= �′′.

Definition 2.2 (Derived minors and children). Letm be a minor. Let m1 � m
be a leaf of L(m) such that eventual images of m1 do not separate m1 from m and
never equal a horizontal edge of the critical quadrilateral Q(m). Then m1 is called
a (from m) derived minor. If, in addition, m1 is mapped onto m under a suitable
iterate of σ2, then m1 is called a child of m.

By Proposition 2.3 proved below, every derived minor is a minor, justifying its
name. If the central gap C(m) of L(m) is distinct from Q(m) = CH(M ∪ (−M))
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where M is a major of L(m) (i.e., if the horizontal edges of Q(m) are not leaves of
L(m)), then automatically no image of m1 equals a horizontal edge of the critical
quadrilateral Q(m). Observe, that if � � m and n is the minimal number such that
σn
2 (�) = m, then to verify that � is a from m derived minor it suffices to verify that

� never maps to a horizontal edge of Q(m) and that σi
2(�) does not separate � from

m for 0 < i < n (for i � n this will hold automatically by Lemma 1.6).

Proposition 2.3. Let m be a non-degenerate minor. If a leaf m1 ∈ L(m) is a
from m derived minor, then m1 is a minor. Moreover, the horizontal edges of the
collapsing quadrilateral Q(m1) belong to L(m), and if σn

2 (m1) = m is the first time
m1 maps to m, then σn−1

2 (m1) is a major of L(m).

Proof. By Lemma 1.1, the chord m1 is minor-like, i.e., SA1 holds. Let us now
check SA2. Since m1 is a leaf of L, the chords σk

2 (m1) are unlinked for k � 0. By
way of contradiction, suppose that for some k � 0 the chord σk

2 (m1) crosses an edge

M1 of S(m1). Then it crosses the edge −M1 since otherwise σk+1
2 (m1) would cross

m1. On the other hand, we know that σk
2 (m1) cannot cross edges of S(m), hence

σk
2 (m1) ⊂ S(m). Since σk

2 (m1) is a leaf of L(m), it cannot be vertical. Thus σk
2 (m1)

is horizontal and separates the two horizontal edges of Q(m1). However, this implies

that σk+1
2 (m1) separates m1 from m. A contradiction with the assumption that

m1 is a derived minor.
Property SA3 follows from Lemma 1.6. To prove the next to the last claim,

observe that m1 must have two pullbacks in L(m), and its vertical pullbacks cannot
be leaves of L(m) as they are longer than the majors of L(m). The last claim follows
from the definition of a derived minor. �

Next we prove a simple but useful technical lemma.

Lemma 2.4. The following facts hold.

(1) If m is a minor, � is a chord such that σk
2 (�) = m with k minimal, and

σi
2(�) is a horizontal edge of Q(m), then i = k − 1.

(2) If m′ and m′′ are two distinct non-disjoint minors, then they are edges of
the same finite gap G of QML. The gap G is the image of a finite critical
gap of some q-lamination and is pre-periodic so that the forward orbit of
m′ does not contain m′′, and the forward orbit of m′′ does not contain m′.
Thus, if m1 � m are two minors and m is an eventual image of m1, then
m1 < m.

Proof. (1) By the choice of k, we have i � k − 1. Also, σk
2 (�) = m implies

that σk−1
2 (�) is a horizontal edge of Q(m). If, for some i > k − 1, the leaf σi

2(�)
is a horizontal edge of Q(m), then m is a periodic minor whose orbit includes a
horizontal edge of Q(m). However, the orbit of a periodic minor m includes a major
of L(m) but does not include horizontal edges of Q(m).

(2) Easily follows from the No Wandering Triangles Theorem. �
The next lemma is based on Proposition 2.3.

Lemma 2.5. Let m be a minor. Let a ∈ H(m) be a point and n be the smallest
integer such that σn

2 (a) is an endpoint of m. Let � be a leaf of L(m) with endpoint
a chosen so that σn−1

2 (�) is a major of L(m). Among all iterated images of � that
separate a from m, choose the one closest to m; call it �′. If no iterated image of �
separates a from m, set �′ = �. Then �′ is a from m derived minor.
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The leaf �′ is well defined as there are only finitely many iterated images �′′ � m
of � (this is because no iterated image of m is behind m, which follows from the
Central Strip Lemma). Observe that � defined in the lemma never maps to a
horizontal edge of Q(m) because σn−1

2 (�) is a major of L(m), and majors of L(m)
do not map to horizontal edges of Q(m).

Proof. By the choice of � the leaf �′ is a pullback of m in L(m) such that no
forward image of �′ separates m from �′ and no image of �′ is a horizontal edge of
Q(m). Hence by definition �′ is a from m derived minor. �

We are ready to prove Theorem A. Observe that by Theorem A a minor m̃ < m
is an offspring of a minor m iff σn

2 (m̃) = m for some n > 0.

Proof of Theorem A. Let m be a minor. Let a ∈ H(m) be a point and n
be a minimal integer such that σn

2 (a) is an endpoint of m. Let us find the leaf �′

as in Lemma 2.5. Then �′ ∈ L(m) is a from m derived minor which is a child of
m. If a is an endpoint of �′, we are done. Otherwise we apply Lemma 2.5 to a and
�′. Observe that this time we will find the appropriate pullback of �′ with endpoint
a in the lamination L(�′), not in L(m), and our choice will be made to make sure
that this pullback of �′ does not pass through a horizontal edge of Q(�′). On the
other hand, the pullback of �′ that we will find does eventually map to m. After
finitely many steps the just described process will end, and we will find the desired
offspring of m with endpoint a. �

We complete this section with two lemmas that will be used later on.

Lemma 2.6. Let m be the minor of a lamination L. Then any leaf � ∈ L such

that � � m and |�| > |m|
2 is a minor. In particular, if � � m is sufficiently close to

m, then � is a minor.

Proof. By Lemma 1.1, the chord � is minor-like so that SA1 holds for m. Let
us verify property SA2 for �. Let |m| = 2λ. Then the width of the strip S(m) is

λ. If � ∈ L, � � m and |�| > |m|
2 = λ, then, by Lemma 1.6(1), we have |σi

2(�)| > λ
for every i > 0. Hence eventual images of � do not enter the interior of S(m)
horizontally. On the other hand, they cannot enter the interior of S(m) vertically
since the edges ±M of S(m) are the majors of L. Since � ∈ L, eventual images of
� do not cross the majors ±M of L. Hence they do not intersect S(�) at all, and �
has property SA2. By Lemma 1.6, the leaf � also has property SA3. Hence � is a
stand alone minor. �

Lemma 2.7 describes other cases when a minor can be discovered; assumptions
of Lemma 2.7 reverse those of Proposition 2.3.

Lemma 2.7. Let m be the minor of a lamination L and � ∈ L is a minor-like
leaf such that m � �. Moreover, suppose that m � σn

2 (�) � � is false for any n > 0.
Then � is a minor. In particular, this is the case if m � � � m̂ where m̂ ∈ L is a
minor, σn

2 (�) = m̂ for some n, and no leaf σi
2(�), 0 < i < n, separates m from �.

Proof. By the assumptions, SA1 holds for �. By Lemma 1.6(2), property
SA2 also holds for �. To verify SA3, assume, by way of contradiction, that for some
minimal n > 0 we have |σn

2 (�)| < |�|. Then by the Central Strip Lemma (which
applies because of SA2), the leaf σn−1

2 (�) ⊂ S(�) is vertical. The fact that m is the

minor of L now implies that σn−1
2 (�) must be a vertical leaf in S(�) \ S(m) which
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in turn implies that m � σn
2 (�) � �, a contradiction. Thus, SA3 holds for �, and �

is a minor.
To prove the second claim of the lemma notice that by the Central Strip Lemma,

no eventual image of m̂ is behind m̂. Together with the assumptions of the lemma
on � it implies that no eventual image of � separates � from m̂. By the above, � is
a minor. �

3. Coexistence and tuning

We start with a general property of minor leaf laminations. A chord � is said
to coexist with a lamination L if no leaf of L is linked with �.

Lemma 3.1. Let m be a minor, and L(m) the corresponding minor leaf lami-
nation. If Q ⊂ S(m) is a collapsing quadrilateral whose vertical edges coexist with
L(m), then Q is contained in the critical gap of L(m).

Proof. If a horizonal edge �h of Q and a leaf � ∈ L(m) cross in D, then, since
� cannot cross the vertical edges of Q, � must cross −�h. Thus, � is a vertical leaf of
L(m) in S(m), a contradiction. Hence horizonal edges of Q also coexist with L(m).
Since m is non-degenerate, L(m) has no critical leaves. Thus Q is contained in the
critical gap of L(m). �

Coexistence of chords turns out to be stable under σ2.

Lemma 3.2. Suppose that a chord � coexists with a quadratic lamination L.
Then σ2(�) also coexists with L.

Proof. Assume the contrary: σ2(�) is linked with some leaf ab of L. The
chords ±� divide the circle S into four arcs, which will be called the ±�-arcs. The
two σ2-preimages of a are in the opposite (=not adjacent) ±�-arcs. Similarly, the
two preimages of b are in the remaining opposite ±�-arcs. It follows that any
pullback of ab in L crosses � or −�, a contradiction. �

Two laminations L1, L2 are said to coexist if no leaves �1 ∈ L1 and �2 ∈ L2

cross. Thus, coexistence of quadratic laminations is a symmetric relation.

Lemma 3.3. Let m1 be a minor that is an offspring of a non-degenerate minor
m0. If L(m1) coexists with some quadratic lamination L �= L(m1) with minor m,
then either m is an endpoint of m1 and L is the corresponding lamination with a
critical leaf, or L is the q-lamination associated to L(m1), or m1 < m0 � m.

Proof. We assume from the very beginning that m is not an endpoint of m1.
It is easy to see that m1 is non-periodic since m1 is an offspring of m0. Hence
by Theorem 1.7 the lamination L(m1) contains the critical quadrilateral Q(m1),

and L(m1) is obtained from the q-lamination L̂(m1) (with finite gaps and all leaves

being non-isolated) by inserting vertical edges of Q(m1) in its central gap C(L̂(m1))

(in this way one adds Q(m1) to L̂(m1)) and then pulling them back within L̂(m1).
The only two laminations that tune L(m1) are the ones whose minors are endpoints
of m1. Hence, by our assumption, it follows that L cannot have any leaves that do
not belong to L(m1). In other words, L � L(m1). Since the majors ±M of L are
leaves of L(m1), then they are located so that S(m) ⊃ S(m1) and hence m1 � m.

Consider the case when m1 ∈ L. If the majors ±M1 belong to L, it follows that
m = m1. Sincem = m1 is not periodic, the central gap of Lmust be finite. Since by
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Theorem 1.7 the horizontal edges of Q(m1) are limits of leaves of L̂(m1) ⊂ L(m1),
Q(m1) must be a gap of L, and it follows that L = L(m1). Suppose that m1 ∈ L
but ±M1 do not belong to L. Let Ĉ be the critical set of the q-lamination L̂
associated to m1. Then the horizontal edges of Q(m1) must be edges of Ĉ and
leaves of L. Indeed, some leaves of L must map to m1, and the vertical edges of
Q(m1) do not belong to L. Hence the critical set of L is a gap H containing the
horizontal edges of Q(m1) in the boundary. Consider two cases.

If H is finite, then the fact that ±M1 do not belong to L and the fact that

edges of Ĉ are approached from the outside of Ĉ by leaves of L̂ ⊂ L(m1) imply that

H ⊂ Ĉ is different from Q(m1). Since no edges of H can cross ±M1 and the images

of the edges of H must be edges of σ2(Ĉ) (otherwise some of their eventual images

will cross), we have H = Ĉ and, hence, L = L̂ is the q-lamination associated to
m1.

If H is infinite, then H is a quadratic Fatou gap, and m1 is an edge of its
image; it is well known that then H is periodic of period, say, n. It is known that
there is a unique periodic edge M of H, and it is of period n. Moreover, M and
its sibling −M are the majors of the unique lamination that has H as its gap; this
lamination is in fact a q-lamination and, evidently, it has to coincide with L so
that m = σ2(M) is an edge (actually, unique periodic edge) of σ2(H). It is known
that all edges of H eventually map to m (it is a consequence of the Central Strip
Lemma), in particular so does m1 (which is an edge of σ2(H)) and m0 (which is an
eventual image of m1).

The Central Strip Lemma also imposes restrictions on possible locations of
iterated images of H. Namely, the entire gap σ2(H) is located under m while all
other iterated images of H are located on the other side of m. Now, m0 is a minor
of some lamination and an eventual image of m1. Since m is an eventual image of
m1, it follows that m is an eventual image of m0. If m0 is an edge of some iterated
image of H different from σ2(H), then m1 � m0 implies m � m0 (recall that both
m1 and m are edges of σ2(H)). Since m0 is eventually mapped to m � m0, we
must have m = m0, and we are done in this case. Thus we may assume that m0 is
an edge of σ2(H). Since the only edge � of H such that m1 < � is the edge m, the
fact that m1 < m0 implies again that m0 = m. All that covers the “trivial” cases
included in the theorem.

Now, if m1 /∈ L, then m1 is a diagonal of a gap G of L whose edges are leaves
of L(m1). Since m1 is approached by uncountably many leaves of L(m1) from at
least one side, G∩ S is infinite and uncountable (in particular, G is not an iterated
pullback of a caterpillar gap). Also, G is not an iterated pullback of a periodic
Siegel gap as otherwise m1, being a diagonal of G, will have some eventual images
that cross. Since G is infinite, it is eventually precritical and an image σi

2(G) = H
of G is a periodic critical quadratic Fatou gap containing as a diagonal the leaf
σi
2(m1). As in the previous paragraph, there is a unique periodic edge M of H,

and it is of period n. Moreover, M and its sibling −M are the majors of a unique
lamination that has H as its gap; this lamination is in fact a q-lamination and,
evidently, it coincides with L so that m = σ2(M).

The majors ±M1 coexist with L and cannot cross edges of H. Hence m1 =
σ2(M1) is a diagonal or an edge of σ2(H). Since m1 � m and m1 � m0, we have
that either m0 � m, or m � m0,m �= m0. By way of contradiction assume that
m � m0,m �= m0. However, then under some iteration of σ2 the leaf m0, which is
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an eventual image of m1, will be mapped back to σ2(H) so that for the appropriate

eventual image σj
2(m0) of m0 we have σj

2(m0) � m � m0, which is only possible for
the minor m0 if in fact m0 = m, a contradiction. Thus, m0 � m, as desired. �

The next theorem describes some cases when one lamination tunes another
one. Recall that, by Definition 1.8, the central gap of a lamination L(m0) is either
a collapsing quadrilateral or an infinite gap.

Theorem 3.4. Given minors m0, m1 and m, the following statements hold.

(1) If L(m1) has majors ±M1 contained in the central gap of L(m0), then
L(m0) ⊂ L(m1); if m1 �= m0, then L(m1) �= L(m0).

(2) If m, m0 and m1 are non-degenerate minors such that m1 is a child of
m0, the lamination L(m1) coexists with L(m), and m is neither m1 nor
an endpoint of m1, then L(m) ⊂ L(m0).

(3) If m1 is an offspring of m0 and L(m) � L(m1), then L(m) � L(m0).

Proof. (1) Let the central gap C(m0) of L(m0) be a collapsing quadrilateral.
Then the fact that ±M1 ⊂ C(m0) implies that m1 = m0 and L(m1) = L(m0).

Let now C(m0) be an infinite gap. Then m0 is periodic of the same period
as C(m0). Let us write M0 for the pullback of m0 that is invariant under the
first return map f of C(m0) ∩ S. Assume that M1 separates −M1 from M0 (or
M1 = −M1 is critical). Consider iterated pullbacks of M1 chosen so that each next
pullback separates the previous pullback from M0. By definition of m1-pullbacks,
all these pullbacks belong to L(m1). Since these f -pullbacks converge to M0, we
have M0 ∈ L(m1). Similarly, all edges of C(m0) are in fact m1-pullbacks of M0,
which implies that all edges of C(m0) belong to L(m1). In the same way, it follows
from definition of m1-pullbacks that all other leaves of L(m0) are in fact leaves of
L(m1). Hence, L(m0) ⊂ L(m1).

(2) Let±M , ±Mi be the majors of L(m), L(mi), for i = 0, 1. Since the “trivial”
cases of Lemma 3.3 do not hold, then by Lemma 3.3 we see that m1 < m0 � m.
Thus, S(m1) ⊂ S(m0) ⊂ S(m). Since m1 maps to either M0 or −M0 under some
iterate of σ2 (see Proposition 2.3), the majors ±M0 coexist with L(m). We have
±M0 ⊂ S(m0) ⊂ S(m), therefore, ±M0 are contained in the central gap C(m) of
L(m). The result now follows from (1).

(3) By Theorem A we may assume that m1 < m(n−1)/n < · · · < m1/n < m0

where m(i+1)/n is a child of mi/n for i = 0, . . . , n − 1. Applying (2) inductively,

we see that L(m) � L(m(n−1)/2), . . . , L(m) � L(m0). �

4. Almost non-renormalizable minors: proof of Theorem B

We begin by discussing which minors can be approximated by offsprings of a
given minor. Recall the following fact.

Lemma 4.1 ([Thu85], Lemma II.6.10a, part (b)). Let m0 be a non-degenerate
minor. If m � m0 is a minor, then m0 ∈ L(m). In particular, σn

2 (m) cannot cross
m0 for n > 0.

The next lemma elaborates on Lemma 2.5.
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Lemma 4.2. Suppose that m̃ < m are two minors and σn
2 (m̃) = m for a

minimal n > 0. Then the following holds.

(1) If no image σi
2(m̃) for 0 < i < n is a minor separating m̃ from m, then

m̃ is a child of m (in particular, m̃ ∈ L(m)).
(2) Let m̃ = m0 < m1 < · · · < mr−1 < mr = m be all images of m̃ that are

minors separating m̃ from m. Then mi is a child of mi+1 for 0 � i � r−1.

Proof. (1) To prove that m̃ ∈ L(m), consider σi
2(m̃) for 0 � i � n − 1.

Choose the greatest i < n such that σi
2(m̃) = m′ satisfies m̃ � m′ � m. Then no

iterated image of m′ separates m̃ from m. We claim that no image of m′ enters
S(m) vertically. Indeed, otherwise the next image of m′ would have to enter C(m)
either separating m̃ and m (impossible by the choice of i), or behind m̃ (impossible

because m̃ is a minor). Hence the leaves σj
2(m̃), where j = n − 1, n − 2, . . . , i

are pullbacks of m in L(m). Thus, m′ ∈ L(m) and is, therefore, a from m derived
minor. If i > 0, then m′ is a minor separating m̃ from m, a contradiction with the
assumptions of the lemma. We must conclude that i = 0 and m′ = m̃, in particular,
m̃ ∈ L(m). By definition, it follows that m̃ is a child of m.

(2) Follows from (1) applied to pairs of minors mi < mi+1, where 0 � i �
r − 1. �

The following lemma relates approximation by dynamical pullbacks and ap-
proximation by parameter pullbacks.

Lemma 4.3. Let m0 be a non-degenerate minor. Suppose that m � m0 is a
minor approximated by pullbacks of m0 in L(m). Then m can be approximated by
offsprings of m0.

Proof. We may assume that m is never mapped to m0 under σ2. By Lemma
4.1, the chordm0 is a leaf of L(m). Let �n be a sequence of leaves of L(m) converging

to m and such that σkn
2 (�n) = m0 for some kn. Since infinitely many �n’s cannot

share an endpoint with m, then we may assume that all �n are disjoint from m
in D. We may assume that �n < m0. If �n < m for infinitely many values of n,
then, by Lemma 2.6, we may assume that these �n are minors, and, by Lemma 4.2
and Theorem A, they are offsprings of m0. Suppose now that �n > m for infinitely
many values of n; we may assume this is true for all n. Consider all images of �n
that separate m from m0 and choose among them the closest to m leaf σi

2(�). By
Lemma 2.7 σi

2(�) is a minor, and by Theorem A σi
2(�) is an offspring of m0. This

completes the proof of the lemma. �

We can now prove the following theorem.

Theorem 4.4. Let m0 be a periodic non-degenerate minor, and let m � m0 be a
non-degenerate minor. Suppose that any lamination L � L(m) satisfies L � L(m0).
Then m is a limit of offsprings of m0.

Proof. By Lemma 4.3, it suffices to approximate m by pullbacks of m0 in
L(m). Consider the lamination L1 consisting of iterated pullbacks of m0 in L(m)
and their limits (this includes the iterated images of m0 since m0 is periodic);
then L1 ⊂ L(m). If L1 = L(m), we are done; let L1 �= L(m). Then, by our
assumption, L1 � L(m0). However, since m0 ∈ L1, it follows from Theorem 1.7
that L1 = L(m0), a contradiction with our assumption. �
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We need a lemma dealing with tuning of q-laminations.

Lemma 4.5. Let L1 � L2 be q-laminations where L1 is not the empty lami-
nation. Then L1 has a periodic quadratic Fatou gap, and, therefore, its minor is
periodic and non-degenerate.

Proof. Suppose that L1 does not have a periodic quadratic Fatou gap. Then
all gaps of L1 are either (a) finite, or (b) infinite eventually mapped to a periodic
Siegel gap for whom the first return map is semiconjugate to an irrational rotation
(the semiconjugacy collapses the edges of the gap). Evidently, no leaves of L2 can
be contained in finite gaps of L1 because both laminations are q-laminations. On
the other hand, no leaves of L2 can be contained in periodic Siegel gaps because
any such leaf would cross itself under a suitable power of σ2 (this conclusion easily
follows from the semiconjugacy with an irrational rotation). Thus, if L1 does not
have a periodic quadratic Fatou gap then no new leaves can be added to L1 and
the inclusion L1 � L2 is impossible. �

Recall that a quadratic lamination L is called almost non-renormalizable if
L′ � L implies that L′ is the empty lamination. Note that all almost non-
renormalizable laminations with non-degenerate minors are q-laminations (if L is
not a q-lamination with a non-degenerate minor then by Theorem 1.7 there exists

a unique non-empty q-lamination L̂ � L, a contradiction). The role of almost
non-renormalizable minors is clear from the next lemma.

Lemma 4.6. Let L be a lamination with non-degenerate minor m. Then there
exists a unique almost non-renormalizable lamination L0 ⊂ L with non-degenerate
minor m0 such that m ⊂ σ2(C(m0)).

Proof. Consider a lamination L′ ⊂ L with minor m′. Then, by definition,
m � m′. Hence minors of all laminations contained in L are linearly ordered. Take
the intersection L0 of all non-empty laminations contained in L; note that this
intersection is not the empty lamination as every non-empty lamination contains a
leaf of length at least 1

3 . It follows that L0 is itself a non-empty lamination and that
the minor m0 of L0 is such that m′ � m0 for every non-empty lamination L′ ⊂ L
(here m′ is the minor of L′). Evidently, m ⊂ σ2(C(m0)) (notice that if L′ ⊂ L then
C(L′) ⊃ C(L)). �

The set QMLnr by definition consists of all singletons in S and the postcriti-
cal sets of all almost non-renormalizable laminations. The following theorem was
obtained [BOT17]; for completeness, we prove it below.

Theorem 4.7. The set QMLnr is a lamination.

Proof. We only need to prove that QMLnr is closed in the Hausdorff metric.
We claim that QMLnr is obtained from QML by removing all minors that are
contained in the interiors of the gaps σ2(C(m)) (except for their endpoints), where
m are non-degenerate almost non-renormalizable periodic minors. The theorem will
follow from this claim (indeed, the set of removed leaves is open in the Hausdorff
metric).

Firstly, we show that a leaf � of QMLnr cannot intersect the interior of a gap
G = σ2(C(m)) with m ∈ QML. Indeed, otherwise the fact that all our leaves are
leaves of QML implies that � ⊂ G. Hence the majors ±L of L(�) are contained in
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C(m). By Theorem 3.4, part (1), we have then L(m) � L(�). By definition, this
contradicts the fact that � is a minor of an almost non-renormalizable lamination.

Secondly, suppose that m̃ is a minor that does not intersect the interior of any
gap σ2(C(m)), where m is a non-degenerate periodic almost non-renormalizable
minor. We may assume that m̃ is non-degenerate. We claim that m̃ ∈ QMLnr, i.e.
that m̃ is an edge of the postcritical set of an almost non-renormalizable lamination.
By way of contradiction, assume otherwise. Observe that m̃ is an edge of the

postcritical set of the q-lamination L̂(m̃). By the assumption, it follows that L̂(m̃)
is not almost non-renormalizable. Hence by Lemmas 4.5 and 4.6 there exists a
non-empty almost non-renormalizable lamination L′ such that m̃ ⊂ σ2(C(L′)), a
contradiction with the assumption on m̃.

�

Let m0 be a non-degenerate periodic minor. Define the set OL(m0) consisting
of all offsprings of m0 and their limits. The following theorem is a reformulation of
Theorem B.

Theorem 4.8. The lamination QMLnr is the union of OL(m0), where m0 runs
through all edges of CAc.

Proof. Consider an almost non-renormalizable minor m ∈ QMLnr. There is
an edge m0 of the combinatorial main cardioid such that m � m0. We claim that
m ∈ OL(m0). Indeed, consider all pullbacks of m0 in L(m) and all limit leaves of
such pullbacks. By [BMOV13], this collection L′ of leaves is a lamination, and
by construction L′ ⊂ L(m). Since L(m) is almost non-renormalizable, L′ = L.
Hence, pullbacks of m0 in L(m) approximate m. By Lemma 4.3, the minor m is
approximated by offsprings of m0.

Now, let m ∈ OL(m0), where m0 is an edge of CAc. Then there is a sequence
of minors �i converging to m such that each �i is an offspring of m0. We claim
that m is almost non-renormalizable, i.e., that m ∈ QMLnr. Assume the contrary:
m is contained in a gap U of QMLnr and intersects the interior of U . The only
way it can happen is when U = σ2(C(m1)) is the postcritical gap of an almost
non-renormalizable lamination L(m1). Then �i must also intersect the interior of
U for some i, hence �i must be contained in U . By Theorem 3.4, part (1), we have
L(m1) � L(�i). Since �i is an offspring of m0, it follows by Theorem 3.4, part (3),
that L(m1) � L(m0). However, this is impossible because m0 itself is almost non-
renormalizable, and the only lamination strictly contained in L(m0) is the empty
lamination. �
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Multi-sensitivity, multi-transitivity and Δ-transitivity

Piotr Oprocha, Tao Yu, and Guohua Zhang

Abstract. In this paper firstly we construct for each m ∈ N \ {1} a weakly
mixing system which is (1, · · · ,m − 1)-sensitive but not (1, · · · ,m − 1,m)-
sensitive, and a minimal system which is (1, 2)-sensitive but not (1, 2, 3)-
sensitive.

It is known that Δ-(1, 2) transitivity implies weak mixing. We will show
that, though (a, b)-transitivity implies total transitivity for all a, b ∈ N, for
a general vector a ∈ Nr, r ∈ N, Δ-a transitivity implies weak mixing if and
only if the vector a satisfies certain conditions. Furthermore, we prove that
this difference will disappear for measurable systems, that is, for measure-
theoretical setting multi-ergodicity is equivalent to weak mixing.

1. Introduction

Throughout this paper by a topological dynamical system (t.d.s. for short)
we mean a pair (X,T ), where X is a compact metric space with a metric d and
T : X → X is a continuous surjection. Denote the sets of all integers, nonnegative
integers and natural numbers by Z, N0 and N respectively.

The notion of sensitivity (sensitive dependence on initial conditions) originated
from a paper by Ruelle [20]. Auslander and Yorke [4] started to call a t.d.s. (X,T )
sensitive if there exists δ > 0 such that for every x ∈ X and every neighborhood
Ux of x, there exist y ∈ Ux and n ∈ N with d(Tnx, Tny) > δ. The following
dichotomy theorem is proved in [4]: a minimal system is either equicontinuous or
sensitive. Since then, the relationship between sensitivity, transitivity and mixing
from topological perspective has been discussed by many researchers.

For a t.d.s. (X,T ), δ > 0 and an opene (open and nonempty) subset U , denote

NT (U, δ) = {n ∈ N : diam(Tn(U)) > δ},
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where diam(•) denotes diameter of a subset •. It is easy to see that (X,T ) is
sensitive if and only if there exists δ > 0 such that NT (U, δ) �= ∅ for each opene
subset U . In [18] Moothathu introduced the notion of multi-sensitivity. A t.d.s.
(X,T ) is multi-sensitive if there exists δ > 0 such that for any k ∈ N and any opene

subsets U1, U2, · · · , Uk ⊂ X we have
k⋂

i=1

NT (Ui, δ) �= ∅. Later Huang, Kolyada and

Zhang [13] proved that a minimal system is either multi-sensitive or an almost
one-to-one extension of its maximal equicontinuous factor. Inspired by [11–13,18],
Yu [22] introduced the notion of l-sensitivity and constructed a minimal system
which is l-sensitive but not (l + 1)-sensitive. This was further generalized by Jiao
et al. [14], who introduced the notion of multi-sensitivity with respect to a vector.
Let (X,T ) be a t.d.s. and a = (a1, a2, · · · , ar) be a vector in Nr, r ∈ N. A t.d.s.

(X,T ) is a-sensitive if there exists δ > 0 such that
r⋂

i=1

NTai (Ui, δ) �= ∅ for any

opene sets U1, · · · , Ur. Any (1, 2, 3)-sensitive system is clearly (1, 2)-sensitive. We
will show that the converse is not true by constructing a minimal system which
is (1, 2)-sensitive but not (1, 2, 3)-sensitive (see Example 3.8). Due to technical
difficulties, it seems not easy to construct such a system for general (1, 2, · · · ,m)-
sensitivity, however for each m ∈ N\{1} we were able to construct a weakly mixing
system which is (1, · · · ,m − 1)-sensitive but not (1, · · · ,m − 1,m)-sensitive (see
Example 3.7). These examples are not minimal. In fact, we show that any minimal
weakly mixing system is strongly multi-sensitive, that is, a-sensitive for any vector
a ∈ Nr, r ∈ N (see Corollary 3.10).

The notions of multi-transitivity and Δ-transitivity were introduced by
Moothathu in [19]. He showed that for a general system Δ-(1, 2) transitivity is
strictly stronger than weak mixing (cf. the proof of [19, Proposition 3]). Then in
[7,8] Chen, Li and Lü systematically studied multi-transitivity and Δ-transitivity,
and characterized them by properties of the hitting time sets. We prove that (a, b)-
transitivity implies total transitivity for all a, b ∈ N (see Theorem 3.4). For any
vector a = (a1, · · · , ar) ∈ Nr with a1 < · · · < ar and r ≥ 2, we show that Δ-a tran-
sitivity implies weak mixing if and only if the vector a satisfies certain conditions
(for details see Theorem 4.2 and Theorem 4.4). As a direct corollary of it, we also
obtain that Δ-(1, 2) transitivity implies weak mixing.

In [16] Kwietniak and Oprocha showed that in general there is no connection
between multi-transitivity and weak mixing, and Moothathu proved that for a
minimal system multi-transitivity is equivalent to weak mixing [19]. It is natural to
introduce for measurable dynamical systems a notion similar to multi-transitivity,
which we call multi-ergodicity. We find that it satisfies a measure-theoretic analogue
of Moothathu’s result, that is, multi-ergodicity is equivalent to weak mixing for
measurable systems.

The structure of the paper is the following. In Section 2, we recall some basic
notions which will be used later in the paper. In Section 3, we construct for each
m ∈ N \ {1} a weakly mixing system which is (1, · · · ,m − 1)-sensitive but not
(1, · · · ,m− 1,m)-sensitive, and a minimal system which is (1, 2)-sensitive but not
(1, 2, 3)-sensitive. We also show that (a, b)-transitivity implies total transitivity
for all a, b ∈ N. In Section 4, given a vector a = (a1, · · · , ar) ∈ Nr with a1 <
· · · < ar and r ≥ 2, we provide a criterion for that Δ-a transitivity implies weak
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mixing. In Section 5, we prove that multi-ergodicity is equivalent to weak mixing
for measurable dynamical systems.

2. Preliminaries

In this section we recall some basic concepts and notions which will be used
later.

2.1. Topological dynamical systems. A t.d.s. (X,T ) is transitive if for
all opene subsets U and V , NT (U, V ) = {n ∈ N0 : U ∩ T−nV �= ∅} is infinite; is
totally transitive if (X,Tn) is transitive for each n ∈ N; and is weakly mixing if
(X × X,T × T ) is transitive. We say that x ∈ X is a transitive point if its orbit
Orb(x, T ) = {x, Tx, T 2x, · · · } is dense in X. It is well known that if (X,T ) is
transitive then the set of all transitive points forms a dense Gδ subset of X. A
t.d.s. (X,T ) is minimal if each point in X is a transitive point.

Let (X,T ) and (Y, S) be two t.d.s. If there is a continuous surjection π : X → Y
with π ◦ T = S ◦ π, then we say that π is a factor map or an extension, (Y, S) is a
factor of (X,T ) and (X,T ) is an extension of (Y, S). The extension π : (X,T ) →
(Y, S) is said to be almost one-to-one if {x ∈ X : π−1(π(x)) = {x}} forms a dense
Gδ subset of X.

A t.d.s. (X,T ) is called equicontinuous if for every ε > 0 there is δ > 0 such that
whenever x, y ∈ X with d(x, y) < δ we have d(Tnx, Tny) < ε for all n ∈ N0. It is
well known that every t.d.s. (X,T ) has a maximal equicontinuous factor (Xeq, Teq).
See for example [15] for more details on equicontinuous systems and these factors.

Let F ⊂ N0. We call F thick if it contains arbitrarily long blocks of consecutive
integers, that is, for every d ∈ N there is nd ∈ N such that {nd, nd+1, · · · , nd+d} ⊂
F ; call it syndetic if it has bounded gaps, that is, there exists N ∈ N such that
{k, k+1, · · · , k+N}∩F �= ∅ for every k ∈ N; and call it thickly syndetic if for each
d ∈ N there is a syndetic set {w1

d, w
2
d, · · · } such that {wi

d, w
i
d + 1, · · · , wi

d + d} ⊂ F
for each i ∈ N. Note that the intersection of finitely many thickly syndetic sets
is also thickly syndetic. See for example [1, 9] for more such subsets and their
relationship with dynamical systems.

2.2. Spacing shift. Let Σ = {0, 1}N0 be equipped with the product topology
induced by discrete topology on {0, 1}. A metric defining this topology is given by
d(x, y) = 0 if x = y, and d(x, y) = 2−i if x �= y, where i = min{j : xj �= yj} when
x = x0x1x2 · · · and y = y0y1y2 · · · . A word is a finite sequence of elements of {0, 1}.
For two words w = x1 · · ·xn and v = y1 · · · ym define wv = x1 · · ·xny1 · · · ym. If w
is a word and n ≥ 1 then by wn we denote a word which is a concatenation of n
copies of w. If n = 0 then wn is the empty word. The length of a word w is the
number of elements of w, and is denoted |w|. We say that a word w = w1w2 · · ·wl

appears in x = x0x1x2 · · · ∈ Σ at position t if xt+j−1 = wj for j = 1, · · · , l. As
usual, for any word w we denote by wt the element of the sequence w standing at
position t. Put Sp(w) = {|i − j| : wi = wj = 1, 1 ≤ i < j ≤ |w|}. Let P ⊂ N.
We say that a word w = w1w2 · · ·wl is P -admissible if Sp(w) ⊂ P . Let ΣP be the
subset of Σ consisting of all sequences x such that every word which appears in x
is P -admissible.

The shift transformation σ : Σ → Σ, given by (σx)i = xi+1 for i = 0, 1, · · · , is
a continuous surjection. Any nonempty closed subset X ⊂ Σ invariant for σ (i.e.,
σ(X) = X) is called a subshift of Σ. If X is a subshift, then the language of X is the
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set L(X) of all words which appear at some position in some element x ∈ X. The
set Ln(X) consists of all elements of L(X) of length n. Let P ⊂ N. It is easy to
see that ΣP is a subshift, and L(ΣP ) is the set of all P -admissible words. We will
write σP for σ restricted to ΣP , and call the t.d.s. (ΣP , σP ) a spacing shift. The
class of spacing shifts was introduced by Lau and Zame in [17], and for a detailed
exposition of their properties we refer to [6].

Let w be a P -admissible word. By [w]P we denote the set of all x ∈ ΣP such
that the word w appears at position 0 in x. We call the set [w]P a P -admissible
cylinder (a cylinder for short). The family of all P -admissible cylinders forms a
base of topology of ΣP inherited from Σ. Note that (ΣP , σP ) is weakly mixing if
and only if P is a thick set (e.g. see [6,17]).

3. Sensitivity and transitivity with respect to a vector

In this section we study sensitivity and transitivity with respect to a vector.
Firstly we recall the following definitions from [14,19].

Definition 3.1. Let a = (a1, a2, · · · , ar) ∈ Nr, r ∈ N. We say that a t.d.s.
(X,T ) is

(1) multi-sensitive with respect to a (or briefly a-sensitive) if there exists δ > 0

such that
r⋂

i=1

NTai (Ui, δ) �= ∅ for any opene sets U1, · · · , Ur.

(2) strongly multi-sensitive if it is a-sensitive for any vector a ∈ Nn, n ∈ N.
(3) multi-transitive with respect to a (or briefly a-transitive) if (Xr, T (a)) is

transitive, where T (a) = T a1 × T a2 × · · · × T ar .
(4) strongly multi-transitive if it is a-transitive for any vector a ∈ Nn, n ∈ N.

Remark 3.2. If (X,T ) is a-sensitive, then the above sets
r⋂

i=1

NTai (Ui, δ) are

infinite.

We also have the following observation.

Lemma 3.3. Let (X,T ) be a transitive system. Then (X,T ) is (1, 2)-sensitive
if and only if there is δ > 0 such that NT (U, δ) ∩ NT 2(U, δ) �= ∅ for any opene set
U .

Proof. The implication “⇒” is obvious. Now we are going to prove the con-
verse implication “⇐”. Observe that for any opene sets U1, U2, there is l ∈ N
such that U1 ∩ T−lU2 is an opene set. Put V = U1 ∩ T−lU2 and take any
n ∈ NT (T

−lV, δ)∩NT 2(T−lV, δ)∩{l+1, l+2, · · · }. Then {n− l, 2n− l} ⊂ NT (V, δ)
and so n− l ∈ NT (U1, δ) ∩NT 2(U2, δ). �

The following result shows that multi-transitivity, while does not imply weak
mixing sometimes, is slightly stronger than transitivity alone.

Theorem 3.4. Let a, b ∈ N. If (X,T ) is (a, b)-transitive, then (X,T ) is totally
transitive.

Proof. Assume the contrary that (X,T p) is not transitive for some p ∈ N.
Clearly (X,T ) is transitive, then we may assume that p is prime by [5, Theo-
rem 2.4]. Since (X,T ) is (a, b)-transitive, p does not divide a nor b. Applying
[5, Lemma 2.1 and Theorem 2.3], there exists a regular periodic decomposition
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{X0, X1, · · · , Xp−1} of length p, in particular, int(X0), int(X1), · · · , int(Xp−1) are
pairwise disjoint opene sets and T−l(int(Xk)) ⊂ int(Xk−l(mod p)) for all 0 ≤ k ≤
p− 1 and l ≥ 0.

Since (X,T ) is (a, b)-transitive, we may choose

m ∈ NTa(int(X0), int(X0)) ∩NT b(int(X0), int(X1)).

Then there exists l1, l2 ∈ N such that am = pl1, bm − 1 = pl2. Thus p divides m
and so p = 1, which is a contradiction. Indeed (X,T ) is totally transitive. �

It was proved by Moothathu [19, Proposition 4] that if (X,T ) is a totally
transitive t.d.s. with dense periodic points (and so weakly mixing), then (X,T ) is
strongly multi-transitive. However we construct a system which is transitive with
dense periodic points and strongly multi-sensitive, but not totally transitive.

Example 3.5. There is P ⊂ N such that the spacing shift (ΣP , σP ) is strongly
multi-sensitive, but not totally transitive and hence not (a, b)-transitive for all a, b ∈
N.

Construction of Example 3.5. Put P = mN for some m > 1. Then
(ΣP , σP ) is transitive and contains dense periodic points by [6, Theorem 2.7]. As-
sume the contrary that it is (a, b)-transitive for some a, b ∈ N. It is totally transitive
by Theorem 3.4, and hence weakly mixing, since it has dense periodic points. But
P is not thick, which is a contradiction.

Next we claim that (ΣP , σP ) is a-sensitive for any vector a = (a1, a2, · · · , ar) ∈
Nr, r ∈ N, and hence strongly multi-sensitive. It is enough to consider opene sets
[wi]P , where wi ∈ Lk(ΣP ), i = 1, 2, · · · , r. There are integers 0 ≤ bi ≤ m − 1
and n > k such that wi0

ain+bi−k1 ∈ L(ΣP ). Clearly wi0
∞ ∈ [wi]P therefore

diam(σain[wi]P ) ≥ 1
2m for all i = 1, 2, · · · , r. Indeed (ΣP , σP ) is (a1, a2, · · · , ar)-

sensitive. �
If a spacing shift (ΣP , σP ) is (a1, a2, · · · , ar)-transitive, then for any opene sets

U1, · · · , Ur there are k, l ∈ N with k < l and words wi ∈ Lk(ΣP ) such that [wi]P ⊂
Ui and σlai

P [wi]P ∩ [1]P �= ∅ for each i = 1, · · · , r. But clearly also wi0
∞ ∈ Ui, which

proves the following.

Proposition 3.6. If a spacing shift (ΣP , σP ) is (a1, a2, · · · , ar)-transitive, then
(ΣP , σP ) is (a1, a2, · · · , ar)-sensitive.

The above Proposition gives a clue how to construct a weakly mixing system
which is (1, 2, · · · ,m− 1)-sensitive but not (1, 2, · · · ,m− 1,m)-sensitive.

Example 3.7. For each m ∈ N \ {1}, there is P ⊂ N such that the spacing
shift (ΣP , σP ) is weakly mixing and (1, 2, · · · ,m−1)-sensitive but not (1, 2, · · · ,m−
1,m)-sensitive.

Construction of Example 3.7. Fix each m ∈ N \ {1}. Let P =
∞⋃
k=1

B(k),

where B(k) = {m2k−1,m2k−1 + 1, · · · ,m2k − 1}. Then P ⊂ N is thick, and hence
the spacing shift (ΣP , σP ) is weakly mixing. Moreover, (ΣP , σP ) is (1, 2, · · · ,m−1)-
transitive by [16, Theorem 9], thus is (1, 2, · · · ,m−1)-sensitive by Proposition 3.6.

We claim that (ΣP , σP ) is not (1, 2, · · · ,m−1,m)-sensitive. To prove it, fix any

k and let δk = ( 12 )
m2k−1. Put s = m2k − 2, w = 10s1 and let U = [w]P . Suppose

there is u ∈ N large enough such that {u, 2u, · · · ,mu} ⊂ NσP
(U, δk). Then, by the
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Figure 1. First two steps of construction in Example 3.8

definition of P , for each i = 1, 2, · · · ,m, there are ki ∈ N and 0 ≤ si ≤ m2k − 1
satisfying

m2ki−1 ≤ iu+ si ≤ m2ki − 1,

m2ki−1 ≤ iu+ si − (m2k − 1) ≤ m2ki − 1.

Thus all ki must be equal. As a consequence, there exists an integer t such that
u ≥ m2t−1 and mu ≤ m2t − 1 which is impossible. Indeed, the claim holds. �

In the following we construct a minimal system which is (1, 2)-sensitive but
not (1, 2, 3)-sensitive. However, due to technical difficulties, it seems not easy to
generalize it for the general case of (1, 2, · · · ,m)-sensitivity.

Example 3.8. There is a minimal system (X,T ) which is (1, 2)-sensitive but
not (1, 3)-sensitive and hence not (1, 2, 3)-sensitive.

Construction of Example 3.8. The required system is a modification of
the well-known Auslander-Floyd system (for Auslander-Floyd system see for exam-
ple [3, Page 24]).

In what follows by “rectangle” we mean a closed rectangle in the plane with
sides parallel to the axes. If B is a rectangle, say B = [a, a + h] × [b, b + k], then
h(B) denotes the union of 4 disjoint rectangles h(B) = B0 ∪ B1 ∪ B2 ∪ B3, where
B0 = [a, a+h

7 ]×[b, b+
k
2 ], B1 = [a+ 2h

7 , a+ 3h
7 ]×[b, b+k], B2 = [a+ 4h

7 , a+ 5h
7 ]×[b, b+k]

and B3 = [a+ 6h
7 , a+h]×[b+ k

2 , b+k]. If K =
n⋃

i=1

Bi is a disjoint union of rectangles,

then we define h(K) =
n⋃

i=1

h(Bi).

Now, let B(0) = [0, 1]× [0, 1], and define inductively B(k+1) = h(B(k)) for each
k ∈ N0. First two steps of this construction are depicted on Figure 1.

Let h(B(0)) = B
(1)
0 ∪ B

(1)
1 ∪ B

(1)
2 ∪ B

(1)
3 ⊂ B(0), where rectangles are labeled

from left to right. Similarly, h(B
(1)
a1 ) = B

(2)
a1,0
∪B

(2)
a1,1
∪B

(2)
a1,2
∪B

(2)
a1,3
⊂ B

(1)
a1 , where
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labeling is again from left to right. We extend the construction inductively, putting

h(B
(k)
a1,··· ,ak) = B

(k+1)
a1,··· ,ak,0

∪B
(k+1)
a1,··· ,ak,1

∪B
(k+1)
a1,··· ,ak,2

∪B
(k+1)
a1,··· ,ak,3

⊂ B
(k)
a1,··· ,ak ,

where as before, labeling of rectangles is from left to right.

Let X =
∞⋂
k=1

B(k). Since B(k), k ∈ N is a decreasing sequence of nonempty

compact sets, X is a nonempty compact metric space, which consists of vertical line
segments, some of which are degenerate (that is, are singletons). A homeomorphism

T : X → X is defined by permuting the rectangles B
(k)
a1,··· ,ak

. The permutations

of labels are defined by B
(k)
a1,··· ,ak

→ B
(k)
b1,··· ,bk where (b1, · · · , bk) = (a1, · · · , ak) +

(1, 0, · · · , 0) and the addition is with “carry”. These permutations define maps from
∞⋂
k=1

B
(k)
a1,··· ,ak to

∞⋂
k=1

B
(k)
b1,··· ,bk provided the intersection is a single point. If these sets

are non-degenerate vertical line segments, we map the first of them linearly onto the
second. Thus the map T constructed by the above procedure is a homeomorphism
permuting the vertical segments.

In fact, (X,T ) is a minimal t.d.s. which is an almost one-to-one extension of
the 4-adic adding machine. We are going to show that t.d.s. (X,T ) has all of the
claimed properties.

Step 1. Firstly we prove that (X,T ) is (1, 2)-sensitive.

Claim 1. For every cylinder B
(k)
a1,··· ,ak

there is m ∈ N such that for each j ∈ {1, 2}
there are b1, · · · , bk ∈ {1, 2} such that T jm(B

(k)
a1,··· ,ak

) = B
(k)
b1,··· ,bk .

Proof of Claim 1. We define integers mi for i = 1, · · · , k in the following
way:

mi =

⎧⎪⎨⎪⎩
4i−1, ai = 0

0, ai ∈ {1, 2}
4k − 4i−1, ai = 3

.

Then for each j = 1, 2 and all c1, · · · , ck ∈ {0, 1, 2, 3} we have

T jmi(B
(k)
c1,··· ,ci−1,ai,ci+1,··· ,ck) =

⎧⎪⎨⎪⎩
B

(k)
c1,··· ,ci−1,j,ci+1,··· ,ck , ai = 0

B
(k)
c1,··· ,ci−1,ai,ci+1,··· ,ck , ai ∈ {1, 2}

B
(k)
c1,··· ,ci−1,3−j,ci+1,··· ,ck , ai = 3

.

Now put m = m1 + · · ·+mk. By the above observation we easily see that for each
j = 1, 2 there are b1, · · · , bk ∈ {1, 2} such that

T jm(B
(k)
a1,··· ,ak) = T jm2+···+jmk(T jm1(B

(k)
a1,··· ,ak))

= T jm3+···+jmk(T jm2(B
(k)
b1,a2,··· ,ak

)) = · · ·

= T jmk(B
(k)
b1,··· ,bk−1,ak

) = B
(k)
b1,··· ,bk .

This finishes the proof of Claim 1. �

Let C
(k)
a1,··· ,ak = B

(k)
a1,··· ,ak ∩ X. By the above claim for any C

(k)
a1,··· ,ak there

exists m ∈ N such that for each i = 1, 2 there are b1, · · · , bk ∈ {1, 2} such that

T imC
(k)
a1,··· ,ak

= C
(k)
b1,··· ,bk . Since diam(C

(k)
b1,··· ,bk) ≥ 1 once all b1, · · · , bk belong to

{1, 2}, we see that m ∈ NT (C
(k)
a1,··· ,ak

, 12 ) ∩ NT 2(C
(k)
a1,··· ,ak

, 1
2 ). Note that (X,T ) is
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a minimal t.d.s. which is an almost one-to-one extension of the adding machine,
by [22, Lemma 6.3], for any opene set U there are k and a1, · · · , ak such that

C
(k)
a1,··· ,ak ⊂ U , which implies NT (U,

1
2 ) ∩NT 2(U, 12 ) �= ∅. Now applying Lemma 3.3

one has that (X,T ) is a (1, 2)-sensitive system.

Step 2. Next we show that (X,T ) is not (1, 3)-sensitive and hence not (1, 2, 3)-
sensitive.

Denote by #(•) the cardinality of a set •, and for each m ∈ N let

Am = {B(4m+2)
b1,··· ,b4m+2

: bi ∈ {0, 1, 2, 3} and #({i : bi ∈ {0, 3}}) ≤ m}.

Claim 2. There exists no k ∈ N such that {T kB
(4m+2)
0,··· ,0 , T 3kB

(4m+2)
0,··· ,0 } ⊂ Am.

Proof of Claim 2. Suppose that there exists k ∈ N such that T jkB
(4m+2)
0,··· ,0 =

B
(4m+2)

aj
1,··· ,a

j
4m+2

∈ Am for some indexes aji ∈ {0, 1, 2, 3} and both j ∈ {1, 3}. Since

aji ∈ {0, 1, 2, 3} and #({i : aji ∈ {0, 3}}) ≤ m for both j ∈ {1, 3}, there exists l ∈
{1, · · · , 2m, 2m+ 1} such that aj2l−1, a

j
2l ∈ {1, 2} for both j ∈ {1, 3}. Note that for

each j ∈ {1, 3}, from the above construction one has jk =
4m+2∑
i=1

4i−1aji (mod 44m+2)

and hence jk =
2l∑
i=1

4i−1aji (mod 42l). Then there exists d ∈ {0, 1, 2} such that

3(a12l−1 + 4a12l) + d ≡ a32l−1 + 4a32l(mod 42). However:

(1) if a12l−1 = 1, a12l = 1, then 3(a12l−1 + 4a12l) = 15;

(2) if a12l−1 = 2, a12l = 1, then 3(a12l−1 + 4a12l) = 18;

(3) if a12l−1 = 1, a12l = 2, then 3(a12l−1 + 4a12l) = 27;

(4) if a12l−1 = 2, a12l = 2, then 3(a12l−1 + 4a12l) = 30.

For all of the above cases, there are no d ∈ {0, 1, 2} and a32l−1, a
3
2l ∈ {1, 2} which

satisfy the required condition. This finishes the proof of Claim 2. �

Observe from the construction of Am that diam(B
(4m+2)
b1,··· ,b4m+2

) ≤ 1
2m for any

B
(4m+2)
b1,··· ,b4m+2

�∈ Am, thus if we put Vm = B
(4m+2)
0,··· ,0 ∩X then

NT (Vm,
1

2m
) ∩NT 3(Vm,

1

2m
) = ∅.

This shows, by the arbitrariness of m ∈ N, that (X,T ) is not (1, 3)-sensitive. �

Based on Example 3.7 and Example 3.8, it is natural to expect a construction of
a minimal weakly mixing system which is (1, 2)-sensitive but not (1, 2, 3)-sensitive.
While, the following Corollary 3.10 shows that it cannot be done. It also explains
why we build Example 3.8 over an odometer, blowing up some fibers.

Lemma 3.9. Let (X,T ) be a minimal t.d.s. If the extension φ : (X,T ) →
(Xeq, Teq) is not almost one-to-one, then (X,T ) is strongly multi-sensitive.

Proof. Applying [13, Theorem 3.1] and [12, Theorem 4.2] to the assumptions,
there exists δ > 0 such that, for any opene set U , the set NT (U, δ) is thickly
syndetic and hence NT i(U, δ) is also thickly syndetic for each i ∈ N. Note that
the intersection of finitely many thickly syndetic sets is also thickly syndetic, from
which we obtain easily that (X,T ) is strongly multi-sensitive. �
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Since it is trivial the maximal equicontinuous factor (Xeq, Teq) of any weakly
mixing t.d.s. (X,T ), i.e., Xeq is a singleton, as a direct corollary of Lemma 3.9 one
has:

Corollary 3.10. Any nontrivial minimal weakly mixing system is strongly
multi-sensitive.

4. Weak mixing and Δ-transitivity

In this section we prove that, for a vector a = (a1, · · · , ar) ∈ Nr with a1 <
· · · < ar and r ≥ 2, Δ-a transitivity implies weak mixing if and only if the vector
a has dependent increments, which follows from Theorem 4.2 and Theorem 4.4.

The concepts of Δ-transitivity and vectors having dependent increments are
presented as follows. According to our knowledge, Δ-transitivity was introduced
first by Moothathu in [19].

Definition 4.1. Let a = (a1, a2, · · · , ar) be a vector in Nr with r ∈ N and
a1 < a2 < · · · < ar, and put a0 = 0. We say that

(1) a t.d.s. (X,T ) is Δ-a-transitive if there is a point x ∈ X such that
(x, x, · · · , x) is a transitive point of the system (Xr, T (a)).

(2) the vector a has dependent increments if r ≥ 2 and there exists 0 ≤ i1 <
i2 ≤ i3 < i4 ≤ r such that ai4 − ai3 = ai2 − ai1 .

The easier direction is the following Theorem 4.2.

Theorem 4.2. Suppose that (X,T ) is a Δ-a-transitive t.d.s., where a =
(a1, a2, · · · , ar) ∈ Nr, r ∈ N has dependent increments. Then (X,T ) is weakly
mixing.

Proof. Recall that by convention a0 = 0. As (X,T ) is Δ-a-transitive, by
[8, Proposition 5.3], for any opene sets U0, U1, · · · , Ur, there exists n ∈ N with⋂r

i=0 T
−naiUi �= ∅. Since a has dependent increments, there exists 0 ≤ i1 < i2 ≤

i3 < i4 ≤ r such that ai4 − ai3 = ai2 − ai1 and denote C = ai2 − ai1 . Then
Ui1 ∩ T−nCUi2 �= ∅ and Ui3 ∩ T−nCUi4 �= ∅, thus (X,T ) is weakly mixing. �

In order to prove the harder direction, i.e., Theorem 4.4, we will need the
following technical Lemma 4.3, whose proof relies on the ideas of [16, Lemma 7
and Theorem 8].

We say that a finite set S ⊂ N is q-dispersed, where q ≥ 2, if for every a, b ∈
S ∪ {0} we have either a = b or |a− b| ≥ q.

Lemma 4.3. Let a = (a1, a2, · · · , ar) be a vector in Nr with r ∈ N and a1 <
a2 < · · · < ar, which does not have dependent increments. Assume that A ⊂ N is
an M -dispersed finite set where M ≥ 2. Then there exists an M -dispersed finite
set B containing A such that, min(B \ A) ≥ M + k where k = max A + 1, and
for any (r+1)-tuple of words u0, u1, · · · , ur from Lk(ΣB), there is n ∈ N such that⋂r

i=0 σ
−nai

B ([ui]B) �= ∅.

Proof. Let m = #(Lk(ΣA))
r+1, i.e., the cardinality of the set of all possible

(r + 1)-tuples of words from Lk(ΣA). We enumerate all members of this set as a
list U1, · · · , Um. Hence, each U j is an ordered list of (r + 1)-tuples of words from
Lk(ΣA), say U j = (uj,0, uj,1, · · · , uj,r). Choose l1, · · · , lm ∈ N such that

l1 ≥ 2k +M − 1 and lj+1 ≥ (ar + 1)lj for all j = 2, · · · ,m− 1.
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For each 1 ≤ i ≤ r and 1 ≤ j ≤ m, let bi = ai − ai−1 (recall a0 = 0) and denote

tj = uj,00
b1lj−kuj,10

b2lj−kuj,2 · · · 0brlj−kuj,r.

We put B =
m⋃
j=1

Sp(tj). Recall that k = max A + 1. Thus if n ∈ A then n < k,

and so u = 10n−110k−n−1 is well defined and clearly u ∈ Lk(ΣA), which implies
A ⊂ B, because U j = (u, 0k, · · · , 0k) for some j. Let E = {aj −ai : 0 ≤ i < j ≤ r}.
Then every element in E has a unique representation, since the vector a does not
have dependent increments. For each j, by the definition of tj we see that

Sp(tj) \A ⊂
⋃
i∈E

Cj
i , where Cj

i = [ilj − k + 1, ilj + k − 1] ∩ N for each i ∈ E.

Thus min(B \ A) ≥ l1 − k + 1 ≥ M + k, and then min B = min A ≥ M . We
will show that, if r ∈ B \ A, then there are unique indexes j(r), i(r) such that

r ∈ Sp(tj(r)) and r ∈ C
j(r)
i(r) . First observe that for any j′ > j and b ∈ E we have

blj′ − k ≥ blj+1 − k ≥ b(ar + 1)lj − k ≥ arlj + k

≥ (b1 + . . .+ br + 1)lj + k = |tj |

and therefore min(Sp(tj
′
) \A) > max(Sp(tj) \A). This shows that j(r) is uniquely

determined. Similarly, if i′ > i then

i′lj − k + 1 ≥ ilj + l1 − k + 1 ≥ ilj + k +M > ilj + k − 1

which shows min(Cj
i′) > max(Cj

i′) and therefore i(r) is also unique.

Now for any (r + 1)-tuple of words u0, u1, · · · , ur from Lk(ΣB), we are go-
ing to find n ∈ N such that

⋂r
i=0 σ

−nai

B ([ui]B) �= ∅. In fact, Lk(ΣB) = Lk(ΣA),
since min(B \ A) ≥ M + k and A ⊂ B. Thus there exists j such that U j =
(uj,0, uj,1, · · · , uj,r) = (u0, u1, · · · , ur), and then by the construction tj =
u00

b1lj−ku10
b2lj−ku2 · · · 0brlj−kur ∈ L(ΣB), which implies

tj0∞ ∈
r⋂

i=0

σ
−ailj
B ([uj ]B) �= ∅.

Finally we show that B is M -dispersed. It suffices to prove |q − p| ≥M for all
q, p ∈ B with q �= p. The case that both p and q belong to A is clear, since A is
M -dispersed. The case that one of p, q belongs to A and the other belongs to B \A
follows from the fact that min(B \ A) ≥ M + k > M +max A. Now we consider
the remaining case that both p and q belong to B \ A. There are three sub-cases
according to j(p), i(p) and j(q), i(q).

Case I: j(p) �= j(q). Without loss of generality we assume j(q) > j(p), and
then

q ≥ lj(q) − k + 1 ≥ (ar + 1)lj(p) − k + 1

≥ arlj(p) + l1 − k + 1 ≥ arlj(p) + k +M ≥ p+M.

Case II: j(p) = j(q) = j, but i(p) �= i(q). Similarly we may assume i(q) > i(p),
thus

q ≥ i(q)lj − k + 1 ≥ (i(p) + 1)lj − k + 1

≥ i(p)lj − k + 1 + l1 ≥ i(p)lj + k +M ≥ p+M.
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Case III: j(p) = j(q) (= j) and i(p) = i(q) (= i). For each r ∈ {p, q}, we define

s(r) = min{s : (tj)s = (tj)s+r = 1}.
Clearly, either s(p) �= s(q), or s(p)+p �= s(q)+q. Let c = |(s(p)+p)−(s(q)+q)| and
d = |s(p)− s(q)|. Since a does not have dependent increments, by the construction
of tj we have c, d ∈ A ∪ {0}. Thus if c = d �= 0, then |q − p| = 2d ≥ 2M ; and if
c �= d, then |q − p| ≥ |c− d| ≥M . This finishes the proof. �

Now we are ready to prove the following result.

Theorem 4.4. Let a = (a1, a2, · · · , ar) be a vector in Nr with r ∈ N and
a1 < a2 < · · · < ar, which does not have dependent increments. Then there exists
P ⊂ N such that the spacing shift (ΣP , σP ) is Δ-a-transitive but not weakly mixing.

Proof. Fix any integer M ≥ 2 and let P0 = {M}. Define inductively a
sequence Pn ⊂ N, n ∈ N, where each Pn is provided by Lemma 4.3 for A = Pn−1

and M . Define P =
∞⋃

n=0
Pn.

By the construction P0 ⊂ P1 ⊂ P2 · · · , we have |p− q| ≥ M for every distinct
p, q ∈ P . In particular, P ⊂ N is not thick, and so the spacing shift (ΣP , σP ) is not
weakly mixing.

Now consider any opene sets U0, U1, · · · , Ur ⊂ ΣP . Clearly there exists k =
max Pl+1 (for some l ∈ N) and words u0, u1, · · ·ur ∈ Lk(ΣP ) such that [ui]P ⊂ Ui

for all i = 0, 1, · · · , r. Note that min (Pl+1 \Pl) ≥M + k by Lemma 4.3, and hence
u0, u1, · · ·ur ∈ Lk(ΣPl+1

), applying again Lemma 4.3 we may choose n ∈ N such
that

r⋂
i=0

σ−ain
P (Ui) ⊃

r⋂
i=0

σ−ain
P ([ui]P ) ⊃

r⋂
i=0

σ−ain
Pl+1

([ui]Pl+1
) �= ∅.

Thus the spacing shift (ΣP , σP ) is Δ-a-transitive. �

5. Multi-ergodicity

By a measurable dynamical system (m.d.s. for short) we mean a quadruple
(X,B, μ, T ), where (X,B, μ) is a Lebesgue space and T : (X,B, μ)→ (X,B, μ) is a
measure-preserving invertible transformation. Recall that a m.d.s. (X,B, μ, T ) is
weakly mixing if the product m.d.s. (X,B, μ, T )× (X,B, μ, T ) is ergodic.

Note that ergodic theory and topological dynamics exhibit a remarkable paral-
lelism. It is natural to introduce for measurable dynamical systems a notion similar
to multi-transitivity, which we call it multi-ergodicity as follows.

Definition 5.1. Let a = (a1, a2, · · · , ar) ∈ Nr, r ∈ N. We say that a m.d.s.
(X,B, μ, T ) is

(1) a-ergodic if the product m.d.s.
r∏

i=1

(X,B, μ, T ai) is ergodic.

(2) strongly multi-ergodic if it is a-ergodic for any vector a ∈ Nn, n ∈ N.

Though in [16] Kwietniak and Oprocha showed that in general there is no
connection between multi-transitivity and weak mixing, Moothathu proved that
for a minimal system multi-transitivity is equivalent to weak mixing [19]. And so
we may ask how about the relationship between multi-ergodicity and weak mixing
for measurable dynamical systems.
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Before proceeding, we need the following result from topological dynamics,
which was proved firstly for the vector (1, 2) by Moothathu [19]. Note that though
the following result holds for t.d.s. with a general compact Hausdorff space, we will
only present its proof in the compact metrizable setting.

Lemma 5.2. Let (X,T ) be a minimal t.d.s. and a, b ∈ N. If the product t.d.s.
(X × X,T a × T b) is transitive, then (Xeq, Teq) is a trivial system, i.e., Xeq is a
singleton.

Proof. Since (Xeq, Teq) is a minimal equicontinuous t.d.s., there is an equiva-
lent metric on Xeq, denoted still be d without any confusion, under which Teq is an
isometry [2]. For simplicity of notation denote S = Teq. Since (Xeq×Xeq, S

a×Sb)
is transitive, there exists (y1, y2) ∈ Xeq × Xeq with a dense orbit for Sa × Sb in
Xeq ×Xeq.

Now fix each x ∈ Xeq and any ε > 0. There are n,m1,m2 > 0 such that

d(Sany1, y1) < ε, d(Sbny2, Sy2) < ε, d(Sm1x, y1) < ε, d(Sm2x, y2) < ε.

Then

d(x, Sanx) = d(Sm1x, Sm1Sanx)

≤ d(Sm1x, y1) + d(y1, S
any1) + d(Sany1, S

anSm1x) < 3ε

and

d(Sx, Sbnx) = d(Sm2+1x, Sm2Sbnx)

≤ d(Sm2+1x, Sy2) + d(Sy2, S
bny2) + d(Sbny2, S

bnSm2x) < 3ε.

We obtain d(Sabnx, x) < 3bε and d(Sabnx, Sax) < 3aε, which gives d(x, Sax) <
3(a+ b)ε. Since x and ε are arbitrary, the transformation Sa is the identity map.
But (Xeq, S

a) is a transitive t.d.s., one has that Xeq must be a singleton. �

Let (X,B, μ, T ) be a m.d.s. It is well known that there exists a T -invariant
σ-algebra Kμ ⊂ B such that L2(X,Kμ, μ) is exactly the closure in L2(X,B, μ) of
linear span of

{f ∈ L2(X,B, μ) : ∃λ ∈ C s.t. f ◦ T = λf}
(see for example [23, Theorem 7.1]). Furthermore, (X,B, μ, T ) has discrete spec-
trum if and only if Kμ = B; and is weakly mixing if and only if Kμ is trivial, i.e.,
Kμ = {∅, X}. In particular, (X,Kμ, μ, T ) has discrete spectrum. We are reluctant
to present definition of discrete spectrum for a m.d.s., and we refer the reader to
[21] for more details.

Proposition 5.3. Let (X,B, μ, T ) be a m.d.s. and a, b ∈ N. If (X ×X,B ×
B, μ× μ, T a × T b) is ergodic, then (X,B, μ, T ) is weakly mixing.

Proof. Since (X,B, μ, T a) is ergodic, (X,B, μ, T ) is also ergodic, and hence
the above-mentioned m.d.s. (X,Kμ, μ, T ) is ergodic and has discrete spectrum. By
the well-known Halmos-von Neumann Representation Theorem (see for example
[10] or [21, Theorem 3.6]), we may view (X,Kμ, μ, T ) as (G,C, ν, S), where (G,S)
is a minimal rotation over a compact abelian metric group with C and ν its Borel
σ-algebra and its normalized Haar measure, respectively. In particular, (G,S) is a
minimal equicontinuous t.d.s.

As (X × X,B × B, μ × μ, T a × T b) is ergodic, one has similarly that (G ×
G,C × C, ν × ν, Sa × Sb) is also ergodic, and then the t.d.s. (G × G,Sa × Sb) is
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transitive. Therefore by Lemma 5.2 we have that G is a singleton (note that it is
itself the maximal equicontinuous factor of (G,S)). Equivalently, Kμ is trivial, and
so (X,B, μ, T ) is weakly mixing. �

Now we are ready to present the main result of this section that multi-ergodicity
and weak mixing are equivalent for a m.d.s.

Theorem 5.4. Let (X,B, μ, T ) be a m.d.s. The following conditions are equiv-
alent:

(1) (X,B, μ, T ) is weakly mixing.
(2) (X ×X,B×B, μ× μ, T a × T b) is ergodic for some a, b ∈ N.
(3) (X,B, μ, T ) is strongly multi-ergodicity.

Proof. The implication (2) ⇒ (1) follows from Proposition 5.3. The implica-
tion (3) ⇒ (2) is trivial. Now let us prove (1) ⇒ (3). We assume that (X,B, μ, T )
is weakly mixing, and let a = (a1, a2, · · · , ar) ∈ Nr, r ∈ N. We need to show that
r∏

i=1

(X,B, μ, T ai) is ergodic.

We prove it by induction for r ∈ N. Note that by [9, Proposition 4.7], the m.d.s.
(X,B, μ, T k) is weakly mixing and hence ergodic for each k ∈ N, which finishes the

proof for the case of r = 1. Now assume that
r∏

i=1

(X,B, μ, T ai) is ergodic, and let

ar+1 ∈ N. Since (X,B, μ, T ar+1) is weakly mixing, applying [9, Proposition 4.5] the

product system
r+1∏
i=1

(X,B, μ, T ai) is also ergodic, which ends the proof. �
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Convergence of zeta functions for
amenable group extensions of shifts

Richard Sharp

Dedicated to the memory of Sergiy Kolyada

Abstract. The aim of this paper is show how zeta functions for amenable

group extensions of subshifts of finite type may be approximated by rescaled
zeta functions for a sequence of subshifts of finite type whose states are deter-
mined by a Følner exhaustion of the group. In particular, this recovers a result
of Guido, Isola and Lapidus for graphs, and, by using weighted zeta functions,
extends it to metric graphs.

1. Introduction

A classical object attached to a finite graph X is its Ihara zeta function

(1.1) ζX(z) =
∏
γ

(1− z|γ|)−1,

where γ runs over the prime closed geodesics of X and |γ| denotes the length of the
geodesic. (Here, a closed geodesic is a closed path in X, with no backtracking or
tail, modulo cyclic permutation. It is prime if it traverses its image exactly once.
Its length is the number of edges forming the path.) The product converges for |z|
sufficiently small and extends to a rational function, which may be expressed as a
determinant in various ways. See [21] for an account of this theory.

Recently, there has also been considerable interest in the analogous theory for
infinite graphs, particularly those which occur as covers of finite graphs [3–5,9–11,
15]. It is clear that, in this case, a näıve definition analogous to (1.1) does not work,
since, for example, if one considers an infinite regular cover of a finite graph then
any prime closed geodesic will have infinitely many translates with the same length.
It is these covers that we will be concerned with and a natural way to proceed is to
define a zeta function relative to the cover, i.e. to take a product over prime closed
geodesics in the cover modulo the action of the covering group. An alternative
approach, discussed in [9], is to define the zeta function for the cover as a limit
of normalised zeta functions for finite graphs. For example, if the covering group
is residually finite, then one might consider the zeta functions of finite subcovers.
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On the other hand, if the covering group is amenable, then one might consider
finite graphs associated to an exhausting Følner sequence. This second situation
is studied in [11], where it is shown that, in an appropriate disk, the normalised
zeta functions for a Følner sequence converge to the zeta function for the infinite
graph relative to the covering. The aim of this note is to extend this result to zeta
functions for certain dynamical systems; precisely, amenable group extensions of
subshifts of finite type. We are also able to consider weighted zeta functions and
hence, as an application, zeta functions for metric graphs.

We will now describe our set-up in more detail. Let S be a finite set of states
with the discrete topology and let A be a #S ×#S zero-one matrix indexed by S.
We then define

Σ =
{
(xn)

∞
n=0 ∈ SZ

+

: A(xn, xn+1) = 1 ∀n ≥ 0
}

with the subspace topology, where SZ+

has the product topology, making Σ totally
disconnected. If we let σ : Σ → Σ denote the left shift map then the pair (Σ, σ)
is called a subshift of finite type and we call A the transition matrix. (Strictly
speaking, (Σ, σ) is a one-sided subshift of finite type and there is a corresponding
two-sided subshift of finite type defined on the corresponding subset of SZ. However,
as we are only interested in periodic orbits, it is no restriction to limit ourselves to
the one-sided case.) We will also assume that σ : Σ→ Σ is topologically transitive,
which is equivalent to the requirement that, for each (i, j) ∈ S × S, there is an
n = n(i, j) ≥ 1 such that An(i, j) > 0.

We say that a periodic orbit τ = {x, σx, . . . , σn−1x}, with σnx = x, is prime
if σmx �= x for 1 ≤ m < n and write |τ | = n. Let P(σ) denote the set of prime
periodic orbits of σ. We define the Artin–Mazur zeta function for σ to be the
function

(1.2) ζσ(z) :=
∏

τ∈P(σ)

(1− z|τ |)−1 = exp

∞∑
n=1

#{x ∈ Σ : σnx = x}
n

zn.

(The equality of the two expressions is a standard result.) This function converges
for |z| < exp(−h(σ)), where h(σ) is the topological entropy of σ, and has a rational
extension to the whole complex plane given by

(1.3) ζσ(z) =
1

det(I − zA)
.

We now consider extensions by countable amenable groups. (In fact, we will
only consider finitely generated groups.) There are numerous equivalent definitions
of amenability. We shall use the convenient characterisation, due to Følner [8], that
a countable group G is amenable if for every finite set F ⊂ G and every ε > 0,
there exists a finite set K ⊂ G such that #(F'Fg) < ε#F , for all g ∈ F .

Let G be a finitely generated amenable group (with the discrete topology) and
suppose that we are given a continuous function ψ : Σ → G. Since G is discrete,
the continuity of ψ implies that ψ is locally constant, i.e. that there exists N ≥ 1
such that ψ(x) = ψ(x0, x1, . . . , xN−1), for x = (xi)

∞
i=0 ∈ Σ. The following standard

recoding allows us to assume the N = 2. We can define a new subshift of finite
type (Σ′, σ′) with state set

S ′ := {(i0, i1, . . . , iN−2) ∈ SN−1 : A(in, in+1) = 1, n = 0, . . . , N − 3}
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and transition matrix A′ given by

A′((i0, . . . , iN−2), (j0, . . . , jN−2)) =

⎧⎪⎨⎪⎩
1 if jn = in+1, n = 0, . . . , N − 3,

and A(iN−2, jN−2) = 1,

0 otherwise.

Then the map ((i0, . . . , iN−2), (i1, . . . , iN−1), . . .) → (i0, i1, . . .) from Σ′ to Σ is a
topological conjugacy and, in particular, we may identify the two sets of periodic
orbits. Furthermore, the conjugacy takes ψ to a function on Σ′ that depends on
two co-ordinates. Therefore, in what follows, it is no loss of generality to suppose
that ψ : Σ→ G depends on only two co-ordinates.

The function ψ defines a skew product extension Tψ : Σ×G→ Σ×G by

Tψ(x, g) = (σx, gψ(x)).

We will always assume that Tψ is topologically transitive, which, in particular,
implies that Ψ = {ψ(i, j) : i, j ∈ S, A(i, j) = 1} is a generating set for G, i.e. that
every element of G may be written as a product of elements of Ψ and their inverses.

The map Tψ : Σ×G→ Σ×G is itself a countable state subshift with infinite
transition matrix A, indexed by S ×G, defined by

A((i, g), (j, h)) =

{
1 if A(i, j) = 1 and h = gψ(i, j),

0 otherwise.

We note that Tn
ψ (x, g) = (x, g) if and only if σnx = x and

ψn(x) := ψ(x)ψ(σx) · · ·ψ(σn−1x) = e,

the identity in G. In particular, Tn
ψ (x, g) = (x, g) for some g ∈ G if and only if

Tn
ψ (x, g) = (x, g) for all g ∈ G.

As for σ, we write P(Tψ) for the set of prime Tψ-periodic orbits. (Note that
if Tn

ψ (x, g) = (x, g) then σnx = x but that, if G has torsion, the periodic orbit

{x, σx, . . . , σn−1} is not necessarily prime.) The group G acts transitively on P(Tψ)
and we write PG(Tψ) = P(Tψ)/G. For [τ ] ∈ PG(Tψ), we write |[τ ]| = |τ |, for any
τ ∈ [τ ]; clearly, this is well-defined. The (Artin–Mazur) zeta function for Tψ is
defined in this setting to be
(1.4)

ζTψ
(z) =

∏
[τ ]∈PG(Tψ)

(1− z|[τ ]|)−1 = exp
∞∑
n=1

#{x ∈ Σ : σnx = x, ψn(x) = e}
n

zn.

An alternative definition for the zeta function of an infinite graph appears in
the work of Chinta, Jorgenson and Karlsson [2]. This is obtained by restricting to
closed paths based at a given vertex. The natural analogue for Tψ is to set, for
a ∈ S,

ζ
(a)
Tψ

(z) = exp
∞∑

n=1

#{x ∈ Σ : σnx = x, x0 = a, ψn(x) = e}
n

zn.

The radius of convergence of all these functions may be given in terms of the Gurevič
entropy hGur(Tψ) of Tψ [12]. This is defined by

hGur(Tψ) = lim sup
n→∞

1

n
#{x ∈ Σ : σnx = x, x0 = a, ψn(x) = e},
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(which is independent of the choice of a by transitivity) and so we see that each

ζ
(a)
Tψ

(z) has radius of convergence exp(−hGur(Tψ)). Since

#{x ∈ Σ : σnx = x, x0 = a, ψn(x) = e} ≤ #{x ∈ Σ : σnx = x, ψn(x) = e}

≤
∑
a∈S

#{x ∈ Σ : σnx = x, x0 = a, ψn(x) = e},

ζTψ
(z) has the same radius of convergence.

Remark 1.1. It is interesting to compare the radii of convergence of ζσ(z)
and ζTψ

(z). As a direct consequence of the definitions of topological entropy and
Gurevič entropy, it is clear that hGur(Tψ) ≤ h(σ), and so the radius of convergence
of ζTψ

(z) is at least as large as the radius of convergence of ζσ(z). The question of
when we have equality reduces to a question about the skew product induced by
Tψ on Σ×Gab, where Gab := G/[G,G] is the abelianisation of G. More precisely,
let π : G → Gab be the natural projection and define ϕ : Σ → Gab by ϕ = π ◦ ψ.
This induces a skew product Tϕ : Σ × Gab → Σ × Gab. Since G is amenable,
hGur(Tψ) = hGur(Tϕ) [7]. This means we need to compare h(σ) with hGur(Tϕ). If
Gab is finite then it is trivial that hGur(Tϕ) = h(σ). On the other hand, if Gab is
infinite then it is a finite extension of Zd, for some d ≥ 1, and we can factor out
the finite group to get a function ϕ0 : Σ → Zd. This in turn gives a skew product
Tϕ0

: Σ × Zd → Σ × Zd with hGur(Tϕ0
) = hGur(Tϕ). Finally, it follows from the

results of [17] that hGur(Tϕ0
) = h(σ) if and only if

∫
ϕ0 dμ0 = 0, where μ0 is the

measure of maximal entropy for σ.

We now wish to consider finite approximations to Tψ, obtained by restricting
to a (large) finite subset of G. More precisely, if K is a finite subset of G then we
may obtain a subshift of finite type by restricting A to S ×K, i.e. we consider the
finite matrix AK , indexed by S × K and defined by AK((i, g), (j, h)) = 1 if and
only if A((i, g), (j, h)) = 1. We write σK : ΣK → ΣK for the subshift of finite type
with transition matrix AK and ζσK

(z) for the associated zeta function.
We say that a sequence of finite sets Kn ⊂ G, n ≥ 1, is a Følner exhaustion of

G if

(FE1)
⋃∞

n=1 Kn = G;
(FE2) Kn ⊂ Kn+1, for all n ≥ 1; and
(FE3)

lim
n→∞

#(Kn'Kng)

#Kn
= 0,

for all g ∈ G.

It is easy to see that amenability is equivalent to the existence of a sequence sat-
isfying (FE2) and (FE3). Moreover, it is well-known that the sequence can also
be chosen to satisfy (FE1) (see, for example, Theorem 6.2 of [11], applied to the
action of G on its own Cayley graph, for a proof). Thus G is amenable if and only
if it admits a Følner exhaustion.

We have the following convergence result.

Theorem 1.2. Let σ : Σ→ Σ be a subshift of finite type and let Tψ : Σ→ G→
Σ × G be a topologically transitive skew product extension, where G is a finitely
generated amenable group. Suppose that Kn, n ≥ 1 is a Følner exhaustion of G.
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Then we have
ζTψ

(z) = lim
n→∞

ζσKn
(z)1/(#Kn),

uniformly on compact subsets of {z ∈ C : |z| < (2‖A‖)−1}, where ‖A‖ is the oper-
ator norm of A acting on �2(S ×G).

Remark 1.3. We note that ‖A‖ ≤
√
drdc, where

dr = max
i∈S

∑
j∈S

A(i, j) and dc = max
j∈S

∑
i∈S

A(i, j),

i.e. dr and dc are, respectively, the maximum row and column sums of A. See
Lemma 4.1 for a proof.

I am grateful to Stephen Cantrell for his comments on a draft version of this pa-
per. I am also grateful to the referee for numerous suggestion which have improved
the presentation.

2. Graphs

In this section, we show how zeta functions for graphs may be interpreted in
the framework of the preceding section and compare our results with those of [11].
Let X be a finite connected graph with vertex set V (X) and edge set E(X). (We
allow loops and multiple edges.) A closed geodesic is a closed path in X, with no
backtracking or tail, modulo cyclic permutation, and a closed geodesic is prime if it
traverses its image exactly once. The Ihara zeta function ζX(z) is defined by (1.1)
and extends to a rational function via the determinant formula of Bass [1] (see also
[14,21]):

(2.1) ζX(z) = (1− z2)χ(X) det(I − zM + z2(D − I))−1,

where χ(X) is the Euler characteristic of X, M is the adjacency matrix (i.e. for
vertices u, v, M(u, v) is the number of oriented edges from u to v), and D is the
diagonal matrix with entries given by the degrees of the vertices.

Another approach to ζX(z) is through subshifts of finite type, as follows. Each
edge in E(X) comes with two orientations and we will write E(X)o for the set of
oriented edges. If e ∈ E(X)o then we will write o(e) and t(e), respectively, for the
initial and terminal vertices of e, and e for the edge with the opposite orientation.
Now consider the space

Σ(X) =
{
(en)

∞
n=0 ∈ (E(X)o)Z

+

: t(en) = o(en+1), en+1 �= en ∀n ≥ 0
}

together with the shift map σ : Σ(X)→ Σ(X) defined by σ((en)
∞
n=0) = (en+1)

∞
n=0.

Clearly, σ : Σ(X)→ Σ(X) is a subshift of finite type with state set S = E(X)o.
The map κe = e is a fixed point free involution on S. Furthermore, if A denotes

the transition matrix for this subshift then A(i, j) = 1 if and only if A(κj, κi) = 1.
Using this symmetry, it is easy to see that dr = dc. Moreover, we have

dr = max
v∈V (X)

deg(v)− 1.

It is clear that closed geodesics of length n in X correspond exactly to periodic
orbits of period n for σ and, hence, ζX(z) = ζσ(z). This gives an alternative
expression for ζX(z) as a determinant, given by (1.3) above.

Now suppose that we have an infinite graph Y , with vertices V (Y ) and edges
E(Y ), which is a regular cover of X with covering group G. (Since G is a quotient
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of the fundamental group of X, which is a finitely generated free group, G is
automatically finitely generated.) As a natural extension of the finite case, one
can define a zeta function

ζY (z) =
∏
[γ]

(1− z|γ|)−1,

where now [γ] runs over equivalence classes prime closed geodesics of Y modulo the
G-action and |γ| denotes the length of any geodesic in [γ]. (This is the function
defined in Definition 2.1 of [11]. The situation there is actually a little more general,
as they allow covers which are not regular but require that vertex stabilisers are
finite.) We claim that this zeta function is equal to ζTψ

(z), for some skew product
Tψ : Σ(X)×G→ Σ(X)×G.

The skewing function ψ is defined in the following way. For each vertex v ∈
V (X), choose a fixed lift ṽ ∈ V (Y ). We then have the following lemma.

Lemma 2.1. For each e ∈ E(X)o, there is a unique g = g(e) ∈ G such that, if

ẽ is a lift of e with o(ẽ) = õ(e) · h, then t(ẽ) = t̃(e) · gh.

Proof. First, let ẽ be the lift of e with o(ẽ) = õ(e) and define g ∈ G by

t(ẽ) = t̃(e) · g. If ẽ′ is another lift of e then it is the translate of ẽ by some h ∈ G

and we have o(ẽ′) = õ(e) · h and t(ẽ′) = t̃(e) · gh. �

We now define ψ : Σ(X)→ G by ψ((en)
∞
n=0) = g(e0).

Lemma 2.2. A closed geodesic γ in X, corresponding to a periodic σ-orbit
τ = {x, σx, . . . , σn−1x}, lifts to a closed geodesic in Y if and only if ψn(x) = e.

Proof. Suppose x = (en)
∞
n=0. We will treat the vertex v := o(e0) as the initial

point of γ. Let γ̃ be the lift of γ that starts at ṽ. By Lemma 2.1, γ̃ ends at ṽ ·ψn(x)
and is thus closed if and only if ψn(x) = e. �

We conclude from this that ζY (z) = ζTψ
(s) and hence the conclusion of The-

orem 1.2 holds for ζY (z), provided G is amenable. More precisely, we have the
following.

Theorem 2.3. Let X be a finite connected graph and let Y be an infinite
regular cover of X with amenable covering group G. Suppose that Kn be a Følner
exhaustion of G and let F ⊂ Y be a fundamental domain for the G-action. Let Xn

denote the finite graph

Xn =
⋃

g∈Kn

F · g.

Then

ζY (z) = lim
n→∞

ζXn
(z)1/(#Kn),

uniformly on compact subsets of {z ∈ C : |z| < (2‖A‖)−1}.

This result already appeared as Theorem 6.6 of [11] except that there the
convergence takes place for

|z| < 1

d+
√
d2 + 2(d− 1)

,
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where d := maxv∈V (X) deg(v). Since

1

d+
√
d2 + 2(d− 1)

≤ 1

2d
=

1

2(dr + 1)
<

1

2dr
≤ 1

2‖A‖ ,

where we have used ‖A‖ ≤
√
drdc = dr, we see that our approach gives a slightly

larger disk of convergence.

Remark 2.4. We end the section by noting two other different approaches
to zeta function for infinite graphs. In [6], Deitmar considers the following zeta
function. Let Y be an infinite graph with edge set E(Y ). Let w : E(Y ) →
R+ satisfy w ∈ �1(E(Y )). For a closed geodesic γ = e0e1 · · · en−1, set w(γ) =
w(e0)w(e1) · · ·w(en−1) Then one can define

ζY,w(z) =
∏
γ

(
1− w(γ)z|γ|

)−1

,

where the product is taken over prime closed geodesics. This weighting gives rise
to a trace class operator on �2(Eo) and hence to an expression for ζY,w(z) as a de-
terminant (Theorem 1.6 of [6]). The special case where w is the indicator function
of a finite set K ⊂ G gives ζσK

. It is interesting to ask whether one can obtain
convergence results analogous to Theorem 1.2 for as sequence wn ∈ �1(E(Y )) in-
creasing pointwise to 1 (i.e. for each e ∈ E(Y ), wn(e) is a sequence increasing to
1).

The recent paper of Lenz, Pogorzelski and Schmidt [15] gives a very general
approach based on noncommutative geometry.

3. Weighted Zeta Functions and Metric Graphs

In this section, we will introduce generalisations of the zeta functions ζσ(z)
and ζTψ

(z) which involve a weighting. This will give functions of two variables and
we shall show that convergence results similar to Theorem 1.2 hold for these more
general objects. As an application, this will give a convergence result for metric
graphs, analogous to Theorem 2.3.

We start with generalising the zeta function ζσ(z) by introducing a weighting.
Let f : ΣA → R be a strictly positive function satisfying f(x) = f(x0, x1). We can
then consider a zeta function depending on two complex variables:

ζσ,f (z, s) = exp
∞∑

n=1

zn

n

∑
σnx=x

e−sfn(x).

(This is just a special case of the generalised zeta functions introduced by Ruelle
and much studied in dynamics; see, for example, [16,18,19].) The series converges
to give an analytic function for

|z| < exp(−P (−Re(s)f, σ)),
where P (·, σ) is the standard pressure function [16, 19]. Furthermore, ζσ,f (z, s)
extends to C2 by the formula

ζσ,f (z, s) =
1

det(I − zAs)
,

where As is the matrix

As(i, j) = A(i, j)e−sf(i,j).
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We may generalise ζTψ
(z) in the same way and define

(3.1) ζTψ,f (z, s) = exp
∞∑

n=1

zn

n

∑
σnx=x
ψn(x)=e

e−sfn(x).

The domain of convergence of this function may be given in terms of the Gurevič
pressure introduced by Sarig [20]. If we induce a function f̃ : Σ × G → R by

f̃(x, g) = f(x) then its Gurevič pressure PGur(f̃ , Tψ) is defined by

PGur(f̃ , Tψ) = lim sup
n→∞

1

n
log

∑
σnx=x
ψn(x)=e

ef
n(x).

(This definition does not require f to be positive.) Then ζTψ,f (z, s) converges to
an analytic function in (z, s) for

|z| < exp(−PGur(−Re(s)f̃ , Tψ)).

Let A be the infinite matrix

As((i, g), (j, h)) = A((i, g), (j, h))e−sf(i,j),

which also acts as a bounded operator on �2(S×G). (The proof that As is bounded
is given below as part of the proof of Lemma 4.1.) If K is a finite subset of G then
we can define a finite matrix AK,s and a zeta function ζσKn ,f (z, s) in the obvious
way.

We have the following convergence result, which includes Theorem 1.2 as a
special case.

Theorem 3.1. Let σ : Σ→ Σ be a subshift of finite type and let Tψ : Σ→ G→
Σ × G be a topologically transitive skew product extension, where G is a finitely
generated amenable group. Suppose that Kn, n ≥ 1 is a Følner exhaustion of G.
Then we have

ζTψ,f (z, s) = lim
n→∞

ζσKn ,f (z, s)
1/(#Kn),

uniformly on compact subsets of {(z, s) ∈ C2 : |z| < (2‖As‖)−1}.

As a corollary of this theorem, we have a similar convergence result for the zeta
function of a metric graph. Let X be a finite graph, as the previous section, but we
now suppose that each edge e ∈ E(X) is given a positive real length l(e). Thinking
of the lengths as a function l : E(X) → R+, we call the resulting object a metric
graph (X, l). If γ = e0, . . . , en−1 is a closed geodesic then its length is

l(γ) = l(e0) + · · ·+ l(en−1)

(where the length of an oriented geodesic is the length of the corresponding unori-
ented edge). We can then define the zeta function

ζ(X,l)(s) =
∏
γ

(
1− e−sl(γ)

)−1

,

where again the product is taken over prime closed geodesics. Now let Y be a
regular G cover of X, where G is an (infinite) amenable group. The lengths on X
lift to Y to give a metric graph (Y, l) and we define the zeta function ζ(Y,l)(s) by
using the prime closed geodesics on Y modulo the G-action. We can write these
zeta functions in terms of zeta functions for the shift and the skew product ψ as
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in the previous section, with the lengths corresponding to a weight f defined by
f(e0, e1) = l(e0). We then have the following result.

Theorem 3.2. Let (X, l) be a finite connected metric graph and let (Y, l) be
an infinite regular cover of (X, l) with amenable covering group G. Suppose that
Kn is a Følner exhaustion of G and let F ⊂ Y be a fundamental domain for the
G-action. Let Xn denote the finite graph

Xn =
⋃

g∈Kn

F · g.

Then

ζ(Y,l)(s) = lim
n→∞

ζ(Xn,i)(s)
1/(#Kn),

uniformly on compact subsets of {s ∈ C : ‖As‖ < 1/2}.

4. Traces

Let Tr and det denote the usual trace and determinant of a finite matrix. It is
easy to see that

#{x ∈ Σ : σnx = x} = Tr(An)

and hence we have the standard results that

log ζσ(z) =

∞∑
n=1

zn

n
Tr(An) =

∞∑
n=1

1

n

∑
λ∈spec(A)

(λz)n

= −
∑

λ∈spec(A)

log(1− zλ)

and

ζσ(z) =
1

det(I − zA)
.

Similar formulae hold for ζσK
(z) for any finite subset K ⊂ G.

Consider the Hilbert space

H = �2(S ×G) =

⎧⎨⎩u : S ×G→ C :
∑

(i,g)∈S×G

|u(i, g)|2 <∞

⎫⎬⎭ ,

with the inner product

〈u, v〉 =
∑

(i,g)∈S×G

u(i, g)v(i, g),

and its space of bounded linear operators B(H). We will write δ(i,g) for the element
of H which is equal to one at (i, g) and zero elsewhere.

We need to extend the notion of trace to this setting. Let T ∈ B(H) be

compact. As usual, |T | =
√
T ∗T and T is said to be trace class if

Tr(|T |) :=
∑

(i,g)∈S×G

〈|T |δ(i,g), δ(i,g)〉

is finite. In this case, we can define the trace of T to be

Tr(T ) =
∑

(i,g)∈S×G

〈Tδ(i,g), δ(i,g)〉
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and we have

(4.1) |Tr(T )| ≤ Tr(|T |).
Furthermore, we have that the trace class operators form a two-sided ideal in B(H)
and that, for S1, S2, T ∈ B(H) with T trace class, we have

(4.2) |Tr(S1TS2)| ≤ ‖S1‖‖S2‖Tr(|T |).
There is a natural representation of λ : G → B(H) given by λ(g)u(i, h) =

u(i, g−1h). Clearly,
〈λ(g)u, λ(g)v〉 = 〈u, v〉,

for all g ∈ G and u, v ∈ �2(S × G). Let A = {λ(g) : g ∈ G}′, i.e. the elements of
B(H) which commute with the representation.

Lemma 4.1. For each s ∈ C, As ∈ A and ‖As‖ ≤
√
drdce

−Re(s)η(s), where

η(s) =

{
min{f(i, j) : A(i, j) = 1} if Re(s) ≥ 0

max{f(i, j) : A(i, j) = 1} if Re(s) < 0.

Proof. For v ∈ �2(S ×G),

‖Asv‖22=
∑

(i,g)∈S×G

|Asv(i, g)|2=
∑

(i,g)∈S×G

∣∣∣∣∣∣
∑

(j,h)∈S×G

e−sf(i,j)A((i, g), (j, h))v(j, h)

∣∣∣∣∣∣
2

≤ e−2Re(s)η(s)
∑

(i,g)∈S×G

∣∣∣∣∣∣
∑

(j,h)∈S×G

A((i, g), (j, h))v(j, h)

∣∣∣∣∣∣
2

= e−2Re(s)η(s)
∑

(i,g)∈S×G

∣∣∣∣∣∣
∑
j∈S

A(i, j)v(j, gψ(i, j))

∣∣∣∣∣∣
2

≤ e−2Re(s)η(s)
∑

(i,g)∈S×G

⎛⎝∑
j∈S

A(i, j)

⎞⎠⎛⎝∑
j∈S

A(i, j)|v(j, gψ(i, j))|2
⎞⎠

≤ dre
−2Re(s)η(s)

∑
i∈S

∑
j∈S

∑
g∈G

A(i, j)|v(j, gψ(i, j))|2

≤ drdce
−2Re(s)η(s)‖v‖22,

where we have used that A(i, j)2 = A(i, j), which shows that As is bounded and
gives the estimate on the norm.

Also

(Aλ(g))v(i, h) =
∑

(j,h′)∈S×G

A((i, h), (j, h′))(λ(g)v)(j, h′)

=
∑

(j,h′)∈S×G

A((i, h), (j, h′))v(j, g−1h′) = (λ(g)A)v(i, h),

so As ∈ A. �

The algebra A admits a finite trace TrG defined by

TrG(T ) =
∑
i∈S

〈Tδi,e, δi,e〉.
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For any set K ⊂ G, write Π(K) ∈ B(H) for the orthogonal projection onto the
subspace �2(S ×K) and Π(K)⊥ = Π(G \K) for the projection onto the orthogonal
complement. We note the following simple lemma.

Lemma 4.2. Let K be a finite subset of G. Then, for any T ∈ A, we have

Tr(Π(K)TΠ(K)) = #KTrG(T ).

Proof. The result follows from a direct calculation. We have,

Tr(Π(K)TΠ(K)) =
∑

(i,g)∈S×G

〈
Π(K)TΠ(K)δ(i,g), δ(i,g)

〉
=

∑
(i,g)∈S×K

〈
Π(K)Tδ(i,g), δ(i,g)

〉

=
∑

(i,g)∈S×K

〈
Π(K)

⎛⎝ ∑
(i′,g′)∈S×G

〈
Tδ(i′,g′), δ(i,g)

〉
δ(i′,g′)

⎞⎠ , δ(i,g)

〉

=
∑

(i,g)∈S×K

〈⎛⎝ ∑
(i′,g′)∈S×K

〈
Tδ(i′,g′), δ(i,g)

〉
δ(i′,g′)

⎞⎠ , δ(i,g)

〉

=
∑

(i,g)∈S×K

〈
Tδ(i,g), δ(i,g)

〉
=

∑
(i,g)∈S×K

〈
Tλ(g)δ(i,e), λ(g)δ(i,e)

〉
=

∑
(i,g)∈S×K

〈
λ(g)Tδ(i,e), λ(g)δ(i,e)

〉
= #K

∑
i∈S

〈
Tδ(i,e), δ(i,e)

〉
= #KTrG(T ),

where the penultimate line uses that T ∈ A. �

5. Proof of Theorem 1.2

In this final section, we complete the proof of Theorem 1.2. Let Kn, n ≥ 1, be
a Følner exhaustion of G. By Lemma 4.2, we have

log ζTψ,f (z, s) =
∞∑
k=1

zk

k
TrG(Ak

s) =
∞∑
k=1

zk

k

Tr(Π(Kn)Ak
sΠ(Kn))

#Kn
,

for any n ≥ 1. We observe that

Tr(Ak
Kn,s) = Tr(Π(Kn)AsΠ(Kn))

k)

and so we want to estimate

Tr(Π(Kn)Ak
sΠ(Kn))− Tr((Π(Kn)AsΠ(Kn))

k).
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To simplify formulae, write Πn = Π(Kn) and Π⊥
n = Π(G \ Kn). Then, for

k ≥ 2,

Tr(ΠnAk
sΠn) = Tr

(
Πn(As(Πn +Π⊥

n ))
kΠn

)
= Tr((ΠnAsΠn)

k) +
∑

σ∈{⊥,1}k−1

σ 
=(1,1,...,1)

Tr

⎛⎝Πn

k−1∏
j=1

(AsΠ
σj
n )AsΠn

⎞⎠ .

Consider the terms in the sum on the right-hand side and noting that, since σ �=
(1, 1, . . . , 1), the product

Πn

k−1∏
j=1

(AsΠ
σj
n )AsΠn

contains at least one term of the form ΠnAsΠ
⊥
n . Using (4.2), we have the estimate∣∣∣∣∣∣Tr

⎛⎝Πn

k−1∏
j=1

(AsΠ
σj
n )AsΠn

⎞⎠∣∣∣∣∣∣ ≤ ‖As‖k−1Tr(|ΠmAsΠ
⊥
n |).

Furthermore, from the definition of As,

Π(Kn)AsΠ(G \Kn) = Π(Kn)AsΠ(Ωn),

where

Ωn ⊂
⋃

A(i,j)=1

Kn'Knψ(i, j),

and so

Tr(|ΠnAsΠ
⊥
n |) = Tr(|ΠnAsΠ(Ωn)|) ≤ ‖As‖Tr(Π(Ωn)) = ‖As‖#Ωn.

Combining these estimates, we have the following.

Lemma 5.1. For any k ≥ 2 and n ≥ 1, we have

|Tr(Π(Kn)Ak
sΠ(Kn))− Tr((Π(Kn)AsΠ(Kn))

k)| ≤ (2k−1 − 1)‖As‖k#Ωn.

We now complete the proof of Theorem 1.2. By Lemma 5.1, we see that∣∣∣∣ 1

#Kn
log ζσKn

(z)− log ζTψ
(z)

∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

zk

k

Tr((Π(Kn)AsΠ(Kn))
k)

#Kn
−

∞∑
k=1

zk

k

Tr(Π(Kn)Ak
sΠ(Kn))

#Kn

∣∣∣∣∣
≤
( ∞∑

k=1

2k−1zk‖As‖k
k

)
#Ωn

#Kn
.

The series in k converges for

|z| < 1

2‖As‖
and limn→∞ #Ωn/#Kn = 0 by (FE3). Hence we have ζσKn ,f (z, s)

1/#Kn converges
to ζTψ,f (z, s) uniformly on compact subsets of this disk. This completes the proof.
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Abstract. This paper is a survey devoted to the study of probability and
infinite ergodic invariant measures for aperiodic homeomorphisms of a Can-
tor set. We focus mostly on the cases when a homeomorphism has either a
unique ergodic invariant measure or finitely many such measures (finitely er-
godic homeomorphisms). Since every Cantor dynamical system (X,T ) can
be realized as a Vershik map acting on the path space of a Bratteli diagram,
we use combinatorial methods developed in symbolic dynamics and Bratteli
diagrams during the last decade to study the simplex of invariant measures.
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1. Introduction

In this survey, we focus on a classical problem of ergodic theory: for a given
dynamical system (X,ϕ), determine the set M(X,ϕ) of invariant measures (by
which we will always mean Borel positive measures in the finite case and Borel
positive σ-finite measures in the infinite case). In this generality, the problem is
too complicated. To make it more precise, we will consider only aperiodic Cantor
dynamical systems, i.e., aperiodic homeomorphisms ϕ of a Cantor set X. There are
many natural examples of such systems including subshifts in symbolic dynamics.
We will discuss the significant progress which was made during the last decade in
this direction.

Because the problem of finding invariant measures for transformation arises
in various areas of mathematics, we hope that this survey may be interesting not
only for experts working in the ergodic theory but also for mathematicians who are
interested in applications of these results. We included necessary definitions and
formulated the most important facts to make this text as much self-contained as
possible. We begin with the necessary background.

Let (X,ϕ) be a topological dynamical system, i.e., ϕ is a homeomorphism of
a compact metric space X. A Borel positive measure μ on X is called invariant
if μ(ϕ(A)) = μ(A) for any Borel set A. By the Kakutani–Markov theorem, such
a measure always exists. The set of all probability invariant measures M(X,ϕ)
is a Choquet simplex (see [Phe01]). Let E(X,ϕ) denote the subset of extreme
points of the simplex M(X,ϕ). It is known that this set is formed by ergodic
measures for ϕ. By definition, a measure μ is called ergodic if ϕ(A) = A implies
that either μ(A) = 0 or μ(X \ A) = 0. The cardinality of the set E(X,ϕ) can
be either any positive integer, or ℵ0, or continuum. If |E(X,ϕ)| = 1, then ϕ is
called uniquely ergodic. If |E(X,ϕ)| = k, k ∈ N, then ϕ is called finitely ergodic.
The reader can find more information in numerous books on ergodic theory and
topological dynamics, we mention in this connection the books [CFS82], [Pet89],
and [Wal82].

The question about a complete (or even partial) description of the simplex
M(X,ϕ) of invariant probability measures for (X,ϕ) is one of the most impor-
tant in ergodic theory. It has a long history and many remarkable results. The
cardinality of the set of ergodic measures is an important invariant of dynamical
systems. The study of relations between the properties of the simplex M(X,ϕ)
and those of the dynamical system (X,ϕ) is a hard and intriguing problem. There
is an extensive list of references regarding this problem, we mention here only the
books [Phe01], [Gla03] and the papers [Dow91], [Dow06], [Dow08] for further
citations. In particular, it is important to know conditions under which a system
(X,ϕ) is uniquely ergodic or has a finite number of ergodic measures.

We recall that the simplex M(X,ϕ) plays an important role in classification
problems. In particular, it is a complete invariant for orbit equivalence of minimal
homeomorphisms of a Cantor set [GPS95].

The problem of finding invariant measures of a dynamical system (X,ϕ) looks
rather vague in general setting. There are very few universal results that can be
applied to an arbitrary homeomorphism ϕ. A very productive idea is to replace
(X,ϕ) by an isomorphic model (XB, ϕB) for which the computation of invariant
measures is more transparent. To study invariant measures for a Cantor system
(X,ϕ), we will work with Bratteli diagrams, the object that is widely used for
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constructions of transformation models in various dynamics, see Section 2 for def-
initions. It is difficult to overestimate the significance of Bratteli diagrams for the
theory of dynamical systems. A class of graduated infinite graphs, later called Brat-
teli diagrams, was originally introduced by Bratteli [Bra72] in his breakthrough
article on the classification of approximately finite C∗-algebras.

It turned out that the ideas developed by Vershik in ergodic theory [Ver81],
[Ver82] found their application in Cantor dynamics. It was proved in [HPS92],
that any minimal homeomorphisms ϕ of a Cantor set X can be represented as a
homeomorphism ϕB (called Vershik map) acting on the path space XB of a Bratteli
diagram B. The dynamical systems obtained in this way are called Bratteli–Vershik
dynamical systems. Later on, this approach was realized for non-minimal Cantor
dynamical systems [Med06] and Borel automorphisms of a standard Borel space
[BDK06].

The literature devoted to Cantor dynamical systems is very extensive. We do
not plan to discuss many interesting directions such as the classification of home-
omorphisms up to orbit equivalence, dimension groups, the interplay of Cantor
dynamical systems and C∗-algebras, etc. The reader, who is interested in this sub-
ject, can be referred to the recent surveys and books [Ska00], [Put10], [Dur10],
[BK16], [Put18] and the research papers [GPS95], [GPS99], [GMPS10],
[DHS99] (more references can be found in the cited surveys).

The main reason why Bratteli diagrams are convenient to use for the study
of homeomorphisms ϕ : X → X is the fact that various properties of ϕ become
more transparent when one deals with the corresponding Bratteli–Vershik dynam-
ical systems. This observation is related first of all to ϕ-invariant measures and
their supports, to minimal components of ϕ, structure of ϕ-orbit, etc. In partic-
ular, the study of an ergodic ϕ-invariant measure μ is reduced, roughly speaking,
to the computation of the values of μ on cylinder subsets in the path space of the
corresponding Bratteli diagram. In other words, the structure of a Bratteli dia-
gram determines completely the invariant measures. In this case we should speak
about the invariance with respect to the tail equivalence relation because there are
Bratteli diagrams that do not admit Vershik maps. We emphasize the difference
between simple and non-simple Bratteli diagrams in this context. For an aperiodic
homeomorphism ϕ, the simplex M(X,ϕ) may contain the so called “regular” infi-
nite measures, i.e., the infinite σ-finite measures that take finite (nonzero) values
on some clopen sets.

We give one more important observation about Bratteli diagrams. They can
be used to construct homeomorphisms of a Cantor set with prescribed properties.
For instance, it is easy to build a diagram that has exactly k ergodic invariant
measures.

A similar picture occurs in symbolic dynamics. Let (X,S) be a subshift, i.e.,
X is a shift invariant closed subset of AZ (in the product topology) where A is a
finite alphabet. Then the combinatorial structure of sequences from the set X can
be used to determine invariant measures. Boshernitzan’s results about the number
of ergodic measures for a minimal subshift give the bounds in terms of the com-
plexity function (see [Bos84]). We see a clear similarity between the application of
Bratteli diagrams and complexity functions to estimate the number of ergodic mea-
sures. This is a reason why we included the recent results extending Boshernitzan’s
approach (see [CK19], [DF17], [DF19] and the references therein).
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In the current paper, we focus on the following problem: how to determine
the number of ergodic measures for a given Cantor dynamical system. We distin-
guish three classes of dynamical systems: uniquely ergodic, finitely ergodic, and
“infinitely ergodic” systems. This problem was considered in symbolic dynamics
for minimal subshifts by many authors (see the references in Sections 2, 4, and 5).

The outline of the paper is as follows. In Section 2, we give necessary def-
initions and facts that are used below in the main text. The key concepts are
Bratteli diagrams (ordered, simple, non-simple, stationary, finite rank, etc), sub-
shifts, complexity functions. Section 3 contains a description of the simplex of
invariant measures in terms of incidence matrices. We also discuss the problem
of measure extension from a subdiagram. In other words, the proved results clar-
ify conditions that would guarantee finiteness of measures invariant with respect
to the tail equivalence relation. In Section 4, we collected results about uniquely
ergodic dynamical systems. These results are formulated either in terms of com-
plexity functions or in terms of Bratteli diagrams. We understand that the variety
of uniquely ergodic transformations is vast, and the included results have been
chosen to illustrate the discussed methods. In the next section, we consider the
results about dynamical systems that have finitely many ergodic measures. For
us, the most important sources of examples are stationary and finite rank Bratteli
diagrams. In the last section, Setion 6, we consider a class of Bratteli diagrams
that have countably many ergodic invariant measures. In the paper, the reader will
find a big number of explicit examples to visualize the principal theorems.

2. Basics on Cantor dynamics and Bratteli diagrams

This section contains the basic definitions and facts about topological (in par-
ticular, Cantor) dynamical systems. Most of the definitions can be found in the well
known books on topological and symbolic dynamics, we refer to [LM95], [Kit98],
[Køu03].

2.1. Cantor dynamical systems. ACantor set (space) X is a zero-dimen-
sional compact metric space without isolated points. The topology on X is gener-
ated by a countable family of clopen subsets. All such Cantor sets are homeomor-
phic.

For a homeomorphism T : X → X, denote OrbT (x) := {Tn(x) | n ∈ Z}; the set
OrbT (x) is called the orbit of x ∈ X under the action of T (or simply T -orbit). We
consider here mostly aperiodic homeomorphisms T , i.e., for every x the set OrbT (x)
is countably infinite.

A homeomorphism T : X → X is called minimal if for every x ∈ X the orbit
OrbT (x) is dense. Any (aperiodic) homeomorphism T of a Cantor set has a minimal
component: this is a T -invariant closed non-empty subset Y of X such that T |Y is
minimal on Y .

There are several natural notions of equivalence for Cantor dynamical systems.
We give the definitions of conjugacy and orbit equivalence for single homeomor-
phisms of Cantor sets.

Definition 2.1. Let (X,T ) and (Y, S) be two Cantor systems. Then
(1) (X,T ) and (Y, S) are conjugate (or isomorphic) if there exists a homeomor-

phism h : X → Y such that h ◦ T = S ◦ h.
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(2) (X,T ) and (Y, S) are orbit equivalent if there exists a homeomorphism
h : X → Y such that h(OrbT (x)) = OrbS(h(x)) for every x ∈ X. In other words,
there exist functions n,m : X → Z such that for all x ∈ X, h ◦ T (x) = Sn(x) ◦ h(x)
and h ◦ Tm(x) = S ◦ h(x).

Let B be the Borel σ-algebra generated by clopen subsets of X. We consider
only Borel positive measures on (X,B). A measure μ is called probability (finite)
if μ(X) = 1 (μ(X) < ∞). Similarly, μ is infinite if μ(X) = ∞. In the latter, we
assume that μ is a σ-finite measure. Note, that the infinite σ-finite measures that
appear as ergodic invariant measures for aperiodic homeomorphisms of a Cantor
set can take finite values on some clopen sets and infinite values on other clopen
sets, and these measures are not outer regular (see [BKMS10,BKMS13,Kar12a,
Kar12b]). Given a Cantor dynamical system (X,T ), a Borel measure μ on X is
called T -invariant if μ(TA) = μ(A) for any A ∈ B. A measure μ is called ergodic
with respect to T if, for any T -invariant set A, either μ(A) = 0 or μ(X \A) = 0.

Let M(X,T ) be the set of all T -invariant probability measures. It is well
known that M(X,T ) is a Choquet simplex whose extreme points are exactly T -
ergodic measures. Denote by E(X,T ) the set of extreme points (ergodic measures)
in M(X,T ). If M(X,T ) = {μ}, then T is called uniquely ergodic. Clearly, in this
case |E(X,T )| = 1 where | · | denotes the cardinality of a set. If |E(X,T )| = k <∞,
we say that (X,T ) is finitely ergodic.

If two systems, (X,T ) and (Y, S), are orbit equivalent, then the corresponding
homeomorphism between X and Y (see Definition 2.1) induces the homeomorphism
between the sets M(X,T ) and M(Y, S) (see for instance [GPS95,GPS99]).

2.2. Languages on finite alphabets and complexity. In this subsection,
we recall some definitions from symbolic dynamics. This material can be found in
many books, see e.g. [LM95].

Let A be a finite alphabet, then a word w = a1 · · · ak in this alphabet is a
concatenation of letters ai in A. The length |w| is the number of letters in w. Let
An denote the set of words over A of length n. Then, by A∗ =

⋃∞
n=1An, we denote

the set of all finite nonempty words. It is said that a word w = a1 · · · ak occurs in
a word u = b1 · · · bs if a1 = bm, ..., ak = bm+k−1. The word w is called a subword
(or factor) of u.

A language L can be determined in the abstract setting as follows.

Definition 2.2. A set L of finite words on an alphabet A is called a language
if:

(i) A ⊂ L,
(ii) for any word w from L, all subwords w′ of w belong to L (the language is

factorial);
(iii) for any word w ∈ L, there exist letters a and b such that awb ∈ L (the

language is extendable).

Let Ln = An ∩ L denote the set words in the language L of length n.
A language L is called recurrent if for any u, v ∈ L there exists a word w ∈ L

such that uwv ∈ L, and L is called uniformly recurrent if for every u ∈ L there
exists m ∈ N such that u is a subword in every w ∈ Lm. We consider aperiodic
languages only (L is periodic if for every word w = a1 · · · a|w| there exists p ∈ N
such that ai = ai+p where 1 ≤ |w| − p.
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The notion of a language arises naturally in symbolic dynamical systems. We
first note that for every infinite sequence ω ∈ AN of symbols from A, one can define
the language L(ω) determined by ω as the family of all finite subwords that occur
in ω.

One can also define the language of a subshift (X,S) where S : AZ → AZ

denotes the (left) shift, and X is a closed S-subset of AZ. For a subshift (X,S),
we define the language L(X) of (X,S) as the set of all finite words that occur in
the sequences x from X. Clearly, L(X) is a factorial and extendable language.
Conversely, if a language L on a finite alphabet A is defined, then there exists
a subshift (XL, S) whose language coincides with L. Indeed, the set XL is now
determined by those sequences from AZ whose finite subwords belong to L. It is
obvious that

L(XL) = L.
In other words, the map (X,S)→ L(X) is a bijection from the set of subshifts to
the set of non-empty factorial and extendable languages.

The dynamical properties of subshifts (X,S) can be represented in terms of the
corresponding languages. For example, the dynamical system (X,S) is minimal if
and only if the language L(X) is uniformly recurrent. In this case, the language
L(X) coincides with L(ω) where ω is an arbitrary point (sequence) from X. If one
fixes a sequence ω in AN, then the language L(ω) defines a subshift denoted by
(Xω, S).

For every language L, we define the symbolic complexity function pL(n) : N→ N
by setting

pL(n) = |Ln|,
where | · | here stands for the cardinality of the set of words. If the language L
is defined by a sequence u ∈ AZ, then the corresponding complexity function is
denoted by pu(n). Clearly, the complexity function is non-decreasing. Indeed,
since the language L is extendable and factorial, for every word w ∈ Ln there exists
letter b such that wb ∈ L. In terms of the corresponding subshift XL, every word w
of length n occurring in L is a part of an infinite sequence belonging to XL, hence
there exists at least one word of length n+ 1 which contains w as a subword.

Let (X,S) be a minimal subshift on a finite alphabet A. Then the complexity
function pX(n) can be defined either as that of the corresponding language L(X)
or that of an infinite sequence ω ∈ X. In both cases, these functions are the same.

The complexity functions have been studied extensively in many papers devoted
to languages and symbolic dynamical systems, see, e.g. the survey [Fer99] and
the bibliography therein. We mention here several results about the complexity
functions of dynamical systems.

Fact 2.3. (i) [Fer96] Let (Xu, S) and (Xv, S) be symbolic dynamical systems
defined by uniformly recurrent sequences u and v from AN. If (Xu, S) and (Xv, S)
are topologically conjugate, then there exists an integer c such that, for all n > c,

pu(n− c) ≤ pv(n) ≤ pu(n+ c).

(ii) [CH73] Let ω be a sequence in AN. Then ω is ultimately periodic if and
only if there exists n ≥ 1 such that pω(n) ≤ n if and only if there exists n ≥ 1 such
that pω(n) = pω(n+ 1).
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(iii) [Pan84] Let ζ : A → A∗ be a primitive substitution (see Remark 4.5).
Then the complexity function pu(n) of the sequence u = ζ(u) is sublinear, i.e.,
there exists C, a positive constant, such that pu(n) ≤ Cn, for n ≥ 1. Moreover,
the set of differences pu(n+ 1)− pu(n) is bounded [Cas96].

(iv) pu(m+n) ≤ pu(m)pu(n), and the limit limn n
−1 log pu(n) (which therefore

exists by Fekete’s lemma) is the topological entropy of a sequence.
(v) There are sequences u such that pu(n) = n + 1; they are called Sturmian

sequences.

2.3. Ordered Bratteli diagrams and Vershik maps. A Bratteli diagram
is an infinite graph B = (V,E) such that the vertex set V =

⋃
i≥0 Vi and the edge

set E =
⋃

i≥0 Ei are partitioned into disjoint subsets Vi and Ei where

(i) V0 = {v0} is a single point;
(ii) Vi and Ei are finite sets, ∀i ≥ 0;
(iii) there exist r : E → V (range map r) and s : E → V (source map s) such

that r(Ei) = Vi+1, s(Ei) = Vi, and s−1(v) �= ∅, r−1(v′) �= ∅ for all v ∈ V and
v′ ∈ V \ V0.

The set of vertices Vi is called the i-th level of the diagram B. A finite or
infinite sequence of edges (ei : ei ∈ Ei) such that r(ei) = s(ei+1) is called a finite
or infinite path, respectively. For m < n, v ∈ Vm and w ∈ Vn, let E(v, w) denote
the set of all paths e = (e1, . . . , ep) with s(e) = s(e1) = v and r(e) = r(ep) = w.
For a Bratteli diagram B, let XB be the set of infinite paths starting at the top
vertex v0. We endow XB with the topology generated by cylinder sets [e] where
e = (e0, ..., en), n ∈ N, and [e] := {x ∈ XB : xi = ei, i = 0, . . . , n}. With this
topology, XB is a zero-dimensional compact metric space. Indeed, the ultrametric
d generating the topology can be given by the following rule: for two different paths
x = (xi)

∞
i=1 and y = (yi)

∞
i=1 in XB, set

d(x, y) =
1

2n
,

where n = min{i ∈ N : xi �= yi}. By assumption, we will consider only such Bratteli
diagrams B for which XB is a Cantor set, that is XB has no isolated points.

Given a Bratteli diagram B, the n-th incidence matrix Fn = (f
(n)
v,w), n ≥ 0, is a

|Vn+1| × |Vn| matrix such that f
(n)
v,w = |{e ∈ En : r(e) = v, s(e) = w}| for v ∈ Vn+1

and w ∈ Vn. Every vertex v ∈ V is connected with v0 by a finite path, and the set

of E(v0, v) of all such paths is finite. If h
(n)
v = |E(v0, v)|, then, for all n ≥ 1, we

have

(2.1) h(n+1)
v =

∑
w∈Vn

f (n)
v,wh

(n)
w or h(n+1) = Fnh

(n),

where h(n) = (h
(n)
w )w∈Vn

. The numbers h
(n)
w are usually called heights (the terminol-

ogy comes from using the Kakutani–Rokhlin partitions to build a Bratteli–Vershik
system for a homeomorphism of a Cantor space, see below).

We define the following important classes of Bratteli diagrams:

Definition 2.4. Let B be a Bratteli diagram.

(1) We say that B has finite rank if for some k, |Vn| ≤ k for all n ≥ 1.
(2) We say that a finite rank diagram B has rank d if d is the smallest integer

such that |Vn| = d infinitely often.
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. . . . . . . . . . . . . . . .

Figure 1. Example of a Bratteli diagram

(3) We say that B is simple if for any level n there is m > n such that
E(v, w) �= ∅ for all v ∈ Vn and w ∈ Vm. Otherwise, B is called non-
simple.

(4) We say that B is stationary if Fn = F1 for all n ≥ 2.

Let x = (xn) and y = (yn) be two paths in XB. It is said that x and y are
tail equivalent (in symbols, (x, y) ∈ R) if there exists some n such that xi = yi for
all i ≥ n. Since XB has no isolated points, the R-orbit of any point x ∈ XB is
infinitely countable. The diagrams with infinite R-orbits are called aperiodic. Note
that a Bratteli diagram is simple if the tail equivalence relation R is minimal.

In order to illustrate the above definitions, we give an example of a nonsimple
Bratteli diagram (see Figure 1). This diagram is a non-simple finite rank Bratteli
diagram that has exactly two minimal components (they are clearly seen).

We will constantly use the telescoping procedure for a Bratteli diagram:

Definition 2.5. Let B be a Bratteli diagram, and n0 = 0 < n1 < n2 < . . . be a
strictly increasing sequence of integers. The telescoping of B to (nk) is the Bratteli
diagram B′, whose k-level vertex set V ′

k is Vnk
and whose incidence matrices (F ′

k)
are defined by

F ′
k = Fnk+1−1 ◦ . . . ◦ Fnk

,

where (Fn) are the incidence matrices for B.

Roughly speaking, in order to telescope a Bratteli diagram, one takes a subse-
quence of levels {nk} and considers the set E(nk, nk+1) of all finite paths between
the levels {nk} and {nk+1} as edges of the new diagram. In particular, a Bratteli
diagram B has rank d if and only if there is a telescoping B′ of B such that B′

has exactly d vertices at each level. When telescoping diagrams, we often do not



INVARIANT MEASURES FOR CANTOR DYNAMICAL SYSTEMS 267

specify to which levels (nk) we telescope, because it suffices to know that such a
sequence of levels exists.

To avoid consideration of some trivial cases, we will assume that the following
convention always holds: our Bratteli diagrams are not unions of two or more
disjoint subdiagrams.

The concept of an ordered Bratteli diagram is crucial for the existence of dy-
namics on the path space of a Bratteli diagram.

Definition 2.6. A Bratteli diagram B = (V,E) is called ordered if a linear
order ‘>’ is defined on every set r−1(v), v ∈

⋃
n≥1 Vn. We denote by ω the corre-

sponding partial order on E and write (B,ω) when we consider B with the ordering
ω. Let OB denote the set of all orders on B.

Every ω ∈ OB defines the lexicographic order on the set E(k, l) of finite paths
between vertices of levels Vk and Vl: (ek+1, ..., el) > (fk+1, ..., fl) if and only if there
is i with k + 1 ≤ i ≤ l, such that ej = fj for i < j ≤ l and ei > fi. It follows
that, given ω ∈ OB , any two paths from E(v0, v) are comparable with respect to
the lexicographic order generated by ω. If two infinite paths are tail equivalent,
and agree from the vertex v onwards, then we can compare them by comparing
their initial segments in E(v0, v). Thus, ω defines a partial order on XB, where two
infinite paths are comparable if and only if they are tail equivalent.

Definition 2.7. Let (B,ω) be an ordered Bratteli diagram. We call a finite or
infinite path e = (ei) maximal (minimal) if every ei is maximal (minimal) amongst
the edges from the set r−1(r(ei)).

Denote by Xmax(ω) and Xmin(ω) the sets of all maximal and minimal infinite
paths in XB, respectively. It is not hard to see that Xmax(ω) and Xmin(ω) are non-
empty closed subsets of XB; in general, Xmax(ω) and Xmin(ω) may have interior
points. For a finite rank Bratteli diagram B, the sets Xmax(ω) and Xmin(ω) are
always finite for any ω, and if B has rank d, then each of them have at most d
elements ([BKM09]). For an aperiodic Bratteli diagram B, we see that Xmax(ω)∩
Xmin(ω) = ∅.

We say that an ordered Bratteli diagram (B,ω) is properly ordered if the sets
Xmax(ω) and Xmin(ω) are singletons. A Bratteli diagram is called regular if the set
of maximal paths and set of minimal paths have empty interior.

Definition 2.8. Let (B,ω) be an ordered Bratteli diagram. We say that
ϕ = ϕω : XB → XB is a (continuous) Vershik map if it satisfies the following
conditions:

(i) ϕ is a homeomorphism of the Cantor set XB;
(ii) ϕ(Xmax(ω)) = Xmin(ω);
(iii) if an infinite path x = (x0, x1, . . .) is not in Xmax(ω), then ϕ(x0, x1, . . .) =

(x0
0, . . . , x

0
k−1, xk, xk+1, xk+2, . . .), where k = min{n ≥ 1 : xn is not maximal}, xk

is the successor of xk in r−1(r(xk)), and (x0
0, . . . , x

0
k−1) is the minimal path in

E(v0, s(xk)).

If ω is an ordering on B, then one can always define the map ϕ0 that maps
XB \Xmax(ω) onto XB \Xmin(ω) according to (iii) of Definition 2.8. The question
about the existence of the Vershik map is equivalent to that of an extension of
ϕ0 : XB \ Xmax(ω) → XB \ Xmin(ω) to a homeomorphism of the entire set XB.
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If ω is a proper ordering, then ϕω is a homeomorphism. In particular any simple
Bratteli diagram admits a Vershik map.

Definition 2.9. Let B be a Bratteli diagram B. We say that an ordering
ω ∈ OB is perfect if ω admits a Vershik map ϕω on XB. Denote by PB the set of
all perfect orderings on B.

We observe that for a regular Bratteli diagram with an order ω, the Vershik
map ϕω, if it exists, is defined in a unique way. Also, a necessary condition for
ω ∈ PB is that |Xmax(ω)| = |Xmin(ω)|. Given (B,ω) with ω ∈ PB , the uniquely
defined system (XB, ϕω) is called a Bratteli–Vershik or adic system.

We can summarize the above definitions and results in the following statement.

Theorem 2.10. Let B = (V,E, ω) be an ordered Bratteli diagram with a perfect
order ω ∈ PB. Then there exists an aperiodic homeomorphism (Vershik map) ϕω

acting on the path space XB according to Definition 2.8. The homeomorphism ϕω

is minimal if and only if B is simple.

The pair (XB, ϕω) is called a Bratteli–Vershik dynamical system.
The simplest example of a Bratteli diagram is an odometer. Any odometer can

be realized as a Bratteli diagram B with |Vn| = 1 for all n. Then any order on B
is proper and defines the Vershik map.

It is worth noticing that a general Bratteli diagram may have a rather compli-
cated structure. In particular, the tail equivalence relation may have uncountably
many minimal components or, in other words, uncountably many simple subdia-
grams that do not have connecting edges.

The ideas developed in the papers by Vershik [Ver81], [Ver82], where se-
quences of refining measurable partitions of a measure space were used to construct
a realization of an ergodic automorphisms of a measure space, turned out to be
very fruitful for finding a model of any minimal homeomorphism T of a Cantor set
X. In [HPS92], Herman, Putnam, and Skau found an explicit construction that
allows one to define an ordered simple Bratteli diagram B = (V,E, ω) such that
T is conjugate to the corresponding Vershik map ϕω. The authors used the exis-
tence of the first return time map to any clopen set to build the nested sequence
of Kakutani–Rohklin partitions and the corresponding ordered Bratteli diagram.
Since this construction is described in many papers (not only in [HPS92]), we will
not give the details here referring to the original paper and [Dur10] for detailed ex-
planation. The case of aperiodic Cantor system is much subtler and was considered
in [BDM05] and [Med06].

Let (X,T ) be an aperiodic Cantor system. A closed subset Y of X is called
basic if (1) Y ∩ T iY = ∅, i �= 0, and (2) every clopen neighborhood A of Y is a
complete T -section, i.e., A meets every T -orbit at least once. This means that every
point from A is recurrent. It is clear that if T is minimal then every point of X is
a basic set. It was proved in [Med06] that every aperiodic Cantor system (X,T )
has a basic set. This is a crucial step in the proof of the following theorem:

Theorem 2.11. [Med06] Let (X,T ) be a Cantor aperiodic system with a basic
set Y . There exists an ordered Bratteli diagram B = (V,E, ω) such that (X,T ) is
conjugate to a Bratteli–Vershik dynamical system (XB, ϕω). The homeomorphism
implementing the conjugacy between T and ϕω maps the basic set Y onto the set
Xmin(ω) of all minimal paths of XB. The equivalence class of B does not depend
on a choice of {ξ(n)} with the property

⋂
n B(ξ(n)) = Y .
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Is the converse theorem true? In the case of a simple Bratteli diagram, the
answer is obviously affirmative: there exists a proper order ω on any simple Bratteli
diagram B so that (XB, ϕω) is a minimal Cantor system. For general non-simple
Bratteli diagrams the answer is negative. The first example of a Bratteli diagram
that does not admit a Vershik map was found in [Med06]. A systematic study of
this problem is given in [BKY14], [BY17], [JQY17], see also [BK16].

Perfect orderings were also studied in [DK18,DK19]. The approach there
was a bit different: the starting point was the abstract compact invertible zero-
dimensional system (X,T ) and the aim was to find an ordered regular Bratteli
diagram B = (V,E, ω) with the perfect ordering ω such that (XB, ϕω) is topolog-
ically conjugate to (X,T ). Regular perfectly ordered Bratteli diagrams are called
decisive. The following theorem holds.

Theorem 2.12 ([DK19]). A (compact, invertible) zero-dimensional system
(X,T ) is topologically conjugate to a decisive Bratteli–Vershik system (XB, ϕω) if
and only if the set of aperiodic points of (X,T ) is dense, or its closure misses one
periodic orbit.

Notice that in the above theorem the space X can have isolated points. The
proof uses Krieger’s Marker Lemma [Boy83] and representation of (X,T ) as an
array system. Also in [Shi18] a non-trivial Bratteli–Vershik model is built for
every compact metric zero-dimensional dynamical system.

3. Invariant measures on Bratteli diagrams

Since any aperiodic Cantor dynamical system (X,T ) admits a realization as a
Bratteli–Vershik dynamical system (see Section 2), the study of T -invariant mea-
sures is reduced to the case of measures defined on the path space of a Bratteli
diagram. The advantage of this approach is based on the facts that (i) any such
a measure is completely determined by its values on cylinder sets of XB, and (ii)
there are simple and explicit formulas for measures of cylinder sets. This method
is particularly transparent for stationary and finite rank Bratteli diagrams, simple
and non-simple ones [BKMS10], [BKMS13].

It is worth pointing out that the study of measures on a Bratteli diagram is a
more general problem than that in Cantor dynamics. This observation follows from
the existence (mentioned above) of Bratteli diagrams that do not support any con-
tinuous dynamics on their path spaces which is compatible with the tail equivalence
relation. If a Bratteli diagram does not admit a Bratteli–Vershik homeomorphism,
then we have to work with the tail equivalence relationR onXB and study measures
invariant with respect to R.

3.1. Simplices, stochastic incidence matrices, examples. In this sub-
section, we show that the set of all probability invariant measures on a Bratteli
diagram corresponds to the inverse limit of a decreasing sequence of convex sets.
Let μ be a Borel probability non-atomic R-invariant measure on XB (for brevity,
we will use the term “measure on B” below). We denote the set of all such mea-
sures byM1(B) and by E1(B) the set of all ergodic invariant probability measures.
The fact that μ is an R-invariant measure means that μ([e]) = μ([e′]) for any two
cylinder sets e, e′ ∈ E(v0, w), where w ∈ Vn is an arbitrary vertex, and n ≥ 1.
Since any measure on XB is completely determined by its values on clopen (even
cylinder) sets, we conclude that in order to define an R-invariant measure μ, one
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needs to know the sequence of vectors p(n) = (p
(n)
w : w ∈ Vn), n ≥ 1, such that

p
(n)
w = μ([e(v0, w)]) where e(v0, w) is a finite path from E(v0, w). For w ∈ Vn it is

clear that

(3.1) [e(v0, w)] =
⋃

e(w,v),v∈Vn+1

[e(v0, w), e(w, v)],

so that [e(v0, v)] ⊂ [e(v0, w)]. Relation (3.1) implies that

(3.2) F̃T
n p(n+1) = p(n), n ≥ 1,

where F̃T
n denotes the transpose of the incidence matrix F̃n. The entries of the

vectors p(n) can be also found by the formula

p(n)w =
μ(X

(n)
w )

h
(n)
w

,

where

(3.3) X(n)
w =

⋃
e∈E(v0,w)

[e], w ∈ Vn.

The clopen set X
(n)
w is called a tower, since it is the tower in the Kakutani–Rokhlin

partition that corresponds to the vertex w (see Section 2). The measure of this
tower is

(3.4) μ(X(n)
w ) = h(n)

w p(n)w =: q(n)w .

Denote q(n) = (q
(n)
w : w ∈ Vn), n ≥ 1.

Because μ(XB) = 1, we see that, for any n > 1,∑
w∈Vn

h(n)
w p(n)w =

∑
w∈Vn

q(n)w = 1.

We can obtain a formula similar to (3.2), but for q(n) instead of p(n) and stochastic

incidence matrices Fn instead of usual incidence matrices F̃n. The entries of the
row stochastic incidence matrix Fn are defined by the formula

(3.5) f (n)
vw =

f̃
(n)
vw h

(n)
w

h
(n+1)
v

.

Example 3.1 (Equal row sums (ERS) Bratteli diagrams). In this example, we
compute the stochastic incidence matrices for a class of Bratteli diagrams that have
the so called equal row sum (ERS ) property. A Bratteli diagram B has the ERS
property if there exists a sequence of natural numbers (rn) such that the incidence

matrices (F̃n) of B satisfy the condition∑
w∈Vn

f̃ (n)
v,w = rn

for every v ∈ Vn+1. It is known that Bratteli–Vershik systems with the ERS
property can serve as models for Toeplitz subshifts (see [GJ00]). In particular,

we have F̃0 = h
(1)

= (r0, . . . , r0)
T . It follows from (2.1) that, for ERS Bratteli
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diagrams, h
(n)
w = r0 · · · rn−1 for every w ∈ Vn. Hence we have for all n ≥ 1, w ∈ Vn

and v ∈ Vn+1:

f (n)
vw =

f̃
(n)
vw

rn
.

In general, it is difficult to compute the elements of the matrix Fn explicitly

because the terms h
(n)
w used in the formula (3.5) are the entries of the product

of matrices. In Section 4, the reader can find Examples 4.14 and 4.16 of Bratteli
diagrams, for which stochastic incidence matrices are computed explicitly. Some of
the results about the exact number of ergodic invariant measures for a diagram are
formulated in terms of q(n) and Fn (see Sections 5 and 6). It is easy to prove the
following lemma.

Lemma 3.2. Let μ be a probability measure on the path space XB of a Bratteli
diagram B. Let (Fn) be a sequence of corresponding stochastic incidence matrices.

Then, for every n ≥ 1, the vector q(n) = (q
(n)
v : v ∈ Vn) (see ( 3.4)) is a probability

vector such that

(3.6) FT
n q(n+1) = q(n), n ≥ 1.

We see that the formula in (3.6) is a necessary condition for a sequence of

vectors (q(n)) to be defined by an invariant probability measure. It turns out that
the converse statement is true, in general. We formulate below Theorem 3.3, where
all R-invariant measures are explicitly described.

Using the definition of stochastic incidence matrix Fn (see (3.5)) and Lemma

3.2, we define a decreasing sequence of convex polytopes Δ
(n)
m , n,m ≥ 1, and

the limiting convex sets Δ
(n)
∞ . They are used to describe the set M1(B) of all

probability R-invariant measures on B. Namely, denote

Δ(n) := {(z(n)w )Tw∈Vn
:
∑
w∈Vn

z(n)w = 1 and z(n)w ≥ 0, w ∈ Vn}.

The sets Δ(n) are standard simplices in the space R|Vn| with |Vn| vertices {e(n)(w) :
w ∈ Vn}, where e(n)(w) = (0, ..., 0, 1, 0, ...0)T is the standard basis vector, i.e.

e
(n)
u (w) = 1 if and only if u = w. Since Fn is a stochastic matrix, we have the
obvious property

FT
n (Δ(n+1)) ⊂ Δ(n), n ∈ N.

Let μ be a probability R-invariant measure μ on XB with values q
(n)
w on the

towers X
(n)
w . Then (q

(n)
w : w ∈ Vn)

T lies in the simplex Δ(n). Set

(3.7) Δ(n)
m = FT

n · . . . · FT
n+m−1(Δ

(n+m))

for m = 1, 2, . . . Then we see that

Δ(n) ⊃ Δ
(n)
1 ⊃ Δ

(n)
2 ⊃ . . .

We write

(3.8) Δ(n)
∞ =

∞⋂
m=1

Δ(n)
m .

It follows from (3.7) and (3.8) that

(3.9) FT
n (Δ(n+1)

∞ ) = Δ(n)
∞ , n ≥ 1.
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The next theorem describes all R-invariant probability measures on XB.

Theorem 3.3 ([BKMS10], [BKK]). Let B = (V,E) be a Bratteli diagram
with the sequence of stochastic incidence matrices (Fn), and letM1(B) denote the
set of R-invariant probability measures on the path space XB.

(1) If μ ∈M1(B), then the probability vector

q(n) = (μ(X(n)
w ))w∈Vn

,

where X
(n)
w is defined in ( 3.3), satisfies the following conditions for n ≥ 1:

(i) q(n) ∈ Δ
(n)
∞ ,

(ii) FT
n q(n+1) = q(n).

Conversely, suppose that {q(n)} is a sequence of non-negative probability vectors

such that, for every q(n) = (q
(n)
w )w∈Vn

∈ Δ(n) (n ≥ 1), the condition (ii) holds.

Then the vectors q(n) belong to Δ
(n)
∞ , n ∈ N, and there exists a uniquely determined

R-invariant probability measure μ such that μ(X
(n)
w ) = q

(n)
w for w ∈ Vn, n ∈ N.

(2) Let Ω be the subset of the infinite product
∏

n≥1 Δ
(n)
∞ consisting of sequences

(q(n)) such that FT
n q(n+1) = q(n). Then the map

Φ :M1(B)→ Ω

μ → (q(n))

is an affine isomorphism. Moreover, Φ(μ) is an extreme point of Ω if and only if
μ is ergodic.

(3) Let B be a Bratteli diagram of rank K. Then the number of ergodic invariant
measures on B is bounded above by K and bounded below by the dimension of the

finite-dimensional simplex Δ
(1)
∞ .

Remark 3.4. (a) From Theorem 3.3 it follows that the set M1(B) can be

identified with the inverse limit of the sequence (FT
n ,Δ

(n)
∞ ). In general, the set

Δ
(n)
∞ is a convex subset of the (|Vn| − 1)-dimensional simplex Δ(n). In some cases,

which will be considered in Section 5, the set Δ
(n)
∞ is a finite-dimensional simplex

itself.
(b) In Theorem 3.3 part (2), the setM1(B) can be affinely isomorphic to the

set Δ
(1)
∞ . For instance, it happens when all stochastic incidence matrices are square

non-singular matrices of the same dimension K × K for some K ∈ N. This case
will be considered in Section 5.

(c) The procedure of telescoping (see Definition 2.5) preserves the set of invari-
ant measures; hence we can apply it when necessary without loss of generality.

In order to find all ergodic invariant measures on a Bratteli diagram, we will

study the number of extreme points of Δ
(n)
∞ for every n.

Let

(3.10) G(n+m,n) = Fn+m · · ·Fn

for m ≥ 0 and n ≥ 1. Denote the elements of G(n+m,n) by (g
(n+m,n)
uw ), where

u ∈ Vn+m+1 and w ∈ Vn. The sets Δ
(n)
m ,m ≥ 0, defined in (3.7), form a decreasing

sequence of convex polytopes in Δ(n). The vertices of Δ
(n)
m are some (or all) vectors
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from the set {g(n+m,n)(v) : v ∈ Vn+m+1}, where we denote

g(n+m,n)(v) = (g(n+m,n)
w (v))w∈Vn

= GT
(m+n,n)(e

(n+m+1)(v)).

Obviously, we have the relation

(3.11) g(n+m,n)(v) =
∑
w∈Vn

g(n+m,n)
vw e(n)(w).

Let {y(n,m)(v)} be the set of all vertices of Δ
(n)
m . Then y(n,m)(v) = g(n+m,n)(v) for

v belonging to some subset of Vn+m+1.

We observe the following fact. Every vector q(n) from the set Δ
(n)
∞ can be

written in the standard basis as

q(n) =
∑
w∈Vn

q(n)w e(n)(w).

It turns out that the numbers q
(n+m+1)
v , v ∈ Vn+m+1, are the coefficients in the

convex decomposition of q(n) with respect to vectors g(n+m,n)(v).

Proposition 3.5 ([BKK]). Let μ ∈M1(B), and q
(n)
w = μ(X

(n)
w ) (w ∈ Vn) for

all n ∈ N. Then

(3.12) q(n) =
∑

v∈Vn+m+1

q(n+m+1)
v g(n+m,n)(v).

In particular,

q(1) =
∑

v∈Vm+1

q(m+1)
v g(m+1,1)(v).

Remark 3.6. For every n ≥ 1, define

Δ(n),ε
∞ :=

⋃
q∈Δ

(n)
∞

B(q, ε),

where B(q, ε) is the ball of radius ε > 0 centered at q ∈ R|Vn|. Here the metric is
defined by the Euclidean norm ||·|| on R|Vn|. Fix any natural numbers n and m. Let

Δ
(n)
m be defined as above. It can be proved straightforwardly that if q(n,m) ∈ Δ

(n)
m

for infinitely many m and q(n,m) → q(n) as m → ∞, then q(n) ∈ Δ
(n)
∞ . Moreover,

for every ε > 0 there exists m0 = m0(n, ε) such that Δ
(n)
m ⊂ Δ

(n),ε
∞ for all m ≥ m0.

The next statement shows that vertices of the limiting convex set Δ
(n)
∞ can be

obtained as limits of sequences of vertices of convex polytopes.

Lemma 3.7 ([BKK]). Fix n ∈ N and ε > 0. Let Δ
(n)
∞ and Δ

(n)
n+m+1, be defined

as above for any m ∈ N. Then, for every vertex y ∈ Δ
(n)
∞ there exists m0 = m0(n, ε)

such that, for all m ≥ m0, one can find a vertex y(n,m)(v) ∈ Δ
(n)
n+m+1 satisfying the

property

||y − y(n,m)(v)|| < ε.
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3.2. Subdiagrams and measure extension (finite and infinite mea-
sures). In this subsection, we study supports of ergodic invariant measures on
arbitrary Bratteli diagrams in terms of subdiagrams. By a Bratteli subdiagram, we
mean a Bratteli diagram B that can be obtained from B by removing some vertices
and edges from each level of B. Then XB ⊂ XB. We will consider two extreme
cases of Bratteli subdiagrams: vertex subdiagram (when we fix a subset of vertices
at each level and take all existing edges between them) and edge subdiagram (some
edges are removed from the initial Bratteli diagram but the set of vertices is pre-
served). It is clear that an arbitrary subdiagram can be obtained as a combination
of these cases.

Take a subdiagram B and consider the set XB of all infinite paths whose edges

belong to B. As a rule, objects related to a subdiagram B are denoted by barred

symbols. Let X̂B := R(XB) be the subset of paths in XB that are tail equivalent to
paths from XB. Let μ be a probability measure on XB invariant with respect to the

tail equivalence relation defined on B. Then μ can be canonically extended to the

measure μ̂ on the space X̂B by invariance with respect toR [BKMS13,ABKK17].

If we want to extend μ̂ to the whole space XB, we set μ̂(XB \ X̂B) = 0.
This subsection is devoted to answering the following questions:
(A) Given a subdiagram B of B and an ergodic measure μ on XB, under what

conditions on B does the subset XB have positive measure μ in XB?
(B) Let ν be a measure supported by the path space XB of a subdiagram

B ⊂ B. Then ν is extended to the subset R(XB) by invariance with respect to the
tail equivalence relation R. Under what conditions is ν(R(XB)) finite (or infinite)?

In this subsection, we keep the following notation: X
(n)

v stands for the tower
in a subdiagram B that is determined by a vertex v of B. Thus, we consider the

paths in X
(n)

v that contain edges from B only. Let h
(n)

v be the height of the tower

X
(n)

v . The following theorem gives criteria for finiteness of the measure extension.

Theorem 3.8 ([BKK15]). Let B be a Bratteli diagram with the sequence of

incidence matrices {F̃n}∞n=0 and corresponding stochastic matrices {Fn}∞n=0. Let B
be a vertex subdiagram of B defined by the sequence of subsets {Wn}∞n=0, Wn ⊂ Vn.
Suppose that μ is a probability R-invariant measure on XB. Then the following
properties are equivalent:

μ̂(X̂B) <∞ ⇐⇒
∞∑

n=1

∑
v∈Wn+1

∑
w/∈Wn

f̃ (n)
v,wh

(n)
w p(n+1)

v <∞

⇐⇒
∞∑

n=1

∑
v∈Wn+1

μ̂(X(n+1)
v )

∑
w/∈Wn

f (n)
v,w <∞

⇐⇒
∞∑
i=1

⎛⎝ ∑
w∈Wi+1

h(i+1)
w p(i+1)

w −
∑

w∈Wi

h(i)
w p(i)w

⎞⎠ <∞.

The analogue of Theorem 3.8 can be proved also for edge subdiagrams (see
[ABKK17]). The following proposition gives a sufficient condition of the finiteness
of the measure extension (more necessary and sufficient conditions can be found
in [BKK15,ABKK17]).
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Proposition 3.9 ([BKK15]). Let B be a Bratteli diagram with the sequence
of stochastic incidence matrices {Fn}∞n=0, and let B be its subdiagram defined by a
sequence of vertices Wn. If

∞∑
n=1

max
v∈Wn+1

⎛⎝ ∑
w/∈Wn

f (n)
vw

⎞⎠ <∞,

then any tail invariant probability measure μ on XB extends to a finite invariant

measure μ̂ on X̂B.

The following theorem gives a necessary and sufficient condition for a subdia-
gram B of B to have a path space of zero measure in XB. Though the theorem is
formulated for a vertex subdiagram, the statement remains true also for any edge
subdiagram B.

Theorem 3.10 ([ABKK17]). Let B be a simple Bratteli diagram, and let μ
be any ergodic probability measure on XB. Suppose that B is a vertex subdiagram
of B defined by a sequence (Wn) of subsets of Vn. Then μ(XB) = 0 if and only if
for all ε > 0 there exists n = n(ε) such that for all w ∈Wn one has

(3.13)
h
(n)

w

h
(n)
w

< ε.

In fact, Theorem 3.10 states that if a subdiagram B satisfies (3.13), then XB

has measure zero with respect to every ergodic invariant measure, that is the set
XB is thin according to the definition from [GPS04]. The following result is a
corollary of Theorem 3.10:

Theorem 3.11 ([ABKK17]). Let B be a subdiagram of B such that XB is

a thin subset of XB. Then for any probability invariant measure μ on B we have

μ̂(X̂B) =∞.

Remark 3.12. There are many papers, where invariant measures for various
Bratteli diagrams are studied. For instance, in [FP08,PV10] the authors consider
ergodic invariant probability measures on a Bratteli diagram of a special form, called
an Euler graph; the combinatorial properties of the Euler graph are connected
to those of Eulerian numbers. The authors of [FO13] study spaces of invariant
measures for a class of dynamical systems which is called polynomial odometers.
These are adic maps on regularly structured Bratteli diagrams and include the
Pascal and Stirling adic maps as examples. Petersen [Pet12] considers ergodic
invariant measures on a Bratteli–Vershik dynamical system, which is based on a
diagram whose path counts from the root are the Delannoy numbers.

We would like to mention also the interesting paper by Fisher [Fis09] where
various properties of Bratteli diagrams and measures are discussed.

4. Uniquely ergodic Cantor dynamical systems

In this section, we consider a number of results about uniquely ergodic Cantor
dynamical systems. We are not trying to mention all existing classes of uniquely
ergodic homeomorphisms. In the case of symbolic systems, we discuss the results
related mostly to the complexity function (Subsection 4.1). More general approach
using Bratteli diagrams is considered in Subsection 4.2.
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4.1. Minimal uniquely ergodic homeomorphisms in symbolic dynam-
ics. In this subsection, we partially use some statements formulated and proved in
[FM10] and in [Bos84], [Bos85], and [Bos92].

Definition 4.1. Let ω = (ωi) be an infinite sequence in AN. It is said that
the infinite sequence ω has uniform frequencies if, for every factor w of ω,

|ωk · · ·ωk+n|w
n+ 1

→ fw(ω) (n→∞)

uniformly in k. (Here |u|w denotes the number of occurrences of the word w in the
word u)

The following result follows immediately from the ergodic theorem.

Fact 4.2 (Folklore). (i) Let (X,S) be a subshift, and let μ be an S-invariant
ergodic measure. Then, for μ-a.e. ω ∈ X and for any finite word w in L(X), the
frequency fw(ω) exists and is equal to μ([w]) where [w] denotes the corresponding
cylinder subset of X.

(ii) A subshift (Xω, S) is uniquely ergodic if, and only if, the sequence ω has
uniform frequencies.

As one of our goals is to discuss relations between the complexity functions and
the number of ergodic measures, we recall Boshernitzan’s results about uniquely
ergodic subshifts. In fact, Boshernitzan proved several impressive results on the
cardinality of the set of ergodic measures for minimal subshifts which are based
on a careful study of the growth of the complexity functions. The case of finite
ergodicity is considered below in Section 5.

Theorem 4.3 ([Bos84]). Let pX(n) denote the complexity function of a min-
imal subshift (X,S) over a finite alphabet. If either

lim sup
n→∞

pX(n)

n
< 3,

or

lim inf
n→∞

pX(n)

n
= α < 2,

then (X,S) is uniquely ergodic.

Let X be a compact metric space, B the Borel σ-algebra, and μ a Borel prob-
ability measure on B. Suppose T : X → X is a measurable map preserving the
measure μ. A point x ∈ X is called a generic point for the measure μ if for every
continuous function f : X → R,

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫
X

f dμ.

The measure μ is generic if it has a generic point.
By the pointwise ergodic theorem, if μ is ergodic, then almost every point with

respect to μ is generic. However, there are generic measures which are not ergodic.
An example of such a measure is given in [CM15] where an interval exchange
transformation has a generic non-ergodic measure.

Theorem 4.4. [Gla03] Let (X,T ) be a minimal system. Then (X,T ) is
uniquely ergodic if and only if every point x in X is generic for some measure
in M(X,T ).
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Remark 4.5. In this remark we point out several classes of uniquely ergodic
Cantor dynamical systems.

(1) Substitution dynamical systems. Let A be a finite alphabet, and let τ :
A → A∗ be a substitution. The language of the substitution consists of all words
which are seen in

⋃∞
n=0 τ

n(A). The corresponding subshift (Xτ , S) is called a
substitution dynamical system. The literature on these dynamical systems is very
extensive, we refer to [Que10], [Fog02]. A substitution τ is called primitive if
for any a, b ∈ A there exists n ∈ N such that |τn(b)|a ≥ 1. The corresponding
substitution dynamical system is uniquely ergodic.

In Section 5 below, we consider aperiodic (non-minimal) substitution systems.
The situation with invariant measures is different. They may have finitely many
egodic invariant probability measures and finitely many infinite ergodic invariant
measures as well.

(2) Linearly recurrent dynamical systems. Let A be an alphabet, and let ω be a
sequence from AN with the language L(ω). For a word u ∈ L(ω), we call a word w
a return word to u in ω if wu belongs to L(ω), u is a prefix of wu, and u has exactly
two occurrences in wu (we follow [Dur98], more general approach to the notion of
return words is given in [Dur10]). Denote by Rω,u the set of return words to u of
ω. When ω is a uniformly recurrent sequence from AN, then the set Rω,u is finite
for all u ∈ L(ω).

It is said that a sequence ω is linearly recurrent (with constant K ∈ N) if it is
uniformly recurrent and if for all u ∈ L(ω) and all w ∈ Rω,u we have |w| ≤ K|u|.
A subshift (X,S) is called linearly recurrent (with constant K) if it is minimal and
contains a linearly recurrent sequence (with constant K). In fact, for any x, y ∈ X,
we have Rx,u = Ry,u.

As proved in [Dur00] (see also [Dur10]), linearly recurrent subshifts are
uniquely ergodic. This result can be deduced from [Bos92] or proved directly.
One more important fact that relates linearly recurrent subshifts and Bratteli di-
agrams is proved in [Dur10]). It states that such subshifts have an expansive
Bratteli–Vershik representation whose incidence matrices belong to a finite set.

4.2. Finite rank Bratteli diagrams and general case. In this subsection,
we discuss the results on unique ergodicity of Bratteli diagrams. It is worth recalling
that these results describe Cantor dynamical systems which are represented by the
corresponding Bratteli diagrams. We give a criterion and sufficient conditions for
the unique ergodicity of a Bratteli diagram B of arbitrary rank, in other words, we
discuss the case when the spaceM1(B) is a singleton.

We first begin with a class of Bratteli diagrams that have an exact finite rank.

Definition 4.6. It is said that a finite rank Bratteli diagram has an exact
finite rank if there is a finite invariant measure μ and a constant δ > 0 such that

after a telescoping μ(X
(n)
w ) ≥ δ for all levels n and vertices w.

The following result shows that the Vershik map on the path space of an exact
finite rank diagram cannot be strongly mixing independently of the ordering.

Theorem 4.7 ([BKMS13]). Let B = (V,E, ω) be an ordered simple Bratteli
diagram of exact finite rank and μ is as in Definition 4.6.
(1) The diagram B is uniquely ergodic and μ is the unique invariant measure.
(2) Let ϕω : XB → XB be the Vershik map defined by the order ω on B (ϕω is not
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necessarily continuous everywhere). Then the dynamical system (XB, μ, ϕω) is not
strongly mixing with respect to the unique invariant measure μ.

On the other hand, it is proved in the same paper that for the so-called “left- to-
right” ordering, the Vershik map is not strongly mixing on all finite rank diagrams.

Remark 4.8. Theorem 4.7 can be viewed as an analogue of a result from
[Bos92]. To be more precise, let (X,S) be a minimal subshift on a finite alphabet,
and let μ be a probability S-invariant measure. Set

ε(n) = min{μ([w]) : w ∈ Ln(X)},
where [w] is the cylinder subset of X defined by the word w. If

lim
n→∞

nε(n) = 0,

then the subshift (X,S) is not uniquely ergodic.

In what follows, we focus on the following problem: find conditions on the
(stochastic) incidence matrices ensuring that the diagram is uniquely ergodic.

Theorem 4.9 ([BKK]). A Bratteli diagram B = (V,E) is uniquely ergodic if
and only if there exists a telescoping B′ of B such that

(4.1) lim
n→∞

max
v,v′∈Vn+1

(∑
w∈Vn

∣∣∣f (n)
vw − f

(n)
v′w

∣∣∣) = 0,

where f
(n)
vw are the entries of the stochastic matrix Fn defined by the diagram B′.

The proof is based on the representation of an invariant measure as a point of

the inverse limit of the sequence (FT
n ,Δ

(n)
∞ ) (see Section 3). We use the fact that B

is uniquely ergodic if and only if the set Δ
(n)
∞ is a singleton for all n = 1, 2, . . . and

that the polytope Δ
(n)
m is the convex hull of the vectors {g(n+m,n)(v)}v∈Vn+m+1

for
all m ∈ N.

The following statement is a corollary of Theorem 4.9 and provides a sufficient
condition for a Bratteli diagram to be uniquely ergodic. Note that this condition
does not require telescoping.

Theorem 4.10 ([BKK]). Let B be a Bratteli diagram of arbitrary rank with
stochastic incidence matrices Fn and let

mn = min
v∈Vn+1,w∈Vn

f (n)
vw .

If

(4.2)
∞∑
n=1

mn =∞,

then B is uniquely ergodic.

A number of sufficient conditions for unique ergodicity of a finite rank Bratteli–
Vershik system are obtained in [BKMS13]. Here we present some of them.

Definition 4.11. (see e.g. [Har02]) (i) For two positive vectors x, y ∈ Rd, the
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projective metric is defined by the formula

D(x, y) = lnmax
i,j

xiyj
xjyi

= ln
maxi

xi

yi

minj
xj

yj

,

where (xi) and (yi) are entries of the vectors x and y.
(ii) For a non-negative matrix A, the Birkhoff contraction coefficient is

τ (A) = sup
x,y>0

D(Ax,Ay)

D(x, y)
.

Theorem 4.12 ([BKMS13]). Let B be a simple Bratteli diagram of finite rank

with incidence matrices {F̃n}n≥1. Let Ãn = F̃T
n . Then the diagram B is uniquely

ergodic if and only if

lim
n→∞

τ (Ãm . . . Ãn) = 0 for every m.

For a positive matrix A = (ai,j), let

φ(A) = min
i,j,r,s

ai,jar,s
ar,jai,s

.

If A has a zero entry, then, by definition, we set φ(A) = 0. As noticed in [Har02],

τ (A) =
1−
√
φ(A)

1 +
√
φ(A)

in case A has a nonzero entry in each row.
The following result gives sufficient conditions for unique ergodicity which can

be easily verified when a diagram is given by a sequence of incidence matrices.

Proposition 4.13 ([BKMS13]). Let {Ãn}n≥1 = F̃T
n be primitive incidence

matrices of a finite rank diagram B.
(1) If

∞∑
n=1

√
φ(An) =∞,

then B admits a unique invariant probability measure.
(2) If

∞∑
n=1

(
m̃n

M̃n

)
=∞,

where m̃n and M̃n are the smallest and the largest entry of Ãn respectively, then B
admits a unique invariant probability measure.

(3) Let ||A||1 :=
∑

i,j |ai,j |. If ||F̃n||1 ≤ Cn for some C > 0 and all sufficiently
large n, then the diagram admits a unique invariant probability measure. In par-
ticular, this result holds if the diagram has only finitely many different incidence
matrices.

4.3. Examples. The following examples illustrate the results of Subsection
4.2. In particular, Examples 4.14 and 4.16 show that telescoping and using the
stochastic incidence matrix are crucial for Theorem 4.9.
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Example 4.14. Let B be a Bratteli diagram with incidence matrices

F̃n =

(
n 1
1 n

)
, n ∈ N.

Then the diagram B is uniquely ergodic, see details in [BKMS13], [ABKK17,
Example 3.6], and [FFT09].

Notice that B has the ERS property (see Example 3.1). Hence the correspond-
ing stochastic incidence matrices are:

Fn =

⎛⎜⎜⎜⎝
1− 1

n+ 1

1

n+ 1

1

n+ 1
1− 1

n+ 1

⎞⎟⎟⎟⎠ .

Obviously, without telescoping, for B the limit in (4.1) equals 2. However, the
telescoping procedure reveals that the diagram is in fact uniquely ergodic.

Suppose we have an ERS diagram with 2× 2 stochastic incidence matrices

F ′
n =

(
an bn
bn an

)
.

As before, let G(n,n+m) = (g
(n+m,n)
vw ) be the corresponding product matrix. It can

be easily proved by induction that, for arbitrary n,m ∈ N, the following formula
holds:

S(n,m) =
∑
w∈Vn

∣∣∣g(n+m,n)
vw − g

(n+m,n)
v′w

∣∣∣ = 2

m∏
i=0

|(an+i − bn+i)| .

In the case of the diagram B, we obtain

S(n,m) = 2
m∏
i=0

(
1− 2

n+ i+ 1

)
, n,m ∈ N.

Since the harmonic series
∑∞

n=1 n
−1 diverges, we see that

S(n,m)→ 0, m→∞.

Choose a decreasing sequence (εk) such that εk → 0 as k → ∞. For n = n1 and
ε1, find m1 such that S(n1,m1) < ε1. Set n2 = n1 +m1. For ε2, find m2 such that
S(n2,m2) < ε2. Set n3 = n2+m2. Continuing in the same manner, we construct a
sequence (nk) such that S(nk, nk+1−nk) < εk. Telescope the diagram with respect
to the levels (nk). By Theorem 4.9, we conclude that the diagram B is uniquely
ergodic. Notice that the diagram B also satisfies the sufficient condition of unique
ergodicity (4.2).

Example 4.15. Let B be a simple Bratteli diagram with incidence matrices

F̃n =

⎛⎜⎜⎜⎜⎝
f
(n)
1 1 · · · 1

1 f
(n)
2 · · · 1

...
...

. . .
...

1 1 · · · f
(n)
d

⎞⎟⎟⎟⎟⎠ .
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Let qn = max{f̃ (n)
i f̃

(n)
j : i �= j}. By Proposition 4.13, if for Ãn = F̃T

n

∞∑
n=1

√
φ(Ãn) =

∞∑
n=1

1
√
q
n

=∞,

then there is a unique invariant probability measure on B.

Example 4.16. Let B be the stationary non-simple Bratteli diagram defined
by the incidence matrices

F̃n = F̃ =

(
3 0
1 2

)
for every n ∈ N. It is well known that B has a unique finite ergodic measure
supported by the 3-odometer (see e.g. [BKMS10]). We show that B satisfies the
condition of unique ergodicity formulated in Theorem 4.9. It is easy to check that

the n-th power of F̃ is

F̃n =

(
3n 0

3n − 2n 2n

)
.

Hence the entries of the matrix F̃ do not satisfy (4.1) even after taking products
of these matrices (which corresponds to telescoping of B). Notice that B has the

ERS property. For any n ∈ N and a vertex w ∈ Vn, we have h
(n)
w = 3n. Therefore,

the corresponding stochastic incidence matrix and its n-th power are

F =

(
1 0
1
3

2
3

)
and

Fn =

(
1 0

1− 2n

3n
2n

3n

)
.

Hence, we see that B satisfies (4.1) and is uniquely ergodic. Note that B does not
satisfy the sufficient condition of unique ergodicity (4.2) and that Theorem 4.12
and Proposition 4.13 are not applicable since B is not simple.

5. Finitely ergodic Cantor dynamical systems

This section is mostly devoted to the study of aperiodic Cantor dynamical
systems which can be represented by Bratteli diagrams with uniformly bounded
number of vertices on each level. It is an open question which classes of Cantor
dynamical systems admit such a representation.

5.1. Finitely ergodic subshifts. As in Section 4, we begin with the case of
finitely ergodic (minimal) subshifts. The recent progress made in [CK19], [DF17],
[DF19] essentially improved the known results on the bounds of the cardinality of
the set E(X,S) of ergodic invariant measures.

In [Bos84], the following remarkable results were proved.

Theorem 5.1 ([Bos84]). Let (X,S) be a minimal subshift on a finite alpha-
bet A.
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(i) If

lim inf
n→∞

pX(n)

n
= α,

then |E(X,S)| ≤ [α], where [α] is the integer part of α.
(ii) If

lim sup
n→∞

pX(n)

n
= α

and α ≥ 2, then |E(X,S)| ≤ [α]− 1.

The results given in [FM10] extend Boshernitzan’s bounds to the so called
K-deconnectable symbolic systems. We cite only one of these results from that
paper here.

Theorem 5.2 ([Mon09]). Let K ≥ 3 be an integer. A minimal symbolic
system (X,S) such that

lim sup
n→∞

pX(n)

n
< K

admits at most K − 2 ergodic invariant measures.

In [DF17], the authors continued this line of study of the set E(X,S) and
considered complexity functions with eventually constant growth condition. By
definition, this means that the complexity function pX(n) of a minimal subshift
satisfies the condition: for some K ∈ N and all n ≥ n0

(5.1) pX(n+ 1)− pX(n) = K.

Equivalently, pX(n) = Kn+ C for all n ≥ n0 for a constant C ∈ N0.

Theorem 5.3 ([DF17]). If the complexity function of a minimal subshift (X,S)
satisfies eventually constant growth condition ( 5.1) with K ≥ 4, then |E(X,S)| ≤
K − 2.

In the very recent paper [DF19], the authors addressed the old question asked
by Boshernitzan. Let (X,T ) be a minimal interval exchange transformation (IET)
defined by a permutation of d subintervals. Due to Katok [Kat73] and Veech
[Vee78], it is known that

|E(X,T )| ≤
[
d

2

]
.

Can the bound d
2 for the IET |E(X,T )| be shown combinatorially using a symbolic

realization (Y, S) of (X,T )?
Following [DF19], let us make the following assumption on the language LX

of a minimal subshift (X,S). A word w ∈ LX is left special if there are distinct
letters a, a′ ∈ A such that aw and a′w belong to LX . Likewise, w is right special if
wb and wb′ exist in the language LX for distinct letters b, b′. A word w is bispecial
if it is both left and right special. A bispecial word is called regular bispecial if
only one left extension of w is right special and only one right extension of w is
left special. The language LX (or equivalently(X,S)) satisfies the regular bispecial
condition if all large enough bispecial words are regular. The regular bispecial
condition implies the constant growth condition above for some K. All subshifts
that arise from interval exchanges satisfy this property, see [FZ08].
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The following main result from [DF19] is motivated by Boshernitzan’s question.

Theorem 5.4 ([DF19]). Let (X,S) be a transitive subshift satisfying the reg-
ular bispecial condition with growth constant K. Then

|E(X,S)| ≤ K + 1

2
.

We finish this subsection by pointing out an interesting application of complex-
ity functions. It turns out that by means of the complexity function one can also
estimate the number of generic measures (which are not necessarily ergodic ones).
We follow here the paper [CK19]. We remark that the considered subshifts are
not assumed to be minimal.

Theorem 5.5 ([CK19]). (1) Let (X,S) be a subshift such that

lim inf
n→∞

pX(n)

n
< K

for some integer K. Then (X,S) has at most K − 1 distinct, non-atomic, generic
measures.
(2) Suppose (X,S) is a subshift satisfying the condition

lim sup
n→∞

pX(n)

n
< K

for some integer K. If (X,S) has a generic measure μ and a generic point xμ for

which the orbit closure (OrbS(xμ), S) is not uniquely ergodic, then (X,S) has at
most K − 2 distinct, non-atomic, generic measures.

5.2. Stationary Bratteli diagrams. In this subsection, we give an explicit
description of all ergodic probability invariant measures on stationary Bratteli dia-
grams. Note that the class of minimal homeomorphisms which can be represented
by stationary Bratteli diagrams is constituted by minimal substitution dynamical
systems and odometers [For97,DHS99]. In [BKM09], the analogue of the above
mentioned result was proved for aperiodic homeomorphisms.

The paper [BKMS10] contains an explicit description of all ergodic invariant

probability measures on a stationary Bratteli diagram B. Let F̃ = (f̃vw)v,w∈V be
the K ×K incidence matrix of the diagram B. Identify the set of vertices Vn on
each level n ≥ 1 with {1, . . . ,K}. In this subsection, by x we denote a vector, either
column or row one, it will be either mentioned explicitly, or understood from the
context.

The incidence matrix F̃ defines a directed graph G(F̃ ): the set of the vertices of

G(F̃ ) is equal to {1, . . . ,K} and there is a directed edge from a vertex v to a vertex

w if and only if f̃vw > 0. The vertices v and w are equivalent (we write v ∼ w) if

either v = w or there is a path in G(F̃ ) from v to w and also a path from w to v.

Let E1, . . . , Em denote all equivalence classes in G(F̃ ). We will also identify Eα with
the corresponding subsets of V . We write Eα - Eβ if either Eα = Eβ or there is a

path in G(F̃ ) from a vertex of Eα to a vertex of Eβ . We write Eα . Eβ if Eα - Eβ
and Eα �= Eβ. Every class Eα, α = 1, . . . ,m, defines an irreducible submatrix F̃α of

F̃ obtained by restricting F̃ to the set of vertices from Eα. Let ρα be the spectral

radius of F̃α, i.e.

ρα = max{|λ| : λ ∈ spec(F̃α)},
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where by spec(F̃α) we mean the set of all complex numbers λ such that there exists

a non-zero vector x = (xv)v∈Eα
satisfying xF̃α = λx.

A class Eα is called distinguished if

(5.2) ρα > ρβ whenever Eα . Eβ
(in [BKMS10] the notion of being distinguished is defined in an opposite way
because it is based on the matrix transpose to the incidence matrix).

The real number λ is called a distinguished eigenvalue if there exists a non-

negative left-eigenvector x = (xv) ∈ RK such that xF̃ = λx. It is known (Frobe-
nius theorem) that λ is a distinguished eigenvalue if and only if λ = ρα for some
distinguished class Eα. Moreover, there is a unique (up to scaling) non-negative

eigenvector x(α) = (xv)v∈V , x(α)F̃ = ραx(α) such that xv > 0 if and only if there
is a path from a vertex of Eα to the vertex v. The distinguished class α defines a
measure μα on B = (V,E) as follows:

μα(X
(n)
v ) =

xv

ρn−1
α

h(n)
v , v ∈ Vn = V.

Theorem 5.6 ([BKMS10]). Let B and {μα} be as above, where α runs over
all distinguished vertex classes. Then the measures {μα} are exactly all ergodic
R-invariant probability measures for the stationary Bratteli diagram B.

For instance, in Example 4.16, there is only one distinguished class of vertices
which corresponds to the first vertex of the diagram on each level.

Remark 5.7. In [BKMS10] it was shown that non-distinguished vertex classes
correspond exactly to infinite ergodic invariant measures which are finite on at least
one open set.

5.3. Finite rank Bratteli diagrams. In this subsection, we give the neces-
sary and sufficient conditions to determine the exact number of ergodic invariant
probability measures on Bratteli diagrams of finite rank and describe the supports
of these measures.

Definition 5.8. A Cantor dynamical system (X,S) has topological rank K > 0
if it admits a Bratteli–Vershik model (XB, ϕB) such that the number of vertices of
the diagram B at each level Vn, n ≥ 1 is not greater than K and K is the least
possible number of vertices for any Bratteli–Vershik realization.

If a system (X,S) has rank K, then, by an appropriate telescoping, we can
assume that the diagram B has exactly K vertices at each level.

In [BKMS13], the structure of invariant measures on finite rank Bratteli dia-
grams is considered. In particular, it is shown that every ergodic invariant measure
(finite or “regular” infinite) can be obtained as an extension from a simple uniquely
ergodic vertex subdiagram. Everywhere below the term “measure” stands for an
R-invariant measure. By an infinite measure we mean any σ-finite non-atomic
measure which is finite (non-zero) on some clopen set. The support of each ergodic
measure for a Bratteli diagram of finite rank turns out to be the set of all paths
that stabilize in some subdiagram, which geometrically can be seen as a “vertical”
subdiagram, i.e. the paths will eventually stay in the subdiagram. Furthermore,
these subdiagrams are pairwise disjoint for different ergodic measures. It is shown
in [BKMS13], that for any finite rank diagram B one can find finitely many vertex
subdiagrams Bα such that each finite ergodic measure on XBα

extends to a (finite
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or infinite) ergodic measure on XB. It is also proved that each ergodic measure
(both finite and infinite) on XB is obtained as an extension of a finite ergodic
measure from some XBα

. The following theorem holds.

Theorem 5.9 ([BKMS13]). Let B be a Bratteli diagram of finite rank K.
The diagram B can be telescoped in such a way that for every ergodic probability
measure μ there exists a subset Wμ of vertices from {1, . . . ,K} such that the support
of μ consists of all infinite paths that eventually go along the vertices of Wμ only.
Furthermore,

(i) Wμ ∩Wν = ∅ for different ergodic measures μ and ν;
(ii) given an ergodic probability measure μ, there exists a constant δ > 0 such

that for any w ∈Wμ and any level n

μ(X(n)
w ) ≥ δ;

(iii) the subdiagram generated by Wμ is simple and uniquely ergodic. The only
ergodic measure on the path space of the subdiagram is the restriction of measure
μ;

(iv) if an ergodic probability measure μ is the extension of a measure from the
vertical subdiagram determined by a proper subset W ⊂ {1, . . . ,K}, then

lim
n→∞

μ(X(n)
w ) = 0 for all w /∈W.

Condition (ii) can be used in practice to determine the support of an ergodic
measure μ.

The following theorem plays an important role in the study of ergodic measures
and their supports. For a finite rank Bratteli diagram B, it describes how extreme

points of Δ
(1)
∞ determine subdiagrams of B.

Theorem 5.10 ([BKK]). Let B be a Bratteli diagram of rank K, and let B
have l probability ergodic invariant measures, 1 ≤ l ≤ K. Let {y1, ..., yl} denote the

extreme vectors in Δ
(1)
∞ . Then, after telescoping and renumbering vertices, there

exist exactly l disjoint subdiagrams Bi (they share no vertices other than the root)
with the corresponding sets of vertices {Vn,i}∞n=0 such that

(a) for every i = 1, ..., l and any n,m > 0, |Vn,i| = |Vm,i| > 0, while the set

Vn,0 = Vn \
l⊔

i=1

Vn,i may be, in particular, empty;

(b) for any i = 1, . . . , l and any choice of vn ∈ Vn,i, the extreme vectors

y(n)(vn) ∈ Δ
(1)
n converge to the extreme vector yi ∈ Δ

(1)
∞ .

In general, the diagram B can have up to K − l disjoint subdiagrams B′
j with

vertices {V ′
n,j}∞n=0 such that they are also disjoint with subdiagrams Bi and for any

wn ∈ V ′
n,j, the extreme vectors y(n)(wn) ∈ Δ

(1)
n converge to a non-extreme vector

z ∈ Δ
(1)
∞ .

For a finite rank Bratteli diagram, one can describe subdiagrams that support
ergodic measures in terms of the stochastic incidence matrices of the diagram. For
the next theorem, we will need the following definition and notation.

Definition 5.11. For a Bratteli diagram B, we say that a sequence of proper
subsets Un ⊂ Vn defines blocks of vanishing weights (or vanishing blocks) in the
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stochastic incidence matrices Fn if∑
w∈Uc

n,v∈Un+1

f (n)
vw → 0, n→∞

where Uc
n = Vn \ Un.

If additionally, for every sequence of vanishing blocks (Un), there exists a con-
stant 0 < C1 < 1 such that, for sufficiently large n,

(5.3) min
v∈Un+1

∑
u∈Uc

n

f (n)
vu ≥ C1 max

v∈Un+1

∑
u∈Uc

n

f (n)
vu ,

then we say that the stochastic incidence matrices Fn of B have regularly vanishing
blocks.

Set

a
(n)
j =

1

|Vn,j |
∑

w∈Vn,j

y(n)(w), j = 0, 1, . . . , l,

where the subsets Vn,j are defined as in Theorem 5.10. Then a
(n)
j ∈ Δ

(1)
n,j :=

Conv{y(n)(w), w ∈ Vn,j}, the convex hull of the set {y(n)(w), w ∈ Vn,j}. The sets

Δ
(1)
n,j are subsimplices of Δ

(1)
n , j = 0, 1, . . . , l. We observe that

max
a∈Δ

(1)
n,0

dist(a,Δ(1)
∞ )→ 0

as n→∞, where Δ
(1)
∞ =

⋂∞
n=1 Δ

(1)
n .

In the theorem below, we assume that stochastic incidence matrices of a Bratteli
diagram have the property of regularly vanishing blocks and apply it to the case when
Un = Vn,i for some i = 1, . . . , l. The blocks of the matrices corresponding to the
edges that connect vertices from outside of the supporting subdiagram Bi to the
vertices of Bi are the blocks of vanishing weights. Note that the second part of the
theorem does not require the stochastic incidence matrices of a Bratteli diagram to
have the property of regularly vanishing blocks.

Theorem 5.12 ([BKK]). Let B be a Bratteli diagram of rank K such that
the incidence matrices Fn have the property of regularly vanishing blocks. If B has
exactly l (1 ≤ l ≤ K) ergodic invariant probability measures, then, after telescoping,
the set Vn can be partitioned into subsets {Vn,1, . . . , Vn,l, Vn,0} such that

(a) Vn,i �= ∅ for i = 1, . . . , l;

(b) |Vn,i| does not depend on n, i.e., |Vn,i| = ki for i = 0, 1, . . . , l and n ≥ 1;

(c) for j = 1, . . . , l,

∞∑
n=1

⎛⎝1− min
v∈Vn+1,j

∑
w∈Vn,j

f (n)
vw

⎞⎠ <∞;

(d) for j = 1, . . . , l,

max
v,v′∈Vn+1,j

∑
w∈Vn

∣∣∣f (n)
vw − f

(n)
v′w

∣∣∣→ 0

as n→∞;
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(e1) for every w ∈ Vn,0

vollS(a
(n)
1 , . . . , a

(n)
l , y(n)(w))→ 0

as n → ∞, where S is a simplex with extreme points a
(n)
1 , . . . , a

(n)
l , y(n)(w), and

voll(S) stands for the volume of S;
(e2) for every v ∈ Vn+1,0 and for sufficiently large n, there exists some C > 0

such that, for every j = 1, . . . , l,

F (n,j)
v =

∑
w∈Vn,j

f (n)
vw < 1− C.

Conversely, let B be a Bratteli diagram of finite rank K ≥ 2 with nonsingu-
lar stochastic incidence matrices (Fn). Suppose that after telescoping B satisfies
conditions (a)− (e2). Then B has l ergodic probability invariant measures.

Remark 5.13. Condition (d) of Theorem 5.12 guarantees that the subdiagrams
Bi, i = 1, . . . , l corresponding to the vertices from Vn,i, are uniquely ergodic, but
it does not guarantee that the subdiagrams Bi are simple. One can reduce Bi

to the smallest possible simple and uniquely ergodic subdiagrams such that the
obtained subdiagrams are the same as considered in Theorem 5.9. For instance, in
Example 4.16, one can take Vn,1 = Vn and Vn,0 = ∅ for all n. After reduction, we
obtain that the new set V ′

n,1 consists only of the first vertex on each level n, and
V ′
n,0 consists of the second one. Condition (c) of Theorem 5.12 yields that for every

i = 1, . . . , l, the extension of the unique invariant measure μi on Bi to the measure
μ̂i on B is finite. Conditions (e1) and (e2) guarantee that there are no more finite
ergodic invariant measures on B except for μ̂1, . . . μ̂l.

The following theorem gives a criterion for the existence of K ergodic invariant
probability measures on a Bratteli diagram of rank K. This criterion was proved
in [ABKK17] for the case of Bratteli diagrams with ERS property, but actually
it can be reproved in terms of stochastic incidence matrices (Fn) without the ERS
property requirement.

Theorem 5.14. Let B = (V,E) be a Bratteli diagram of rank K ≥ 2; identify

Vn with {1, ...,K} for any n ≥ 1. Let Fn = (f
(n)
i,j ) form a sequence of stochastic

incidence matrices of B. Suppose that rank Fn = K for all n. We write

z(n) = det

⎛⎜⎜⎝
f
(n)
1,1 . . . f

(n)
1,k

...
. . .

...

f
(n)
k,1 . . . f

(n)
k,k

⎞⎟⎟⎠ .

Then there exist exactly K ergodic invariant measures on B if and only if

∞∏
n=1

|z(n)| > 0,

or, equivalently,
∞∑

n=1

(1− |z(n)|) <∞.
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5.4. Examples.

Example 5.15 (Stationary Bratteli diagrams). This example illustrates The-
orem 5.12. For stationary Bratteli diagrams (see Subsection 5.2), we relate the
distinguished classes of vertices to the subsets Vn,j mentioned in Theorem 5.12.

Proposition 5.16 ([BKK]). Let B = (V,E) be a stationary Bratteli diagram
and Vn,j, j = 1, . . . , l be subsets of vertices defined in Theorem 5.12. Then the
distinguished classes α (as subsets of V ) coincide with the sets Vn,j, j = 1, . . . , l.

The proof of the above proposition uses the representation of the incidence

matrix F̃ in the Frobenius normal form (similarly to the way it was done in
[BKMS10]):

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̃1 0 · · · 0 0 · · · 0

0 F̃2 · · · 0 0 · · · 0
...

...
. . .

...
... · · ·

...

0 0 · · · F̃s 0 · · · 0

Ys+1,1 Ys+1,2 · · · Ys+1,s F̃s+1 · · · 0
...

... · · ·
...

...
. . .

...

Ym,1 Ym,2 · · · Ym,s Ym,s+1 · · · F̃m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where all {F̃i}mi=1 are irreducible square matrices, and for any j = s + 1, . . . ,m,
at least one of the matrices Yj,u is non-zero. All classes {Eα}sα=1 (s ≥ 1), are
distinguished (there is no β such that α > β). For every α ≥ s+ 1 such that Eα is
a distinguished class and for every 1 ≤ β < α we have either Eβ ≺ Eα and ρβ < ρα,
or there is no relation between Eα and Eβ. Then the Perron–Frobenius theorem is
used to show that the sets Vn,j , j = 1, . . . , l, coincide with the distinguished classes
Eα.

Example 5.17. Let B be a Bratteli diagram of rank 2 with incidence matrices

F̃n =

(
n2 1
1 n2

)
, n ∈ N.

Since B2 has the ERS property (see Example 3.1), the corresponding stochastic
incidence matrices are:

Fn =

⎛⎜⎜⎜⎝
1− 1

n2 + 1

1

n2 + 1

1

n2 + 1
1− 1

n2 + 1

⎞⎟⎟⎟⎠ .

Since the series
∞∑

n=1

1

n2 + 1

converges, by Theorem 5.12 the diagram B has two ergodic invariant probability
measures. It also is easy to see that the diagram satisfies the condition of Theo-
rem 5.14 (see also Proposition 3.1 in [ABKK17]).

This example can be generalized to the case of Bratteli diagrams of rank K ≥ 2

by using Example 4.15 and choosing the appropriate values for f
(n)
i , i = 1, . . . , n.
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6. Infinite rank Cantor dynamical systems

In this section, we give sufficient conditions for a Bratteli diagram of infinite
rank to have a prescribed (finite or infinite) number of ergodic invariant probability
measures. We define a class of Bratteli diagrams of infinite rank that, in some sense,
generalizes the class of Bratteli diagrams of finite rank. A diagram of this class
has a prescribed number of uniquely ergodic subdiagrams such that the extension
of the unique invariant measure from each subdiagram to the whole diagram is
finite. Moreover, there are no other finite ergodic invariant measures for the Bratteli
diagram.

6.1. A class of Bratteli diagrams of infinite rank. Let us assume that
(after telescoping) every level Vn of a Bratteli diagram B admits a partition

Vn =

ln⋃
i=0

Vn,i, n = 1, 2, . . . ,

into disjoint subsets Vn,i such that Vn,i �= ∅, for i = 1, . . . , ln, and ln ≥ 1. Moreover,
let

Ln+1 = {1, . . . , ln+1} =
ln⋃
i=1

L
(i)
n+1,

where L
(i)
n+1 �= ∅ and L

(i)
n+1 ∩ L

(j)
n+1 = ∅ for i �= j, i, j = 1, . . . , ln. Hence, for every

j = 1, . . . , ln+1, there exists a unique i = i(j) ∈ {1, . . . , ln} such that j ∈ L
(i)
n+1.

Denote

V
(i)
n+1 =

⋃
j∈L

(i)
n+1

Vn+1,j

for 1 ≤ i ≤ ln.

We can interpret the sets L
(i)
n , defined above, in terms of subdiagrams. For

this, select a sequence i = (i1, i2, . . .) such that i1 ∈ L1, i2 ∈ L
(i1)
2 , i3 ∈ L

(i2)
3 , . . .

and define a subdiagram Bi = (V ,E), where

V =

∞⋃
n=1

Vn,in ∪ {v0}.

Now we formulate conditions (c1), (d1), (e1) which are analogues of conditions
(c), (d), (e) used in Theorem 5.12:

(c1)
∞∑

n=1

⎛⎝max
i∈Ln

max
v∈V

(i)
n+1

∑
w/∈Vn,i

f (n)
vw

⎞⎠ <∞;

(d1)

max
j∈Ln+1

max
v,v′∈Vn+1,j

∑
w∈Vn

∣∣∣f (n)
vw − f

(n)
v′w

∣∣∣→ 0 as n→∞;

(e1) for every v ∈ Vn+1,0,
(e1.1) ∑

w∈Vn\Vn,0

f (n)
vw → 1 as n→∞;
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(e1.2) there exists C > 0 such that F
(n)
vi ≤ 1− C for every i = 1, . . . , l, where

F
(n)
vi =

∑
w∈Vn,i

f (n)
vw .

Notice that the new condition (e1.1) in the case of infinite rank Bratteli diagrams
is stronger than the corresponding condition (e1) in Theorem 5.12.

Let

L = {i = (i1, i2, . . .) : i1 ∈ L1, in+1 ∈ L
(in)
n+1, n = 1, 2, . . .}.

We call such a sequence i ∈ L a chain. We remark that a Bratteli diagram B =
(V,E) of finite rank has the form described in this section. We also notice that the
following theorem does not require the stochastic incidence matrices of a Bratteli
diagram to have the property of regularly vanishing blocks.

Theorem 6.1 ([BKK]). Let B = (V,E) be a Bratteli diagram satisfying the
conditions (c1), (d1), (e1). Then:

(1) for each i ∈ L, any measure μi defined on Bi has a finite extension μ̂i on
B,

(2) each subdiagram Bi, i ∈ L, is uniquely ergodic,
(3) after normalization, the measures μ̂i, i ∈ L, form the set of all ergodic

invariant probability measures on B, in particular, |E1(B)| = |L|.

6.2. Examples.

Example 6.2 (Pascal–Bratteli diagram). In Subsection 6.1, we defined a class
of Bratteli diagrams B = (V,E) such that the set of all ergodic invariant probability
measures coincides with the set L of all infinite chains i. Each ergodic probability
invariant measure μ̂i is an extension of a unique invariant measure μi from the
subdiagram Bi, and the sets XBi

are pairwise disjoint. It turns out, that the set of
ergodic invariant measures for Pascal–Bratteli diagram has a different structure.

For the Pascal–Bratteli diagram, we have Vn = {0, 1, . . . , n} for n = 0, 1, . . .,

and the entries f̃
(n)
ki of the incidence matrix F̃n are of the form

f̃
(n)
ki =

⎧⎪⎨⎪⎩
1, if i = k for 0 ≤ k < n+ 1,

1, if i = k − 1 for 0 < k ≤ n+ 1,

0, otherwise.

where k = 0, . . . , n + 1, i = 0, . . . , n (see [MP05,Ver11,Ver14,FPS17]). More-
over,

h
(n)
i =

(
n

i

)
,

for i = 0, . . . , n. The entries of the corresponding stochastic matrices are Fn:

(6.1) f
(n)
ki =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k

n+ 1
, if i = k − 1 and 0 < k ≤ n+ 1,

1− k

n+ 1
, if i = k and 0 ≤ k < n+ 1,

0, otherwise.
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It is known (see e.g. [MP05]) that each ergodic invariant probability measure has
the form μp, 0 < p < 1, where

μp

(
X

(n)
i

)
=

(
n

i

)
pi(1− p)n−i, i = 0, . . . , n.

Proposition 6.3 ([BKK]). For the Pascal–Bratteli diagram, the set L of all
infinite chains i is empty.

Example 6.4 (A class of Bratteli diagrams with countably many ergodic in-
variant measures). In this example, we present a class of Bratteli diagrams with
countably infinite set of ergodic invariant measures. Let Vn = {0, 1, . . . , n} for
n = 0, 1, . . ., and let {an}∞n=0 be a sequence of natural numbers such that

(6.2)
∞∑

n=0

n

an + n
<∞.

Consider the Bratteli diagram B with (n+ 2)× (n+ 1) incidence matrices

F̃n =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

an 1 1 . . . 1 1
1 an 1 . . . 1 1
...

...
...

. . .
...

...
1 1 1 . . . 1 an
1 1 1 . . . 1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then

|r−1(v)| = an + n

for every v ∈ Vn+1 and every n = 0, 1, . . .
The Bratteli diagram defined above admits an order generating the Bratteli–

Vershik homeomorphism (see [HPS92], [GPS95], or [BKY14], [BK16]). In par-
ticular, we can use the so called consecutive ordering such that XB has the unique
minimal infinite path passing through the vertices 0 ∈ Vn, n ≥ 0 and the unique
maximal infinite path passing through the vertices n ∈ Vn, n ≥ 0. A Vershik map
ϕB : XB → XB exists and it is minimal. Figure 2 below shows an example of such
a Bratteli diagram. It is known that all minimal Bratteli–Vershik systems with a
consecutive ordering have topological entropy zero (see e.g. [Dur10]), and hence
the system that we describe in this subsection has zero topological entropy.

Denote by Bi = (W (i), E(i)), i = 0, 1, . . . ,∞, the subdiagrams of B determined
by the following sequences of vertices (taken consecutively from V0, V1, . . .): for
B0, W

(0) = (0, 0, 0, . . .); for Bi, W
(i) = (0, 1, . . . , i− 1, i, i, i . . .) for i = 1, 2, . . ., and

for B∞, W (∞) = (0, 1, 2, . . .). Then each Bi is an odometer and E(i) is the set of
all edges from B that belong to Bi. Let μi be the unique invariant (hence ergodic)
probability measure on the odometer Bi. Then each measure μi can be extended to

a finite invariant measure μ̂i on the diagram B and it is supported by the set X̂Bi

(see [BKK]). We use the same symbol μ̂i to denote the normalized (probability)
measure obtained from the extension of μi for i = 0, 1, . . . ,∞.

Proposition 6.5 ([BKK]). The measures μ̂i, i = 0, 1, . . . ,∞, form a set of all
ergodic probability invariant measures on the Bratteli diagram B = (V,E) defined
above.
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· · · · · ·

· · · · · · · · ·

· · · · · · · · · · · ·

...
...

...
...

Figure 2
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[Fer96] Sébastien Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems
16 (1996), no. 4, 663–682. MR1406427

[Fer99] Sébastien Ferenczi, Complexity of sequences and dynamical systems, Discrete Math.
206 (1999), no. 1-3, 145–154. Combinatorics and number theory (Tiruchirappalli,
1996). MR1665394

[FFT09] Sebastien Ferenczi, Albert M. Fisher, and Marina Talet, Minimality and unique er-
godicity for adic transformations, J. Anal. Math. 109 (2009), 1–31. MR2585390
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Courses], vol. 11, Société Mathématique de France, Paris, 2003. MR2041676

[LM95] Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding,
Cambridge University Press, Cambridge, 1995. MR1369092

[Med06] Konstantin Medynets, Cantor aperiodic systems and Bratteli diagrams, C. R. Math.

Acad. Sci. Paris 342 (2006), no. 1, 43–46. MR2193394
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no. Teoriya Predstavlenĭı, Dinamicheskie Sistemy, Kombinatornye Metody. XXIII,
58–67. MR3479463

[Wal82] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics,
vol. 79, Springer-Verlag, New York-Berlin, 1982. MR648108

Department of Mathematics, University of Iowa, Iowa City, 52242 IA, USA

Email address: bezuglyi@gmail.com

B. Verkin Institute for Low Temperature Physics and Engineering of the National

Academy of Sciences of Ukraine, Kharkiv 61103, Ukraine

Current address: Faculty of Applied Mathematics, AGH University of Science and Technol-
ogy, al. Mickiewicza 30, 30-059 Krakow, Poland

Email address: helen.karpel@gmail.com

https://www.ams.org/mathscinet-getitem?mr=784265
https://www.ams.org/mathscinet-getitem?mr=1073173
https://www.ams.org/mathscinet-getitem?mr=2901372
https://www.ams.org/mathscinet-getitem?mr=2779260
https://www.ams.org/mathscinet-getitem?mr=1835574
https://www.ams.org/mathscinet-getitem?mr=2671112
https://www.ams.org/mathscinet-getitem?mr=3791491
https://www.ams.org/mathscinet-getitem?mr=2590264
https://www.ams.org/mathscinet-getitem?mr=1778851
https://www.ams.org/mathscinet-getitem?mr=516048
https://www.ams.org/mathscinet-getitem?mr=625756
https://www.ams.org/mathscinet-getitem?mr=660072
https://www.ams.org/mathscinet-getitem?mr=2883236
https://www.ams.org/mathscinet-getitem?mr=3479463
https://www.ams.org/mathscinet-getitem?mr=648108




Contemporary Mathematics
Volume 744, 2020
https://doi.org/10.1090/conm/744/14989

Periods of abelian differentials and dynamics
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To the memory of Sergei Kolyada.

Abstract. Given a closed oriented surface S of genus ≥ 3 we describe those
cohomology classes χ ∈ H1(S,C) which appear as the period characters of
abelian differentials for some choice of complex structure τ = τ(χ) on S con-
sistent with the orientation. In other words, we describe the union

⋃

τ∈T (S)

H1,0(Sτ ,C),

where T (S) is the Teichmüller space of S. The proof is based upon Ratner’s
solution of Raghunathan’s conjecture.

1. Introduction

This paper is a slightly revised version of my preprint written in 2000 at the Max
Plank Institute for Mathematics in Bonn. A few years after writing the preprint,
I discovered a paper by Otto Haupt [Hau20], where the main result of my paper,
Theorem 1.2 (including the genus 2 case), was proven by elementary methods. An-
other proof is contained in the preprint of Bogomolov, Soloviev and Yotov, [BSY09]
(who also study periods of pairs and even triples of abelian differentials). In view
of Haupt’s paper, the main point of my work is to establish a connection of the
periods of abelian differentials to ergodic theory. This connection and some of the
methods used in this work were exploited by Calsamiglia, Deroin and Francaviglia
in [CDF15] to further analyze the period map and to prove the connectivity of
its fibers. In their paper they also found a mistake in my preprint, in the analysis
of the genus 2 case, and gave a precise description of orbit closures in this setting.
Therefore, I have removed the genus 2 case from the present paper; otherwise, it
remains essentially unchanged.

Let S be a closed (i.e. compact with empty boundary) connected oriented
surface of genus n. Recall that each complex structure τ on S (consistent with
the orientation) determines the linear subspace H1,0(Sτ ,C) ⊂ H1(S,C) of complex
dimension n (i.e. half of the dimension of the cohomology group). In down-to-
earth terms, the subspace H1,0(S,C) consists of the period characters of abelian
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differentials α ∈ Ω(S):

χα = χ ∈ H1(S,C), χ(c) =

∫
c

α, c ∈ H1(S,Z).

In this paper we describe the subset⋃
τ∈T (S)

H1,0(Sτ ,C) ⊂ H1(S,C),

where T (S) is the Teichmüller space of S. In other words, we give a necessary and
sufficient condition for a character χ ∈ H1(S,C) to appear as the period of some
abelian differential α on Sτ for some choice of the complex structure τ on S.

Remark 1.1. We note the difference between this question and the Schottky
problem which asks for a description of the subvariety in the Grassmannian G(n, 2n)
whose elements are subspaces H1,0(Sτ ,C), with τ ∈ T (S).

Since the solution is obvious in the case χ = 0 we will consider only the nontriv-
ial characters χ. It turns out that there are precisely two topological obstructions
for such χ to be the character of an abelian differential, the first is classical and is
a part of the Riemann bilinear relations (see for instance [Nar92]); the second is
less known.

To describe the first obstruction (which applies for all n ≥ 1) recall that the
Poincaré duality defines a symplectic pairing ω : H1(S,R)⊗2 → R. This yields a
quadratic form H1(S,C)→ R again denoted ω:

ω(χ) := ω(Reχ, Imχ).

If x1, y1, ..., xn, yn denote the standard (symplectic) basis of H1(S,Z) then ω(χ)
equals

n∑
i=j

Im(χ(xj)χ(yj)).

The number ω(χ) can be also described as∫
S

f∗(dA),

where dA is the area form i
2dz ∧ dz on C, f : S → E is a section of the complex

line bundle E over S associated with χ. (The form dA is induced on E via the

projection S̃ × C→ C, where S̃ is the universal covering of S.)
Note that in the case when χ �= 0 is the period character of an abelian differ-

ential α ∈ Ω(S) we have:

ω(χ) =

∫
S

i

2
α ∧ ᾱ

is the area of the surface S with respect to the singular Euclidean metric on S
induced by α. Since this area has to be positive we get

Obstruction 1. If χ ∈ H1,0(Sτ ) for some τ ∈ T (S) then ω(χ) > 0.

The second obstruction applies only to special characters χ and surfaces of genus
n ≥ 2. In what follows we will regard elements of H1(S,C) as additive characters
χ on H1(S,Z), this way we have the image of χ, which is a subgroup Aχ of C.
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Obstruction 2. Suppose that the image Image(χ) of the character χ ∈
H1(S,C) is a discrete subgroup Aχ of C isomorphic to Z2 and n ≥ 2. Thus χ
gives rise to a homomorphism

χ : H1(S,Z)→ H1(T 2,Z)

where T 2 = C/Aχ is the 2-torus. This map is realized by a unique (up to homotopy)
map f : S → T 2. Then, for each χ ∈ H1,0(Sτ ) the degree of f has to be at least 2.

The reason for this obstruction is that if χ is the period of some α ∈ Ω(Sτ )
then the multivalued solution of the equation dF = α on the Riemann surface Sτ

yields a (nonconstant) holomorphic map f : S → T 2 which induces χ : H1(S,Z)→
H1(T 2,Z). Since the surface S is assumed to have genus n ≥ 2, the map f cannot
be a homeomorphism, hence its degree is at least 2.

Alternatively, the second obstruction can be described as follows. Assume
again that the image Aχ of the character χ is a discrete subgroup isomorphic to Z2.
Let Area(χ) denote Area(C/Aχ), the area of the flat torus. Then the requirement
deg(f) ≥ 2 is equivalent to

ω(χ) ≥ 2Area(χ).

We now assume that the surface S has genus n ≥ 3. Our main result is the
following:

Theorem 1.2. If n ≥ 3 and χ ∈ H1(S,C) satisfies the conditions imposed by
the 1-st and the 2-nd obstruction then χ ∈ H1,0(Sτ ) for some τ ∈ T (S).

In §6 we show that if χ is a nonzero character which is not the period of any
abelian differential, it is nevertheless possible to find a complex structure τ on S
such that χ is the period character of a meromorphic differential with a single
simple pole on Sτ . We now identify the additive group C with the subgroup of
PSL(2,C) consisting of translations z → z + b, b ∈ C. Then we can regard χ as a
representation ρ : π1(S)→ PSL(2,C). For such ρ define

(1.1) d(ρ) :=

{
2n− 2, if Obstructions 1 and 2 are satisfied,
2n, otherwise.

We recall (see e.g. [GKM00]) that a branched projective structure σ on a
complex curve S is an atlas with values in S2 where the local charts are nonconstant
holomorphic functions (not necessarily locally univalent) and the transition maps
are linear-fractional transformations (i.e. elements of PSL(2,C)). Thus near each
point z ∈ S (which we identify with 0 ∈ C) the local chart has the form z → zm+1.
The numberm = deg(z) is called the degree of branching at z. We get the branching
divisor D on S whose degree is called the degree of branching deg(σ). For each
representation ρ : π1(S)→ PSL(2,C) there exists a complex-projective structure σ
(consistent with the orientation on S) which corresponds to some complex structure
on S, such that ρ is the holonomy of σ. We define d(ρ) to be the least degree of
branching for such structures. Note that for the trivial representation ρ, d(ρ) =
2n+2 and the branched projective structure is given by the hyperelliptic covering.
In this note we compute the function d(ρ) in the very special case of representations
with the image in the subgroup of translations. The general case will be treated
elsewhere, here we only note that in [GKM00] (see also [Kap95]) it was shown
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that for each representation ρ with nonelementary image1, d(ρ) ∈ {0, 1} equals the
2-nd Stiefel–Whitney class of ρ (mod 2).

Corollary 1.3. Suppose that n ≥ 3. For each nontrivial representation ρ :
π1(S) → PSL(2,C) whose image is contained in the subgroup of translations, the
function d(ρ) is given by the formula ( 1.1).

The lower bounds in this theorem are given by the Riemann–Roch theorem
(see §6), while the upper bound follows from Theorems 1.2 and 6.1.

Since the map P : α→ χα, which sends the abelian differential to its character,
is complex-linear, it suffices to prove Theorem 1.2 for normalized characters, i.e. the
characters χ such that ω(χ) = 1 (hence the 1-st obstruction automatically holds).
We let

X := {χ ∈ H1(S,C) : ω(χ) = 1}
and

Σ := X ∩
⋃

τ∈T (S)

H1,0(Sτ ,C).

Let Ω denote the vector bundle over T (S) whose fiber over a point τ ∈ T (S) consists
of abelian differentials Ω(Sτ ). We let Ω′ denote the submanifold in Ω consisting of
abelian differentials α such that ω(α) = 1. We have the map

P : Ω′ → Σ ⊂ X.

To explain the appearance of ergodic theory in the proof we will need two elementary
facts about the subset Σ in X.

Fact 1. (See §2.) The map P : Ω′ → X is open. In particular, Σ is open in X.

We let G = Sp(n) = Sp(2n,R) denote the group of linear symplectic automor-
phisms of the symplectic structure ω on R4n = H1(S,C). This is a simple algebraic
Lie group which acts naturally on X. It is elementary that the action of G on X is
transitive. The stabilizer Gχ of a point χ ∈ X is isomorphic to Sp(2n− 2). Thus
X = Sp(2n)/Sp(2n− 2). Recall that the integer symplectic group Γ = Sp(2n,Z)
is a lattice in the group G.

Fact 2. The subset Σ is invariant under Γ.
Recall that the group of orientation-preserving diffeomorphisms Diff(S) acts

on H1(S,C) through the group Γ. If χ ∈ Σ is the period character of α ∈ Ω(Sτ )
and γ ∈ Γ corresponds to a diffeomorphism h : S → S, then γ(χ) is the period
character of the abelian differential

h∗(α) ∈ Ω(Sh∗(τ)),

where h∗(τ ) is the pull-back of the complex structure τ via h. Thus γ(Σ) = Σ.
Combining the above two facts we see that Σ is a (nonempty) open Γ-invariant

subset of X. We recall

Theorem 1.4 (C. Moore, see [Zim84]). If G is a semisimple Lie group, Γ is
a lattice in G and H is a noncompact Lie subgroup in G then H acts ergodically on
Γ\G. Equivalently, Γ acts ergodically on G/H.

1I.e. the image does not have an invariant finite nonempty subset in H3 ∪ S2.



PERIODS OF ABELIAN DIFFERENTIALS AND DYNAMICS 301

Thus, since Σ ⊂ X = Sp(2n)/Sp(2n − 2) is an open nonempty Γ-invariant
subset, the complement X − Σ has zero measure. In particular, Σ is dense in X.
Ergodicity of the action Γ 
 X implies that generic2 points χ ∈ X have dense
Γ-orbits. Our objective is to understand the nongeneric orbits. This is done by
applying Ratner’s solution of Raghunathan’s conjecture. Ratner’s theorem implies
that there are only few types of nongeneric orbits. We will show that most of them
correspond to the characters with discrete image. After we describe other orbits
we will show that Obstruction 2 suffices for the existence of an abelian differential
with the given period character.
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2. Geometric preliminaries

Geometric interpretation of nonzero abelian differentials α. Each
nonzero abelian differential α ∈ Ω(Sτ ) determines a singular Euclidean structure on
the surface S with isolated singularities at zeroes of α, see [Str84]. Let Zero(α) ⊂ S
denote the set of zeroes of α.

The local charts for this structure are given by the branches of the indefinite
integral

F (z) =

∫ z

z0

α,

where z0 ∈ S is a base-point. If α vanishes (at the order m − 1) at a point 0 ∈ S
then the local chart at 0 is a k-fold ramified covering z → zm. The transition maps
of the flat atlas on S−Zero(α) are Euclidean translations. Vice-versa, suppose that
we are given a flat structure on the (topological) surface S where the local charts
have the form z → zm, m ≥ 1, and the transition maps away from the branch-
points are Euclidean translations. This structure canonically defines a complex
structure on S together with an abelian differential α obtained by the pull-back
of dz via the local charts. Every such singular Euclidean structure gives rise to
a developing map dev : S̃ → C where S̃ is the universal abelian covering of S
and H := H1(S,Z) acts on S̃ by deck-transformations. The mapping dev is χ-
equivariant, where χ : H1(S,Z) → C is the holonomy of the above structure (it
coincides with the character of the associated abelian differential). The space E(S)
of the above Euclidean structures has a natural topology: the topology of uniform
convergence on compacts of the developing mappings. It is easy to see that with
this topology the natural bijection E(S)→ Ω− 0Ω is a homeomorphism. Here 0Ω
is the image of the zero-section of the bundle Ω → T (S), i.e. 0Ω consists of zero
abelian differentials.

Matrix form of the characters. Given the standard (symplectic) basis in
H1(S,Z), x1, y1, ..., xn, yn, we can identify each character χ : H1(S,Z) → C = R2

with the 2× 2n matrix
M(χ) := [M1M2...Mn],

2In the measure-theoretic sense.
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Mj = Mj(χ) :=

[
aj bj
cj dj

]
, j = 1, ..., n.

Here

χ(x1, ..., yn) = (u, v)t, u = (a1, b1, ..., an, bn), v = (c1, d1, ..., cn, dn),

and the vectors u, v are the row-vectors of the matrix M . The group G = Sp(2n)
acts on the matrices M by multiplying them from the right. The matrix M(χ) is
the matrix form of the character χ. Then we define

ωj(u, v) = det(Mj(χ)) =

∣∣∣∣ aj bj
cj dj

∣∣∣∣ , j = 1, ..., n;

it follows that ω(u, v) =
∑

j ωj(u, v). The group SL(2) = Sp(2) acts on the char-
acters χ by multiplying their matrices from the left. It is clear that this action
commutes with the action of Sp(2n,Z) ⊂ G and that it preserves each determinant
ωj(χ).

Lemma 2.1. Sp(2)Σ = Σ.

Proof. Suppose that χ ∈ Σ is the period character of an abelian differential
corresponding to a singular Euclidean structure σ. Take A ∈ Sp(2). Composing
coordinate charts of σ with A deforms σ to a new singular Euclidean structure of
the same area. The holonomy of this structure is the composition A ◦ χ. Hence
Aχ ∈ Σ. �

Lemma 2.2. Suppose that χ = (u, v) and u, v ∈ R2n span a 2-dimensional
rational subspace (i.e. a subspace which admits a rational basis). Then the Z-
moduleM generated by the columns of the matrix M(χ) has rank 2, i.e. is discrete
as a subgroup of R2.

Proof. The action of GL(2) by multiplication from the left on the matrix
M(χ) preserves the rank ofM. Since Span(u, v) is a rational subspace there exists
a matrix A ∈ GL(2) such that the matrix AM(χ) has integer entries. The rank of
the Z-module generated by its columns is clearly 2. �

Define
X+ := {χ ∈ X : ωj(χ) > 0, j = 1, ..., n}.

Our strategy in dealing with the nongeneric characters χ ∈ X is to find γ ∈
Sp(2n,Z) such that ωj(γχ) > 0, j = 1, ..., n, i.e. γχ ∈ X+. As we will see in
Theorem 2.3 the existence of such γ would imply that χ belongs Σ (i.e. that χ is
the period character of an abelian differential).

Theorem 2.3. X+ ⊂ Σ.

Proof. Let (u, v) ∈ X+, u = (a1, b1..., an, b2n), v = (c1, d1, ..., cn, dn). We let
zj := (aj , cj), wj := (bj , dj) ∈ R2, j = 1, ..., n. Each pair of vectors (zj , wj) deter-
mines a fundamental parallelogram Pj in R2 for the lattice generated by zj , wj .
Using parallel translations place these parallelograms such that Pj ∩ Pj+1 has
nonempty interior, j = 1, ..., n − 1. Then for each pair of parallelograms Pj , Pj+1

(j = 1, ..., n− 1) cut both Pj , Pj+1 open along common segments βj and then glue
them along the resulting circles. Call the result Φ. See Figure 1.

Finally, for each parallelogram Pj identify the opposite sides via a parallel

translation. The result is a surface S, equipped with the projection δ : S̃ → C where
S̃ is the universal abelian covering. The surface Φ is the fundamental domain for the
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action ofH1(S,Z) on S̃ via deck transformations. The restriction δ|Φ : Φ→ C is the
obvious projection. Note that δ is a local homeomorphism away from the translates
of the end-points of the segments βj . Near the end-points of such segments the
mapping δ is a 2-fold ramified covering. The abelian differential α on S is obtained
by taking the pull-back of dz from C to S̃ via δ and then projecting it to S. The
edges of the parallelograms Pj correspond to the standard generators ofH1(S,Z). It
is clear that the periods of α over the generators of H1(S,Z) are given by evaluation
of χ on these generators. �

The above lemma implies that it suffices to show that Γχ ∩ X+ �= ∅ to prove
that χ ∈ Σ. Note however that there are characters in Σ which do not belong to
the orbit ΓX+. These are the characters with the discrete image Aχ

∼= Z2 such
that

ω(χ)

Area(C/Aχ)
< n.

To find abelian differentials corresponding to such characters we need another
construction that we describe below.

Lemma 2.4. Suppose that the character χ has the matrix form

[M1M2...Mn],M1 =

[
a1 = ω(χ) 0

0 1

]
,Mj =

[
aj 0
0 0

]
, j = 2, ..., n,

where 0 < aj < a1, j = 2, ..., n. Then χ ∈ Σ.

Proof. Similarly to the previous lemma we construct a complex structure
and an abelian differential by gluing certain polygons. Let P1 be the fundamental
rectangle for the group generated by the vectors z1, w1 which are the columns
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of M1. Inside P1 choose pairwise disjoint horizontal segments βj , β
′
j , j = 2, .., n,

such that the translation via [aj0] sends βj to β′
j . We then cut P1 open along

the segments βj , β
′
j and identify the resulting circles via the translations by [aj0],

j = 2, .., n. Finally, glue the sides of P1 via the horizontal translations, see Figure
2. Analogously to the previous lemma we get a singular Euclidean structure with
the holonomy χ. The singular points of this structure correspond to the end-points
of the segments βj (the total angle at each of these points is 4π). �

z
1

1
w

β3'3β

β2

z
3

2β'z
2

Figure 2

Lemma 2.5. Suppose that u, v ∈ Z4 are vectors such that ω(u, v) = 1. Then
this pair of vectors can be completed to an integer symplectic basis in R4.

Proof. Let W := Span(u, v). Recall that the symplectic projection ProjW (z)
of a vector z to W is given by

ProjW (z) = ω(z, v)u− ω(z, u)v.

Hence ker(ProjW ) = W⊥ is a rational subspace in R4 and we choose a basis p, q ∈
W⊥ such that the vectors p, q generate the abelian group Z4 ∩W⊥. The vectors
u, v, p, q generate the group Z4 since the symplectic projection of Z4 to W and W⊥

is contained in Z4 ∩W and Z4 ∩W⊥ respectively. It follows that ω(p, q) = 1 and
x, y, p, q form an integer symplectic basis in R4. �

Lemma 2.6. Suppose that u ∈ R2n is a nonzero vector. Then there exists γ ∈ Γ
such that no coordinate of γ(u) is zero. If u, v ∈ R2n are such that ω(u, v) > 0,
then there exists γ ∈ Γ such that ωj(γ(u), γ(v)) �= 0 for each j = 1, ..., n.

Proof. The projection Sp(2n)→ R2n−0 given by g → g(−→e1) is a real algebraic
morphism. The union

n⋃
j=1

{x ∈ R2n : xj = 0}

is a proper (real) algebraic subvariety, hence its inverse image Y in G = Sp(2n,R)
is again a proper algebraic subvariety. Since Γ is Zariski dense in G we conclude
that Y is not Γ-invariant. The proof of the second assertion is similar and is left to
the reader. �
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Recall that Ω denotes the vector bundle over the Teichmüller space T (S) where
the fiber over a point τ consists of abelian differentials on the Riemann surface Sτ ;
0ω denotes the image of the zero section of Ω. We have the period map P : Ω →
H1(S,C), α → χα.

The following theorem is a variation on the Hejhal–Thurston Holonomy theo-
rem, see [Hej75], [Thu81], and [ECG87], [Gol87]. See also [GKM00, Section
12] for an alternative argument.

Theorem 2.7. (The Holonomy Theorem.) The restriction mapping P : Ω −
0Ω → H1(S,C) is open.

Proof. To prove this theorem we be using a geometric description of the
nonzero abelian differentials α given in the beginning of this section. Let σ ∈ E(S)

be a singular Euclidean structure with the period character χ. Let f : S̃ → C
denote the developing mapping of σ. Suppose that χk : H1(S,Z)→ C is a sequence
of characters converging to χ. Our goal is to find (for large k) structures σk ∈ E(S)
with the period characters χn and such that limk σk = σ.

Choose a triangulation T of S such that each edge is a geodesic arc with respect
to the singular Euclidean structure σ and each simplex is contained in a coordinate
neighborhood of σ. We will assume that each singular point of σ is a vertex of this
triangulation. Lift this triangulation to a triangulation T̃ of S̃ of S. Pick a finite
collection Δ1, ...,ΔM of 2-simplices in T̃ , one for each H-orbit. Let gi, i = 1, ..., N ,
be the elements of the deck-transformation group H, such that

gi(∪jΔj) ∩ ∪jΔj �= ∅.

Let C be a compact subset of S̃ whose interior contains both D := ∪jΔj and its
images under gi’s. For each χk we construct a continuous χk-equivariant mapping
fk : D → C such that:

(i) fk maps each 2-simplex homeomorphically to a Euclidean 2-simplex in C.
(ii) fk’s converge to f |D uniformly on compacts.

Finally, extend each fk to a χk-equivariant mapping fk : S̃ → C. It remains
to show that each mapping fk is a local homeomorphism for large k (away from
the singular points) and is the m(x)-fold ramified covering at each point where f
is such a covering. It suffices to check this for points in D.

(a) If x ∈ int(C) belongs to the interior of a 2-simplex in ∪igiD, then the claim
follows since each fn is a homeomorphism on each simplex.

(b) Suppose x belongs to the interior of a common arc η of two 2-simplices Δ,Δ′

in ∪igiD. Since f is a local homeomorphism, f(Δ), f(Δ′) lie (locally) on different
sides of the segment f(η) ⊂ C. Therefore the same holds for fk if k is sufficiently
large. Thus, fk does not “fold” along the arc η and is a local homeomorphism at
x.

(c) Lastly, if x is a vertex of a simplex, then the degree of f at x equals m(x),
hence for large k, the degree of fk at x is m(x) and it follows from (b) that fk is a
m(x)-fold ramified covering at x.

Equivariance of fk’s implies that they converge to f uniformly on compacts. �

Line stabilizers in Sp(2n). In what follows we will need a description of
the subgroups B in Sp(2n) with invariant line L ⊂ R2n. Let V ⊂ R2n be a
2-dimensional symplectic subspace containing L. To describe the structure of the
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group B we have to recall several facts about Heisenberg groups. Consider the 2n−2-
dimensional symplectic vector space (V, ω|V ). The Heisenberg group corresponding
to this data is the 2n − 1-dimensional Lie group which fits into the short exact
sequence

1→ R→ H2n−1 → V → 1,

where V is treated as the abelian (additive) Lie group. The normal subgroup
R is central in H2n−1. If g, h ∈ H2n−1 project to the vectors x, y ∈ V then
[g, h] = ω(x, y) ∈ R. The Heisenberg dilation on this group is the action of the
(multiplicative) group R+ on H2n−1 such that t ∈ R+ acts on the center R ⊂ H2n−1

via multiplication by t2 and acts on V via multiplication by t. Given this one defines
the Lie group H2n−1 �R+ where R+ acts on the Heisenberg group via Heisenberg
dilation. One can show that the resulting Lie group acts simply-transitively on the
complex-hyperbolic space CHn of the complex dimension n, however we will not
need this fact. What we will use is the following elementary lemma.

Lemma 2.8. The 2n-dimensional Lie group CH2n := H2n−1 �R+ contains no
lattices.

Proof. Suppose that Δ is a discrete subgroup ofH2n−1�R+ with the quotient
M = H2n−1 � R+/Δ. The unit speed flow on H2n−1 � R+ along the R+-factor
is volume-expanding and Δ-invariant. Hence it yields a volume-expanding flow on
M . It follows that Vol(M) =∞. �

We are now ready to describe the structure of B. The group B preserves the
span L+V of L and V , the projection L+V → V along the L-factor transfers the
action of B to the action of the symplectic group Sp(2n−2) on V . The kernel of the
homomorphism B → Sp(2n− 2) is the group CH2n = H2n−1 �R+. Here the R+-
factor acts trivially on V and as the maximal torus in Sp(2) 
 V ⊥ preserving L.
The center R of the Heisenberg group H2n−1 is the kernel of the action B 
 L+V .
The whole group B splits as the semidirect product CH2n � Sp(2n − 2), where
Sp(2n − 2) acts by conjugation on the V -factor of H2n−1 the same way it acts
on the vector space V . The subgroup Sp(2n − 2) commutes with the subgroup
B0 := R � R+, where R is the center of H2n−1. The proof of these assertions is a
straightforward linear algebra computation and is left to the reader.

Definition 2.9. The group H2n−1 is called the Heisenberg group associated to
the flag (V, L) in (R2n, ω), where V is a 2-dimensional symplectic subspace and L
is a line.

3. Ratner’s Theorem

Let G be a reductive algebraic Lie group and U ⊂ G be a connected subgroup
generated by unipotent elements3. Suppose Γ ⊂ G is a lattice, i.e. a discrete
subgroup with the quotient Γ\G of finite volume (with respect to the left-invariant
measure on G). Important examples of lattices in algebraic Lie groups G defined
over Q are given by the arithmetic groups, i.e. subgroups commensurable with GZ,
the group of integer points in G. The group U acts by right multiplications on the
manifold M = Γ\G. On the other hand, the group Γ acts by the left multiplication
on the manifold X = G/U . Given g ∈ G we let [g] denote its projection to M .

3I.e. elements whose adjoint action on the Lie algebra of G is unipotent.



PERIODS OF ABELIAN DIFFERENTIALS AND DYNAMICS 307

Theorem 3.1 (M. Ratner, see [Rat91,Rat95]). Under the above conditions
for each g ∈ G the closure (in the classical topology) of [g]U in M is “algebraic”.
More precisely, there exists a Lie subgroup H ⊂ G such that

• [g]U = [g]H.
• Hg ∩ Γ is a lattice in Hg := gHg−1.

This result is known as Raghunathan’s Conjecture. Special cases of this conjec-
ture were proven before Ratner by Dani [Dan86] and Margulis [Mar89]. Actually,
Ratner’s theorem does more than what is stated above: it describes Γ-invariant
ergodic measures on M and uses the ergodic framework to prove Raghunathan’s
Conjecture. We note that the group H may not be connected, however if H(0) is
the connected component of the identity in H, then H(0) ∩ Γ is still a lattice in
H(0). Below we reformulate Ratner’s theorem in terms of the action of Γ on G/U .
Let g ∈ G be the element which projects to x. Then

ΓgU = ΓgH = ΓHgg.

Hence

Corollary 3.2. Suppose that X := G/U and x = gU ∈ X. Then the closure
of Γx in X equals the Hg-orbit of x in X, where Hg is a Lie subgroup of G such
that Hg ∩ Γ is a lattice in H.

Note that gUg−1 = Gx is the stabilizer of x in G. By taking the connected
component of the identity we get:

Corollary 3.3. The closure Γx in X contains the orbit ΓFxx, where Fx is a
connected Lie subgroup of G which contains Gx and Γ ∩ Fx is a lattice in Fx.

Ratner’s theorem gives a tool for describing the exceptional orbits for the Γ-
action on X, still, some work has to be done by analyzing various Lie subgroups
Fx ⊂ G which might appear.

We now specialize to the case G = Sp(2n,R), the automorphism group of the
standard symplectic form ω:

ω(a1, b1, ..., an, bn) =

n∑
j=1

ajbj+1 − aj+1bj ,

and X ⊂ (R2n)2 consists of the pairs of vectors u, v such that ω(u, v) = 1.
The stabilizer U of the point (−→e1 ,−→e2) ∈ X is the group Sp(2n−2,R) embedded

in G as the subgroup of block-diagonal matrices:⎡⎣ 1 0 0 . . . 0
0 1 0 . . . 0
0 0 Sp(2n− 2)

⎤⎦ .
Although the group U is not unipotent itself, it is generated by unipotent elements,
hence Ratner’s theorem applies. Recall that Γ = Sp(2n,Z) is a lattice in G, we
also note that Γ ∩ U is a lattice in U as well. In the rest of the paper we will use
the notation U ′ = Gχ to denote the stabilizer of the point χ ∈ X.

Connected Lie subgroups of G containing U . To apply Ratner’s theorem
we have to know which Lie subgroups of G contain the Lie subgroup U ′ (conjugate
to U). We will list all maximal subgroups containing U . Recall that a connected
Lie subgroup G1 ⊂ G is said to be maximal if it is not contained in any proper
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connected Lie subgroup G2 ⊂ G. We will use a classification of maximal subgroups
of classical complex Lie groups done by Dynkin [Dyn52] (the real case was carried
out by Karpelevich [Kar55]). In our case the classification of maximal subgroups of
Sp(2n,C) easily implies (via the complexification) the needed result for the group
of real points Sp(2n,R).

Theorem 3.4 (E. Dynkin, see Ch. 6, Theorems 3.1, 3.2 in [GOV94]). Suppose
that H ⊂ Sp(2n,C) is a maximal connected Lie subgroup. Then one of the following
holds:

(a) H is a maximal parabolic subgroup of Sp(2n,C).
(b) H is conjugate to the subgroup Sp(k,C)× Sp(N − k,C).
(c) H is conjugate to Sp(s,C)⊗ SO(t,C) where 2n = st, s ≥ 2, t ≥ 3, t �= 4 or

s = 2, t = 4.

Note that in our situation H contains U ∼= Sp(2n− 2,C), hence we can ignore
the case (c). In the case (b) the only possibility is that F is conjugate to the group
Sp(2,C) × Sp(2n − 2,C). In the case (a) the group H has to preserve a complex
line in C2n.

We let χ = (u, v), u, v ∈ R2n are such that ω(u, v) = 1. Let V denote
Span(u, v). The group U ′ = Gχ

∼= Sp(2n − 2,R) fixes the vectors u, v. This
group also acts as the full group of linear symplectic automorphisms of the sym-
plectic complement V ⊥ ∼= R2n−2 of V . The maximal subgroups of G which contain
U ′ are:

(1) The group H = Sp(V ) × U ′, where Sp(V ) ∼= Sp(2,R) is the group of
automorphisms of V . (The semisimple case.)

(2) The maximal parabolic subgroup H of G which has an invariant line
L ⊂ R2n. (The non-semisimple case.) We note that in this case L is
necessarily contained in V .

Recall that in each case we have to find connected subgroups Fχ ⊂ H which
contain Gχ = U ′ and such that Fχ ∩ Γ is a lattice in Fχ.

4. The semisimple case

In this case the group Fχ ⊂ Sp(V ) × U ′ containing U ′, splits as the direct
product

Fχ
∼= S × Sp(2n− 2),

where S ⊂ Sp(2). We will need the following

Theorem 4.1 (See e.g. [Mar91]). Suppose that F1, F2 are simple real algebraic
Lie groups such that their complexifications do not have isomorphic Lie algebras.
Then any lattice Δ ⊂ F1 × F2 is reducible, i.e. Δ∩ Fi is a lattice for each i = 1, 2.

We also recall (see [Rag72, Corollary 8.28]):

Theorem 4.2 (M. Raghunathan, J. Wolf). Suppose that F is a connected Lie
group whose semisimple part contains no compact factors acting trivially on the
radical R(F ) of F . Then each lattice Δ ⊂ F intersects the radical R(F ) along a
sublattice in R(F ). Moreover, the projection of Δ to F/R(F ) is a lattice in this Lie
group.
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In our case the group S is either solvable or equals Sp(2), hence combining the
two above theorems we conclude that either:

(i) Γ ∩ U ′ is a lattice, or
(ii) n = 2, Fχ

∼= Sp(2)× Sp(2) and Γ ∩ U ′ is not a lattice4.
In view of the assumption that S has genus ≥ 3, we are considering here only

case (i), when Γ ∩ U ′ is a lattice.
By the Borel density theorem (see e.g. [Zim84]) the intersection U ′ ∩ Γ is

Zariski dense in U ′, in particular it contains a diagonalizable matrix A ∈ Sp(2n)
which has the eigenvalue 1 of the multiplicity 2. Since A has rational entries, the
kernel ker(A−I) is a rational subspace. We recall that the group U ′ is the pointwise
stabilizer of the linear subspace Span(u, v) of R2n spanned by u = Re(χ), v =
Im(χ). Hence Span(u, v) is a rational subspace of R2n.

Lemma 2.2 thus implies that the image Aχ of the character χ : H1(S,Z)→ C
is a discrete subgroup of C isomorphic to Z2. Moreover, without loss of generality
we can assume that Aχ is the standard integer lattice in C (see Section 2). This
might require scaling ω(χ) by a positive real number.

We recall that ω(u, v) > 0, where χ = (u, v),

u = (a1, b1, ..., an, bn), v = (c1, d1, ..., cn, dn), aj , bj , cj , dj ∈ Z.

Lemma 4.3. There exists γ ∈ Γ such that the character γχ = χ′ = (u′, v′)
satisfies:

(i) ω1(u
′, v′) > 0.

(ii) ωj(u
′, v′) = 0 for each j ≥ 2 and, moreover,

Mj(χ
′) =

[
a′j b′j
c′j d′j

]
=

[
a′j 0
0 0

]
, a′j ≥ 0.

Proof. We recall that without loss of generality we can start with (u, v) such
that for each j = 1, ..., n, ωj(u, v) �= 0 or

Mj(χ) =

[
aj 0
0 0

]
.

(Of course, in the beginning of the induction the latter case does not occur.) After
multiplying (u, v) by a matrix in Γ ∩ Sp(2)× ...× Sp(2) we can assume that every
matrix

Mj(χ) =

[
aj bj
cj dj

]
=

[
aj 0
0 dj

]
is diagonal. We now argue inductively. Suppose that j ∈ {2, .., n}. We let d′j :=

dj/gcd(|d1|, |dj |). Then there are integers αj , βj such that αjd
′
j − βjd

′
1 = 1. It

follows that

[
αj 0 βj 0
aj d′j −a1 −d′1

]⎡⎢⎢⎣
a1 0
0 d1
aj 0
0 dj

⎤⎥⎥⎦ =

[
αja1 + βjaj 0

0 0

]
.

4We note that the group Sp(2) × Sp(2) contains irreducible lattices, namely the Hilbert
modular groups.
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Note that the row vectors p, q of the first matrix in the above formula are such that
ω(p, q) = 1. Hence, according to Lemma 2.5, there exists a matrix

A =

⎡⎢⎢⎣
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
α 0 β 0
a2 d′2 −a1 −d′1

⎤⎥⎥⎦
which belongs to Sp(4,Z). We extend the matrix A to a matrix g ∈ Sp(2n,Z) which
preserves all the coordinates except a1, b1 and aj , bj . Then the character χ′ = gχ
has ωj(χ

′) = 0. Continuing inductively we find h ∈ Γ such that the character hχ
satisfies:

ωj(hχ) = 0, j = 2, 3, ..., n.

Note that ω1(hχ) = ω(hχ) = ω(χ) > 0. Recall that Image(χ) = Z × Z. Hence
b′1 = χ(y1) = 1, since all other generators x1, x2, y2, ... of H1(S,Z) are mapped
by hχ to the real numbers. Finally, to obtain γχ as required by the lemma, we
multiply hχ by a diagonal symplectic matrix with diagonal entries in {±1} to get
aj ≥ 0 for j = 2, ..., n. �

We again use the notation χ for the character χ′ obtained in the previous
lemma.

Lemma 4.4. There exists γ ∈ Γ such that that the character γχ satisfies:
(i)

M1(γχ) =

[
a1 = ω(χ) 0

0 1

]
.

(ii) For each j ≥ 2,

Mj(γχ
′) =

[
a′j 0
0 0

]
, 0 ≤ a′j < a1.

Proof. For each j ≥ 2 there exists tj ∈ Z such that 0 ≤ a′j := aj − tja1 < a1.
Then form the symplectic matrix

γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 . . . 0 0
0 1 0 t2 0 t3 . . . 0 tn
−t2 0 1 0 0 0 . . . 0 0
0 0 0 1 0 0 . . . 0 0
−t3 0 0 0 1 0 . . . 0 0
0 0 0 0 0 1 . . . 0 0
...

...
...

...
...

...
...

...
...

−tn 0 0 0 0 0 . . . 1 0
0 0 0 0 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The reader will note that this matrix belongs to the Heisenberg subgroup of Sp(2n)
associated to the flag (Span(e1, e2), Span(e2)). Then γχ has the requires properties:⎡⎢⎢⎣

1 0 0 0
0 1 0 tj
−tj 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

a1 0
0 1
aj 0
0 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
a1 0
0 1
a′j 0
0 0

⎤⎥⎥⎦ . �

We note that for some j we might have a′j = 0. However, since ω(χ) ≥ 2 =

Area(C/Z2) we conclude that there exists at least one j ≥ 2 such that aj > 0.
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Rename this index j to make it equal to 2. Rename χ′ = γχ back to χ and a′j back
to aj , j = 2, ..., n.

Lemma 4.5. There exists γ ∈ Γ such that that the character γχ satisfies:
(i)

M1(γχ) =

[
a1 = ω(χ) 0

0 1

]
.

(ii) For each j ≥ 2,

Mj(γχ) =

[
a′j 0
0 0

]
, 0 < a′j < a1.

Proof. The required matrix γ belongs to the Heisenberg group associated to
the flag (Span(e3, e4), Span(e4)). For each j such that aj �= 0 the multiplication by
γ will not change aj at all. Suppose that j ≥ 3, aj = 0. We describe the case j = 3
and n = 3, the general case is done inductively.

γ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −1
0 0 1 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then

γM(χ) =

⎡⎢⎢⎢⎢⎢⎢⎣
a1 0
0 1
a2 0
0 0
a2 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . �

5. The non-semisimple case

In this section we analyze lattices in those non-semisimple Lie subgroups F of
Sp(2n) that contain Sp(2n−2). Recall that each maximal non-semisimple subgroup
B of Sp(2n) containing Sp(2n− 2), preserves a line L ⊂ V ⊥, where V = R2n−2 is
the symplectic subspace invariant under Sp(2n − 2). The group B splits as semi-
direct product CH2n � Sp(2n− 2), where CH2n = H2n−1 � R+ and H2n−1 is the
2n− 1-dimensional Heisenberg group, see §2.

Now suppose that F = Fχ ⊂ B is a Lie subgroup containing Sp(2n− 2). Since
Sp(2n−2) acts transitively on V −0, the subgroup F has to be one of the following:

(a) F = B.
(b) F = H2n−1 � Sp(2n− 2).
(c) F = A× Sp(2n− 2) where A ⊂ B0 = R� R+.

If Δ = F ∩ Sp(2n,Z) ⊂ F is a lattice then its intersection with the subgroup
CH2n (case (a)), H2n−1 (case (b)) and A (case (c)) is again a lattice (see Theorem
4.2). The first case is impossible by Lemma 2.8. In the third case the intersection
Δ∩Sp(2n− 2) is a lattice as well and we are therefore reduced to the discussion in
§5. This leaves us with the case (b), when Sp(2n,Z)∩H2n−1 is a lattice. Note that
there are lattices Δ ⊂ H2n−1 � Sp(2n− 2) whose intersection with any conjugate
of Sp(2n− 2) is not a lattice, we leave it to the reader to construct such examples.
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Suppose now that χ ∈ X is a character (with the real part u and the imaginary
part v) such that the closure of the orbit Γχ contains the orbit Fχχ where Fχ

∼=
H2n−1�Sp(2n−2) fixes a line L in Span(u, v). According to Remark 2.1 it suffices
to consider the case L = Span(u). Applying an element γ ∈ Γ we can adjust the
pair (u, v) such that the vector u = (a1, b1, ..., an, bn) has no zero coordinates (see
Lemma 2.6). The group H2n−1 acts transitively on the set of vectors v ∈ R2n

satisfying ω(u, v) = 1. Hence we can find h ∈ H2n−1 such that

h(v) =
1

ω(u, v)
(....,−bj , aj , ....).

Hence ωj(u, h(v)) = ωj(h(u), h(v)) > 0 for each j = 1, ..., n. Since Γχ contains
the orbit Fχχ, there exists an element γ ∈ Γ such that ωj(γ(u), γ(v)) > 0 for each
j = 1, ..., n. According to Theorem 2.3 the character χ belongs to the subset Σ ⊂ X
of characters of abelian differentials.

6. Meromorphic differentials

Theorem 6.1. Suppose that n ≥ 3 and χ is a nonzero character in H1(S,C)
which does not satisfy either Obstruction 1 or Obstruction 2. Then there is a
complex structure τ on S and a meromorphic differential α with a single simple
pole on Sτ such that χ is the character of α.

Proof. Case A. The vectors u and v are linearly independent. The group
Sp(2n,R) acts transitively on the collection Y of pairs of vectors u, v ∈ R2n such
that ω(u, v) = 0 and u ∧ v �= 0. Thus (since Γ = Sp(2n,Z) is Zariski dense in
Sp(2n,R)) there exists γ ∈ Γ such that χ′ = γχ satisfies: ωj(χ

′) �= 0 for each
j = 1, ..., n. If each ωj(χ

′) > 0 then χ is the character of an abelian differential
and there is nothing to prove. Hence (after relabelling j’s) we get: ω1(χ

′) < 0 and
ωj(χ

′) �= 0, j = 2, ..., n. Set χ := χ′.

w
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Figure 3

We argue similarly to the proof of Theorem 2.3. Consider the fundamental
parallelogram P1 ⊂ C for the discrete group generated by the columns z1, w1 of
the matrix M1(χ

′). Let Q1 denote the closure of the exterior of P1 in S2. Note
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that topologically Q1 is still a parallelogram: its edges are the edges of P1. Iden-
tifying the opposite sides of Q1 by z1, w1 we get a marked torus T1 with a stan-
dard (symplectic) system of generators x1, y1, branched projective structure and
an orientation-preserving developing mapping to S2 whose holonomy is the homo-
morphism χ1 which sends x1 → z1, y1 → w1. (Here we identify a vector in C with
the corresponding translation.) Taking pull-back of the form dz on C we get a
meromorphic differential on T1 with the single simple pole (corresponding to the
point ∞ ∈ Q1) and the period character χ1. We now extend this to the rest of the
surface S. If j ≥ 2 is such that ωj(χ) > 0 then similarly to the proof of Theorem
2.3 we add to T1 the flat torus Tj obtained by identifying the sides of a fundamen-
tal parallelogram for the translation group generated by the columns of Mj(χ). If
ωj(χ) < 0 we pick a fundamental parallelogram Pj so that it is disjoint from the
Pi’s (1 ≤ i ≤ n, i �= j). Remove the interior of Pj from Q1 and identify the opposite
sides of Pj via translations. See Figure 3.

As the outcome we get an oriented surface S and a χ-equivariant developing
map to S2. The meromorphic differential on S is obtained via pull-back of dz from
C. Its only pole corresponds to the point on the torus T1 which maps to ∞ under
the developing map.

Figure 4

Case B. Let u and v be linearly dependent. It suffices to consider the case
u �= 0 (otherwise replace χ by

√
−1χ). Using Zariski density of Γ in Sp(2n,R)

(the latter acts transitively on R2n − 0) choose γ ∈ Γ such that no coordinate of
γ(u) is zero and let χ := γχ. We now argue analogously to the Case A. Let z1, w2

denote the columns of the matrix M1(χ). Let P1 denote the convex hull of the
set 0, z1, w1, z1 + w1. We will think of P1 as a degenerate parallelogram with the
edges [0, z1], [0, w1], [z1, z1+w1], [w1, z1+w1]. Now cut S2 open along P1 and denote
the result Q1, it is homeomorphic to a parallelogram, identification of the opposite
edges via translations by z1, w1 yields the torus T1. To reconstruct the rest of the
surface S we choose disjoint degenerate “fundamental parallelograms” Pj for the
groups generated by the translations zj , wj , cut Q1 open along the Pj ’s (j ≥ 2) and
get S by identifying the opposite edges on each cut. See Figure 4. �

Remark 6.2. We note that the branched projective structures σ associated to
the meromorphic differentials constructed in the above theorem have the branching
degree deg(σ) = 2n.
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We will next prove a lower bound on the degree of branching of the projective
structures with the holonomy in the translation subgroup C of PSL(2,C). This
lower bound holds for all genera n ≥ 2.

Suppose that σ is a branched projective structure with the holonomy ρ :
π1(S) → C ⊂ PSL(2,C). We will assume that ρ is nontrivial, otherwise clearly
deg(σ) ≥ 2n + 2 by the Riemann–Hurwitz formula. The representation ρ lifts to
a representation θ : π1(S) → SL(2,C) (with the image in the group of unipotent
upper triangular matrices U). Let V denote the holomorphic C2–bundle over S
associated with the representation θ. The structure σ gives rise to a holomorphic
line subbundle L ⊂ V such that

(6.1) deg(L) = n− 1− deg(σ)

2
,

where deg(σ) is the degree of branching of σ (see [GKM00, Chapter C]). The
bundle V fits into short exact sequence

0→ Λ→ V
p→ Λ→ 0,

where Λ is the trivial bundle; the fibers of Λ = ker(p) correspond to the line in
C fixed by the group U . Under the projectivization C2 → CP1 this line projects
to the point ∞ ∈ CP1. Hence the developing mapping of σ does not cover ∞ iff
L ∩ ker(p) = 0. It also follows that L �= ker(p) (otherwise the developing mapping
of σ would be constant). Therefore we get a nonzero map p : L→ Λ by restricting
the projection p : V → Λ to L. By the Riemann–Roch theorem, deg(L) ≤ 0 with
the equality iff p : L → Λ is injective; (6.1) then implies that deg(σ) ≥ 2n − 2.
The equality here is attained only if the developing map of σ takes values in C, i.e.
σ is a singular Euclidean structure. In other words, if deg(σ) = 2n − 2 then the
developing mapping of σ is obtained by integrating an abelian differential on S. If
ρ is not the holonomy of any singular Euclidean structure then deg(σ) ≥ 2n + 1.
However, since ρ lifts to SL(2,C), deg(σ) has to be even (see [GKM00, Chapter
C]). We conclude that in this case deg(σ) ≥ 2n. Recall that for a representation
ρ : π1(S) → PSL(2,C), d(ρ) is the least degree of branching of all projective
structures on S (consistent with the orientation) with the holonomy ρ. We thus
proved:

Proposition 6.3. Suppose that ρ is a representation ρ : π1(S) → PSL(2,C)
whose image is contained the translation subgroup C of PSL(2,C). Then d(ρ) ≥
2n − 2 and d(ρ) ≥ 2n provided that the corresponding character χ ∈ H1(S,C) is
not the period character of any abelian differential.

Combining this proposition with Theorems 1.2 and 6.1 we obtain Corollary 1.3.
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Crossed renormalization of quadratic polynomials

Johannes Riedl and Dierk Schleicher

Abstract. Renormalization is a fundamental concept in many areas of math-
ematics and physics. Douady and Hubbard introduced simple renormalization
in complex dynamics as a conceptual explanation why the Mandelbrot set
(and many other bifurcation loci) contain countably many embedded little
Mandelbrot sets. Crossed renormalization is another version of renormaliza-
tion that was introduced by Curt McMullen. We study quadratic polynomials
that are crossed renormalizable: we show that the locus of crossed renor-
malizable polynomials within the Mandelbrot set consists of countably many
components, each of which is canonically homeomorphic to a (sub)limb of the

Mandelbrot set; we also give a complete combinatorial description of crossed
renormalizable parameters in terms of internal addresses.

We discuss similarities and differences to the theory of simple renormali-
zation, answering a question of McMullen.
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1. Introduction

In many branches of mathematics and mathematical physics, renormalization
theory plays an important role. This is especially true for complex dynamics,
where powerful methods from complex analysis made a particularly deep study of
renormalization possible. In the mid-1980’s, Douady and Hubbard pioneered re-
normalization theory within complex dynamics by their theory of polynomial-like
maps [DH2]. They introduced what is now known as “simple renormalization”,
and they showed that the subset in the Mandelbrot set M consisting of simple
renormalizable parameters consists of countably many homeomorphic copies of M
embedded within M (finitely many copies for each renormalization period); in fact,
they discovered that renormalization is the reason for the existence of all the em-
bedded copies of M within itself (except that, strictly speaking, the image of the
root of M may fail to be renormalizable). Later, McMullen [McM, Chapter 7],
in his study of renormalization theory within complex dynamics, discovered a dif-
ferent kind of renormalization called “crossed renormalization”, and asked for a
description of crossed renormalization similar to the known description of simple
renormalization. This is the purpose of the present paper. Our main result is the
following (terminology and background will be explained in Section 2).

Theorem 1.1 (The locus of crossed renormalizations).
For every period n ≥ 2, the locus of crossed n-renormalization within the Mandelbrot
set consists of countably infinitely many connected subsets of M, each of which is
canonically homeomorphic to a limb of the Mandelbrot set. More precisely, all
parameters that are crossed n-renormalizable around fixed points are contained in
p/qn-limbs of M, for integers q > p > 0 so that p and qn are coprime, and so
that the corresponding subset within the p/qn-limb is canonically homeomorphic to
the p/q-limb of M. All parameters that are crossed renormalizable around periodic
points are simple renormalizable and are contained in the corresponding sublimbs
of the “little Mandelbrot sets” coming from simple renormalization.

We will make more precise statements in Sections 3 and 4 where we describe
how to find these embedded limbs: in Section 3, we will describe in detail the
special case that the crossed renormalization is around a fixed point, and we will
show in Section 4 that the discussion of the general case, that the renormalization
is around a periodic point, can readily be reduced to the fixed point case. A first
description of crossed renormalization will be given along with the fundamental
dynamical construction in Section 3.1. In Section 3.2, we will describe the crossed
renormalization locus by chopping off subsets of the Mandelbrot set until a compo-
nent of the renormalization locus remains. In Section 3.3, we show that connected
components of the loci of crossed renormalization are homeomorphic to limbs of
the Mandelbrot set. The proof that our construction captures every case of crossed
renormalization will be given in Section 3.4. An informal model for the dynam-
ics of crossed renormalizable polynomials can be found in Section 3.5. Finally, we
show how to tell which quadratic polynomials are crossed renormalizable in terms
of internal addresses (Section 3.6) and in terms of tableaux of puzzles (Section 3.7).

We describe crossed renormalization for quadratic polynomials, normalized as
z → z2 + c. The results on the structure of renormalization, simple and crossed,
are quite analogous for unicritical polynomials z → zd + c for degrees d ≥ 2.
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2. Background on quadratic polynomials

In this section we describe necessary background from complex dynamics. The
proofs for the statements can be found in [DH1,M2] or [S5].

2.1. The Mandelbrot set and Julia sets. In this paper, we will discuss
exclusively quadratic polynomials; they can all be affinely conjugated to the form
Pc : z → z2 + c for a unique complex parameter c. The filled-in Julia set Kc for
the polynomial Pc is the set of points z in the dynamic plane such that the iterates
of z do not escape to infinity, i.e. the sequence z, Pc(z), P

◦2
c (z), . . . is bounded.

The Julia set Jc is the boundary of the filled-in Julia set. Both sets are compact
and Kc is full (which means that the complement is connected). The dynamics of a
rational map is determined to a large extent by the critical points of the map (those
points where the dynamics fails to be locally injective) and their forward orbits.
One example of this observation is that the filled-in Julia set of a polynomial is
connected if and only if it contains all the critical points in C of the polynomial,
i.e. if all the critical orbits in C are bounded.

For our polynomials Pc(z) = z2+ c, the only critical point in C is 0. Therefore,
a filled-in Julia set Kc is connected iff 0 does not escape to ∞ under iteration.

The Mandelbrot set M is the set of all parameters c such that the filled-in Julia
set Kc (or equivalently the Julia set Jc) is connected, so it is often referred to as
the quadratic connectedness locus. By fundamental work of Douady and Hubbard
[DH0,DH1], it is known to be compact, connected and full.

For every period n ≥ 1, there are open sets in parameter space for which the
polynomial Pc has an attracting periodic orbit of period n. These sets are con-
tained in the Mandelbrot set, and their connected components are called hyperbolic
components of the Mandelbrot set [DH1,M3,S2]. For every fixed period, their
number is finite. Every hyperbolic component is conformally parametrized by the
multiplier of the attracting orbit: the multiplier map supplies a natural biholo-
morphic map between the component and the open unit disk, and it extends as a
homeomorphism to the closures. Every hyperbolic component has a unique center
and a unique root: these are the points where the (extended) multiplier map takes
values 0 and +1, respectively.

2.2. Dynamic rays, parameter rays, and equipotentials. Let us consider
a polynomial Pc for some parameter c ∈M. The dynamics outside the filled-in Julia
set can conveniently be described by dynamic rays (also known as external rays)
and equipotentials, which are a dynamic variant of polar coordinates. Since Kc is
full, there is a conformal isomorphism ϕc : C \Kc → C \D fixing ∞; it is unique up
to rotation and can be fixed so that limz→∞ ϕc(z)/z is real positive. In fact, since



320 JOHANNES RIEDL AND DIERK SCHLEICHER

our polynomials are normalized so that their leading coefficient is 1, the limit will
be equal to 1. The map ϕc conjugates the dynamics in C \Kc to the dynamics of
z → z2 in C \ D: we have (ϕc(z))

2 = ϕ(z2 + c).
For every ϑ ∈ S1 = R/Z, the set Rc(ϑ) := ϕ−1

c ({er · e2πiϑ : 0 < r < ∞}) is
called the dynamic ray of Pc at angle ϑ. Note that external angles are counted with
respect to full turns (for instance, angle 1/4 denotes a quarter of a turn, i.e. a right
angle). By the conjugation property we have

Pc(Rc(ϑ)) = Rc(2ϑ) .

In our parametrization, a dynamic ray is periodic if its angle is rational with odd
denominator when written in lowest terms; it is strictly preperiodic if the angle is
rational with even denominator; and it has an infinite forward orbit if the angle is
irrational. (These statements concern the rays as sets; of course each point on a
ray escapes.)

For any σ ∈ (0,∞), the set Eσ := ϕ−1
c ({eσ · e2πiϑ : ϑ ∈ S1}) is called the

equipotential of Pc at potential σ. The conjugation property yields

Pc(Eσ) = E2σ .

The dynamic rays together with the equipotentials form a coordinate system in
C \Kc in which the dynamics is simply doubling of external angles and potentials.
It is often useful, but not always possible, to extend this coordinate system to the
Julia set. A dynamic ray at angle ϑ is said to land at a point z of the Julia set if

lim
σ→0

ϕ−1
c (eσ · e2πiϑ) = z.

In general, not every dynamic ray needs to land; its limit set is always a connected
subset of the Julia set. However every dynamic ray at a rational angle lands at a
periodic or preperiodic point of the Julia set; conversely, every repelling periodic or
preperiodic point is the landing point of some dynamic rays with rational angles,
and all the rays landing at the same point have the same periods and preperiods
[M1, §18]. A dynamic ray pair is the union of two dynamic rays that land at the
same point, together with their landing point; if it consists of the two rays at angles
ϑ and ϑ′, we denote this ray pair simply by 〈ϑ, ϑ′〉. A ray pair is characteristic if
it separates the critical value from the critical point, and if moreover this ray pair
has no ray pair on its forward orbit that separates it from the critical value.

It will be necessary later to use dynamic rays not only for parameters within the
Mandelbrot set but also for c �∈M: for every parameter c there exists a holomorphic
injective mapping ϕc defined in a neighborhood of infinity that conjugates the
dynamics of Pc to z → z2 near infinity. This defines dynamic rays above a certain
potential σ. If a dynamic ray at angle ϑ is defined above potential σ and does
not contain the critical value, then the preimage under Pc of this ray defines the
two dynamic rays at angles ϑ/2 and (ϑ+1)/2 above potential σ/2. Repeating this
procedure countably often, dynamic rays are defined for all positive potentials, for
all but possibly countably many angles. Observe that the definition of potentials
extends naturally to all of C: sufficiently close to ∞ the potential of z is defined
as log |ϕc(z)|, and we can recursively define the potential of z as 1/2 times the
potential of Pc(z) for all points in C \Kc. Finally, points in Kc have potential 0.

Since the Mandelbrot set is compact, connected and full, there is a Riemann
map Φ: C\M→ C\D, and it can be normalized uniquely so that Φ(c)/c→ 1. Using
this Riemann map, can define external rays and equipotentials of the Mandelbrot
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set as well. In order to distinguish these rays from the rays in dynamical planes,
we call them parameter rays. Again, all parameter rays at rational angles land
[DH1,M3,S2]. More precisely, for every period n ≥ 1, exactly two parameter rays
at angles of period n land together, and the landing point is the root of a hyperbolic
component of period n; conversely, the root of every hyperbolic component of period
n is exactly the landing point of two parameter rays of period n (for period n = 1,
we count the two parameter rays at angles ϑ = 0 and ϑ = 1 separately). Parameter
rays at preperiodic angles land at parameters for which the critical orbit is strictly
preperiodic; such parameters are known as Misiurewicz–Thurston points [DH1,S2].
The number of parameter rays landing at any given Misiurewicz–Thurston point is
positive and finite. We define parameter ray pairs in analogy to dynamic ray pairs
and denote the parameter ray at angle ϑ by RM(ϑ).

We mentioned earlier that every hyperbolic component W of period n has
a natural conformal isomorphism μ : W → D that extends as a homeomorphism
μ : W → D. This yields a natural parametrization of ∂W by S1, setting c =
μ−1(e2πiϑ) for ϑ ∈ S1 = R/Z. Every boundary point at a rational internal angle
ϑ = p/q �= 0 is a bifurcation point : at this point, a hyperbolic component of period
qn is attached. The bifurcation point is the root of the qn-periodic component,
and the pair of periodic parameter rays landing at this root (with angles of period
qn) separates the component of period qn from the component of period n and the
origin. The open region that is separated from the origin by this parameter ray
pair is called the p/q-subwake of W . The intersection of this wake with M is the
p/q-sublimb of W . The landing point of the two bounding parameter rays is the
root of sublimb and subwake. (By our convention, the subwake is open in C and the
sublimb is relatively open in M, so both do not contain the root point). Subwake
and sublimb at internal angle p/q of the unique hyperbolic component of period 1
are called the p/q-wake and p/q-limb of the Mandelbrot set; the p/q-limb will be
called Mp/q. The root of the limb or wake is the common boundary point of limb
or wake with the period 1 hyperbolic component of M; we will denote it cp/q.

Now let c ∈ C \ [1/4,∞) be a parameter (not necessarily in M). Then Pc has
exactly two fixed points in C. One of them is the landing point of the dynamic ray
at angle ϑ = 0; this fixed point is called the β-fixed point of Pc. The other fixed
point is called the α-fixed point; it may be attracting, indifferent, or repelling, and
it may or may not be the landing point of periodic dynamic rays. If it is, the period
of these dynamic rays must be some finite number q ≥ 2 (because the only ray of
period 1 is already taken). The combinatorial rotation number of the dynamics of
these q rays is then p/q for some integer p coprime to q. It turns out that the subset
of C for which the α-fixed point is repelling and the landing point of q rays with
combinatorial rotation number p/q is exactly the p/q-wake of M as defined above
[M3]. For every parameter c ∈ C, exactly one of the following holds:

• c is in the closure of the hyperbolic component of period 1, and the α-fixed
point is attracting or indifferent;
• c is in the p/q-wake of M for a unique p/q ∈ (0, 1) and the α-fixed point
is repelling and the landing point of q dynamic rays with combinatorial
rotation number p/q;
• c �∈ M is on the boundary of the p/q-wake for a unique p/q ∈ (0, 1) and
the α-fixed point is repelling but not the landing point of any ray;
• c ∈ (1/4,∞);
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• c /∈ M is on one of uncountably many parameter rays outside of the is
closures of all wakes and α is the landing point of infinitely many dynamic
rays, all of them non-periodic.

The last case is the Cantor set analogue to Siegel disks or Cremer points of period
1, and all the rays that, for Siegel disks, “want to” land on the boundary at the
Siegel disk all land at the α fixed point in this case. Since this case might be lesser
known, we outline some of the key arguments. The first observation is that in the
disconnected, hence Cantor set case, every ray must land (unless it is one of the
countably many that contain a point on the backwards orbit of the critical value).
The next observation is that the parameter rays RM(ϑ) outside of closures of all
wakes occur exactly for those angles ϑ for which 2kϑ ∈ (ϑ/2, (ϑ+1)/2) for all k ≥ 0:
in the dynamics of such a parameter c, the critical value c is on the dynamic ray
Rc(ϑ), and the two preimage rays Rc(ϑ/2) and Rc((ϑ + 1)/2) both crash into the
critical point and divide C into two components. The condition on 2kϑ expresses
the fact that the entire critical orbit is contained in the same component (it can also
be re-interpreted as saying that the kneading sequence associated to ϑ is a constant
sequence [S4]). Now consider the set of angles ϕ so that 2kϕ ∈ [ϑ/2, (ϑ+ 1)/2] for
all k ≥ 0. This set is a Cantor set (this follows easily from the condition on the
orbit 2kϑ), and every such dynamic ray Rc(ϕ) must then land at the α fixed point,
except the countably many rays that do not land at all.

In all cases when the α-fixed point is the landing point of at least two rays, it
must disconnect the filled-in Julia setKc (provided it is connected in the first place).
The β-fixed point never disconnects Kc. We say that a Misiurewicz–Thurston point
is of α-type or of β-type if the critical orbit eventually lands at the α-fixed point,
respectively at the β-fixed point.

2.3. Polynomial-like maps. A polynomial-like map f : U → V is a proper
holomorphic map f between two bounded, open, connected and simply connected
domains U, V ⊂ C such that U ⊂ V ; these maps were introduced by Douady and
Hubbard in [DH2]. Such a map has a mapping degree d ≥ 1. If this degree is
2, we call it a quadratic-like map. Every polynomial p of degree d ≥ 2 becomes a
polynomial-like map of degree d when V is a sufficiently large disk centered at 0
and U = p−1(V ). But often the dynamics of a high iterate of a polynomial, which
itself is a polynomial of large degree, can be understood more easily by restricting it
to an appropriate subset on which the dynamics is polynomial-like of much smaller
degree.

The filled-in Julia set K(f) of a polynomial-like mapping f : U → V is the set
of all points z ∈ U that never leave U under iteration of f . The Julia set J(f) of
f is the boundary of K(f). As for actual polynomials, these sets are connected iff
all the critical points of f are contained in K(f).

An important statement is the Straightening Theorem of Douady and Hubbard
[DH2, Theorem 1]. The definition of quasiconformal mappings and further details
can also be found there; a more recent textbook reference is [BF].

Theorem 2.1 (The Straightening Theorem).
Let f : U → V be a polynomial-like map of degree d ≥ 2. Then there exists a
polynomial P of degree d such that f and P are hybrid equivalent, i.e., possibly after
shrinking V to an appropriate neighborhood of K(f), and U so that the property
of a polynomial-like map is maintained, there is a neighborhood VP of K(P ) and a
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quasiconformal homeomorphism ϕ : V → VP such that

ϕ ◦ f ◦ ϕ−1 = P on P−1(VP ) and
∂ϕ

∂z
= 0 almost everywhere on K(f) .

If K(f) is connected, the polynomial P is unique up to affine conjugation.

For quadratic polynomials in the normalization z2 + c, every parameter c rep-
resents its own affine conjugation class, so there exists a straightening map that
sends any quadratic-like map f with connected Julia set to a well defined parame-
ter χ(f) ∈ M. If K(f) is not connected, then there is no hope for uniqueness: all
quadratic polynomials with disconnected Julia sets are hybrid equivalent. One can
still define a straightening map χ in the disconnected case, but it depends on certain
choices; one way to specify these choices is called a tubing [DH2, Chapter II] (we
will not specify the precise definition of a tubing here). In the disconnected case χ
takes values in C \M. This is relevant in particular for a family of polynomial-like
maps, as follows:

Definition 2.2 (Analytic family of polynomial-like mappings).
For an open set Λ ⊂ C, consider a family (fλ : Uλ → Vλ)λ∈Λ of polynomial-like
maps. Let

U := {(λ, z) ∈ Λ× C : λ ∈ Λ, z ∈ Uλ} ,
V := {(λ, z) ∈ Λ× C : λ ∈ Λ, z ∈ Vλ} , and

F : U→ V, F (λ, z) = (λ, fλ(z)) .

Then (fλ)λ∈Λ is called an analytic family of polynomial-like mappings if the follow-
ing three conditions are satisfied:

(1) U and V are homeomorphic over Λ to Λ× D,
(2) the projection from the closure of U in V to Λ is proper, and
(3) the mapping F : U→ V is complex-analytic and proper.

Lemma 2.3 (Constructing an analytic family).
Let U0 ⊂⊂ V0 ⊂ C be bounded Jordan domains, γU : D × ∂U0 → C and γV : D ×
∂V0 → C continuous such that γU (0, .) = id|∂U0

, γV (0, .) = id|∂V0
and γU (λ, .),

γV (λ, .) are injective for all λ ∈ D. Let Uλ and Vλ be the bounded components of
C \ γU (λ, ∂U0) and C \ γV (λ, ∂V0).

Denote by U and V the sets of all (λ, z) ∈ D× C such that z ∈ Uλ and z ∈ Vλ

respectively. If

F : U→ V, F (λ, z) = (λ, fλ(z))

is a complex-analytic mapping with mapping degree d > 0, then (fλ)λ∈D is an
analytic family of polynomial-like mappings.

Proof. The first condition in Definition 2.2 is satisfied because we can choose
Riemann mappings Uλ → D and Vλ → D that depend continuously on λ. The
second condition also follows from continuous dependence on ∂Uλ on λ. The last
one is obvious. �

For quadratic-like mappings with disconnected Julia set the straightening can
be done in a way such that the following theorem holds [DH2, Proposition 14 and
Theorem 4]:
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Theorem 2.4 (Properties of straightening map).
For every analytic family (fλ)λ∈Λ of quadratic-like maps where Λ is contractible,
the straightening map χ : Λ→ C can be defined so as to be continuous everywhere,
and analytic on χ−1(M \ ∂M).

On any given component of χ−1(M \ ∂M) on which the map χ is not constant,
it is an open map and has a local mapping degree; this local degree is 1 except at a
discrete set of points.

Proof. By [DH2, Proposition 8], every analytic family of polynomial-like
maps with contractible Λ has a tubing (which involves some choices), and this
makes χ well defined for all Λ. By [DH2, Theorem 2], this map χ is continuous,
and even analytic over Λ \ χ−1(M \ ∂M). Of course, by the straightening theorem,
the set χ−1(M) and the value of χ on this set do not depend on any choices.

If Λ is connected and χ : Λ → C is not constant, then χ is topologically holo-
morphic over M: “it has the same topological properties it would have if it were
holomorphic” [DH2, Chapter IV]. In particular, χ : χ−1(M) → χ(χ−1(M)) has
a local mapping degree, and this degree is 1 except over a closed discrete set of
points. �

Remark 2.5. For us, the set Λ of parameters is a subset of C, so we have a
complex one-dimensional family of polynomial-like maps. Many statements carry
over to the case that Λ is a complex manifold; only the second half of Theorem 2.4,
concerning the local mapping degree, requires Λ to be complex one-dimensional.

2.4. Renormalization. A quadratic polynomial Pc is called n-renormalizable
if there are neighborhoods U , V of the critical point such that the restriction
P ◦n
c : U → V is a quadratic-like map with connected filled-in Julia set K. This

set K is often referred to as the little filled-in Julia set of the renormalization, and
its boundary is the little Julia set. Obviously, P ◦n

c (K) = K.
It is known [McM, Theorem 7.3] that K can meet any P ◦j

c (K) (for 1 ≤ j ≤
n− 1) at most at a single point p, and any P ◦j

c (K) that intersects K does so at the
same point p. If K contains such a point p, it is necessarily periodic and repelling
and its period strictly divides n, so that p is a fixed point of P ◦n

c within K. Since
the little Julia set is connected, the straightening theorem turns it into the Julia
set of a polynomial P̃ ∈M, and the two fixed points of P ◦n

c in K correspond to the

two fixed points of P̃ . It makes thus sense to speak of the α- and β-fixed points
of K, in such a way that the α-fixed point of K disconnects K, while the β-fixed
point does not. Since K can never meet any P ◦j

c (K) at α and at β simultaneously,
we have the following distinction [McM].

Definition 2.6 (Types of renormalization).
We say that an n-renormalization of a quadratic polynomial Pc with little Julia set
K is of

disjoint type if K ∩ P ◦j
c (K) = ∅ for 1 ≤ j ≤ n− 1;

β-type if K meets P ◦j
c (K) only at the β-fixed point of K;

α-type if K meets P ◦j
c (K) only at the α-fixed point of K.

The first two types are also known as simple renormalizations, while the last type
is known as crossed renormalization. If the little Julia set does meet some of its
forward images (in the α- and β-cases), then the renormalization is called immediate
if the intersection point is a fixed point of Pc.
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The term “crossed renormalization” indicates that the intersection point of K
and p◦j(K) (the α-fixed point of K) not only disconnects K as well as p◦j(K), but
that K and p◦j(K) (and possibly p◦2j(K), . . . ) intersect at α in such a way that
they cross each other; this follows from the fact that all the rays that land at the
α-fixed point of K are on a single cycle and are permuted transitively.

Examples of simple renormalizations are shown in Figure 4 (disjoint case) and
in Figure 1 (β-case). An example of a crossed renormalization is given in Figure 2.
Further examples are shown and discussed in [McM, Chapter 7].

Figure 1. An example of a simple renormalization of β-type, with
period n=2. The domains U and V are appropriate neighborhoods
of Ũ and Ṽ .

A well known folklore result that goes back to the work of Douady and Hub-
bard [DH2] states that for every n ≥ 2 the locus of disjoint-type n-renormalization
consists of finitely many connected components, each of which is homeomorphic
to the entire Mandelbrot set. For β-type, every component of the renormalization
locus is homeomorphic to the entire Mandelbrot set without its root c = 1/4, and
so that the homeomorphism can be extended from the closure of the renormaliza-
tion locus to the entire Mandelbrot set. In both cases, a canonical homeomorphism
from such a connected component to M is given by the straightening map χ for
the quadratic-like maps arising in the renormalization process. This construction
is described in Häıssinsky [Ha].

For every hyperbolic component W of M of period n ≥ 2, there exists a unique
connected component of the simple n-renormalization locus that contains W , so
that χ sends the closure of the renormalization component onto M, and in partic-
ular the component W onto the main cardioid of M. Conversely, every connected
component of the simple n-renormalization locus (in the disjoint and the β case)
is based at a hyperbolic component of period n in this way. Any homeomorphism
from M onto (the closure of) a component of the simple n-renormalization locus
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given as the inverse of the straightening map is called a tuning map of period n.
This way, simple renormalization and tuning are inverse maps to each other.

Hyperbolic components of M come in two kinds, primitive or satellite compo-
nents, depending on whether or not the root of the component is on the boundary
of a hyperbolic component of lower period: if it is not, then the component has the
characteristic cusp like the main component of M, and it is called a primitive com-
ponent ; if it is, then the component has smooth boundary and is called a satellite
component. Primitive components correspond to a renormalization component of
disjoint type, while satellite components correspond to β-type. In particular, satel-
lite components bifurcating immediately from the main cardioid of M correspond
to immediate β-renormalization.

Further properties of simple renormalization will be mentioned throughout the
paper in comparison with crossed renormalization.

Since quadratic polynomials that are crossed renormalizable around periodic
points of period m > 1 are always simple m-renormalizable (Theorem 4.1), the
focus of most research has been on simple renormalization. However, there are
results on the Mandelbrot set that depend specifically on crossed renormaliza-
tion: for instance, core entropy of quadratic polynomials, as introduced by William
Thurston [T], can be defined as the limit superior of the exponential growth rate of
the number of preimages of the critical point that separate the α fixed point from
its negative. The natural question whether this limes superior is actually a limit
depends on whether the polynomial is renormalizable; and here one has to take into
account simple as well as crossed renormalization [DS2, Section 6].

3. Crossed renormalization: the immediate case

If a quadratic polynomial is crossed n-renormalizable, then the little Julia set
meets some of its images at a periodic point which separates the little Julia sets.
Recall that this renormalization is called immediate if this periodic point is a fixed
point.

Fix an integer n ≥ 2 and consider two positive integers p, q with 0 < p < qn
such that p and qn are coprime. Within Mp/nq (the p/qn-limb of M), we will be
interested in the set of parameters that are immediately n-renormalizable of crossed
type; we will show below that every immediately n-renormalizable parameter arises
in this way.

We begin the study by constructing, for every parameter in the p/qn-wake of
M, a particular quadratic-like map (Section 3.1). The polynomial is crossed renor-
malizable if the Julia set of this quadratic-like map is connected. We will denote
the locus of such polynomials by Cn

p,q. The straightening map defines a canonical
map from Cn

p,q to Mp/q which turns out to be a homeomorphism (Section 3.3). We
show that these sets Cn

p,q contain every immediately n-renormalizable parameter
of crossed type in M (Section 3.4) and that Cn

p,q can be obtained from the entire
p/qn-limb by cutting off subsets bounded by certain pairs of preperiodic parameter
rays landing at Misiurewicz–Thurston points (Section 3.2). We briefly sketch a
description of the dynamics of crossed renormalizable polynomials in Section 3.5.
Finally, we will show how to tell whether a parameter in Cn

p,q is immediately n-
renormalizable of crossed type in terms of internal addresses (Section 3.6) and in
terms of puzzles and tableaux (Section 3.7). The general (non-immediate) case of
crossed renormalization will be dealt with in Section 4.
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3.1. The principal construction. For every parameter c in the p/qn-wake
of the Mandelbrot set, we will now construct a quadratic-like map by restricting
the n-th iterate of the original polynomial to an appropriate dynamically defined
subset. We do not require c ∈M.

Let σ0 ≥ 0 be the potential of the critical value (with σ0 = 0 iff c ∈ M). Any
equipotential σ > σ0 bounds a topological disk that we will call V (σ). It contains
the filled-in Julia set K(Pc) of Pc. From now on, fix a potential σ > 2nσ0.

For all parameters c in the p/qn-wake, the α-fixed point is the landing point of
exactly qn dynamic rays, and these are permuted transitively by the dynamics of
the polynomial [M3]. This permutation has combinatorial rotation number p/qn,
i.e. every ray jumps over p− 1 rays onto its image ray, counting counterclockwise.
Similarly, the point −α is the landing point of equally many preperiodic rays in a
configuration that is symmetric to the rays landing at α, and the polynomial maps
−α with its rays onto α with its rays. None of these rays contains the critical point
(or the rays would not exist), and obviously α or −α cannot be the critical point,
either. In particular, α �= −α.

The qn rays landing at α, together with the qn rays landing at −α, cut V (σ)
into 2qn − 1 components in a symmetric way (see Figure 2). The component
containing the critical point is itself symmetric and meets both α and −α on its
boundary; call its closure Y0. The closures of the remaining qn − 1 components
at α will be called sectors and labeled Y1, . . . , Yqn−1 ordered by the dynamics,
i.e. such that Yj ∩ V (σ/2) is mapped onto Yj+1 for j = 0, 1, . . . , qn − 2. Finally,
the closures of the remaining qn − 1 components at −α will also be called sectors
and labeled Z1, . . . , Zqn−1 such that Zj = −Yj . Then Zj ∩ V (σ/2) maps to Yj+1

for j ≤ qn − 2. Since they have the same image as the Yj and the global degree
of Pc is two, the restriction of Pc onto any Yj or Zj is injective for j �= 0. Let
Z := Z1∪Z2∪ . . .∪Zqn−1. Then the common image of Yqn−1 and Zqn−1, restricted
to V (σ/2), is Y0∪Z; again, the map is injective separately on Yqn−1 and on Zqn−1.
Finally, Y0 ∩ V (σ/2) contains the critical point and maps onto Y1 in a two-to-one
fashion.

All the Yj and Zj together cover V (σ), and they are disjoint except at their
boundaries. The restriction of Pc to V (σ/2) is a quadratic-like map with range
V (σ). We will now identify a smaller subset of V (σ/2n) such that the n-th iterate
of Pc is a quadratic-like map with range contained in V (σ).

As a first step define

Ũ :=

⎛⎝Y0 ∪
q−1⋃
j=1

(Yjn ∪ Zjn)

⎞⎠ ∩ V (σ/2n) and Ṽ := Y0 ∪
q−1⋃
j=1

Yjn ∪
qn−1⋃
j=1

Zj

(see Figure 2). Then P ◦n
c : int(Ũ)→ int(Ṽ ) is a proper map of degree 2. However,

there are two problems: int(Ũ) and int(Ṽ ) are disconnected; and Ũ and Ṽ have
common boundary points along entire ray segments. These two problems and their
solutions are quite standard (compare for example Milnor [M2]).

The first problem can be cured by adding a small disk around α and −α to
Ũ : since α is repelling, we have |P ′

c(α)| > 1 and thus there is an ε > 0 such that
D := {z : |z − α| < ε} has the property that P ◦n

c : D → P ◦n
c (D) is a conformal

isomorphism with P ◦n
c (D) ⊃ D. Then int(Ũ ∪ D ∪ (−D)) is connected and it is

mapped two-to-one onto its image by P ◦n
c provided ε is small enough.
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Figure 2. An example of crossed renormalization with n = 2 and
p/q = 1/3. The little Julia set is the set of points with orbits
that remain in the shaded domain (it is homeomorphic to the well
known “Douady rabbit”). This figure also illustrates the construc-

tion of the quadratic-like maps: the set Ũ is shaded, and Ṽ is
V (σ) \ (Y1 ∪ Y3 ∪ Y5).)

The second problem can be cured by thickening the boundaries slightly along
the bounding rays, for example along dynamic rays at nearby angles: choose η > 0
and label the angles of the dynamic rays bounding Yj by ϑ < ϑ′, so that Yj\K(Pc) =(⋃

ϕ∈(ϑ,ϑ′)Rc(ϕ)
)
∩ V (σ) (where Rc(ϕ) is again the dynamic ray at angle ϕ). We

define the η-thickening of Yj as Y η
j :=

(
Yj ∪

⋃
ϕ∈(ϑ−η,ϑ′+η) Rc(ϕ)

)
∩ V (σ). Here

η has to be chosen sufficiently small so that all required dynamic rays are defined.
Moreover, one needs to control the additional rays at low potentials so that they
do not “unexpectedly” leave D at low potentials; this can be done by choosing η
sufficiently small, or by using only the tails of the rays until they intersect D for
the first time. A similar thickening can be done for all the sets Y0, Yj and Zj ; we
denote the resulting thickened sets by Y η

0 , Y η
j and Zη

j , respectively.
Let

U :=

⎛⎝Y η
0 ∪

q−1⋃
j=1

(Y η
jn ∪ Zη

jn)

⎞⎠ ∩ V (σ/2n) and V := P ◦n
c (U).

Then P ◦n
c : U → V is indeed a quadratic-like map in the sense of Douady and

Hubbard. Of course, there is a considerable amount of freedom in the choice of
σ and in the two thickening steps. However, all the added points will eventually
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escape from U , and the (filled-in) Julia set of P ◦n
c : U → V is independent of all

the choices: this is clear for the points added in the thickening, and for the points
in D this follows as soon as the orbit eventually leaves D (the only point in D
for which the orbit stays in D forever is α). This implies that this Julia set is

completely contained in Ũ (all choices even yield hybrid equivalent quadratic-like
maps). Therefore we can assume that we have chosen the sets U and V for each
parameter of the p/q-wake in a way that the boundary of U (and thus of V as well)
depends continuously on c with respect to the Hausdorff topology on C. We call the
(filled-in) Julia set of the quadratic-like map just constructed the little (filled-in)
Julia set. The polynomial Pc becomes n-renormalizable whenever the filled-in Julia
set of this quadratic-like map is connected.

Definition 3.1 (Crossed renormalization locus).
The crossed n-renormalization locus within the p/qn-wake, denoted Cn

p,q , is the
subset of the p/qn-wake of M for which the little Julia set is connected.

Therefore, by definition, all Pc with c ∈ Cn
p,q are n-renormalizable. In fact, this

renormalization is of the type that we want:

Lemma 3.2 (Type of renormalization).
For all c ∈ Cn

p,q the polynomial Pc is immediately n-renormalizable of crossed type.

Proof. The little Julia set is contained in Ũ ⊂ Y0∪Yn∪Y2n∪ . . .∪Y(q−1)n∪Z,
and the critical orbit of the little Julia set first visits the sectors Y0, Yn, Y2n, . . . ,
Y(q−1)n. Therefore, the little Julia set meets the interiors of all the sectors Y0,
Yn, Y2n, . . . , Y(q−1)n, but of no other Yi. The image of the little Julia set is then
contained in Y1∪Yn+1∪Y2n+1∪. . .∪Y(q−1)n+1. Therefore, the little Julia set and its
image are different. The α-fixed point is their only common point and disconnects
both of them. �

Obviously, Cn
p,q ⊂M because for c /∈M, the critical orbit will eventually leave

the domain of the polynomial-like map, which implies that the little Julia set is
disconnected; thus Cn

p,q ⊂Mp/qn.
It may not be clear at this point that for a parameter to be crossed n-renor-

malizable it is necessary that our particular construction yields a connected little
Julia set. We will argue in Section 3.4 that this is indeed the case.

3.2. The boundary of the renormalization locus. As noted above, the
closures of the loci of simple n-renormalization are finitely many homeomorphic
copies of the Mandelbrot set within itself. For each of these “little Mandelbrot
sets”, the boundary points that disconnect it from the rest of the Mandelbrot
set are one parabolic parameter and infinitely many Misiurewicz–Thurston points
of (tuned) β-type; the subset of M that is disconnected by such a point can be
chopped off by pairs of parameter rays landing at the parabolic parameter or at
such Misiurewicz–Thurston points. These facts are described in [H,M3,D,S5] and
have analogues for crossed renormalization. We will describe them in this section.

We will need the following folklore result several times:

Lemma 3.3 (Correspondence between dynamic and parameter ray pairs). Let
〈ϑ1, ϑ2〉 be a preperiodic ray pair in the dynamics of Pc with the property that
〈ϑ1, ϑ2〉 separates the critical value from the critical point and from all dynamic rays
Rc(2

kϑ1) and Rc(2
kϑ2), for k ≥ 1. Then the parameter rays RM(ϑ1) and RM(ϑ2)
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land together at a common Misiurewicz–Thurston parameter, and this parameter
ray pair separates any parameter c′ from 0 iff in the dynamics of Pc′ the dynamic
ray pair 〈ϑ1, ϑ2〉 separates the critical value c′ from 0.

Moreover, if in the dynamics of Pc additional preperiodic dynamic rays Pc(ϑj)
land together with the rays Pc(ϑ1) and Pc(ϑ2), then the parameter rays PM(ϑj) land
at the same point as PM(ϑ1) and PM(ϑ2).

Proof. Let U ⊂ C be the largest connected neighborhood of c with the prop-
erty that every c′ ∈ U has a preperiodic dynamic ray pair 〈ϑ1, ϑ2〉 that lands at
a repelling preperiodic point, and so that this ray pair separates the critical value
from the critical point and from all dynamic rays Rc′(2

kϑ1) and Rc′(2
kϑ2), for

k ≥ 1. Then U is easily seen to be open (repelling periodic points remain repelling
under small perturbations, and if they are landing points of periodic rays then they
keep these rays under small perturbations; moreover, rays and endpoints depend
analytically on the parameter, and so does the critical value). Therefore, every
c′ ∈ (∂U) \M is on one of the parameter rays RM(2kϑ1) or RM(2kϑ2) (outside of
M, all periodic orbits are repelling, so the only way for a repelling periodic point to
lose a periodic ray under perturbation is when the ray fails to exist, which happens
when a forward image of the ray contains the critical value). More precisely, since
for c ∈ U the ray pair 〈ϑ1, ϑ2〉 separates the critical value from all rays on the
forward orbit of the ray pair, (∂U) \M consists exactly of the two parameter rays
RM(ϑ1) and RM(ϑ2).

On the other hand, every c′ ∈ (∂U)∩M is such that at least one of the dynamic
rays Rc′(ϑ1) or Rc′(ϑ2) has a forward iterate that lands at a parabolic periodic
point or at the critical value (at other parameters, the landing points of the rays
Rc′(2

kϑi) depend analytically on c′, together with their rays). Both conditions
describe finitely many parameters, so ∂U ∩M is finite.

Since ∂U ∩M must contain all limits points of the two parameter rays RM(ϑ1)
and RM(ϑ2), it follows that ∂U consists of RM(ϑ1) and RM(ϑ2), together with a
single point in M at which both of these parameter rays land. Since ϑ1 and ϑ2 are
strictly preperiodic, this landing point is a Misiurewicz–Thurston parameter.

We already proved that for all c′ ∈ U there is a dynamic ray pair 〈ϑ1, ϑ2〉 that
separates the critical value from the critical point and from all rays Rc′(2

kϑ1) and
Rc′(2

kϑ2). It remains to show that such a ray pair exists only for c′ ∈ U . It is clear
that if c′ �∈M, i.e. if the parameter c′ is on some parameter ray RM(ϑ) and hence
the critical value is on the dynamic ray Rc′(ϑ), we must have ϑ ∈ (ϑ1, ϑ2), hence
c′ ∈ U . A perturbation argument as above shows the claim also for c′ ∈ ∂M and
then for c′ ∈M.

If, for the dynamics of Pc, an additional dynamic ray Rc(ϑj) lands together
with Rc(ϑ1) and Rc(ϑ2), this continues to be the case for all c′ ∈ U by the same
perturbation reasons. This also holds at the common landing point of the parameter
rays RM(ϑ1) and RM(ϑ2) and in some parameter neighborhood of it (at the landing
point, all periodic orbits are repelling). From here it follows easily (and is well
known) that RM(ϑj) lands at the same Misiurewicz–Thurston parameter as RM(ϑ1)
and RM(ϑ2). �

Remark 3.4. The previous lemma is a special case of the classical “Ray Corre-
spondence Theorem” that goes back to Douady, Hubbard, and Lavaurs: for every
c ∈ C, there are angle-preserving bijections between the parameter ray pairs at peri-
odic and preperiodic angles which separate 0 and c, and the characteristic periodic
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and preperiodic ray pairs in the dynamic plane of c landing at repelling orbits. The
argument given here comes from Milnor [M3] and essentially proves the complete
theorem.

The following result specifies the location of Cn
p,q within the limb Mp/qn.

Lemma 3.5 (The loci Cn
p,q are connected and almost compact).

Consider a crossed renormalization component Cn
p,q ⊂ Mp/qn and let cp/nq be the

root of Mp/nq. Then Cn
p,q ∪ {cp/nq} is compact, connected, and full. Any c ∈

Mp/nq \ Cn
p,q is disconnected from Cn

p,q by a pair of preperiodic parameter rays
landing at a Misiurewicz–Thurston point of α-type.

Proof. For every parameter c ∈Mp/qn (and even within the entire p/qn-wake
of M) we can construct the quadratic-like map as in Section 3.1, based on P ◦n

c

restricted to a thickening of the set Ũ . The parameter c is crossed n-renormalizable
iff the entire critical orbit remains within Ũ under P ◦n

c . Since c ∈ Mp/nq, the
α-fixed point is the landing point of qn periodic dynamic rays with combinatorial
rotation number p/qn, and all points on the backward orbit of α are landing points
of qn strictly preperiodic dynamic rays.

Since c ∈M, the critical orbit of P ◦n
c always remains within the filled-in Julia

set of Pc, so it can escape from Ũ only through the set

(1) Z ′ := Z \
q−1⋃
j=1

Zjn .

We need only be concerned with the first time the critical orbit of P ◦n
c enters Z ′.

This can only happen after s iterations of P ◦n
c for some integer s ≥ q. The critical

value is contained in Y1.
Let us first consider the case s = q. Under qn−1 iterations of Pc, the sector Y1

maps homeomorphically onto (Y0 ∪Z) (except that Y1 needs to be restricted to an
appropriate equipotential: in order to simplify notation, we will in this section omit
specific mention of necessary restrictions to appropriate equipotentials). There is a

unique point z1 ∈ Y1 that maps to −α under P
◦(qn−1)
c , and z1 is the landing point

of qn preperiodic dynamic rays (see Figure 3). These rays cut Y1 into qn closed
sub-sectors that intersect only a their boundaries. For j = 1, 2, . . . , q − 1, there

is exactly one sub-sector that maps onto Zjn under P
◦(qn−1)
c , and one sub-sector

maps onto its image containing Y0 and all Yj . These q sub-sectors are distributed
evenly around z1, and if the critical value is contained in one of them, then the
critical point will survive q iterations of P ◦n

c in Ũ . However, if the critical value is
in one of the remaining qn − q sub-sectors at z1, then the critical point will leave
Ũ already after q iterations of P ◦n

c . (Finally, if the critical value equals z1, it will
never escape.)

Now we transfer this configuration into parameter space (compare again Fig-
ure 3). By Lemma 3.3 the external angles of the qn dynamic rays bounding these
sub-sectors are also the external angles of qn parameter rays of the Mandelbrot
set that land at a common Misiurewicz–Thurston point and cut the complex pa-
rameter plane into qn closed sectors. The sector in parameter space containing
c is bounded by the parameter rays at exactly the same external angles as the
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sub-sector within Y1 containing the critical value. Among the qn parameter re-
gions, qn − q do not intersect Cn

p,q, so that the renormalization locus Cn
p,q is con-

tained in the q-star around a Misiurewicz–Thurston point formed by the remain-
ing q regions (together with the Misiurewicz–Thurston point itself, correspond-
ing to the case that the critical value equals z1). This is the first step of chop-
ping away subsets of Mp/qn in order to approximate Cn

p,q, and it describes for
which parameters the critical orbit survives the first q iterations of P ◦n

c within

Ũ .
If P

◦(qn)
c (0) is in Y0 or some Zjn, then the critical orbit survives another q − 1

(respectively (q − j) − 1) iterations of P ◦n
c within Y0 ∪ Yn ∪ . . . ∪ Y(q−1)n. In the

next iteration of P ◦n
c , the critical orbit can again visit Y0 or Z, and it escapes

whenever it hits a “wrong” sector Zj . The qn dynamic rays landing at −α can
be transported back for (q − j)n iteration steps of Pc into the sector Zjn or Y0

containing P
◦(qn)
c (0). Transporting these rays back another qn− 1 steps, we obtain

qn preperiodic dynamic rays within the sub-sector of Y1 containing the critical value.
These qn rays cut the sub-sector into qn closed sub-sub-sectors. Among these qn
sub-sub-sectors, there are q of them so that if the critical value is contained in one
of these, then the critical point will survive q+(q− j) iteration steps of P ◦n

c within

Ũ ; otherwise, it will not. The index j depends of course which of the sectors Zj

the critical orbit visits first. These qn new preperiodic dynamic rays have again qn
counterparts in parameter space which land at a common Misiurewicz–Thurston
point, and they further subdivide the parameter region containing Cn

p,q. Of the
qn sub-sub-sectors around this Misiurewicz–Thurston point, only q will intersect
Cn

p,q.
This argument can be repeated: in order for the critical orbit to survive one

more turn within Ũ , there is another collection of qn sub-sub-. . . -sectors, and only
q of them may contain the critical value. We get countably many further necessary
conditions which translate into a countable collection of cuts in parameter space
along pairs of parameter rays at preperiodic angles. Conversely, when a parameter
c is not cut off by such a parameter ray pair, then the critical orbit will remain
in Ũ forever, and c ∈ Cn

p,q. The first few cuts in the dynamic plane and in pa-
rameter space are indicated in Figure 3. All the Misiurewicz–Thurston points at
which the bounding parameter rays land have the property that the critical or-
bit terminates at the α-fixed point after finitely many iterations, so they are of
α-type.

So far, we have shown that every c ∈ Mp/qn \ Cn
p,q is separated from Cn

p,q

by a parameter ray pair as claimed in the lemma. To conclude the proof of the
lemma, let cp/qn be the root of Mp/qn, so that Mp/qn = Mp/qn ∪ {cp/qn}. This
set is compact, connected and full. Starting with this set, every cut by a pair of
parameter rays as described above leaves a compact, connected and full set, and
the countable nested intersection of compact connected and full sets is compact,
connected and full. �

At the root c = cp/nq itself, the dynamics is not renormalizable because the

α-fixed point of Pc is parabolic: we have a little Julia set contained in Ũ , but no
small thickening can yield a polynomial-like map because the parabolic fixed point
α attracts points along all the nq attracting directions, so every thickening will
contain an invariant set outside of the little filled-in Julia set.
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The situation is similar to that for simple renormalization in the immediate case
of period n: any connected component of the renormalization locus is a little Man-
delbrot setM′ which is separated from the rest of its limb within the Mandelbrot set
by a countable collection of parameter ray pairs landing at Misiurewicz–Thurston
points of α-type. The difference is that in the simple case, the renormalization lo-
cus does not extend over such a Misiurewicz–Thurston point, while it does extend
in the crossed case in q − 1 of the qn − 1 directions (see again Figure 3). In both
cases, the root is not renormalizable. We show in the next section that the crossed
n-renormalization locus Cn

p,q within Mp/qn is homeomorphic to Mp/q, while the
locus of simple qn-renormalization corresponds to the tuned copy of M of period
qn within Mp/qn under this homeomorphism.

3.3. A homeomorphism from Cn
p,q to the p/q-limb. For every parameter

in the p/qn-wake of the Mandelbrot set, we constructed a quadratic-like map and
we defined Cn

p,q to be the subset of Mp/qn where this quadratic-like map has con-
nected Julia set, so that the corresponding polynomials are n-renormalizable. The
straightening theorem supplies a well-defined map χ : Cn

p,q → M. In this section,
we will show that χ is a homeomorphism onto Mp/q, the p/q-limb of M.

Recall that for every c ∈ Mp/qn, the α-fixed point of the polynomial Pc is the
landing point of exactly qn dynamic rays. These rays are permuted transitively
by the dynamics of the polynomial, and the combinatorial rotation number of this
cyclic permutation is p/qn. Between any pair of adjacent rays, there is a part of the
Julia set of Pc. Our region U contains q of these qn sectors between adjacent rays
(plus a small neighborhood around α extending into all sectors). The map P ◦n

c per-
mutes these sectors transitively with combinatorial rotation number np/qn = p/q.
The straightening map χ on Cn

p,q thus takes images within Mp/q. The root of that
limb cannot be in the image of χ because the α-fixed point is rationally indiffer-
ent at the root, while we started with a repelling α-fixed point and a topological
conjugation can never turn a repelling periodic point into an indifferent one.

Our map χ has the following important properties:

Proposition 3.6 (The straightening map).

(1) The straightening map χ is a homeomorphism from Cn
p,q onto Mp/q and

from Cn
p,q onto Mp/q.

(2) Its restriction to any hyperbolic component is a biholomorphic map to an-
other hyperbolic component and extends homeomorphically to the closures.
Moreover, only hyperbolic components will map to hyperbolic components.

(3) The map χ reduces periods of hyperbolic components exactly by a factor
n. In particular, all periods of hyperbolic components in Cn

p,q are divisible
by n.

Proof. We begin with the second statement. Within closures of hyperbolic
components, there are non-repelling periodic orbits, and their multipliers are pre-
served under hybrid conjugations. Since hyperbolic components are well known to
be conformally parametrized by the multipliers of the attracting orbits, and these
parametrizations extend homeomorphically onto the closures [DH1,M3,S2], the
straightening map inherits the same properties. (In fact, if there are any non-
hyperbolic components of the interior of M, then the straightening map will still be
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Figure 3. Top: the boundary of the renormalization locus Cn
p,q in Mp/qn,

displayed for n = 2 and p/q = 1/3. The boundary of the entire Mandelbrot
set is shown in light grey; the boundary of the crossed 2-renormalization lo-
cus is shown in dark grey, and the boundary of the simple 6-renormalization
locus is shown in black. Each of these sets is a subset of the previous one. (It
might help distinguish the grayscale to observe that the black locus is not
disconnected by the indicated parameter ray pairs: among the five branches
cut off by each group of these parameter rays, exactly two contain crossed
renormalizable parameters, indicated in dark grey; the other three do not
and are entirely light grey.) Bottom: some dynamic rays corresponding to
parameter rays bounding the renormalization locus.



CROSSED RENORMALIZATION OF QUADRATIC POLYNOMIALS 335

holomorphic there [DH2, Corollary to Proposition 13].) On the other hand, if Pχ(c)

and thus the n-th iterate of Pc does not have an attracting periodic point, then
clearly Pc itself cannot have such a point either. Thus only hyperbolic parameters
can map onto hyperbolic parameters. This proves the second claim.

Since any little Julia set can meet its images (other than itself) only at repelling
periodic points, it follows that the straightening map reduces periods of hyperbolic
components exactly by a factor of n. This shows the third claim.

For all c ∈ Mp/nq, the mappings P ◦n
c : U → V = P ◦n

c (U) as constructed in
Section 3.1 are quadratic-like. By Lemma 2.3, this defines an analytic family of
quadratic-like mappings (gc); denote the straightening map by χ : Cn

p,q → Mp/q.
By Theorem 2.4, χ is continuous and open, and it has a local mapping degree.

Now we show that χ is surjective onto Mp/q by showing that its image is both
open and closed in Mp/q. Since the limb Mp/q is well known to be connected (a
proof can be found in [S3, Corollary 5.2]) and the image is non-empty, this makes
χ surjective.

The image of Cn
p,q is open because χ is an open map. That the image is closed

follows almost from continuity: let c ∈ Mp/q be a boundary point of the image
χ(Cn

p,q) ⊂ Mp/q. Then there is a sequence c1, c2 . . . in the image converging to c,
and there are points c′1, c

′
2, . . . ∈ Cn

p,q with χ(c′i) = ci. Let c′ be a limit point of
the sequence (c′i) within M. If c′ is not the root of Mp/qn, then c′ ∈ Cn

p,q because
the union of Cn

p,q with its root is compact, and χ(c′) = c by continuity. However,
if c′ is the root, then the ci must converge to the root of Mp/q: this follows from
the fact that the roots of the p/q- and p/qn-wakes of M have trivial fibers (this
implies, but is not implied by, local connectivity of M at these points; for a proof,
see [H, Theorem I] or [S3, Corollary 5.1]). More precisely, if the sequence (c′i)
has an infinite subsequence on the closure of the hyperbolic component of period
qn in Cn

p,q, then the image sequence (ci) will also have an infinite subsequence on
the closure of the hyperbolic component of period q in Mp/q, and this sequence
will converge to the root of the component. Otherwise, there must be an infinite
subsequence in sublimbs of these components, and the diameters of these sublimbs
tend to zero as the parameter tends to the root (the Yoccoz inequality in [H]
makes this precise; a qualitative version of this same statement can be found in
[S3], and either one is an essential ingredient in the proof of local connectivity of
M at parabolic parameters). This finishes the argument that χ is surjective from
Cn

p,q to Mp/q, and it extends to a continuous surjective map between the closures
of both sets (which are the same sets with the roots added).

Since χ is open and has a local mapping degree over every c ∈ Cn
p,q, it is easy

to conclude that χ is injective: Cn
p,q contains a single hyperbolic component of

period qn; it maps biholomorphically onto the unique component of period q in
Mp/q, and this image component has no further inverse images. Let X ⊂ Mp/q

be the set of points with at least two preimages, counting multiplicities. Then
X is open because χ is an open map, and it is closed because χ is proper (this
follows from the argument given above). Since X is not all of Mp/q, it is empty.
Therefore, χ : Cn

q,p → Mp/q is a continuous bijection. Since the fibers of the roots

of both wakes are trivial, it follows that the extension χ : Cn
q,p → Mp/q is also a

continuous bijection and thus a homeomorphism (as a map from a compact space
to a Hausdorff space). �
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A natural question is whether the homeomorphism χ : Cn
q,p → Mp/q has nicer

mapping properties than just continuity, in particular whether it extends as a qua-
siconformal homeomorphism to a neighborhood: for simple renormalization it is
known by work of Lyubich that the straightening map from any little Mandelbrot
set toM has such a quasiconformal extension if the little Mandelbrot set is primitive
[L]; however, little Mandelbrot sets of satellite type do not have such quasiconfor-
mal extensions to either M (which is obvious) or to half the “logistical Mandelbrot
set” (the parameter space of z → λz(1 − z)); they are not even quasiconformally
homeomorphic to each other when the parabolic orbits at their root points have
different numbers of petals [LP].

Proposition 3.7 (Straightening map not quasiconformal).

The straightening homeomorphism χ : Cn
q,p → Mp/q is not quasiconformal (in the

sense that it does not have a quasiconformal extension to a neighborhood).

Proof. The crossed renormalization component Cn
p,q is a subset of Mp/qn, the

p/qn-limb of M. This limb contains a little Mandelbrot set M′ of period qn contain-
ing parameters that are immediately qn-renormalizable, and this renormalization is
of satellite type (in Figure 3, the boundary of this little Mandelbrot set is shown in
black). In the notion of the construction described in Section 3.1, this little Mandel-
brot set consists of exactly those parameters c for which the critical orbit remains
in Y0∪Yn∪· · ·∪Y(q−1)n; hence M

′ ⊂ Cn
q,p. The restriction of the straightening map

χ : Cn
q,p → Mp/q to M′ sends M′ to a little Mandelbrot set M′′ ⊂ Mp/q of period

q, and this restriction is compatible with the straightening maps from M′ and M′′

coming from simple renormalization. However, this restriction does not extend as
a quasiconformal homeomorphism to a neighborhood, by work of Lomonaco and
Petersen [LP], because their numbers of parabolic petals at the root parameters
are different. The claim follows. �

3.4. Our construction is complete. In the previous sections, we identi-
fied subsets Cn

p,q of Mp/qn containing immediately n-renormalizable polynomials of
crossed type. We need to show that every immediately n-renormalizable polyno-
mial of crossed type is contained in one of the sets Cn

p,q, so that these sets and the
construction above completely describe the n-renormalization locus of crossed type
within the Mandelbrot set. This will be done in this section.

Proposition 3.8 (Completeness of the construction).
Any polynomial which is immediately n-renormalizable of crossed type is contained
in a set Cn

p,q for some integers p, q such that p and qn are coprime.

Proof. Let c ∈M be such that Pc is immediately n-renormalizable of crossed
type. Then the restriction of P ◦n

c to appropriate open simply connected domains
U , V defines a quadratic-like map P ◦n

c : U → V . Let K ′ be its filled-in Julia set; it
is connected. Since the renormalization is immediate and of crossed type, K ′ and
Pc(K

′) intersect exactly in α, and α separates K ′. Let q ≥ 2 be the number of
connected components of K ′ \ {α}.

The α-fixed point of Pc is repelling and the landing point of at least 2 periodic
dynamic rays; let k be the number of these rays. By [McM, Theorem 7.11], we
have k ≥ qn. These rays, together with the k rays landing at −α, cut the complex
plane into 2k − 1 simply connected closed sectors Y0, Y1, . . . , Yk−1, Z1, . . . , Zk−1,
labeled similarly as in Figure 2. Since K ′ is connected, it contains the critical
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point, so K ′ intersects the interior of Y0. It follows that K ′ intersects int(Yjn) for
j = 1, 2, . . . , q − 1. This accounts for at least q connected components of K ′ \ {α},
and since q was defined as the total number of connected components of K ′ \ {α},
these are all the connected components. If k was greater than qn, then K ′ \ {α}
would have more than q connected components because Pc permutes the k rays
landing at α and thus the sectors between them transitively [M3, Lemma 2.7].
This is not the case, so k = qn and thus c ∈Mp/qn. It follows that

K ′ ⊂ Y0 ∪
q−1⋃
j=1

Yjn ∪
q−1⋃
j=1

Zjn = Ũ

(the restriction for the Zi follows from the symmetry of the map). Since the entire
critical orbit of P ◦n

c is contained in K ′, it is contained in the sets Yjn and Zjn as
specified above. But this means that the critical orbit never leaves the domain of the
quadratic-like map as constructed in Section 3.1, so we have c ∈ Cn

p,q as claimed.
The set Cn

p,q contains indeed all parameters in Mp/qn which are immediately n-
renormalizable of crossed type. �

We thus have the following description of immediate renormalization of crossed
type.

Corollary 3.9 (Locus of immediate crossed renormalization).
The set Cn

p,q is exactly the subset of Mp/qn consisting of immediately n-renormaliz-
able parameters of crossed type.

Proof. The set Cn
p,q is defined as a set of parameters within Mp/qn which are

immediately n-renormalization of crossed type (using a particular construction),
and conversely Proposition 3.8 shows that every immediately n-renormalizable
parameter of crossed type within Mp/qn is indeed in Cn

p′,q′ for some p′, q′; since

Cn
p′,q′ ⊂Mp′/q′n, we have q′ = q and thus p′ = p. �

Remark 3.10. The limb Mp/qn does not contain any polynomial that is n-re-
normalizable of simple type (because simple n-renormalization is organized in the
form of embedded Mandelbrot sets based at hyperbolic components of period n,
each such embedded Mandelbrot set is contained in a single limb, and the p/qn-
limb contains only hyperbolic components of periods qn or greater). McMullen
showed that crossed n-renormalization that is not immediate is always simple m-
renormalizable for some m > 1 strictly dividing n (see Section 4); this renor-
malization type cannot occur within Mp/qn, either. Therefore, Cn

p,q is the locus
of n-renormalization within Mp/qn, and this renormalization is immediate and of
crossed type.

3.5. Crossed tuning. The inverse operation of simple renormalization for
quadratic polynomials is known as tuning: take a quadratic polynomial f0 with
periodic critical point, let n be the period and let g ∈ M be arbitrary. Intuitively,
one can replace all bounded Fatou components of f0 by copies of the Julia set of
g and construct a new quadratic polynomial f that is simply n-renormalizable so
that the n-renormalization is hybrid equivalent to g; this new polynomial is called
f0 tuned by g. (To highlight the analogy to the crossed case, set g0(z) = z2: then
f0 is n-renormalizable, and the renormalization image is g0.) This idea of Douady
and Hubbard has been worked out by Häıssinsky [Ha]. In parameter space, there is
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a tuning homeomorphism of M into itself such that the origin g0 maps to f0 and g
maps to f within the “little Mandelbrot set”; renormalization is the inverse to the
tuning map, it sends the little Mandelbrot onto M. Results towards more general
constructions of tuning have been obtained by Inou [I].

Here, we want to propose a similar model for crossed renormalization; in view
of Section 4, it will be good enough to discuss the immediate case. Let f0 be
the polynomial at the center of the unique period qn hyperbolic component in
Cn

p,q ⊂ Mp/qn and g0 the center of the period q component in Mp/q (“the rabbits
with qn − 1 respectively q − 1 ears”). The α-fixed point disconnects the filled-in
Julia set of f0 into qn connected components, and q of them together contain a
homeomorphic copy of the filled-in Julia set of g0 (which can be extracted by a
polynomial-like map); everything else is the closure of the set of points which land
on this little Julia set after finitely many iterations.

There is a straightening homeomorphism χ : Cn
p,q →Mp/q with χ(f0) = g0; we

call its inverse the “crossed tuning map” τ := χ−1 : Mp/q → Cn
p,q. For an arbitrary

g ∈ Mp/q, set f := τ (g); we call f the polynomial f0 crossed-tuned by g (we have
f0, f ∈ Cn

p,q and g0, g ∈Mp/q).
To describe the dynamics f , note that in the dynamics of f0, there are n little

copies of the Julia set of g0 that all cross at the α-fixed point. When crossed-tuning
f0 by g, the n copies of the Julia set of g0 are replaced by copies of the Julia set of
g, and of course the same applies to their iterated preimages; these fill the Julia set
of f densely. One difference to tuning in the simple cases is that entire filled Julia
sets g0 are replaced by filled Julia sets of g, not just individual Fatou components
(of course, one may view the Fatou components of f0 in the simple case as the filled
Julia sets of g0(z) = z2; then the replaced Julia sets in the simple case are always
the same and indeed most simple, while in the case of crossed renormalization, they
are multi-eared rabbits.)

Remark 3.11. It is interesting to compare crossed renormalization to inter-
twining surgery by Epstein and Yampolsky [EY]: certain cubic polynomials can
be understood as quadratic polynomials from the same limb, intertwined around
their common α-fixed point. The local dynamics near the α-fixed point is similar
in both cases, but globally the dynamics is quite different: in the intertwining case,
there are two separate and independent critical orbits (corresponding to degree 3 of
the global polynomial), while in crossed renormalization, the little Julia sets have
their critical orbits related by the dynamics of Pc. Also, the preimages of the little
Julia sets are distributed differently, corresponding to the different global mapping
degrees.

3.6. Internal addresses. The notion of internal addresses has been intro-
duced in [S1,S4] in order to efficiently describe the combinatorial structure of the
Mandelbrot set. Formally, an internal address is a (finite or infinite) strictly increas-
ing sequence of integers starting with 1, usually written as 1 → n1 → n2 → n3 . . .
with 1 < n1 < n2 < n3 . . .. It is associated to a parameter c ∈ M as follows: all
parameter rays of the Mandelbrot set at periodic angles land in pairs with equal
periods, and the landing point of such a ray pair is the root of a hyperbolic com-
ponent of the same period. This parameter ray pair separates the component from
the origin. All these ray pairs that separate c from the origin are totally ordered.
Then n1 is the lowest period of parameter ray pairs separating c from the origin;
n2 is the lowest period of parameter ray pairs separating c from the ray pair of
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period n1, and so on. (If the parameter c is exactly on such a periodic parameter
ray pair, the corresponding period is still part of the internal address.) The internal
address is finite iff, after finitely many steps, there no longer is such a separating
periodic parameter ray pair. This happens iff the parameter c is on the closure of
a hyperbolic component, and the final entry in the internal address is the period
of this component; if the parameter is a bifurcation point between two hyperbolic
components, then their two periods show up as the last two entries in the internal
address.

A pleasant property of internal addresses is that they encode the combina-
torics of the parameters they describe. For instance, it is shown in [S4, Propo-
sition 4.7] that a parameter is simple n-renormalizable if and only if its internal
address contains the entry n, and every subsequent entry is divisible by n. Af-
ter n-renormalization, an internal address 1 → n1 → n2 → . . . → nj → n →
k1n → k2n → . . . turns into 1 → k1 → k2 → . . . (only entries divisible by n are
taken, and their periods are divided by n). The renormalization is immediate iff
the entry n follows directly after the initial 1, so the internal address has the form
1→ n→ k1n→ k2n→ . . . with 2 ≤ k1 < k2 < . . ..

There is a corresponding statement about crossed renormalization, which we
state first for the immediate case.

Proposition 3.12 (Crossed renormalization and internal address).
Let c be a parameter in M. Then the polynomial Pc is immediately crossed n-re-
normalizable if and only if its internal address is of the form

1→ k1n→ k2n→ k3n→ . . .

with 2 ≤ k1 < k2 < k3 . . . (and in particular, n does not occur in the internal
address). In this case, c ∈ Cn

p,q with q = k1 and some p coprime to qn, and the
internal address of χ(c) is 1→ k1 → k2 → k3 → . . ..

The statement is analogous to [S4, Proposition 4.7], and it is possible to give
a similar proof. The argument we give here is similar in spirit, even though we
describe the details somewhat differently.

Proof. Let c ∈ M be a parameter that is immediately n-renormalizable of
crossed type and let 1→ n1 → n2 → . . . be its internal address. Then c ∈ Cn

p,q for
some p, q with q ≥ 2 and p coprime to q. We have Cn

p,q ⊂ Mp/qn, so we are in the
p/qn-limb of M and thus n1 = qn ≥ 2n. Since Cn

p,q is connected, it connects c to
the boundary of the main cardioid of M. Any number ni in the internal address
corresponds to a hyperbolic component of period ni, and the two parameter rays
landing at its root disconnect Cn

p,q. The hyperbolic component of period ni must
then also be in Cn

p,q, and by Proposition 3.6, ni is divisible by n. Since χ divides
periods of hyperbolic components by n, every entry in the internal address of c is
divisible by n, and every entry in the internal address of χ(c) comes from an entry
in the internal address of c. Therefore, the internal address of χ(c) is as claimed.

Conversely, consider a polynomial Pc with c ∈ Mp/nq that is not immediately
n-renormalizable of crossed type. We will show that its internal address 1→ n1 →
n2 → . . . is not of the given form. Since c ∈ Mp/nq, we have n1 = qn, and we will
show that some subsequent ni is not divisible by n. The critical orbit cannot forever
remain in the domain Ũ = Y0 ∪

⋃q−1
j=1(Yjn ∪ Zjn) as constructed in Section 3.1, so
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(as in Lemma 3.5 and especially (1)) there must be a least number s with

P ◦s
c (0) ∈ Z ′ =

qn−1⋃
j=1

Zj \
q−1⋃
j=1

Zjn .

Each z ∈ Ũ has the property that P ◦k
c (z) ∈

⋃qn−1
j=1 Yj for k = 1, 2, . . . , n − 1, so s

must be divisible by n. The main task in the proof is to construct a Misiurewicz–
Thurston parameter c̃ so that the rays landing at c̃ separate c from Cn

p,q and so
that the internal address of c̃ has an entry that is not divisible by n; the same will
then follow for c.

Consider the sector Zj containing P ◦s
c (0) and pull it back s − 1 iterations

along the critical orbit, so that we obtain a small sector, say Z̃ & c, for which

P
◦(s−1)
c : Z̃ → Zj is a homeomorphism. The point −α is the base point of Zj ;

similarly, let z̃ ∈ ∂Z̃ be the base point of Z̃ so that P
◦(s−1)
c (z̃) = −α. Among

the qn rays landing at z̃, let Rc(ϑ1) and Rc(ϑ2) be the ones with the smallest and
largest angles: these form a ray pair at z̃. This ray pair subdivides Y1 into two
components. Let V be the one with α ∈ ∂V ; then V is disjoint from Z̃ & c. After
exactly s − 1 iterations, the image of the ray pair (ϑ1, ϑ2) lands at −α and forms
the common boundary of Z and Y0.

Pull back V for qn iterations, always choosing the branch with α on the bound-
ary. For the first iteration, this is possible because V is disjoint from Z̃ & c, and for
the remaining qn− 1 iterations the domains that are pulled back are disjoint from
Y1 and thus cannot contain the critical value. Let V ′ be the image after qn pullback
steps; we clearly have V ′ � V . The domain V ′ will be bounded by four dynamic
rays: two of them are the same rays bounding Y1 and land at α, and two more are
on the backwards orbit of (ϑ1, ϑ2) and land at some point z̃′. The angles of rays in
V are contained in two intervals of positive lengths; these lengths are divided by 2
in each pull-back step. Two of the bounding rays of V ′ thus form a ray pair that
separates α from z̃ and from c. Repeating this process infinitely often, we obtain
a sequence of ray pairs within Y1 converging to α and to the boundary ray pair of
Y1, so that every z ∈ Y1 \ {α} is separated from α by all but finitely many of these
ray pairs.

Pulling these ray pairs back qn− j times, we obtain a sequence of ray pairs in
Yj+1 converging to the boundary, and pulling back once more choosing the branch
based at −α rather than α, we obtain a sequence of ray pairs in Zj converging to
the boundary. Therefore, pulling back s− 1 further iterations, we obtain a similar
sequence of ray pairs within Z̃ separating c from z̃. Choose one such ray pair
(ϑ′

1, ϑ
′
2). By construction, its landing point is on the backwards orbit of −α. Let

s′ be the number of iterations it takes to land at −α.
Now we trace the forward orbit of the ray pair (ϑ′

1, ϑ
′
2). After s− 1 iterations,

(ϑ′
1, ϑ

′
2) will be in Zj (where j is not divisible by n, but s is), and next time

it maps to Yj+1. After qn − j iterations, it will be in Y1, and after this it will
need a multiple of qn iterations until it maps to the ray pair (ϑ1, ϑ2) landing at

z̃ ∈ Z̃. It then takes s − 1 further iterations until it maps to a ray pair landing
at −α. In total, the number of iterations it takes (ϑ′

1, ϑ
′
2) to land at −α is s′ =

s− 1 + 1 + qn− j +mqn+ s− 1 = 2s+ qn− j +mqn− 1 for some m ∈ Z, hence
s′ + 1 ≡ −j �= 0 (mod m) (recall that s is divisible by n while j is not).
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By Lemma 3.3, there is a parameter ray pair at angles (ϑ′
1, ϑ

′
2) that lands at a

Misiurewicz–Thurston parameter c̃ and separates c from Cn
p,q; for this polynomial,

the rays at angles ϑ′
1 and ϑ′

2 land at the critical value, and s′ iterations later
they land at −α. If the internal address of c has the same form as those in Cn

p,q (in
particular, all entries are divisible by n), then the same must be true for c̃ (compare
[S4, Proposition 5.2], “long internal addresses”). We will derive a contradiction.

In order to do this, we have to reinterpret internal addresses in terms of knead-
ing sequences: the latter are infinite sequences over {0, 1}, and there is a simple algo-
rithm to convert internal addresses into kneading sequences and back: see [S4, Def-
inition 3.4]. In particular, internal addresses of the form 1→ k1n→ k2n→ k3n→
correspond to kneading sequences that have entries 1 everywhere except at position
k1n and possibly at positions k′n with k′ > k1. If a dynamic ray, say at angle ϑ,
lands at the critical value (which is the case for Pc̃ with ϑ = ϑ′

1 or ϑ = ϑ′
2), then

the dynamic rays at angles ϑ/2 and (1 + ϑ)/2 land together at the critical point
and form a ray pair. The kneading sequence can be read off as the itinerary of the
angles 2kϑ, for k = 0, 1, 2, 3, . . . , with respect to the partition S1 \ {ϑ/2, (1+ϑ)/2},
labeled so that ϑ is the region with label 1 (so that the kneading sequence starts
with a 1) [S4, Definition 2.4]. In particular, if the ray at angle 2kϑ lands at −α,
then the kneading sequence has a 0 at position k + 1. This is the case for Pc̃ and
k = s′, so the kneading sequence of c̃ has an entry 0 at a position that is not
divisible by n. This is a contradiction. �

Remark 3.13 (Angled internal addresses). Internal addresses describe the com-
binatorics of parameters in M (and of the corresponding dynamics). However, in or-
der to completely distinguish different combinatorial classes inM, the concept has to
be extended to angled internal addresses: every entry n in an internal address has to
encode in which sublimb of the corresponding component of period n the described
parameter is. This sublimb is described by its internal angle p/q. These angled
internal addresses distinguish combinatorial classes (or “fibers”, when taking extra
care at hyperbolic components) of the Mandelbrot set completely; compare [S3].
An internal address of the form 1→ k1 → k2 → k3 → . . . is refined to an angled in-
ternal address of the form 1(p0/q0) → k1(p1/q1) → k2(p2/q2) → k3(p3/q3) → . . . so that
all entries kj+1 and beyond are contained in the pj/qj-sublimb of the component
with period kj with angled internal address 1(p0/q0) → k1(p1/q1) → . . .→ kj (pj/qj)

.

Note in particular that the first component, of period k1, is an immediate bifurca-
tion from the main component, so we always have q0 = k1.

In the angle p/q, the denominator q is redundant (it can be derived combinato-
rially from the internal address without angles), while p can be arbitrary (coprime
to q) and distinguishes various combinatorially equivalent sublimbs of M; for de-
tails, see [S4, Definition 3.8 and Theorem 3.9]. Much more strongly, for every
hyperbolic component, the p/q- and p′/q-sublimbs (with p and p′ coprime to q)
are always homeomorphic with a homeomorphism respecting periods of hyperbolic
component: this was recently established in [DS1].

The proposition above describes how internal addresses behave under crossed
renormalization. Since renormalization preserves the parametrization of hyperbolic
components by multipliers and thus by internal angles, it also preserves the angles
in the angled internal address: the angled internal address 1(p0/q0) → k1n(p1/q1) →
k2n(p2/q2) . . ., of course with q0 = k1n, turns into 1(p0/k1) → k1(p1/q1) → k2(p2/q2) . . .
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(the denominator at the main cardioid is divided by n, of course interpreting p0/k1
modulo n, and all the other angles are unchanged.

Based on this result, there is another approach to showing that the straightening
map is a homeomorphism from Cn

p,q to Mp/q: on a combinatorial level, this follows
from internal addresses. If the Mandelbrot set is locally connected (every fiber is a
single point), then its topology is completely described by its combinatorics, and we
get an actual homeomorphism. Without assuming local connectivity, the problem
is reduced to a local one on every fiber and can easily be settled using well-known
properties of the straightening map: the only fibers that possibly consist of more
than one point are infinitely often simply renormalizable, and are thus covered by
the domain of the continuous straightening map (continuity at these points follows
from Dudko’s recent “Decoration Theorem” [D]; compare [DS1]).

3.7. Puzzles and tableaux. Many topological and geometric questions
about quadratic polynomials have been investigated in terms of puzzles and tab-
leaux as developed by Branner, Hubbard and Yoccoz. This method works well for
non-renormalizable polynomials and, with modifications, for polynomials that are
finitely many times renormalizable. An introduction to puzzles and tableaux can
be found in Hubbard [H] and Milnor [M2].

It is well known that a quadratic polynomial is simple renormalizable if and
only if its critical tableau is periodic, and that the tableau does not record whether
or not the polynomial is several times renormalizable. In this section, we will give
a similar description for crossed renormalization.

First we briefly define the critical tableau for a quadratic polynomial Pc within
any limb of the Mandelbrot set such that the forward orbit of the critical point
never hits the α-fixed point. The point α is the landing point of at least two
dynamic rays. Denote all these rays together with their landing point α by Γ0

and let V0 be the neighborhood of K(Pc) bounded by an arbitrary potential. For
m ≥ 1 let Vm := P−1

c (Vm−1) and Γm := P−1
c (Γm−1). The closures of the connected

components of Vm \ Γm are called the puzzle pieces of depth m; the puzzle piece
containing the critical point is called the critical puzzle piece of depth m. Then the
critical tableau is a two dimensional grid in which the m-th position of the k-th
column is called critical if the point P ◦k

c (0) is contained in the critical puzzle piece
of depth m and non-critical otherwise. The definition implies that all positions in
the 0-th column are critical, and all positions above any critical position are critical
as well. If Pc is simple n-renormalizable, then the α-fixed point does not disconnect
the little Julia set, and neither does its backwards orbit (because the little Julia
sets is forward invariant under P ◦n

c ); thus the little Julia set is contained in a single
puzzle piece of any depth. This implies immediately that every n-th column is
entirely critical whenever Pc is simply n-renormalizable, and the converse is easily
seen. In fact, if every n-th column is critical, but no other column is, then this
is sufficient (as well as necessary) to imply that Pc is n-simple renormalizable and
every n-th column is even critical infinitely deep).

There is a similar result on crossed renormalization.

Proposition 3.14 (Crossed renormalization and tableaux).
Let c be a parameter of the Mandelbrot set with both fixed points repelling and such
that the forward orbit of the critical point does not contain α. Then the polynomial
Pc is immediately n-renormalizable of crossed type if and only if in its critical
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tableau critical positions only occur in the 0-th, 2n-th, 3n-th, 4n-th, . . . columns
(but not in the n-th column).

Proof. Let Pc be immediately n-renormalizable of crossed type. Then by
Proposition 3.8 the parameter c is contained in a limb Mp/qn (q ≥ 2) so that we can
construct a polynomial-like map P ◦n

c : U → V as in Section 3.1. We will continue to
use the notation from this construction. The qn sets (Y0∪Z1∪· · ·∪Zqn−1), Y1, Y2,
. . . , Yqn−1 restricted to a potential σ > 0 are the puzzle pieces of depth 0 and the
sets Zqn−1, . . . , Z1, Y0, Y1, . . . , Yqn−1 restricted to the potential σ/2 are the puzzle
pieces of depth 1. In order for the polynomial to be crossed n-renormalizable, the
orbit of 0 under P ◦n

c has to stay within Ũ = Y0∪Yn∪· · ·∪Y(q−1)n∪Zn∪· · ·∪Z(q−1)n.
Therefore, critical positions can only occur in the 0-th, qn-th, (q+1)n-th, (q+2)n-
th, . . . columns and the critical tableau is as claimed.

Now assume there is an integer n such that the critical tableau contains critical
positions only in the 0-th, 2n-th, 3n-th, . . . columns. All positions in the 0-th
column are critical and by the dynamics of Pc around α there is a further column
where a critical position occurs. By hypothesis, its number has the form qn with
q ≥ 2. The parameter c is thus contained in a limb Mp/qn of the Mandelbrot set
and we can construct a polynomial-like map P ◦n

c : U → V as in Section 3.1. It
remains to prove that all points P ◦kn

c (0) are contained in U . Suppose not and find
a k > 1 such that P ◦kn

c (0) is not contained in U . Then there is a minimal m ≥ 1

not divisible by n such that P
◦(kn+m)
c (0) is contained in Y0 ∪ Z1 ∪ · · · ∪ Zqn−1 and

thus in the critical puzzle piece of depth 0. Now we have a critical position in the
(kn+m)-th column, and this contradicts the hypothesis. �

Remark 3.15. If a crossed renormalization is not immediate, i.e. if it is around
a periodic point, then the polynomial is also simply renormalizable and thus con-
tained in a little Mandelbrot set (see Theorem 4.1). Since the critical tableau is
constant for polynomials within a little Mandelbrot set, the critical tableau does
not specify whether the corresponding polynomial is crossed renormalizable of non-
immediate type. In other words, the critical tableau describes exactly the first level
of (simple or crossed) renormalization.

4. Crossed renormalization: the general case

In the previous section, we described the locus of crossed renormalization for
the special case that the little Julia sets cross at a fixed point (the “immediate”
case of crossed renormalization). The general case is that the little Julia sets cross
at a periodic point of some period m > 1. By the work of McMullen [McM] it is
known that the general case can conveniently be reduced to the immediate case:

Theorem 4.1 (The general case of crossed renormalization).
Let the polynomial Pc be crossed n-renormalizable so that the crossing point of the
little Julia set and its images has period m > 1. Then Pc is simple m-renormalizable
and the corresponding quadratic-like map is immediately n/m-renormalizable of
crossed type.

Conversely, the image of any crossed m-renormalizable polynomial under a
tuning map of period k is crossed m-renormalizable of period km, and the period of
the intersection point of the little Julia set and its images is multiplied by k as well.
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Proof. Let x be a periodic point where the little Julia set crosses one of its
forward images, and let m > 1 be its period. Obviously, m divides n, and m < n
because if the first return map of x was already the first return map of the little
Julia set, then the little Julia set could not cross any of its forward images at x.

Since x disconnects the little Julia set and at least one of its forward im-
ages, it must be the landing point of at least four dynamic rays. The first return
map of x must then permute these rays transitively (see [M3, Lemma 2.7] or
[S2, Lemma 2.4]), so the ray period is a proper multiple of m.

All the dynamic rays of period m or dividing m that do not land alone partition
the complex plane into some finite number of open pieces. We will consider this
situation from the point of view of the m-th iterate of Pc. Then we obtain a
partition formed by the fixed rays of P ◦m

c (using all the fixed rays, whether they
land alone or not), and each piece is a “basic region” in the sense of Goldberg and
Milnor [GM] (they exclude the case that some fixed points of P ◦m

c coincide; the
finitely many parabolic parameters where this happens can easily be dealt with at
the end, removing punctures in tuned copies of the Mandelbrot set). The little
Julia set of the crossed renormalization is contained within the closure of a single
basic region, and the same applies to each of its images under iteration: otherwise,
the little Julia set would have to extend over a landing point of a dynamic ray pair
of period m for Pc, and such a landing point itself has period at most m. At such
a point, the little Julia set must meet its m-th forward image, so this point must
be x. But the rays landing at x have periods greater than m.

By [GM, Lemma 1.6], each basic region contains exactly one fixed point of
P ◦m
c . Since crossing points of forward images of the little Julia set are fixed points

of P ◦m
c , any two forward images of the little Julia set are in different basic regions,

except those which cross at a point on the forward orbit of x. Let Ṽ be the basic
region containing the critical point and thus the little Julia set. Then Ṽ contains

P
◦(jm)
c (0) for j = 0, 1, 2, 3 . . . because all these are contained in the little Julia set

or those of its forward images that cross at x. All the other points on the critical
orbit are contained within different images of the little Julia set and thus within
different basic regions.

Let Ũ be the subset of Ṽ that is mapped onto Ṽ under P ◦m
c . We claim that

Ũ and Ṽ can be thickened slightly to two regions U, V so that P ◦m
c : U → V is a

quadratic-like map with connected Julia set.
To see this, we first transport Ṽ back m iterations of Pc along the critical

orbit 0 ∈ Ũ , Pc(0), . . . , P
◦m
c (0) ∈ Ṽ . This pull-back will avoid Ṽ except at the

beginning and end, so P ◦m
c : Ũ → Ṽ is a degree two map. Since the partition

boundary forming Ṽ consists of fixed rays of P ◦m
c , it is forward invariant, which

implies Ũ ⊂ Ṽ . And since all P
◦(jm)
c (0) ∈ Ṽ within some forward image of the little

Julia set, it follows that all P
◦(j−1)m
c (0) ∈ Ũ , so the critical orbit of P ◦m

c will never

leave Ũ . It may happen that Ũ and Ṽ have common boundary points, but this
can be cured by a usual thickening procedure as in Section 3.1. Call the thickened
regions U and V .

We then have a quadratic-like map P ◦m
c : U → V with connected Julia set, so

Pc is m-renormalizable. None of the first m − 1 forward images of the little Julia
set can meet the interior of Ṽ , so this renormalization is simple.

By construction, the little Julia set for the crossed n-renormalization is con-
tained in Ṽ and thus also in Ũ (by the same argument as above for the critical orbit).
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Figure 4. Crossed Renormalization in the general case can be
reduced by a simple renormalization to an immediate crossed re-
normalization.

This construction preserves crossed renormalizability but reduces its period by m.
Therefore, the renormalized map is still crossed n/m-renormalizable; the crossing
point of this renormalization now has period one, so this crossed renormalization
is immediate. This proves the first claim.

The proof of the converse statement is straightforward. �

Any crossed renormalization is thus either immediate, or it is the image of
an immediate crossed renormalization under a simple renormalization. Crossed n-
renormalization around a periodic point of period m can occur only if m strictly
divides n; every connected component of the corresponding locus is then home-
omorphic to a certain sublimb of the Mandelbrot set. This homeomorphism is
a composition of a simple renormalization map of period m (a restriction of a
homeomorphism sending a little Mandelbrot set of period m to M; it reduces to
the identity in the immediate case m = 1), followed by a homeomorphism from
Cn

p,q →Mp/q as constructed in Section 3.3.
All the considerations from Section 3 can now be transferred easily to the

general case. Any connected component of the crossed n-renormalization locus
around a periodic point of period m can be obtained from a little Mandelbrot set
by chopping off subsets of M bounded by pairs of parameter rays at preperiodic
angles (and this little Mandelbrot set itself is obtained from M by chopping off at
further preperiodic ray pairs, together with the periodic ray pair of the root). We
can also state explicitly which internal addresses allow crossed renormalizations.

Corollary 4.2 (Internal addresses for crossed renormalization).
A parameter of the Mandelbrot set is n-renormalizable of crossed type around a
periodic point of period m if and only if m strictly divides n and its internal address
is of the form

1→ n1 → . . .→ nj → m→ k1n→ k2n→ k3n→ . . .
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with 1 < k1 < k2 < k3 . . . . Crossed n-renormalization turns this internal address
into 1 → k1 → k2 → k3 → . . .. In the angled internal address, the angles at each
kj after renormalization are the same as those at the corresponding kjn before.
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