
[image:]

Excited About Coding! - An Introduction To Coding Using Scratch 2 Software On The Raspberry Pi 4 Computer

Grant Williams

Copyright © 2020 Grant Williams

All rights reserved.

No part of this book may be reproduced, or stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without express written permission of the publisher.

This book is dedicated to my brother Mark Williams, who showed me by example that it is possible for one person to have a big impact on the education of young people around the world. Mark was a prolific composer and arranger of music for student band and orchestra, and co-authored the popular music education method book series “Accent on Achievement” and “Accent on Performance” (Alfred Publishing).

Contents

Title Page

Copyright

Dedication

Chapter 1: The Raspberry Pi Computer & Scratch Software

Chapter 2: Hardware Overview

Chapter 3: User Interface Basics

Chapter 4: Set Up Your Raspberry Pi Hardware

Chapter 5: Set Up Your Raspberry Pi Software

Chapter 6: Customize Your Desktop

Chapter 7: More Raspberry Pi Basics

Chapter 8: Software Development Process

Chapter 9: Project - Quick Draw Cat

Chapter 10: Exercises - Quick Draw Cat

Chapter 11: Project - Paint Pong

Chapter 12: Exercises - Paint Pong

Chapter 13: Project - Rocket Pilot

Chapter 14: Exercises - Rocket Pilot

Chapter 15: Backing Up Your Work

Chapter 16: Exercise Answers

Acknowledgement

About The Author

Chapter 1: The Raspberry Pi Computer & Scratch Software

Welcome to the exciting world of computer coding!

In our modern world, computers are everywhere. They are contained in an ever-increasing number of common objects in our lives, including such things as phones, cars, and airplanes. Learning to write computer code is fun and it gives you an understanding of how these amazing machines work. This book is designed to get you coding quickly, with lots of descriptive pictures included so that you won't get stuck along the way. And while you are learning how to write computer code (known as “coding”, “computer programming,” or “programming”), you will be creating computer games that are fun to play! This is an excellent first book on computers for kids (ages 9 and up), and is also a great book for a person of any age who wants to get started learning about computers and coding. This book makes no assumptions about the readers current knowledge of computers, and covers all of the basic information that you will need. Children of ages 9-11 may need some assistance from an adult or older child in reading this book and doing the coding projects. However the coding projects have detailed diagrams which guide a student with less advanced reading abilities through all of the coding steps. For teachers and parents, this book provides easy-to-follow instructions on how to set up a low cost and child-friendly computer lab, and provides a foundation for developing teaching materials, with the option of using this book as the student’s textbook.

To write code, you need both hardware and software.

The term “hardware” refers to the physical computer (made of plastic, computer chips, memory cards, electronic circuits, and metal connectors) that you can hold in your hand. The term “software” refers to the instructions (also called computer code or programs) that come built-in on your computer (such as the “operating system” and “pre-installed applications”), as well as code that you write yourself to do such things as create a game or control a robot, and optionally any code that you obtain from another person or company that you install on your computer. In its simplest form, all software consists of “bits” of information that are electrically or magnetically set as zeroes and ones on computer hardware. The hardware that we will be using is the “Raspberry Pi ” computer, which was originally developed in England at the University of Cambridge's Computer Laboratory. As a shortcut, I will refer to the Raspberry Pi computer as “the Pi computer” or simply “the Pi.” The Pi was designed to be a small, cheap computer that kids could use to begin learning about computers at an early age. If you want a low cost, easy to set up, and child-friendly computer for learning computer coding, the Pi is a fantastic choice. The Pi has become incredibly popular, with world-wide sales totaling over 25 million sold.

The software that we will be using is “Scratch,” which is a computer program (also referred to as an “application”) that was developed in the United States at Massachusetts Institute of Technology (MIT). Scratch was developed as a tool for kids to use to create their own computer programs. Scratch is used by millions of people around the world, and is considered the standard for introductory coding classes for children. Scratch comes preinstalled on the Micro SD memory card that is included in Pi computer kits.

Create your own computer coding lab.

Pi computers can be purchased at several online stores, such as Amazon.com and other sellers listed under the “Products” link at the Raspberry Pi Foundation website (www.raspberrypi.org). I recommend purchasing a kit that contains all of the components that you will need including the Pi computer circuit board, Micro SD memory card, power cord, HDMI cable, heat sinks, and plastic computer case. You can purchase the individual components separately, but the kits can be a simple (and often cheaper) way to get all the required parts. (NOTE: Plastic computer cases come in different colors, but I personally like a clear plastic case, since it allows you to see the Pi computer circuit board inside, which I think is kind of cool.) Several companies sell Pi 4 kits online for under $100 (keyboard and mouse not included). Another option is to purchase a “Raspberry Pi 4 Official Desktop Kit” which includes a keyboard and mouse (the plastic computer case, keyboard, and mouse are all a matching red and white color scheme). If you buy a Desktop kit, verify that it includes the heat sinks.

[image:]

Figure 1 - Home Computer Coding Lab

To complete your Pi setup, you will also need to get a monitor or TV, a keyboard and mouse (unless you purchase a Desktop kit), and an electrical surge protector. Figure 1
 shows a home computer coding lab that I set up for my niece's children. I recycled an old LCD TV and bought a colorful keyboard and a small-sized mouse (both designed for kids). I also bought a mousepad with the Raspberry Pi logo. For the lowest cost setup, see if someone you know has old computer equipment that you can have (monitor or TV, keyboard, mouse). If that’s not possible, see if you can find a store in your area that sells used computer equipment, or check sites on the Internet such as Craigslist. In Chapter 2 “Hardware Overview,” you will find a complete list of the required equipment.

Scratch software versions
 – In the summer of 2017, Scratch version 2.0 (or simply called Scratch 2) became available for the Pi. This was a major update to Scratch, and replaced the older Scratch version 1.4 (shown back in Figure 1
). The layout of the main window for Scratch 2 is shown below in Figure 2
. In this book, you will learn how to use Scratch 2 (The newest software version, Scratch 3.0 will reportedly be available for the Raspberry Pi in 2020, and will be the topic of a future book in the “Excited About Coding!” series).

[image:]

Figure 2 – Scratch version 2 software

Raspberry Pi computer versions
 – Figure 3
 below lists the models that will run Scratch 2, and also shows the models that I recommend. The price difference between the models is not large (between $10 to $20).

[image:]

Figure 3 - Pi models that run Scratch 2

Chapter 2: Hardware Overview

The Raspberry Pi is a very small computer, but it is surprisingly powerful and capable!

One thing that is often not appreciated by today’s computer users is the fascinating construction of a computer circuit board, with all of the amazingly small computer chips, electronic components, and associated connections between chips and components. It is truly an engineering marvel. In most modern computers (desktops, laptops, tablets, phones), the circuit board is hidden inside a metal or plastic case. One great thing about the Raspberry Pi is that you get to see the circuit board up close, and you are actually involved in assembling the computer. The assembly is not difficult, but it gives owners of Raspberry Pi computers the feeling that they participated in building the computer themselves. The assembly steps include installing the heat sinks on the computer chips, inserting the circuit board into the plastic case, inserting the Micro SD memory card into the circuit board, and for some Pi cases, wiring up a cooling fan.

[image:]

Figure 4 - Raspberry Pi 4 computer circuit board

IMPORTANT
: Please wait until Chapter 4 “Set Up Your Raspberry Pi Hardware” before connecting your equipment together.

Equipment list:

	
Raspberry Pi kit (TIP: Buy a kit that includes ALL of the following items
).

	Pi 4 computer circuit board

	Micro SD memory card preloaded with NOOBS software. NOOBS stands for “New Out-Of-the-Box Software.” Verify that your kit includes this card!

	
Cables

	Power cable

	HDMI video cable (with Micro HDMI connector & Full size HDMI connector)

	Heat sinks

	Plastic case (some cases include a cooling fan)

	TV or monitor (preferably with an HDMI port, or you can use an HDMI-to-VGA adapter if needed)

	Keyboard (USB, wired or wireless)

	Mouse (USB, wired or wireless) & mouse pad

	Surge protector

	Headphones or AC-powered speakers (ONLY required if using a monitor without a built-in speaker)

[image:]

Figure 5 – Pi 4 external connections

[image:]

Figure 6 - Data cable types

The Pi's memory card, RAM, and CPU

When you buy a Pi computer as part of a kit, the tiny Micro SD memory card (let's just call it the “memory card”) will be pre-loaded with the required operating system (also called “OS”) and application software. The memory card is the place in your Pi where software (the OS, your programs, and associated data) is read from when your Pi is powered on. This kind of memory is referred to as “permanent” or “non-volatile” memory. Such permanent memory is often referred to as “storage.” The memory card keeps all of the software permanently stored on it, regardless of whether the computer is powered on or off. In the Pi computer, the memory card plays the role that a hard disk or solid state drive does in larger computers such as the PC or Mac.

Your Pi computer also includes RAM (Random Access Memory), and it is contained inside one of the large silver or black computer chips on the Pi’s green circuit board (Figure 7
). RAM is referred to as “temporary,” “volatile,” or “working” memory. When you power up your Pi, the OS software is loaded from your memory card into RAM. Also, when you run a program, the software for that program is loaded from your memory card into RAM. RAM has very fast data access speeds, which allows the OS and your programs to run very fast without any annoying delays. But as implied above by the names “temporary/volatile/working,” all software disappears from RAM when your computer is powered off. During your usage of the Pi computer, you won't need to worry about such details, since the Pi OS software will take care of managing hardware resources automatically.

In addition to memory, a computer needs a CPU (Central Processing Unit) to function. The CPU is the “brains” of a computer, executing the OS and application software. On earlier models of the Pi, the CPU and RAM were contained in the same computer chip, but the Pi 4 now has separate chips for the CPU and RAM (Figure 7
).

[image:]

Figure 7 - CPU & RAM

Networking

To avoid computing security and parental control issues, we will not be connecting the Pi to the Internet. We will disable the WIFI and Bluetooth wireless connections, and will not be connecting an Ethernet cable (wired connection to the Internet) to our Pi. This is a good configuration for a first computer for a child or for schools where a simple child-safe computer lab is desired.

CAUTION: If you decide that you do need to connect your Pi to the Internet, be sure to implement strong computer security measures (passwords, firewalls, etc).

[image:]

Figure 8 - No Internet connection required

Hardware notes

Check TV/monitor connector
: Look on the back of your TV or monitor and verify that it has a port labeled “HDMI.” Most modern TVs and monitors have a HDMI port, but very old TVs and monitors might not have one. Using a TV/monitor with an HDMI port is the easiest way to go, but if you want to use an older monitor that does not have an HDMI port, you can get a HDMI-to-VGA adapter. However, if you use such an adapter, you will need to use headphones or AC-powered computer speakers to hear sounds generated by your Pi.

Surge protector
: As with all electronic devices, it is recommended to use a surge protector. That will protect your equipment from possible damage due to power spikes that can sometimes occur in building electricity sources. The following features are recommended for your surge protector:

	At least two power outlets (one to plug-in the Pi power cord, one to plug-in the TV/monitor power cord). And if you will be using AC-powered speakers, then you will want to have three power outlets.

	ON/OFF switch.

	“Protected” status light. This light indicates that your surge protector is working correctly, and will protect your equipment from any electricity surges. If this light is not lit when the surge protector switch in ON, then your surge protector is not working correctly, and it should be replaced.

[image:]

Figure 9 - Surge protector

Backup device (optional, but recommended)

If you want to safeguard your Scratch projects, you can take the extra step of saving a copy of your “My Code” folder to a removable USB memory stick (also called a flash drive or thumb drive). By saving your projects to a removable memory stick, you will have a backup (i.e. extra) copy from which you can recover your projects if your Pi ever gets damaged or is lost. When working with computers in general, it is a good habit to backup your valuable files to a removable drive periodically. Chapter 15 “Backing Up Your Work” describes the process for saving your code to a USB memory stick.

[image:]

Figure 10 – Backing up your work

Chapter 3: User Interface Basics

Before we set up the Pi hardware and software, let's review some of the basics of the Pi user interface.

(If you are already familiar with using a computer, you can skim through this chapter quickly.)

Computer mouse
 - A mouse is a plastic handheld “pointing device” that allows you to select things that you see on the computer monitor or TV (let's call it the “screen”). When you slide your mouse on a desk or table, an arrow-shaped pointer moves on the screen. Often a rubber mouse pad is used on the desk or table to provide a cushioned surface on which to move the mouse and rest your wrist. Figure 11
 shows how moving the mouse on a mouse pad results in the mouse pointer moving on the screen.

[image:]

Figure 11 - Using a mouse

Figure 12
 shows how you can move the mouse pointer long distances on the computer screen by sliding the mouse to the edge of the mouse pad, then lifting the mouse and moving it back to where you started from, and then continuing to slide the mouse in the same direction.

[image:]

Figure 12 - Moving the mouse pointer a long distance on the screen

A mouse usually has two buttons (left & right). The mouse operations that we will use are:

	
Left-click
 – Press the left mouse button and then quickly release it. This tells the computer that you want to select the thing on the screen that the mouse pointer is pointing to.
 NOTE
: If you read instructions that simply say “click” (without specifying left or right), a left-click will usually work.

	
Right-click
 – Press the right mouse button and then quickly release it. NOTE
: In many situations, a right-click will have the exact same effect as a left-click. But sometimes, a right-click will have a different behavior, such as displaying a menu (list of things) that you can then select from.

	
Double click
 – While holding the mouse steady, quickly press the left mouse button two times and then release the button. NOTE
: The double click might be hard to learn at first. If you have trouble double clicking, then use the alternate method of single clicking (left mouse button) the item to select it and then press the Enter/Return key.

	
Drag and drop
 – Some objects on the computer screen can be copied or moved by placing the mouse pointer on top of the object, and then holding down the left mouse button while sliding the mouse on the mouse pad (you will see the object moving on the screen along with the mouse pointer). When the object reaches the place on the screen where you want to place it, you take your finger off the mouse button, and the object will be dropped there.

	
Selecting from a menu
 – Menus are lists of things. In a restaurant, a menu is a list of the food and drinks that you can select from. When working with computers, a menu is often used for selecting an item from a list. See Figure 13
 for a demonstration of how to select from a “cascading” menu. One definition of the word “cascade” is “anything that resembles a waterfall.” Cascading menus have steps that look like a waterfall (especially when there are many steps).

[image:]

Figure 13 - Example of using a cascading menu

Computer windows
 - Just as a house or apartment has four-sided windows which provide you with a view of the outside world, computer operating systems have four-sided windows that provide you with a view into some program or feature of the computer software (Figure 14
).

[image:]

Figure 14 - Windows

Just like a window in a house, windows on a computer have frames that surround the window. The top part of the window frame contains words which are called the “window title.” When the top part of the window frame is left-clicked, that window is “selected” and the top of the frame turns a darker color. Once selected, you can drag the window around by that top bar, and drop it on the computer desktop wherever you want to put it.

In the upper right corner of the window frame, there are three buttons that you can left-click to control the state of the window (Figure 15
). These buttons are:

	
Minimize
 (left button) – This button is labeled with “_,” and its function is to hide the window. NOTE
: When a window is created, a bar labeled with the window's title is added along the top of the Pi desktop. If the window has been minimized (in other words “hidden”) and you left-click this bar, then the window is re-opened to the same position on the desktop that it was when the window was minimized.

	
Maximize
 (middle button) – This button is labeled with “r,” and expands the window to fill up the entire desktop. Left-clicking the button a second time, returns the window to its prior size.

	
Close
 (right button) – This button is labeled with “X” and its function is to close the window.

Figure 15
 shows two computer windows and the links to them (at the top of the Pi desktop).

[image:]

Figure 15 - Window details

Here are some other window operations that you will find useful:

	
Move
 – Left-click on the window title bar and drag and drop the window at a new location (Figure 16
).

	
Resize
 – Left-click on the window frame in the lower right corner and drag and drop the corner to change the window size (Figure 16
).

	
Bring forward
 – If the window is partially hidden behind another window and you want to bring the window forward so that it is fully visible, you can left-click on the title bar of the window.

[image:]

Figure 16 - Move and resize window

Chapter 4: Set Up Your Raspberry Pi Hardware

Now let's connect everything, apply power, and see your Pi come to life!

NOTE: Read and follow the safety instructions that came with your Pi computer.

Step 1
 - Remove the plastic Pi case from its box. If the top and bottom halves of the case are attached, then separate them. Place the bottom half of the case on a flat surface. The bottom of the case is usually the thinner of the two. Pi cases come in various designs, some with more than two pieces, and some are easier to put together than others. If you have questions, refer to any instructions that were provided with the case.

Step 2
 - Discharge any static electricity from your hands by touching your fingers to a large metal object, such as a refrigerator. Computer circuit boards can be damaged by even small electric shocks, so you want to get rid of any static electricity that you might have on your hands before handling the Pi circuit board.

Step 3
 - Remove the Pi computer (circuit board) from the box or wrapper, and snap it into the bottom of the plastic case (Figure 17
). The top of the circuit board is the side with the Raspberry Pi logo on it.

[image:]

Figure 17 - Attach Pi circuit board to case bottom

Step 4
 - Attach the heat sink blocks to the computer chips on your Pi. If chips get too hot, they can fail. The heat sink blocks help to transfer heat from the chips to the air. Remove the paper backing from the heat sink blocks to expose the sticky side. It’s recommended to check the user manual that came with your Pi for proper placement, but the typical installation locations for the Pi 4 are shown in Figure 18
.

[image:]

Figure 18 - Installing heat sink blocks

Step 5
 - The Pi 4 runs hotter than earlier models, so some cases include a fan to help cool the computer chips. If your Pi case has a built-in fan, connect the two wires from the fan to the circuit board, as described in the user manual that came with your Pi case (example wiring for Vilros Pi 4 kit shown in Figure 19
).

[image:]

Figure 19 – Example of fan wiring (Vilros Pi 4 kit)

Step 6
 - Attach the top half of the plastic case and snap it into place. (Figure 20
). If your Pi case came with rubber feet, peel off the backing from the feet, and stick them onto the four corners of the case bottom.

[image:]

Figure 20 - Attach case top

Step 7
 – Flip your Pi over, and insert the Micro SD memory card (Figure 21
). IMPORTANT
: Make sure you have the Micro SD memory card oriented the right way before inserting it into the slot in the bottom of the Pi (see figure below). NOTE: The large black “adapter card” (shown below) might not be included in your Pi kit, and that is fine since we will not be using it.

[image:]

Figure 21 – Insert Micro SD memory card

Step 8
 - Set the power switch on your surge protector to the OFF position. Plug the surge protector into wall power.

Step 9
 -Plug the TV/monitor into the surge protector.

Step 10
 – Remove any plastic covers from the ends of the HDMI cable. Connect the small end of the HDMI cable to the left HDMI port on the Pi (flat side of the HDMI connector is up) as shown in Figure 22
. Connect the other end of the HDMI cable to your TV/monitor. NOTE: The other HDMI port can be used to connect a second TV/monitor to the Pi (not recommended).

[image:]

Figure 22 - Connect HDMI cable

Step 11
 - Connect the mouse and keyboard to the Pi. (NOTE: USB cables only fit into USB ports one way. If the cable is not fitting into the connector, flip it over and try the other side.)

Step 12
 - Connect the Pi power cord from the Pi to the surge protector (Figure 23
).

[image:]

Figure 23 - Connect power cord

Step 13
 - Apply power to the Pi by turning the surge protector switch to ON. (NOTE: Some Pi kits come with a power cord that has a built-in power ON/OFF switch. If you have one of those, then also push in or toggle the switch on the power cord). The Pi’s red power status light (labeled “PWR” on the circuit board) should light up (Figure 24
). If the red light does not turn on, see the “Troubleshooting” page at the end of this chapter.

Step 14
 - Turn on your TV/monitor. You should see a Pi startup screen which says “NOOBS” at the top. The next chapter will explain what to do on the startup screen. If you are using a TV and the screen is blank, then check that the TV’s “source” selection is “HDMI.” If your TV has multiple HDMI input ports (typically on the back side), then verify that the “source” matches the correct HDMI port number that your cable is plugged into (HDMI1, HDMI2, …). For further help with a blank screen, see the troubleshooting steps on the next page.

[image:]

Figure 24 - Pi status lights

TROUBLESHOOTING
:

	
PROBLEM – Pi’s red PWR (power) status light is OFF

	
CHECK #1
: Some wall power outlets have an ON/OFF switch on the wall. If you are using such a switched power outlet, verify that the wall switch is in the ON position.

	
CHECK #2
: Verify that your surge protector ON/OFF switch is in the ON position. There should be an indicator light on the surge protector that shows that power is switched ON.

	
CHECK #3
: If your Pi power cord has a built-in ON/OFF switch, make sure that the switch is pushed in or toggled to the ON position.

	
CHECK #4
: Verify that your Pi’s power cord is plugged firmly into your Pi on one end, and is plugged firmly into your surge protector on the two-prong end.

	
CHECK #5
: Confirm that your wall power outlet is providing electrical power by plugging in some other device (like a lamp) into the power outlet, and see if that works properly.

	
PROBLEM - Monitor/TV screen is blank

	
CHECK #1
: Verify that your monitor/TV is plugged in and powered ON. Most monitors and TVs have a power status light (red, green, or blue) that is lit when power is ON.

	
CHECK #2
: Verify that your monitor/TV has “HDMI” selected as the “source.” A monitor/TV will have controls (either buttons on the monitor/TV or via a remote control device) that allow you to select the video source. If there is more than one HDMI port on your monitor/TV, then make sure that you have selected the source (e.g. HDMI1, HDMI2) that corresponds to the port on the back of the unit that you plugged the cable into.

	

CHECK #3
: If the memory card is not inserted into the slot in your Pi:

	Turn OFF Pi power (using the power cord switch or at the surge protector).

	Insert the memory card into your Pi, with the orientation shown in Figure 21.

	Turn ON Pi power.

	

CHECK #4
: If the memory card was inserted into the slot in your Pi, then it’s possible that the metal contacts on the memory card are not making a good connection to the Pi. Try “reseating” the card:

	Turn OFF Pi power (using the power cord switch or at the surge protector).

	Remove and re-insert the memory card. The card should snap into place when it has been inserted properly.

	Turn ON Pi power.

	
CHECK #5
: If you have access to another Pi (such as a classroom with many Pi computers), try using your memory card in the other Pi, to see if the failure is due to a bad Pi. If the light is still OFF using a different Pi, then there is a problem with your memory card. In this case, use a computer that is connected to the Internet, and download a fresh version of NOOBS to the memory card (www.raspberrypi.org/downloads)
. To do this, you will need a USB micro SD memory card reader. If, after downloading a fresh version of NOOBS onto your memory card, the light is still OFF, then your memory card is probably defective, and should be replaced.

	
PROBLEM - Monitor/TV screen is frozen with a rainbow of colors for more than a minute.

	
CHECK #1
: Turn off your Pi’s power, unplug all of the cables that are connected to your Pi, firmly plug the cables back in, and then turn on power.

	
CHECK #2
: Turn off your Pi’s power, remove any static electricity from our hands (touch a large metal object), remove the memory card from your Pi, and reinsert the memory card.

	
CHECK #3
: Follow the instructions for CHECK #5 above to reload your memory card.

Chapter 5: Set Up Your Raspberry Pi Software

Let’s install and configure the Raspian Operating System software.

Configuring the software for your Pi computer is very simple. When you power up your computer for the first time, there are four configuration steps that you should perform (Figure 25
).

[image:]

Figure 25 - Software configuration steps

Select Keyboard Type
 - At the bottom of the startup screen (Figure 26
), there is a pulldown menu that allows you to change the keyboard type. Since the Pi was developed in England, the default keyboard type is “English (UK).” If you live in the United States, change the keyboard type to “English (US”).

Install the Operating System (OS) Software
 – An operating system is the software that allows a computer to perform basic functions, such as window and file management. There are several different types of operating systems that can run on a Pi computer. The most popular OS is Raspian and it is officially supported by the Raspberry Pi Foundation. For this book, we will install the Raspian OS. If you purchased your computer as part of a kit (includes memory card, power cord and cables), then your micro SD card will be preloaded with the NOOBS installer software. This software is activated the first time that you power on your Pi computer, and the NOOBS startup screen is shown in Figure 26
. Left-click the checkbox to the left of “Raspian OS” to select it for installation.

[image:]

Figure 26 - Pi startup screen

After left-clicking the Install icon, you will be asked to confirm that you want to proceed with the OS installation. Left-click the “Yes” button (Figure 27
).

[image:]

Figure 27 - Confirm that you want to install OS

An installation status window is displayed. This status window has a “progress bar” at the bottom that fills in with color as the installation proceeds. It will take up to 20 minutes for the OS to be installed. When the installation is complete, you will see a completion message window appear (shown on the right side of Figure 28
). NOTE: Even if the progress bar shows 100% complete, please wait until you see the completion message window that says “OS(es) Installed Successfully.” Then left-click the OK button to continue.

[image:]

Figure 28 - OS installation status window & completion message

Next, your Pi will initialize the “desktop” software. This process takes about one minute. Left-click the “Next” button when you see a window that says “Welcome to the Raspberry Pi Desktop” (Figure 29
).

[image:]

Figure 29 – Desktop “Welcome Screen”

A window will appear that allows you to set your country, language, and timezone. Select your country and language. You don’t need to set the timezone because we will not be using the clock (which is set from the Internet), and we will remove it from the desktop during the desktop configuration steps. We are not going to use the clock because it requires an Internet connection.

[image:]

Figure 30 - Set country

Next, select a strong password for your Pi. To create a strong password, use at least 12 characters, and include upper and lower case letters, numbers, and special characters (such as ! @ # $ *). Write down the password so that you don’t forget it. After typing your new password a second time to confirm it, left-click the “Next” button (Figure 31
).

[image:]

Figure 31 - Change password

Since we are not connecting our Pi to the Internet, click the Skip button on the “Select WiFi Network” window.

[image:]

Figure 32 - Skip WiFi Network selection

You can skip checking for Raspian OS updates, since the Pi will not be connected to the Internet. Finally, as the last step in the installation process, left-click the “Restart” button (Figure 33
).

[image:]

Figure 33 –Skip software update and restart Pi

Turn Off Bluetooth & Remove Control
 – Along with not connecting your Pi to the Internet, turning off the Bluetooth wireless connection locks another network access door to your Pi to keep hackers out. We will also remove the control from the desktop. CAUTION
: Skip this step and leave Bluetooth ON if you are using a wireless keyboard and mouse that use Bluetooth to communicate with the computer
. Your wireless keyboard and mouse do NOT require Bluetooth if they came with a small ¾ inch USB plug (called a “dongle”). That dongle (when plugged into your Pi) provides a non-Bluetooth wireless connection to your keyboard and mouse, and is not affected if you turn off your Pi’s Bluetooth.

[image:]

Figure 34 - Disable Bluetooth

Remove WiFi Connection Control
 – Since we are not connecting our Pi to the Internet, we will remove the WiFi connection control feature from the desktop.

[image:]

Figure 35 – Remove WiFi control

Fan Test
 – If your Pi case has a built-in cooling fan, put your hand above the fan and see if it is blowing air. If you don’t feel any air moving, it’s possible that you didn’t connect the two wires from the fan to the correct GPIO pins on the Pi. IMPORTANT
: Don’t make any wiring changes unless your Pi is powered off. If your fan is not working, see the instructions in Chapter 7 (“More Raspberry Pi Basics”) on how to shutdown your Pi. After shutting down your Pi, turn off power, and verify that the fan wires are firmly connected and are attached to the correct pins. Refer to the user manual that came with your Pi to verify that you have used the recommended wiring. After checking the wiring, apply power, and check again to verify that the fan is blowing air.

[image:]

Figure 36 – Fan test

Chapter 6: Customize Your Desktop

Let’s customize the desktop to make it simpler and easier to use.

The word “desktop” is used to refer to this main computer screen because it is similar to the top of a desk in a home or business, where you have placed out some commonly used items that help you get your work done. You will see the Pi desktop every time that you power on your Pi. It takes the Pi about 10 seconds to “boot up” to the desktop screen after you turn on power.

In this chapter we will customize the desktop so that your Pi is easier to use. Figure 37
 shows the default desktop (left) and the desktop after our customizations (right). The most noticeable change is the replacement of the desktop photo with the Raspberry Pi logo picture. Even though photos can be attractive on a computer desktop, they can also make it harder to read text items on the desktop due to the mix of different colors in a photo. A solid color background, like the light gray background of the Raspberry Pi logo picture provides a nice consistent background for text labels on the desktop. Other desktop changes that we will make include changing the text color to black (for good contrast), adding a folder on the desktop for your code, creating a clickable shortcut to the Scratch program, and removing items on the desktop that will not be used in this book.

[image:]

Figure 37 –Desktop customization

Remove the Web Browser from the task bar
 – Since we will not be using the Internet, we will remove the Web Browser icon from the Task Bar.

[image:]

Figure 38 - Remove Web Browser from task bar

Remove the Terminal from the task bar
 – A terminal window allows the user to send text-based commands to the Pi. We will not be using that window, so we will remove the terminal icon from the Task Bar.

[image:]

Figure 39 - Remove Terminal from task bar

Select Desktop Picture and Text Color
 – The Raspian OS has a default desktop picture, but you can choose a different picture. The steps to change the desktop picture and text color are shown below in Figure 40
, Figure 41
, Figure 42
, and Figure 43
. I recommend selecting the picture “raspberry-pi-logo” for the desktop. After selecting that picture, we will change the text color to black (default is gray) to make it easy to read (best contrast).

[image:]

Figure 40 – Changing the desktop picture

[image:]

Figure 41 –Changing the desktop picture (continued)

[image:]

Figure 42 – Changing the desktop text color

[image:]

Figure 43 - Updated desktop picture and text color

Create Code Folder
 – A folder is a container in your SD card memory where you can store files and other folders. The computer “icon” (small picture on the screen) for a folder looks like a paper folder. Folders are important for organizing your work, allowing you to find the files that you have created in the past. Figure 44 shows some of the high-level folders on your Pi. The folders are ordered in a “hierarchy,” with the “Pi” folder at the top of the hierarchy. The lines on the hierarchy diagram show which folders are contained inside other folders. In the folder hierarchy, the Desktop is a folder, and it is contained inside the Pi folder. Initially, the Desktop folder is empty. Any files and folders that you add to your Desktop folder will show up as individual icons on the desktop screen when your Pi boots up. For easy access to your Scratch code projects, we will create a “My Code” folder on your desktop. The steps are shown in Figure 45
.

[image:]

Figure 44 – Your SD memory card is organized into folders

[image:]

Figure 45 - Create “My Code” folder on desktop

Create Scratch Shortcut
 – For fast startup of your Scratch software, create a clickable shortcut icon on your Pi desktop. The steps are shown in Figure 46
. IMPORTANT
: In Step 3, right-click the “Scratch 2” menu item, not the “Scratch” menu item (without the “2”). Clicking the “Scratch” menu item would create a link to the older software version, Scratch 1.4.

NOTE: If the shortcut that is created looks different than the Scratch Cat icon shown in Figure 46
, then perform a Pi reboot as described in Chapter 7 “More Raspberry Pi Basics”, and see if that fixes it.

[image:]

Figure 46 - Create Scratch 2 shortcut on desktop

Remove the clock
 – The Raspberry Pi does not have an internal time clock. Since we are not going to connect the Pi to the Internet, there is not an external time source available to keep the desktop’s clock updated. So rather than leaving an incorrect clock on our desktop, we will remove it. Right-click the clock in the upper right corner of the desktop. In the popup menu, left-click “Remove Digital Clock from Panel.”

[image:]

Figure 47 - Remove clock from desktop

Chapter 7: More Raspberry Pi Basics

Here are a few more Pi basics that you should know about before we get ready to start coding.

Shutdown
 – You should always perform a shutdown before removing power from your Pi. The shutdown steps are shown in Figure 48
. If you power off your Pi without first performing a shutdown, your Pi’s software might get damaged and you might lose some of the files that you have created. After commanding a shutdown, wait until the screen goes blank before turning off the Pi’s power.

[image:]

Figure 48 – Shutdown

As you may have noticed, your Pi does not have its own ON/OFF power switch. Power can be removed from your Pi in the any of following ways (with the best methods listed first):

	If your Pi’s power cord has an ON/OFF switch (button or toggle), use that switch to turn it OFF .

	Turn your surge protector’s power switch to the OFF position.

	Unplug the surge protector from the wall outlet.

	Unplug the Pi’s power cord from the surge protector. NOTE: It is not good to disconnect the power cord end that plugs directly into the Pi while power is on. You can get a spark that jumps from the power cord to the Pi, which may damage the Pi’s circuits or computer chips.

Reboot
 – A reboot performs a shutdown, followed by an automatic restart of your Pi. The reboot steps are shown in Figure 49
.

If your Pi is having unexplained problems, you should try rebooting your Pi software to see if that helps.

If the problem is not resolved by a reboot, then the next thing to try is to command a shutdown (as shown earlier in Figure 48
), then after the screen goes blank, turn off Pi power, and then turn Pi power back on.

[image:]

Figure 49 - Reboot

Recovering from mouse or keyboard problems
 – If you run into a problem where your mouse or keyboard had been working properly, and then one or both suddenly stop working, try the following possible fixes:

	Verify that the USB cables from your mouse and keyboard are firmly plugged into your Pi.

	Disconnect the USB cable for the item that is not working (mouse or keyboard), wait a few seconds, and then plug it back into your Pi. There a four USB ports on your Pi that you can try using.

	If your keyboard is having a problem, but your mouse is still working, perform a shutdown and restart as described at the beginning of this chapter.

	If you are using Scratch and your mouse clicks stop working, try hitting the “Esc” key on the upper left corner of your keyboard.

	If all other attempts to fix the problem have failed, then restart your Pi by switching its power off, wait a few seconds, and then turn power back on. This is the only situation where directly powering off your Pi is recommended without first performing a shutdown.

	If none of the above fixes resolve the problem, then try using the mouse or keyboard on another computer to see if the device has failed.

Recovering from a frozen “rainbow screen”
 – As mentioned earlier in the Troubleshooting section, if your Pi gets stuck for more than one minute during the booting process with a screen that looks like a multi-colored rainbow, it could be due to a bad connection of a cable to the Pi. To attempt to fix that problem, turn off your Pi’s power, unplug and firmly plug-in all of the cables that are connected to your Pi, and then turn on power. If that doesn’t solve the problem, turn off Pi power and check that the memory card is inserted fully.

Chapter 8: Software Development Process

Coming up with an idea and turning that idea into something real is very rewarding
.

In this book, you will get an introduction to the process that is used by software developers around the world to create a wide range of things including computer games, smart phone apps, and software that controls airplanes in flight.

Before we jump into coding our first project, let’s briefly review the process that we will be using. As shown in Figure 50
, the four main development steps (Define Requirement, Design, Code, Test) can be divided into two groups. It’s a good comparison to think of coding in Scratch as being similar to building something with Lego blocks. Before you start attaching Lego blocks together, you come up with an idea in your head of what type of object you want to build, and you might also think about some of the details of how you are going to build it. These initial “thought” steps in the software development process are “Define Requirements” and “Design.” After completing those steps, you will be ready to start writing your code (connecting Scratch blocks) and testing it.

[image:]

Figure 50 – From ideas to computer code

Step definitions:

	

Define Requirements
 – Before you can start building a software project, you need to decide what the software is going to do. This “What does it need to do?
” information is written down as “software requirements.” These are often written as a set of numbered paragraphs in a text document. In some situations it is more important to write down detailed requirements before you start building your software. If you are going to be selling your software to a customer, then a document containing the software requirements can become an important part of the contract between the software developer and the software purchaser. In a school setting, the requirements for a coding assignment might be provided by your teacher. If you are working on a software project just for fun at home, then you might decide to skip writing down (also called “documenting”) the requirements and just start writing code, with the requirements just residing in your head.

	

Design
 – In the design step, you create a basic (“high-level”) outline that shows how your computer code will be organized. For small programs, you may choose to skip documenting your design, and just jump into coding your program. But for larger programs, documenting your design is very helpful because it allows you to organize your thoughts at a simpler level before getting tangled up in the code details. You can think of creating a software design as being similar to how an architect creates a blueprint for a building before having the construction workers assemble the structure.

	

Code
 – Computer code is written in a “programming language” (which in our case is Scratch) and is a set of instructions that tells a computer what you want it to do. A collection of computer code is called a computer program (or project), and in this book we will be writing computer programs that are games.

	

Test
 - Run your program on a computer, and...

	
Find any software problems (i.e. “bugs”).

	
Think about how existing features might be improved.

	
Think about new features that you may want to add.

	
Think about removing features that aren’t really needed or cause problems.

One fun thing about building computer games is that during the process of testing your software, you will be playing your game. Initially, when you don’t have a lot of code in your program, it won’t feel like you are playing, but as your code becomes more complete, you will basically be playing the game as you test it.

While coding, you can run tests as often as you want to prove that your code is working correctly. It feels good to run a test and see that your code does exactly what you expected. But, of course, your code will often have problems that are apparent when you run a test. Or you might not find a problem, but when you see how your code works, you may think of an improvement that you can make. The arrow back from “Test” to “Code” in Figure 50
 and Figure 51
 represents the process of running a test, and then either finding a problem or identifying an improvement, and then updating your code.

It is helpful to frequently run tests as you add new sections of code. This will give you confidence that the code that you are writing is correct as you write it, and will narrow down the possible parts of the code that are causing you problems.

[image:]

Figure 51 – Pi 4 hardware mapped to Code, Test, and Save

In Figure 51
, there is an arrow from the “Test” step to a “Save” location. This represents the step where you have run a successful test, and you want to save your code. While you are writing code, your work is being stored in your Pi’s RAM (temporary computer memory). But everything that is stored in RAM is erased when your Pi is powered off, so when you have run a successful test of your code, it’s a good time to save it to permanent memory (your Pi’s micro SD card). When you follow these coding steps, if you suddenly find that you have introduced a bug in your program by adding new code, and if you are having difficulty fixing the problem, you will have the option of simply closing the Scratch application, and selecting “Don't Save” when asked if you want to save your project. Then you can reopen your Scratch project and start over from the time when you last saved it. This is not something that would happen very often, but it is nice to have the option to discard recent changes and restart at a point where your software was last working well. In the next chapter, we will learn the details of how to save Scratch projects.

Chapter 9: Project - Quick Draw Cat

Now let’s start coding our first Scratch project!

REQUIREMENTS
 (“What does the code need to do?”):

	
The player will click the green flag to start the game. This is the standard way to start a Scratch program.

	
The player will use the arrow keys (up, down, left, right) to control the movement of a cat who walks around the screen. Each time an arrow key is pressed, the cat will move a small distance.

	
As the cat walks, it will leave a colored trail behind.

	
The trail will be a different color depending on the direction of travel (up/blue, down/green, left/yellow, right/red).

	
As the cat moves, it will appear to be walking (legs move).

DESIGN
 (“How will your code be organized?”):

	
When the green flag
 is clicked:

	
Place the cat at the center of the screen.

	
Erase any pen markings on the screen.

	
The cat makes a “meow” sound, and a popup balloon displays the text “Hello.”

NOTE: This is not listed in the software requirements, but it’s just a fun little feature that we can add!

	
When the right arrow
 key is pressed:

	
Set the pen color to red.

	
Set the pen down (ready to draw a line when the cat moves).

	
Move the cat 10 steps to the right.

	
Lift the pen up.

	
When the left arrow
 key is pressed:

	
Set the pen color to yellow.

	
Set the pen down.

	
Move the cat 10 steps to the left.

	
Lift the pen up.

	
When the up arrow
 key is pressed:

	
Set pen color to blue.

	
Set the pen down.

	
Move the cat 10 steps in the up direction.

	
Lift the pen up.

	
When the down arrow
 key is pressed:

	
Set pen color to green.

	
Set the pen down.

	
Move the cat 10 steps in the down direction.

	
Lift the pen up.

CODE & TEST
: Start the Scratch program by double-clicking the shortcut on your desktop. The first thing that we want to do is to give ourselves the largest possible view of our coding area. As shown in

Figure 52
 below, we do this by shrinking the stage (the game area in the upper left corner of Scratch window) down to its smallest size. Left-click the little gray triangle in the lower right corner of the stage. Notice that left-clicking the gray triangle many times will alternately shrink and expand the stage size. Try that.

[image:]

Figure 52 – Expand the coding area

When you create large programs, you might like even more workspace for your coding. In the lower right corner of the coding area, there are zoom controls that shrink and expand the size of your code blocks.

[image:]

Figure 53 – Zooming the coding area

In the top center section of the Scratch window, you will see the “block palette” (Figure 54
). For an artist, a palette is a board with different colors of paint on it. In Scratch, the block categories are each a different color. You can change the block category that you want to work with by left-clicking on a category (like Motion, Looks, or Pen) on the palette.

[image:]

Figure 54 – Block palette

The categories of blocks are:

	

Motion
 – Control the position and movement of your sprite (the sprite in this project is a cat).

	

Looks
 – Change the looks of your sprite (size, color, costumes, show/hide).

	

Sound
 – Play sounds and control volume.

	

Pen
 – Control the pen to draw colored lines on the stage.

	

Data
 – Create and update named variables that contain number values (such as “Score = 101”).

	

Events
 – Trigger your code to execute when events happen such as clicking objects and pressing keys.

	

Control
 – Code that controls the pathways that your code follows (wait, repeat, if, else, forever loop).

	

Sensing
 – Test various things (touching, distance, key pressed) and ask the player questions.

	

Operators
 – Math and logic “operators” (add, subtract, multiple, divide, >, <, =, and, or, not).

	

More Blocks
 – Allows you to create custom blocks. We will not be using this feature in this book.

Before we start coding, let’s first review how to work with code blocks. Writing code with Scratch is kind of like building with Legos, where you snap small colorful blocks together to build something. In Scratch, you drag and drop colorful code blocks from the block palette into the coding area. When two blocks are close to each other, they will snap together. You will see a white line appear between the two blocks when they are close enough to snap together. Then if you drop the block, it will snap into place, attached to the nearby block.

[image:]

Figure 55 – How to connect blocks

You can disconnect blocks by left-clicking on a block and dragging it away from the block above it. Try this.

[image:]

Figure 56 – How to disconnect blocks

To replace a block, you disconnect the block that you want to replace, delete it, and add the new block.

[image:]

Figure 57 – How to replace a block

Now let’s get ready to start our coding by clearing the coding area. IMPORTANT
: If you need to power off your Pi before completing this Quick Draw Cat project, skip ahead to Step 37 to learn how to save your project file before powering off your Pi.

[image:]

Figure 58 - Clear the coding area

The first block category that we will use is “Events.” Event blocks cause your code to start executing.

Step 1
 - Left-click on the “Events” code block category in the block palette. NOTE: All of the coding steps in this chapter are shown in the diagrams that follow the written instructions for each coding step. See Figure 59
 below.

[image:]

Figure 59 – Select Events block category

Step 2
 - Drag and drop the “when green flag clicked” block at the top of the coding area. Left-clicking the green flag is the standard way to start your program running in Scratch.

[image:]

Figure 60 – When green flag clicked

Positioning your sprite
 – You can place your sprite (in this project, it’s the cat) on the stage by setting the X and Y positions of the sprite. The center of the stage has an X value of 0, and Y value of 0 (Figure 61
). Positions on the right half of the stage have positive X values, while positions on the left half of the stage have negative X values. Positions on the top half of the stage have positive Y values, while positions on the bottom half of the stage have negative Y values.

[image:]

Figure 61 – Your sprite can be placed at XY positions on the stage

[image:]

Figure 62 – Examples of setting sprite XY positions

Step 3
 - Left-click the “Motion” block category.

[image:]

Figure 63 – Select Motion block category

Step 4
 – Drag and drop the “go to X=0 Y=0” block underneath the first block (Figure 64
). The two blocks will snap together when they get close. This will place the cat at the center of the stage. NOTE: If the X and Y numbers in the “go to” block are not zero, then left-click on the numbers and type in a zero.

[image:]

Figure 64 – Place cat on stage

Sprite direction
 – When creating a video game, you will often want to change the direction that your sprite is facing. Scratch has a code block named “point in direction” which allows you to rotate your sprite by an angle (in degrees).

[image:]

Figure 65 – The "Point in direction" block rotates the sprite by and angle

Figure 66
 below shows some of the angle values that you can use to change your sprite's direction.

[image:]

Figure 66 – Sample sprite directions

Step 5
 – Add (drag and drop) a “point in direction” block. The default direction of 90 degrees (cat facing right) is a good starting direction, so you don't need to change the direction initially.

[image:]

Figure 67 – Set cat direction

Figure 68
 shows how one line in our design can end up being two blocks in our code. Placing a sprite on the stage involves setting both its location and direction.

[image:]

Figure 68 – Design mapped to code

Step 6
 – Left-click the “Pen” block category.

Step 7
– Add a “clear” block.

[image:]

Figure 69 - Clear the stage

Step 8
– Left-click the “Sound” block category.

Step 9
 – Add a “play sound” block.

[image:]

Figure 70 – Cat says “Meow”

Step 10
 - Left-click the “Looks” code category.

Step 11
 - Add a “Say Hello! for 2 secs” block.

[image:]

Figure 71 – “Hello” popup balloon

Test
 - Left-click the green flag in the upper right corner of the stage and see (and hear) what happens. NOTE: If you don’t hear anything, left-click the “sound control” icon which is located in the upper right corner of the Pi desktop, and left-click and drag the volume slider up to increase the volume. If increasing the volume doesn’t work, drag the volume slider back down
 to a low volume
, and try using headphones or AC-powered computer speakers (connect as shown back in Figure 5
). To direct sound to the audio port for headphones or speakers, right-click on the Sound Control icon and select “Analog” (the default is HDMI).

[image:]

Figure 72 - Test A

Step 12
 - Left-click the “Events” code category.

Step 13
 - Drag and drop the “When space key pressed” block to your program and place it in the coding area alone by itself (Figure 73
). Note that the “Events” code blocks with rounded tops cannot be attached to other blocks on their top side. These type of blocks allow you to create “event handlers”, which are parts of your code that are executed when you take an action, such as clicking a mouse button or pressing a key on your keyboard. In this project, we will be creating several event handlers.

[image:]

Figure 73 - Add keyboard event handler

Step 14
 - Left-click the little black triangle to the right of the word “space,” and then select “right arrow” from the events menu. REMINDER: To select an item in a menu, you left-click on your selection.

[image:]

Figure 74 - Right arrow key event handler

Next we will set the pen color for drawing the red line that trails the cat when walking to the right on the stage. The easiest way to set the pen’s color is to set it to the number from the color wheel. The color number for red is zero.

[image:]

Figure 75 - Pen color wheel

Step 15
 – Left-click the “Pen” code category.

Step 16
 – Add a “set pen color to <number>” block. Note the caution in Figure 76
 below, so you avoid picking the wrong block (they look very similar).

[image:]

Figure 76 - Set pen color to red

Step 17
 – Add a “pen down” block. When the pen is down, a trailing line is drawn behind the cat when it moves.

[image:]

Figure 77 – Set the pen down

Step 18
 – Left-click the “Motion” block category.

Step 19
 – Add a “point in direction <number>” block.

[image:]

Figure 78 – Point in direction

Step 20
 – Add a “move <number> steps” block.

[image:]

Figure 79 - Move 10 steps

Figure 80
 below shows how the code that we just added maps to our design.

[image:]

Figure 80 - Code mapped to design

Step 21
 – Left-click the “Pen” block category.

Step 22
 – Add a “pen up” block. When the pen is up, no lines are drawn as the cat moves.

[image:]

Figure 81 - Lift up pen

Test
 - Press the right arrow key on your keyboard several times. You should see a thin red line trailing the cat when it moves.

[image:]

Figure 82 - Test B

Step 23
 – Add a “set pen size to <number>” block. This block allows you to change the thickness of the line that is drawn by the pen.

[image:]

Figure 83 – Make the trailing line thicker

Step 24
 – To increase the line thickness, left-click inside the white circle in the “set pen size to <number> block. Type in the number 10.

Step 25
 – To enter the pen size change, left-click anywhere on the background area of the coding area.

[image:]

Figure 84 - Increase pen size to 10

Test
 – Left-click the green flag and then press the right arrow key. The red trailing line should be thicker.

[image:]

Figure 85 - Test C

Now let’s create an event handler for the other arrow keys (left, up, down). We can take a short cut and do this fast by copying our event handler for the right arrow key, and then modifying the copied code in the few places that are required for the different direction of travel and different line color.

[image:]

Figure 86 - Copying event handler

Step 26
 – Right-click on the “when right arrow key pressed” block in your code, and select “duplicate” from the menu that pops up.

Step 27
 – Move the copied set of blocks to the open space to the right, and left-click to drop them.

[image:]

Figure 87 – Duplicating a code block

Steps 28 & 29
 – Repeat steps 26 & 27 two more times, so that we have a total of four arrow key event handlers. Place those two new event handlers below the two existing arrow key event handlers.

[image:]

Figure 88 - Copies of arrow key event handler

Step 30
 – Set up the left arrow key event handler as shown below in Figure 89
.

[image:]

Figure 89 – Set up event handler (left arrow key)

Step 31
 – Set up the up arrow key event handler as shown below in Figure 90
.

[image:]

Figure 90 – Set up event handler (up arrow key)

Step 32
 – Set up the down arrow key event handler as shown below in Figure 91
.

[image:]

Figure 91 – Set up event handler (down arrow key)

NOTE: Researchers did a study to learn how “bugs” (coding errors) end up in our code. The study found that a common source of bugs was the use of code duplication (also called “copy/paste”), where the person doing the coding forgot to make all of the required changes to the copied section of code. So just be careful when duplicating code that you make all of the necessary changes for the new code usage.

Test
 – Left-click the green flag. Press the right, left, up and down arrow keys, moving the cat around the stage.

[image:]

Figure 92 - Test D

Sample test results are shown below. Note that you can view the stage in “Full Screen” mode by left-clicking on the blue icon in the upper left corner of the stage (see below). Left-click the blue icon a second time to exit Full Screen mode.

[image:]

Figure 93 – Zooming to Full Screen is nice for testing

Let’s review our requirements and see what else needs to be done.

[image:]

Figure 94 - Review of requirements

Step 33
 – When creating a video game, we sometimes want to “animate” a sprite so that the character appears to be walking or running. In Scratch, we can do this using a sprite's “costumes.” Some sprites that come with Scratch have multiple costumes, and some sprites don't. To see which costumes a sprite has, you can left-click on the “Costumes” tab in the coding area. The cat sprite that we are using has two costumes, with the legs and arms being in different positions. As shown below in Figure 95
, if we alternately display the two available costumes for our sprite, the cat will appear to be walking. The two costumes have the names “cat1-a” and “cat1-b.”

[image:]

Figure 95 - Sprite animation

Step 34
 – Left-click the “Scripts” tab to return to the coding view.

Step 35
 – Left-click the “Looks” block category.

Step 36
 – Add the “next costume” block at the bottom of each of the four arrow key event handlers.

[image:]

Figure 96 - Next costume block

NOTE: Scratch has an optional “cleanup” feature that will rearrange your code blocks in the coding area into a more compact and precisely aligned format. To use this feature, right-click on an empty spot in the coding area, and then left-click on “Cleanup” in the popup menu.

Test
 – Select a large stage size. Left-click the green flag. Press the right, left, up and down arrow keys, moving the cat around the stage. The cat’s legs should now appear to be moving while walking.

[image:]

Figure 97 - Test E

Now all of our requirements have been completed and successfully tested!

[image:]

Figure 98 – All requirements are satisfied

Congratulations!
 You have learned about the Requirements/Design/Code/Test development process, learned some of the basics of working in the Scratch programming environment, and learned how to use keyboard inputs and mouse clicks to interact with your code.

Save your project
 – While you are coding, your work is being stored in temporary RAM. When you reach a point where you are happy with your code, you should save it to the SD memory card that is plugged into your Pi. The SD card is permanent memory (also called “storage”) and will keep your code stored even after power is removed from your Pi.

[image:]

Figure 99 – Save your work to the SD memory card

When you save a file (such as your Scratch project) onto your SD memory card, you need to select a folder to store your file in. We will use the “My Code” folder that you created on the desktop back in Chapter 6 “Customize Desktop.”

Step 37
 – Left-click the “File” menu in the upper left corner of the Scratch window.

Step 38
 – Left-click the “Save Project” menu item.

[image:]

Figure 100 – Save your project

Step 39
 – You will see a popup window (Figure 102
) where you will enter a name for your Scratch project file (also called the “filename”). Choose a filename that reminds you of what the project is about. If you are in a home or classroom where there are other students using the same Pi, then it is important to include your own name in the filename, so that you can easily locate the projects that belong to you. Figure 101
 below shows filename suggestions for a student named Mary Smith (example), based on the student’s “Pi sharing” situation.

[image:]

Figure 101 - Choosing a filename

As seen at the top of Figure 102
 below, the name that you enter is followed by.”.sb2”. That is the “file extension” for Scratch 2.0 projects (NOTE: For Scratch 1.4 projects, the file extension is ”.sb”).

Step 40
 –If it’s not already selected (blue background), left-click “Desktop” along the left side of the File Selection window (Figure 102
). This will display the folders and files that are contained on the desktop (shown in Figure 103
).

[image:]

Figure 102 – Popup window for saving your project

Step 41
 – Double left-click the “My Code” folder (or single left-click it and then press the Enter/Return key). This opens the “My Code” folder contained inside the Desktop folder (that is contained inside the pi folder).

[image:]

Figure 103 - Selecting Scratch Projects folder for save

Step 42
 – Left-click the Save button. After saving the project, notice that the project name appears above the stage.

[image:]

Figure 104 - Save Quick Draw Cat project

Your project is now saved!
 It is now safely stored on your SD memory card, and your project will still exist if you power off your Pi.

Notes on saving your work
 - It can be helpful to save your work frequently. Saving your project each time that you have run a successful test is a good approach.
 That way, if you find that a change that you have made has introduced an error (i.e. “software bug”), and you cannot easily undo that change, then you can simply open your project again, and then you will have discarded any code changes that you made since the last time you saved your project. But this is just a suggestion. You can decide how often you want to save your work. Some people like to save often, while others don’t. Also, as an optional precaution to be extra safe, as shown in Chapter 15 (“Backing Up Your Work”), you can save an extra copy (called a “backup” copy) of your Scratch projects to a removable USB memory stick. This can come in handy for the case where your Pi is lost or damaged. You just need to make sure that you keep your USB memory stick in a safe location that is separate from your Pi, so that they are not lost together.

Opening your project
 - Now before we move on to the student exercises, let’s go through the steps for opening a Scratch project that you have previously saved to your SD memory card.

Step 43
 – Let’s start from the very beginning, by closing the Scratch application first.

Step 44
 – Start the Scratch program using the shortcut on the desktop.

[image:]

Figure 105 - Close and restart Scratch

One important thing to know about opening an existing Scratch project file is that you must only do it using the File menu. You will get a bad result if you open your “My Code” folder on your desktop and then double-click the project file (or single left-click it and then press the Enter/Return key). The Scratch software will be started, but your code will appear to be missing (it’s not really, but it looks like it). This is shown in the following figure.

[image:]

Figure 106 – Caution on opening existing project files

Step 45
 – Left-click the “File” menu in the upper left corner of the Scratch window.

Step 46
 – Left-click the “Load Project” menu item. A file selection window will popup.

[image:]

Figure 107 - Open a project

Step 47
 – A file selection window is displayed. At this point, there is only one Scratch project file (Quick Draw Cat.sb2), and it is selected (highlighted in blue). If there are multiple files listed, then you need to left-click on the one that you want to open to select it. To open the selected file, left-click the Open button.

[image:]

Figure 108 – File selection window (Open)

Step 48
 – When asked “Replace contents of current project?” left-click OK.

Working on the coding
 exercises
 – At the end of this chapter are exercises that will test your coding skills. You will be creating a separate project file for each exercise, and we want to keep the original Quick Draw Cat project file unchanged. In most of the exercises you will be making small changes to either 1)
 the original project, or 2)
 the code of a prior exercise. In the exercise instructions, the “starting point” will be named as either the original project, a numbered exercise project, or you will be asked to create a completely new project (as in Exercise 5). The relationships of the exercise projects are shown in Figure 109
.

[image:]

Figure 109 - Quick Draw Cat exercises

For the exercises where the starting point is an existing project (Exercises 1, 2, 3, 4), a good way to protect your starting point project from being accidently overwritten (as you work on a new exercise) is to make a copy of the starting point project before you start an exercise,
 and then make your coding changes to that copy. That copy will have a filename that includes the exercise number (like “Quick Draw Cat EX1”). This process is shown in Figure 110
. We will create the exercise copy by saving the starting point project using the “File> Save Project” menu item, and entering the new filename. This method of saving a file as a copy with a new filename is often referred to as “Save As”. NOTE:
 Don’t worry if this seems confusing. The specific steps that you need to follow will be listed in the exercise descriptions in the next chapter.

[image:]

Figure 110 – How to work on an exercise

Chapter 10: Exercises - Quick Draw Cat

(see Chapter 16 for the answers)

	
Use a pen size of 20 when walking to the right

	
Starting point - Original Quick Draw Cat project.

	
Save As - Add “EX1” at the end of your original filename (use “File>Save Project” menu option). NOTE: Remember to save it into your “My Code” folder as shown earlier in Figure 102, Figure 103, and Figure 104.

	
Code change - Set pen size to 20 in the event handler for the right arrow key.

	
Test - When walking in the right direction, you should see a colored line trailing the cat that is 2 times wider than in the original version.

	
Save - Save your completed exercise.

	
Use a pen size of 100 when walking in all directions

	
Starting point - Exercise 1 project.

	
Save As - Add “EX2” at the end of your original filename (use “File>Save Project”).

	
Code change - Set pen size to 100 in the event handler for each arrow key.

	
Test - When walking in all directions, you should see a colored line trailing the cat that is 10 times wider than in the original version.

	
Save - Save your completed exercise.

	
Change pen shade with each step

	
Starting point - Exercise 2 project.

	
Save As - Add “EX3” at the end of your original filename (use “File>Save Project”).

	
Code change - In the block palette, for “Pen,” you will find the “change pen shade by <number>” block. Insert that block above the “pen down” block in each arrow key event handler. Set the number value to 5.

	
Test - When walking in all directions, you should see the shade of the color change with each step.

	
Save - Save your completed exercise.

	
Increase the pen size with each step

	
Starting point - Original Quick Draw Cat project.

	
Save As - Add “EX4” at the end of your original filename (use “File>Save Project”).

	
Code change

	
Set pen size to 1 in the program startup code (executes when green flag clicked).

	
In each arrow key event handler, replace the “set pen size to <number>” block with a “change pen size by <number>” block, where the number is 1. TIP: It is helpful to zoom out the coding area (previously shown in Figure 53), and then drag the arrow key event handlers further apart to have some room to work. If you need to refresh your memory on how to replace a block, refer back to Figure 56 (disconnecting blocks) and Figure 57 (replacing blocks).

	
Test - As the cat walks, the width of the colored trail should continue to grow.

	
Save - Save your completed exercise.

	
Control the pen using letter keys

	
Summary - In this exercise, you will add 4 new event handlers to your program. You will use these event handlers to control the pen. These new events correspond to pressing specific letter keys on the keyboard (u, d, b, y). So far in this book, you have only used the arrow keys and mouse clicks as events. But many of the keys on your keyboard can be used as events too. The full list of the keys that you can use as events is shown when you left-click on the little black triangle on the “when <key> key pressed” block (Figure 111 on the next page). In this exercise, pressing those 4 letter keys (u, d, b, y) will cause the pen to be lifted up (letter “u” for up), placed down (letter “d” for down), colored blue (letter “b” for blue), and colored yellow (letter “y” for yellow). As an additional challenge in this exercise, you will use those new controls to draw the picture shown in Figure 112.

	
Starting point - Create a new project using the “File>New” menu option.

	
Save As - Add “EX5” at the end of your original filename (use “File>Save Project”).

	
Design

	
When green flag clicked

	
Shrink the cat to half size (NOTE: In the “Looks” section of the block palette, use the “set size to <number>%” block and set the number to 50).

	
Place the cat at the center of the stage and pointing in the right direction.

	
Erase any pen markings on the screen.

	
Start with a red pen that has a size of 1.

	
Lift the pen up.

	
When right arrow pressed

	
Point cat in right direction.

	
Move cat 10 steps (walking).

	
When left arrow pressed

	
Point cat in left direction.

	
Move cat 10 steps (walking).

	
When up arrow pressed

	
Point cat in up direction.

	
Move cat 10 steps (walking).

	
When down arrow pressed

	
Point cat in down direction.

	
Move cat 10 steps (walking).

	
When “d” key pressed (“d” is for down, as in pen down)

	
Place pen down.

	
When “u” key pressed (“u” is for up, as in pen up)

	
Lift pen up. (TIP: To find the “u” key in the menu of keys, place your mouse pointer over the small white triangle at the bottom of the menu, and the lower half of the menu will be displayed.)

	
When “b” key pressed (“b” is for blue)

	
Set pen color to blue.

	
Set pen size to 200. (NOTE: This large pen size will make it easy to quickly color the stage background with blue before drawing the yellow letters.)

	
When “y” key pressed (“y” is for yellow)

	
Set pen color to yellow.

	
Set pen size to 30.

	
Code - Translate the design shown above into code.

	
Test/Challenge - Using the arrow keys and the “b,” “y” and “u” keys, spell the word “CAT” with yellow letters on a blue background. The result should look something like Figure 112.

	
Save - Save your completed exercise.

[image:]

Figure 111 - Key menu

[image:]

Figure 112 – Control the pen using letter keys (Challenge)

Chapter 11: Project - Paint Pong

Paint Pong is a colorful twist on the classic game Ping Pong. As the ball moves across the stage, a colored line is painted, following the path of the ball. Each time a player hits the ball with a paddle, the color of the paint changes. All of the colored lines are erased when a player misses the ball with their paddle. So the longer that you are able to hit the ball back-and-forth without missing, the more colored lines will fill up the stage, resulting in an interesting and unique work of art!

The coding for this game is more complicated than Quick Draw Cat, which only used one sprite (the cat). Paint Pong will use multiple sprites. The ping pong ball is one of the sprites. Two other sprites, the paddles, are controlled by two players. While you are developing your code, you will perform the role of both players, controlling the paddle for Player 1 with your left hand, and controlling the paddle for Player 2 with your right hand. After you have finished coding and testing the game, you can invite a friend or family member to play it with you, or you can play it by yourself and see how long you can keep hitting the ball back-and-forth without missing.

The code for Paint Pong introduces the concept of “interaction” between sprites, where specific things will happen when two sprites touch each other. For example, when the ball sprite touches a paddle, the ball will bounce off the paddle by changing the direction that it is moving. Another example of sprite interaction is where an “edge” sprite is used to detect when a player has missed the ball. interaction of the ball and the edge sprites will become clearer later in this chapter.

REQUIREMENTS
:

	
The instructions on how to play the game will be displayed when the green flag is clicked.

	
Game play will start when the “s” key is pressed.

	
It will be a 2 player game, played like ping pong, with each player controlling one paddle. NOTE: The game can also be played by one person controlling both paddles.

	
Player 1 will control the left paddle using the “a” and “z” keys on the keyboard (a = UP, z = DOWN). Player 2 will control the right paddle using the “up arrow” and “down arrow” keys.

	
As the ball moves on the screen, a colored line will be drawn following the ball.

	
When a player hits the ball with the paddle, the color of the trailing line is changed.

	
When a player misses the ball with the paddle, all lines on the screen are erased, and the ball will be re-launched from the center of the screen.

	
The game score will be displayed along the top of the screen. When a player misses the ball with the paddle, a point is awarded to the other player.

DESIGN (Sprite definition)
:

We will use 6 different sprites for this game. Each sprite will have its own code that defines the look and behavior of the sprite.

The sprites are:

	

Instructions
 – Includes the game title, and explains how the game is played.

	

Ball
 – The ping pong ball.

	

Paddle1
 – Player 1’s paddle (positioned at the left side of the screen).

	

Paddle2
 – Player 2’s paddle (positioned on the right side of the screen).

	

Goal1
 – Scoring zone for Player 2.

	

Goal2
 – Scoring zone for Player 1.

Some of the sprites have obvious roles in the game, such as the ball and the paddles. Those sprites move in response to player actions, and correspond to real-world objects. But there are also sprites, such as Goal1 and Goal2 that are simply used as unmoving “sensors,” for which a section of your code can be triggered when another sprite (in this case, the ball) touches the sensor sprite. This is the way that points are scored in Paint Pong. When the ball touches either goal sprite, a point is scored for the opposite player, and the ball position is set back to the center of the stage to be relaunched. The 6 sprites used for this game are shown in Figure 113
.

[image:]

Figure 113 - Sprites (Paint Pong)

SPRITE #1: Instructions

DESIGN (Instructions):

	
When green flag
 is clicked:

	
Show sprite (this makes the Instructions sprite appear on the stage).

	
When “s” key
 is pressed (“s” is short for “start game”):

	
Hide sprite (this makes the Instructions sprite disappear).

CODE & TEST (Instructions):

In Scratch, you can use either pre-built sprites (such as the default cat sprite that we used in “Quick Draw Cat”) or you can build your own sprite using Scratch’s Paint Editor tool. To create the Instructions sprite, we will use the Paint Editor.

An Instructions sprite should include the following:

	
Title of the game (“Paint Pong”).

	
A brief description of how to play the game.

	
A list of the keyboard controls that are used to play the game.

	
The keyboard control that is used to start the game (we will use the “s” key).

Step 1
 - Left-click the gray triangle to shrink the stage and expand the coding area.

Step 2
 – Right-click on the Cat sprite.

Step 3
 - Left-click the “Delete” item from the popup menu.

[image:]

Figure 114 - Delete cat sprite

Step 4
 - Left-click the paint brush icon to paint a new sprite.

[image:]

Figure 115 - Paint new sprite

Step 5
 – Right-click inside the gray “Sprite1” box.

Step 6
 – Left-click “info” in the popup menu.

[image:]

Figure 116 - Update sprite name

Step 7
 - Left-click after “Sprite1”, and delete it (repeatedly press the Delete/Backspace key).

Step 8
 - Type in the new sprite name “Instructions”.

Step 9
 - Click the “back” button (white triangle inside blue circle).

[image:]

Figure 117 - Update sprite name (continued)

Step 10
 - Left-click the “T” to enter text mode.

[image:]

Figure 118 – Paint Editor tool

Step 11
 - Left-click in the Painting Area where you want to start writing the game instructions.

[image:]

Figure 119 – Adding text to the Painting Area

Step 12
 - Write your game instructions. NOTE: Press the Return/Enter key to continue on the next line.

[image:]

Figure 120 - Game instructions

Step 13
 - Click the Scripts tab after you have entered the game instructions.

[image:]

Figure 121 –Switch to Scripts tab

Step 14
 – Left-click on the Scripts tab. Add the event handler code as shown in Figure 122
.

[image:]

Figure 122 - Instructions sprite code

Test
 - Left-click the green flag. Press the “s” key. You should see the results shown below.

[image:]

Figure 123 - Test A

[image:]

Figure 124 – Requirements (after Test A)

SPRITE #2: Ball

[image:]

Figure 125 - Ball sprite functions

DESIGN (Ball):

	
When the green flag
 is clicked:

	
Hide the Ball sprite. We only want the Instructions sprite to be seen at the beginning.

	
Set the ball size, and place the ball at the center of the screen. NOTE: We can do this setup even though the Ball sprite is not yet displayed.

	
Set the launch angle for the ball (using “point in direction” block).

	
Set the pen color and pen size, and then place the pen down (ready to draw).

	
Erase any pen markings on the screen from previous game play.

	
When the “s” key
 is pressed (“s” is short for “start game”):

	
Show the sprite (it was hidden when the green flag was clicked).

	
Display a countdown that reads “Ready” (for 1 second), “Set” (for 1 second), and “Go” (for 1 second).

	
Loop forever, doing the following:

	
Move the ball forward a few steps.

	
If the ball touches an edge of the stage

	
Bounce the ball off the edge of the stage (use the “if on edge, bounce” block)

	
If the ball touches a paddle:

	
Bounce the ball off the paddle by changing the ball’s direction.

	
Change the pen color.

	
Play a “pop” sound.

	
If the ball touches a goal:

	
Place the ball in the center of the stage.

	
Erase any pen markings on the screen and reset the pen color.

	
Add one point to the score for the appropriate player.

CODE & TEST (Ball):

Step 15
 - Left-click this icon to choose a sprite from the library.

[image:]

Figure 126 – Choose a sprite from the library

Step 16
 - Left-click the Ball sprite.

Step 17
 - Left-click the OK button.

[image:]

Figure 127 – Select the Ball sprite

[image:]

Figure 128 - Ball sprite on stage

Step 18
 - Left-click on Costumes tab.

Step 19
 - OPTIONAL: Left-click on a colored ball (costume), if you want to use a color other than yellow.

[image:]

Figure 129 - Ball sprite costumes

Step 20
 - Left-click on the Scripts tab.

Step 21
 - Add event handler code for:

	
green flag

	
“s” key

[image:]

Figure 130 - Ball sprite code (partial)

Test
 - Left-click the green flag. Press the “s” key. The ball bounces around the stage.

[image:]

Figure 131 - Test B

To stop your code, click on the red octagon that is located above the stage (next to the green flag).

[image:]

Figure 132 - Stop your code

[image:]

Figure 133 - Requirements (after Test B)

SPRITES #3 & #4: Paddle1 & Paddle2

[image:]

Figure 134 – Paddle sprite functions

DESIGN (Paddle1):

	
When green flag
 is clicked:

	
Hide sprite (only the instructions are shown).

	
Position sprite on the stage (so it’s in the right place when the game starts).

	
When “s” key
 is pressed (start game):

	
Show sprite.

	
When “a” key
 is pressed:

	
Move the paddle up by adding 30 to its y position.

	
When “z” key
 is pressed:

	
Move the paddle down by subtracting 30 from its y position.

DESIGN (Paddle2):

	
When green flag
 is clicked:

	
Hide sprite.

	
Position sprite on the stage.

	
When “s” key
 is pressed (start game):

	
Show sprite.

	
When “up arrow” key
 is pressed:

	
Move the paddle up by adding 30 to its y position.

	
When “down arrow” key
 is pressed:

	
Move the paddle down by subtracting 30 from its y position.

CODE & TEST (Paddle1):

Step 22
 - Left-click on the icon shown below to choose a sprite from the library.

[image:]

Figure 135 – Choose a sprite from the library

Step 23
 - Left-click and drag the slider down to find the Paddle sprite.

Step 24
 - Left-click the Paddle sprite.

Step 25
 - Left-click the OK button.

[image:]

Figure 136- Select the Paddle sprite

[image:]

Figure 137 – Paddle sprite is added

Step 26
 – Right-click inside the Paddle sprite box.

Step 27
 - Left-click “info” in the popup menu.

[image:]

Figure 138 – Get ready to change the Paddle sprite name

Step 28
 - Left-click after “Paddle”.

Step 29
 – Type “1”.

Step 30
 - Left-click the “rotate” icon to allow you to point the sprite in any direction.

Step 31
 - Left-click the “back” button.

[image:]

Figure 139 - Update sprite name to Paddle1

Step 32
 - Add the event handler code shown below.

[image:]

Figure 140 - Event handler code (Paddle1 sprite)

Test
 - Left-click the green flag. Press the “s” key. Press the “a” and “z” keys to move Paddle1.

[image:]

Figure 141 – Test C

Step 33
 - Left-click the Ball sprite, so that you can update its code.

Step 34
 - Left-click the “Control” block type.

[image:]

Figure 142 – Select the “Control” palette

Step 35
 – Add an “if then” block.

[image:]

Figure 143 – Add an “if then” block

Step 36
 - Left-click the “Sensing” block type.

Step 37
 – Drag and drop a “touching” block inside the “if then” block.

[image:]

Figure 144 - Add a "touching" block

Step 38
 - Left-click the little black triangle.

Step 39
 - Left-click “Paddle1”.

[image:]

Figure 145 – Select touching Paddle1.

Step 40
 - Left-click the “Motion” block type.

Step 41
 – Add a “point in direction” block. Leave the angle as 90 degrees for this step.

[image:]

Figure 146 – Add a “point in direction” block

Test
 - The ball bounces off the paddle at a 90 degree angle.

[image:]

Figure 147 –Test D

Step 42
 - Left-click the “Operators” block type.

Step 43
 – Drag and drop an addition (+) operator block inside the “point in direction” block.

[image:]

Figure 148 – Add an addition operator block

Step 44
 – Drag and drop (on the right side of the “+” sign) a “pick random” block.

[image:]

Figure 149 – Add a “pick random” block

Picking a random number in Scratch is like rolling dice, where you don’t know which specific number will result, but you do know the range numbers. If you roll two dice, then the result (the sum of the numbers on the top of the dice) will always be between 2 and 12. In the “pick random” Scratch block, you specify two numbers; the lowest number that can be picked (the number on the left), and the highest number that can be picked (the number on the right). When the “pick random” block is executed in your code, your Pi randomly picks a number within that range. Using random numbers in your code can make your game more interesting, since the behavior is not so predictable. A game can get boring if you always know what is going to happen next in a given situation. In Paint Pong, if the ball always bounced off the paddle at the same angle (like in the prior test that you ran), the game would be too easy and wouldn’t be very fun.

Instead of repeatedly using the same bounce angle for a given paddle, we will update the “point in direction” block to include a more complicated bounce angle calculation. As shown in Figure 150
 below, the bounce angle is calculated by adding a “base angle” (90 degrees for Paddle1) to a randomly selected number from within the range of -45 and 45 (meaning numbers such as -45, -44, -43, -42, ..., 42, 43, 44, 45). This will bounce the ball back towards Player 2’s side of the gaming area, but in an unpredictable way. The bounce angle will randomly change each time that the ball hits Paddle1, although the angle will be somewhere between the two blue dashed lines (shown in the figure below) which represent the bounce angles that are computed when the random number picked is at either of the outer limits of your specified range (-45 or 45).

NOTE: In Step 45 on the next page, we will be set up the “point in direction” block in our code as shown below in Figure 150
.

[image:]

Figure 150 – Ball bounce angle (Paddle1)

Step 45
 - Left-click (in white areas) and type in the following:

	
Base angle = 90

	
Random range (low) = -45

	
Random range (high) = 45

[image:]

Figure 151 – Set up “point in direction” block

Test
 - The ball bounces off the paddle at random angles. IMPORTANT:
 If the ball is moving too fast for you, you can use a smaller number
 in the “move <number> steps
” block. For example trying changing the number from 5 to 4. If it’s still too fast, try 3 or 2. Different models of the Pi computers run at different speeds, so you may need to try different numbers of steps per loop before you find the one that you like best.

[image:]

Figure 152 - Test E

Step 46
 - Left-click the “Pen” block type.

Step 47
 – Add a “change pen color by <number>” block, and set the number to 20.

[image:]

Figure 153 – Add “change pen color” block

Test
 – The pen color changes when the ball touches the paddle.

[image:]

Figure 154 – Test F

Step 48
 - Left-click the “Sound” block type.

Step 49
 – Add a “play sound <pop>” block.

[image:]

Figure 155 –Add a “play sound” block

Test
 – When the ball hits the paddle, there is a pop sound.

[image:]

Figure 156 – Test G

CODE & TEST (Paddle2):

Step 50
 - Left-click on “Paddle1” to select the sprite.

Step 51
 – Right-click on “Paddle1” to popup the menu.

Step 52
 - Left-click on “duplicate”. This creates a 2nd
 paddle (named Paddle2) with the same code as Paddle1.

Step 53
 - Left-click on “Paddle2” to select that sprite.

[image:]

Figure 157 – Duplicate Paddle1 to create Paddle2

[image:]

Figure 158 - Paddle2 code is copied from Paddle1

Step 54
 – On the “go to” block, left-click in the white area, and type in x value “210” (changes it to positive). That will position Paddle2 on the right side of the stage (once the green flag is clicked).

Step 55
 – On the “when ‘a’ key pressed” block, left-click the little black triangle and select “up arrow” from the menu.

Step 56
 – On the “when ‘z’ key pressed” block, left-click the little black triangle and select “down arrow” from the menu.

[image:]

Figure 159 – Update Paddle2 code

Test
 – Paddle2 moves, but the ball passes through the paddle.

[image:]

Figure 160 – Test H

CODE & TEST (Ball - continued):

Step 57
 - Left-click the Ball sprite.

Step 58
 - Right-click on the “if then” block. A menu will popup.

Step 59
 - Left-click on “duplicate.”

[image:]

Figure 161 – Duplicate the “if then” block

Step 60
 – Using the mouse, move the duplicated set of code down to the bottom of the forever loop.

[image:]

Figure 162 – Move the duplicated code

To calculate the bounce angle off of Paddle2 (the paddle controlled by Player 2), the only difference from the “point in direction” block used for Paddle1 is that the base angle is -90 degrees (pointing left) instead of 90 degrees (pointing right). Now each time that the ball touches either Paddle1 or Paddle2, it will bounce at an unpredictable angle, but in the direction of the other player’s side of the gaming area.

[image:]

Figure 163 – Ball bounce angle (Paddle2)

Here’s a refresher on angle definitions (from Quick Draw Cat).

[image:]

Figure 164 – Angle refresher

Step 61
 – In the duplicated “if then” block, left-click on the little black triangle and left-click on Paddle2.

Step 62
 – In the duplicated “point in direction” block, left-click in the white area and type in “-90”.

[image:]

Figure 165 – Ball code

Test
 – Both paddles are now working!

[image:]

Figure 166 - Test I

[image:]

Figure 167 – Requirements (after Test I)

SPRITES #5 & #6: Goal1 & Goal2

[image:]

Figure 168 – Goal sprites

DESIGN (Goal1 & Goal2):

	
When green flag
 is clicked:

	
Hide sprite (only the instructions are shown).

	
Position sprite on the stage.

	
When “s” key
 is pressed (start game):

	
Show sprite.

CODE & TEST (Goal1):

Step 63
 - Left-click on the paint brush icon to paint a new sprite.

Step 64
 – Right-click on the new sprite.

Step 65
 - Left-click on “info” in the popup menu.

[image:]

Figure 169 – Create new sprite

Step 66
 - Left-click after “Sprite1”, and delete it (repeatedly press the Delete/Backspace key).

Step 67
 – Type in the new sprite name “Goal1”.

Step 68
 - Left-click the “back” button (white triangle inside blue circle).

[image:]

Figure 170 – Name the new sprite Goal1

Step 69
 - Left-click on the rectangle icon in the Painting area.

Step 70
 - Left-click on the medium gray color in the color palette.

[image:]

Figure 171 – Select color for Goal1

Step 71
 - Left-click in the upper left corner of the painting area (cross-hatched background), and while holding down the left mouse button, move the mouse down and to the right to draw a thin rectangle as shown in Figure 172
 below. The Goal1 sprite should be as tall as possible, so that the ball cannot get past it.

[image:]

Figure 172 – Draw the outline of Goal1

Step 72
 - Left-click on the “Fill with color” icon (looks like a paint bucket).

Step 73
 - Left-click inside the rectangle that you drew to fill it with gray color.

[image:]

Figure 173 – Fill in Goal1 with gray color

Step 74
 – Add the Goal1 event handler code shown below for the green flag and the “s” key.

[image:]

Figure 174 – Goal1 event handler code

Test
 – Goal1 appears on the left edge of the stage.

[image:]

Figure 175 – Test J

CODE & TEST (Goal2):

Step 75
 - Left-click on Goal1 to select that sprite.

Step 76
 – Right-click on Goal1 to popup the menu.

Step 77
 - Left-click on “duplicate.” This makes a 2nd
 goal (named Goal2) with the same code as Goal1.

Step 78
 - Left-click on Goal2 to select that sprite.

[image:]

Figure 176 – Duplicate Goal1 to create Goal2

Step 79
 – Left-click on the Costumes tab, and then left-click on the “Select” tool.

Step 80
 – Move the mouse pointer above the upper left corner of the gray-filled goal. Press and hold down the left mouse button and move the mouse pointer below the lower right corner to create a “selection” box that surrounds the gray-filled goal. Then release the left mouse button to select the goal.

[image:]

Figure 177 – Select Goal2

Step 81
 – Move the gray-filled goal by dragging and dropping it at the right edge of the painting area. Another way to move the gray-filled goal is to use the arrow keys on your keyboard (up, down, left, right).

Step 82
 – After dropping the goal, left-click anywhere in the painting area to finish the move.

[image:]

Figure 178 – Move Goal2

Step 83
 - Left-click the Scripts tab. Notice that the code is already done (duplicated from Goal1 sprite). You will not need to make any code changes.

[image:]

Figure 179 – Goal2 code

Test
 – Goal2 appears on the right edge of the stage.

[image:]

Figure 180 – Test K

CODE & TEST (Ball - continued):

Step 84
 - Left-click the Ball sprite.

Step 85
 - Left-click the “Control” block type.

Step 86
 – Add an “if then” block.

[image:]

Figure 181 – Add “if then” block

Step 87
 - Left-click the “Sensing” block type.

Step 88
 – Drag and drop a “touching” block inside the “if then” block.

Step 89
 - Left-click the little black triangle.

Step 90
 - Left-click “Goal1” in the pulldown menu.

[image:]

Step 91
 – If the ball touches Goal1:

	
Place Ball at the center of the stage.

	
Erase all pen lines.

	
Reset pen color to red.

[image:]

Figure 182 – If Ball touches Goal1

Step 92
 – Right-click on the newly added “if then” block.

Step 93
 - Left-click “duplicate” in the pulldown menu.

Step 94
 – Move the duplicated blocks down so that the white “insertion” line is below the “if then” block that was duplicated.

[image:]

Figure 183 – Duplicate “If then” block

Step 95
 - Left-click on “Goal2” in the pulldown menu.

[image:]

Figure 184 – Update sprite to “Goal2” in duplicated “touching” block

Test
 – When the ball hits Goal1 or Goal2, all painted lines are erased.

[image:]

Figure 185 - Test L

[image:]

Figure 186 – Requirements (after Test L)

For Paint Pong, we will be using the “Data” block category to create “variables”.

A “variable” is an object in your code that has the following things:

	
A name (like “Player 1 Score”)

	
A value (like 12).

[image:]

Figure 187 - Data block category

Reasons to use variables:

	
Varying value - You need a place to keep a data value that will change as the game is played (like ”Player 1 Score” and ”Player 2 Score”). See Figure 188
.

	
Constant value - You have a data value that will not change during the game, but you want to make your code more organized and easier to read by giving a name to the data value. This is especially helpful if the same constant value is used in multiple places in your code. Using a variable allows you to change the value in one place, and then just reference the name elsewhere in your code.

Variables can be shown on the stage or hidden from view. In Paint Pong, we want the players to see their scores, so the variables “Player 1 Score” and “Player 2 Score” will be displayed on the stage.

[image:]

Figure 188 - Variables on the stage

We will now create and position the player score variables on the stage. Start by erasing any painted lines that are on the stage from your last test. To do that, left-click the green flag, press the “s” key to start the game, and then immediately left-click the red stop icon (to the right of the green flag).

Step 96
 - Left-click the “Data” block category. NOTE: It doesn’t matter which sprite is selected when you create your variables, since all of the variables that you create in a Scratch project are shared by all of your sprites (unless you limit the variables to a specific sprite, which we won’t be doing).

Step 97
 - Left-click the “Make a Variable” button.

Step 98
 – Type in “Player 1 Score” and click the OK button.

[image:]

Figure 189 – Create ”Player 1 Score” variable

Step 99
 - Left-click on the “Make a Variable” button.

Step 100
 – Type in “Player 2 Score” and click the OK button.

[image:]

Figure 190 - Create "Player 2 Score" variable

Step 101
 - Left-click on the “Player 1 Score” and “Player 2 Score” variables and drag them to the center top of the stage. NOTE: If you are not able to move the variables, set the stage to its smallest size and try again.

[image:]

Figure 191 - Position the variables on the stage

Step 102
 – Add a “set <variable>” block.

Step 103
 - Left-click on the little black triangle.

Step 104
 - Left-click on “Player 1 Score”.

[image:]

Figure 192 - Add a "set variable" block

Step 105
 – Add another “set <variable> block.

[image:]

Figure 193 - Add another "set variable" block

Step 106
 – Add a “change <variable> by <number> block. The variable is “Player 2 Score”. The number is 1.

[image:]

Figure 194 - Add a "change variable by number" block

Step 107
 – Add another “change <variable> by <number> block.

[image:]

Figure 195 - Add another "change variable by number" block

Step 108
 - Left-click on the little black triangle.

Step 109
 - Left-click on “Player 1 Score”.

[image:]

Figure 196 – Set up 2nd "change variable by number" block

Test
 – Player scores are displayed. NOTE: Don’t worry if the player scores overlap with the game instructions (after clicking the green flag). We’ll fix that in the next step.

[image:]

Figure 197 - Test M

Finally, let’s add code to hide the player scores when the game instructions are displayed.

Step 110
 – Add a “hide variable <variable>” block.

Step 111
 - Left-click on the little black triangle.

Step 112
 - Left-click on “Player 1 Score”.

[image:]

Figure 198 - Hide player 1 score on instructions screen

Step 113
 – Add another “hide variable <variable>” block. The variable should already be set to “Player 2 Score”.

[image:]

Figure 199 – Hide player 2 score on instructions screen

Step 114
 – Add a “show variable <variable>” block.

Step 115
 - Left-click on the little black triangle.

Step 116
 - Left-click on “Player 1 Score”.

[image:]

Figure 200 - Show player 1 score on stage

Step 117
 – Add another “show variable <variable>” block. The variable should already be set to “Player 2 Score”.

[image:]

Figure 201 - Show player 2 score on stage

Test
 – Player scores are hidden on the instructions screen, but are displayed on the game screen.

[image:]

Figure 202 - Test N

Now all the requirements are satisfied!

[image:]

Figure 203 – Requirements (after Test N)

Congratulations!
 You have learned how to create a complex Scratch program that contains multiple sprites, instruction screens, random number generation, and variables (like the player scores).

Save your project
 – Follow the same steps that you used to save the prior project (Quick Draw Cat), but save this project with the name Paint Pong.

Chapter 12: Exercises - Paint Pong

(see Chapter 16 for the answers)

	
Play a drum sound when a point is scored.

	
Starting point - Original Paint Pong project.

	
Save As - Add “EX1” at the end of your original filename (use “File>Save Project”).

	
Code hint - For the ball sprite, select the Sound block type, and add a “play drum <number> for 0.25 beats” block. You can choose the drum sound that you want by changing the number that follows “play drum” in the block.

	
Test - When a point is scored by either player, you should hear the drum sound. NOTE: You should also still hear the pop sound when the ball touches either paddle.

	
Save - Save your completed exercise.

	
Change ball color each time a point is scored.

	
Starting point - Exercise 1 project.

	
Save As - Add “EX2” at the end of your original filename (use “File>Save Project”).

	
Code hint - For the ball sprite, select the Looks block type, and add a “next costume” block.

	
Test - When a point is scored by either player, the ball should change color.

	
Save - Save your completed exercise.

	
Change the pen size by 1 during each forever loop, and set the pen size to 1 when a point is scored.

	
Starting point - Exercise 2 project.

	
Save As - Add “EX3” at the end of your original filename (use “File>Save Project”).

	
Code hint - None.

	
Test - When the ball is launched, the width of the colored trail that follows the ball will continuously increase until a point is scored. Once a point is scored, the colored trail will go back to the original small size.

	
Save - Save your completed exercise.

	
Increase the ball size by 10 each time the ball bounces off a paddle, and reset the ball to its original size when a point is scored.

	
Starting point - Exercise 3 project.

	
Save As - Add “EX4” at the end of your original filename (use “File>Save Project”).

	
Code hint - Use the “change size by 10” block to increase ball size. Use the “set size to 50%” block to reset the ball to its original size.

	
Test - Each time the ball bounces off the paddle, it should get larger. When a point is scored, the ball should return to the size that it was at the start of the game.

	
Save - Save your completed exercise.

	
Switch between two new costumes (can be silly ones like bananas) when points are scored.

	
Starting point - Original Paint Pong project.

	
Save As - Add “EX5” at the end of your original filename (use “File>Save Project”).

	
Code hint - For the ball sprite, on the Costumes tab, under “New costume”, left-click the left-most icon (inside the red circle in Figure 204). The “Costume Library” window will be shown. Scroll down the window and left-click on any costume that you want to use. Then left-click on the OK button to add it to the ball sprite’s set of costumes. Repeat these steps to add a 2nd
 new costume. Click the Scripts tab to return to the ball sprite code, and select the costume that you want using the “switch costume to <name>” block.

[image:]

Figure 204 - Adding a new costume

	
Test - When points are scored, the ball’s costume should switch between the two new costumes that you added.

	
Save - Save your completed exercise.

	
When either player reaches a score of 15, display “Player (1 or 2) Won!” and stop the game.

	
Starting point - Exercise 1 project.

	
Save As - Add “EX6” at the end of your original filename (use “File>Save Project”).

	
Code hint - Where the players score points, add the following code (example shown below is for when Player 1 scores a point):

[image:]

Figure 205 - Game over

	
Test - The winner is declared when the first player reaches 15 points. The next game is started (with a score of 0-0) when the green flag is clicked and the “s” key is pressed again.

	
Save - Save your completed exercise.

	
Add controls to select one of 3 different ball speeds (easy, medium, hard).

	
Starting point - Exercise 6 project.

	
Save As - Add “EX7” at the end of your original filename (use “File>Save Project”).

	
Code hint

	
Instructions sprite

	
Update the Instructions sprite to add the following line at the bottom, to show the keys that are pressed to select the ball speed:

	
“(e=easy, m = medium, h = hard)”

[image:]

Figure 206 - Update the Instructions sprite

[image:]

Figure 207 - Instructions sprite

	
Ball sprite

	
Select the “Data” block type, and click the “Make a Variable” button. Create a variable named “Ball Speed”. Make sure that the “For all sprites” button is selected (as shown below). This means that the variable can be used by all sprites. Click the OK button.

[image:]

Figure 208 - Create the Ball Speed variable

	
You will now see that the “Ball Speed” variable is displayed on the stage. Drag it down to the bottom center of the stage.

[image:]

Figure 209 - Ball Speed variable on stage

	
Drag and drop the “Ball Speed” variable from the Data block palette to the “move <number> steps” block.

[image:]

Figure 210 - Use the Ball Speed variable

	
New sprites to show the ball speed selection

	
Click the icon (in red circle below) to choose a new sprite from the library. Scroll down in the list of sprites and select (left-click) a sprite which is the letter “E”. Click the OK button to create the sprite. Then repeat these steps to create a sprite for the letter “M” and the letter “H”. In this game, these letters represent the ball speed (E = easy, M = medium, H = hard) and one of them will be shown on the stage to let the players see which ball speed has been selected.

[image:]

Figure 211 - Add new sprites to show ball speed selection

	
On the stage, you will see that these new sprites have appeared. Drag them to the left of the variable “Ball Speed” at the bottom of the stage. We will add code later to shrink the size of these letter sprites, and also to hide 2 of the 3 letter sprites, so that the only one that is shown is the one that the player has selected. So for now you can place the sprites on top of each other at the same location. The figure below shows the placement of the “E” sprite. Don’t worry that your letter sprites are big right now, we’ll fix that in the code later.

[image:]

Figure 212 - Stage with letter E (easy ball speed)

	
Select the “E” sprite (left-click it in the sprite list in the lower left corner of the Scratch window). Add the “E” sprite code shown in Figure 213 (section on left). Look at the code, and think about what the 4 event handlers are doing. You will want to set the Ball Speed variable to a number that results in easy play. You might need to try some different numbers before you find the one that you like best. Notice that in addition to setting the Ball Speed variable to the “easy” number when the “e” key is pressed, we are also setting the Ball Speed variable to the “easy” number when the green flag is clicked so that the game will operate in the easy mode if the players do not select a ball speed.

	
Select the “M” sprite. Add the “M” sprite code shown in Figure 213 (section in middle).

	
Select the “H” sprite. Add the “H” sprite code shown in Figure 213 (section on right).

[image:]

Figure 213 - Code for "E", "M", and "H" sprites

	
Test

	
Verify (check) that if no action is taken to change the ball speed, that the game play starts with the easy (slow) ball speed, and “E” is displayed at the bottom of the stage.

	
Verify that while the Instructions sprite is displayed, pressing the “e”, “m”, and “h” keys changes the ball speed variable value and also that the associated letter (E, M, H) is displayed at the bottom of the stage.

	
Verify that while the ball is moving during game play, pressing the “e”, “m”, and “h” keys changes the ball speed appropriately and also that the associated letter (E, M, H) is displayed at the bottom of the stage.

	
Save - Save your completed exercise.

Chapter 13: Project - Rocket Pilot

Rocket Pilot is a game where you control a rocket that flies around popping balloons. You can pop the blue and purple balloons. But you should avoid the yellow balloons, because if you hit one, your rocket will explode. Also, if your rocket crashes into the ground, it will explode. You score a point for each balloon that you pop.

As with all Scratch games, you first start by clicking the green flag. One thing that is different in this game from the first two games that you coded (Quick Draw Cat, Paint Pong) is that you can play this game multiple times without clicking the green flag. If your rocket explodes (from hitting a yellow balloon or the ground), the message “GAME OVER!” is displayed and the score is reset to zero, but you can launch the rocket again (by pressing the space bar on your keyboard) and keep playing as long as you want.

REQUIREMENTS
:

	
Game instructions are shown when the green flag is clicked.

	
The game has one player and starts when the “s” key is pressed.

	
The game has a background with ground at the bottom and sky above.

	
The rocket is launched from the ground when the space bar is pressed.

	
The rocket is steered by pressing the “left arrow” and “right arrow” keys.

	
Three balloons (blue, purple, yellow) start floating when the “s” key is pressed.

	
When the rocket hits a blue or purple balloon, the balloon pops, a point is scored, and after a short delay the balloon reappears at its starting position and continues floating.

	
If the rocket hits a yellow balloon, the rocket explodes, the score is reset to zero, and the rocket reappears at its launch position. NOTE: The yellow balloon does not pop.

	
If the rocket crashes into the ground, the rocket explodes, the score is reset to zero, and the rocket reappears at its launch position.

DESIGN (Sprite definition)
:

The sprites are:

	
Instructions

	
Rocket

	
Blue Balloon

	
Purple Balloon

	
Yellow Balloon

[image:]

Figure 214 - Sprites (Rocket Pilot)

SPRITE #1: Instructions

DESIGN (Instructions):

	
When the green flag
 is clicked:

	
Show sprite.

	
When the “s” key
 is pressed:

	
Hide sprite.

CODE & TEST (Instructions):

Create a new project and select a background with ground and a sky.

[image:]

Figure 215 - Create the project

Create the Instructions sprite.

[image:]

Figure 216 - Create the Instructions sprite

Figure 217
 shows how to adjust the position of the instructions text on the stage.

[image:]

Figure 217 - How to adjust the text position

Add the code for the Instructions sprite and run a test.

[image:]

Figure 218 – Instructions sprite code & Test A

SPRITE #2: Rocket

DESIGN (Rocket):

	
When the green flag
 is clicked:

	
Hide sprite.

	
Set the pop count to zero.

	
Set the rocket size and costume.

	
Set the rocket’s launch position on the ground with nose up.

	
When the “s” key
 is pressed:

	
Show sprite.

	
When the space bar
 pressed:

	
If the game has started (by the player pressing the “s” key):

	
Loop forever, doing the following:

	
Move the rocket forward a few steps.

	
If the rocket is touching a yellow balloon or the ground:

	
Play explosion sound.

	
Show animation of rocket explosion (costume changes).

	
Hide sprite.

	
Display message “GAME OVER!”.

	
Reset the pop count to zero.

	
Set the rocket back to its launch position.

	
Set costume back to rocket.

	
Show sprite.

	
Stop the forever loop.

	
When the “left arrow
” key pressed:

	
Turn left 3 degrees.

	
When the “right arrow
” key pressed:

	
Turn right 3 degrees.

CODE & TEST (Rocket):

Create the Rocket sprite.

[image:]

Figure 219 – Paint a sprite

Draw the rocket costume.

[image:]

Figure 220 – Draw the rocket

[image:]

Figure 221 – Add nose to rocket

[image:]

Figure 222 – Attach nose to rocket

[image:]

Figure 223 - Add back edge of tail fins

[image:]

Figure 224 – Finish outline of tail fins

[image:]

Figure 225 – Add engine flames

[image:]

Figure 226 – Color in tail fins with white

Draw the two costumes for the rocket explosion. The names of those new costumes will be “big explosion” and “small explosion”.

As shown in Figure 227
 below, we’ll create an animation for the rocket explosion, where the Rocket sprite starts with the “rocket” costume, then switches to the “big explosion” costume for a small amount of time, then switches to the “small explosion” costume for a small amount of time, and finally the Rocket sprite is hidden. After the rocket explosion is complete, the Rocket sprite will reappear at its launch point (with the rocket costume), ready to be launched again.

[image:]

Figure 227 - Animation of rocket explosion

[image:]

Figure 228 – Add rocket explosion costumes (big and small)

Sprite variables
 – In the Rocket Pilot project, we will use a lot of variables. Using variables is necessary for data that is shared by several sprites such as “pop count”. Using variables can also help to make your code easier to read and understand because instead of seeing a number in your code, you see the words that describe what the number represents (like “start delay” or “x step value”). Using variables also helps you organize the data that you might want to customize in your code. For example, we are setting all of our variables to their starting values (also called “variable initialization”) when the green flag is clicked for a sprite. That provides you with one place to go to customize the values of the variables in a sprite’s code, rather than having different numbers spread around throughout your code. As you work on this project, you will see how this is helpful, especially when we are customizing the code for the different colored balloons to make them behave slightly different.

Variable Scope
 – The word scope refers to whether a variable is visible to only one sprite (called a “private” variable) or whether it is shared by all of the sprites. As mentioned earlier, the variable “pop count” is shared among all of the sprites. Any sprite can set or read the “pop count” variables. We want each balloon sprite to be able to up the game’s pop count when it pops. A shared variable is only created once for one sprite, and it will automatically appear in the variables list for all other sprites. Figure 229
 below lists all of the variables used in the Rocket Pilot project, and it shows which variables are shared (green dashed line) and private (red dashed line). Notice that the “For all sprites” selection (in the “New Variable” popup window) is used for the shared variables, and the “For this sprite only” selection is used for private variables.

Customization of sprites using variables
 – In Figure 229
, you can see that the three balloon sprites (blue, purple, yellow) have variables with the same names. In the case of the private variables (inside the red dashed box), the variables can be assigned different values for each of the three balloon sprites. This allows the three balloon sprites to have very similar code, but their behavior can be made different by setting some of the private variables to different numbers. For example, you can see in Figure 229
 that the “start delay” variable has different values for each balloon sprite. The start delay is the number of seconds that passes before the balloon starts floating after the game starts (or the balloon pops). Having different start delays for the three balloons causes them to be spread out as they float on the stage. If all of the balloons had the same start delay, then they would be all clumped together as they started floating, and that would not be very good.

[image:]

Figure 229 - Variables for Rocket Pilot project

Note that the table shown in Figure 229
 on the previous page is not something that you will see in the Scratch user interface. The table is a combination of variable lists from the four different sprites, and I created the table to help explain what variable scope is and how variables are used in this project.

You might wonder how you can see what the scope (shared or private) is for a variable after you have created it. The left side of Figure 230
 shows how you can tell which variables are shared and which are private. When you look at a pulldown menu of variables, the ones above the black separator line are the shared variables, and the ones below the line are the private variables. However, if all of the variables have the same scope, then you can’t determine which scope they are. If you decide that you want to change the scope of a variable, you must delete the variable and then recreate it with the correct scope (shown on the right side of Figure 230
).

[image:]

Figure 230 - Viewing and changing variable scope

Create the variables for the rocket sprite.

[image:]

Figure 231 - Create variables for rocket sprite

Add the code for the Rocket sprite (Figure 232
). Figure 233
 and Figure 234
 show more code details.

NOTE: I selected a turn angle of 3 degrees for the rocket so that it flies in a way that is realistic for a real rocket (when running this code on a Raspberry Pi 4 Model B computer). Real rockets don’t turn very quickly. If you feel that the rocket is not turning as fast as you want, you can increase the turn angle to a number larger than 3 degrees.

[image:]

Figure 232 – Rocket sprite code

[image:]

Figure 233 – Rocket sprite code details

[image:]

Figure 234 – Rocket sprite code details (continued)

Test
 – The rocket is launched by pressing the space bar, and is steered in flight by the left and right arrow keys. NOTE: You can fly the rocket in a tight loop by pressing and holding down the right or left arrow key.

[image:]

Figure 235 – Test B

[image:]

Figure 236 – Requirements (after Test B)

SPRITE #3: Blue Balloon

DESIGN (Blue Balloon):

	
When green flag
 is clicked:

	
Hide sprite.

	
Set the balloon size and costume.

	
Set the variables for the floating area.

	
Set the balloon starting position.

	
When “s” key
 is pressed:

	
Wait for the “start delay” time.

	
Show sprite.

	
Loop forever, doing the following:

	
Move the balloon a small distance along the floating pattern.

	
If the balloon has reached the top of the floating area:

	
Set the balloon position back to its starting point.

	
If the balloon is touching the rocket:

	
Add one to the pop count.

	
Play a pop sound.

	
Show animation of the balloon popping (costume changes).

	
Hide sprite.

	
Wait for the “start delay” time.

	
Set balloon position back to its starting point.

	
Set costume back to balloon.

	
Show sprite.

CODE & TEST (Blue Balloon):

Create the Blue Balloon sprite.

[image:]

Figure 237 - Create a balloon sprite

Set the sprite name to Blue Balloon, change the name of the blue balloon costume to “balloon”, and delete the yellow and purple balloon costumes.

[image:]

Figure 238 – Setting up the Blue Balloon sprite

To make the balloon look like it’s popping, we will add two new costumes (big pop & small pop). This is similar to how we made the rocket explode back in Steps 37 through 44.

[image:]

Figure 239 – Adding the pop costumes

Figure 240
 shows the area where balloons will float. The three balloons will start at slightly different positions (indicated by the black dots in the lower left corner). The red dashed rectangle shows the area where the blue balloon will float. The blue balloon will not float outside of that area. The purple and yellow balloons will float in almost the same area, but the bottom edge of their floating areas will be a little lower, based on their lower starting positions.

[image:]

Figure 240 - Where do the balloons float?

A balloon will float sideways (horizontally) until it runs into an edge of the floating area, then it will float up (vertically) a small number of steps, and then reverse direction and float sideways. Figure 241
 shows the code blocks for moving sideways and reversing direction. NOTE: Wait until Step 59 to add this code.

[image:]

Figure 241 – Floating pattern (moving right and left)

Figure 242
 shows the code block for moving up. NOTE: Wait until Step 59 to add this code.

[image:]

Figure 242 - Floating pattern (moving up)

We will use four variables to define the corners of the floating area (x min, x max, y min, y max). Remember that the X-axis runs horizontally (the blue double-headed arrow in Figure 243
) and the Y-axis runs vertically (the green double-headed arrow). Min is a short way to say minimum (meaning the smallest), and max is a short way to say maximum (meaning the largest).

[image:]

Figure 243 - Variables for floating area (Blue Balloon)

Create the variables for the Blue Balloon sprite.

[image:]

Figure 244 - Create variables for balloon sprite

Add the code for the Blue Balloon sprite (Figure 245
). See code details on the next two pages in Figure 246
, Figure 247
, and Figure 248
.

[image:]

Figure 245 - Blue Balloon sprite code

[image:]

Figure 246 – Event handler (green flag clicked)

[image:]

Figure 247 - How to build the “if” block

[image:]

Figure 248 – Event handler (s key pressed)

Test
 – The blue balloon floats through the sky and pops when the rocket hits it. After popping, the balloon reappears and starts floating again from the lower left area of the sky. When a balloon pops, a point is scored.

[image:]

Figure 249 - Test C

SPRITE #4: Purple Balloon

DESIGN (Purple Balloon):
 Same design as the Blue Balloon sprite.

CODE & TEST (Purple Balloon):

Create the Purple Balloon sprite by duplicating (copying) the Blue Balloon sprite. Change the name of the duplicated sprite to Purple Balloon.

[image:]

Figure 250 – Create the Purple Balloon sprite

Delete the blue balloon costume and add the purple balloon costume from the library.

[image:]

Figure 251 – Add purple balloon costume

Update the costume name to “balloon”. After clicking the Scripts tab, notice that all of the code has been copied (duplicated) from the Blue Balloon sprite. Almost all of that code can be used without any changes. But there are two customizations that we will do by changing the variable values for “start delay” (to 2) and “y min” (to -70).

[image:]

Figure 252 – Customize the Purple Balloon sprite code

Test
 – The purple balloon floats like the blue balloon, but it starts floating two seconds after the blue balloon, and it’s starting position is slightly lower. Both balloons can be popped by the rocket, and they both reappear after popping. Popping either balloon scores a point. The score is displayed on the stage.

[image:]

Figure 253 – Test D

[image:]

Figure 254 - Requirements (after Test D)

SPRITE #5: Yellow Balloon

DESIGN (Yellow Balloon):
 Same design as the other balloon sprites, except that the yellow balloon doesn’t pop.

	
When green flag
 is clicked:

	
Hide sprite.

	
Set the balloon size and costume.

	
Set the variables for the floating area.

	
Set the balloon starting position.

	
When “s” key
 is pressed:

	
Wait for the “start delay” time.

	
Show sprite.

	
Loop forever, doing the following:

	
Move the balloon a small distance along the floating pattern.

	
If the balloon has reached the top of the floating area:

	
Set the balloon position back to its starting point.

CODE & TEST (Yellow Balloon):

Create the Yellow Balloon sprite by duplicating the Purple Balloon sprite. Change the name of the duplicated sprite to Yellow Balloon.

[image:]

Figure 255 – Create the Yellow Balloon sprite

Delete the purple balloon costume and add the yellow balloon costume from the library.

[image:]

Figure 256 - Set the costume to the yellow balloon

Change the costume name to “balloon”, and customize the sprite code by changing “start delay” to 4 and “y min” to -80 .

[image:]

Figure 257 – Customize the Yellow Balloon sprite code

Delete the code that pops the yellow balloon if it touches the rocket.

[image:]

Figure 258 – Delete the pop code

Test
 – The three balloons float. The blue and purple balloons pop when hit by the rocket. The yellow balloon does not pop when hit by the rocket.

[image:]

Figure 259 – Test E

Back to the Rocket sprite
 - Add the code to make the rocket explode if it touches the yellow balloon or crashes into the ground (Figure 260
). After exploding, display “Game Over!” and set the rocket back to the launch position. See Figure 261
 for details on how to build the if block to check if the rocket should explode.

[image:]

Figure 260 – Add code for rocket explosion

[image:]

Figure 261 – How to build the “if” block

Test
 – The rocket explodes when it hits the yellow balloon or when it crashes into the ground. When that happens, “GAME OVER!” is displayed for two seconds, and then the rocket appears at its launch position on the ground. The pop score is reset to zero. The balloons keep floating. The message “Press the space bar to launch.” is displayed for two seconds, and the rocket can be launched again by pressing the space bar.

[image:]

Figure 262 – Test F

[image:]

Figure 263 - Requirements completed

Save
 – Save your project as “Rocket Pilot”.

Chapter 14: Exercises - Rocket Pilot

(see Chapter 16 for the answers)

	
After the blue balloon pops, it is smaller when it reappears. After the purple balloon pops, it is faster when it reappears.

	
Starting point - Original Rocket Pilot project.

	
Save As - Add “EX1” at the end of your original filename (use “File>Save Project”).

	
Code hints

	
To shrink the balloon, use the Looks block “change size by -5”.

	
To make the balloon faster, change the “x step value” variable using the Data block “change x step value by 1”.

	
Test – The blue balloon keeps getting smaller each time it is popped, and the purple balloon keeps getting faster each time it is popped.

	
Save - Save your completed exercise.

	
After the blue balloon pops, it is larger when it reappears.

	
Starting point - Exercise 1 project.

	
Save As - Add “EX2” at the end of your original filename (use “File>Save Project”).

	
Code hints – None.

	
Test – The blue balloon keeps getting larger each time it is popped.

	
Save - Save your completed exercise.

	
Add two more balloons (one blue, one purple).

	
Starting point – Original Rocket Pilot project.

	
Save As - Add “EX3” at the end of your original filename (use “File>Save Project”).

	
Code hints

	
Start with your original Rocket Pilot project (do not include the changes made in Exercise 1 or Exercise 2).

	
Right-click on the blue and purple balloons, and select “duplicate”.

	
Use a different starting y position (y min) for each new balloon.

	
Use a different start delay for each new balloon.

	
Test – There are two blue balloons, two purple balloons, and one yellow balloon .

	
Save - Save your completed exercise.

	
Add Turbo Boost (the rocket flies faster for 5 second when the “t” key is pressed).

	
Starting point – Exercise 3 project.

	
Save As - Add “EX4” at the end of your original filename (use “File>Save Project”).

	
Code hints

	
Create a larger space for game play, by using smaller sprites (rocket, balloons) and slowing down the normal rocket speed. Set the following variable values when the green flag is clicked:

	
Rocket size = 10%

	
Rocket speed = 2

	
Balloon size = 25% (for all balloon sprites)

	
One quick way to provide some simple instructions to the player is to use a “say” block for a sprite when the game is started. We’ll do that in this exercise to tell the player how to activate the Turbo Boost. In the Rocket sprite “s” key event hander, add a block to say “Press t key for Turbo Boost” for 2 seconds. (Figure 264.
).

[image:]

Figure 264 - Show instructions for Turbo Boost

	
For the Rocket sprite, add an event handler for the “t” key (Figure 265.
 and Figure 266.
).

	

When the t key is pressed

	
Set rocket speed to 4 (fast “turbo” speed)

	
Play a loud engine sound (we’ll use the “car passing” sound)

	
Wait 5 seconds

	
Set rocket speed to 2 (back to normal speed)

[image:]

Figure 265 - Select a sound from the library

[image:]

Figure 266 - Turbo Boost ("t" key event handler)

	
Test – The rocket and all of the balloons are smaller. When the “t” key is pressed, the rocket moves faster for 5 seconds and you hear the engine sound. NOTE: If you have trouble flying the rocket, you can try changing the values used for rocket speed and turn angles (left & right).

	
Save - Save your completed exercise.

	
Add a “High Score” feature. This will tell the player at the end of a game if they have scored more points than any other game played since the green flag was clicked.

	
Starting point - Exercise 4 project.

	
Save As - Add “EX5” at the end of your original filename (use “File>Save Project”).

	
Code hints – In the Rocket sprite code:

	
Add a variable named “high score”. It can be a private variable since it doesn’t need to be shared with other sprites (select “For This Sprite Only” when you create it).

	
On the stage, drag and drop the high score variable at the upper right corner.

[image:]

Figure 267 - Move high score variable on stage

	
Hide the “high score” variable and set it to 0 when the green flag is clicked.

	
Show the “high score” variable when the “s” key is pressed to start the game.

	
Add the following code after the block that says “GAME OVER!”:

	
If pop count > high score

	
Play a sound of your choice (from the Sound Library)

	
Say “High Score!” for 2 seconds.

	
Set the “high score” variable to the pop count.

[image:]

Figure 268 - High score code

	
Test – At the end of a game, the player will see a message “High Score!” (and hear a sound) if they have scored more points than any other game since the green flag was clicked.

	
Save - Save your completed exercise.

	
Space Game – Change the game to be located in space, with robots (instead of the blue and purple balloons) and a star (instead of the yellow balloon).

	
Starting point - Exercise 5 project.

	
Save As - Add “EX6” at the end of your original filename (use “File>Save Project”).

	
Code hints

	
Change the backdrop - In the lower left corner of the Scratch window, choose the backdrop named “space” from the library.

	
Change the Balloon sprite costumes

	
For each Blue and Purple Balloon sprite, add the “robot1” costume. Then in the code, set the costume to “robot1” everywhere that it is set to “balloon”.

	
For the Yellow Balloon sprite, add the “star1” costume. Then in the code, set the costume to “star1” everywhere that it is set to “balloon”.

	
For the Yellow Balloon sprite, make it larger by changing the size to 50% (was 25%).

[image:]

Figure 269 - Space game

	
Test – The game backdrop is a space scene. The game plays the same as in Exercise 5, but the blue and purple balloons are robots and the yellow balloon is a star.

	
Save - Save your completed exercise.

Hurray! You have completed all of the projects and exercises in this book!
 Now you can use your imagination and create your own exercises which make some fun modifications to the projects in this book. You can also create entirely new Scratch projects, using the software development skills (requirements, design, code, test) that you have learned.

Additional project ideas:

	
Look at the sprites that are available in the Sprite Library. Those sprites might spark an idea in your mind for a new game.

	
Look at the backdrops in the Backdrop Library, and see if they give you an idea for a game.

	
Recreate part of a video game that you play on your phone, computer or gaming console.

	
Create a game based on a story from a book, video or movie.

	
Create a simple game for a young friend or relative to play.

Want more?

Send an email to excitedaboutcoding@gmail.com
 to get notified of future books.

Chapter 15: Backing Up Your Work

Memory sticks (also called flash drives or thumb drives) are a cheap and easy way to save copies of your Scratch project files. Project files are not very large, and the smallest memory stick that you can buy will be fine. Currently, the smallest memory stick that you can buy is 4 GB, and costs about 5 dollars.

How to perform a backup:

Step 1
 - Plug your memory stick into your powered Pi (Figure 270
).

[image:]

Figure 270 - Insert memory stick into powered Pi

Step 2
 - A window will pop up stating “Removable medium is inserted” (Figure 271
). Left-click the OK button to open the memory stick contents in a File Manager window.

[image:]

Figure 271 – Window pops up when memory stick is inserted

Step 3
 - Drag and drop your “My Code” folder from your desktop to the memory stick’s File Manager window as shown in Figure 272
 below.

[image:]

Figure 272 – Copy “My Code” folder to memory stick

For your first backup to a memory stick, you will see your “My Code” folder appear in the File Manager window (Figure 273
).

[image:]

Figure 273 - "My Code" folder copied to memory stick

Step 3a
 - If you have backed up your “My Code” folder before, you will see a “Confirm File Replacing” window, and be asked if you want to overwrite the existing folder on your memory stick. Left-click the checkbox that reads “Apply this option to all existing files” (Figure 274
).

Step 3b
 – Left-click the “Overwrite” button (Figure 274
).

[image:]

Figure 274 – Confirm you want to overwrite (if already exists)

Step 4
 – Double left-click the “My Code” folder (or single left-click and press the Enter/Return key) to open the folder (Figure 275
).

Step 5
 – Verify that your files are present (Figure 275
).

Step 6
 – Left-click the “X” button to close the File Manager window (Figure 275
).

[image:]

Figure 275 - Verify that files were copied

Step 7
 – Before removing your memory stick from your Pi, you must first perform a step called “ejecting” the memory stick. If you skip this step and just unplug your memory stick, the files on your memory stick might become damaged. First, left-click the “Eject” icon in the upper right corner of the desktop (Figure 276
).

Step 8
 – In the menu that pops up, left-click the item that corresponds to your memory stick (Figure 276
).

Step 9
 – Unplug your memory stick from your Pi and store it in a safe place.

[image:]

Figure 276 – Eject and remove memory stick

Chapter 16: Exercise Answers

	
Quick Draw Cat

	

Exercise 1
 (Use a pen size of 20 when walking right)

[image:]

Figure 277 - Exercise 1 Code (Quick Draw Cat)

[image:]

Figure 278 - Exercise 1 Test (Quick Draw Cat)

	

Exercise 2
 (Use pen size of 100 when walking in all directions)

[image:]

Figure 279 - Exercise 2 Code (Quick Draw Cat)

[image:]

Figure 280 - Exercise 2 Test (Quick Draw Cat)

	

Exercise 3
 (Change pen shade by 5 with each step)

[image:]

Figure 281- Exercise 3 Code (Quick Draw Cat)

[image:]

Figure 282 - Exercise 3 Test (Quick Draw Cat)

	

Exercise 4
 (Increase pen size with each step)

[image:]

Figure 283 - Exercise 4 Code (Quick Draw Cat)

[image:]

Figure 284 - Exercise 4 Test (Quick Draw Cat)

	

Exercise 5
 (Control the pen using letter keys)

[image:]

Figure 285 - Exercise 5 Code (Quick Draw Cat)

[image:]

Figure 286 - Exercise 5 Test (Quick Draw Cat)

How to draw “CAT” with blue background and yellow text:

	
Click the green flag

	
Press “b” to set the pen color to blue.

	
Press “d” to place the pen down, ready to draw.

	
Using the arrow keys, walk the cat around the stage until it is totally colored blue.

	
Press “u” to lift the pen up.

	
Press “y” to set the pen color to yellow.

	
Using the arrow keys, walk the cat to the position where you want to start drawing the letter “C.” (NOTE: Nothing will be drawn, since the pen is lifted up).

	
Press “d” to place the pen down, ready to draw.

	
Using the arrow keys, walk the cat in the shape of the letter “C.”

	
Press “u” to lift the pen up.

	
Using the arrow keys, walk the cat to the position where you will start drawing the letter “A.”

	
Press “d” to place the pen down, ready to draw.

	
Using the arrow keys draw the letter “A.”

	
Press “u” to lift the pen up.

	
Using the arrow keys, walk the cat to the position where you will start drawing the letter “T.”

	
Press “d” to place the pen down, ready to draw.

	
Using the arrow keys draw the letter “T.”

	
Press “u” to lift the pen up.

	
Using the arrow keys, walk the cat away from the letter “T.”

	
Paint Pong

	

Exercise 1
 (Play a drum sound when a point is scored)

[image:]

Figure 287 - Exercise 1 Code Change (Paint Pong)

	

Exercise 2
 (Change ball color each time a point is scored)

[image:]

Figure 288 - Exercise 2 Code Change (Paint Pong)

	

Exercise 3
 (Increase the pen size by 1 during each forever loop, and reset the pen size to 1 when a point is scored).

[image:]

Figure 289 - Exercise 3 Code Change (Paint Pong)

	

Exercise 4
 (Increase the ball size by 10 each time the ball bounces off a paddle, and reset the ball to its original size when a point is scored)

[image:]

Figure 290 - Exercise 4 Code Change (Paint Pong)

	

Exercise 5
 (Switch between two new costumes when points are scored)

[image:]

Figure 291 - Exercise 5 Code Change (Paint Pong)

	

Exercise 6
 (Display “Player (1 or 2) Won!” and stop the game when a player reaches 15 points)

[image:]

Figure 292 - Exercise 6 Code Change (Paint Pong)

	

Exercise 7
 (Add controls to select one of 3 different ball speeds)

[image:]

Figure 293 - Exercise 7 Code Change (Paint Pong)

[image:]

Figure 294 - Exercise 7 Code Change (Paint Pong) – continued

	
Rocket Pilot

	

Exercise 1
 (After the blue balloon pops, it is smaller when it reappears. After the purple balloon pops, it is faster when it reappears)

[image:]

Figure 295 - Exercise 1 Code Change (Rocket Pilot)

[image:]

Figure 296 - Exercise 1 Test (Rocket Pilot)

	

Exercise 2
 (After the blue balloon pops, it is larger when it reappears)

[image:]

Figure 297 - Exercise 2 Code Change (Rocket Pilot)

[image:]

Figure 298 - Exercise 2 Test (Rocket Pilot)

	

Exercise 3
 (Two more balloons)

[image:]

Figure 299 - Exercise 3 Code Change (Rocket Pilot)

[image:]

Figure 300 - Exercise 3 Test (Rocket Pilot)

	

Exercise 4
 (Turbo boost)

[image:]

Figure 301 - Exercise 4 Code Change (Rocket Pilot)

[image:]

Figure 302 - Exercise 4 Test (Rocket Pilot)

	

Exercise 5
 (High score)

[image:]

Figure 303 - Exercise 5 Code Change (Rocket Pilot)

[image:]

Figure 304 - Exercise 5 Test (Rocket Pilot)

	

Exercise 6
 (Space game)

[image:]

Figure 305 - Exercise 6 Code Change (Rocket Pilot)

[image:]

Figure 306 - Exercise 6 Test (Rocket Pilot)

Acknowledgement

Scratch is a project of the Scratch Foundation, in collaboration with the Lifelong Kindergarten group at the MIT Media Lab. It is available for free at https://scratch.mit.edu.

Raspberry Pi is a trademark of The Raspberry Pi Foundation (UK Registered Charity 1129409). See https://www.raspberrypi.org.

Reviewers (Students):

Isaac Andaluz

Joan Andaluz

Naomi Andaluz

Dave Anderson

Chloe Sow

Charlize Sow

Reasha Vora

Reviewers (Engineers):

Alan Altman

Larry Kucera

Ignatius “Stock” Stockhausen

Fay Trowbridge

Heather Van Steenburgh

Game Testers:

Alana Andaluz

Maria Andaluz

Custom Artwork & Cover Design:

Scott Trowbridge

Graphic Design Consultant:

Barbara Hartinger

About The Author

Grant Williams

Grant Williams has a BS degree in Computer Science and has worked for over 30 years as a software engineer in the aerospace and telecommunications industries. When his niece Megan’s children reached the age when they could start learning about computers, Grant thought that the Raspberry Pi would be an ideal child-friendly computer to teach them with, and that Scratch would be a great introductory coding language. He set up a “Raspberry Pi Coding Lab” in their home, and started teaching them how to code using Scratch. Driven by the kids’ enthusiasm, that activity evolved into him writing this book.

OEBPS/rsrc4FW.jpg

OEBPS/rsrc4KN.jpg

OEBPS/rsrc4RE.jpg

OEBPS/rsrc4FV.jpg

OEBPS/rsrc4KM.jpg

OEBPS/rsrc4RD.jpg

OEBPS/rsrc4FY.jpg

OEBPS/rsrc4KR.jpg

OEBPS/rsrc4RG.jpg

OEBPS/rsrc4FX.jpg

OEBPS/rsrc4KP.jpg

OEBPS/rsrc4RF.jpg

OEBPS/rsrc4G0.jpg

OEBPS/rsrc4KT.jpg

OEBPS/rsrc4FZ.jpg

OEBPS/rsrc4KS.jpg

OEBPS/rsrc4RH.jpg

OEBPS/rsrc4G1.jpg

OEBPS/rsrc4R8.jpg

OEBPS/rsrc4FS.jpg

OEBPS/rsrc4KH.jpg

OEBPS/rsrc4RA.jpg

OEBPS/rsrc4KG.jpg

OEBPS/rsrc4R9.jpg

OEBPS/rsrc4FU.jpg

OEBPS/rsrc4KK.jpg

OEBPS/rsrc4RC.jpg

OEBPS/rsrc4FT.jpg

OEBPS/rsrc4KJ.jpg

OEBPS/rsrc4RB.jpg

OEBPS/rsrc4G7.jpg

OEBPS/rsrc4M0.jpg

OEBPS/rsrc4RT.jpg

OEBPS/rsrc4G6.jpg

OEBPS/rsrc4KZ.jpg

OEBPS/rsrc4RS.jpg

OEBPS/rsrc4G9.jpg

OEBPS/rsrc4M2.jpg

OEBPS/rsrc4G8.jpg

OEBPS/rsrc4M1.jpg

OEBPS/rsrc4GB.jpg

OEBPS/rsrc4GA.jpg

OEBPS/rsrc4M3.jpg

OEBPS/rsrc4KU.jpg

OEBPS/rsrc4RK.jpg

OEBPS/rsrc4RJ.jpg

OEBPS/rsrc4G3.jpg

OEBPS/rsrc4KW.jpg

OEBPS/rsrc4RN.jpg

OEBPS/rsrc4G2.jpg

OEBPS/rsrc4KV.jpg

OEBPS/rsrc4RM.jpg

OEBPS/rsrc4G5.jpg

OEBPS/rsrc4KY.jpg

OEBPS/rsrc4RR.jpg

OEBPS/rsrc4G4.jpg

OEBPS/rsrc4KX.jpg

OEBPS/rsrc4RP.jpg

OEBPS/rsrc4JZ.jpg

OEBPS/rsrc4PS.jpg

OEBPS/rsrc4JY.jpg

OEBPS/rsrc4PR.jpg

OEBPS/rsrc4K1.jpg

OEBPS/rsrc4PU.jpg

OEBPS/rsrc4K0.jpg

OEBPS/rsrc4PT.jpg

OEBPS/rsrc4K3.jpg

OEBPS/rsrc4PW.jpg

OEBPS/rsrc4K2.jpg

OEBPS/rsrc4PV.jpg

OEBPS/rsrc4K5.jpg

OEBPS/rsrc4K4.jpg

OEBPS/rsrc4PX.jpg

OEBPS/rsrc4PM.jpg

OEBPS/rsrc4JX.jpg

OEBPS/rsrc4PP.jpg

OEBPS/rsrc4JW.jpg

OEBPS/rsrc4PN.jpg

OEBPS/rsrc4KA.jpg

OEBPS/rsrc4R3.jpg

OEBPS/rsrc4K9.jpg

OEBPS/rsrc4R2.jpg

OEBPS/rsrc4KC.jpg

OEBPS/rsrc4R5.jpg

OEBPS/rsrc4KB.jpg

OEBPS/rsrc4R4.jpg

OEBPS/rsrc4KE.jpg

OEBPS/rsrc4R7.jpg

OEBPS/rsrc4KD.jpg

OEBPS/rsrc4R6.jpg

OEBPS/rsrc4KF.jpg

OEBPS/rsrc4K6.jpg

OEBPS/rsrc4PZ.jpg

OEBPS/rsrc4PY.jpg

OEBPS/rsrc4K8.jpg

OEBPS/rsrc4R1.jpg

OEBPS/rsrc4K7.jpg

OEBPS/rsrc4R0.jpg

OEBPS/rsrc4P9.jpg

OEBPS/rsrc4P2.jpg

OEBPS/rsrc4P1.jpg

OEBPS/rsrc4P4.jpg

OEBPS/rsrc4P3.jpg

OEBPS/rsrc4P6.jpg

OEBPS/rsrc4P5.jpg

OEBPS/rsrc4P8.jpg

OEBPS/rsrc4P7.jpg

OEBPS/rsrc4P0.jpg

OEBPS/rsrc4PD.jpg

OEBPS/rsrc4PC.jpg

OEBPS/rsrc4PF.jpg

OEBPS/rsrc4PE.jpg

OEBPS/rsrc4PH.jpg

OEBPS/rsrc4PG.jpg

OEBPS/rsrc4PK.jpg

OEBPS/rsrc4PJ.jpg

OEBPS/rsrc4PB.jpg

OEBPS/rsrc4PA.jpg

OEBPS/rsrc4JC.jpg

OEBPS/rsrc4JB.jpg

OEBPS/rsrc4JE.jpg

OEBPS/rsrc4JD.jpg

OEBPS/rsrc4JG.jpg

OEBPS/rsrc4JF.jpg

OEBPS/rsrc4JH.jpg

OEBPS/rsrc4J8.jpg

OEBPS/rsrc4JA.jpg

OEBPS/rsrc4J9.jpg

OEBPS/rsrc4JR.jpg

OEBPS/rsrc4JP.jpg

OEBPS/rsrc4FR.jpg

OEBPS/rsrc4JT.jpg

OEBPS/rsrc4E6.jpg

OEBPS/rsrc4JS.jpg

OEBPS/rsrc4FN.jpg

OEBPS/rsrc4JV.jpg

OEBPS/rsrc4FP.jpg

OEBPS/rsrc4JU.jpg

OEBPS/rsrc4FK.jpg

OEBPS/rsrc4FM.jpg

OEBPS/rsrc4JK.jpg

OEBPS/rsrc4JJ.jpg

OEBPS/rsrc4JN.jpg

OEBPS/rsrc4JM.jpg

OEBPS/rsrc4FH.jpg

OEBPS/rsrc4FJ.jpg

OEBPS/rsrc4HX.jpg

OEBPS/rsrc4FF.jpg

OEBPS/rsrc4FG.jpg

OEBPS/rsrc4FE.jpg

OEBPS/rsrc4HP.jpg

OEBPS/rsrc4NF.jpg

OEBPS/rsrc4HN.jpg

OEBPS/rsrc4NE.jpg

OEBPS/rsrc4FC.jpg

OEBPS/rsrc4HS.jpg

OEBPS/rsrc4NH.jpg

OEBPS/rsrc4FD.jpg

OEBPS/rsrc4HR.jpg

OEBPS/rsrc4NG.jpg

OEBPS/rsrc4FA.jpg

OEBPS/rsrc4HU.jpg

OEBPS/rsrc4NK.jpg

OEBPS/rsrc4FB.jpg

OEBPS/rsrc4HT.jpg

OEBPS/rsrc4NJ.jpg

OEBPS/rsrc4F8.jpg

OEBPS/rsrc4HW.jpg

OEBPS/rsrc4NN.jpg

OEBPS/rsrc4F9.jpg

OEBPS/rsrc4HV.jpg

OEBPS/rsrc4NM.jpg

OEBPS/rsrc4HM.jpg

OEBPS/rsrc4ND.jpg

OEBPS/rsrc4NC.jpg

OEBPS/rsrc4F6.jpg

OEBPS/rsrc4F7.jpg

OEBPS/rsrc4F4.jpg

OEBPS/rsrc4F5.jpg

OEBPS/rsrc4F3.jpg

OEBPS/rsrc4J1.jpg

OEBPS/rsrc4NU.jpg

OEBPS/rsrc4J0.jpg

OEBPS/rsrc4NT.jpg

OEBPS/rsrc4F1.jpg

OEBPS/rsrc4J3.jpg

OEBPS/rsrc4NW.jpg

OEBPS/rsrc4F2.jpg

OEBPS/rsrc4J2.jpg

OEBPS/rsrc4NV.jpg

OEBPS/rsrc4EZ.jpg

OEBPS/rsrc4J5.jpg

OEBPS/rsrc4NY.jpg

OEBPS/rsrc4F0.jpg

OEBPS/rsrc4J4.jpg

OEBPS/rsrc4NX.jpg

OEBPS/rsrc4EX.jpg

OEBPS/rsrc4J7.jpg

OEBPS/rsrc4EY.jpg

OEBPS/rsrc4J6.jpg

OEBPS/rsrc4NZ.jpg

OEBPS/rsrc4NP.jpg

OEBPS/rsrc4HZ.jpg

OEBPS/rsrc4NS.jpg

OEBPS/rsrc4HY.jpg

OEBPS/rsrc4NR.jpg

OEBPS/rsrc4EV.jpg

OEBPS/rsrc4H8.jpg

OEBPS/rsrc4N1.jpg

OEBPS/rsrc4EW.jpg

OEBPS/rsrc4H7.jpg

OEBPS/rsrc4N0.jpg

OEBPS/rsrc4EU.jpg

OEBPS/rsrc4H9.jpg

OEBPS/rsrc4ES.jpg

OEBPS/rsrc4H0.jpg

OEBPS/rsrc4MT.jpg

OEBPS/rsrc4ET.jpg

OEBPS/rsrc4MS.jpg

OEBPS/rsrc4EP.jpg

OEBPS/rsrc4H2.jpg

OEBPS/rsrc4MV.jpg

OEBPS/rsrc4ER.jpg

OEBPS/rsrc4H1.jpg

OEBPS/rsrc4MU.jpg

OEBPS/rsrc4EM.jpg

OEBPS/rsrc4H4.jpg

OEBPS/rsrc4MX.jpg

OEBPS/rsrc4EN.jpg

OEBPS/rsrc4H3.jpg

OEBPS/rsrc4MW.jpg

OEBPS/rsrc4EJ.jpg

OEBPS/rsrc4H6.jpg

OEBPS/rsrc4MZ.jpg

OEBPS/rsrc4EK.jpg

OEBPS/rsrc4H5.jpg

OEBPS/rsrc4MY.jpg

OEBPS/rsrc4EG.jpg

OEBPS/rsrc4HK.jpg

OEBPS/rsrc4EH.jpg

OEBPS/rsrc4HJ.jpg

OEBPS/rsrc4NB.jpg

OEBPS/rsrc4ED.jpg

OEBPS/rsrc4HB.jpg

OEBPS/rsrc4N4.jpg

OEBPS/rsrc4EE.jpg

OEBPS/rsrc4HA.jpg

OEBPS/rsrc4N3.jpg

OEBPS/rsrc4EB.jpg

OEBPS/rsrc4HD.jpg

OEBPS/rsrc4N6.jpg

OEBPS/rsrc4EC.jpg

OEBPS/rsrc4HC.jpg

OEBPS/rsrc4N5.jpg

OEBPS/rsrc4E9.jpg

OEBPS/rsrc4HF.jpg

OEBPS/rsrc4N8.jpg

OEBPS/rsrc4EA.jpg

OEBPS/rsrc4HE.jpg

OEBPS/rsrc4N7.jpg

OEBPS/rsrc4E7.jpg

OEBPS/rsrc4HH.jpg

OEBPS/rsrc4NA.jpg

OEBPS/rsrc4E8.jpg

OEBPS/rsrc4HG.jpg

OEBPS/rsrc4N9.jpg

OEBPS/rsrc4EF.jpg

OEBPS/rsrc4N2.jpg

OEBPS/rsrc4GJ.jpg

OEBPS/rsrc4MB.jpg

OEBPS/rsrc4GH.jpg

OEBPS/rsrc4MA.jpg

OEBPS/rsrc4GM.jpg

OEBPS/rsrc4MD.jpg

OEBPS/rsrc4GK.jpg

OEBPS/rsrc4MC.jpg

OEBPS/rsrc4GN.jpg

OEBPS/rsrc4GC.jpg

OEBPS/rsrc4M5.jpg

OEBPS/rsrc4M4.jpg

OEBPS/rsrc4GE.jpg

OEBPS/rsrc4M7.jpg

OEBPS/rsrc4GD.jpg

OEBPS/rsrc4M6.jpg

OEBPS/rsrc4GG.jpg

OEBPS/rsrc4M9.jpg

OEBPS/rsrc4GF.jpg

OEBPS/rsrc4M8.jpg

OEBPS/rsrc4GX.jpg

OEBPS/rsrc4MP.jpg

OEBPS/rsrc4GW.jpg

OEBPS/rsrc4MN.jpg

OEBPS/rsrc4GZ.jpg

OEBPS/rsrc4GY.jpg

OEBPS/rsrc4MR.jpg

OEBPS/rsrc4ME.jpg

OEBPS/rsrc4GR.jpg

OEBPS/rsrc4MG.jpg

OEBPS/rsrc4GP.jpg

OEBPS/rsrc4MF.jpg

OEBPS/rsrc4GT.jpg

OEBPS/rsrc4MJ.jpg

OEBPS/rsrc4GS.jpg

OEBPS/rsrc4MH.jpg

OEBPS/rsrc4GV.jpg

OEBPS/rsrc4MM.jpg

OEBPS/rsrc4GU.jpg

OEBPS/rsrc4MK.jpg

